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Abstract. We prove a version of the wild McKay correspondence by using p-adic measures. This
result provides new proofs of mass formulas for extensions of a local field by Serre, Bhargava and
Kedlaya.
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1. Introduction

The aim of this paper is to prove a version of the wild McKay correspondence, the McKay
correspondence in positive or mixed characteristic where a given finite group may have
order dividing the characteristic of the base field or the residue field. Our main tool is the
p-adic measure.

By the McKay correspondence, we mean an equality between a certain invariant of a
G-variety V withG a finite group and a similar invariant of the quotient variety V/G or a
desingularization of it. There are different versions for different invariants. Our concern is
the one using motivic invariants or their realizations. In characteristic zero, such a version
was studied by Batyrev [Bat99] and Denef–Loeser [DL02]. Recently, after examining a
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special case in [Yas14], the author started to try to generalize it to positive or mixed char-
acteristic, and formulated a conjecture in [Yas] for linear actions on affine spaces over
a complete discrete valuation ring with algebraically closed residue field. Later, variants
and generalizations were formulated in [WY15, Yas16]. In [WY15], the situation was
considered where the residue field is only perfect. Moreover, when the residue field is fi-
nite, the point-counting realization was discussed. In [Yas16], non-linear actions on affine
normal varieties were treated.

In the present paper, we consider non-linear actions on normal quasi-projective vari-
eties over a complete discrete valuation ring with finite residue field and prove a version
of the wild McKay correspondence at the level of point-counting realization, with a little
dissatisfaction at the formulation in the non-affine case.

Let OK be a complete discrete valuation ring, K its fraction field and k its residue
field, which is supposed to be finite. For the pair (X,D) of an OK -variety X and a
Q-divisor D on X such that KX + D is Q-Cartier with KX the canonical divisor of X
over OK , we define the stringy point count of (X,D),

]st(X,D) ∈ R≥0 ∪ {∞},

as the volume of X(OK) with respect to a certain p-adic measure. When D = 0, iden-
tifying the pair (X, 0) with the variety X itself, we write ]st(X, 0) = ]stX. Roughly, the
stringy point count is the point-count realization of the motivic counterpart of the stringy
E-function introduced by Batyrev [Bat98, Bat99]. Its principal properties are as follows.

• When X is OK -smooth, we have ]stX = ]X(k).
• There exists a decomposition into contributions of k-points,

]st(X,D) =
∑
x∈X(k)

]st(X,D)x .

• If f : Y → X is a proper birational morphism of normal OK -varieties which induces
a crepant map (Y,E)→ (X,D) of pairs, then

]st(X,D) = ]st(Y,E).

We generalize the invariant to pairs having a finite group action. Let (V ,E) be a pair
as above and suppose that a finite group G acts faithfully on V and the divisor E is
stable under the action. Let M be a G-étale K-algebra, that is, SpecM → SpecK is
an étale G-torsor, and let OM be its integer ring. We define the M-stringy point count
of (V ,E), denoted by ]Mst (V ,E), as a certain p-adic volume of the set of G-equivariant
OK -morphisms SpecOM → V , and define the G-stringy point count by

]Gst (V ,E) =
∑
M

]Mst (V ,E),

whereM runs over the isomorphism classes ofG-étaleK-algebras. Thus ]Gst (V ,E) is the
weighted count ofG-étale K-algebrasM with weights ]Mst (V ,E). Basic properties of the
G-stringy point count are as follows.
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• When G = 1, we have ]Gst (V ,E) = ]st(V ,E).
• When V = AnOK

, E = 0 and the G-action is linear, then

]Mst V = q
n−vV (M)/]AutG(M/K),

where vV is a function associated to the G-action on V , and AutG(M/K) is the group
of G-equivariant K-automorphisms of M .

The invariant ]Gst (V ,E) is roughly the point-counting realization of a motivic invariant
studied in [Yas16], which is a simultaneous refinement and generalization of the orbifold
E-function and the stringy E-function considered by Batyrev [Bat99].

If we set X := V/G, there exists a unique Q-divisor D on X such that the natural
morphism (V ,E)→ (X,D) of pairs is crepant. Our main result is as follows.

Theorem 1.1. We have
]st(X,D) = ]

G
st (V ,E).

This is the point-counting version of a conjecture in [Yas16]. The proof basically follows
the strategy presented in [Yas, Yas16], which generalizes arguments in characteristic zero
by Denef–Loeser [DL02], except that we use p-adic measures instead of motivic inte-
gration. This switch, from motives to numbers of points, and from motivic integration
to p-adic measures, enables us to avoid the use of conjectural moduli spaces which the
author relied on in [Yas, Yas16]. It also makes a large part of the arguments much simpler.
Although the author believes that we will have the desired moduli spaces and prove more
general and stronger results by means of motivic integration in near future, it is nice to
have an elementary and short proof of a result a little weaker but still strong enough for
many applications. In the text, we prove a slightly more general result than the theorem
above: ]st(X,D)C = ]

G
st (V ,E)C for a G-stable constructible subset C of V ⊗OK

k and
its image C in X ⊗OK

k.
It is suggestive to write the equality of the theorem as∑

x∈X(k)

]st(X,D)x =
∑
M

]Mst (V ,E),

an equality between a weighted count of k-points of X and one of G-étale K-algebras.
A particularly interesting case of the theorem is as follows. We suppose that V = AnOK

,
the G-action is linear and has no pseudo-reflection, and there exists a crepant proper
birational morphism Y → X with Y regular. If we denote the OK -smooth locus of Y
by Ysm, then the theorem reduces to the form

]Ysm(k) =
∑
M

qn−vV (M)/]AutG(M/K). (1.1)

When it is possible to count k-points of Ysm explicitly, we readily obtain a mass formula
for G-étale K-algebras with respect to weights qn−vV (M)/]AutG(M/K).

Serre [Ser78] proved a beautiful mass formula for totally ramified field extensions
L/K of fixed degree with respect to weights determined by discriminants. He gave two
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different proofs. Krasner [Kra79] gave an alternative proof by using a formula which
had been obtained by himself. As far as the author knows, these have been all known
proofs of Serre’s mass formula. Bhargava [Bha07] proved a similar mass formula for
all étale K-algebras of fixed degree, using Serre’s formula. Kedlaya [Ked07] interpreted
Bhargava’s formula as a mass formula for local Galois representations (that is, continuous
homomorphisms Gal(Ksep/K) → Sn ⊂ GLn(C)) with respect to the Artin conductor.
He then studied the case where Sn is replaced with other groups.

Wood and Yasuda [WY15] showed a close relation between the function vV and the
Artin conductor. Using this and a desingularization by the Hilbert scheme of points, we
can deduce Bhargava’s formula as a special case of formula (1.1). A similar relation
between Bhargava’s formula and the Hilbert scheme of points was discussed in [WY15].
Then, using for instance the exponential formula relating Serre’s and Bhargava’s formulas
[Ked07, p. 8], we can give a new proof of Serre’s formula. In a similar way, we can also
prove Kedlaya’s mass formula for the group of signed permutation matrices in GLn(C)
[Ked07], unless K has residual characteristic two. Detailed computation of the last ex-
ample will be given in [WY17]. These new proofs of mass formulas are not as easy as the
original ones. However, they are interesting because they fit into the general framework
of the wild McKay correspondence and reduce the problem to explicit computation of
desingularization, which seems unrelated at first glance.

The paper is organized as follows. In Section 2 we set our conventions and notation.
In Section 3 we recall K-analytic manifolds with K a local field and p-adic measures on
them associated to differential forms. In Section 4 we define stringy point counts of log
pairs. In Section 5 we show a certain one-to-one correspondence of points associated to a
Galois cover of varieties. In Section 6 we discuss the untwisting technique, which is the
technical core of the proof of our main result. In Section 7 we prove the main result. In
Section 8 we discuss the case where a finite group acts linearly on an affine space and its
application to mass formulas.

2. Conventions and notation

2.1. Throughout the paper, we fix a non-archimedean local field K , that is, a finite ex-
tension of either Qp or Fp((t)). We denote its integer ring by OK , its residue field by k,
the cardinality of k by q, and the maximal ideal of OK by mK .

2.2. We usually denote by M an G-étale K-algebra (Section 5.1) and by SpecL a con-
nected component of SpecM such that L is a finite separable field extension of K . We
denote by OM and OL the rings of integers ofM and L respectively. We denote byH the
stabilizer subgroup of G of this component.

2.3. If R is either K , OK or k, an R-variety means a reduced quasi-projective
R-scheme X such that

• X is flat and of finite type over R,
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• X is equi-dimensional over R: all irreducible components have the same relative di-
mension over R, and
• the structure morphism X→ SpecR is smooth on an open dense subscheme of X.

The dimension of an R-variety always means its relative dimension over R. We usually
denote the dimension of a variety by d (or n when the variety is an affine space). For an
OK -variety X, we define XK := X ⊗OK

K and Xk := X ⊗OK
k. Note that Xk is not

generally reduced or a k-variety.

2.4. For an OK -variety X, we denote by X(OK)
◦ the set of OK -points SpecOK → X

that send the generic point of SpecOK into the locus where X is OK -smooth.

2.5. Groups act on schemes on the left, and on rings, fields and modules on the right,
unless otherwise noted. Thus, for an affine scheme SpecR, if a group G acts on SpecR
and if g : SpecR → SpecR is the automorphism induced by g ∈ G, then we have the
corresponding ring automorphism g∗ : R→ R and the same groupG naturally acts on R
by r ·g := g∗(r), r ∈ R. Conversely, aG-action on R gives a naturalG-action on SpecR
in a similar way.

3. p-adic measures on K-analytic manifolds

In this section, we review basic material on the Haar measure on Kd for a local field K
and a measure on a K-analytic manifold induced by a differential form.

3.1. Let K be a non-archimedean local field. Recall that we always denote the cardi-
nality of the residue field k by q. Let | · | be the normalized absolute value on K so that
|$ | = q−1 for a uniformizer $ ∈ OK . For an integer d ≥ 0, we define µKd to be the
Haar measure of Kd normalized so that µKd (Od

K) = 1. A function f : U → K on an
open subset U ⊂ Kd is called K-analytic if in a neighborhood of every point of U , f is
expressed as a convergent Taylor series.

Lemma 3.1. Let f : U → K be a K-analytic function defined on an open compact
subset U ⊂ Kd . Suppose that f is nowhere locally constant. Then µKd (f

−1(0)) = 0.

Proof. This result should be well-known to specialists, though the author could not find a
reference. For the sake of completeness, we give a proof here, which follows a suggestion
of a referee. (A similar result is found in Igusa’s book [Igu00, Lemma 8.3.1]. However,
he proves it only for characteristic zero.)

The proof is by induction on d . If d = 0, there is nothing to prove. If d = 1, then
looking at the Taylor expansion, we see that f−1(0) is a discrete subset of U and has
measure zero. For d > 1, it suffices to show that if f−1(0) contains the origin o ∈ Kd ,
then there exists an open neighborhood V of o such that f−1(0) ∩ V has measure zero.
There exists a line L ∼= K passing through o such that f |L∩U is not locally constant
around o. Indeed, if there is no such line and if f is expressed as a power series on
a neighborhood V of o, then f is constant on V , which contradicts the assumption. By
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a suitable linear transform, we may assume thatL is given by x1 = · · · = xd−1 = 0. From
the Weierstrass preparation theorem (for instance, see [Igu00, Theorem 2.3.1]), f is of the
form

g(x1, . . . , xd)
(
xmd + f1(x1, . . . , xd−1)x

m−1
d + · · · + fm(x1, . . . , xd−1)

)
on a neighborhood V of o, where g, f1, . . . , fm are convergent power series such that g is
nowhere vanishing on V . Define h : V → K by

h := f/g = xmd + f1(x1, . . . , xd−1)x
m−1
d + · · · + fm(x1, . . . , xd−1),

which has the same zero locus as f |V . Let π : V → Kd−1 be the projection to the
first d − 1 coordinates. For every y ∈ π(V ), h|π−1(y) is a function given by a nonzero
polynomial, in particular, it is nowhere locally constant. From the case d = 1, its zero
locus has measure zero with respect toµK . Now the Fubini–Tonelli theorem (for instance,
see [Hal50, Theorems A and B, p. 147]) shows that f−1(0) ∩ V = h−1(0) has measure
zero with respect to µKd , which completes the proof. ut

3.2. K-analytic manifolds are defined in a similar way to ordinary manifolds. For details,
we refer the reader to [Igu00, Section 2.4]. We can similarly defineK-analytic differential
forms as well. Let X be a K-analytic manifold of dimension d. For a K-analytic d-form
ω on X and an open compact subset U of X, one can define the integral

ˆ
U

|ω| ∈ R≥0.

When ω is written as f (x)dx1 ∧ · · · ∧ dxd for a K-analytic function f (x) and local
coordinates x1, . . . , xd on U , thenˆ

U

|ω| =

ˆ
U ′
|f (x)| dµKd ,

where U ′ is the open subset ofKn corresponding to U . Thus aK-analytic d-form defines
a measure µω on X: for a compact open subset U ⊂ X,

µω(U) :=

ˆ
U

|ω| ∈ R≥0,

and for an arbitrary open subset U ⊂ X,

µω(U) := sup{µω(U ′) | U ′ ⊂ U : open and compact} ∈ R≥0 ∪ {∞}.

We need to generalize this slightly as in [Ito04, Wan98]. Let ω be an r-fold d-form,
that is, a section of (�dX)

⊗r . Here �dX is the sheaf of K-analytic d-forms and the tensor
product is taken over the sheaf ofK-analytic functions. Locallyω is written as f (x)(dx1∧

· · ·∧dxd)
⊗r with f (x) aK-analytic function, say on an open compact subset U . We then

define ˆ
U

|ω|1/r :=

ˆ
U ′
|f (x)|1/r dµKd
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and extend the definition to an arbitrary r-fold d-form onX in the obvious way. We define
the measure µω by

µω(U) :=

ˆ
U

|ω|1/r

for an open compact U , and similarly for an arbitrary open subset.

4. Log pairs

Using measures on K-analytic manifolds considered in the preceding section, we intro-
duce, in this section, the notion of stringy point count for log pairs and study its basic
properties.

4.1. Let X be a d-dimensional OK -variety. We write Xk := X ⊗OK
k and XK :=

X ⊗OK
K . Let XK,sm be the K-smooth locus of XK and let

X(OK)
◦
:= X(OK) ∩XK,sm(K),

thinking of X(OK) as a subset of X(K) = XK(K). This set X(OK)
◦ has a natural

structure of a K-analytic manifold.
Let I be an invertible OX-submodule of (�d

X/OK
)⊗r ⊗ K(X), where K(X) is the

sheaf of total quotient rings of X. We define a measure µI on X(OK)
◦ as follows. Let

X =
⋃
Ui be a Zariski open cover so that X(OK)

◦
=
⋃
Ui(OK)

◦ and I|Ui is a free
OUi -module. Let ωi ∈ I|Ui be a generator. It defines an r-fold d-form ωan

i on the K-
analytic manifold Ui(OK)

◦ in the obvious way, and the measure µωan
i

. If ω′i is another
generator of I|Ui , then there exists a nowhere vanishing regular function f onUi such that
ωi = fω

′

i . If f an is the corresponding K-analytic function on Ui(OK)
◦, then |f an

| ≡ 1.
Therefore the measure µωan

i
does not depend on the choice of generator. Now it is clear

that the measures µωan
i

for different i glue together and define a measure on the entire
space X(OK)

◦; we denote it by µI . We further extend µI to X(OK) by declaring all
subsets of X(OK) \X(OK)

◦ to have measure zero.
The following lemma is a slight generalization of [Wei82, Theorem 2.2.5].

Lemma 4.1. If X is OK -smooth and I = (�d
X/OK

)⊗r , then

µI(X(OK)) = ]X(k)/q
d .

Proof. For x ∈ X(k), letX(OK)x be the set of OK -points which induce x by composition
with Spec k → SpecOK . If x1, . . . , xd are local coordinates around x, then they give a
bijection from X(OK)x onto mdK ⊂ Kd . On the other hand, I has a local generator
(dx1 ∧ · · · ∧ dxd)

⊗r . Therefore

µI(X(OK)x) =

ˆ
md
K

1 dµKd = µKd (m
d
K) = q

−d ,

and the lemma follows. ut
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Lemma 4.2. For an integer s > 0, regarding I⊗s as an OK -submodule of (�d
X/OK

)⊗sr

⊗K(X), we have µI = µI⊗s .

Proof. If I has a local generator f (x)(dx1∧· · ·∧dxd)
⊗r , then f (x)s(dx1∧· · ·∧dxd)

⊗sr

is a local generator of I⊗s , and we have
ˆ
|f (x)|1/r dµKd =

ˆ
|f (x)s |1/(rs) dµKd ,

where the integrals are taken over a suitable open compact subset of Kd . The lemma
easily follows. ut

Lemma 4.3. For a subscheme Y ⊂ X of positive codimension,

µI(Y (OK)) = 0.

Proof. This is a direct consequence of Lemma 3.1. ut

4.2. For a normal OK -variety X, the canonical sheaf ωX = ωX/OK
is defined as in

[Kol13, pp. 7–8]. It is a reflexive sheaf, in particular, locally free in codimension one, and
coincides with �d

X/OK
:=

∧d
�X/OK

on the OK -smooth locus. We denote the corre-
sponding divisor by KX, which is determined up to linear equivalence.

Definition 4.4. A log pair is a pair (X,D) of a normal OK -variety X and a Q-divisor
D (a Weil divisor with rational coefficients) on X such that KX + D is Q-Cartier. We
sometimes call a log pair (X,D) a log structure on X.

We identify a normal Q-Gorenstein (KX is Q-Cartier) OK -variety X with the log pair
(X, 0).

Let (X,D) be a log pair and let r ∈ N be such that r(KX + D) is Cartier. Then the
invertible sheaf OX(r(KX +D)) is naturally a subsheaf of (�d

X/OK
)⊗r ⊗K(X).

Definition 4.5. A morphism of log pairs, f : (Y,E) → (X,D), is a morphism of the
underlying varieties, f : Y → X. We say that a morphism f : (Y,E) → (X,D) is
crepant if for r ∈ N such that r(KX +D) and r(KY + E) are both Cartier, the canonical
morphism f ∗(�d

X/OK
)⊗r → (�d

Y/OK
)⊗r induces an isomorphism f ∗OX(r(KX+D))→

OY (r(KY + E)).

Lemma 4.6. Let (X,D) be a log pair and let f : Y → X be a generically étale mor-
phism of normal varieties. There exists a unique Q-divisorE on Y such that the morphism
f : (Y,E)→ (X,D) is crepant.

Proof. The pull-back f ∗OX(r(KX + D)) is an invertible subsheaf of (�d
Y/OK

)⊗r ⊗

K(Y). Hence there exists a unique Weil divisor E′ such that ω⊗r
Y/OK

(E′) coincides with
f ∗OX(r(KX + D)) in codimension one as subsheaves of (�d

Y/OK
)⊗r ⊗ K(Y). Now

(1/r)E′ is the desired Q-divisor. ut



The wild McKay correspondence and p-adic measures 3717

4.3. In this subsection we consider measures related to log pairs.

Definition 4.7. Let (X,D) be a log pair and r ∈ N such that r(KX + D) is Cartier. We
define the measure µX,D on X(OK) to be µOX(r(KX+D)). For a normal Q-Gorenstein
OK -variety X, we write µX,0 simply as µX.

From Lemma 4.2, the definition does not depend on the choice of r . If X is OK -smooth,
from Lemma 4.1, we have

µX(X(OK)) = ]X(k)/q
d .

We use the following theorem many times in later sections:

Theorem 4.8. Let f : (Y,E) → (X,D) be a crepant morphism of log pairs. Suppose
that a finite group G acts faithfully on Y and trivially on X so that the morphism f :

Y → X of the underlying varieties is G-equivariant. Suppose that the induced morphism
Y/G→ X is birational. Then, for a G-stable open subset A ⊂ Y (OK), we have

1
]G
µY,E(A) = µX,D(f (A)) ∈ R≥0 ∪ {∞}.

Proof. From Lemma 4.3, removing measure zero subsets fromA and f (A), we may sup-
pose that the map A→ f (A) is aG-equivariant étale morphism ofK-analytic manifolds
with A/G ∼= f (A). Each point x ∈ f (A) has a K-analytic open neighborhood U such
that f−1(U) ⊂ A is isomorphic to the disjoint union of ]G copies of U . Let r ∈ N be
such that r(KX + D) is Cartier and I := OX(r(KX + D)). For a Zariski open V ⊂ X
such that U ⊂ V (OK), if ω ∈ 0(V, I) is a generator of I|V , we clearly have

1
]G

ˆ
f−1(U)

|f−1ω|1/r =

ˆ
U

|ω|1/r .

It is now easy to deduce the theorem. ut

4.4. Finally, we define the stringy point count:

Definition 4.9. Let (X,D) be a log pair, d the dimension of the OK -variety X and
C ⊂ Xk a constructible subset. Let X(OK)C be the set of OK -points sending the closed
point of SpecOK into C. We define the stringy point count of a log pair (X,D) along C
by

]st(X,D)C := q
d
· µX,D(X(OK)C).

When C = Xk , we omit the subscript C and write ]st(X,D). When C consists of a single
k-point x, we write the subscript simply as x.

We obviously have
]st(X,D) =

∑
x∈X(k)

]st(X,D)x,

showing that ]st(X,D) is the count of k-points with weights ]st(X,D)x . If X is a smooth
variety, identified with the log pair (X, 0), then ]stX = ]X(k).
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Corollary 4.10. Let f : (Y,E) → (X,D) be a crepant proper birational morphism of
log pairs and C ⊂ Xk a constructible subset. We have

]st(Y,E)f−1(C) = ]st(X,D)C .

Proof. We apply Theorem 4.8 to the case whereG = 1 and A = Y (OK)f−1(C). From the
valuative criterion for properness, f (A) coincides with X(OK)C modulo measure zero
subsets, and the corollary follows. ut

4.5. We now give an explicit formula for stringy point counts under a certain assumption,
an analogue of Denef’s formula [Den87, Theorem 3.1] and the definition of the stringy
E-function [Bat98]. Although we do not use it in the rest of the paper, the formula is
useful for applications. Firstly we suppose that X is regular. We also suppose that D is
simple normal crossing in the following sense: if we write D =

∑
aiDi with Di prime

divisors and ai 6= 0, then

• for every i and every k-point x ∈ Di where X is OK -smooth, the completion of Di is
irreducible, and
• for every k-point x ∈ X where X is OK -smooth, there exists a regular system of

parameters x0 = $, x1, . . . , xd on a neighborhood U of x with $ a uniformizer of K
such that the support of D is defined by a product

∏m
j=1 xij (0 ≤ i1 < · · · < im ≤ d).

We then rewrite D as

D =

l∑
h=1

ahAh +

m∑
i=1

biBi +

n∑
j=1

cjCj

such that

• for every h, ah 6= 0, Ah ⊂ Xk and X is OK -smooth at the generic point of Ah,
• for every i, bi 6= 0, Bi ⊂ Xk and X is not OK -smooth at the generic point of Bi , and
• for every j , cj 6= 0 and Cj dominates SpecOK .

Such a decomposition of D is unique. For each h, we let A◦h be the locus in Ah where X
is OK -smooth. For each subset J ⊂ {1, . . . , n}, we set

C◦J :=
(⋂
j∈J

Cj

)
\

( ⋃
j∈{1,...,n}\J

Cj

)
.

Let Xsm be the OK -smooth locus of X.

Proposition 4.11. The stringy point count ]st(X,D)C is finite if and only if cj < 1 for
every j such that (Cj ∩ C ∩Xsm)(k) 6= ∅. If these equivalent conditions hold, we have

]st(X,D)C =

l∑
h=1

qah
∑

J⊂{1,...,n}

](C ∩ A◦h ∩ C
◦

J )(k)
∏
j∈J

q − 1
q1−cj − 1

.

Proof. The proof follows the one of [Ito04, Proposition 3.4]. There is no OK -point pass-
ing through a k-point where X is not OK -smooth. Therefore

]st(X,D)C =
∑

x∈(C∩Xsm)(k)

]st(X,D)x .
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We fix x ∈ (C ∩ Xsm)(k) and suppose that C1, . . . , Cλ are those prime divisors among
C1, . . . , Cn containing x. Let a be ah if Ah contains x, and zero if none of Ah contains x.
To show the proposition, it suffices to show:

Claim. If cj ≥ 1 for some j with 1 ≤ j ≤ λ, then ]st(X,D)x = ∞, and otherwise

]st(X,D)x = q
a
·

λ∏
j=1

q − 1
q1−cj − 1

.

To see this, using local coordinates x0 = $, x1, . . . , xd , we suppose that Ah containing
x (if any) is defined by x0, and for 1 ≤ i ≤ λ, Ci is defined by xi . Then, for an integer
r > 0,

]st(X,D)x = q
d

ˆ
X(OK )x

|$−rax
−rc1
1 · · · x

−rcλ
λ |

1/rdx1 ∧ · · · ∧ dxd

= qa ·

d∏
j=1

q

ˆ
mK

|x|−cj dx,

with cj := 0 for j > λ. For any c ∈ R, we have
ˆ
mK

|x|−c dx =

∞∑
i=1

qic · µK(m
i
K \m

i+1
K ) =

∞∑
i=1

qic · (q−i − q−i−1)

=

{
q−1
·

q−1
q1−c−1 (c < 1)

∞ (c ≥ 1).

This shows the claim and the proposition. ut

5. Group actions

In this section, we consider a G-cover of varieties V → X = V/G with G a finite
group and show a correspondence of OK -points of X and equivariant OM -points with M
G-étale K-algebras. From now on, G denotes a finite group.

5.1. We first define some basic notions.

Definition 5.1. AG-étaleK-algebra means a finiteK-algebraM of degree ]G endowed
with a (right) G-action such that the subset of G-invariant elements, MG, is identical
to K . An isomorphism M → N of G-étale K-algebras is a K-algebra isomorphism
compatible with the givenG-actions onM and N . We denote the set of representatives of
isomorphism classes of G-étale K-algebras by G-Ét(K). We denote the automorphism
group of a G-étale K-algebra M by AutG(M/K).

LetM ∈ G-Ét(K). There exists a field extension L ofK such thatM is isomorphic to the
product Lc of c copies of L as an K-algebra for some positive integer c. Geometrically
we can write

SpecM =

c︷ ︸︸ ︷
SpecL t · · · t SpecL.
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Let H ⊂ G be the stabilizer of one connected component of SpecM . The subgroup
H depends on the choice of the component, but is unique up to conjugation in G. The
automorphism group AutG(M/K) is isomorphic to CG(H)op, the opposite group of the
centralizer H (for instance, see [Yas16]).

Remark 5.2. G-étale K-algebras M correspond to G-conjugacy classes of continuous
homomorphisms ρ : Gal(Ksep/K) → G with Ksep a separable closure of K . The sta-
bilizer H of a connected component of SpecM coincides with the image of the corre-
sponding map ρ up to conjugation. Since the Galois group of a finite Galois extension of
a local field is always solvable (see [Ser79, p. 68]), if G is not solvable, then no G-étale
K-algebra M is a field.

5.2. Let V be an OK -variety endowed with a faithful G-action and let X := V/G be
the quotient variety. For M ∈ G-Ét(K), we let V (OM)

G be the set of G-equivariant
OM -points of V , that is, G-equivariant OK -morphisms SpecOM → V . A G-equivariant
OM -point SpecOM → V induces a natural morphism between the quotients of the source
and target, SpecOK → X. This defines a map

V (OM)
G
→ X(OK).

Let H ⊂ G be the stabilizer of a connected component of SpecM as above. The
restriction of the G-action on V to CG(H) induces a (left) CG(H)-action on V (OM)

G,
namely g ∈ CG(H) sends a G-equivariant point α : SpecOM → V to g ◦ α. After
identifying AutG(M/K) with CG(H)op, this action is identical to the left AutG(M/K)op-
action corresponding to the right AutG(M/K)-action induced from the AutG(M/K)-
action on SpecOM . The map V (OM)

G
→ X(OK) factors through V (OM)

G/CG(H).

Definition 5.3. Let X(OK)
\ be the set of OK -points SpecOK → X sending the generic

point into the unramified locus of V → X in X, and let V (OM)
G,\ be the set of G-

equivariant OM -points sending the generic points into the unramified locus of the same
morphism in V .

The map V (OM)
G/CG(H)→ X(OK) restricts to V (OM)

G,\/CG(H)→ X(OK)
\.

Proposition 5.4. The map⊔
M∈G-Ét(K)

V (OM)
G,\/CG(H)→ X(OK)

\

is bijective.

Proof. We first show the injectivity. Let α : SpecOM → V be a G-equivariant point in
V (OM)

\ and β : SpecOK → X its image in X(OK)
\. Then the class of α modulo the

CG(H)-action is reconstructed from β as the normalization of SpecOK×β,X,ψ V with ψ
the quotient morphism V → X. Indeed the induced morphism SpecM → SpecK×β,X,ψ
V is a morphism of étale G-torsors over SpecK , hence is an isomorphism. This shows
the injectivity.

Given a point β : SpecOK → X inX(OK)
\, the normalization of SpecOK×β,X,ψ V

is the spectrum of OM for a G-étale K-algebra M . This shows the surjectivity. ut
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6. Untwisting

The key for the formulation and the proof of our main results is untwisting, which makes
a correspondence between a set of equivariant OM -points of a G-variety V and a set of
OK -points of another variety V |M| constructed by twisting V somehow. At the cost of the
twist of V , the study of equivariant points (twisted arcs) reduces to the one of ordinary
points (ordinary arcs).

6.1. We fix an OK -linear faithful G-action on an affine space

AnOK ,x
:= SpecOK [x] = SpecOK [x1, . . . , xn].

Let OK [x]1 be the linear part of OK [x]. We introduce a notion playing the central role in
the untwisting technique.

Definition 6.1. We define the tuning module 4M by

4M := {φ ∈ HomOK
(OK [x]1,OM) | ∀g ∈ G, φ ◦ g = g ◦ φ}.

The module 4M is actually identified with AnOK ,x
(OM)

G by the map

AnOK ,x
(OM)

G
→ 4M , γ 7→ γ ∗|OK [x]1 .

It turns out that the tuning module4M is a free OK -submodule of HomOK
(OK [x]1,OM)

= AnOK ,x
(OM) of rank n [Yas, WY15].

Remark 6.2. Our definition of the tuning module follows the one in [Yas16]. Noting
that throughout the related literature [WY15, Yas, Yas16], a finite group always acts on
an affine space AnOK ,x

on the left, if we think that the tuning module is associated to M
and the G-variety AnOK ,x

(rather than its coordinate ring) and if AnOK ,x
(OM) is identified

with O⊕nM , then our definition of 4M coincides with the tuning submodule considered in
[Yas, WY15]. On the other hand, the coordinate ring OK [x] has a right or left action,
depending on the paper, and one has to be careful about the caused notational difference.

We fix a basis φ1, . . . , φn ∈ 4M and let y1, . . . , yn be its dual basis so that

HomOK
(4M ,OK) =

⊕
j

OK · yj and HomOK
(4M ,OM) =

⊕
j

OM · yj .

We think of these modules as the linear parts of the polynomial rings OK [y] =

OK [y1, . . . , yn] and OM [y] = OM [y1, . . . , yn]. We set

AnOK ,y
:= SpecOK [y] and AnOM ,y

:= SpecOM [y].

Definition 6.3. We define an OK -algebra morphism u∗ : OK [x] → OM [y] by

u∗(xi) =

n∑
j=1

φj (xi)yj

and the corresponding morphism of schemes

u : AnOM ,y
→ AnOK ,x

.
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The linear part of u∗ is identical to the canonical map

OK [x]1 → HomOK
(4M ,OM) f 7→ (φ 7→ φ(f )),

which gives an intrinsic description of u. This is useful in order to show that some derived
maps are equivariant.

Lemma 6.4. The restriction of u, AnM,y → AnK,x , is étale.

Proof. The chosen basis φ1, . . . , φn of 4M is an M-basis of the free M-module

HomOK
(OK [x]1,M) = HomM(M[x]1,M)

and its dual basis y1, . . . , yn is naturally regarded as a basis of

HomM(HomM(M[x]1,M),M).

Therefore the map K[x]1 → M[y]1 corresponding to the morphism of the lemma is
identified with

K[x]1 → M[x]1 → HomM(HomM(M[x]1,M),M),

the composition of the scalar extension and the canonical morphism to the double dual
space. This proves the lemma. ut

6.2. We introduce another notion:

Definition 6.5. The given G-action on SpecOM and the trivial G-action on AnOK,y
de-

fines a G-action on the fiber product AnOM ,y
= SpecOM ×SpecOK

AnOK ,y
over OK ; we

call it the Galois G-action.

Lemma 6.6. The map u is equivariant with respect to the given G-action on AnOK ,x
and

the Galois G-action on AnOM ,y
.

Proof. For 1 ≤ i ≤ n and g ∈ G, we have

u∗(xig) =

n∑
j=1

φj (xig)yj .

From the definition of 4M , we have

u∗(xig) =

n∑
j=1

φj (xig)yj =

n∑
j=1

(φj (xi)g)yj = u
∗(xi)g,

and the lemma follows. ut

Proposition 6.7. We have
u∗(OK [x]

G) ⊂ OK [y].
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Proof. Note that OK [y] is identical to the invariant subring OM [y]
G with respect to the

Galois G-action as above. Since u∗ is G-equivariant, all G-invariant elements of OK [x]

map into OK [y]. ut

Let 9 : AnOK ,x
→ AnOK ,x

/G be the quotient morphism and 9 |M| : AnOK ,y
→ AnOK ,x

/G

the morphism corresponding to u∗ : OK [x]
G
→ OK [y]. We obtain the following com-

mutative diagram:
AnOM ,y

u

zz

⊗OKOM

$$
AnOK ,x

9 $$

AnOK ,y

9 |M|zz
AnOK ,x

/G

6.3. By contrast, we will call some actions “non-Galois”:

Definition 6.8. The action of CG(H) = Aut(M)op on 4M induces CG(H)-actions on
OK [y]1 = HomOK

(4M ,OK) and OM [y]1 = HomOK
(4M ,OM), which are OK -linear

and OM -linear respectively. In turn, they induce CG(H)-actions on AnOK ,y
and AnOM ,y

;
we call all these actions non-Galois actions.

Lemma 6.9. (1) The map u is equivariant with respect to the restriction of the given
G-action on AnOK ,x

to CG(H) and the non-Galois CG(H)-action on AnOM ,y
.

(2) The map AnOM ,y
→ AnOK ,y

given by scalar extension is equivariant with respect to
the non-Galois CG(H)-actions.

Proof. The natural map

OK [x]1 → OM [y]1 = HomOK
(4M ,OM)

is clearly CG(H)-equivariant, and the first assertion of the lemma follows. The second
assertion is trivial. ut

Definition 6.10. Let AnOM ,y
(OM)

G be the set of G-equivariant OM -morphisms
SpecOM → AnOM ,y

. The sets AnOM ,y
(OM)

G and AnOK ,y
(OK) both have CG(H)-actions

by g · γ = g ◦ γ ; we call these again non-Galois.

Lemma 6.11. The map obtained by scalar extension,

AnOK ,y
(OK)→ AnOM ,y

(OM)
G,

is bijective and CG(H)-equivariant with respect to the non-Galois actions.

Proof. A G-equivariant (with respect to the Galois action on AnOM ,y
) OM -point γ is

determined by γ (yj ), 1 ≤ j ≤ n, which must lie in OK . This shows the bijectivity. The
equivariance follows from the equivariance of AnOM ,y

→ AnOK ,y
. ut



3724 Takehiko Yasuda

If γ ∈ AnOM ,y
(OM)

G, then u ◦ γ ∈ AnOK ,x
(OM)

G. This defines a map

α : AnOM ,y
(OM)

G
→ AnOK ,x

(OM)
G, γ 7→ u ◦ γ.

Lemma 6.12. The map α is a CG(H)-equivariant bijection with respect to the non-
Galois action on AnOM ,y

(OM)
G.

Proof. The map is clearly CG(H)-equivariant. As for the bijectivity, the point is that
both sets AnOM ,y

(OM)
G and AnOK ,x

(OM)
G are naturally identified with 4M . A point

γ ∈ AnOM ,y
(OM) is G-equivariant if and only if γ ∗(yi) ∈ OK = (OM)

G. Recalling that
y1, . . . , yn is the dual basis of φ1, . . . , φn, we identify AnOM ,y

(OM)
G with

⊕n
i=1 OK · φi

= 4M . By Definition 6.3, (u(φi))∗ sends xi′ to
n∑
j=1

φj (xi′)φi(yj ) = φi(xi′).

Namely the restriction of (u(φi))∗ to the linear part OK [x]1 is φi . Thus, with the obvious
identification AnOK ,x

(OM)
G
= 4M , the map α corresponds to the identity map of 4M .

In particular, α is bijective. ut

We have obtained two one-to-one correspondences which are CG(H)-equivariant:

AnOM ,y
(OM)

G

77

ww

gg

''
AnOK ,x

(OM)
G AnOK ,y

(OK)

which induce one-to-one correspondences

AnOM ,y
(OM)

G/CG(H)
55

uu

ii

))
AnOK ,x

(OM)
G/CG(H) AnOK ,y

(OK)/CG(H)

Definition 6.13. Let AnOK ,y
(OK)

\ (resp. AnOM ,y
(OM)

G,\) be the set of OK -points (resp.
G-equivariant OM -points) sending the generic point(s) into the locus where AnOK ,y

→

AnOK ,x
/G (resp. AnOM ,y

→ AnOK ,x
/G) is étale.

From Lemma 6.4, the above correspondences restrict to the correspondences

AnOM ,y
(OM)

G,\/CG(H)
44

tt

ii

))
AnOK ,x

(OM)
G,\/CG(H) AnOK ,y

(OK)
\/CG(H).

From Proposition 5.4, we obtain:
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Proposition 6.14. The natural map⊔
M∈G-Ét(K)

AnOK ,y
(OK)

\/CG(H)→ (AnOK ,x
/G)(OK)

\,

induced by the morphisms 9 |M| : AnOK ,y
→ AnOK ,x

/G, is bijective. Here H , AnOK ,y
and

9 |M| vary, depending on M .

6.4. Let V ⊂ AnOK ,x
be a normal closed OK -subvariety stable under the G-action such

that the induced G-action on V is faithful. Let X be the quotient variety V/G and X be
the image of V in AnOK ,x

/G. The canonical morphism X→ X is finite and birational. If
U ⊂ X and U ⊂ X denote the loci where V → X and V → X are unramified, then the
morphism X→ X induces an isomorphism U → U .

Definition 6.15. For M ∈ G-Ét(K), we define V |M| to be the preimage of X in AnOK ,y

and V 〈M〉 to be the preimage ofX in AnOM ,y
; both are given the reduced scheme structures.

Let V 〈M〉,ν and V |M|,ν be the normalizations of V 〈M〉 and V |M| respectively. The nor-
malization morphisms V 〈M〉,ν → V 〈M〉 and V |M|,ν → V |M| are isomorphisms over
V 〈M〉 ⊗M and V |M| ⊗K respectively. We have the following diagram:

V 〈M〉,ν

�� $$
V 〈M〉

|| $$

V |M|,ν

��

��

V

ψ

��

""

V |M|

ψ |M|

��

X

��
X

We name morphisms as in the diagram. All morphisms here are generically étale. Let
X(OK)

\ be the set of OK -points of X sending the generic point into the unramified locus
of V → X (equivalently of V |M| → X), and let V |M|(OK)

\ (resp. V |M|,ν(OK)
\) be

the set of OK -points of V |M| (resp. V |M|,ν) sending the generic point into the unramified
locus of V |M|→ X (resp. V |M|,ν → X).

Proposition 6.16. The natural maps⊔
M∈G-Ét(K)

V |M|(OK)
\

CG(H)
→ X(OK)

\ and
⊔

M∈G-Ét(K)

V |M|,ν(OK)
\

CG(H)
→ X(OK)

\

are bijective. Here the subgroup H ⊂ G varies, depending on M .
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Proof. The first map is a restriction of the map in Proposition 6.14 and is easily seen to
be bijective. Since V |M|,ν ⊗ K → V |M| ⊗ K and U → U are isomorphisms, we have
natural bijections V |M|,ν(OK)

\
→ V |M|(OK)

\ and X(OK)
\
→ X(OK)

\. It follows that
the second map of the proposition is also bijective. ut

7. Main results

Using the untwisting, we introduce the notion of G-stringy point counts for G-log pairs,
prove our main results.

7.1. We first define log pairs with a G-action.

Definition 7.1. A G-log pair is a log pair (V ,E) with a faithful G-action on V such that
E is G-stable, that is, for every g ∈ G, g∗E = E.

Let (V ,E) be aG-log pair, let X := V/G be the quotient scheme, and let π : V → X be
the quotient morphism.

Lemma 7.2. There exists a unique Q-divisor D such that (X,D) is a log pair and the
induced morphism (V ,E)→ (X,D) is crepant.

Proof. Let KV/X be the ramification divisor of π , defined so that the equality of sub-
sheaves of ωV ,

ωV (−KV/X) = π
∗ωX,

holds in codimension one. We setD :=(1/]G)π∗(E−KV/X). The pull-back π∗(KX+D)
is defined at least in codimension one and coincides withKV+E. Since the pull-back map
π∗ gives a one-to-one correspondence of Q-Cartier divisors on X andG-stable Q-Cartier
divisors on V , we conclude that KX +D is Q-Cartier. Thus (X,D) is a log variety such
that (V ,E)→ (X,D) is crepant. The uniqueness of D is obvious. ut

7.2. In this subsection, we suppose that (V ,E) is aG-log pair with V affine. Then there
exist an affine variety AnOK

with a faithful OK -linearG-action and aG-equivariant closed
embedding V ↪→ AnOK

. Indeed, if the coordinate ring OV of V is generated by f1, . . . , fl
as an OK -algebra, then we let S be the union of theG-orbits of the generators fi and con-
sider the polynomial ring OK [xs | s ∈ S] with indeterminates corresponding to elements
of S. NowG acts on this polynomial ring faithfully and OK -linearly, and the natural map

OK [xs | s ∈ S] → OV , xs 7→ s,

defines a desired embedding V ↪→ A]SOK
.

We fix such an embedding V ⊂ AnOK ,x
and follow the notation of Section 6. In

particular, for each M ∈ G-Ét(K), we obtain the diagram of Section 6.4. We define the
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G-log structure (V 〈M〉,ν, E〈M〉,ν) and log structures (V |M|,ν, E|M|,ν) and (X,D) so that
all the solid arrows in the diagram

(V 〈M〉,ν, E〈M〉,ν)

{{ &&
(V ,E)

##

(V |M|,ν, E|M|,ν)

xx
(X,D)

are crepant. Then the dashed arrow is also crepant, which shows (V |M|,ν, E|M|,ν) is a
CG(H)-log pair. For a G-stable constructible subset C ⊂ Vk and M ∈ G-Ét(K), we
define C〈M〉,ν ⊂ V 〈M〉,νk to be the preimage of C, and C|M|,ν ⊂ V |M|,νk to be its image.

Definition 7.3. For M ∈ G-Ét(K), we define the M-stringy point count of (V ,E)
along C by

]Mst (V ,E)C := ]st(V
|M|,ν, E|M|,ν)C|M|,ν/]CG(H),

and the G-stringy point count along C by

]Gst (V ,E)C :=
∑

M∈G-Ét(K)

]Mst (V ,E)C .

Again we omit the subscript C when C = Vk .

Theorem 7.4. For aG-log pair (V ,E) with V affine, let (X,D) be as above. Let C ⊂ Vk
be a G-stable subset and C ⊂ Xk its image. Then

]Gst (V ,E)C = ]st(X,D)C .

In particular,

]Gst (V ,E) = ]st(X,D).

Proof. Let d be the dimension of the OK -variety V . From Lemma 4.3, Theorem 4.8 and
Proposition 6.16, we have

]st(X,D)C = q
dµX,D(X(OK)C) =

∑
M∈G-Ét(K)

qdµV |M|,ν ,E|M|,ν (V
|M|,ν(OK)C|M|,ν )

]CG(H)

=

∑
M∈G-Ét(K)

]st(V
|M|,ν, E|M|,ν)C|M|,ν

]CG(H)
=

∑
M∈G-Ét(K)

]Mst (V ,E)C = ]
G
st (V ,E)C . ut
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Corollary 7.5. Let V be a normal Q-Gorenstein affine OK -variety endowed with a faith-
ful G-action, and X := V/G its quotient scheme. Suppose that the quotient morphism
V → X is étale in codimension one. Then, for a G-stable constructible subset C ⊂ Vk ,
we have

]Gst (V )C = ]st(X)C .

In particular,
]GstV = ]stX.

Proof. From the assumption, the morphism V = (V , 0) → X = (X, 0) is crepant.
Therefore the corollary is a special case of the preceding theorem. ut

7.3. We now consider an arbitrary G-log pair (V ,E) (V is not necessarily affine but
quasi-projective from our definition of varieties in Section 2). Let us take an affine open
cover V =

⋃
i Vi such that each Vi isG-stable. For eachM ∈ G-Ét(K), let µMV,E,i be the

measure on Vi(OM)
G,◦ corresponding to

µ
V
|M|,ν
i ,(E|Vi )

|M|,ν

through the correspondence Vi(OM)
G,◦
↔ V

|M|
i (OK)

◦. The argument of the proof of
Theorem 7.4 shows that the measures µMV,E,i and µMV,E,j coincide on (Vi ∩ Vj )(OM)

G,◦,
and we obtain a measure on V (OM)

G,◦, and one on V (OM)
G by extending it so that all

subsets of V (OM)
G
\ V (OM)

G,◦ have measure zero; we denote it by µMV,E .

Definition 7.6. For a G-stable constructible subset C ⊂ Vk , we define

]Gst (V ,E)C := q
d

∑
M∈G-Ét(K)

µMV,E(V (OM)
G
C )/]CG(H),

with d the dimension of V .

With this definition, we obviously have:

Theorem 7.7. Theorem 7.4 and Corollary 7.5 hold without the assumption that V is
affine.

Remark 7.8. Our construction of the measure µMV,E and the definition of ]Gst (V ,E)C
are not completely satisfactory, because they depend on Theorem 7.4 for the affine case,
and then Theorem 7.7 is somewhat tautological. Therefore it is an interesting problem to
construct the measure intrinsically, in particular, without gluing affine pieces.

8. Linear actions and mass formulas

In this section, we consider the case V = AnOK ,x
and compute theM-stringy point counts

]Mst V forM ∈ G-Ét(K). Then we briefly illustrate how our main results in this case prove
the mass formulas by Serre, Bhargava and Kedlaya. However, we should note that it is
impossible to locally linearize a given group action, unlike the case of an algebraically
closed base field of characteristic zero.
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8.1. We now suppose that V = AnOK ,x
= SpecOK [x1, . . . , xn] and that G acts

OK -linearly on it, and consider the trivial log structure V = (V ,E = 0). For each
M ∈ G-Ét(K), let 4M be the tuning module (see Section 6.1), which is a submodule of
HomOK

(OK [x]1,OM). We denote the origin of Vk by o.

Definition 8.1. We define

vV (M) :=
1
]G

length
HomOK

(OK [x]1,OM)

OM ·4M
.

Let ηk : V 〈M〉 ⊗OK
k → Vk be the base change of η : V 〈M〉 → V from OK to k. We

define
wV (M) := dim η−1

k (o)− vV (M).

Remark 8.2. Our definition of vV as a function associated to the G-variety V is identi-
cal to the one given in [WY15] (see also Remark 6.2). Our definition of wV is slightly
different from the one given in [WY15]. However, the following lemma shows that they
coincide in three important cases.

Lemma 8.3. Suppose that one of the following conditions holds:

(1) p - ]G,
(2) K = k((t)) and the G-action on V is the base change of one on Vk ,
(3) the G-action on V is permutation of coordinates.

For M ∈ G-Ét(K), let H0 ⊂ G be the stabilizer of a geometric connected component
of SpecM , that is, a component of SpecM ⊗OK

OL with L the maximal unramified
extension of K . Then

dim η−1
k (o) = codim((Vk)H0 ⊂ Vk).

Proof. Our construction of V |M| and C|M| is compatible with the base change by
OK ′/OK for a finite unramified extension K ′/K . Hence we may suppose that a con-
nected component SpecL of SpecM is a geometric connected component as well. It
follows that H0 = H and L has residue field k. Let ηk : V

〈M〉
k → Vk be the base change

of the morphism η : V 〈M〉 → V by Spec k → SpecOK . The reduced scheme (V 〈M〉k )red

associated to V 〈M〉k is the disjoint union of [G : H ] copies of Ank , and the restriction of ηk
to each connected component (V 〈M〉k )red is a k-linear map. Moreover we can identify V |M|k

with the connected component of (V 〈M〉k )red corresponding to SpecL, which we denote
by V 〈M〉k,0 . We denote the corresponding component of V 〈M〉 by V 〈M〉0 . To prove the lemma,
it suffices to show that the map

ηk|V 〈M〉
k,0
: V
〈M〉
k,0 → Vk

has image (Vk)H .
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Let v be an arbitrary k-point of V 〈M〉k,0 = V
|M|
k . This point lifts to an OK -point ṽ

of V |M| and hence to an H -equivariant OL-point v̂ of V 〈M〉0 . The image of v̂ on V is also
H -equivariant, and hence the k-point

Spec k ↪→ SpecOK
v̂
−→ V

lies in (Vk)H . From the construction, this k-point is the image of v, which shows that the
image of ηk|V 〈M〉

k,0
is contained in (Vk)H .

Next let w be an arbitrary H -fixed k-point of Vk . From either of the three conditions
in the proposition, there exists anH -fixed OK -point w̃ of V which is a lift of w. Then the
composition

ŵ : SpecOL→ SpecOK
w̃
−→ V

is H -equivariant. It then lifts to an H -equivariant OL-point w̌ of V 〈M〉0 . The induced
k-point

Spec k ↪→ SpecOL
w̌
−→ V

〈M〉
0

maps to w by V 〈M〉 → V . This proves that the image of ηk|V 〈M〉
k,0

contains (Vk)H , and

completes the proof of the lemma. ut

Let (V |M|, E|M|) be the log structure on V |M| defined as in Section 7.2, where we do not
need the normalization as V |M| = AnOK ,y

is clearly normal.

Lemma 8.4. Regarding V |M|k = Ank,y as a prime divisor on V |M|, we have

E|M| = −vV (M) · V
|M|
k .

Proof. This is a special case of [Yas16, Lemma 6.5] (except that k is finite in the present
paper, while it is algebraically closed in the cited paper). The outline of the proof is as
follows. Let m be the quotient of OM by the Jacobson radical. Then Specm is the union
of the closed points of SpecOM with reduced structure. We set V 〈M〉m := V 〈M〉 ⊗OM

m.
Let SpecL be a connected component of SpecM and H ⊂ G its stabilizer. Let δL/K be

the different exponent of L/K (the different of L/K is m
δL/K
L ). If (V 〈M〉, E〈M〉) is the

induced log structure on V 〈M〉, then

E〈M〉 = −(]H · vV (M)+ δL/K)V 〈M〉m ,

where ]H · vV (M) is the contribution of the morphism V 〈M〉 → V ⊗ OM , and δL/K is
the contribution of the morphism V ⊗OM → V . Now we have

E|M| =
1
]G
(θ∗E

〈M〉) = −vV (M) · V
|M|
k

with θ the natural morphism V 〈M〉→ V |M|. ut
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Proposition 8.5. We have

]Mst V =
qn−vV (M)

]CG(H)
, ]GstV =

∑
M∈G-Ét(K)

qn−vV (M)

]CG(H)
,

]Mst (V )o =
qwV (M)

]CG(H)
, ]Gst (V )o =

∑
M∈G-Ét(K)

qwV (M)

]CG(H)
.

Proof. If we write vV (M) = s/r with some integers s ≥ 0 and r > 0, then
OV |M|(r(KV |M| + E

|M|)) has a generator $ s(dy1 ∧ · · · ∧ dyn)
⊗r with $ a uniformizer

of K . We have

]Mst V =
]st(V

|M|, E|M|)

]CG(H)
=

qn

]CG(H)

ˆ
On
K

|$ s
|
1/r

=
qn−s/r

]CG(H)
µKn(On

K) =
qn−s/r

]CG(H)
,

showing the first two equalities of the proposition. If we set a := dim η−1
k (o), the subset

C|M| ⊂ V
|M|
k is a linear subspace of dimension a. Therefore

]Mst (V )o =
]st(V

|M|, E|M|)C|M|

]CG(H)
=

qn

]CG(H)

ˆ
Oa
K×m

n−a
K

|$ s
|
1/r

=
qn−s/r

]CG(H)
µKn(Oa

K ×mn−aK ) =
qa−s/r

]CG(H)
.

This shows the last two equalities of the proposition. ut

8.2. Serre [Ser78] proved a beautiful mass formula: for each integer n ≥ 2,

∑
L/K: tot. ram.
[L:K]=n

q−dL/K

]Aut(L/K)
= q1−n,

where L runs over the isomorphism classes of totally ramified field extensions of a fixed
local field K with [L : K] = n, dL/K is the discriminant exponent of L/K (the discrim-

inant of L/K is m
dL/K
K ) and Aut(L/K) the group of K-automorphisms of L. Bhargava

[Bha07] proved a similar formula: for each n ≥ 2, denoting by n-Ét(K) the set of iso-
morphism classes of étale K-algebras of degree n, we have

∑
L∈n-Ét(K)

q−dL/K

]Aut(L/K)
=

n−1∑
i=0

P(n, n− i)q−i,

where P(n, n− i) is the number of partitions of the integer n into exactly n− i parts.
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8.3. Let Sn be the n-th symmetric group acting on {1, . . . , n}. We embed Sn−1 into Sn
as the stabilizer subgroup of 1. Let n-Ét(K) be the set of isomorphism classes of étale
K-algebras of degree n. We have a bijection

Sn-Ét(K)→ n-Ét(K), M 7→ MSn−1 .

Moreover the automorphism group of M as an Sn-étale K-algebra is isomorphic to the
automorphism group of the étale K-algebra MSn−1 .

Suppose that Sn acts on V = A2n
OK

by the direct sum of two copies of the standard
permutation representation. Wood and Yasuda [WY15] showed

d
MSn−1/K = vV (M).

Therefore the left hand side of Bhargava’s formula can be written as

∑
M∈Sn-Ét(K)

q−vV (M)

]CSn(H)
,

where H ⊂ Sn is the stabilizer of a component of SpecM .
The quotient variety V/Sn is identical to the n-th symmetric product of A2

OK
over OK .

Let Hilbn(A2
OK
) be the Hilbert scheme of n points of A2

OK
defined relatively over

OK , which is a smooth OK -variety. From [BK05, 7.4.6] the Hilbert–Chow morphism
Hilbn(A2

OK
)→ V/Sn is proper, birational and crepant. Therefore

]st(V/Sn) = ]stHilbn(A2
OK
) = ]Hilbn(A2

OK
)(k).

Using a stratification of Hilbn(A2
k) into affine spaces (or Gröbner basis theory), we can

count the k-points of Hilbn(A2
k) and get

]Hilbn(A2
OK
)(k) =

n−1∑
i=0

P(n, n− i)q2n−i .

Proposition 8.5 gives

∑
M∈Sn-Ét(K)

q2n−vV (M)

]CSn(H)
= ]

Sn
st V = ]st(V/Sn) = ]stHilbn(A2

OK
) =

n−1∑
i=0

P(n, n− i)q2n−i .

Dividing these by q2n, we reprove Bhargava’s mass formula as a consequence of the
wild McKay correspondence. This computation will be revisited in [WY17] in relation
to dualities discussed there. Kedlaya [Ked07] obtained a similar formula for the group of
signed permutation matrices. In [WY17], Kedlaya’s formula is also deduced from the wild
McKay correspondence in a very similar way except in the case of residual characteristic
two.
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We can deduce Serre’s mass formula from Bhargava’s, for instance, by using the ex-
ponential formula in the direction opposite to [Ked07]. Let us write

N(K, n) :=
∑

L/K: tot. ram.
[L:K]=n

q−dL/K

]Aut(L/K)
and M(K, n) :=

∑
L∈n-Ét(K)

q−dL/K

]Aut(L/K)
.

Kedlaya [Ked07, pp. 7–8] showed

∞∑
n=0

M(K, n)xn = exp
( ∞∑
n=1

xn

n

∑
f |n

N(Kf , n/f )

f

)
,

where Kf is the unramified extension of K of degree f . He used Serre’s formula for
N(Kf , n/f ) to get Bhargava’s formula. It is easy to show that given the values of
M(Kf , n/f ) for all f and n, the equality above determines the values of N(Kf , n) for all
f and n. In particular, M(K, n) must be equal to q1−n, and Serre’s formula holds.

Acknowledgments. I would like to thank Tomoyoshi Ibukiyama and Seidai Yasuda for letting me
know Serre’s mass formula, and Melanie Matchett Wood for helpful discussions during our joint
work. I am also indebted to the two referees for reading the paper carefully and for suggestions
for improvement. In particular, the present proof of Lemma 3.1, which is simpler than the previous
one, follows a suggestion by one of them.
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