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Abstract. The theory of integral, or Fourier–Mukai, transforms between derived categories of
sheaves is a well established tool in noncommutative algebraic geometry. General “kernel theo-
rems” represent all reasonable linear functors between categories of perfect complexes (or their
“large” version, quasi-coherent complexes) on schemes and stacks over some fixed base as integral
kernels in the form of complexes (of the same nature) on the fiber product. However, for many
applications in mirror symmetry and geometric representation theory one is interested instead in
the bounded derived category of coherent sheaves (or its “large” version, ind-coherent sheaves),
which differs from perfect complexes (and quasi-coherent complexes) once the underlying variety
is singular. In this paper, we prove general kernel theorems for linear functors between derived cat-
egories of coherent sheaves over a base in terms of integral kernels on the fiber product. Namely,
we identify coherent kernels with functors taking perfect complexes to coherent complexes (an
analogue of the classical Schwartz kernel theorem), and kernels which are coherent relative to the
source with functors taking all coherent complexes to coherent complexes. The proofs rely on key
aspects of the “functional analysis” of derived categories, namely the distinction between small and
large categories and its measurement using t-structures. These are used in particular to correct the
failure of integral transforms on ind-coherent complexes to correspond to ind-coherent complexes
on a fiber product. The results are applied in a companion paper to the representation theory of the
affine Hecke category, identifying affine character sheaves with the spectral geometric Langlands
category in genus one.
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1. Introduction

1.1. Coherent sheaves and linear functors

Integral transforms on derived categories of quasicoherent sheaves have been intensely
studied since Mukai introduced his analogue of the Fourier transform for abelian varieties.
The results of [18,5,23,3,13], a far from comprehensive but we hope nevertheless useful
list of references, give increasingly strong statements to the effect that all reasonable
functors between derived categories of perfect complexes or quasicoherent sheaves can
be represented by integral kernels, once one works in the appropriate homotopical and
geometric settings. (There are also recent developments devoted to the subtle behavior
of functors between traditional as opposed to enhanced derived categories [17, 21].) In
this paper we extend this theory to coherent sheaves on singular varieties and stacks, in
particular providing an analogue of the classical Schwartz kernel theorem in which perfect
complexes play the role of test functions and coherent sheaves that of distributions. In a
sequel [2], these results are applied to calculate the categorical Hochschild invariants
of the affine Hecke category. This is generalized in [1] to derive a gluing paradigm for
coherent sheaves on character stacks.

Remark 1.1.1 (Standing assumptions throughout the paper). Henceforth category will
stand for pre-triangulated k-linear dg category or stable k-linear∞-category, where k is
a field of characteristic zero. An important convention: we will use homological grad-
ing (denoted by subscripts) for chain complexes and t-structures instead of the prevalent
cohomological grading (denoted by superscripts).

Henceforth schemes, algebraic spaces and stacks are all over k and assumed to be de-
rived unless explicitly called “classical.” We write Xcl for the classical scheme, algebraic
space or stack underlying a given X.

Remark 1.1.2 (Standing assumptions throughout the introduction). For the purposes of
the introduction, all schemes, algebraic spaces and stacks will be quasi-compact and al-
most of finite presentation over k. To simplify the discussion outside of the formal state-
ments of theorems, we often assume all schemes, algebraic spaces and stacks are geomet-
ric and perfect in the sense of [3]. Recall that if a stack X is perfect, then we can recover
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the “large” (presentable, in particular cocomplete) category of quasicoherent sheaves
QCX and the “small” (small, idempotent-complete) category of perfect complexes PerfX
from one another. Namely, we recover QCX = Ind PerfX by ind-completing and PerfX
= QC(X)c by taking compact objects. All quasi-compact and separated algebraic spaces,
all smooth geometric finitely presented k-stacks, and most commonly occurring stacks in
characteristic zero give examples of perfect stacks.

Let pX : X→ S and pY : Y → S be maps of perfect stacks. Then [3, Theorem 1.2] asserts
that all QC S-linear functors between quasicoherent sheaves on X and Y are represented
by integral transforms:

8(−) : QC(X ×S Y )
∼
−→ FunLQC S(QCX,QCY ),8K (−) = pY∗(p

∗

X(−)⊗K ). (1)

Equivalence (1) is established by first showing that the external tensor product descends
to an equivalence

QCX ⊗QC S QCY
∼
−→ QC(X ×S Y ) (2)

and then showing that QCX is self-dual as a QC S-module.
Now let us focus on small categories of perfect complexes. By definition of the tensor

product, equivalence (2) restricts to an equivalence on compact objects

PerfX ⊗Perf S PerfY
∼
−→ Perf(X ×S Y ) (3)

In contrast, the integral transform 8P associated to a perfect kernel P ∈ Perf(X ×S Y )
will not in general take perfect complexes to perfect complexes. But if we assume that
pX : X→ S is smooth and proper, then equivalence (1) restricts to an equivalence

8(−) : Perf(X ×S Y )
∼
−→ Funex

Perf S(PerfX,PerfY ) (4)

On a singular stack, there are more bounded coherent complexes than perfect com-
plexes, and they form an intermediary1 small stable category PerfX ⊂ DCohX ⊂ QCX.
Here and throughout we write DCohX for the enhanced analogue of the classical bounded
derived category Db(X). Now suppose that pX : X → S is proper but not necessarily
smooth. Hence the fiber product X ×S Y is potentially singular and so carries more co-
herent than perfect complexes.

The first goal of this paper is to answer the following natural question (with applica-
tions discussed below):

What kind of linear functors are given by coherent integral kernels?

The following theorem, the subject of Section 3, shows that they give linear functors on
perfect complexes with coherent as opposed to perfect values.

1 Recall that within the introduction, our standing assumptions imply that X has finite Tor-
dimension over k, so that perfect complexes are indeed coherent.
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Theorem 1.1.3. Let S be a perfect stack, pX : X→ S a proper relative algebraic space,
and Y a locally Noetherian S-stack. Then the integral transform construction provides an
equivalence

8 : DCoh(X ×S Y )
∼
−→ Funex

Perf S(PerfX,DCohY ).

Remark 1.1.4. The assumption that pX be proper can be weakened to separated by
changing the source of 8 to consist of those coherent complexes whose support is proper
over Y (see Theorem 3.0.2).

Remark 1.1.5. There is the following useful mnemonic for Theorem 1.1.3. By analogy
with ordinary commutative rings, when pX : X → S is proper we could write p!X =
Funex

Perf S(PerfX,−) and think of it as a !-pullback, in contrast to the ∗-pullback p∗X =
PerfX ⊗Perf S (−). By equivalence (3), we know that Perf forms a presheaf under p∗X,
while Theorem 1.1.3 says that DCoh forms a presheaf under p!X.

Remark 1.1.6. Let us highlight some special cases:

(i) If X→ S is smooth and proper, then PerfX is self-dual over Perf S so that

Funex
Perf S(PerfX,DCohY ) ' PerfX ⊗Perf S DCohY.

It is known [9] that in this case the exterior tensor product induces an equivalence

PerfX ⊗Perf S DCohY
∼
−→ DCoh(X ×S Y ),

thereby recovering the theorem.
(ii) Consider the case of Y = S, with pX : X→ S proper. Then the theorem states that

bounded linear functionals on perfect complexes are given by coherent complexes

8 : DCohX
∼
−→ Funex

Perf S(PerfX,DCoh S).

(iii) Suppose that Y is regular so that DCohY ' PerfY . Then the theorem states that
linear functors on perfect complexes are given by integral transforms with coherent
kernels

8 : DCoh(X ×S Y )
∼
−→ Funex

Perf S(PerfX,PerfY ).

Remark 1.1.7 (Schwartz kernel theorem). The identification

DCohX ' Funex
Perf S(PerfX,DCoh S)

for X/S proper supports an interpretation of perfect complexes as algebraic analogues
of test functions and of coherent complexes as distributions. In this interpretation, Theo-
rem 1.1.3 becomes (a relative version of) the Schwartz kernel theorem, identifying con-
tinuous linear operators, from test functions on a manifold X to distributions on another
manifold Y , with distributions on X × Y .
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1.2. Functors out of DCoh

Our second (and significantly more involved) main theorem provides a counterpart for
Theorem 1.1.3 identifying functors out of categories of coherent sheaves as integral ker-
nels that are coherent relative to the source. In order to formulate this notion, we need to
recall the notion of an almost perfect complex [16]; this is closely related to the classical
notion of a pseudo-coherent sheaf [10].

Definition 1.2.1. Suppose X is Noetherian. Define D̂Coh+X ⊂ QCX to be the full
subcategory consisting of (homologically) bounded-below complexes whose homology
sheaves are coherent as OXcl -modules.

Remark 1.2.2. The notation is suggested by the fact that D̂Coh+X is the left completion
of DCohX with respect to the standard t-structure.

The objects of D̂Coh+X admit another description, in line with the classical notion
of a pseudo-coherent sheaf or Lurie’s almost perfect complex. Recall that F ∈ QCX is
almost perfect if and only if τ≤nF is a compact object of QC(X)≤n, for all n. If X is
Noetherian, one checks that this coincides with the above characterization.

By construction, there is an inclusion DCohX ⊂ D̂Coh+X. We can characterize the
objects of DCohX as those that are t-bounded in both directions, or alternatively as those
objects of D̂Coh+X that have finite Tor-dimension over the base field k. This motivates
the following definition:

Definition 1.2.3. For X → S, define the full subcategory DCoh(X/S) ⊂ D̂Coh+X of
complexes on X that are coherent relative to S to consist of complexes with finite Tor-
dimension with respect to S.

Thus we have DCoh(X/k) = DCohX, while DCoh(X/X) = PerfX by the well-known
characterization of perfect complexes as those almost perfect complexes of finite Tor-
dimension. Categories of relative coherent sheaves are used in [12] to define moduli stacks
of objects of DCohX.

Now the following theorem is the main result of Section 5:

Theorem 1.2.4. Let S be a quasi-compact, geometric, smooth k-stack. Let pX : X → S

be a proper relative S-algebraic space locally of finite presentation, and pY : Y → S

a locally finitely presented S-stack. Then the integral transform construction gives an
equivalence

8 : DCoh(X ×S Y/X)
∼
−→ Funex

Perf S(DCohX,DCohY ).

Remark 1.2.5. The assumption that pX is proper can be weakened to separated if we
change the source of 8 to consist of kernels with support proper over Y .
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Remark 1.2.6. Let us highlight an interesting special case of the theorem. Suppose
p : X → S is a proper relative algebraic space, and that S is a regular Noetherian stack
(so that DCoh S = Perf S). Then Theorem 1.2.4 and Theorem 1.1.6 give the following
“dual” statements characterizing DCohX and PerfX as bounded linear functionals on
each other:

Funex
Perf S(DCohX,Perf S) ' PerfX,

Funex
Perf S(PerfX,Perf S) ' DCohX.

We could summarize this by saying that PerfX and DCohX are reflexive Perf S-linear
categories. Notice that they are not actually dualizable unless X→ S is also smooth!

This weak duality between DCoh and Perf stands in striking contrast to the situation
with their “large versions”: the categories QCX = Ind PerfX and QC!X = Ind DCohX
are each self-dual. Another divergence between the large and small worlds is highlighted
in the next section.

1.3. Measuring categories

We conclude the introduction by highlighting an aspect of the “functional analysis” of
categories that figures prominently in the statement and proof of Theorem 1.1.3 and es-
pecially Theorem 1.2.4: the use of t-structures to modify “growth properties” of objects,
and thereby account for the distinction between small categories and their large cocom-
plete versions. More specifically, in Theorem 1.3.1 below, we describe how t-exactness
properties of functors on ind-coherent sheaves correspond to t-boundedness properties of
their integral kernels.

Recall that for X a perfect stack, the cocompletion of the category PerfX of per-
fect complexes is the category of quasicoherent complexes QCX ' Ind PerfX. The
cocompletion of the category DCohX of coherent complexes is the category of ind-
coherent complexes QC!X ' Ind DCohX. Each of these large categories carries a natural
t-structure.

However, observe that the equivalence

DCoh(X ×S Y ) ' Funex
Perf S(PerfX,DCohY )

of Theorem 1.1.3 fails if we replace Perf by QC and DCoh by QC!.
To see this, let us place QC!(X×S Y ) = Ind DCoh(X×S Y ) on the left hand side. On

the right hand side, since QCX is self-dual over QC S, we find the identification

FunLQC S(QCX,QC! Y ) ' QCX ⊗QC S QC! Y.

Let us further assume that X and Y are smooth, so that QC! Y ' QCY ; then by equiva-
lence (2), we obtain a further equivalence

FunLQC S(QCX = QC!X,QCY = QC! Y ) ' QC(X ×S Y ).
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But with the current setup,X×S Y need not be smooth, and hence in general QC(X×S Y )
will not be equivalent to QC!(X ×S Y ). This precise setup arises in our motivating case
of the affine Hecke category [2].

We may look at this discrepancy another way. For quasi-coherent complexes, it is
often the case that categories of functors coincide with quasi-coherent complexes on the
fiber product. For ind-coherent complexes, this is often true over a point but very rarely
true over a non-trivial base, as we have just seen even when source and target are smooth.

The goal of Section 4 is to “fix” this, or rather to show that the failure of the integral
transform construction to give an equivalence can be precisely controlled by means of the
t-structure. More precisely, in Theorem 4.0.5, we show:

Theorem 1.3.1. Suppose that S is a quasi-compact, geometric, finitely presented k-stack;
that p : X → S is a quasi-compact and separated S-algebraic space of finite presenta-
tion; and that Y is an S-stack of finite presentation over S. Then the !-integral transform

8! : QC!(X ×S Y )→ FunL
QC! S

(QC!X,QC! Y )

need not be an equivalence, but it does induce an equivalence between the bounded-above
objects and those functors which are left t-exact up to a shift:

8! : QC!(X ×S Y )<∞
∼
−→{

F ∈ FunL
QC! S

(QC!X,QC! Y ) : F(QC!(X)<0) ⊂ QC!(X)<N(F)
for some N(F) depending on F

}
.

This is an essential ingredient in the proof of Theorem 1.2.4, in effect reducing it to
proving that any functor for the small categories is automatically left t-exact up to a shift.

In the special case that S is smooth, we can make this functional analysis of t-struc-
tures even more precise. The appendix (Section 6) provides a discussion of operations
on categories with reasonably behaved t-structures. Such a category C comes equipped
with a stable subcategory Coh(C) of “coherent” objects, and the regularization of C is the
corresponding ind-coherent category

R(C)
def
= Ind CohC→ C.

A dual notion to regularization is the (left) t-completion of C, which is the limit

C→ Ĉ
def
= lim
←−

C<n

If we restrict ourselves to considering t-exact functors, the theories of complete and reg-
ular categories with t-structure are equivalent (see Theorem 6.3.6).

For a geometric stack of finite type over k, the natural functor QC!X → QCX
presents QC!X as the regularization of QCX, and QCX as the completion of QC!X.
Thus in cases where a reasonable theorem—involving only functors left t-exact up to a
shift—holds for QC but not QC!, we can expect that we should be able to fix this defect
by regularizing.
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Theorem 1.3.2. Suppose S is a quasi-compact, geometric, smooth k-stack; that
p : X → S is a quasi-compact and separated relative S-algebraic space of finite pre-
sentation; and that Y is an S-stack of finite presentation. Then there is a t-structure on
the functor category such that

FunL
QC! S

(QC!X,QC! Y )≤0 = {left t-exact functors}

and the !-integral transform

8! : QC!(X ×S Y )→ FunL
QC! S

(QC!X,QC! Y )

is left t-exact up to a shift and exhibits QC!(X ×S Y ) as a regularization of the category
FunL

QC! S
(QC!X,QC! Y ). (In particular, it induces an equivalence on bounded-above ob-

jects, yielding a special case of Theorem 1.3.1.)

2. Preliminaries

We adopt the functor of points viewpoint. Let DRng denote the∞-category of connective
E∞-algebras. A prestack will be a functor DRngop

→ sSet. For any such, we may define
QC X by Kan extension from the case of affines. For π : X → Y a map of prestacks,
there is a pullback functor π∗ defined by restriction of indexing diagram—we define π∗
to be the right adjoint to this functor, which exists by general nonsense on presentable
∞-categories.

As is well-known, pushforwards for arbitrary quasi-coherent complexes on stacks are
problematic. However, for (homologically) bounded-above complexes this is not an issue:

Lemma 2.0.1. Suppose that π : X → S is a quasi-compact and quasi-separated mor-
phism of stacks. Then

(i) for any (homologically) bounded-above object F ∈ QC(X )<∞, the base change
formula holds with respect to maps of finite Tor-dimension;

(ii) Rπ∗ preserves filtered colimits (equivalently, infinite sums) on (homologically) uni-
formly bounded-above objects.

If X is assumed to be of finite (quasi-coherent) cohomological dimension then this is not
an issue:

Proposition 2.0.2. Suppose that π : X → S is a quasi-compact and quasi-separated
morphism of stacks, and that π has quasi-coherent cohomological dimension universally
bounded by d, i.e., there exists an integer d such that for any base change of π we have
π∗F ∈ QC(S)>−d for F ∈ QC(X )>0. Then:

(i) π∗ : QC X → QC S preserves filtered colimits;
(ii) π∗ and π∗ satisfy the projection formula;

(iii) the formation of π∗ is compatible with an arbitrary base change.

Sketch of proof. The proof of (i)–(iii) is via the bounded case and convergence for each
homology sheaf by the boundedness of cohomological dimension (cf. [7]). ut
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Any morphism which is a quasi-compact quasi-separated relative algebraic space, and
many stacky maps in characteristic zero by [7], satisfy the hypothesis of the previous
proposition. Thus the previous proposition will apply to every pushforward we take in
this paper.

3. Functors out of Perf

3.0.1. The standing assumptions for this section, unless otherwise stated, are: S is a
perfect derived stack; X → S is a quasi-compact and separated (derived) S-algebraic
space locally of finite presentation; Y → S is a locally Noetherian (derived) S-stack.

Let pX : X→ S and pY : Y → S be maps of derived stacks, and suppose thatX and S are
perfect. Recall that linear functors for quasi-coherent complexes are given by ∗-integral
transforms

8 : QC(X ×S Y )
∼
−→ FunLQC S(QCX,QCY ), 8K (F ) = pY∗(p

∗

XF ⊗K ).

Since X and S are perfect, there is a natural induction equivalence

Funex
Perf S(PerfX,QCY )

∼
−→ FunLQC S(QCX,QCY ).

Thus we could reformulate the above as an equivalence

8 : QC(X ×S Y )
∼
−→ Funex

Perf S(PerfX,QCY ).

Let us restrict to the full subcategory of integral kernels

DCohprop/Y (X ×S Y ) ⊂ QC(X ×S Y )

that are coherent with support proper over Y .
The following is the main result of this subsection.

Theorem 3.0.2. Suppose that S is a perfect stack; that pX : X → S is a quasi-compact
and separated S-algebraic space locally of finite presentation; and that Y is a locally
Noetherian S-stack. The ∗-integral transform construction provides an equivalence

8 : DCohprop/Y (X ×S Y )
∼
−→ Funex

Perf S(PerfX,DCohY ).

Corollary 3.0.3. Suppose that X, S, and Y are as in the previous theorem, and further-
more that Y is regular. The ∗-integral transform construction provides an equivalence

8 : DCohprop/Y (X ×S Y )
∼
−→ Funex

Perf S(PerfX,PerfY ).

Before giving the proof of the theorem, we make some remarks and discuss an alternative
formulation.
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Remark 3.0.4. It is possible to relax the assumptions on pX a little,2 but it seems difficult
to make a general statement if X is allowed to be genuinely stacky. To see why, consider
already the case of S = Y = pt and X = BGm. Then

PerfX '
⊕
Z

Perf k so that Funex(PerfX,Perf k) =
∏
Z

Perf k.

That is, a functor F is determined by the (arbitrary) collection of complexes F(O(n))
where O(n) is the line bundle corresponding to the degree n character on Gm. Note that

F = 8K for K =

⊕
n

O(−n)⊗ F(O(n)).

Unfortunately, there does not seem to be an existing “geometric” name for the finiteness
condition enjoyed by this K . In particular, K need not be t-bounded either above or
below in general.

Remark 3.0.5. Suppose that S admits a dualizing complex and that Y → S is also lo-
cally of finite presentation. Then X, Y,X ×S Y also admit dualizing complexes given by
!-pullback. In this situation we may alternatively let

ωX ⊗ PerfX = {ωX ⊗ P ∈ QC!X : P ∈ PerfX} ⊂ QC!X.

Equivalently, this is the essential image of the Grothendieck duality functor on PerfX.
Further, one can show that the !-integral transform gives an equivalence

8! : DCohprop/Y (X ×S Y )
∼
−→ Funex

PerfY (ωX ⊗ PerfX,DCohY ).

More precisely, the following lemma gives rise to a commutative diagram

DCohprop/Y (X ×S Y )

∼ D
��

8 // Funex
PerfY (PerfX,DCohY )

∼ D◦−◦D
��

DCohprop/Y (X ×S Y )
op 8! // Funex

PerfY (ωX ⊗ PerfX,DCohY )op

where the vertical arrows are equivalences by Grothendieck duality and the top arrow is
the equivalence of Theorem 3.0.2.

Lemma 3.0.6. (i) The Grothendieck duality functor restricts to an equivalence

D : Perf(X)op ∼
−→ ωX ⊗ PerfX

2 For instance, it should be possible to prove the theorem for pX a relative tame DM stack. The
key extra input, due to Abramovich–Olsson–Vistoli, is the following: If q : X → X′ is the coarse
moduli space, then q∗ is t-exact and étale locally on X′ a global quotient by a finite flat linearly
reductive group scheme. One can use this to reduce Prop. 3.0.11 for X to it for X′, analogous to
how Theorem 3.0.10 is used elsewhere.
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(ii) Suppose that F ∈ D̂Coh+X and K ∈ D̂Coh+(X ×S Y ). Then there is a natural
equivalence

p!1(DF )
!

⊗ DK ' D(p∗1F ⊗K ).

(iii) Suppose that F , K are as in (ii) and that each homology sheaf of p∗1F ⊗K has
support proper over Y . Then there is a natural equivalence

8!DK (DF ) ' D8K (F ).

Proof. For (i): Note that DP = P
∨

⊗ ωX by dualizability of P , so that it suffices to
prove that D is fully faithful on PerfX. We wish to show that the natural map

RHomX(P,P ′)→ RHomX(DP,DP ′)

is an equivalence. The claim is smooth local on X (taking care that the restriction of
a dualizing complex along a smooth map is again a dualizing complex!), so we may
suppose that X is affine. The subcategory of Perf(X)op

× PerfX consisting of those pairs
(P,P ′) for which this is an equivalence is closed under finite limits, finite colimits, and
retracts in each variable. Thus, it suffices to show that it contains (OX,OX). This is part
of the definition of a dualizing complex.

For (ii), it is either a chase of well-definedness or an immediate consequence of the
definition of !-pullback and Grothendieck duality for D̂Coh± (Prop. 6.5.3). For (iii), it
follows from (ii) and Grothendieck–Serre duality (i.e., the compatibility of properly sup-
ported pushforward with duality). ut

The proof of Theorem 3.0.2 occupies the rest of this section. We will begin with several
preliminary results. The following lemma tells us that we are looking for a subcategory
of QC(X ×S Y ):

Lemma 3.0.7. Suppose that i : C ⊂ QCY is the inclusion of a full subcategory closed
under finite colimits, retracts, and tensoring by objects of Perf S. Then:

(i) The natural functor

i∗ : Funex
Perf S(PerfX,C)→ Funex

Perf S(PerfX,QCY )

is fully faithful.
(ii) The ∗-integral transform restricts to an equivalence

{K ∈ QC(X ×S Y ) : 8K (PerfX) ⊂ C}
∼
−→ Funex

Perf S(PerfX,C).

(iii) The ∗-integral transform construction restricts to a fully faithful functor

8 : DCohprop/Y (X ×S Y )→ Funex
Perf S(PerfX,DCohY ).
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Proof. (i) This is a general fact about exact functors between stable idempotent complete
categories. That is, we reduce to the assertion that if D,E ,E ′ are stable, idempotent
complete, and i : E → E ′ exact, then i∗ : Funex(D,E )→ Funex(D,E ′) is fully faithful.
Ignoring set-theoretic issues, we prove this as follows: By taking Ind and identifying
right exact functors with compact objects and colimit preserving functors, we reduce to
showing that FunL(IndD,−) preserves the property that Ind(i) is a monomorphism. This
follows by noting that Ind(i) admits a colimit preserving right adjoint exhibiting it as fully
faithful, and this is preserved by FunL(IndD,−).

(ii) Recall that X → S is a perfect morphism by Theorem 3.0.8, so that [3, Theo-
rem 4.14] implies that

8 : QC(X ×S Y )
∼
−→ FunLQC S(QCX,QCY ) = Funex

Perf S(PerfX,QCY ),

hence (ii) follows from (i) and the previous displayed equation.
(iii) It suffices to show that given K ∈ DCohprop/Y (X ×S Y ) and P ∈ PerfX the

functor 8K (P) = p2∗(p
∗

1P ⊗K ) is coherent. Observe that p∗1P ⊗K is coherent
(since p∗1P is perfect and K is coherent) with support proper over Y , and properly
supported pushforward preserves coherence under our hypothesis of finite cohomological
dimension. ut

It remains to identify this subcategory. As a first step, we begin with the following strong
generation result in the spirit of [4, Theorem 3.1.1]. Like op.cit. it is based on the exten-
sion result of Thomason–Trobaugh [22], adjusted to algebraic spaces by replacing the use
of Mayer–Vietoris squares with Nisnevich-type “excision squares” as in [15].

Lemma 3.0.8. Suppose that π : X→ S is a quasi-compact and quasi-separated relative
algebraic space with S quasi-compact. Then π is of finite cohomological dimension. Fur-
thermore, if S = SpecA is affine then there exists a single perfectG that generates QCX.

Proof. Since S is assumed to be quasi-compact, we can reduce to the case of S affine.
The assertion on cohomological dimension, and the fact that QCX is generated by PerfX,
now follow from [15, Corollaries 1.3.10 and 1.5.12]. For the last assertion we must ob-
serve that the proof of [15, Theorem 1.5.10] can be modified to show that a single per-
fect object G generates: This is certainly true on affines, and one uses the Thomason–
Trobaugh lifting argument to show that this property glues under excision squares as
follows. More precisely, suppose that

U ′ = SpecR ×X U
j ′ //

η′

��

SpecR

η

��
U

j // X

is an excision square as in op.cit. Note that in this case there is a pullback diagram of
categories

QCX
∼
−→ QCU ×QCU ′ QC(SpecR).
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Two preliminary constructions: First, note that j ′ is a quasi-compact open immersion
so that we may pick f1, . . . , fr ∈ H0(R) that cut out the closed complement Z′; let
K ′ ∈ PerfZ′(SpecR) be a single perfect complex which generates QCZ′(SpecR) under
shifts and colimits, for instance the Koszul complex of the fi . Finally, since j ′∗K ′ = 0
we may, using the above pullback diagram, uniquely lift K ′ to an object K ∈ PerfX
satisfying η∗K = K ′ and j∗K = 0.

Secondly, we may suppose that there exists GU ∈ PerfU that generates QCU under
shifts and colimits. We claim that there exists some G ∈ PerfX such that j∗G ' GU ⊕
GU [+1]: By the above pullback diagram, we are reduced to lifting η′∗GU ⊕ η′∗GU [+1]
to an object in Perf(SpecR). This can be done by the Thomason–Trobaugh lifting trick
[14, Lemma 6.19].

The generator: We now claim that G ⊕ K generates QCX under shifts and colimits.
It is enough to show that RHomX(G ⊕ K,F ) = 0 implies that F = 0. Suppose that
RHomX(G⊕K,F ) = 0. Note first that by construction of K we have

RHomX(K,F )

= RHomU (j
∗K, j∗F )×RHomU ′ (η

′∗j∗K,η′∗j∗F ) RHomSpecA(η
∗K, η∗F )

= RHomSpecA(K
′, η∗F ) (5)

and

RHomX(G, j∗j
∗F ) = RHomU (j

∗G, j∗F ) contains RHomU (GU , j
∗F ) as a retract.

(6)

We will use the first of these to show that our assumption implies that F = j∗j∗F , and
the second to conclude by showing that j∗j∗F = 0.

Reducing to F = j∗j∗F : Consider the fiber sequence

FZ → F → j∗j
∗F

where FZ is supported on the closed complement Z = X \ U . We will first show that
FZ = 0. Since j∗FZ = 0, it is enough to show that η∗FZ = 0. Note that FZ is
supported on Z, so that η∗FZ is supported on Z′. Applying (5) we conclude that

0 = RHomX(K,F ) = RHomX(K,FZ) = RHomSpecA(K
′, η∗FZ),

so that by the choice of K ′ we have η∗FZ = 0 and hence FZ = 0.

Showing j∗F = 0: Consequently, F = j∗j∗F . By our hypothesis and (6) we conclude
that

0 = RHomX(G,F ) = RHomX(G, j∗j
∗F ) = RHomU (j

∗G, j∗F ),

and since GU is a retract of j∗G, this implies RHomU (GU , j
∗F ) = 0. By assumption

on GU , this implies j∗F = 0. We conclude that j∗F = 0 and so F = j∗j
∗F = 0.

This completes the proof. ut

Finally, we embark on identifying the subcategory of interest. (The space Z below will
play the role of X ×S Y in the argument.)
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Proposition 3.0.9. Suppose that p : Z → S = SpecA is a Noetherian separated
S-algebraic space over a Noetherian affine base S. Then the following conditions on
F ∈ QCZ are equivalent:

(i) F ∈ D̂Coh+ Z and each homology sheaf Hi(F ) has support proper over S;
(ii) F ∈ QC(Z)>−N for someN , and R0(Z,H⊗F ) ∈ D̂Coh+A for all H ∈ DCohZ;

(iii) R0(Z,H⊗F ) ∈ D̂Coh+A for all H ∈ D̂Coh+ Z.

Proof. Note that (i) implies (ii) and (iii) by the proper pushforward theorem. Furthermore
(ii) implies (iii) by an approximation argument using the fact that F is bounded below
and that Z has bounded cohomological dimension (see the proof of Prop. 3.0.11 below
for a similar argument). Conversely, (iii) implies (ii) by applying Theorem 3.0.12 to the
functor R0(Z,G ∗ ⊗ −) where G ∗ is a generator guaranteed to exist by Theorem 3.0.8.
It remains to show that (ii) and (iii) together imply (i), and we do this through a series of
reductions.3

Reduction toZ andA classical (i.e., underived): By (ii) we see that F is bounded below,
so it suffices to prove that it has coherent homology sheaves with support proper over S.
Since we have proven that (i) implies (ii) and (iii), it suffices to prove that the lowest
degree homology sheaf has this property: applying this iteratively to the fibers of the
natural maps will prove the result.

Without loss of generality suppose that F ∈ QCZ≥0 and we will show that H0(F )

is coherent and properly supported over S. Suppose now that i : Zcl → Z is the inclusion
of the underlying classical algebraic space. Then,

i∗i
∗F → F

induces an isomorphism onH0(F ). Note that i∗ is t-exact and induces an equivalence on
hearts, and that the proper support condition is topological, so that it suffices to show that
H0(i

∗F ) is coherent on Zcl with proper support over Scl. Note that

R0(Zcl,H⊗ i
∗F ) = R0(Z, i∗H⊗F ) ∈ D̂Coh+A

since i∗H ∈ D̂Coh+H, and consequently

R0(Zcl,H⊗ i
∗F ) ∈ D̂Coh+(H0(A))

since the inclusion detects the property of being bounded below with coherent homolo-
gies.

Thus, we may assume that Z and S are classical.

Reduction to p finite-type proper: Let i : Z → Z′ be affine with Z′ a finite-type and
separated algebraic space over A; such a morphism exists by relative “Noetherian” ap-
proximation for separated algebraic spaces. Let p : Z → S be a proper morphism and
j : Z′ → Z an open immersion; such data exist by the Nagata compactification theorem

3 Note that (ii) is only used in the first reduction. If we could eliminate it, this proof would be
cleaner!
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for algebraic spaces [6]. Blowing up Z along the reduced induced structure on Z \ Z′,
we may suppose that j is affine. Since j was quasi-compact, the blowup remains of finite
type. Consequently, j ◦ i : Z → Z is an affine map to a finite-type and proper alge-
braic space over A. By Theorem 3.0.10 it suffices to show that j∗i∗F ∈ D̂Coh+ Z with
propertly supported homology sheaves. Note that for any H′ ∈ D̂Coh+ Z we have

R0(Z,H′ ⊗ (j ◦ i)∗F ) = R0
(
Z, (j ◦ i)∗((j ◦ i)

∗H′ ⊗F )
)

= R0(Z, (j ◦ i)∗H′ ⊗F ) ∈ D̂Coh+A

since i∗j∗H′ ∈ D̂Coh+ Z. Thus, we may assume that Z is proper over S and it suffices
to show that F ∈ D̂Coh+ Z.

Reduction to p finite-type projective: By Chow’s Lemma for algebraic spaces [11, IV.3.1]
there exists q : Z̃→ Z with Z̃ projective and birational over Z. Thus,

cone(q∗q∗F → F )

is supported on a proper closed subset of Z. By Noetherian induction, it suffices to show
that q∗q∗F ∈ D̂Coh+ Z. By the proper pushforward theorem, it suffices to show that
q∗F ∈ D̂Coh+ Z̃. Note that for any H′ ∈ D̂Coh+ Z̃,

R0(Z̃,H′ ⊗ q∗F ) = R0(Z, q∗(H′ ⊗ q∗F )) = R0(Z, q∗H′ ⊗F ) ∈ D̂Coh+A

since q∗H′ ∈ D̂Coh+ Z by the proper pushforward theorem.
Thus, we may assume that Z is finite-type projective over S.

Reduction to p a projective space: Since Z is finite-type projective, and the claim is local
on S, we may suppose that there is a closed immersion i : Z → PnS . This morphism is
affine, so as before, we reduce to showing that i∗F ∈ D̂Coh+ PnS .

Proof in the case of Z = PnS: Let 1 : Z → Z ×S Z be the relative diagonal. By us-
ing Beilinson’s method of resolution of the diagonal, the diagonal 1∗OZ can be built in
finitely many steps by taking cones, shifts, and retracts from objects of the form P �SP ′

with P,P ′ ∈ PerfZ.
Given F ∈ QCZ, we can express it in the form

F ' p2∗(1∗OZ ⊗ p
∗

1F )

And consequently it may be built in finitely steps by taking cones, shifts, and retracts
from objects of the form

p2∗((P �S P ′)⊗ p∗1F ) 'P ′ ⊗A R0(Z,P ⊗F ), P,P ′ ∈ PerfZ.

If F satisfies condition (ii), then we have R0(Z,P ⊗F ) ∈ D̂Coh+A, hence P ′ ⊗A
R0(Z,P ⊗F ) ∈ D̂Coh+ Z. Consequently, F ∈ D̂Coh+ Z as desired. Note that since
π is projective, the support condition is vacuous. ut
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Lemma 3.0.10. Suppose p : Z → S is an affine map of Noetherian algebraic spaces.
Then the following conditions on F ∈ QCZ are equivalent:

(i) F ∈ D̂Coh+ Z and Hi(F ) has support finite over S for all i;
(ii) F ∈ D̂Coh+ Z and Hi(F ) has support proper over S for all i;

(iii) p∗F ∈ D̂Coh+ S.

Proof. Let suppZ(F ) denote the support of F . Observe (i)⇔(ii) since suppZ(Hi(F ))

→ Z is affine, p is affine, and proper + affine = finite.
Note that (i)⇒(iii) by the proper pushforward theorem (in the easy finite case).
To show that (iii)⇒(i), without loss of generality we may assume that S, and hence

Z as well, is affine. Since p∗ is conservative and t-exact, it is clear that Hi(F ) = 0
for i � 0, since this is so for p∗Hi(F ). Hence it remains to show that each Hi(F ) is
coherent over H0(OX) with support finite over H0(OS). We are thus reduced to proving
the following statement in commutative algebra: Suppose we are given a map of classical
rings φ : A→ B and a B-module M such that M is coherent as an A-module. Then M is
coherent as a B-module and B/AnnB(M) is finite over SpecA.

To prove this statement, (using our standing Noetherian hypotheses) we may replace
“coherent” with “finitely generated” in the assertion. But now, if m1, . . . , mn generate M
as an A-module, then they also generate M as a B-module since

∑
aimi =

∑
φ(ai)mi

by definition. Furthermore, in this case AnnB(M) =
⋂
i AnnB(mi) so that it suffices to

show that B/AnnB(mi) is finite overA for each i. This is isomorphic to the B-submodule
ofM generated bymi , and is again finite as a submodule of the finite A-moduleM (using
again our Noetherian hypotheses). ut

We can use the above to deduce:

Proposition 3.0.11. Suppose p : Z → S = SpecA is a Noetherian separated S-alge-
braic space over a Noetherian affine base S. Then the following conditions on F ∈ QCZ
are equivalent:

(i) F ∈ DCohZ with support proper over S;
(ii) F is homologically bounded, F ∈ D̂Coh+ Z, and Hi(F ) has support proper over

S for all i;
(iii) F is homologically bounded, and R0(Z,H ⊗ F ) ∈ D̂Coh+ Z for all H ∈

D̂Coh+ Z;
(iv) R0(Z,P ⊗F ) ∈ DCohZ for all P ∈ PerfZ.

Proof. Note that (i) is equivalent to (ii) by definition, and (ii) is equivalent to (iii) by
Prop. 3.0.9. Further, (iii) implies (iv) since perfect complexes have finite Tor-amplitude
and R0(Z,−) is left t-exact.

It suffices to show that (iv) implies (iii). Suppose that F satisfies the conditions
of (iv). Note that Lemmas 3.0.8 and 3.0.12 imply that F is homologically bounded
since R0(Z,G

∨

⊗ F ) is homologically bounded for G a single perfect complex gen-
erating QCX. Now, without loss of generality we may suppose that F is connective, i.e.,
F ∈ QC(X)≥0.
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Suppose H ∈ D̂Coh+ Z. We must show that R0(Z,H ⊗ F ) is almost perfect as
an A-module. Note that R0(Z,H ⊗ F ) is bounded below by the finite cohomological
dimension of p, so that it suffices to show that each of its homology modules is coherent
over A. Let d be the cohomological dimension of p. Since H is almost perfect and Z is
perfect, there exists a perfect complex P and a map P → H whose cone is in C>d−i .
Since F is connective, the cone of the map P ⊗F → H ⊗F also lies in C>d−i . By
the boundedness of cohomological dimension, H i and H i−1 of this cone vanish, so the
natural map

H i(Z,H⊗F )→ H i(Z,P ⊗F )

is an isomorphism. As the right hand side is coherent by assumption, we are done. ut

Lemma 3.0.12. Suppose that π : X→ S is a quasi-compact and separated relative alge-
braic space, and that S = SpecA is affine. IfG is a connective perfect complex generating
QCX, then

R0(G∗ ⊗−) : QCX→ A-mod

is conservative, left t-exact up to a shift, and right t-exact up to a shift. In particular, it
detects the properties of being bounded below and bounded above.

Proof. Identifying
R0(X,G∗ ⊗−) = RHomX(G,−)

we see that this functor is conservative by the assumption that G generates. If d is the
cohomological dimension of π and n is such that G∗ ∈ QC(X)>−n then the functor is
right t-exact up to a shift by n+ d. If a is the Tor-amplitude of G∗ then the functor is left
t-exact up to a shift by a.

The result then follows by the lemma below. ut

Lemma 3.0.13. Suppose that C,D have all limits and colimits and carry t-structures
which are both left and right complete, and that F : C → D is conservative, limit and
colimit preserving, left t-exact up to a shift, and right t-exact up to a shift. Then F detects
the bounded-below / bounded-above objects.

Proof. Suppose c ∈ C is bounded below / bounded above. The exactness, up to a shift,
of F guarantees that F(c) is bounded below / bounded above.

We now prove the converse implication:
Let ` be the error of left t-exactness, and r the error of right t-exactness. For any

c ∈ C, there is a natural map

F(τ>Nc)→ τ>N−rF(c)

whose cofiber is F(τ≤Nc) ∈ k-mod≤N+` so that the map is an equivalence on τ>N+`.
Similarly, there is a natural map

τ≤N+`F(c)→ F(τ≤Nc)

whose fiber F(τ>Nc) ∈ k-mod>N−r so that the map is an equivalence on τ≤N−r .
The result now follows by noting the standard fact that the truncation-above and

truncation-below functors commute. ut
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Finally, we are in a position to complete the proof of the theorem:

Completing the proof of Theorem 3.0.2. It suffices to see that if p2∗(p
∗

1F ⊗ K ) ∈

DCohY for all F ∈ PerfX, then in fact K ∈ DCohprop/Y (X ×S Y ).
This is local in Y so we may assume Y is affine and Noetherian, and hence p1 : X×SY

→ X is affine. Thus pullbacks p∗1F generate Perf(X×S Y ), and so it suffices to show that
if p2∗(P ⊗K ) ∈ DCohY for all P ∈ PerfX, then K ∈ DCohprop/Y (X ×S Y ). This
will follow from applying Prop. 3.0.11 above with Z = X×S Y , S = Y , and p = p2. ut

4. Shriek integral transforms revisited

4.0.1. For quasi-coherent complexes, it is often the case that categories of functors co-
incide with quasi-coherent complexes on the fiber product. For ind-coherent complexes,
this is often true over a point but very rarely true over a non-trivial base. The goal of
the present section is to “fix” this, or rather to show that the failure of the shriek integral
transform to give an equivalence can be precisely controlled by means of the t-structure.

In order to do this, we will need to consider some constructions involving categories
equipped with reasonably behaved t-structures; for this we refer the reader to Section 6.
Let us recall the highlights:

4.0.2. In the Appendix, the reader will find a definition of an ∞-categorical notion of
a (left) coherent t-category, and a (left) t-exact functor between such. The theory of
coherent t-categories, with left t-exact functors, admits a localization ((left) complete
t-categories) and a colocalization ((left) regular t-categories). Though we do not explic-
itly need to use this, the resulting two theories are equivalent by Theorem 6.3.6.4 The
examples of interest to us are:

• for a Noetherian geometric stack, QCX is complete by Prop. 6.5.1;
• for a geometric stack of finite type over a characteristic zero field, QC!X is regular

by Prop. 6.5.5.

Given presentable categories C,D with t-structures, one can put a t-structure on C ⊗ D

and FunL(C,D). The formation of tensor/functors does not generally preserve complete/
regular (or often even coherent) categories, giving—in light of the above—an obstruction
to “functor theorems.”

4.0.3. In this section, all stacks will be locally of finite presentation over a perfect field k.
This is for three reasons: first, we work finite-type over a reasonable base so that we may
use the formalism of Grothendieck duality; second, we want tensoring over the base to be
left t-exact, so we require it to be a field; finally, we rely on generic smoothness results,
so we require that k be a perfect.

4 This sort of phenomenon, where a localization is equivalent to a colocalization, has several
more familiar examples. For instance, suppose that R is a commutative ring and I ⊂ H0(R)
a finitely generated ideal; then there is the Greenless–May equivalence [15, Prop. 4.2.5] between
locally I -torsion R-modules and I -complete R-modules.
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4.0.4. Finally, we will have one more unspoken assumption: For all X that occur, we
will ask that X have finite cohomological dimension and that QC!X = Ind DCohX. The
reason we leave it unspoken is that if k has characteristic zero, then this will be automatic
for all the stacks we consider by [7].

The goal of this section is to prove:

Theorem 4.0.5. Suppose that S is a quasi-compact, geometric, finitely presented k-stack;
that π : X → S is a quasi-compact and separated S-algebraic space of finite presenta-
tion; and that Y is an S-stack almost of finite presentation. Then the !-integral transform

8! : QC!(X ×S Y )→ FunL
QC! S

(QC!X,QC! Y )

has the following properties:

(i) there exists an integer N such that the image of QC!(X ×S Y )<N lies in the left
t-exact functors;

(ii) it is fully faithful on the full subcategory QC!(X ×S Y )<0;
(iii) there exists an integerM such that any left t-exact functor lies in the essential image

of QC!(X ×S Y )<M .

From this, we will deduce:

Corollary 4.0.6. Suppose S,X, Y are as in Theorem 4.0.5 and furthermore S is regular.
Then there is a t-structure on the functor category with

FunL
QC! S

(QC!X,QC! Y )≤0
def
= {F ∈ FunL

QC! S
(QC!X,QC! Y ) : F is left t-exact}.

With this t-structure, and the ordinary t-structure on QC!(X ×S Y ), the !-integral trans-
form is left t-exact up to a shift and exhibits QC!(X ×S Y ) as the regularization of the
functor category.

Before giving a proof of the theorem and its corollary, let us note two more concrete
consequences:

Corollary 4.0.7. Under the hypotheses of Theorem 4.0.5, the !-integral transform in-
duces an equivalence

QC!(X ×S Y )<∞
8!

−→ FunL,t<∞
QC! S

(QC!X,QC! Y )

where the superscript “t < ∞” denotes the full subcategory of functors which are left
t-exact up to a finite shift.

Proof. The transform is well-defined by (i), fully faithful by (ii), and essentially surjective
by (iii). ut
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Corollary 4.0.8. Suppose furthermore that S is regular and X is of finite Tor-dimension
over S. In this case, ωX ⊗ − takes PerfX into DCohX. Let R denote the functor
QC!(−)→ QC(−). Then one has a commutative diagram

QC!(X ×S Y )<∞� _

R

��

∼

8! // Funex,t<∞
Perf S (DCohX,QC! Y )

r

��
QC(X ×S Y )

∼

8
// Funex

Perf S(PerfX,QCY )

where
r(F ) = R ◦ F ◦ (ωX ⊗−).

In particular, r is full faithful. The essential image of r consists of those functors
whose Kan extensions to F ∈ FunLQC S(QCX,QCY ) satisfy the following condition:
There exists a constant N such that if G ∈ QCX has Tor-amplitude at most a, then
F(G ) ∈ QC(Y )<N+a .

Proof. The commutativity of the diagram is provided by the module structure for QC!

over QC:

R ◦8!K (ωX⊗P) = R ◦p2∗
(
p!1(ωX⊗P)

!

⊗K
)
= p2∗

(
R
(
(ωX×SY ⊗p

∗

1(P))
!

⊗K
))

= p2∗
(
R
(
ωX×SY

!

⊗ (p∗1(P)⊗K )
))
= p2∗(R(p

∗

1(P)⊗K ))

= p2∗(p
∗

1(P)⊗R(K )) = 8R(K )(P)

where K ∈ QC!(X ×S Y )<∞ and P ∈ PerfX.
The equivalence and full faithfulness follow from the theorem, the functor theorem

for QC, and the fact that R induces an equivalence QC!(−)<∞ ' QC(−)<∞.
It remains to identify the essential image: By the previous diagram, we must show that

for K ∈ QC(X ×S Y ) we have K ∈ QC(X ×S Y )<∞ iff 8K has the given property.
We may suppose that S is affine, by considering tensoring by the (flat) object OU ∈ QC S
associated to a flat affine cover U → S. Further, we may suppose that PerfX admits a
single generator G , so that p2∗ RHomX×SY (p

∗

1G ,−) : QC(X ×S Y ) → QCY satisfies
the hypotheses of Theorem 3.0.12. Since G is perfect, G ∗ has bounded Tor-amplitude, so
that 8K (G ∗) is left bounded; this completes the proof. ut

Remark 4.0.9. In the description above, one could weaken the condition to G ∈ PerfX
of Tor-amplitude at most a—and restrict the domain of definition of F to PerfX—
provided that a weak form of Lazard’s Theorem held for X: One requires that any G ∈
QCX which is flat is a filtered colimit of perfect complexes of uniformly bounded Tor-
amplitude. We have not considered when this holds.

The strategy will be three-fold: we prove an (absolute, i.e., S = Spec k) “tensor” rest;
we prove an (absolute) “duality” result; and then we pass from the absolute case to the
relative case.

We start by recording the following “absolute” tensor statement:
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Proposition 4.0.10. Suppose that S = Spec k for a perfect field k, X → S is a quasi-
compact and separated S-algebraic space of finite presentation, and Y → S is an arbi-
trary S-stack of finite presentation. Then:

(i) the exterior product

QC!X ⊗QC S QC! Y → QC!(X ×S Y )

is well-defined and is an equivalence;
(ii) the !-integral transform gives an equivalence

8! : QC!(X ×S Y )→ FunLQC S(QC!X,QC! Y ).

Proof. See [20, Proposition B.1.1, Theorem B.2.4] (or [9]) for the case of k of charac-
teristic zero with slightly different hypotheses on X, Y . The same argument in fact works
under the hypotheses given here, with Theorem 5.1.1 providing the necessary dualizabil-
ity results for QC!X over k. ut

Next we consider the (absolute) dualizability statement. Our input is the following key
boundedness property of Grothendieck duality:

Proposition 4.0.11. Suppose X that is a Noetherian geometric stack admitting a dualiz-
ing complex ωX and of finite cohomological dimension. Let D denote the duality functor
with respect to X. Then the Grothendieck duality functor

D : DCoh(X)op ∼
−→ DCohX

is an equivalence, and it is left and right t-exact up to a finite shift.

Proof. See Prop. 6.5.3. ut

We re-interpret it as a dualizability result for QC!X ' Ind DCohX:

Corollary 4.0.12. Suppose X is of finite cohomological dimension, admits a dualizing
complex, and is such that QC!X = Ind DCohX. Then one can equip QC!X with the
following alternative t-structure, henceforth denoted QC!X:

QC!(X)>0 = Ind(D(DCoh(X)<0)), QC!(X)≤0 = Ind(D(DCoh(X)≥0)).

Then:

(i) QC!(X)≤0 consists precisely of those F ∈ QC!X such that

R0(X,F
!

⊗−) : QC!X→ k-mod

is a left t-exact functor;
(ii) the !-integral transform gives a t-exact equivalence

QC!X→ FunL(QC!X, k-mod);
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(iii) if C is a presentable∞-category with t-structure compatible with filtered colimits,
then the equivalence

QC!X ⊗ C
∼
−→ FunL(QC!X,C), F ⊗ c 7→ R0(X,F

!

⊗−)⊗ c,

is a t-exact equivalence;
(iv) the identity functor QC!X = QC!X is left and right exact up to finite shifts; in

particular, the equivalence QC!X ⊗ C
∼
−→ FunL(QC!X,C) of (iii) is left and right

exact up to finite shifts (with the usual t-structure on the left hand side).

Proof. (i) Let us show that the collection of such F contains D(DCoh(X)≥0) and is

closed under filtered colimits. It is closed under filtered colimits since R0 and
!

⊗ are, and
the t-structure on k-mod is compatible with filtered colimits. If F ′ ∈ DCoh(X)≥0, there
is an equivalence

R0(X,DF ′
!

⊗−) = RHomQC! X(F
′,−),

so that this functor is left t-exact since F ′ ∈ QC!(X)≥0.
(ii) This is a reformulation of (i).
(iii) By construction, Ind(D) gives a t-exact equivalence QC!X ' Ind(DCoh(X)op).

The functor under consideration is now the composite of the t-exact equivalence

QC!X ⊗ C
IndD
−−−→ Ind(DCoh(X)op)

and the t-exact equivalence (§6.4)

Ind(DCoh(X)op)⊗ C ' Funex(DCohX,C).

(iv) The identity functor is its own adjoint, so being left (resp., right) exact up to a shift
implies that it is also right (resp., left) exact up to a shift. The result without an auxiliary C

now follows by Prop. 4.0.11(ii). Tensoring with C preserves the property of being right
t-exact up to a shift by construction, completing the proof. ut

We are now ready to complete the proof:

Proof of Theorem 4.0.5. (i) Note that 8! is left t-exact up to a shift, since pushforwards,
!-pullbacks, and exterior products over the ground field are all so. The only one of these
which may be non-obvious is !-pullback: Using quasi-compactness the claim is local,
so it is enough to consider the case of a smooth morphism where f ! = �df [d] ⊗ f

∗

is a shift by d of an exact functor; and the case of a finite morphism where f ! =
RHomOX

(f∗OY ,−) is left t-exact.5

(ii) First note that for S = pt, the map is an equivalence by Prop. 4.0.10. Let us reduce
the general case to this.

5 Alternatively, one can reduce to the case of an open embedding and a proper morphism, and
use the finite cohomological dimension of a proper relative algebraic space.
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We note that the !-integral transform and exterior products produce maps of aug-
mented cosimplicial diagrams

QC!(X ×S Y )

8!

��

// QC!(X × Y )

8!

��

// QC!(X × S × Y )

8!

��

// · · ·

FunL
QC! S

(QC!X,QC! Y ) //

=

��

FunL(QC!X,QC! Y ) //

∼

��

FunL(QC!(X × S),QC! Y )

∼

��

// · · ·

FunL
QC! S

(QC!X,QC! Y ) // FunL(QC!X,QC! Y ) // FunL(QC!X ⊗ QC! S,QC! Y ) // · · ·

The maps in the bottom row are given by the product structure, and the bottom row is a
totalization diagram.

The maps in the top row are given by pushforward along diagonal maps and graphs.
In particular, they are t-exact. Thus, the claim will be proven if we can show that

QC!(X ×S Y )<0 → Tot{QC!(X × S×• × Y )<0}

is fully faithful. We will in fact show that it is an equivalence. Note that the natural functor
QC!(−) → QC(−) is t-exact, commutes with pushforward, and induces an equivalence
QC!(−)<0 → QC(−)<0. Thus the result follows by examining the diagram

QC!(X ×S Y ) //

��

QC!(X × Y )

��

// QC!(X × S × Y )

��

// · · ·

QC(X ×S Y ) // QC(X × Y ) // QC(X × S × Y ) // · · ·

where the bottom row is a t-exact totalization diagram by the tensor product theorem
for QC.

(iii) We first handle the case of S = pt. In this case,

FunL(QC!X,QC! Y ) = Funex(DCohX,QC! Y ) = Ind(DCoh(X)op)⊗ QC! Y

carries a t-structure, whose coconnective objects are precisely the left t-exact functors.
The result then follows from Theorem 4.0.12. Let N be the constant for X and Y for
S = pt.

We now reduce the general case to this: Suppose that

F ∈ FunL
QC! S

(QC!X,QC! Y ) 7→ F• ∈ Tot{FunL(QC!X × QC!(S)⊗•,QC! Y )}

is such that F0 : QC!X→ QC! Y is left t-exact. It follows that each F• is left t-exact up
to a finite shift as well, since it is equivalent to the composite

QC!X ⊗ QC!(S)⊗•
�−1
−−→ QC!(X × S•)→ QC!X

F0
−→ QC! Y
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of the inverse of the exterior product equivalence (which is left t-exact, since the exterior
product over k is right t-exact), the pushforward map (which is left t-exact), and F0.

By (ii) and (iii) in the case of a point, applied to F•, there exists an essentially unique

F• ∈ Tot{QC!(X × S×• × Y )<∞}

such that 8!(F•) ' F•. Since F0 is left exact, we see that F0 ∈ QC!(X × Y )<N . Since
pushforward is left t-exact, it follows that F• ∈ QC!(X×S×•×Y )<N for all •. It follows
from the proof of (ii) that F• is the image of some F ∈ QC!(X ×S Y )<N . ut

Remark 4.0.13. Let

θ : FunL
QC! S

(QC!X,QC! Y )→ FunL(QC!X,QC! Y ) = Funex(DCohX,QC! Y )

be the natural conservative functor of forgetting QC! S-linearity. We have seen that the
right hand side carries a t-structure with (−)≤0 consisting of the left t-exact functors. Let
the superscript “t ≤ 0” on a functor category refer to the full subcategory of left t-exact
functors. We can ask:

(i) When is
FunL,t≤0

QC! S
(QC!X,QC! Y ) ⊂ FunL

QC! S
(QC!X,QC! Y )

a localization, so that this is in fact a t-structure?
(ii) What is the left completion / regularization of this t-structure?

Suppose (i) held. Then the theorem would imply that the !-integral transform induces
an equivalence on regularization and completion, answering (ii).

Let us consider (i): Note that θ is conservative and preserves all colimits. If it com-
muted with filtered limits we would be done, and moreover the t-structure would be com-
patible with filtered colimits since the t-structure on the right hand side is and θ preserves
colimits. Under the identifications above, it suffices that the pushforward along the graph
0 : X × Y → X × S × Y ,

0∗ : QC!(X × Y )→ QC!(X × S × Y )

(and all similar pushforwards along base changes of graphs of X → S, Y → S, and
diagonals of S), be limit preserving. This is the case if and only if f is of finite Tor-
dimension: in that case, f ∗ preserves colimits and compact objects, and f∗ is its right
adjoint.

So, we see that it is necessary and sufficient to assume for (i) that S be smooth. In this
case, QC! S ' QC S is rigid and we have:

Corollary 4.0.14. Suppose that S is smooth, and that X and Y are in addition of finite
Tor-dimension over S. Then there is a t-exact equivalence

FunL
QC! S

(QC!X,QC! Y ) ' QC!X ⊗QC! S QC! Y

where the left hand side is equipped with the t-structure of the previous remark. The
!-integral transform is left t-exact up to a finite shift, and realizes QC!(X ×S Y ) as a left
t-regularization of the functor category.
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5. Functors out of DCoh

5.0.1. The standing assumptions for this section are the same as in the previous section,
but in addition S will be assumed to be smooth.

We will now derive consequences, for small categories, of the results of the previous
subsection. Our main result will be:

Theorem 5.0.2. Suppose that S is a quasi-compact, geometric, and smooth k-stack over
a perfect field k. Suppose that πX : X→ S is a quasi-compact finitely presented separated
S-algebraic space and Y is a finitely presented S-stack. Then !-integral transforms give
an equivalence

8! : DCohprop/Y (X ×S Y/!X)
∼
−→ Funex

Perf S(DCohX,DCohY )

where DCohprop/Y (X ×S Y/!X) ⊂ QC!(X ×S Y )<∞ denotes the full subcategory con-
sisting of those F ∈ QC!(X ×S Y ) satisfying:

(i) Hi(F ) = 0 for i � 0;
(ii) each Hi(F ) is coherent, with support proper over Y ;

(iii) F has finite
!

⊗-dimension over X, i.e., locally on X ×S Y , the functor F
!

⊗ p!1(−)

is right t-bounded up to a finite shift.
Furthermore, for K in this category, DK is almost perfect and of finite Tor-dimension
over X, and there is a natural equivalence 8!K = D ◦8DK ◦ D.

Before giving the proof, we give a few remarks and elaborate on the last sentence:

Remark 5.0.3. The last sentence asserts a different relationship between 8! and 8 than
that appearing in Theorem 4.0.8. In particular, the objects of QC(X×S Y ) appearing here
are not generally bounded above. Let us describe them more explicitly:

Let DCohprop/Y (X ×S Y/X) consist of the almost perfect complexes with support
proper over Y and which have finite (∗-)Tor-amplitude over X. Then there is a commuta-
tive diagram of equivalences

DCohprop/Y (X ×S Y/!X)

D∼

��

8!

∼
// Funex

Perf S(DCohX,DCohY )

D◦(−)◦D∼

��
DCohprop/Y (X ×S Y/X)

op 8

∼
// Funex

Perf S(DCohX,DCohY )op

Note that the last arrow is an equivalence by unbounded Grothendieck duality
(Prop. 6.5.3). It shows that D̂Coh+ and D̂Coh– are interchanged, and a separate bounded-
ness argument shows that it preserves the property of having properly supported homol-

ogy sheaves.6 It remains to check that “finite
!

⊗-dimension” is interchanged with “finite

6 This is automatic for DCoh, where compactly supported homology sheaves = compact support
as a complex, since duality is compatible with open restriction and thus with support of a complex.
Now the property passes to left and right completions as before, on noting that Hi(DF ) depends
on F only through a bounded truncation.
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Tor-dimension.” Note that both sides are defined to be local on X and on X ×S Y . This
then follows from the following lemma.

Lemma 5.0.4. Suppose f : SpecA → SpecB is a map of connective Noetherian dg
rings. For F ∈ D̂Coh±A, the following are equivalent:

(i) F
!

⊗ f !−: QC! B → QC!A is left and right t-bounded up to shift;

(ii) F is homologically bounded above, and the functor R(F
!

⊗f !−) : QC! B → QCA
is right t-bounded up to shift;

(iii) F is homologically bounded above, and R(F
!

⊗ f !−) : DCohB → D̂Coh–A is
right t-bounded up to shift;

(iv) F is homologically bounded above, andR(F
!

⊗f !(D−)) : DCoh(B)op
→ D̂Coh–A

is right t-bounded up to shift;
(v) DF is homologically bounded below, and DF ⊗ f ∗(−) : DCohB → D̂Coh+A is

left t-bounded up to shift;
(vi) DF ⊗ f ∗−: QCB → QCA is left and right t-bounded up to shift.
Note that (i) in our notation reads F ∈ DCoh(A/!B), while (vi) in our notation reads
DF ∈ DCoh(A/B).
Proof. Note that (i) implies that F is homologically bounded above, by taking − = ωB

and using left t-boundedness up to a shift. Then, since
!

⊗ is left t-bounded up to a shift,
we see that (i) is equivalent to (ii) since R : QC!(A)<n ' QC(A)<n is an equivalence for
each n.

Point (iii) is well-defined since
!

⊗ and f ! preserve the property of being in D̂Coh– by
Theorem 3.0.6 and the tensor product on D̂Coh+. Further, (ii) is equivalent to (iii) since
QC! B = Ind DCohB and the t-structure is compatible with filtered colimits.

Continuing: (iii) is equivalent to (iv) by Grothendieck duality, including the bound-
edness assertion of Prop. 4.0.11. Next, (iv) is equivalent to (v) by another application of
Theorem 3.0.6 and unbounded Grothendieck duality.

Finally, (vi) implies (v) since one sees that DF is homologically bounded below by
taking − = A. Conversely, (v) implies that the functor is t-bounded above on anything
that is obtained as a filtered colimit of objects of DCohB—which includes all of QC(B)♥

since B is Noetherian, and all of QC(B)<∞ since QCB is right complete; since DF is
bounded below, the homology groups of

DF ⊗ f ∗(τ≤k(−))

stabilize as k→∞, so that (v) is equivalent to (vi). ut

The following is thus a reformulation of the theorem, making no reference to shrieks.

Corollary 5.0.5. Suppose that π : X → S are as in Theorem 5.0.2. Then ∗-integral
transforms give an equivalence

DCohprop/Y (X ×S Y/X)
8
−→ Funex

Perf S(DCohX,DCohY )

where DCohprop/Y (X ×S Y/X) ⊂ QC(X ×S Y ) is as in the previous remark.
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From this, we can deduce a few more corollaries:

Corollary 5.0.6. Restrict the above to the case of Y = S. Then

Perfprop/S X
∼
−→ Funex

Perf S(DCohX,DCoh S)

via P 7→ 8P .

Proof. By the reformulation of Theorem 5.0.5, it is enough to recall that P perfect is
equivalent to P almost perfect and of finite Tor-amplitude. ut

Corollary 5.0.7. Restrict the above and the results of Section 3 to the case of Y = S and
X→ S proper. Then there are “dualities”

Funex
Perf S(DCohX,DCoh S) ' PerfX, Funex

Perf S(PerfX,DCoh S) ' DCohX.

Proof. Combine the previous corollary with the results of Theorem 3.0.2. ut

The rest of this section will be devoted to the proof of the theorem. The idea is to go in
two steps:

(i) In §5.1, we prove a generation result that will imply that any Perf S-linear functor
DCohX → DCohY is automatically left (and right) t-bounded up to a finite shift.
This allows us to apply the results of the previous subsection to identify the category
of such functors with a subcategory of QC!(X ×S Y ).

(ii) In §5.2, we identify this subcategory. The proof is similar to that presented in Sec-
tion 3.

5.1. A generation result and a boundedness consequence

First, we need to establish a generation result:

Lemma 5.1.1. Suppose that π : X → S = Spec k is a quasi-compact, quasi-separated,
and locally almost finitely presented algebraic space over a perfect field k. Then QC!X
is compactly generated by DCohX, and there is a single G ∈ Coh(X)♥ which generates
DCohX.

Proof. This follows from [15, Theorem 1.5.10] applied to QC!(−). However, to show
that a single object suffices, a slightly different argument is required (since we do not
a priori know a single generator for DCohZ X in the affine case). We will prove this by
Noetherian induction on X, with the help of two observations:

Claim 1. This property for (Xcl)red implies the property for X.

Claim 2. Suppose U ⊂ X is open in a classical algebraic space X. Let Z denote the
closed complement with its reduced induced structure. Suppose that the property holds
for each of U and Z. Then it holds for X.

Assuming the claims we complete the proof. We proceed by Noetherian induction, so
suppose that the result is known for all proper closed sub-algebraic spaces Z ( X. By
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Claim 1 we may suppose that X is classical and reduced. Since k is perfect, X is generi-
cally smooth. Thus there exists an open U ⊂ X which is smooth and in particular regular.
Thus DCohU = PerfU , so that Theorem 3.0.8 implies that the property holds for U .
By Noetherian induction, the result holds also for Z = X \ U with its reduced induced
structure, so that Claim 2 completes the inductive step.

Proof of Claim 1. Note that every F ∈ DCoh X is an extension of the shifted sheaves
Hi(F ), which are pushed forward from Xcl. And every F ∈ DCoh(X )♥ is an iterated
extension of sheaves pushed forward from (Xcl)red by filtering by powers of the nilradical
ideal of OXcl .

Proof of Claim 2. Let GU ∈ DCohU and GZ ∈ DCohZ be objects whose shifts gen-
erate QC! U and QC! Z. Let j : U → X and i : Z → X be the inclusions. The form of
Thomason’s argument in [14, Lemma 6.19] shows that there exists G ∈ DCohX such
that j∗G ' GU ⊕GU [+1]. Further, we claim that

G⊕ i∗GZ ∈ DCohX

generates QC!X under shifts and colimits.
Suppose F ∈ QC!X, and as before form the fiber sequence

FZ → F → j∗j
∗F .

Consider the right adjoint i! : QC!Z X → QC! Z to i∗, so that FZ = i∗i
!F . Note

that by passing to homology and filtering by the nilradical, as in the proof of Claim 1,
we see that i∗ DCohZ generates DCohZ X under cones, shifts, and retracts. Thus, i! is
conservative. But

0 = RHomX(i∗GZ,F ) = RHomZ(GZ, i
!F ) = RHomZ(GZ, i

!FZ)

implies that i!FZ = 0. Thus, FZ = 0 and F = j∗j∗F .
Next, exactly as in the proof of Theorem 3.0.8 observe that

0 = RHomX(G,F ) = RHomX(G, j∗j
∗F ) = RHomU (j

∗G, j∗F ),

which implies that RHomU (GU , j
∗F ) = 0, so that j∗F = 0 and F = j∗j∗F = 0. ut

Now we apply the lemma to get a t-boundedness result:

Lemma 5.1.2. Suppose that S is a quasi-compact, finitely presented, perfect k-stack;
that X is a quasi-compact, quasi-separated, and finitely presented S-algebraic space;
and that Y is a quasi-compact and finitely presented S-stack. Then every Perf S-linear
exact functor F : DCohX→ DCohY is left and right t-exact up to a shift. In particular,
Kan extension produces a fully faithful embedding

Funex
Perf S(DCohX,DCohY ) ↪→ FunL,t-bdd

QC S (QC!X,QC! Y ),

where “t-bdd” denotes t-bounded functors, i.e., left and right t-exact up to a shift.

Proof. The proof of Theorem 3.0.7(i) shows that the inclusion DCohY → QC! Y induces
a fully faithful functor

Funex
Perf S(DCohX,DCohY ) ↪→ Funex

Perf S(DCohX,QC! Y ),
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and using the fact that S is perfect and our unspoken assumption on X we see that Kan
extension identifies

Funex
Perf S(DCohX,QC! Y )

∼
−→ FunLQC S(QC!X,QC! Y ).

It remains to prove the uniform t-boundedness assertion.
We proceed via a sequence of reductions:

Reduction to Y affine: First note that, since Y is quasi-compact, the claim is flat local
on Y . So, we may suppose that Y is affine.

Reduction to the absolute case: Suppose that f : U → S is a smooth affine atlas. Con-
sider the diagram

DCohX

��

F // DCohY

��
DCohX ⊗Perf S PerfU

F⊗id //

∼

��

DCohY ⊗Perf S PerfU

∼

��
DCoh(X ×S U)

FU // DCoh(Y ×S U)

We claim that the indicated vertical maps are indeed equivalences. For this see e.g. [9,
Prop. 4.5.3] and note that the proof applies in the present context. Consequently, there is
a unique functor FU making the diagram commute. Suppose that FU is known to be left
and right t-exact up to a shift. It follows that the composite

FU ◦ f
∗

X = f
∗

Y ◦ F : DCohX→ DCoh(Y ×S U)

is left and right t-exact up to a shift, since f ∗X is a flat pullback map and hence t-exact.
By the previous reduction (that the claim can be checked flat locally on Y ) this suffices,
since fY : Y ×S U → Y is a smooth cover.

So, we may suppose Y = SpecA and S are both affine andX is a finite-type separated
algebraic space. It suffices to show that any exact functor F : DCohX→ DCohY is left
and right t-exact up to a shift; in particular, we no longer have any dependence on S.

Reduction to X classical (in particular, of finite Tor-dimension): Consider the closed
immersion i : Xcl → X of the underlying classical algebraic space of X. Note that
i∗ : DCohXcl → DCohX is t-exact and induces an equivalence of the hearts; since the
t-structure on DCohX is bounded, it suffices to show that F ◦ i : DCohXcl → DCohY
is left and right t-exact up to a shift.

Final proof: Observe that it follows from Prop. 4.0.11 that F : DCohX → DCohY
is right t-exact up to a shift if and only if (D ◦ F ◦ D)op is left t-exact up to a shift.
Consequently, it suffices to prove that any such F is left t-exact up to a shift.
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By Theorem 5.1.1 there exists a G ∈ DCoh(X)♥ that generates. Replacing F by a
shift we may suppose that F(G ) ⊂ DCoh(Y )≤0. Setting F ′ = IndF , it suffices to show
that any colimit preserving functor F ′ : QC!X→ QC! Y satisfying

F ′(G ) ∈ QC!(Y )≤0

is left t-bounded up to a shift. Note that the full subcategory of left t-bounded functors is
closed under cones, shifts, and retracts. Note also that the colimit preserving functor

H ′ = RHomQC! X(G ,−)⊗k F
′(G )

is left t-exact. Indeed, RHomQC! X(G ,−) is left t-exact since G ∈ DCohX≥0; and −⊗k
F ′(G ) is left t-exact since k is a field and F ′(G ) ∈ QC!(Y )<0. It thus suffices to show
that F ′ can be built from H ′ in finitely many steps of taking cones, shifts, and retracts.
For this, it suffices to show that idQC! X can be built from

RHomQC! X(G ,−)⊗ G = 8!DG�G

in finitely many steps.
By Grothendieck duality, DG ∈ DCohX also generates DCohX. By Prop. 4.0.10 the

exterior product � : DCohX ⊗ DCohX → DCoh(X2) is an equivalence, so it follows
that DG � G generates DCoh(X2). Since OX is bounded, we see that ωX ∈ DCohX,
so that 1∗ωX ∈ DCoh(X2). Consequently, 1∗ωX may be built in finitely many steps,
consisting of cones, shifts, and retracts, from DG � G . Applying the !-integral transform
8! completes the proof since idQC! X ' 8

!

1∗ωX
. ut

Corollary 5.1.3. Suppose that S,X, Y satisfy the hypotheses of Theorem 5.0.2. Let

C!X,Y/S ⊂ QC!(X ×S Y )<∞

denote the full subcategory consisting of those K such that 8!K (DCohX) ⊂ DCohY .
Then the restriction of the !-integral transform provides an equivalence

C!X,Y/S
8!

−→ Funex
Perf S(DCohX,DCohY ).

Proof. This is an immediate consequence of Theorems 5.1.2 and 4.0.6, identifying QC S
' QC! S as symmetric monoidal categories since S is smooth. ut

5.2. Identifying the right kernels

In order to complete the proof of Theorem 5.0.2, we have to identify C!X,Y/S with
DCohprop/Y (X ×S Y/!X). We need the following preliminaries:

Lemma 5.2.1. In addition to the assumptions of Theorem 5.0.2, suppose that Y =SpecA
is affine. Let C ⊂ D̂Coh–(X ×S Y ) be the smallest full subcategory closed under finite
limits, and containing D̂Coh–(X×S Y )<0 and p!1(D̂Coh–X). Then C = D̂Coh–(X×S Y ).
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Proof. We first use unbounded Grothendieck duality (Prop. 6.5.3) to translate to a state-
ment with usual pullbacks: Letting C′ = DC ⊂ D̂Coh+(X ×S Y ), it suffices to show that
C′ = D̂Coh+(X ×S Y ). Note that C′ is the smallest full subcategory closed under finite
colimits, and containing D(D̂Coh–(X ×S Y )<0) and Dp!1(D̂Coh–X) = p∗1(D̂Coh+X).
Furthermore,

D(D̂Coh–(X ×S Y )<0) ⊃ D̂Coh+(X ×S Y )>−N

for some N by the boundedness assertion of Prop. 6.5.3.
It thus suffices to prove the following Grothendieck dual assertion: Let C′ ⊂

D̂Coh+(X ×S Y ) be the smallest full subcategory closed under finite colimits, and con-
taining D̂Coh+(X ×S Y )>0 and p∗1(D̂Coh+X). Then C′ = D̂Coh+(X ×S Y ).

Claim. For each connective F ∈ D̂Coh+(X ×S Y )≥0, there exist a connective H ∈
D̂Coh+X≥0 and map

φ : p∗1H → F

which induces a surjection on H0.

Assuming the claim, we complete the proof. We will show that D̂Coh+(X×SY )>−n ⊂ C′

for all n, by induction on n. The case n = 0 is by hypothesis. Let us prove the case of n,
assuming known the case of n− 1:

Suppose F ∈ D̂Coh+(X×S Y )>−n, so that F [n−1] is connective. Apply the Claim
to it, to obtain a map

φ : p∗1H → F [n− 1]

inducing a surjection on H0 as above. Since H is connective and p∗1 is left t-exact, p∗1H
is connective. Since φ induces a surjection on H0, the fiber K = fib(φ) of φ is also
connective. Applying the Claim to K we obtain

φ′ : p∗1H
′
→ K

inducing a surjection on H0. It follows that

cone(p∗1H
′
→ K → p∗1H)→ F [n− 1]

induces an isomorphism on H0. In light of the connectivity of all terms involved, it in-
duces an isomorphism on τ≤0. Consequently,

cone(p∗1H
′
[1− n] → p∗1H [1− n])→ F

induces an isomorphism on τ≤(1−n). In particular, the fiber is in D̂Coh+(X ×S Y )>1−n
and thus in C′ by the inductive hypothesis. Since C′ is closed under cones, and contains
p∗1H [1− n] and p∗1H

′
[1− n], we see that F ∈ C′.

We now prove the claim: Since p1 is affine, we see that p1∗F ∈ QC(X)≥0. Since X
is perfect, we can write

p1∗F = lim
−→
α

Pα
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with Pα ∈ PerfX. Since the t-structure is compatible with filtered colimits, we have

p1∗F = lim
−→
α

τ≥0Pα,

and since X is Noetherian and each Pα is perfect, the truncations τ≥0Pα ∈ D̂Coh+(X)≥0
are almost perfect.

Next, consider the composite

lim
−→
α

p∗1(τ≥0Pα) ' p
∗

1

(
lim
−→
α

τ≥0Pα

)
∼
−→ p∗1p1∗F → F

Since p1 is affine, and F is connective, the last map induces a surjection on H0. The
previous displayed equation shows that H0(F ) is the increasing union of the images on
H0 of the terms for each α. Since H0(F ) is coherent, it is compact in DCoh(X ×S Y )♥.
Consequently, there is some α such that

p∗1(τ≥0Pα)→ F

induces a surjection on H0. This completes the proof. ut

Lemma 5.2.2. Suppose that π : Z → S = SpecA is a separated, finitely presented
S-algebraic space, over an affine (finitely presented over k) base. LetH i(F ), τ≥i , etc. be
the homology and truncation functors for the dual t-structure on QC!(Z) that was denoted
QC!(Z) in Cor. 4.0.12. If F ∈ DCohZ, thenH i(F ) = D◦Hi◦D(F ) ∈ DCohZ, and the
functor H i is determined by this equality and the property of preserving filtered colimits.
The following conditions on F ∈ QC!(Z) are equivalent:

(i) F ∈ QC!(Z)<N for some N , and Hi(F ) is coherent over Z with support proper
over S for each i, and they vanish for i � 0;

(ii) F ∈ D̂Coh– Z and Hi(F ) has support proper over S for each i;
(iii) F ∈ D̂Coh– Z and H i ◦Hj (F ) = Hj ◦H i(F ) has support proper over S for each

i, j ;
(iv) F ∈ D̂Coh– Z and H i(F ) has support proper over S for each i;
(v) F ∈ QC!(Z)<N for some N , and H i(F ) is coherent over Z with support proper

over S for each i, and they vanish for i � 0.

Proof. Note that (i) is equivalent to (ii) by the definition of D̂Coh–.
Let us show that (ii)–(iv) are equivalent. First note that for K ∈ DCohZ—indeed

for any bounded complex—the support of K , as a complex, is the union of the supports
of its homology sheaves. So if F ∈ DCohZ then F has proper support iff both F
and DF have proper support iff (for all i) Hi(F ) and Hi(DF ) have proper support iff
H i(DF ) = DHi(F ) and H i(F ) = DHi(DF ) all have proper support. Since D is
t-bounded, one finds that (ii) and (iii) are both equivalent to requiring that DHi(F ) have
support proper over S for each i.

Next, (iv) obviously implies (v). For the converse, suppose that F ∈ QC!(Z)<N
is such that H i(F ) ∈ DCohZ for all i. Since F is bounded, and the identity functor
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between two t-structures is left t-exact up to a shift, it follows by induction that τ≥iF ∈
DCohZ for all i. Using the fact that the identity functor is both left and right t-bounded
up to a shift, it follows that τ≥iF ∈ DCohZ for all i. This completes the proof. ut

We have the Grothendieck dual statement to Prop. 3.0.9:
Proposition 5.2.3. Suppose that π : Z → S = SpecA is a separated, finitely presented
S-algebraic space over an affine ( finitely presented over k) base. Then the following
conditions on F ∈ QC! Z are equivalent:

(i) F ∈ D̂Coh– Z and Hi(F ) has support proper over S for each i;

(ii) F ∈ QC!(Z)<N for some N , and Hi(X,H
!

⊗ F ) ∈ DCoh(A)♥ for all H ∈

D̂Coh– Z;

(iii) F ∈ QC!(Z)<N for some N , and R0(H
!

⊗F ) ∈ D̂Coh–A for all H ∈ D̂Coh– Z.
Proof. Note that (ii) is equivalent to (iii) by the left t-exactness of the functors involved.
Furthermore, (i) implies (ii) by the proper pushforward theorem and the left t-bounded-

ness of the functorHi(X,H
!

⊗−) which allows us to replace F by something in DCohZ
whose support is proper over S.

It suffices to show that (iii) implies (i). We imitate the proof of Prop. 3.0.9, making
the same series of reductions:
Reduction to Z and A classical: By Theorem 5.2.2 it suffices to show that H i(F ) is
coherent with proper support for all i. Furthermore, the proof of op.cit. shows that these
vanish for i � 0 since F is left bounded for the usual t-structure. Without loss of gen-
erality we may suppose that H i(F ) = 0 for i > 0, and it will suffice—since (i) implies
(iii)—to show that H 0(F ) is coherent with proper support.

Let i : Zcl → Z be the inclusion of the underlying classical algebraic space of Z.
Note that i! is left t-exact for the QC! t-structure, since i∗ is t-exact and i! is its right
adjoint. In contrast to the usual t-structure, the natural map

i∗i
!H 0(F )→ H 0(F )

induces an isomorphism on H 0: Since everything commutes with filtered colimits, it suf-
fices to check this assuming that H 0(F ) = DF ′ with F ′ ∈ DCoh(Z)♥. Then this is the
map

DH0(i∗i
∗F ′) = H 0(i∗i

!F )→ H 0(F ) = DF ′

Grothendieck dual to the usual map F → i∗i
∗F which induces an equivalence on H0.

Thus, we may reduce to showing that i!F satisfies the hypotheses of (i). By the pro-
jection formula, it satisfies the hypotheses of (iii). So, we are reduced to showing that (iii)
implies (i) in case Z (and A) is classical.
Reduction to Z proper: Note that π is assumed to be finite-type, so we no longer have
to do that reduction. The exact same Nagata compactification argument as before applies,
reducing our task to the case of Z proper.
Reduction to Z projective: The same Chow’s Lemma + Noetherian induction argument
as before applies, now using the map p∗p!F → F , to reduce to the case of Z projective.
The same argument as before reduces us to the case of Z = PnS a projective space.
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Case of Z = PnS: In this case, we can build the identity functor on QC(Z ×S Z) out of
functors of the form

P ′ ⊗A R0(Z,P ⊗−) =P ′ ⊗A R0(Z, (ωZ ⊗P)
!

⊗−).

so that the hypotheses on F imply that it lies in D̂Coh– Z. This completes the proof. ut

Finally, we are ready to complete the proof of the main theorem:

Proof of Theorem 5.0.2. We must characterize those K ∈ QC!(X ×S Y )<∞ such that
8!K (DCohX) ⊂ DCohY . Note that the characterization, and the hypothesis, are both
local on Y , so that we may suppose Y is affine. Since8!K is left t-bounded, it follows by

an approximation argument that 8!K (D̂Coh–X) ⊂ D̂Coh– Y .

Let C ⊂ D̂Coh–(X×S Y ) denote the full subcategory consisting of those F such that

Hi
(
p2∗(F

!

⊗K )
)
∈ DCoh(Y )♥ for all i ≤ 0.

Since K is bounded above, there is some N such that D̂Coh–(X ×S Y )<−N ⊂ C. It is
closed under finite limits by inspection, and contains p!1(D̂Coh–X) since8!K (D̂Coh–X)

⊂ D̂Coh– Y by the above. Thus by Theorem 5.2.1 we have C = D̂Coh–(X ×S Y ).
Consequently, noting that the functor is left t-bounded up to a shift, we have

p2∗(F
!

⊗K ) ∈ D̂Coh– Y for all F ∈ D̂Coh–(X ×S Y ).

By Prop. 5.2.3 any such K lies in D̂Coh–(X×SY ) and has homology sheaves that are

compactly supported over Y . It remains to check the assertion about finite
!

⊗-amplitude
over X. Note that the functor

R0(X ×S Y,K
!

⊗ p!1(−)) = R0(Y,8!K (−))

is left and right t-bounded by Theorem 5.1.2 and the finite cohomological dimension
of Y . If X were affine, we would thus be done by Theorem 5.0.4. For the general case, let
q : U → X be a smooth cover by an affine scheme and let q ′ : U ×S Y → X ×S Y be its
base change.

Note that q ′!K has finite
!

⊗-dimension over U : Indeed, for F ∈ QC! U base change
and projection provide equivalences

R0(X ×S Y,K
!

⊗ p!1q∗F ) = R0
(
X ×S Y,K

!

⊗ q ′∗(p
!

1(F ))
)

= R0
(
U ×S Y, (q

′)!K
!

⊗ p!1F
)
,

so that this follows by the above, together with the observation that q∗ is left and right
t-bounded up to a shift.

Since q ′ is smooth, this also implies that q ′∗K has finite
!

⊗-dimension over U , which
was our definition. This completes the proof. ut
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5.3. Complements: Functors out of DCoh⊗Perf DCoh

We have now described the case of functors out of PerfX and DCohX. In case X is of
finite Tor-dimension, there is a natural restriction functor between them and we have seen
that the descriptions of functor categories are compatible with this. In case X is quasi-
smooth, there are also a variety of categories between the two. There should likely be
a similar result for functor categories out of these DCoh3 in general. We will, however,
content ourselves with certain special subcategories: those obtained as the essential image
of exterior products DCoh⊗Perf DCoh⊗Perf · · · .

Lemma 5.3.1. Suppose S is a quasi-compact, geometric, smooth k-stack; that Xi → S

are quasi-compact, separated, finitely presented, finite Tor-dimension S-algebraic spaces
for i = 1, . . . , n; and that Y is a quasi-compact and finitely presented S-stack. Then the
restriction

Funex
Perf S(DCohX1 ⊗Perf S · · · ⊗Perf S DCohXn,DCohY )

→ Funex
Perf S(PerfX1 ⊗Perf S · · · ⊗Perf S PerfXn,DCohY )

is fully faithful. Furthermore, one recovers F from the restriction i∗F by Kan extending
and restricting along DCoh ↪→ QC.

Proof. It will suffice to prove the following two claims:

Claim 1. Suppose F ∈ Funex
Perf S(DCohX1 ⊗Perf S · · · ⊗Perf S DCohXn,DCohY ). Then

F is “right t-exact up to a shift” in the sense that there exists an integer N so that

F(DCoh(X1)>0 × · · · × DCoh(Xn)>0) ⊂ DCoh(Y )>−N .

Note that if n = 1, this was Theorem 5.1.2. As there, conjugating with Grothendieck
duality implies that any such F is also left t-exact up to shift in the appropriate sense.

Consider the exterior product

�S : DCohX1 ⊗Perf S · · · ⊗Perf S DCohXn→ DCoh(X1 ×S · · · ×S Xn).

Claim 2. Suppose F ∈ Funex(DCoh(X1 ×S · · · ×S Xn),QCY ) is such that F ◦ �S is
right t-exact up to a shift in the sense of Claim 1. Then F is right t-exact up to a shift in
the usual sense.

Let us explain how the claims imply the desired result. Let us introduce the temporary
notations

DCoh(XI /S) = DCohX1 ⊗Perf S · · · ⊗Perf S DCohXn

and

Perf(XI /S) = PerfX1 ⊗Perf S · · · ⊗Perf S PerfXn.
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Now consider the diagram

Funex
Perf S(DCoh(XI /S),DCohY ) //

� _

��

Funex
Perf S(Perf(XI /S),DCohY )

� _

��
Funex

Perf S(DCoh(XI /S),QCY ) //
� _

LKan�S
��

Funex
Perf S(Perf(XI /S),QCY )

� _

∼LKan�S
��

Funex
Perf S(DCoh(X1 ×S · · · ×S Xn),QCY ) // Funex

Perf S(Perf(X1 ×S · · · ×S Xn),QCY )

where the top vertical arrows are induced by inclusions, and the bottom vertical arrows
are given by left Kan extension along the respective fully faithful exterior product functor.
From the diagram, we see that it is enough to show that the bottom arrow—induced by
restriction along the inclusion of Perf into DCoh—is fully faithful on the essential image
of the left vertical composite. The claims, taken together, imply that this essential image
consists entirely of functors which are right t-exact up to a shift.

Let
L : QC(X1 ×S · · · ×S Xn)→ QC!(X1 ×S · · · ×S Xn)

be the Kan extension of Perf(. . .)→ DCoh(. . .). It is enough to show that the restriction
functor

L∗ : FunLQC S(QC!(X1 ×S · · · ×S Xn),QCY )→ FunLQC S(QC(X1 ×S · · · ×S Xn),QCY )

is fully faithful on the subcategory of right t-exact functors.
To do this, we introduce some more notation: Note that L preserves compact objects

and colimits, so that it admits a limit and colimit preserving right adjoint M . Further-
more, M is t-exact. Consequently, L∗ is right adjoint to M∗ and it suffices to show that
M∗L∗(F ) ' F for a right t-exact functor F .

But recall that L andM induces an equivalence on coconnective objects. In particular,
for every V ∈ QC!(. . . ) the counit map L(M(V )) → V has infinitely connective cone.
Consequently, any right t-exact functor carries it to an infinitely connective object of
QCY—since the latter is left t-complete, any infinitely connective object is a zero object.
This proves that the counit M∗L∗(F ) → F is an equivalence, and completes the proof
modulo the claims.

Proof of Claim 1. Note that F gives rise to a Perf S⊗n-linear functor F ′ : DCohX1 ⊗

· · · ⊗ DCohXn→ DCohY and that F satisfies the conclusion of the claim if and only if
F ′ satisfies it. Consider the commutative diagram

DCohX1 ⊗ · · · ⊗ DCohXn
F ′ //

∼�

��

DCohY

DCoh(X1 × · · · ×Xn)

F ′′

55



Integral transforms for coherent sheaves 3799

Since the vertical map is a Perf S⊗n-linear equivalence, there exists a Perf S⊗n-linear
functor F ′′ making the diagram commute. By Theorem 5.1.2, F ′′ is right t-exact up to
a shift in the usual sense. Since the exterior product is right t-exact in the sense of the
claim, this completes the proof.

Proof of Claim 2. We may pass to large categories, so suppose that

F : QC!(X1 ×S · · · ×S Xn)→ QCY

is a colimit preserving functor such that

F(V1 �S · · · �S Vn) ∈ QC(Y )>0 for all tuples with Vi ∈ QC!(Xi)>0.

We wish to show that F is right t-exact up to a finite shift.

Reduction to S affine: Suppose p : U → S is a smooth cover by an affine scheme. Let
pi : X

′

i = Xi ×S U → Xi be the projections. Imitating the proof of Theorem 5.1.2, we
see that we can reduce to the affine case if we check that FU is right t-exact provided that
F is. That is, we assume that

FU (p
∗

i V1 ⊗ · · · ⊗ p
∗
nVn)

is connective for Vi connective, and we must conclude that also FU (V ′1 ⊗ · · · ⊗ V
′
n) is

connective for arbitrary V ′i connective. For this, we note that connective objects are closed
under colimits, that tensor and FU all preserve colimits, and the geometric realization
diagram

V ′i
∼
−→ ‖(p∗i pi∗)

•+1V ′i ‖.

Note that each term of the geometric realization is the pullback of a connective object,
since pi is smooth and affine so that p∗i and pi∗ are both t-exact. This completes the
reduction to S affine.

Reduction to S = Y = pt: The map

i : X1 ×S · · · ×S Xn→ X1 × · · · ×Xn

has finite Tor-dimension since S is smooth. Thus, there is a well-defined—and right
t-exact—pullback functor

i∗ : QC!(X1 × · · · ×Xn)→ QC!(X1 ×S · · · ×S Xn),

and furthermore
i∗(V1 � · · · � Vn) = V1 �S · · · �S Vn

for tuples as above. Thus, it is enough to replace S by pt and F by F ◦ i∗. Thus we are
in the absolute setting S = pt. Note also that the claim is local on Y , so we may suppose
that Y is affine. Composing with the exact, conservative, global sections functor we may
suppose that Y = pt.

Reduction to S = pt affine: We now handle a series of increasingly more complicated
cases.

Note first that if all the Xi are affine, then the claim is easy: In this case, QC!(X1 ×S
· · · ×S Xn)≥0 is just generated by the structure sheaf O, which is an exterior product of
structure sheaves. Thus, we can conclude that F is in fact right t-exact.
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Next, for didactical purposes, suppose that X2, . . . , Xn are affine, while X1 = U ∪V

is the union of two affine schemes. Set X = X1 × · · · × Xn and XU = X ×X1 U , and
similarly for XV and XU∩V . Let jU : XU → X be the inclusion, and similarly for V .
Since (jU )∗ is t-exact, we see that the above case applies to F ◦ jU —thus F ◦ jU is right
t-exact, and similarly for F ◦ jV and F ◦ jU∩V . Now, for any G ∈ QC!X we have a
(rotated) Mayer–Vietoris cofiber sequence

(jU∗j
∗

UG ⊕ jV ∗j
∗

V G )[−1] → (jU∩V ∗j
∗

U∩V G )[−1] → G .

Applying F we obtain

(F ◦ jU∗(j
∗

UG )⊕ F ◦ jV ∗(j
∗

V G ))[−1] → (F ◦ jU∩V ∗(jU∩V )
∗G )[−1] → F(G ),

and since the first two terms are in QC(Y )≥−1 by the above, we see that F(G ) ∈
QC(Y )≥−1. Thus, F is right t-exact up to a shift by 1. A similar argument, by induct-
ing on the number of affine opens in a cover of each Xi , completes the proof when each
Xi is a quasi-compact and separated scheme.

Suppose now that X2, . . . , Xn are schemes, while X1 is an algebraic space. Notice
that if f : X′1 → X1 is any affine morphism from a scheme or algebraic space for which
we know the result, then F ◦ f∗ is right t-exact up to a shift by the above cases. Consider
now an excision square as before; so U ⊂ X1 is an open subspace for which we know the
result, Z is its closed complement, and there is an étale map η : SpecR → X1 such that
η−1(U) is affine. Then η−1(Z) is cut out by some f1, . . . , fd ∈ H0(R). In this case, for
any G ∈ QC!(X )≥0 we can consider the rotated cofiber sequence

jU∗j
∗

UG [−1] → FZ → G ,

and applying F we obtain

(F ◦ jU∗)j
∗

UG [−1] → F(FZ)→ F(G ).

We can bound the connectivity of the first term by using the fact that we know the result
for U ; we bound it for the second term by computing the local cohomology on SpecR
and using the explicit Koszul sequence (to get a bound of (−d)-connective). This bounds
the connectivity of F(G ). This completes the proof in this simplified case, and the general
case is analogous. ut

Proposition 5.3.2. Suppose that S is a regular Noetherian perfect stack; thatXi → S are
finite-type, finite Tor-dimension, relative algebraic spaces for i = 1, . . . , n; and that Y is
a perfect S-stack. Let CXi ,Y/S ⊂ QC(X1×S · · · ×S Xn×S Y ) denote the full subcategory
of those K such that

8K (F1 �S · · · �S Fn) ∈ DCohY for all Fi ∈ DCohXi .

Then CXi ,Y/S ⊂ DCohprop/Y (X1×S · · · ×S Xn×S Y ) and the restriction of the ∗-integral
transform induces an equivalence

CX,Y/S
8
−→ Funex

Perf S(DCohX1 ⊗Perf S · · · ⊗Perf S DCohXn,DCohY ).
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Proof. This follows immediately from Lemma 5.3.1 and Theorem 3.0.2. Indeed, it iden-
tifies the functor category with a full subcategory of

Funex
Perf S(PerfX1 ⊗Perf S · · · ⊗Perf S PerfXn,DCohY )

' Funex
Perf S(Perf(X1 ×S · · · ×S Xn),DCohY ) ' DCohprop/Y (X1 ×S · · · ×S Xn ×S Y ),

and it follows from the last phrase in Lemma 5.3.1 that this is the indicated subcategory.
Finally, recall that the proof of Theorem 3.0.2 in fact identifies DCohprop/Y (· · · ) as the
full subcategory of QC(· · · ) consisting of those K such that 8K (Perf) ⊂ DCoh. ut

6. Appendix: Recollections on t-structures

The goal of this appendix is to recall some constructions having to do with∞-categories
with t-structure which are implicit in many places, and possibly explicit in some, in this
paper. Some constructions similar to R appear in [8, Section 22] and ideas similar to
those presented here have also been worked out by J. Lurie in unpublished work. The
present exposition is a shortened version of the appendices to a not-yet-available preprint
of the third author [19], so we will omit some proofs.

6.1. Completions of t-structures

For the reader’s convenience, we recall several convenient conditions and constructions
with t-structures from [16]:

Lemma 6.1.1. Suppose C is a stable presentable∞-category with accessible t-structure
(recall [16, Def. 1.4.5.12] that this is equivalent to requiring C<0 to be presentable). Then
the following are equivalent:

(i) C<0 is closed under filtered colimits in C;
(ii) i<0 : C<0 → C preserves filtered colimits;

(iii) L<0 = i<0τ<0 : C→ C preserves filtered colimits;
(iv) L≥0 = i≥0τ≥0 : C→ C preserves filtered colimits;
(v) τ≥0 : C→ C≥0 preserves filtered colimits.

These equivalent conditions imply that:

(vi) i≥0 : C≥0 → C preserves compact objects;
(vii) τ<0 : C→ C<0 preserves compact objects.

Furthermore:

• if C is compactly generated, then so is C<0 (with compact objects retracts of objects of
the form τ<0K for K ∈ Cc); in this case, the above conditions are equivalent to τ<0
preserving compact objects;
• if C and C≥0 are compactly generated, then the above conditions are equivalent to i≥0

preserving compact objects.

Proof. Omitted. ut
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Definition 6.1.2. Suppose C is a stable ∞-category with t-structure. We say that the
t-structure is compatible with filtered colimits if C has all filtered colimits and C<0 is
closed under filtered colimits in C.

Definition 6.1.3. Suppose C is a stable∞-category with t-structure.

• We say that the t-structure is weakly left complete if the natural map

F → lim
←−
n

τ<nF

is an equivalence for all F ∈ C (in particular, the inverse limit is required to exist). We
say that it is left complete if furthermore every tower in lim

←−
C<n comes from an object

of C.
• We say that the t-structure is weakly right complete if the natural map

lim
−→
n

τ≥nF → F

is an equivalence for all F ∈ C (in particular, the direct limit is required to exist). We
say that it is right complete if furthermore every diagram of objects in lim

←−
C>−n comes

from an object of C.

Remark 6.1.4. The previous definition is of course formally symmetric: a t-structure on
C is left complete iff the opposite t-structure on Cop is right complete. In practice there is
however a substantial asymmetry: We are generally interested in presentable categories,
and the opposite of a presentable category is almost never presentable. More practically,
the categories that arise in algebraic geometry—at least for our purposes—tend to be right
complete, but some interesting categories fail to be left complete.

Remark 6.1.5. By [16, 1.2.1.19], this distinction between the “weakly” and not variants
disappears for the notion of left complete (resp., right complete) provided that C has
countable products (resp., coproducts) and countable products are right t-exact (resp.,
coproducts are left t-exact) up to a finite shift.

In particular, if C is presentable and the t-structure is compatible with filtered colimits
then “weakly left complete” coincides with “left complete.”

Example 6.1.6. Suppose A ∈ Alg(k-mod). Then A-mod is equipped with a right com-
plete accessible t-structure compatible with filtered colimits. It is uniquely characterized
by the following: (A-mod)>0 is generated by those M ∈ A-mod whose underlying com-
plex is connective, that is, lies in (k-mod)>0. Then (A-mod)≤0 is recovered as the right-
orthogonal to this. It follows that the forgetful functor A-mod→ k-mod is right t-exact;
it is left t-exact iff A is connective:

• Suppose A is itself connective. Then (A-mod)<0 consists of those M ∈ A-mod whose
underlying complex is coconnective, that is, lies in (k-mod)<0. In this case, the t-struc-
ture is left complete.
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• Suppose A = C∗(BS1, k) ' k[[β]], where β is in homological degree −2. One can
explicitly describe the t-structure in this case as follows: (A-mod)>0 is generated by
k[+n], n > 0, so that (A-mod)<0 consists of those M for which RHomA(k,M) ∈

(k-mod)<0. Consequently, the t-structure is not left complete: k((β)) is a non-zero ob-
ject which is in (A-mod)<n for all n since RHomA(k, k((β))) = 0.

6.2. Coherent and Noetherian t-structures

Assuming some extra “finiteness” conditions on the t-structure, one has extra operations
of regularization available in addition to completion.

Lemma 6.2.1. Suppose C is a stable∞-category with t-structure that is compatible with
filtered colimits. For F ∈ C, the following conditions are equivalent:

(i) τ<nF ∈ C<n is compact for all n ∈ Z;
(ii) MapC(F ,−) commutes with filtered colimits in C<n for all n ∈ Z (“commutes with

colimits uniformly bounded above”);
(iii) RHomC(F ,−) commutes with filtered colimits in C<n for all n ∈ Z.

Furthermore:

• Suppose in addition that F is bounded above: F ∈ C<n. Then the above are equiva-
lent to: F ∈ (C<n)c and its image under the inclusion i<n : C<n → C<m is compact
for all m ≥ n.
• Suppose that C is right complete. If F is bounded above and satisfies the above equiv-

alent conditions, then it is also bounded below.

Proof. Omitted. ut

Definition 6.2.2. Say that F ∈ C is almost compact if F satisfies the equivalent condi-
tions of the previous lemma. Say that F ∈ C is coherent if

(i) F is bounded above, i.e., F ∈ C<n for some n;
(ii) F satisfies the equivalent conditions of the previous lemma.

(If C is right complete, then any such F is also bounded below by the previous lemma.)
Define the full subcategory Ĉoh+ C ⊂ C (resp., CohC ⊂ C) to consist of all F ∈ C

that are almost compact (resp., coherent).7

Remark 6.2.3. Characterization (iii) of the previous lemma makes it clear that Ĉoh+ C
and CohC are stable subcategories. Notice that, in general, the t-structure need not restrict
to these subcategories.

7 This notation is potentially confusing, but fortunately will not be used much in general: Ĉoh+ C
need not be the left t-completion of CohC in general.
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We can impose the following more stringent conditions to eliminate this issue:

Lemma 6.2.4. Suppose C is a stable∞-category with t-structure that is compatible with
filtered colimits. Then the following conditions are equivalent:

(i) the t-structure on C restricts to one on Ĉoh+ C;
(ii) the truncation functors on C preserves Ĉoh+ C;

(iii) the inclusion i<0 : C<0 → C<1 preserves compact objects;
(iv) the loop functor � : C<0 → C<0 preserves compact objects.

In this case, Ĉoh+(C)♥ = Coh(C)♥ = (C♥)c. These imply (and in case C is right com-
plete, are equivalent to)

(v) The subcategory of compact objects in the heart, (C♥)c ⊂ C♥, is abelian.

Proof. Note that (i)⇔(ii) is clear. It is easy to check that (ii)⇔(iii): It is enough to note
that τ≤kF ∈ C≤k implies that τ≤k′F ∈ C≤k′ is compact for all k′ ≤ k, and shifts
of (iii) give the rest. Finally, (iii)⇔(iv) since we may identify the two functors under
C<1 ' C<0[1].

Assuming (i)–(iv), it is clear that Coh(C)♥ consists precisely of the compact objects
of C♥.

Finally, note that (iii) clearly implies (v). If C is right complete, the compact objects
of C<0 are bounded, giving the converse. ut

Under the above hypotheses, we have:

Lemma 6.2.5. Suppose C is a stable∞-category with t-structure that is compatible with
filtered colimits, right complete, and satisfies the equivalent conditions of Lemma 6.2.4.
Then:

• Coh(C)♥ = Coh(C) ∩ C♥ = (C♥)c consists precisely of the compact (or “finitely
presented”) objects of C♥;
• F ∈ Ĉoh+ C if and only if Hn(F ) ∈ Coh(C)♥ ⊂ C♥ and Hn(F ) = 0 for n� 0;
• F ∈ CohC if and only ifHn(F ) ∈ Coh(C)♥ ⊂ C♥ andHn(F ) = 0 for all but finitely

many n.

Proof. Omitted. ut

Finally, we come to a strengthening of the above:

Lemma 6.2.6. Suppose that C is a stable∞-category with t-structure that is compatible
with filtered colimits, right complete and satisfies any of the equivalent conditions of
Lemma 6.2.4. Then the following conditions are equivalent:

(i) C<0 is compactly generated as an∞-category (in particular, presentable);
(ii) C♥ is compactly generated as an ordinary category;

(iii) C♥ is a locally coherent abelian category. (Recall this means that the compact ob-
jects form an abelian category, and that C♥ is compactly generated. In particular, it
is Grothendieck.)
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Proof. Theorem 6.2.4 implies that the compact objects of C♥ form an abelian category,
so that (ii)⇔(iii).

Note that (i) implies (ii) by general nonsense, since C♥ is the quotient of C≥0 by the
essential image of C>0 and i>0 was assumed to preserve compact objects.

It remains to show that (ii) implies (i): Note first that the objects of CohC∩C<0 are all
compact in C<0 by Theorem 6.2.4. Since C admits all filtered colimits, and C<0 is closed
under filtered colimits, there is a fully faithful functor

Ind[CohC ∩ C<0] → C<0.

Notice that CohC∩C<0 admits all finite colimits, since this is true for Coh(C) and CohC
is preserved by τ<0. Thus it is enough to prove that this functor is essentially surjective.

Since C is right complete, we are reduced to proving that the bounded objects are
in the image. Note that (ii) implies that the heart is in the image. Both sides have finite
homotopy limits, and the functor preserves them, so that considering the rotated fiber
sequences

τ≥−kF → (H−kF )[−k] → (τ≥−(k+1)F )[+1]

shows that the image contains all bounded objects of C<−1, by induction on the range of
non-vanishing homotopy groups. Since the functor also preserves finite homotopy colim-
its, to complete the proof it suffices to show that 6 ◦� ' id on both sides. For then each
object of C<0 will be a suspension of something in C<−1, which is in the image. In each
case, this follows because CohC ∩ C<0 = Coh(C)<0 and C<0 are the coconnective parts
of a t-structure. ut

This brings us to the following definition (which the previous lemmas give various equiv-
alent formulations and consequences of):

Definition 6.2.7. Suppose C is a stable ∞-category with t-structure. We say that the
t-structure is coherent if the following conditions are satisfied:

• the t-structure is compatible with filtered colimits;
• the t-structure is right complete;
• C♥ is a locally coherent abelian category.

6.3. Regular and complete t-structures

Definition 6.3.1. Suppose C is a stable∞-category with t-structure compatible with fil-
tered colimits. We have seen that C<0 → C<1, etc., preserves filtered colimits. We say
that the t-structure is (left) regular if the natural map

Funfiltered colimits(C,D) = lim
←−
n

Funfiltered colimits((C<n, i<n),D)

is an equivalence for every category D admitting filtered colimits.
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Proposition 6.3.2. Suppose that C is coherent. Then C is regular if and only if C is com-
pactly generated by CohC. There is a universal regular∞-category with t-structure map-
ping to C, and it is given by the formula

R(C)
def
= Ind CohC→ C.

The functor R(C)→ C preserves colimits, is t-exact, and the induced functor R(C)<0 →

C<0 is an equivalence. The t-structure on R(C) is also coherent.

Proof. By hypothesis, C<0 is compactly generated with compact objects Coh(C)<0. The
functors C<0 → C<1 preserve both filtered colimits and compact objects, so we see that

colim
n

filtered colimitsC<n = Ind
(

colim
n

Coh(C)<n
)
= Ind CohC.

In particular, the first colimit exists: This is the assertion that there is an∞-category with
the correct universal property; and it is given by the desired formula.

Notice that the functor R(C) → C preserves filtered colimits by construction, and
finite colimits on compact objects by inspection, so that it preserves colimits. Since both
t-structures are compatible with filtered colimits, and since

R(C)<0 = Ind(Coh(C)<0), R(C)>0 = Ind(Coh(C)>0)

by construction, we see that this functor is t-exact. It is evident that it induces an equiva-
lence on coconnective objects.

Let us verify that R(C) is coherent: The t-structure is compatible with filtered
colimits, as R(C)<0 → R(C) preserves filtered colimits by construction. It is right
complete and satisfies the extra coherence condition, since these both depend only on
R(C)<0 ' C<0. ut

Definition 6.3.3. Suppose C is a stable ∞-category with t-structure. We say that the
t-structure is (left) complete if the natural functor

C→ lim
←−
n

(C<n, τ<n)

is an equivalence.8

Proposition 6.3.4. Suppose that C is a stable∞-category with t-structure. Then there is
a universal complete ∞-category with t-structure mapping to C, and it is given by the
formula

C→ Ĉ = lim
←−
n

C<n.

This functor is t-exact, and the induced functor C<0 → Ĉ<0 is an equivalence. If C is
coherent, then the t-structure on C is also coherent.

8 This is just a reformulation of the earlier definition!
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Proof. See [16, §1.2.1] for everything but the last sentence.
Let us verify that Ĉ is coherent if C is: The t-structure is compatible with filtered

colimits since each functor in the inverse limit is so, and the other properties depend only
on Ĉ<0 ' C<0. ut

The point of making these definitions is the following:

Definition 6.3.5. (i) Let Coht denote the∞-category whose objects are∞-categoriesC
with coherent t-structure; whose 1-morphisms are colimit preserving and t-exact
functors; and whose higher morphisms are as in Cat∞.

(ii) Let Regt ⊂ Coht denote the subcategory whose objects are ∞-categories C with
regular t-structure.

(iii) Let Cpltt ⊂ Coht denote the subcategory whose objects are ∞-categories C with
complete (and coherent) t-structure.

Theorem 6.3.6. The composites

C 7→ Ĉ : Regt ↪→ Coht → Cpltt ,
C 7→ R(C) : Cpltt ↪→ Coht → Regt

are inverse equivalences of∞-categories.

Proof. It follows from the above that the first functor is left adjoint to the second. It is
enough to check that the unit and counit are equivalences. For instance, if C ∈ Regt then
we must check that R (̂C)→ C is an equivalence. Since both are regular and the functor
is left t-exact and preserves filtered colimits, it is enough to note that it is an equivalence
on coconnective objects, which we have seen.

The argument for the other adjoint is similar. ut

6.4. Tensor products, and functors, of t-structures

Definition 6.4.1. Suppose that C,D are stable presentable∞-categories with accessible
t-structures compatible with filtered colimits. Then C ⊗ D is a stable presentable ∞-
category, and we define an accessible t-structure compatible with filtered colimits on it
by requiring that (C⊗D)≥0 be generated under colimits by objects of the form

c ⊗ d, c ∈ C≥0, d ∈ D≥0.

Then (C⊗D)<0 is characterized by being the right orthogonal to the above.

Defining well-behaved t-structures on functor categories seems to be more subtle. How-
ever, if C is compactly generated we can get around this:

Definition 6.4.2. Suppose that Cc is a small stable idempotent-complete ∞-category
with t-structure. Then C = Ind(Cc) admits an accessible t-structure compatible with fil-
tered colimits. In this case, the dual of C identifies with Ind((Cc)op) and this also admits
such a t-structure: Indeed, (Cc)op admits a t-structure determined by setting

(Cc)
op
≥0 = (C

c)≤0, (Cc)
op
≤0 = (C

c)≥0,

and simply “reversing” the truncation sequences.
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Remark 6.4.3. If C is as in the previous definition, and D is a stable presentable ∞-
category with t-structure, then we can again put a t-structure on FunL(C,D) as follows:
Identify

FunL(C,D) ' Ind((Cc)op)⊗D,

and equip it with the t-structure from the previous two definitions. Explicitly,
FunL(C,D)≥0 is generated under colimits and extensions by objects of the form
RHomC(c,−)⊗ d) for c ∈ C≥0 and d ∈ D≥0.

A definition chase shows that FunL(C,D)<0 consists precisely of those F for which

MapFunL(C,D)(RHomC(c,−)⊗ d, F ) = MapD(d, F (c)) = pt

for all c, d as above—and this is precisely those F which are left t-exact.

6.5. Quasi-coherent and ind-coherent complexes

Proposition 6.5.1. Suppose that X is a geometric stack. Then QCX is a stable pre-
sentable ∞-category with accessible t-structure. This t-structure is both left and right
complete. If X is Noetherian, then QCX is coherent.

Proof. See DAG VIII for the first two sentences of the proposition. For the third, it is
a classical statement that every object of QC(X)♥ is a filtered colimit of its coherent
subobjects. ut

Example 6.5.2. Suppose A is a Noetherian ring. Then A-mod carries a t-structure that
is both left and right complete in the strong sense. Meanwhile, the full subcategory
DCohA ⊂ A-mod carries a t-structure which is both left and right bounded. In par-
ticular, it is weakly left and right complete, though not strongly so. This fully faithful
exact embedding into a left (resp., right) complete category identifies the left (resp., right)
completion of DCohA with full subcategories of A-mod:

• The left completion of DCohA identifies with D̂Coh+A, the full subcategory of mod-
ules M with Hi(M) coherent over H0(A) for all i and vanishing for i � 0.
• The right completion of DCohA identifies with D̂Coh–A, the full subcategory of mod-

ules M with Hi(M) coherent over H0(A) for all i and vanishing for i � 0.
• The left completion of the right completion (equivalently the other way around) of

DCohA identifies with D̂Coh±A, the full subcategory of modules M with Hi(M)
coherent over H0(A) for all i.

This provides an “application” of the formal symmetry of the definitions. Suppose that
ω ∈ A-mod is a dualizing complex. This means that ω has homologically bounded-above
coherent homology, finite injective dimension, and the natural map A→ RHomA(ω, ω)

is an equivalence. It follows that the induced duality functor

D = RHomA(−, ω) : DCoh(A)op
→ DCohA
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is an equivalence and that it is left and right t-exact up to finite shifts (where the opposite
category gets the opposite t-structure). By formal nonsense, it induces an equivalence on
left completion of right completions:

D : D̂Coh±(A)op
' D̂Coh±A.

Proposition 6.5.3. Suppose that X is a geometric stack of finite type over S = SpecR
for R a Noetherian ring admitting a dualizing complex ωR . Then

• X admits a dualizing complex, i.e., an ωX ∈ QCX such that for any smooth map
U = SpecA→ X the restriction ωX|U ∈ A-mod is a dualizing complex in the above
sense.

Suppose that X is a geometric stack admitting a dualizing complex ωX, and that X has
finite cohomological dimension. Then:

(i) the formation of D(−) = RHomX(−, ωX) is smooth local on X for − ∈ D̂Coh±X;
(ii) D induces an anti-equivalence

D : D̂Coh±(X)op
' D̂Coh±X

which is left and right t-exact up to finite shifts; in particular, it interchanges the
bounded-above and bounded-below complexes;

(iii) the fully faithful, t-exact embedding

i : DCohX→ D̂Coh+X

exhibits D̂Coh+X as a left t-completion of DCohX;
(iv) Grothendieck duality determines a fully faithful embedding

D : DCoh(X)op
→ D̂Coh+X

which is left and right t-exact up to a shift; it exhibits D̂Coh+X as a left t-completion
of DCoh(X)op up to finite shifts.

Proof. • Note that the notion of dualizing complexes is smooth local on affine rings.
Furthermore, one can show that if ω and ω′ are two dualizing complexes on U =

SpecA, then RHomA(ω, ω
′) is a graded line on A. So, the∞-category of dualizing com-

plexes is equivalent to a 1-category, and the (ordinary) stack of dualizing complexes onX
form a torsor—on the smooth site ofX—for the Picard groupoid of graded lines ZnBGm.
Call this torsor Dualiz∗X → X.

Let detL/X be the graded line, on the smooth site ofX, given by U 7→ detLU/X. The
existence of the functor f ! on dualizing complexes (for finite type maps of Noetherian
rings) implies that there is a Z n BGm-torsor Dualiz!S on the fppf site of S. The natural
isomorphisms f ∗ ⊗ detLf ' f ! for smooth maps provide isomorphisms of Z n BGm-
torsors, showing that detL/X and detL/S give isomorphisms

Dualiz∗X
detL/X
−−−−→ Dualiz∗S |X

detL/S
−−−−→ (detL/S ⊗ Dualiz∗S)|X.

Since Dualiz∗S is trivial by assumption, we are done.



3810 David Ben-Zvi et al.

(i) Let C ⊂ QCX denote the full subcategory on which D(−) is smooth local. Note
that PerfX ⊂ C by dualizability.

Since ωX is bounded above, a convergence result implies that D̂Coh+X ⊂ C: It
suffices to show that for each i,HiD(τ≤k−) is constant for k ≥ N(i)withN(i) depending
only on i and the boundedness of ωX, and in particular this remains true with the same
constant after smooth base change. This implies that D̂Coh+X ⊂ C, since for F ∈

D̂Coh+X and each k there exists a perfect complex Pk and a map Pk → F inducing
an equivalence on τ≤k .

Similarly, since ωX has finite injective dimension and X has finite cohomological
amplitude, we see that HiD(τ≥−k−) is constant for k ≥ M(i) with M(i) depending only
on i, the injective dimension of ωX and the cohomological amplitude of X. This implies
that D̂Coh±X ⊂ C, since if F ∈ D̂Coh±X then τ≥−kF ∈ D̂Coh+X for each k.

(ii) In light of (i), the claim is smooth local so we may suppose that X = SpecA.
Let C ⊂ D̂Coh±X denote the full subcategory on which the double duality map F →
D ◦ D(F ) is an equivalence. Since ω is a dualizing complex, we have A ∈ C and so
PerfA ⊂ C.

The proof of (i), together with the fact that A-mod is left and right complete, shows
that D is left and right t-exact up to a shift. Consequently, so is D◦D. This implies that both
Hi(τ≤kF ) and Hi(D ◦ D(τ≤kF )) eventually stabilize. This implies that D̂Coh+A ⊂ C

by the same approximation-by-perfect argument as above. Similarly, Hi(τ≥−kF ) and
Hi(D ◦ D(τ≥−kF )) eventually stabilize. This implies that D̂Coh±A ⊂ C by approxima-
tion by pseudocoherent (or almost perfect) complexes.

This proves that D is an equivalence. The proof shows that D is left and right t-exact
up to a shift.

(iii) By definition DCohX consists of the left bounded objects of D̂Coh+X, so it suf-
fices to note that Postnikov towers in D̂Coh+X are convergent since they are so in QCX.

(iv) This follows from (ii) and (iii). More directly, one sees that the left t-completion
of DCoh(X)op identifies with D̂Coh–(X)

op, and (ii) shows that D identifies this with
D̂Coh+X. ut

Remark 6.5.4. It seems not entirely clear that the existence of f ! is documented in the
literature for derived stacks not of finite type over a characteristic zero field.

Let us note that if X and S are classical, then the classical statements—at the level
of derived categories—suffice for our purposes. Indeed, if X and S are classical, then
Dualiz∗X is equivalent to a (classical) 1-groupoid and embeds fully faithfully into the
maximal subgroupoid of the derived category ofX. So, functoriality at the level of derived
categories suffices.

Proposition 6.5.5. Suppose that X is a geometric stack of finite type over Spec k for k a
characteristic zero field. Then QC!X is a stable presentable∞-category with accessible
t-structure. This t-structure is coherent and regular. Furthermore, the natural map

QC!X→ QCX

realizes QC!X as the regularization of QCX, and QCX as the completion of QC!X.



Integral transforms for coherent sheaves 3811

Proof. See [7]: One uses a finite-length stratification by global quotient stacks to show
that X has finite cohomological dimension (this is where one uses characteristic zero);
from this, we deduce that QC!(X)c = DCohX. Then, one uses the stratification to show
that QC!(X)♥ generates, reducing to the statement about ordinary quasi-coherent sheaves
being unions of their coherent subsheaves. ut
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