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Abstract. We prove uniform regularity estimates for the normalized Gauss curvature flow in higher
dimensions. The convergence of solutions in C∞-topology to a smooth strictly convex soliton as
t goes to infinity is obtained as a consequence of these estimates together with an earlier result of
Andrews. The estimates are established via the study of an entropy functional for convex bodies.
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1. Introduction

The Gauss curvature flow was introduced by Firey [14] to model the changing shape of
a tumbling stone subjected to collisions from all directions with uniform frequency. Sup-
pose that {Mt } ⊂ Rn+1 is a family of smooth compact strictly convex hypersurfaces with
t ∈ [0, T ). Denote by X(x, t) and K(x, t) the position vector and the Gauss curvature
of Mt . The family {Mt } is a solution of the Gauss curvature flow if X(x, t) satisfies the
equation

∂X(x, t)

∂t
= −K(x, t)ν(x, t), (1.1)

where ν(x, t) is the unit exterior normal of the hypersurface Mt .
Assuming the existence, uniqueness and regularity of the solution, Firey proved that

if the initial convex surface (M0 ⊂ R3) is symmetric with respect to the origin (abbrevi-
ated as centrally symmetric), then the flow (1.1) contracts the initial surface to a point in
finite time and the evolving surface becomes spherical in shape in the process. The last
statement can be rephrased as saying that the normalized flow (with the enclosed volume
preserved) converges to a round sphere. Firey conjectured that the result holds in gen-
eral. After this initial work, the existence and uniqueness of the Gauss curvature flow in
any Rn+1 was established by Chou [19]. In the same paper it was also proved that the
Gauss curvature flow contracts the initial convex hypersurface to a point in finite time.
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More than a decade later, in a breakthrough work [5], Andrews proved that the normal-
ized flow in R3 converges to a round sphere, that is, evolving surfaces become spherical
in the process, hence proving the conjecture of Firey. The proof of Andrews [5] relies on
a pinching estimate, whose proof seems to work only in dimension 2. There is an exten-
sive literature devoted to the study of the Gauss curvature flow. Chow [10] established
an important differential Harnack inequality (also known as the LYH type estimate) and
an entropy monotonicity; Hamilton [15] obtained upper bounds of the support function
and the Gauss curvature of the normalized flow; and Daskalopoulos and Hamilton [11]
studied the Gauss curvature flow with flat sides. The interested reader may consult [9, 3,
4, 6, 12] for further references on the flow by Gauss curvature and its powers.

In this paper, we establish uniform regularity of the solution of the normalized Gauss
curvature flow. By Chou’s work, the convex hypersurfaces Mt (and the enclosed con-
vex body �t ) shrink to a point along the Gauss curvature flow at a finite time T . If we
choose this limiting point as the origin and normalizeMt so that the enclosed volume (the
Lebesgue measure |�t |) is the volume of the unit ball, the normalized Gauss flow satisfies
the equation

∂X(x, t)

∂t
= (−K(x, t)+ u(x, t))ν(x, t), (1.2)

where u(x, t) = 〈X(x, t), ν(x, t)〉 is the supporting function.
The following is the main result of this paper.

Theorem 1.1. Suppose that M0 is a compact strictly convex hypersurface in Rn+1 such
that the volume of the enclosed convex body is that of the unit ball B1(0) ⊂ Rn+1. Assume
that the origin is the contracting point of the un-normalized flow (1.1). Let {�t } be the
convex bodies enclosed by {Mt }, the solution to the normalized flow (1.2) with the above
normalization. Then there exists a positive constant 3 ≥ 1 depending only on n and M0
such that

B1/3(0) ⊂ �t ⊂ B3(0), ∀0 ≤ t <∞. (1.3)

Moreover, for any integer k ≥ 1, there is a constant C(n, k,M0), depending on n, k and
the initial hypersurface M0, such that

‖Mt‖Ck ≤ C(n, k,M0). (1.4)

Finally, the flow (1.2) converges in C∞-topology to a smooth strictly convex soliton M∞
satisfying

K(x) = u(x) with K(x) ≥ 1/3. (1.5)

As mentioned before, Hamilton [15] obtained upper bounds of the diameter and the Gauss
curvature for the normalized flow. In view of the Blaschke selection theorem and a gen-
eral C∞-convergence result of Andrews [4] which assumes the regularity of the limiting
soliton, the contribution of this paper consists mainly in uniform C2-estimates for the
normalized Gauss curvature flow. The C2-estimate relies on a C0-estimate on the support
function u(x, t) (particularly a uniform lower bound, which is new and essential) and a
uniform lower estimate on the Gauss curvature. To prove that the support function u(x, t)



Gauss curvature flow 3737

of a solution to (1.2) is uniformly bounded from below by a positive constant, we need
to study an entropy functional E(�t ) for the enclosed convex body �t , which is different
from Chow’s [10].

Let � be a bounded closed convex body such that 0 ∈ � ⊂ Rn+1 and M := ∂�. For
any z0 ∈ �, one can define the support function with respect to z0 as

uz0(x) := max
z∈�
〈x, z− z0〉.

Define an entropy functional E(�) by

E(�) := sup
z0∈Int(�)

E(�, z0) with E(�, z0) :=
1
ωn

ˆ
Sn

log uz0(x) dθ(x).

Here ωn is the area of Sn, and dθ is the induced surface measure. (Later we shall show
that given a non-degenerate, that is, full-dimensional, convex body, the entropy can in
fact be attained by a positive support function.) It is easy to see that E(�) is finite. The
quantity E(�, z0) was introduced by Firey [14] for centrally symmetric convex bodies.
The functional E(�) was first considered by Andrews [4]. Our contribution here consists
in deriving a lower estimate of the entropy via the Blaschke–Santaló inequality, which is
a new way of using this functional in deriving the lower estimates of the support function
and the Gauss curvature along the flow.

Since non-negativity is a defining property of the entropy concept in physics [13], the
following result, as well as later monotonicity of E(�) under the Gauss curvature flow,
partially justifies the use of the terminology.

Proposition 1.1. Let � be a bounded convex body in Rn+1 with V (�) = V (B(1)) (here
V (�) denotes the volume of �). Let zs ∈ � be the Santaló point of �. Let us be the
support function with respect to zs . Then

1
ωn

ˆ
Sn

log us ≥ 0, (1.6)

and equality holds if and only if � is a round ball centered at zs . In particular E(�) ≥ 0,
and the inequality is strict unless� is a round ball centered at zs . Moreover, for a general
convex body � without the volume normalization, we have

E(�) ≥
logV (�)− logV (B(1))

n+ 1
. (1.7)

Before the proof, we recall the definition of the Santaló point of �. Given � and any
z0 ∈ Int(�) define �∗z0

, the polar dual of � with respect to z0, to be the set {y + z0 |

maxz∈�〈y, z − z0〉 ≤ 1}. The Santaló point is the unique point zs such that �∗zs has
the minimum volume among all polar duals with z0 ∈ � (in fact it suffices to consider
z0 ∈ Int(�), the interior of �). When zs is the Santaló point we also denote �∗zs by �∗s ,
and let �s be the translation of � by −zs .
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Proof of Proposition 1.1. Let �∗s be the polar dual of � with respect to zs , the Santaló
point. Its volume can be computed [17] as

V (�∗s ) =
1

n+ 1

ˆ
Sn

1

un+1
s

dθ.

Then by Jensen’s inequality ,

V (�∗s ) ≥
ωn

n+ 1
exp

(
1
ωn

ˆ
Sn

log
(

1

un+1
s

)
dθ

)
= V (B(1)) exp

(
−
n+ 1
ωn

ˆ
Sn

log us

)
.

Since V (�) = V (B(1)), together with the Blaschke–Santaló inequality [18]

V (�)V (�∗s ) ≤ V (B(1))
2 (1.8)

we obtain

V (B(1)) exp
(
−
n+ 1
ωn

ˆ
Sn

log us

)
≤ V (�∗s ) ≤

V (B(1))2

V (�)
.

This implies (1.6). The estimate (1.7) follows similarly. If equality holds, Jensen’s in-
equality in the first step of the proof is an equality. Since ex is strictly convex, 1/un+1

s and
hence us must be a constant. The latter constant must be 1 as V (�∗s ) = V (B(1)). Hence
� is a ball centered at zs .

From the above it is easy to see E(�) ≥ E(�, zs) ≥ 0. Furthermore E(�) = 0 implies
that � is a ball centered at zs . ut

A refined estimate on the monotonicity of entropy along the flow, as well as estimates of
geometric quantities in terms of entropy (as well as the volume of the enclosed body),
play a basic role in the proof of the main theorem. The strategy is the following. We first
bound rough geometric quantities such as the outer and inner radius in terms of entropy,
which in turn can be estimated via refined monotonicity. Then a compactness estimate
and a stability estimate, as well as a refined monotonicity estimate, give the desired lower
bound of the support function. The lower estimate on the support function seems more
subtle and useful than the upper estimate (obtained by Hamilton). By combining the lower
estimate on the support function and Chow’s Harnack estimate, an iteration argument
gives a uniform lower estimate on the Gauss curvature. Once the uniform lower estimate
on the Gauss curvature is established, the full regularity follows from previous work of
[6], [16] on fully nonlinear parabolic equations.

As a by-product of the monotonicity of the entropy functional we deduce that for any
� with normalized volume, if z∞ is the shrinking limit of the Gauss curvature flow then´
Sn log uz∞ ≥ 0. Hence Firey’s entropy with respect to the shrinking limit is nonnegative

for any convex body. This yields a geometric property of the shrinking limit. The above
mentioned upper bounds of Hamilton on the diameter and the Gauss curvature can also
be derived from the uniform lower bound on u(x, t) proved here.

There remains an interesting question whether or not the sphere is the only compact
soliton with positive Gauss curvature. Here we prove that the unit sphere is stable among
the admissible variations. We also show that for the solitons with the normalized enclosed
volume, there exists a sharp lower estimate on the volume of the dual body, which im-
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plies Firey’s uniqueness among solitons with central symmetry. In the joint paper [7] the
method of this paper is generalized to flows by powers of Gauss curvature.

2. Basic properties of entropy

We start with a geometric interpretation of the entropy functional, which also implies the
non-negativity of the entropy. For any z0 ∈ �, by the definition, the dual body �∗z0

is
defined by the equation

�∗z0
− z0 = {w | 〈w, z− z0〉 ≤ 1,∀z ∈ �}.

Writing w in polar coordinates we obtain

�∗z0
− z0 = {(r, x) | ruz0(x) ≤ 1}. (2.1)

Here uz0(x) is the support function of � with respect to z0. This in particular implies that

V (�∗z0
) =

ˆ 1/uz0 (x)

0

ˆ
Sn
rn dθ dr =

1
n+ 1

ˆ
Sn

1

un+1
z0

dθ.

If we normalize the volume of � to be that of the unit ball, the Blaschke–Santaló
inequality implies that there exists z0 ∈ � such that |�∗z0

| ≤ V (B(1)). If � is not affine
equivalent to the unit ball, such z0’s form an open subset. Now observe the following
geometric interpretation of the quantity

´
Sn log uz0 .

Proposition 2.1. Let �0
z0
= �∗z0

− z0. Then
ˆ
Sn

log uz0(x) dθ(x) =

(ˆ
B(1)\�0

z0

−

ˆ
�0
z0
\B(1)

)
1

|w|n+1 dw ≥ V (B(1))− V (�
0
z0
).

Thus
´
Sn log uz0 is a weighted (and signed) volume of�0

z0
4B(1). In particular, for any z0

with |�∗z0
| ≤ |B(1)|, we have

´
Sn log uz0(x) dθ(x) ≥ 0. Moreover, if z0 ∈ Int(�) is such

that E(�) = (1/ωn)
´
Sn log uz0 , thenˆ

�0
z0

w

|w|n+1 dw = 0.

Thus z0 is the center of mass of �∗z0
with respect to the weighted measure dw/|w|n+1.

Proof. The argument is similar to the above calculation of the dual body volume:
ˆ
Sn

log uz0(x) dθ(x) = −

ˆ
Sn

ˆ 1/uz0 (x)

1

1
r
dr dθ(x)

=

(ˆ
{uz0 (x)≥1}⊂Sn

ˆ 1

1/uz0 (x)
−

ˆ
{uz0 (x)<1}⊂Sn

ˆ 1/uz0 (x)

1

)
1

|w|n+1 dw

=

(ˆ
B(1)\�0

z0

−

ˆ
�0
z0
\B(1)

)
1

|w|n+1 dw.
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This proves the first identity. The inequality holds since 1/|w|n+1
≥ 1 on B(1) \�0

z0
and

1/|w|n+1
≤ 1 on �0

z0
\ B(1).

The last claim can be proved by a similar calculation. ut

The following lemma asserts that there exists a unique point ze ∈ � such that the en-
tropy E(�) is attained. It will be called the entropy point.

Lemma 2.1. Given a closed convex body �, there exists a unique ze ∈ � such that
E(�) = (1/ωn)

´
Sn log uze .

Proof. The quantity (1/ωn)
´
Sn log uz0 is a function of −z0 = (t1, . . . , tn+1), say

F(t) =
1
ωn

ˆ
Sn

log
(
u(x)+

n+1∑
i=1

tixi

)
dθ(x).

It is easy to see that the convexity of � implies that uz0 ≥ 0 for any z0 ∈ �, and F(t)
is a strictly concave function of t . Let {pn} be a sequence such that (1/ωn)

´
Sn log upn

↗ E(�) as n → ∞. Without loss of generality we may assume that pn → p. Then
by Fatou’s lemma, noting that log uz(x) ≤ log diam(�) for any z and log upn(x) →
log up(x), we have

1
ωn

ˆ
Sn
− log up ≤

1
ωn

lim inf
n→∞

ˆ
− log upn = −E(�).

On the other hand, by the definition (1/ωn)
´
Sn log up ≤ E(�). Hence (1/ωn)

´
Sn log up

= E(�). The uniqueness follows from the strict concavity of F(t) (as a function of
t ∈ Rn+1) and the convexity of �. ut

We also denote uze by ue. The next lemma strengthens the above result by asserting that
in fact ze ∈ Int(�).

Lemma 2.2. If � is a bounded convex domain with Int(�) 6= ∅, then E(�) is attained
by a unique support function ue > 0 such thatˆ

Sn

xj

ue(x)
dθ(x) = 0. (2.2)

Moreover for any other support function u 6= ue, E(�) > (1/ωn)
´
Sn log u.

Proof. The main claim here is that ue > 0 everywhere. Assuming this, (2.2) follows
easily by the first variation. Namely, we express any support function as

u(x) = ue(x)+

n+1∑
j=1

tjxj .

By the maximum property of ue, the first variation yields
ˆ
Sn

xj

ue(x)
dθ(x) = 0.
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Suppose ue(x0) = 0 for some x0 ∈ Sn. Then by the convexity of � it is easy to see
that ze must be on the boundary of �. We may assume ze = 0, the origin. Now we claim
that there is a support hyperplane of � at the origin with outer normal η such that the line
segment

L = {−tη | 0 < t < t0} is inside �, for some small t0. (2.3)

We now prove this claim.1 First recall that for any p ∈ �, the tangent cone T C
p � is

defined as {ξ | 〈ξ, p − z1〉 ≥ 0 for any z1 with dist(z1, �) = |z1 − p|}. The (outward)
normal cone Np(�) is then defined as {η | 〈η, ξ〉 ≤ 0 for all ξ ∈ T C

p �}. Now it is rather
elementary to see that for any support hyperplane H at p, which can be expressed as
the zero set of f (z) = 〈η, z − p〉 with f (z) ≤ 0 for all z ∈ �, we have η ∈ Np(�).
Thus the outer normal of any support hyperplane must lie inside the normal cone. To
prove the claim it suffices to show that −Np(�) intersects Int(�), due to the convexity
of �. If −Np(�) ∩ Int(�) = ∅, by the separation theorem [18, Theorem 1.3.8] there
exists a hyperplane H through the origin which separates Int(�) and −Np(�). This hy-
perplane must be a support hyperplane. But its outer normal η (with respect to �) lies
inside Np(�). Hence −η ∈ −Np(�). This is a contradiction since −Np(�) is on the
other (outward) side of H than �. The claim (2.3) also follows from [8, Theorem 1.12].

We may, without loss of generality, assume that η = (0, . . . , 0, 1), so the north pole
has the property that the associated line segment L defined in (2.3) lies inside Int(�).
Hence� is contained in the half-space xn+1 ≤ 0 and touches the hyperplane at the origin.
For any x = (x1, . . . , xn, xn+1) ∈ Sn with xn+1 ≥ 0, let N(x) = (x1, . . . , xn,−xn+1)

be its symmetric image with respect to xn+1 = 0. By definition, ue(x) = supz∈�〈z, x〉.
Since � is closed, for each x ∈ Sn there is z(x) ∈ � such that ue(x) = 〈z(x), x〉. Hence

ue(N(x)) ≥ 〈z(x),N(x)〉 ≥ 〈z(x), x〉 = ue(x), ∀x ∈ Sn with xn+1 ≥ 0.

Here 〈z(x), η〉 ≤ 0 is used. Since ze = 0 and ue(η) = 0 and obviously ue(N(η)) > 0, the
above inequality is strict for some x ∈ Sn forming a set of positive measure. Consider the
new support function us(x) = ue(x)+ sxn+1. As the line segment L defined in (2.3) lies
in the interior of �, us(x) > 0 for all x ∈ Sn and 0 < s < t0. On the other hand,

d

ds

(ˆ
Sn

log us

)∣∣∣∣
s=0
=

ˆ
Sn

xn+1

ue(x)
=

ˆ
{xn+1>0}

xn+1

ue(x)
+

ˆ
{xn+1<0}

xn+1

ue(x)

=

ˆ
{xn+1>0}

(
xn+1

ue(x)
−

xn+1

ue(N(x))

)
> 0,

which contradicts the definition of ue. Therefore, ue(x) > 0 for all x ∈ Sn.
The last claim follows from the strict concavity of F(t) defined in the proof of Lem-

ma 2.1. ut

In the rest of this section we derive some geometric estimates in terms of entropy. Let
ρ+(�) [ρ−(�)] be the outer [inner] radius of a convex body �. By definition, the outer

1 We would like thank Gaoyong Zhang to communicating us the proof of claim (2.3).
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radius is the radius of the smallest ball which contains �, and the inner radius is the
radius of the biggest ball which is enclosed by �. There is also a width function w(x)
which is defined as uz0(x) + uz0(−x), where uz0 is the support function with respect
to z0. It is clear that w(x) is independent of the choice of z0. Let w+ and w− denote the
maximum and minimum of w(x). The following estimates have been known [2]:

ρ+ ≤
w+
√

2
, ρ− ≥

w−

n+ 2
. (2.4)

Below we prove a result relating these geometric quantities to entropy.

Corollary 2.1. For a convex body �,

max{w+, ρ+(�)} ≤ CneE(�), (2.5)

where Cn is a dimensional constant. There is also a lower estimate:

min{ρ−(�),w−} ≥ C′nV (�)e
−nE(�), (2.6)

where C′n is another dimensional constant.

Proof. The upper estimate can be reduced to the corresponding upper estimate of w+ in
view of (2.4). Assume that w(x0) = w+. Without loss of generality we may assume that
uz0(x0) ≥ uz0(−x0), z0 = 0. Hence w+ ≤ 2u0(x0). Assume that u0(x0) = 〈z1, x0〉 for
z1 ∈ ∂�. Applying a rotation we may also assume that z1 = (0, . . . , 0, a〉, with a = |z1|.
Then w+ ≤ 2a. By convexity, the line segment tz1 (with 0 ≤ t ≤ 1) lies inside �. It
is also clear that the support function for this segment with respect to z1/2 is 1

2 |〈z1, x〉|.
Hence it is bounded from above by uz1/2(x). Therefore

ωn log a − ωn log 2+
ˆ
Sn

log |xn+1| dθ(x) =

ˆ
Sn

log 1
2 |〈z1, x〉| dθ(x)

≤

ˆ
Sn

log uz1/2 dθ(x) ≤ ωnE(�).

Notice that the integral on the left hand side depends only on n. This gives an upper bound
of a, hence an estimate for w+. A lower bound on ρ− can be derived from this and the
observation that � can be enclosed in a cylinder with base a ball of radius ρ+, and of
height 2w−. Hence

nωn−1ρ
n
+ · 2w− ≥ V (�).

The lower bound of ρ− follows from the estimate of ρ− in terms of w−. ut

3. Gauss curvature flow and entropies

First we recall the relation between the embeddingX : M → Rn+1 ofM , a closed convex
hypersurface in Rn+1, and the related support function u : Sn→ R of the enclosed convex
body � (here we assume that 0 ∈ � and u(x) = u0(x)):

u(x) = 〈z,X(ν−1(z))〉
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where ν : M → Sn is the Gauss map. For convenience we also denote X(ν−1(x)) by
X(x) (so X(x), for x ∈ Sn, denotes the embedding reparametrized via the Gauss map).
The following equations are well-known [2]:

X(x) = u(x) · x + ∇̄u, (3.1)
(W−1)ij = ḡ

ik(∇̄k∇̄ju+ uḡkj ). (3.2)

Here W = dν is the Weingarten map, ∇̄ is the covariant derivative of Sn with respect to
the standard induced metric ḡ as the boundary of the unit ball in Rn+1. It is clear from
(3.1) that changing the reference point z0 in the support function amounts to translating
by−z0 the embeddingX(x), and (3.2) implies that the Weingarten mapW is independent
of the choice of z0. Let K(x) = det(W) be the Gauss curvature.

First we derive the following estimate on Chow’s entropy [10] in terms of the entropy
defined in the last section.

Proposition 3.1. Let � be a convex body with smooth boundary M = ∂� and volume
V (�) = V (B(1)). Let K be the Gauss curvature of M . Then

EC(�) :=
1
ωn

ˆ
M

K logK dσ ≥ E(�) ≥ 0. (3.3)

Here dσ is the induced surface measure on M . Moreover EC(�) = E(�) if and only if
K = ue, and EC(�) = 0 if and only if � = B(1), the unit ball. For general �,

EC(�) ≥ E(�)− log
(
V (�)

V (B(1))

)
.

Proof. First observe that
´
M
K logK dσ =

´
Sn logK dθ. On the other hand, recall

1
ωn

ˆ
Sn

u

K
dθ =

1
ωn

ˆ
M

〈X, ν〉 dσ =
n+ 1
ωn

V (�).

Hence the estimate via Jensen’s inequality gives, in the case V (�) = V (B(1)),

1 =
1
ωn

ˆ
Sn

u

K
dθ =

1
ωn

ˆ
exp

(
log
(
u

K

))
dθ ≥ exp

(
1
ωn

ˆ
Sn

log
(
u

K

)
dθ

)
.

This implies that
1
ωn

ˆ
Sn

logK dθ ≥
1
ωn

ˆ
Sn

log u dθ.

Since this estimate holds for support functions with respect to any z0 ∈ �, we have the
claimed estimate. The equality case follows from Proposition 1.1. ut

Remark 3.1. The non-negativity of EC also follows from the affine isoperimetric in-
equality [18]. An alternative argument below, using x − 1 − log x ≥ 0, proves a similar
result with a weaker estimate

1
ωn
((n+ 1)V (�)− ωn) =

1
ωn

ˆ
Sn

(
u

K
− 1

)
dθ(x) ≥

1
ωn

ˆ
Sn

log
u

K
dθ(x).

Hence EC(�)− E(�) ≥ −V (�)/V (B(1))+ 1.
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Corollary 3.2. Let� andM be as in Proposition 3.1. Let σk(W) =
∑
i1<···<ik

λi1 · · · λik
be the k-th elementary symmetric function of (strictly speaking, eigenvalues {λi} of ) the
Weingarten map. Then

1
ωn

ˆ
Sn

k!(n− k)!

n!
σk(W) dθ ≥ 1,

1
ωn

ˆ
Sn

k!(n− k)!

n!
Kσk(W) dθ ≥ 1. (3.4)

Equality holds in any of these inequalities if and only if � = B(1).

In terms of the support function, the Gauss curvature flow (1.1) can be expressed as

∂u(x, t)

∂t
= −

1
det(ḡik(∇̄k∇̄ju+ uḡkj ))

. (3.5)

Since the convexity of Mt is preserved along the flow (1.1), the equation (3.5) in terms
of the support function u always makes sense. In [19] the existence of (1.1) has been
proved and it was also shown that the flow will contract a convex hypersurface to a lim-
iting point z∞. The main concern here is to understand what is the limiting shape of the
evolving hypersurfaces Mt . To understand the asymptotic behavior of the flow we also
consider the normalized flow:

∂u(x, t)

∂t
= u(x, t)−

1
det(ḡik(∇̄k∇̄ju+ uḡkj ))

, (3.6)

which preserves the enclosed volume V (�t ), provided that initially V (�0) = V (B(1)).
By scaling (multiplying the support function u by a factor eτ ) and reparametrization (τ =
−

1
n+1 log

(
T−t
T

)
, with T being the terminating time, which equals 1

n+1 under the above
normalization, and relabeling τ as t afterwards), the support function with respect to
z∞ yields a long time positive solution to (3.6). Hence the study of the limiting shape
is equivalent to finding the asymptotic of (3.6). When � is centrally symmetric it was
shown by Firey that the solution of (3.6) converges to a round sphere. In dimension n = 2,
Andrews [5] proved the same result for any convex surfaces in R3.

In the following we show that the entropy E(�) is intimately related to the normalized
Gauss curvature flow (3.6). First note that the equilibrium for (3.6) satisfies the equation

u(x, t) · det(ḡik(∇̄k∇̄ju+ uḡkj )) = 1. (3.7)

Such a solution is also called a shrinking soliton of the Gauss curvature flow.
We now consider the first variation of E(�) under the constraint V (�) = V (B(1)).

For a fixed �, by Lemma 2.2, there exists a unique ze ∈ Int(�) such that E(�) =
(1/ωn)

´
Sn log ue(x) dθ(x). Moreover ue satisfies

ˆ
Sn

xj

ue
dθ(x) = 0, ∀j = 1, . . . , n+ 1. (3.8)

Let �η be a family of convex bodies such that �0 = �. In terms of support functions, we
have a family of functions vη ∈ C2(Sn) such that

Aη = ((vη)δij + (vη)ij ) > 0.



Gauss curvature flow 3745

We assume in addition that vη satisfies (3.8). Hence E(�η) = (1/ωn)
´
Sn log vη dθ . Write

vη(x) = ue(x) + ρ(η, x), where ρ(0, x) = 0 for all x ∈ Sn. Below we abbreviate vη by
v, and ue by u. As before, the constraint V (�η) = V (B(1)) implies

1
ωn

ˆ
Sn
v det(Av) = 1. (3.9)

Recall that we also have ˆ
Sn

xj

v
= 0, ∀j = 1, . . . , n+ 1, ∀η, (3.10)

E(�η) =
1
ωn

ˆ
Sn

log v. (3.11)

Proposition 3.2. If u, the unique support function which achieves the entropy, is a critical
point of E(�), viewed as a functional of �, under the constraint that V (�) = V (B(1)),
it must be a solution to (3.7), that is, a shrinking soliton. Thus a critical point to E(�)
must be a shrinking soliton to the Gauss curvature flow. Moreover, the converse is also
true.
Proof. Differentiate (3.9) and (3.11) in η and then set η = 0. By the Lagrangian multiplier
method, for any critical point u there exists a λ ∈ R such that (in view of (3.9))ˆ
Sn
ρ′ det(Au) = λ

ˆ
Sn

ρ′

u
, ∀ρ′, with

ˆ
Sn

ρ′xj

u2 = 0, ∀j = 1, . . . , n+1. (3.12)

Here we have used the fact that ∂ det(Au)
∂Aij

∇̄i∇̄j is self-adjoint. Let Nu = span{xj/u |
j = 1, . . . , n+ 1}. Note thatˆ

Sn
det(Au)xj =

ˆ
∂�

〈ν, ej 〉 = 0.

Since both u(det(Au) − λ/u) and ρ′/u belong to N⊥u , and ρ′/u is arbitrary in N⊥u and
u > 0, we must have

det(Au) = λ/u. (3.13)
As V (�) = V (B(1)), we conclude that λ = 1. To check the converse, from (3.9) we
conclude that ˆ

Sn
ρ′ det(Au) = 0,

which readily implies that
´
Sn ρ
′/u = 0. ut

The next result gives a lower estimate on the volume of �∗0, the dual of � with respect to
the origin, when � (more precisely u, the support function with respect to the origin) is a
soliton of the Gauss curvature flow.

Proposition 3.3. Assume u is a soliton with associated body � (so u = K). Then:
(i) The origin is the entropy point of � and V (�) = V (B(1)).

(ii) The volume of �∗0 satisfies
V (�∗0) ≥ V (B(1)). (3.14)

In particular, if the origin is the Santaló point of � then � = B(1).
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Proof. Observe that for any 1 ≤ j ≤ n + 1 we have 0 =
´
M
〈ν(z), ej 〉 dσ =´

Sn(xj/K) dθ(x), which implies that
´
Sn(xj/u) dθ(x) = 0. This shows that the origin

is the entropy point. Similarly V (�) = 1
n+1

´
M
〈X, ν〉 = 1

n+1

´
Sn

u
K
= V (B(1)).

LetX(x) = u(x)x+∇̄u(x) be the position vector ofMt . Observe that for any support
function u of a convex body,

1
ωn

ˆ
Sn

u

K|X|n+1 dθ(x) =
1
ωn

ˆ
∂�

〈X, ν〉

|X|n+1 dσ =
1
ωn

ˆ
∂B(ε)

1
εn
dσ = 1.

Here we have used the fact that div(X/|X|n+1) = 0. The claimed lower estimate on the
dual volume follows, as

V (�∗0)

ωn
=

1
n+ 1

 
Sn

1
un+1 ≥

1
n+ 1

 
Sn

u

K|X|n+1 =
1

n+ 1
.

The last statement follows, since when the origin is the Santaló point, V (�∗0) ≤ V (B(1))
by the Blaschke–Santaló inequality, hence equality holds in the above estimates. In par-
ticular, it implies that |X| = u and ∇̄u = 0, so u is a constant. ut

Remark 3.3. One can also prove the estimate (3.14) using the isoperimetric inequalityffl
Sn(1/K) dθ ≥ 1.

For the normalized Gauss curvature flow (3.6), Chow [10] proved that EC(�t ) is non-
increasing in t . A refinement of the following theorem (Lemma 4.3) is of fundamental
importance to the C0-estimate. The monotonicity of E(�t ) first appeared in [4, Corol-
lary 9].

Theorem 3.4. Along the flow (3.6) the entropy E(�t ) is non-increasing. Moreover, for
any t1 ≤ t0,

E(�t0)− E(�t1) ≤
ˆ t0

t1

(E(�t )− EC(�t )) dt ≤ 0. (3.15)

Proof. Assume that E(�t0) = (1/ωn)
´
Sn log ue(t0) at some point t0, where ue(t0) is the

support function with respect to the unique entropy point ze(t0) ∈ Int(�). Hence for
t < t0 but very close to t0, one still has ue(t)(x, t) := u(x, t)−〈exp(t − t0)ze(t0), x〉 > 0.
If u(x, t) is a solution to (3.6), so is ue(t)(x, t). Now we calculate

d

dt

 
Sn

log ue(t)(x, t) =
 
Sn

ue(t) −K

ue(t)
= 1−

 
Sn

K

ue(t)

= −

 
Sn

(√
K

ue(t)
−

√
ue(t)

K

)2

≤ 0.

This implies that there exists δ > 0 such that for t ∈ (t0 − δ, t0),

E(�t ) ≥
 
Sn

log ue(t)(x, t) ≥
 
Sn

log ue(t0)(x, t0) = E(�t0),
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which proves the first claim. Making use of the above calculation again we arrive at

E(�t0)− E(�t1) ≤
ˆ t0

t1

 
Sn

(
1−

K

ue(t)

)
dθ dt.

Using 1 − x ≤ − log x and some elementary estimates, we establish (3.15) for t1 ∈
(t0 − δ, t0). The continuity argument can be applied to conclude the same for all t1 ≤ t0.

ut

The proof above is a modification of that of Firey [14], in which he introduced the entropy
EF (�t ) =

ffl
Sn log u(x, t) for the centrally symmetric case and showed that it is non-

increasing along the flow. Now we have EC(�t ) ≥ E(�t ) ≥ EF (�t ).

4. C0-estimates

Let u(x, t) be a long time solution to (3.6). By translation we may assume that z∞ = 0.
Combining Corollary 2.1 and Theorem 3.4 we obtain an upper bound of ρ+, hence an
upper bound of u(x, t), and a lower bound on ρ−. An upper estimate of u(x, t) was first
proved by Hamilton [15] using a different argument.

The main result of this section is a uniform lower bound of u(x, t). Since we assume
that z∞, the limit point which lies inside all �t evolving by (3.5), is the origin, we have a
solution u(x, t) to (3.6) with u(x, t) > 0 for all (x, t) ∈ Sn × [0,∞). As ρ− is bounded
from below, if one is willing to shift the origin, a lower bound of the support function
would follow. The subtle point here is to bound the support function from below without
shifting for all t .

We start with a similar lower bound for the support function with respect to the Santaló
point, which motivates the C0-estimates. This is based on the following gradient estimate
on the support function u of a convex body:

max
Sn
|∇̄u| ≤ max

Sn
u. (4.1)

This gradient estimate can be proved by the following observation. Due to the positivity
of ∇̄i∇̄ju + uδij , one can conclude that ∇̄u = 0 at the maximum point of |∇̄u|2 + u2.
Hence maxSn |∇̄u| ≤ maxSn u. Geometrically this is clear since X = ∇̄u + u x is the
position vector with length square |X|2 = |∇̄u|2 + u2, which attains its maximum for
some X0 parallel to x.

Proposition 4.1. If us is the support function with respect to the Santaló point of �, then

us(x) ≥ c(n)V (�)e
−nE(�), (4.2)

where c(n) > 0 is a dimensional constant.

Proof. By the Blaschke–Santaló inequality,

V (�∗s ) =
1

n+ 1

ˆ
Sn

1

un+1
s

≤
V (B(1))2

V (�)
.
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Letm = us(x0) be the minimum value of us (attained at some x0). By (4.1), maxSn |∇̄us |
≤ maxSn us ≤ 2ρ+. Therefore, in a geodesic ball B̄x0(r) (inside Sn) with r = m/ρ+, we
have us(x) ≤ 2m. In turn,

V (B(1))2

V (�)
≥

1
n+ 1

ˆ
Sn

1

un+1
s

≥ C̃nm
−(n+1)rn = C̃n

ρ−n+

m
.

The result now follows from Corollary 2.1. ut

Now we prove the main result of this section, which is based on establishing a similar
result for ue(t) where e(t) is the entropy point of the convex body �t .

Theorem 4.1. Suppose u(x, t) > 0 is the solution of (3.6) with initial data u(x, 0) =
u0(x) > 0, where u0(x) is the support function of �0 with V (�0) = V (B(1)) and
E(�0) ≤ A. Then there are ε = ε(n, E(�0)) > 0 and T0 = T (�0) such that for t ≥ T0,

u(x, t) ≥ ε, ∀ t ≥ 0, ∀x ∈ Sn. (4.3)

The proof is built upon several lemmas. For each bounded closed convex body �, we
denote by e(�) the unique entropy point of �. For each p ∈ �, let up be the support
function of � with respect to p.

Lemma 4.1. For each �, there is D > 0 depending only on n and the diameter of �
such that for any p ∈ �,

1
ωn

ˆ
Sn

log up ≤ E(�)−D dist2(p, e(�)). (4.4)

Proof. Since up is bounded from above by 2ρ+, 1/up is bounded from below. As in
Lemma 2.1, consider F(t) = (1/ωn)

´
Sn log up = (1/ωn)

´
Sn log(ue + 〈x, e − p〉) with

t = e − p. A direct calculation shows that

∂2 F(t)

∂ti∂tj
= −

ˆ
Sn

xixj

(ue + 〈x, t〉)2
dθ(x).

By Taylor’s theorem, if we write t = |t |a with a = e−p
|e−p|

, we have

F(t) ≤ F(0)− C|t |2
ˆ
Sn
〈a, x〉2 dθ(x).

Here C is a constant only depending on the upper bound of ρ+. Now (4.4) follows from
the fact that the integral on the right hand side is a constant depending only on n. ut

Note that by Corollary 2.1, there exists an upper bound of ρ+ depending only on A, the
upper bound of the entropy.

For any A,B > 0, consider the collection of bounded closed convex sets

0AB = {� ⊂ Rn+1
| � is a closed convex subset, 0 ∈ �,V (�) ≥ B, E(�) ≤ A}. (4.5)
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Lemma 4.2. Suppose �k ∈ 0AB is a sequence of convex bodies with 0 ∈ �k for all k.
Suppose limk→∞�k = �0. Then

lim
k→∞

E(�k) = E(�0).

Moreover, there is δ(A,B, n) > 0, depending only on n,A,B, such that the entropy
point e� satisfies

dist(e�, ∂�) ≥ δ(A,B, n), ∀� ∈ 0AB . (4.6)

Proof. By Lemma 2.1, for all � ∈ 0AB , ρ+(�) ≤ C(n,A) for some C(n,A) > 0.
Since the volume is bounded from below, we also have, for all � ∈ 0AB , ρ−(�) ≥
c(n,A,B) > 0. By Lemma 2.2, the entropy point e�0 is in �0. Therefore, e�0 ∈ �k
for k large. Again by Lemma 2.2,

E(�0) =
1
ωn

ˆ
Sn

log u�0
e(�0)
= lim
k→∞

1
ωn

ˆ
Sn

log u�ke(�0)
≤ lim
k→∞

E(�k). (4.7)

Here u�kp is the support function of �k with respect to p.
On the other hand, since u�kp ≤ 2ρ+(�k) ≤ 2C(n,A) for each p ∈ �k , log u�kp is

bounded from above. As �k ∈ 0AB , by estimate (1.7), we have

1
ωn

ˆ
Sn

log
(

u
�k
e(�k)

2C(n,A)

)
≥ E(�k)− log(2C(n,A)) ≥

log
(

B
V (B(1))

)
n+ 1

− log(2C(n,A)).

That is, ˆ
Sn

∣∣∣∣log
(

u
�k
e(�k)

2C(n,A)

)∣∣∣∣ ≤ C, ∀k. (4.8)

Let p = limk→∞ e(�k). Noticing that log
( u

�k
e(�k)

2C(n,A,B)

)
≤ 0, by Fatou’s Lemma we get

ˆ
Sn

log
(

u
�0
p

2C(n,A,B)

)
≥ lim sup

k→∞

ˆ
Sn

log
(

u
�k
e(�k)

2C(n,A)

)
.

This yields
E(�0) ≥ lim sup

k→∞

E(�k). (4.9)

Combining (4.7) and (4.9) proves the first claim of the lemma.
For the second part, suppose that (4.6) is not true. Then there is a sequence {�k}

(⊂ 0AB ) such that
dist(e�k , ∂�k)→ 0, k→∞.

By the Blaschke selection theorem [18, Theorem 1.8.6], there exists a subsequence
of {�k} in 0AB , still denoted by �k , that converges to a convex body �0. Let p =
limk→∞ e(�k). By the assumption dist(e�k , ∂�k)→ 0, we have p ∈ ∂�0. The support
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function up of�0 vanishes at p. By the first part of the lemma, E(�0) = limk→∞ E(�k).
Hence �0 ∈ 0

A
B . Again, we argue as before using Fatou’s Lemma:

E(�0) = lim
k→∞

E(�k) = lim
k→∞

1
ωn

ˆ
Sn

log u�ke(�k) ≤
1
ωn

ˆ
Sn

log up.

This contradicts Lemma 2.2. ut

Now consider the positive solution to (3.6). We first observe an easy consequence of the
uniqueness.

Proposition 4.2. For any given convex body � with normalized volume, there is at most
one positive solution of (3.6) which exists on Sn × [0,∞) such that u(x, 0) is a support
function of �.

Proof. Suppose v is another positive solution. Then at t = 0, v(x, 0) = u(x, 0) −∑n+1
i=1 aixi . It is easy to check ṽ(x, t) = u(x, t) − et

∑n+1
i=1 aixi is a solution of the

normalized Gauss curvature flow, so that ṽt = −K + ṽ. Since Aṽ = Au, we have
9(Au) = 9(Aṽ). Therefore, ṽ = v. Hence if a 6= 0, v cannot be bounded! There-
fore there exists only one positive solution to (3.6) on Sn × [0,∞). ut

For each�t corresponding to u(x, t), let E(t) := E(�t ). We know that E(t) ≥ 0 and E(t)
is decreasing. Let E∞ := limt→∞ E(t).

Lemma 4.3. Let u(x, t) be the unique positive solution of (3.6). Then

 
Sn

log u(x, t) ≥ E∞ +
ˆ
∞

t

 
Sn

(√
K

u
−

√
u

K

)2

, ∀t ≥ 0. (4.10)

In particular, E(t) ≥ EF (t) ≥ E∞.

Proof. For each T0 > fixed, pick T > T0. Let aT = (aT1 , . . . , a
T
n+1) be the entropy point

of �T . Set uT = u− et−T
∑n+1
i=1 a

T
i xi . It can be checked that

uTt = −K + u
T . (4.11)

Since both the origin and the entropy point aT are in Int(�T ),

|aT | ≤ 2ρ+(t) ≤ C.

If T is large enough, uT (x, 0) > 0 for all x ∈ Sn. We also know that uT (x, T ) > 0
for all x ∈ Sn since the entropy point is an interior point of �T . If uT (x0, t0) ≤ 0 for
some 0 < t0 < T and x0 ∈ Sn, then (4.11) implies uT (x0, t) < 0 for all t > t0, which
contradicts uT (x, T ) > 0. Hence uT (x, t) > 0 for all 0 ≤ t ≤ T and x ∈ Sn. By (4.11),
a similar calculation to that in Theorem 3.4 shows

d

dt

(ˆ
Sn

log uT (x, t)
)
= −

ˆ
Sn

(√
K(x, t)

uT (x, t)
−

√
uT (x, t)

K(x, t)

)2

, ∀ 0 ≤ t ≤ T . (4.12)
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Hence

1
ωn

ˆ
Sn

log uT (x, 0)− E(T ) =
1
ωn

ˆ T

t=0

ˆ
Sn

(√
K(x, t)

uT (x, t)
−

√
uT (x, t)

K(x, t)

)2

.

Since T0 < T ,

1
ωn

ˆ
Sn

log uT (x, 0)− E(T ) ≥
1
ωn

ˆ T0

t=0

ˆ
Sn

(√
K(x, t)

uT (x, t)
−

√
uT (x, t)

K(x, t)

)2

.

Now let T →∞; as uT (x, t)→ u(x, t) uniformly for 0 ≤ t ≤ T0, x ∈ Sn, we obtain

1
ωn

ˆ
Sn

log u(x, 0)− E∞ ≥
1
ωn

ˆ T0

t=0

ˆ
Sn

(√
K(x, t)

u(x, t)
−

√
u(x, t)

K(x, t)

)2

. (4.13)

Now (4.10), for t = 0, follows directly from (4.13) since T0 is arbitrary. If in the above
we replace 0 by any t ≤ T , we obtain (4.10). ut

Lemma 4.3 has the following immediate consequence.

Corollary 4.2.
lim
t→∞

EC(�t ) = lim
t→∞

E(�t ) = E∞.

Proof. Since EC(�t ) ≥ E(�t ), we have limt→∞ EC(�t ) ≥ E∞. Assume that the in-
equality is strict. Then there exists δ > 0 such that for sufficiently large t0 we have
EC(�t )− E(�t ) ≥ δ for t ≥ t0. This contradicts (3.15). ut

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Since E(�t )→ E∞, by (4.10),

E∞ ≤
1
ωn

ˆ
Sn

log u(x, t) ≤ E(�t ).

That is,

0 ≤ E(�t )−
1
ωn

ˆ
Sn

log u(x, t)→ 0 as t →∞.

As u is the support function of �t with respect to the origin, by Lemma 4.1, e(�t )→ 0
as t →∞. The claimed lower estimate now follows from (4.6) in Lemma 4.2. ut

The proof effectively shows that there exists C = C(�0, n) such that if e(t) = e(�t ) is
the entropy point of �t , then

|e(t)|2 ≤ C

(
E(t)−

 
Sn

log u(x, t)
)
. (4.14)

Finally the following corollary summarizes Corollary 2.1, Theorem 3.4 and Theorem 4.1.

Corollary 4.3. Let u(x, t) be as in Theorem 4.1. Then there exists 3 = 3(�0, n) > 0
such that

1/3 ≤ u(x, t) ≤ 3. (4.15)
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5. C2-estimates and convergence

In this section we derive uniform C2-estimates from the C0-estimate (4.15). The first is
an upper estimate, which was first proved by Hamilton [15].

Theorem 5.1. Suppose u(x, t) ≥ a > 0 is the solution of (3.6) with initial data u(x, 0) =
u0(x), where u0(x) > 0 is the support function of �0 with V (�0) = V (B(1)). There
exists a constant C = C(a, n) > 0 such that

K(x, t) ≤ C. (5.1)

In the Appendix we include an alternative proof of this result using the lower estimate
of u(x, t). For the C2-estimate the key is the following lower bound on the Gauss curva-
ture K(x, t).

Theorem 5.2. Suppose u(x, t) > 0 is a positive solution of (3.6), obtained from the un-
normalized flow (3.5), with initial data u(x, 0) = u0(x), where u0(x) > 0 is the support
function of �0 with V (�0) = V (B(1)). Then there exists a constant ε1 = ε(n,�0) > 0
such that

K(x, t) ≥ ε1. (5.2)

Proof. For this estimate, it is more convenient to work with the un-normalized flow (3.5).
Let T be the terminating time (which is 1

n+1 by our normalization). Then the claimed
estimate is equivalent to

K(x, t)(T − t)n/(n+1)
≥ ε1. (5.3)

For the proof we recall Theorem 3.7 of [10] under the Gauss map parametrization:

K(x, t)tn/(n+1)
≤ K(x, t ′)t ′n/(n+1) (5.4)

for any 0 < t ≤ t ′ < T . Since it is sufficient to prove (5.3) for t ≥ T/2, the estimate (5.4)
implies that

K(x, t) ≤ 2n/(n+1)K(x, t ′). (5.5)

The two-sided C0-estimate (4.15) implies that the un-normalized support function u(x, t)
satisfies

1
3
(T − t)1/(n+1)

≤ u(x, t) ≤ 3(T − t)1/(n+1). (5.6)

Let

α =

(
1

232

)n+1

, hj =
T

2
αj , tj = T − hj for j = 0, 1, . . . .

Clearly tj → T as j →∞. The estimate (5.6) implies that

u(x, tj )− u(x, tj+1) ≥
1
3
h

1/(n+1)
j −3h

1/(n+1)
j+1

=
1
3

(
T

2

)1/(n+1)

αj/(n+1)
−3

(
T

2

)1/(n+1)

α(j+1)/(n+1)
=

1
23

h
1/(n+1)
j . (5.7)
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The Gauss curvature flow equation implies that for any t ′ < T ,

u(x, t ′) =

ˆ T

t ′
K(x, t) dt,

which in turn yields

u(x, tj )− u(x, tj+1) =

ˆ tj+1

tj

K(x, t) dt. (5.8)

Now we claim that there exists sj ∈ [tj , tj+1] such that

K(x, sj )(T − sj )
n/(n+1)

≥
1

4(n+ 1)3
. (5.9)

Indeed, otherwise we would haveˆ tj+1

tj

K(x, t) dt ≤
1

4(n+ 1)3

ˆ tj+1

tj

(T − t)−n/(n+1) dt

=
1

4(n+ 1)3

ˆ hj

hj+1

τ−n/(n+1) dτ ≤
1

43
h

1/(n+1)
j ,

contradicting (5.7) and (5.8).
Now the claimed estimate (5.3) can be derived from (5.9) and (5.5). First we claim

that

K(x, tj+1)(T − tj+1)
n/(n+1)

≥
1

4(n+ 1)3

(
α

2

)n/(n+1)

. (5.10)

This can be proven via the estimates

K(x, tj+1)(T − tj+1)
n/(n+1)

≥
1

2n/(n+1)K(x, sj )h
n/(n+1)
j+1

=
1

2n/(n+1)K(x, sj )α
n/(n+1)h

n/(n+1)
j

≥

(
α

2

)n/(n+1)

K(x, sj )(T − sj )
n/(n+1)

and (5.9). The claimed estimate (5.3) follows by another iteration of the above argument
applying (5.10) instead. Namely for t ∈ [tj , tj+1], we have

K(x, t)(T − t)n/(n+1)
≥

1
2n/(n+1)K(x, tj )(T − t)

n/(n+1)
≥

1
2n/(n+1)K(x, tj )h

n/(n+1)
j+1

≥

(
α

2

)n/(n+1)

K(x, tj )(T − tj )
n/(n+1).

Hence we conclude that for any t ∈ [t1, T ],

K(x, t)(T − t)n/(n+1)
≥

(
α

2

)2n/(n+1) 1
4(n+ 1)3

.

The claimed result follows from the above easily. ut
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Now the proof of [6, Theorem 10] gives the following estimate. For completeness a proof
is included in the Appendix.

Theorem 5.3. Suppose u(x, t) > 0 is the solution of (3.6) with initial data u(0, x) =
u0(x), where u0(x) > 0 is the support function of �0 with V (�0) = V (B(1)). There
exists a constant C > 0, depending on n,�0, such that

trace(∇̄i∇̄ju+ uδij ) ≤ C. (5.11)

Moreover the symmetric tensor A has the lower estimate

∇̄i∇̄ju+ uḡij ≥
1
C
ḡij . (5.12)

Combining Corollary 2.1, Theorems 3.4, 4.1, 5.1 and 5.3, as well as the gradient estimate
(4.1), we conclude that there exists a positive constant C depending only on the initial
data such that the unique positive solution to (3.6) satisfies

‖u(·, t)‖C2(Sn) ≤ C. (5.13)

Since (3.6) is a concave parabolic equation, by Krylov’s theorem [16] and the standard
theory of parabolic equations, estimates (5.13) and (5.12) imply bounds on all (space and
time) derivatives of u(x, t). More precisely, for any k ≥ 3, there exists Ck ≥ 0, depending
only on the initial value, such that for t ≥ 1,

‖u(·, t)‖Ck(Sn) ≤ Ck. (5.14)

Now for any T > 0 and any sequence {tj } → ∞, consider uj (x, t) := u(x, t − tj ). We
have the following result on sequential convergence.

Proposition 5.1. After passing to a subsequence, on Sn × [−T , T ], {uj } converges in
C∞-topology to a smooth function u∞ which is a self-similar solution to (3.7).

Proof. By the proof of Theorem 4.1 we have, for t ∈ [−T , T ],

lim
j→∞

1
ωn

ˆ
Sn

log uj (x, t) dθ(x) = E∞.

Hence u∞(x, t) satisfies

1
ωn

ˆ
Sn

log u∞(x, t) dθ(x) = E∞.

u∞ is also a solution to (3.6) and positive by Theorem 4.1. Hence by the proof of Theorem
3.4 we conclude that

u∞(x, t)

K(x, t)
=

K(x, t)

u∞(x, t)
,

which implies that (u∞)t (x, t) = 0. Hence we get the claimed result. ut
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6. Uniform convergence and the stability of the solitons

Combining [4, Theorem 2] with Proposition 5.1 we obtain the following result.

Theorem 6.1. The normalized GCF (3.6) converges in C∞-topology to a smooth soli-
ton u∞ (M∞) which satisfies K(x) > 0 and the soliton equation

u det(u id+∇̄2u) = 1.

There remains an interesting question whether the round sphere (ball) is the unique com-
pact soliton. For this we consider the following functional for u > 0, with Au being
positive definite:

J1(u) :=

 
Sn

log u−
1

n+ 1
log
( 

Sn
u det(Au)

)
+

1
2

( 
Sn
u det(Au)− 1

)2

.

Here
ffl
Sn = (1/ωn)

´
Sn . If v = u+ ηρ is a variation, then

d

dη
J1(v)

∣∣∣∣
η=0
=

 
Sn

ρ

u
−

ffl
Sn ρ det(Au)ffl
Sn u det(Au)

+ (n+ 1)
( 

Sn
u det(Au)− 1

)  
Sn
ρ det(Au).

Here we have used the fact thatˆ
uσ

ij
n (A)(Aρ)ij =

ˆ
ρσ

ij
n (A)(Au)ij = n

ˆ
ρ det(Au),

where σ ijn (A) denotes the cofactor ofAij in det(A), which can also be expressed asKW ij

with (W ij ) being the Weingarten map. Hence the Euler–Lagrange equation of J1(u) is

0 =
1
u
−

det(Au)ffl
Sn u det(Au)

+ (n+ 1)
( 

Sn
u det(Au)− 1

)
det(Au). (6.1)

Multiplying (6.1) by u and integrating on Sn we obtain
 
Sn
(u det(Au)− 1) dx = 0.

This together with (6.1) implies u=1/det(Au). Hence we have the following proposition.

Proposition 6.1. The critical point of the functional J1(u) over positive smooth func-
tions u with Au > 0 satisfies the soliton equation u = K .

Similarly we can compute the second variation of the functional J1:

d2

dη2J1(vη)

∣∣∣∣
η=0
= −

 
Sn

ρ2

u2 −

ffl
ρσ

ij
n (ρij + ρδij )ffl
Sn u det(Au)

+ (n+ 1)
(ffl

Sn ρ det(Au)ffl
Sn u det(Au)

)2

+ (n+ 1)2
( 

Sn
ρ det(Au)

)2

.



3756 Pengfei Guan, Lei Ni

Hence if u ≡ 1, as u is a critical point with
ffl
u det(Au) = 1, we deduce that

d2

dη2J1(vη)

∣∣∣∣
η=0
= −

 
Sn
ρ2
−

 
Sn
η(1̄ρ + nρ)+ (n+ 1)(n+ 2)

( 
Sn
ρ

)2

=

 
Sn
|∇̄ρ|2 − (n+ 1)

 
Sn
ρ2
+ (n+ 1)(n+ 2)

( 
Sn
ρ

)2

.

This computation, together with the detailed knowledge of the spectrum of the Laplace
operator of the sphere, proves the following stability result.

Proposition 6.2. The unit sphere/ball, the soliton with u ≡ 1, is stable among the varia-
tions vη = u+ ηρ with ρ ⊥ span{1, x1, . . . , xn+1}.

A similar consideration was applied by Andrews [6] to construct solitons of the flow with
speed being the power of the Gauss curvature.

7. Appendix

1. Here we collect some equations related to (3.5) and its normalization. We denote
ḡik(∇̄k∇̄ju + uḡkj ) by A (or Au to make clear the dependence), and −1/det(A) by 9,
viewed as a function of the tensor A. It is known that 9 is −n-concave [1]:

9̈(X,X) ≤
n+ 1
n

9̇(X)2

9
. (7.1)

When we discuss a solution to (3.6) we always assume that A > 0. The elliptic oper-
ator L := (9̇A)ij ∇̄i∇̄j , written in terms of a normal coordinate of Sn, appears in the
linearization of (3.6):

∂

∂t
− L−KH − 1.

If u1 and u2 are two convex (being the support functions of a convex body) solutions to
(3.6) with u1(x, 0) = u2(x, 0), then v = u1 − u2 satisfies, under the normal coordinates,

∂

∂t
v =

(ˆ 1

0
(9̇(As))ij ds

)
∇̄i∇̄jv +

(ˆ 1

0
9̇(As)(δij ) ds

)
v + v

with As = ∇̄i∇̄jus + usδij and us = su1 + (1 − s)u2. Hence u1(x, t) ≡ u2(x, t). The
following evolution equations are also well-known [5, 1].

Proposition 7.1. Under the normalized flow (3.6), the following hold:(
∂

∂t
− L

)
u = (n+ 1)9 + u− u9H, (7.2)(

∂

∂t
− L

)
9 = −92H − n9, (7.3)(

∂

∂t
− L

)
P = P −9HP + 9̈A(Q,Q). (7.4)
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Here H is the mean curvature of Mt := ∂�t , P = ∂9
∂t

, the time derivative of the speed,
that is, the acceleration, and Q = At .

Noticing that −9H = 9̇A(id), we see that the above two equations can be written as(
∂

∂t
− L

)
u = (n+ 1)9 + u+ u9̇A(id), (7.5)(

∂

∂t
− L

)
9 = 99̇A(id)− n9, (7.6)(

∂

∂t
− L

)
P = P + 9̇A(id)P + 9̈A(Q,Q). (7.7)

From these equations it is easy to see that (3.6) preserves the volume of the enclosed body.
Precisely,

6(t) :=

ˆ
Sn

u

−9
dθ(x) =

ˆ
Mt

〈X(y, t), ν(y)〉 dσ(y)

=

ˆ
�t

div(X) dµy = (n+ 1)V (�t ).

A direct calculation using (7.2), (7.3) and the divergence structure of the operator L/92

yields
6′(t) = (n+ 1)(6(t)− ωn).

Since 6(0)− ωn = 0, this implies that 6(t) ≡ ωn for all t .
The evolution equation forAij := uij+uδij , the inverse of the Weingarten mapW−1,

in the normal coordinates is useful. The equation was first proved in [6].

Proposition 7.2. In the normal coordinates, for a solution to (3.6) the tensorAij satisfies(
∂

∂t
− L

)
Aij = −KHAij + Aij + (n− 1)Kḡij + 9̈A(∇̄iA, ∇̄jA). (7.8)

Here 9 = −K and H is the mean curvature, that is, the sum of the eigenvalues of A−1.

As before, (7.8) can be written as(
∂

∂t
− L

)
Aij = −9̇A(id)Aij + Aij − (n− 1)9ḡij + 9̈A(∇̄iA, ∇̄jA). (7.9)

Below we derive the corresponding equation for Aij when u is instead a solution of (3.5)
since the corresponding equation readily yields an upper estimate for the Hessian of u,
for the un-normalized solution u. By (3.5) we have ∂

∂t
Aij = ∇̄i∇̄j9 + 9ḡij . Now we

compute

∇̄j9 = 9̇A(∇̄jA),

∇̄i∇̄j9 = 9̇A(∇̄i∇̄jA)+ 9̈A(∇̄iA, ∇̄jA),

∇̄i∇̄jAkl = ∇̄i∇̄j ∇̄k∇̄lu+ ∇̄i∇̄juḡkl .
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The commutator formulae yield

∇̄j ∇̄k∇̄lu = ∇̄k∇̄j ∇̄lu− R̄lpkj ∇̄pu,

∇̄i∇̄j ∇̄k∇̄lu = ∇̄i(∇̄k∇̄l∇̄ju− R̄lpkj ∇̄pu)

= ∇̄k∇̄i∇̄l∇̄ju− R̄lpkj ∇̄i∇̄pu− R̄jpki∇̄p∇̄lu− R̄lpki∇̄j ∇̄pu,

∇̄k∇̄i∇̄l∇̄ju = ∇̄k∇̄l∇̄i∇̄ju− R̄jpli∇̄p∇̄ku.

Here R̄ijkl = δikδj l − δilδjk is the curvature tensor of Sn. Putting all together we have

∇̄i∇̄j ∇̄k∇̄lu = ∇̄k∇̄l∇̄i∇̄ju− R̄jpli∇̄p∇̄ku− R̄lpkj ∇̄i∇̄pu

− R̄jpki∇̄p∇̄lu− R̄lpki∇̄j ∇̄pu.

Now using (9̇A)kl = KAkl , where (Aij ) is the inverse of (Aij ), we obtain

∇̄i∇̄j9 = KA
kl(∇̄i∇̄j ∇̄k∇̄lu)+KH ∇̄i∇̄ju+ 9̈A(∇̄iA, ∇̄jA)

= KAkl(∇̄k∇̄l(Aij − uḡij ))− 2KH ∇̄i∇̄j u+ 2KAkl(∇̄k∇̄lu)ḡij
+KH ∇̄i∇̄ju+ 9̈A(∇̄iA, ∇̄jA)

= KAkl(∇̄k∇̄lAij )−KH ∇̄i∇̄j u++KA
kl(∇̄k∇̄lu)ḡij + 9̈A(∇̄iA, ∇̄jA)

= KAkl(∇̄k∇̄lAij )−KHAij + nKḡij + 9̈A(∇̄iA, ∇̄jA).

Combining the above we arrive at the following parabolic equation for Aij :

∂

∂t
Aij = KA

kl(∇̄k∇̄lAij )−KHAij + (n− 1)Kḡij + 9̈A(∇̄iA, ∇̄jA). (7.10)

The equation (7.8) follows similarly if u satisfies (3.6) instead. Let Bij = ∇̄i∇̄ju, the
Hessian of u. Then if u is a solution to (1.1), B satisfies

∂

∂t
Bij = KA

kl(∇̄k∇̄lBij )−KHBij + 2nKḡij − 2uHKḡij + 9̈A(∇̄iA, ∇̄jA). (7.11)

An immediate consequence of the above is an upper bound on Bij . Let

BS(t) = max
x∈Sn

max
X∈TxSn, |X|=1

XiXj ∇̄i∇̄ju.

If BS(t0) = maxt∈[0,T ) BS(t), using the concavity of 9̈ we see that at an extremal point
(x0, t0) where BS(t0) is achieved, by the maximum principle,

HBS(t0) ≤ 2n− 2uH.

Hence, via the Cauchy–Schwarz estimate H ≥ nK1/n,

BS(t0) ≤ 2/K1/n.

Using infMt K ≥ infM0 K we have the uniform upper bound

(∇̄i∇̄ju)(x, t) ≤
2

infM0 K
1/n ḡij (x, t)+max

x
(∇̄i∇̄ju)(x, 0), (7.12)
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which recovers a key C2-estimate of [19] in the proof of the existence and convergence
to a point for the un-normalized flow.

Making use of the computation above we also have the following evolution equation
for |X|2 = |∇̄u|2 + u2:(
∂

∂t
−L

)
|X|2 = 2|X|2−2(9̇A)ij ∇̄i∇̄ku∇̄j ∇̄ku+2(n+1)u9+2u2(9̇A)(id). (7.13)

2. Here we give an alternative proof of Theorem 5.1. Consider the quantity Q :=

K/(2u− a). The evolution equations (7.2) and (7.3) yield(
∂

∂t
− L

)
Q =

K2H − nK

2u− a
− 2K

−(n+ 1)K + u+ uKH
(2u− a)2

+ 29̇ij ∇̄iQ∇̄j log(2u− a)

=
−aK2H + 2(n+ 1)K2

− (2u− a)nK − 2uK
(2u− a)2

+ 29̇ij ∇̄iQ∇̄j log(2u− a).

Now apply the maximum principle: ifm(t) = maxx∈Sn Q(x, t) is achieved at (x0, t), then
at that point we have

0 ≤
−aK2H + 2(n+ 1)K2

− (2u− a)nK − 2uK
(2u− a)2

≤ m(t)2(−aH + 2(n+ 1)).

Noting that K ≤ (H/n)n, we then deduce that at (x0, t),

K ≤

(
2(n+ 1)
na

)n
,

which in turn implies that

m(t) ≤

(
2(n+ 1)

n

)n 1
an+1 .

The claimed estimate in Theorem 5.1 follows from the above.
We remark that in [15, Corollary, p. 156], Hamilton obtained the above estimate by

using the sharp differential estimate of Chow (which is also referred to as a differential
Harnack estimate, as well as a Li–Yau–Hamilton type estimate) and the entropy formula
of Chow [10]. Hamilton’s estimate is built upon a lower estimate of u(x, t)/K(x, t).
Our proof of Theorem 5.1 avoids the use of Chow’s entropy formula and his differential
estimate [10], but is based on the C0-lower bound. Below we include a slightly stronger
result lower estimate of u(x, t)/K(x, t).

Proposition 7.3. Let u be a solution to the un-normalized flow (3.5) with the reference
point being the limit point when t → T . Then

u(x, t)

K(x, t)
≥ (n+ 1)tn/(n+1)(T 1/(n+1)

− t1/(n+1)). (7.14)
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Since T ≥ t , the above (7.14) implies u(x, t)/K(x, t) ≥ (t/T )n/(n+1)(T − t), a result of
Hamilton [15].

Proof of Proposition 7.3. By the differential estimate of Chow [10, Theorem 3.7], we
deduce that, with respect the parametrization via the Gauss map,

−9t −
n

(n+ 1)t
9 ≥ 0.

Then a direct calculation shows that y(t) = u/(−9) satisfies the estimate

y′(t) ≤ −1+
n

(n+ 1)t
y(t).

Noticing that y(t)→ 0 as t → T , integrating the above from t to T yields

−t−n/(n+1)y(t) ≤ −(n+ 1)(T 1/(n+1)
− t1/(n+1)).

Hence we have the claimed estimate. ut

Note that for the solution u(x, t) to the normalized flow (3.6), the estimate (7.14) implies

u(x, t)

K(x, t)
≥

1
n+ 1

(1− e−(n−1)t )n/(n+1), (7.15)

which together with Corollary 2.1 and Theorem 3.4 gives another proof of Theorem 5.1.

3. Here we include a proof of Theorem 5.3. We denote by σi(A) (or simply σi) the i-th
symmetric function of the symmetric tensor Aij = ∇̄i∇̄ju + uδij . The previous result
implies that σn ≥ 1/C1, where C1 is the positive constant from Theorem 5.1. We recall
Newton’s inequality (the function log(σk/Ckn), with Ckn being the binomial coefficient, is
a concave function of k):

σn−1

n
≥

(
σ1

n

)1/(n−1)

σ
(n−2)/(n−1)
n . (7.16)

The concavity of 9̈ together with (7.8) implies that(
∂

∂t
− L

)
σ1 ≤ −

σ1σn−1

σ 2
n

+ σ1 +
n(n− 1)
σn

−
n+ 1
n

|∇̄K|2

K
. (7.17)

Let m(t) := maxx∈Sn σ1(x, t). Then at (x0, t) where m(t) is achieved we have

0 ≤ −
σ1σn−1

σ 2
n

+ σ1 +
n(n− 1)
σn

≤ −n(n−2)/(n−1) σ
n/(n−1)
1

σ
n/(n−1)
n

+ σ1 + n(n− 1)C1

≤ −C2σ
n/(n−1)
1 + σ1 + C

′

1.

Here in the second last inequality we applied (7.16) and the upper estimate ofK(x, t), and
in the last inequality we applied the lower estimate ofK(x, t) established in Theorem 5.1.
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The claimed result (5.11) follows from the application of the maximum principle to the
above estimate. The estimate (5.12) follows from Theorem 5.1 and (5.11).
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