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Abstract. A numerical characterization is given of the h-triangles of sequentially Cohen–
Macaulay simplicial complexes. This result determines the number of faces of various dimensions
and codimensions that are possible in such a complex, generalizing the classical Macaulay–Stanley
theorem to the nonpure case. Moreover, we characterize the possible Betti tables of componentwise
linear ideals. A key tool in our investigation is a bijection between shifted multicomplexes of degree
≤ d and shifted pure (d − 1)-dimensional simplicial complexes.
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1. Introduction

The notion of sequentially Cohen–Macaulay complexes first arose in combinatorics:
Motivated by questions concerning subspace arrangements, Björner & Wachs [BW96,
BW97] introduced the notion of nonpure shellability. Stanley [Sta96] then introduced
the sequential Cohen–Macaulay property in order to have a ring-theoretic analogue of
nonpure shellability. Schenzel [Sch99] independently defined the notion of sequentially
Cohen–Macaulay modules (called by him Cohen–Macaulay filtered modules), inspired
by earlier work of Goto. In essence, a simplicial complex is sequentially Cohen–Macaulay
if and only if it is naturally composed of a sequence of Cohen–Macaulay subcomplexes,
namely the pure skeleta of the complex, graded by dimension. They come with an asso-
ciated numerical invariant, the so-called h-triangle, which measures the face numbers of
each component according to a doubly indexed grading. Just as the classical h-vector
determines the numbers of faces of various dimensions of a simplicial complex, the
h-triangle determines the numbers of faces in each component of the complex.
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Motivated by the Macaulay–Stanley theorem for Cohen–Macaulay complexes, which
are always pure, Björner & Wachs [BW96] posed the problem of characterizing the pos-
sible h-triangles of sequentially Cohen–Macaulay simplicial complexes. Via a connection
that seems to have up to now been overlooked, this problem is equivalent to characterizing
the possible Betti tables of componentwise linear ideals—see for instance [CHH04, The-
orem 2.3], [KK12] and [HRW99, Proposition 12]. After some significant initial progress,
due to Duval [Duv96] and Aravoma, Herzog & Hibi [AHH00], which reduced these two
questions to combinatorial settings, some partial results on the second question were ob-
tained by Crupi & Utano [CU03] and Herzog, Sharifan & Varbaro [HSV14]. Part of the
difficulty of this nonpure “Macaulay problem” is that, in contrast to the classical situation,
it does not suffice to use a criterion that makes a decision by only pairwise “Macaulay
type” comparisons of entries in the h-triangle.

Our main objective in this paper is to give a numerical characterization of the possible
h-triangles of sequentially Cohen–Macaulay complexes. The method that we use is based
on a modification of a correspondence between shifted multicomplexes and pure shifted
simplicial complexes, provided by Björner, Frankl & Stanley [BFS87]. Finally, we also
give a characteristic-independent characterization of the possible Betti tables of compo-
nentwise linear ideals using our main result and an observation made by Herzog, Sharifan
& Varbaro [HSV14].

The paper is organized as follows. In Section 2, we present some basic definitions and
derive some necessary relations on the face numbers of sequentially Cohen–Macaulay
complexes. Section 3 is devoted to our study of the Björner, Frankl & Stanley (BFS)
bijection, which we examine via a connection to lattice paths. The numerical charac-
terization of the possible h-triangles of sequentially Cohen–Macaulay complexes is the
subject of Section 4. Finally, in Section 5 we present a numerical characterization of the
possible Betti tables of componentwise linear ideals.

2. Preliminaries

Simplicial complexes. A family 1 of subsets of the set [n] := {1, . . . , n} is called a
simplicial complex on [n] if 1 is closed under taking subsets, i.e. if F ∈ 1 and F ′ ⊆ F ,
then F ′ ∈ 1. The members F of 1 are called faces of 1. The facets of 1 are the
inclusionwise maximal faces; the set of all facets of1 is denoted by F(1). The dimension
dimF of a face F is one less than its cardinality and the dimension of 1 is defined to
be the maximal dimension of a face. A simplicial complex of dimension d − 1 will be
called a (d − 1)-complex. A (d − 1)-complex 1 is called pure if each facet of 1 has
dimension d − 1.

For a (d − 1)-complex 1, let 1i := {i-dimensional faces of 1} and let fi := |1i |.
The vector f(1) = (f−1, f0, . . . , fd−1) is called the f -vector of 1. The subcomplex
1(i) :=

⋃
j≤i 1

j is called the i-skeleton of 1. The pure i-skeleton 1[i] of 1 is the pure
i-complex whose set of facets is the set of i-dimensional faces of1, that is, F(1[i]) = 1i .
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The h-vector h(1) = (h0, h1, . . . , hd) of 1 is defined by
d∑
i=0

hiy
i
=

d∑
i=0

fi−1(1− y)d−iyi .

For a (d − 1)-complex 1, let h̃i,j = h̃i,j (1) = hj (1[i−1]). Then the triangular integer
array h̃(1) = (̃hi,j )0≤j≤i≤d is called the h̃-triangle of1. Also, define hi,j by the relation

hi,j = h̃i,j −

j∑
`=0

h̃i+1,`. (1)

The triangular integer array h(1) = (hi,j )0≤j≤i≤d is called the h-triangle of 1. Note
that our definition of the h-triangle is equivalent to the one presented in [BW96, Defini-
tion 3.1].

Let k be an infinite field and S = k[x1, . . . , xn] the polynomial ring over n variables.
For a simplicial complex 1 on [n], let I1 be the Stanley–Reisner ideal of 1, that is, the
ideal

I1 := 〈{xi1 . . . xir : {i1, . . . , ir} /∈ 1}〉

of S. The quotient ring k[1] := S/I1 is called the face ring of 1. The complex 1 is
said to be Cohen–Macaulay over k if k[1] is Cohen–Macaulay (see e.g. [HH11, p. 273],
for Cohen–Macaulay rings). A topological characterization of the Cohen–Macaulay com-
plexes can be found in the book by Stanley [Sta96]. The reference to the base field will
usually be dropped and we simply say that 1 is Cohen–Macaulay, or CM for short.

A (d − 1)-complex 1 is said to be sequentially Cohen–Macaulay, or SCM for short,
if the pure i-skeleton 1[i] of 1 is CM for all i ≤ d − 1.

A simplicial complex 1 on [n] is called shifted if for all integers r and s with 1 ≤
r < s ≤ n and all faces F of 1 such that r ∈ F and s /∈ F one has (F \ {r}) ∪ {s} ∈ 1.
Recall that every shifted complex is (nonpure) shellable [BW97], and a shifted complex
is CM if and only if it is pure.

Face numbers of CM complexes. LetWn = {w1, . . . , wn} be a set of variables. A multi-
complex M on V ⊆ Wn is a collection of monomials on V that is closed under divisibility.
A multicomplex M on V is said to be shifted if for all xr and xs in V with r < s and all
monomials m in M divisible by xr one has xs · (m/xr) ∈ M.

Let Mi denote the set of monomials in M of degree i. The sequence f(M) =
(f0, f1, . . .) is called the f -vector of M, where fi = |Mi

|. The numerical characteri-
zation of f -vectors of multicomplexes (due to Macaulay [Mac27]) can be seen as the
historical starting point for a line of research that this investigation is part of.

The `-representation of a positive integer p is the unique way of writing

p =

(
a`

`

)
+

(
a`−1

`− 1

)
+ · · · +

(
ae

e

)
,

where a` > a`−1 > · · · > ae ≥ e ≥ 1. Define

∂`(p) =

(
a` − 1
`− 1

)
+

(
a`−1 − 1
`− 2

)
+ · · · +

(
ae − 1
e − 1

)
.
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Also set ∂`(0) = 0 for all `. A vector f = (f0, f1, . . .) of nonnegative integers is called
an M-sequence if f0 = 1 and ∂`(f`) ≤ f`−1 for all `.

A complete characterization of the h-vectors of CM complexes is achieved by com-
bining the results by Macaulay [Mac27] and Stanley [Sta96, Sta77]. With some additional
information taken from Björner, Frankl & Stanley [BFS87] we get all parts of the follow-
ing theorem.

Theorem 1 (Macaulay–Stanley Theorem). For an integer vector h = (h0, h1, . . . , hd)

the following are equivalent:

(a) h is the h-vector of a CM complex on [n] of dimension d − 1;
(b) h is the h-vector of a pure shifted complex on [n] of dimension d − 1;
(c) h is the f -vector of a multicomplex on {w1, . . . , wn−d};
(d) h is the f -vector of a shifted multicomplex on {w1, . . . , wn−d};
(e) h is an M-sequence with h1 ≤ n− d .

This is one of the early pinnacles of algebraic combinatorics. To understand why this
theorem is so remarkable, notice for instance that the h-numbers of a Cohen–Macaulay
complex (motivated by ring theory) generally do NOT have a direct combinatorial inter-
pretation in that same simplicial complex [Lic91]. However, there is another simplicial
complex (combinatorially motivated) and a multicomplex with the same h-numbers, and
in which they do have a simple interpretation.

Face numbers of SCM complexes: some necessary conditions. The h-triangle of a
shifted complex (more generally, a shellable complex) has a combinatorial interpretation
that we now recall; the reader may consult [BW96, BW97] for more information. For
a shifted complex 1, reverse lexicographic order of the facets is a shelling order with
restriction map R(F ) = F \ σ(F ), where σ(F ) is the longest segment {s, . . . , n} ⊆ F if
n ∈ F and is empty otherwise. In particular,

hi,j (1) = |{F ∈ F(1) : |F | = i & |σ(F )| = i − j}|. (2)

Algebraic shifting is an operator on simplicial complexes that associates to a simplicial
complex a shifted complex, preserving many interesting invariants of the complex. We
refer the reader to the article by Kalai [Kal02] or the book by Herzog & Hibi [HH11] to
see the precise definition and properties. It was shown by Duval [Duv96] that a complex is
SCM if and only if algebraic shifting preserves its h-triangle (or equivalently h̃-triangle).
In particular, the set of h-triangles of SCM complexes coincides with the set of h-triangles
of shifted complexes.

Putting these facts together we can deduce the following necessary conditions.

Proposition 2 (cf. [BW96, Theorem 3.6]). If a triangular integer array h̃(1) =

(̃hi,j )0≤j≤i≤d is the h̃-triangle of a SCM complex, then

(a) every row h̃[i] := (̃hi,0, h̃i,1, . . . , h̃i,i) is an M-sequence; and
(b) h̃i,j ≥

∑
`≤j h̃i+1,`.

These necessary conditions are, however, not sufficient, as the following example shows.
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Example 3. The triangular integer array

h̃ =

1
1 5
1 4 7
1 3 3 4
1 2 0 0 0

satisfies the conditions in Proposition 2. However, there exists no SCM complex with the
given array as its h̃-triangle.

To see this, assume the contrary and let 1 be a shifted complex with h̃(1) = h̃. Let
X and Y be the pure 3- and 2-skeleta of 1, respectively. It follows from equation (2)
that X is obtained by taking three iterated cones from a disjoint union of three points.
Now, looking at f -vectors, it is clear that the underlying graph (1-skeleton) of Y is the
same as the underlying graph of X, which is a complete 4-partite graph K3,1,1,1. Now,
if we remove from Y the smallest vertex in the shifted ordering, the underlying graph
becomes K3,1,1. However, this graph has only three missing triangles, whereas Y has
four homology facets (i.e. facets F with R(F ) = F ). Thus we get a contradiction.

Remark. Criterion (e) in Theorem 1 shows that in order to decide whether h is the
h-vector of a Cohen–Macaulay simplicial complex it suffices to check a certain crite-
rion for pairs of entries of h. The answer is yes if and only if the answer is yes for every
pair of consecutive entries.

The same is not true for SCM complexes, as shown by the necessity of condition (b)
in Proposition 2, as well as by Example 3. More than pairwise checks are needed here.

3. A combinatorial correspondence

Correspondences between monomials and sets (or between sets with repetitions and sets
without) are well-known in combinatorics. We are going to make crucial use of such a
correspondence, namely a more precise and elaborated version of the bijection defined in
[BFS87] (see Remark 7). We call it the BFS correspondence. It is conveniently explained
in terms of lattice paths.

By a lattice path from (0, 0) to (r, a) we mean a path restricted to east (E) and north
(N) steps, each connecting two adjacent lattice points. Thus, a lattice path can be seen as
a word L = L1L2 . . . Lr+a on the alphabet {N,E} with the letter N appearing exactly
a times. For two lattice paths L and L′, let L < L′ mean that L never goes above L′. The
poset consisting of all lattice paths from (0, 0) to (r, a) ordered by this partial order will
be denoted by Lr,a .

The lattice paths in Lr,a can be encoded in two natural ways: either by the position of
the north steps, or by the number of north steps in each column. Thus, for L ∈ Lr,a let us
define:
• ν(L) is the set of positions within L of its north steps, i.e. ν(L) := {i : Li = N};
• λ(L) is the monomial

∏r
i=1w

λi (L)
i , where λi(L) is the number of north steps of L

coordinatized as (i − 1, j)→ (i − 1, j + 1), for some j .
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Example 4. Let L = NEENENNEEEN . Then ν(L) = {1, 4, 6, 7, 11} and λ(L) =
w1w3w

2
4 (see Figure 1).

Fig. 1. The lattice path L = NEENENNEEEN from (0, 0) to (6, 5).

A few more definitions are needed. Recall that an order ideal Q in a poset P is a subset
Q ⊆ P such that if x ∈ Q and z < x then z ∈ Q. We use the following notation:

•
(
[r+a]
a

)
= the set of a-element subsets of {1, . . . , r + a},

•
((
Wr
≤a

))
= the set of monomials of degree ≤ a in indeterminates Wr = {w1, . . . , wr}.

We leave it to the the reader to verify the following simple observations.

Proposition 5. (a) The map ν induces a bijection between shifted set families in
(
[r+a]
a

)
and order ideals in Lr,a .

(b) The map λ induces a bijection between shifted multicomplexes in
((
Wr
≤a

))
and order

ideals in Lr,a . ut

Now, let a be a positive integer and m a monomial on Wr such that deg m ≤ a. Define
ϕa(m) to be the a-subset νλ−1(m) of [r + a]. We drop the integer a from the notation
whenever there is no danger of confusion. Also, let ψ be the inverse of ϕ. The situation
is illustrated in the following diagram of bijective maps:

Lr,a
λ

zz

ν

��((
Wr
≤a

)) ϕ ,, ([r+a]
a

)
ψll

Proposition 6 (BFS correspondence). (a) The map ϕ := νλ−1 induces a bijection ϕ,
with inverse ψ , between shifted multicomplexes in

((
Wr
≤a

))
and shifted set families

in
(
[r+a]
a

)
.

(b) For a pure shifted (a−1)-complex1 with facets F(1), one has h(1) = f(ψ(F(1))).
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Proof. (a) follows from Proposition 5. For (b), observe that for a facet F of 1, the cardi-
nality of its restriction R(F ), as discussed in connection with equation (2), is equal to the
number of N steps in the last column of ν−1(F ). Hence,

|R(F )| = |F | − |σ(F )| = degψ(F).

This implies that hi(1) = fi(ψ(F(1))) for all i. ut

Remark 7. Our map ϕ from monomials to sets can be shown to be identical to the map ϕ
defined in [BFS87, p. 30], up to relabeling (reversing the order of vertices and mono-
mials).

It was shown in [BFS87] for multicomplexes M that M compressed⇒ ϕ(M) shellable.
Also, we have seen here that M shifted⇒ ϕ(M) shifted. Since compressed⇒ shifted⇒
shellable, the latter implication strengthens the former at both ends of the implication
arrow.

Definition 8. Let a be a positive integer and M a shifted multicomplex on Wr of degree
less than or equal to a. Define8a(M) = 8(M) to be the simplicial complex whose set of
facets, F(8(M)), is ϕ(M). Also, for a pure shifted (a − 1)-complex 1, set 9(1) to be
the multicomplex consisting of the monomials ψ(F) for all facets F of 1.

Let a be a positive integer and M a shifted multicomplex on Wr of degree less than or
equal to a. Define the a-cone C a

r+1M of M to be

C a
r+1M = {w`r+1 ·m : m ∈ M and deg m+ ` < a}.

We will drop the indices r + 1 and a from the notation when they are clear from the con-
text. The cone construction on multicomplexes can be seen as a non-square-free analogue
of the topological cone. However, it is more useful to see it as an analogue of yet another
combinatorial construction: the codimension one skeleton of a simplicial complex.

Proposition 9. Let M be a shifted multicomplex on Wr of degree less than or equal to a.
Then the set C a

r+1M is a shifted multicomplex on Wr+1. Furthermore, 8a−1(C a
r+1M) is

the (a − 2)-skeleton of 8a(M).

Proof. Obviously, C a
r+1M is a pure shifted multicomplex on Wr+1 of degree a − 1. Set

1 = 8a(M). Then the facets of the codimension one skeleton of 1 are

F(1(a−2)) = {F \ j : F ∈ F(1) & j ∈ σ(F )}.

Let F be a facet of 1 and j an element in σ(F ). Observe that if ν−1(F ) = L1 . . . Lr+a ,
then Lj = N , and that ν−1(F \ j) is the lattice path from (0, 0) to (r + 1, a− 1) obtained
by changing Lj to an E step. On the level of monomials this is the same as multiplying
by a suitable power of wr+1. ut

We wish to extend the BFS bijection to the realm of not-necessarily-pure shifted com-
plexes, the motivation being to make this useful tool available for SCM complexes. To do
so we need the following definition.
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Definition 10 (Metacomplex). A d-metacomplex is a sequence M = (M[0],M[1], . . . ,
M[d]) of multicomplexes on W such that

(a) M[i] is a multicomplex on {w1, . . . , wn−i} of degree less than or equal to i, for all
0 ≤ i ≤ d; and

(b) C iM[i] ⊆ M[i−1] for all 1 ≤ i ≤ d .

Also, define the f -triangle of M to be the triangular integer array f(M )=(fi,j )0≤j≤i≤d ,
where fi,j (M ) is the number fj (M[i]) of degree j monomials in M[i]. A metacomplex is
shifted if all underlying multicomplexes M[i] are.

For a d-metacomplex M , let 8(M ) be the union

8(M ) =

d⋃
i=0

{ϕi(m) : m ∈ M[i]}

of subsets of [n]. It follows by Proposition 9 that the shadow of the collection of i-sets
in 8(M ) is contained in the collection of (i − 1)-sets, for all i ∈ [d]. Thus, 8(M ) is
a shifted (d − 1)-complex on [n]. Also, Proposition 6(b) implies that the h̃-triangle of
8(M ) coincides with the f -triangle of M .

Conversely, for a shifted (d − 1)-complex 1 on [n] the sequence

9(1) := (9(1[0]),9(1[1]), . . . , 9(1[d]))

is a metacomplex whose f -triangle coincides with the h̃-triangle of 1. Summarizing, we
have established this:

Proposition 11 (Extended BFS correspondence). The pair (8,9) is a bijection be-
tween shifted d-metacomplexes on W and shifted (d − 1)-complexes on [n]. Moreover
h̃(1) = f(9(1)). ut

The extended BFS correspondence can also be derived in terms of lattice paths. Namely,
let L̂r,a be the set of all {N,E} lattice paths beginning at (0, 0) and ending at some point
among (n− j, j), 0 ≤ j ≤ d . Then order ideals in L̂r,a correspond bijectively to shifted
d-metacomplexes on W on the one hand and to shifted (d − 1)-complexes on [n] on the
other.

4. Face numbers of SCM complexes: A numerical characterization

In this section we give a numerical characterization of possible h̃-triangles of SCM com-
plexes. For that purpose, we need to consider special kinds of integer systems D = {qm

}m,
indexed by monomials m of degree less than or equal to t on a set Ws = {w1, . . . , ws} of
variables.

Definition 12. Let s and t be integers with 1 ≤ s, t ≤ d . An Ms,t -array is a function
q :

((
Ws
≤t

))
→ Z+ (whose values we write qm rather than the conventional q(m)) such

that
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(1) if deg(m) = t − ` and m′ = uj · (m/ui) for some i < j such that ui divides m, then
qm
≤ qm′ ;

(2) if deg m = t , then qm
= 1;

(3) if m′ = m · uj for some j ∈ [s] and deg(m) = t − `, then ∂`(qm) ≤ qm′ .

Let h = (h0, h1, . . . , hd) be an M-sequence and r ∈ Z+. An Ms,t (h)-composition of r is
an Ms,t -array D = {qm

}m such that

(4) h` ≤ qm if deg(m) = t − `;
(5)

∑
m q

m
= r .

For an Ms,t -array D = {qm
}m, we let 6sD be the sum of all qm such that us divides m.

Further, we define:

(6) ρs,t (r; h) = min{6sD : D is an Ms,t (h)-composition of r}.
(7) An Ms,t (h)-composition D of r is said to be minimal if 6sD = ρs,t (r; h).

Example 13. Let h = (1, 4, 9, 4, 1) and r = 22. Then

D1 = {q
1
= 10, qu1 = 4, qu2 = 5, qu

2
1 = qu

2
2 = qu1u2 = 1},

D2 = {q
1
= 9, qu1 = 5, qu2 = 5, qu

2
1 = qu

2
2 = qu1u2 = 1}

are two minimal M2,2(h)-composition of 22, whereas

D3 = {q
1
= 9, qu1 = 4, qu2 = 6, qu

2
1 = qu

2
2 = qu1u2 = 1}

is a nonminimal M2,2(h)-composition of 22.

Clearly, for an integer r and a triple (h, t, s) as in Definition 12 such that r ≥∑t
i=0

(
s+i−1
i

)
ht−i , an Ms,t (h)-composition of r exists. Hence, the quantity ρs,t (r; h) is

well-defined. However, there is a canonical way to obtain a minimal composition that we
now discuss.

Remark 14. For s = 1 condition (1) is void and the array is linear. So, by conditions (2)
and (3) the concept is then equivalent to that of an ordinary M-sequence.

Let us first fix some notation. For a positive integer p with `-representation

p =

(
a`

`

)
+

(
a`−1

`− 1

)
+ · · · +

(
ae

e

)
,

where a` > a`−1 > · · · > ae ≥ e ≥ 1, define

∂〈`,j〉(p) =

(
a` − j

`− j

)
+

(
a`−1 − j

`− j − 1

)
+ · · · +

(
ae − j

e − j

)
.

In particular, ∂〈`,0〉(p) = p and ∂〈`,1〉(p) = ∂`(p). Note that ∂〈`,j〉(p) is a lower bound
for the number of monomials of degree `− j in a multicomplex M with f`(M) = p.
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Let us define a linear order on the monomials of degree less than or equal to t on the
set Us of variables. For all i, set 1 <i ui <i u2

i <i · · · <i u
t
i . Finally set <π to be the

product order of all<i induced by u1 < · · · < us . Also, for a monomial m of degree t−`
on Us and a nonnegative integer j ≤ t define

cj (m) = |{monomials m′ on Us,t−j : deg m′ = t − j & m <π m′}|.

Construction 15. Let r , h, t and s be as in Definition 12. We construct a minimal
Ms,t (h)-composition of r inductively as follows.

• Set q1 to be the maximum integer p such that

t∑
j=1

(
s + j − 1

j

)
·max{ht−j , ∂〈t,j〉(p)} ≤ r − p.

• Let m be a monomial of a positive degree t − ` and assume that qm′ is defined for all
monomials m′ <π m. Set qm to be the maximum integer p such that

∑
m′<πm

qm′
+

∑̀
j=0

c`−j (m) ·max{h`−j , ∂〈`,j〉(p)}

+

t∑
j=`+1

cj (m) ·max{qm′
: deg m′ = t − j & m′ <π m} ≥ r − p.

It is not difficult to see that the construction above yields a minimal Ms,t (h)-composition
of r . This minimal composition will be called the regular Ms,t (h)-composition of r .

The following is our main result.

Theorem 16. A triangular integer array h̃ = (̃hi,j )0≤j≤i≤d is the h̃-triangle of a sequen-
tially CM complex if and only if

(a) every row h[i] = (̃hi,0, h̃i,1, . . . , h̃i,i) is an M-sequence;
(b) h̃i,j ≥

∑
`≤j h̃i+1,`;

(c) ρj,d−i (̃hi,j ; h[d]) ≤ h̃i,j−1.

Proof. Necessity. Conditions (a) and (b) are already discussed in Proposition 2. We shall
prove the necessity of (c).

Let 1 be a shifted (d − 1)-complex and M := (M[0],M[1], . . . ,M[d]) its associ-
ated metacomplex on W . Denote by Qi,j the set of all monomials in M[i] of degree j .
In particular, the cardinality of Qi,j is equal to h̃i,j . Now, for a monomial m on U =
{wn−d+1, . . . , wn−i}, consider the set

Qm
i,j = {p = p(w1, . . . , wn−i) ∈ Qi,j : p(1, . . . , 1, wn−d , . . . , wn−i) = m}.

We denote by qm
i,j the cardinality of Qm

i,j .

Claim. Set ut := wn−d+t for all t ∈ [d − i]. Then D = {qm
i,j }m is an Mj,d−i(h[d])-

composition of h̃i,j .
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Proof of the claim. First observe that the setsQm
i,j form a partition ofQi,j . Hence, condi-

tion (5) of Definition 12 is satisfied. Now, let m be a monomial of degree j − ` on U and
m′ = uk · (m/ur) for some r and k such that r < k ≤ d − i and ur divides m. It follows
from Proposition 11 and Definition 10 that h̃d,` ≤ qm

i,j . Also, since M[i] is shifted, for ev-

ery p ∈ Qm
i,j one has uk · u−1

r · p ∈ Q
m′
i,j . Thus, qm

i,j ≤ q
m′
i,j and condition (1) is also valid.

Finally, set m′ = uk · m for some k ≤ d − i. Let p ∈ Qm
i,j . For every w in

{w1, . . . , wn−d} that divides p, the monomial uk · (p/w) is in Qm′
i,j , since M[i] is shifted.

Hence, the shadow of the collection {p/m : p ∈ Qm
i,j } of monomials is contained in

{p′/m′ : p′ ∈ Qm′
i,j }. This proves condition (3) of Definition 12. Therefore, D = {qm

i,j }m is
an Mj,d−i(h[d])-composition of h̃i,j . ut

To complete the proof of necessity, for every monomial m on U that is divisible by wn−i ,
set m′ = m/wn−i . The division map

×w−1
n−i : Q

m
i,j → Qm′

i,j−1

is an injection, since M[i] is a multicomplex. Hence,

6d−iD =
∑
wn−i |m

qm
i,j ≤

∑
m′
qm′
i,j−1 = h̃i,j−1.

Therefore ρj,d−i (̃hi,j ; h[d]) ≤ h̃i,j−1, as desired.
Sufficiency. Let h̃ be a triangular integer array satisfying conditions (a)–(c) of the

statement. In the light of Proposition 11, it suffices to construct a metacomplex M such
that f(M ) = h̃. We construct M as follows:

• Let M[d] be the compressed multicomplex on {w1, . . . , wn−d} consisting of the first
h̃d,j monomials of degree j in reverse lexicographic order, for all 0 ≤ j ≤ d .
• Let i be an integer less than d. We shall construct M[i]. For j ≤ i, let Di,j = {qm

i,j }m be
the regular Mj,d−i(h[d])-composition of h̃i,j . Consider the change of variables ut →
wn−d+t for t ∈ [d−i]. We will use the same notation m to denote the image of m under
this change of variables; this should not lead to any confusion. Now, for a monomial m
of degree ` on {wn−d+1, . . . , wn−i}, let Pm

i,j be the set of the first qm
i,j monomials of

degree j − ` on {w1, . . . , wn−d} in reverse lexicographic order. Also, let

Qi,j =

⋃
m
{m · p : p ∈ Pm

i,j }.

Finally, we set M[i] =
⋃i
j=0Qi,j .

Clearly, the number of elements of degree j in M[i] is h̃i,j . Also, since the M[i]’s are
shifted multicomplexes, it follows from condition (b) that C i+1M[i+1]

⊆ M[i]. Thus, it
only remains to show that M[i] is a shifted multicomplex. We first show that Qi,j is a
shifted family of monomials for all j . Let p be a monomial in Qm

i,j , and let wr and wk
be two variables in {w1, . . . , wn−i} such that k < r and wk divides p. We shall show that
wr · (p/wk) ∈ Qi,j . Consider the following cases:
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Case 1: k < r ≤ n − d . If p′ = p/m, then wr · (p′/wk) ∈ Pm
i,j , since Pm

i,j is shifted.
Hence, wr · (p/wk) ∈ Qm

i,j .

Case 2: k ≤ n − d < r ≤ n − i. Note that the shadow of Pm
i,j is contained in Pm′

i,j by
condition (3) of Definition 12, where m′ = wr ·m. Thus, wr · (p/wk) ∈ Qm′

i,j .
Case 3: k ≤ n − d < r ≤ n − i. Condition (1) of Definition 12 implies that Pm

i,j is
contained in Pm′

i,j for m′ = wr · (m/wk). In particular, wr · (p/wk) ∈ Qm′
i,j and Qi,j is

a shifted family.

Finally, assume that p ∈ Qi,j and w is a variable dividing p. The shifted property ensures
that wn−i · (p/w) ∈ Qi,j . However, it follows from (c) that p/w ∈ Qi,j−1. This shows
that M[i] is a multicomplex. ut

5. Betti tables of componentwise linear ideals

In this section we obtain a characterization of the possible Betti tables of componentwise
linear ideals in a polynomial ring over a field of arbitrary characteristic. We start by re-
calling some definitions and refer the reader to the book by Herzog & Hibi [HH11] for
undefined terminology.

A graded ideal I is said to have an r-linear resolution if bs,s+`(I ) = 0 for all ` 6= r .
For a graded ideal I , let I(r) be the ideal generated by all monomials of degree r in I .
Then I is called componentwise linear if I(r) has an r-linear resolution for all r .

For square-free monomial ideals the notion of componentwise linearity is dual to
sequential Cohen–Macaulayness, in the sense that the Stanley–Reisner ideal I1 of a com-
plex1 is componentwise linear if and only if its Alexander dual1∗ is SCM. In particular,
the Stanley–Reisner ideal of a shifted complex is componentwise linear; such an ideal is
called square-free strongly stable. Square-free strongly stable ideals are square-free ana-
logues of strongly stable ideals. Recall that a monomial ideal I ⊆ S is said to be strongly
stable if for every monomial u in the minimal set G(I ) of monomial generators of I and
all i < j such that xj divides u, the element xi · (u/xj ) is in I .

Observation 17 (Herzog, Sharifan & Varbaro, [HSV14]). The set of Betti tables of
componentwise linear ideals in a polynomial ring over a field of an arbitrary characteristic
coincides with those of the strongly stable ideals.

In characteristic zero, it is known [HH11, Theorem 8.2.22] that componentwise linearity
can be characterized as ideals with stable Betti table under (reverse lexicographic) generic
initial ideal. The interesting part of the observation is that the characterization of the Betti
tables does not depend on the characteristic. We do not rewrite the observation here,
instead we refer the reader to [HSV14, p. 1879] for more details.

Proposition 18. The set of all Betti tables of r-regular componentwise linear ideals in
the polynomial ring k[x1, . . . , xn] coincides with the set of all Betti tables of r-regular
square-free strongly stable ideals in the polynomial ring k[x1, . . . , xn+r−1].
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Proof. Note that the Betti table of an ideal depends only on the set of generators, in the
sense that if I ⊆ k[x1, . . . , xn] and J is the ideal generated by the set G(I ) of generators
of I in the polynomial ring k[x1, . . . , xn+r ], then I and J have the same Betti tables.
Now the conclusion follows from [HH11, Lemmas 11.2.5 and 11.2.6]. ut

Let I be a square-free strongly stable ideal in S. For u ∈ G(I ), denote by m(u) the largest
index t such that xt divides u. If d = {min deg u : u ∈ G(I )}, then for ` ≥ d define

mk,`(I ) = |{u ∈ G(I ) : deg u = ` & m(u) = k + `− 1}|.

Clearly, mk,` = 0 if k + ` ≥ n + 1. Thus we may think of the collection of
doubly indexed m-numbers as a triangular array. The triangular integer array m(I ) :=

(mk,`)1≤k≤n−`+1≤n−d+1 is called the reduced array of generators of I .
The square-free version of Eliahou–Kervaire implies (see [HH11, Subsection 7.2])

that

bs,s+`(I ) =

n∑
k=s−1

(
k

s

)
mk,`(I ),

or equivalently ∑
s≥0

bs,s+`(I )t
s
=

∑
s≥0

ms+1,`(I )(1+ t)s . (3)

In particular, the characterization of the possible Betti tables of square-free strongly
stable ideals is equivalent to characterizing the possible reduced arrays of generators.
Following [HSV14], for a square-free strongly stable ideal I we also consider doubly
indexed µ-numbers defined recursively by

m`,k = µ`,k −
∑̀
q=1

µq,k−1. (4)

The triangular integer array m̃(I ) = (µ`,k)1≤k≤n−`+1≤n−d+1 is called the array of gener-
ators of I .

The task of characterizing all possible (reduced) arrays of generators of square-free
strongly stable ideals, however, translates nicely into combinatorics as follows.

Lemma 19. Let 1 be a shifted simplicial complex on [n]. Then

ms+1,k(I1) = hn−k,s(1
∗).

In particular, the array of generators of I1 is the same as the h̃-triangle of 1∗ (up to a
suitable rotation).

Proof. For a facet F in a shifted simplicial complex on [n], let `F be the smallest integer
such that `F ∈ σ(F ) if σ(F ) is nonempty; otherwise set `F = n + 1. It follows from
equation (2) that

hn−k,s(1
∗) = |{F ∈ F(1∗) : |F | = n− k & `F = s + k + 1}|.
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Now, observe that the complement map F 7→ F c induces a bijection between F(1∗)
and G(I1) with the property that if u is the image of F , then deg u + |F | = n and
`F − 1 = m(u). Hence,

hn−k,s(1
∗) = |{u ∈ G(I1) : deg u = k & m(u) = s + k}| = ms+1,k(I1).

The last part of the statement follows by comparing equations (1) and (4). ut

The following corollary first appeared in [HRW99, Proposition 12]. Unfortunately, there
is a misprint in the statement in the published version of that paper.

Corollary 20. Let 1 be sequentially Cohen–Macaulay. Then∑
i≥0

bi,i+j (I1∗)t
i
=

∑
i≥0

hn−j−1,i(1)(1+ t)i .

Proof. Using algebraic shifting, it is enough to prove the result for the special case
of shifted complexes. However, in this case the result follows from equation (3) and
Lemma 19. ut

Theorem 21. A triangular integer array µ̃ = (µ`,k)1≤k≤n−`+r≤n−d+r is the array of
generators of an r-regular componentwise linear ideal of S with minimum degree of a
generator equal to d if and only if

(a) every column µ[j ] = (µ̃1,j , µ̃2,j , . . . , µ̃n+r−j,j ) is an M-sequence;
(b) µ̃i,j ≥

∑
`≤i µ̃`,j−1;

(c) ρi,j−d+1(µ̃i+1,j ;µ
[d]) ≤ µ̃i,j .

Proof. This follows from Lemma 19 and Theorem 16. ut
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