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Abstract. The Teichmüller polynomial of a fibered 3-manifold, introduced in [McM00], plays
a useful role in the construction of mapping classes having a small stretch factor. We provide a
general algorithm for computing the Teichmüller polynomial given a pseudo-Anosov mapping class
obtained as a loop in a train track automaton. As a byproduct, our algorithm allows us to derive all
the relevant information on the topology of various fibers that belong to a fibered face.
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1. Introduction

A fibered hyperbolic 3-manifold M is a rich source of pseudo-Anosov mapping classes:
Thurston’s theory of fibered faces tells us that integer points in the fibered cone R+ ·F ⊂
H 1(M,R) over the fibered face F of the Thurston norm unit ball correspond to fibra-
tions of M over the circle. If M is hyperbolic, the monodromy of each such fibration is a
pseudo-Anosov class [ψ]with stretch factor λ(ψ) > 1. These stretch factors are packaged
in the Teichmüller polynomial, defined in [McM00]. This is an element2F =

∑
g∈G agg

in the group ring Z[H1(M,Z)/Torsion], which is associated to the fibered face F and that
is used to compute the stretch factor λ(ψ) effectively. More precisely, if [α] ∈ H 1(M,Z)
is the integer class corresponding to ψ in the fibered cone and ξα ∈ H1(M,Z) is its dual,
then the largest root of the Laurent polynomial 2F (α) :=

∑
g∈G ag · t

ξα(g) ∈ Z[t, t−1
]

(in absolute value) is the stretch factor λ(ψ). The Teichmüller polynomial has been used
as a natural source of pseudo-Anosov homeomorphisms having small normalized stretch
factors: infinite families of pseudo-Anosov homeomorphisms [ψ] ∈ Mod(6g) satisfying
λ(ψ)g = O(1) as g→∞. In particular, it has been intensively used in the papers by Hi-
ronaka [Hir10], Hironaka–Kin [HK06], Kin–Takasawa [KT11, KT13] and Kin–Kojima–
Takasawa [KKT13]. Most of the known pseudo-Anosov homeomorphisms having a small
normalized stretch factor come from fibrations of two very particular hyperbolic mani-
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folds: the mapping torus of the simplest hyperbolic braid [McM00,Hir10] and the “magic
manifold” [KT11].

The Teichmüller polynomial was originally defined as the generator of the Fitting
ideal of a module of transversals (defined by a lamination) over Z[H1(M,Z)/Torsion].
However, it is a result of McMullen [McM00] that this polynomial can also be defined
in terms of the transition matrix of an infinite train track associated to a fibration on the
fibered face F .

The main goal of our paper, based on this second definition, is to present an algorithm
to compute the Teichmüller polynomial explicitly and to give a unified presentation of
the aforementioned papers. More precisely, we will denote the mapping torus of [ψ] ∈
Mod(S) by

Mψ := S × [0, 1]/(x, 1) ∼ (ψ(x), 0)

and we will suppose that the first Betti number of Mψ is at least 2.
Using results of Penner and Papadopoulos [PP87] on train tracks and elementary op-

erations (folding operations in the present paper), we provide an algorithm that

(1) computes the Teichmüller polynomial 2F of the fibered face F of Mψ where [ψ] ∈
Mod(S) is a pseudo-Anosov class;

(2) computes the topology (genus, number of singularities and type) of the fibers of
fibrations in the cone R+ · F .

We will present our algorithm (and examples) in the case where S is the n-punctured
disc Dn. Then Mod(S) is naturally isomorphic to the braid group B(n). Let β ∈ B(n) and
let [fβ ] be the corresponding mapping class in Mod(Dn). We shall show:

Theorem 1.1. For any pseudo-Anosov class [fβ ] ∈ Mod(Dn) represented by a path in
some automaton

τ1
T1
−→ τ2

T2
−→ · · ·

Tn−1
−−→ τn

Tn
−→ τn+1,

with transition matrices Mi = M(Ti) ∈ GL(Zr), the Teichmüller polynomial2F (t, u) of
the associated fibered face F determined by [fβ ] is

2F (t, u) = det (u · Id−M1D1 ·M2D2 · · ·MnDnR)

where the diagonal matrices Di ∈ GL(Z[t]r) are uniquely determined in terms of the
path in the automaton and R ∈ GL(Zr) is a relabeling matrix.

Remark 1.2. All steps of the algorithm that we present can be extended to a general sur-
face. However, for simplicity, we will specify the discussion to the case of the punctured
disc. This will avoid several technical difficulties.

For a more precise statement, in particular the nature of the variables u and t, see The-
orem 5.4 and below (see also Section 4 for the definition of the automaton). Observe
that Bestvina and Handel [BH95] have introduced an effective algorithm that determines
whether a given homeomorphism f ∈ Mod(Dn) is pseudo-Anosov. See also [Bri00]
and [Hal] for implementations of the algorithm; in the pseudo-Anosov case the algorithm
generates the train tracks and a path in some corresponding automaton.
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Reader’s guide

In Section 2 we recall Thurston’s theory of fibered faces and we review basic defini-
tions and properties of the Teichmüller polynomial and its relation to the stretch factor
associated to the monodromy of a fibration 6 → M → S1. In Section 3 we describe
a general strategy to compute the Teichmüller polynomial 2F from a train track and
a train track map (after [McM00]). In Section 4 we introduce the notion of automaton
and we give several relevant examples. In particular we use the convention of labeled
train tracks (similarly to what Kerckhoff and Marmi–Moussa–Yoccoz did for interval ex-
change transformations). Section 5 is devoted to the statement and proof of our main
theorem. Finally, as a byproduct, our algorithm allows us also to derive all the relevant
information on the topology of various fibers that belong to the face. This is the content
of Section 6 (Proposition 6.1, Corollary 6.3 and Propositions 6.4–6.6). In Sections 7, 8
and Appendix A we apply our results to produce several examples, recovering the ones of
McMullen [McM00] and Hironaka [Hir10], but also giving infinitely many new examples
of Teichmüller polynomials defined by pseudo-Anosov braids in Bn for n ≥ 4. Finally,
a step by step description of the algorithm can be found in Section 5.4. This paper will
not cover the details of its implementation, and a list of examples will be the subject of a
forthcoming paper.

We end the introduction with a general description of the algorithm.

Key steps of the algorithm

To each pseudo-Anosov map ψ : S → S one can associate (in a non-unique way!) an
invariant train track (an embedded graph τ in S) and a train track map T : τ → τ .

McMullen’s construction relates the construction of 2ψ (t, u) to the lifts of τ and T
to a cover Ŝ of S as follows. Let Hψ = Hom(H 1(S,Z)ψ ,Z) where H 1(S,Z)ψ is the
ψ-invariant cohomology of S. By evaluating cohomology classes on loops, we obtain a
natural map π1(S)→ Hψ . Then Ŝ is theHψ -covering space of S. Pick a lift τ̂ → Ŝ and a
lift T̂ : τ̂ → τ̂ . Then T̂ acts by a matrixM(T̂ )with coefficients in the free Z[Hψ ]-module
generated by the lifts of the edges of τ . We choose a multiplicative basis t = (t1, . . . , tr)
of Hψ . Then for a suitable choice of τ , we have

2ψ (t, u) = det(u · Id−M(T̂ )).

One of the main difficulties in the theory lies in the computation of the matricesM(T ) and
M(T̂ ). There is a general strategy, developed by Papadopoulos and Penner, that allows
one to simplify the calculation of M(T ). Roughly speaking, they define two operations
(folding/splitting) that split the graph map T into a sequence of train track maps:

τ1
T1
−→ τ2

T2
−→ · · ·

Tn−1
−−→ τn

Tn
−→ τ1

where T = Tn ◦ · · · ◦ T1 and M(T ) = M(T1) · · ·M(Tn).
The purpose of this paper is to explain how one can lift the elementary operations

Ti : τi → τi+1 to Ŝ so that T̂ = T̂n ◦ · · · ◦ T̂1 and how to deduce the formula

2ψ (t, u) = det(u · Id−M(T̂1) · · ·M(T̂n)),
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The main difficulty lies in the normalization, i.e. the choice of the lifts of τi and Ti . This
is explained in Sections 4 and 5.

Remark 1.3. We stress that all the above computations depend on Hψ . To avoid this
problem, in order to have an algorithm independent ofψ , we will use the maximal abelian
covering of S given byH = Hom(H 1(S,Z),Z), instead ofHψ . The polynomial2ψ (t, u)
will be obtained from the above algorithm (withH ) by specifying some relations between
the ti . See Section 5.2 for details.

2. Thurston’s theory of fibered faces and the Teichmüller polynomial

In this section we recall Thurston’s theory of fibered faces. We also review the construc-
tion of the Teichmüller polynomial and its relation to the stretch factor associated to the
monodromy of a fibration 6→ M → S1.

We begin by fixing some notation. Let S be a surface (for which one might have
∂S 6= ∅). Let [ψ] be a class in Mod(S). A deep result by Thurston (see e.g. [FM12, §13,
Thm. 13.4]) tells us that Mψ admits a hyperbolic metric if and only if the mapping class
[ψ] is pseudo-Anosov. By Mostow’s rigidity theorem the isometry class of Mψ does not
depend on the choice of the representative or the conjugacy class of [ψ] ∈ Mod(S).

2.1. Thurston norm and fibered faces

Thurston introduced a very effective tool for studying essential surfaces in 3-manifolds:
a norm on H2(M,R). For practical reasons, we will define this norm on H 1(M,R). For
nice references see e.g. [FLP79, exposé 14], [Cal07, Thu86].

For a compact connected surface S, let χ−(S) = |min{0, χ(S)}|. In general, if a
surface S has r connected components S1, . . . , Sr we define χ−(S) by

∑r
i=1 χ−(Si).

This determines a function ‖ · ‖T : H 1(M,R)→ N ∪ {0} as follows:

‖[α]‖T := inf{χ−(S) | S is a properly embedded oriented surface where
[S] is dual to [α]},

where [S] is in H2(M,Z) (or H2(M, ∂M;Z) if ∂M 6= ∅). So far this function just mea-
sures the minimal topological complexity of a surface dual to [α]. However, if M is ir-
reducible (i.e. every embedded sphere bounds a ball) then ‖ · ‖T satisfies the pseudo-
norm properties. Therefore it has a unique continuous extension to a pseudo-norm on
H 1(M,R). If in addition M is atoroidal and χ(∂M) = 0, this continuous extension is a
norm, called the Thurston norm. The unit ball of this norm has a very special geometry.

Theorem 2.1 ([Thu86]). Let M be an irreducible and atoroidal manifold. Then the unit
ball of the Thurston norm is a convex finite polytope.

An avid reader can consult the proof of the preceding theorem in Calegari’s book (see
[Cal07, Theorem 5.10]). The most striking aspect of the Thurston norm is that it provides
a very nice picture for homology classes representing fibrations of M over the circle.
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2.2. From homology classes to fibrations

Let [M,S1
] denote the set of homotopy classes of maps fromM to S1. Given a class [f ] ∈

[M,S1
] one can choose a smooth representative f : M → S1 and dθ the angle form

on S1. The pullback defines a class [f ∗dθ ] in H 1(M,R). This correspondence defines a
bijection between H 1(M,Z) and [M,S1

]. We will call [α] ∈ H 1(M,Z) a fibration if the
corresponding class in [M,S1

] is a fibration. Set

8(M) := {[α] ∈ H 1(M,Z) | [α] is a fibration}

and for every face F of the Thurston norm ball let R+ · F denote the positive cone in
H 1(M,R) whose basis is F .

Theorem 2.2 ([Thu86]). Suppose that b1(M) ≥ 2. If8(M)∩R+ ·F 6= ∅ for some top-
dimensional face F of the Thurston norm unit ball, then 8(M) ∩R+ · F = H 1(M,Z) ∩
R+ · F .

When 8(M)∩R+ ·F 6= ∅ we call F a fibered face and R+ ·F a fibered cone. A fiber of
a fibration minimizes the Thurston norm in its homology class [Cal07, Corollary 5.13].

2.3. Hyperbolic manifolds

If the manifold M is hyperbolic, then the monodromy of each fibration 6 → M → S1

defines a pseudo-Anosov class in Mod(6). Hence we can think of each integer point
in a fibered cone R+ · F as a pseudo-Anosov class (on a surface that is not necessarily
connected). We want to compute, for a fixed fibered face F , the stretch factors of all
pseudo-Anosov maps arising as monodromies of fibrations in the fibered cone R+·F . This
can be done by using an invariant of the fibered face called the Teichmüller polynomial.
Roughly speaking, it is an element of the group ring Z[G], where G = H1(M,Z)/Tor
and Tor is the torsion subgroup of H1(M,Z). Following McMullen, we denote it by 2F .

We will now explain how2F is used to calculate stretching factors of pseudo-Anosov
monodromies and we will later deal with its definition. With any [α] ∈ H 1(M,Z) we can
associate a morphism (ξα : H1(M,Z) → Z) ∈ Hom(H1(M,Z),Z). Now 2F is an
element of the group ring Z[G], thus it can be written as a formal sum:

2F =
∑
g∈G

agg, ag ∈ Z for all g ∈ G,

where at most a finite number of the coefficients ag are different from zero. The evaluation
of 2F on [α] is defined as follows:

2F (α) :=
∑
g∈G

ag · t
ξα(g) ∈ Z[t, t−1

].

Note that 2F (α) is a Laurent polynomial in Z[t, t−1
]. Let λ(α) be the stretch factor of

the pseudo-Anosov class in Mod(6) defined by the monodromy of the fibration corre-
sponding to [α]. The following theorem links the Laurent polynomial 2F (α) to λ(α).
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Theorem 2.3 ([McM00]). For any fibration [α] ∈ R+ · F , the stretch factor λ(α) is
given by the largest root (in absolute value) of the equation

2F (α) =
∑
g∈G

ag · t
ξα(g) = 0.

3. Teichmüller polynomial and train tracks

In this section we recall the construction of the Teichmüller polynomial 2F and basic
facts on train tracks.

3.1. The Teichmüller polynomial of a fibered face

In what follows, G will denote H1(M,Z)/Tor. As before we assume that b1(M) ≥ 2.
The pseudo-Anosov monodromy ψ of any fibration [α] ∈ R+ ·F with fiber 6 has an ex-
panding invariant lamination λ ⊂ 6 which is unique up to isotopy. Let L be the mapping
torus of ψ : λ→ λ and L̃ be the preimage of the lamination L on the covering space

π : M̃ → M

corresponding to the kernel of the map π1(M) → G. As Fried explains (see [FLP79,
ex. 14]), L is a compact lamination which, up to isotopy, depends only on the fibered
face F . Using this fact, McMullen [McM00] defines the Teichmüller polynomial of the
fibered face as

2F = gcd(f : f ∈ I ) ∈ Z[G]
where I is the Fitting ideal of the finitely presented Z[G]-module of transversals of the
lamination L̃. Observe that2F is well defined up to multiplication by a unit in Z[G]. One
of the main results of [McM00] that we exploit in this article is a formula that allows one
to compute 2F explicitly. We recall how to derive this formula later.

3.2. The setting

The formula that allows us to compute 2F explicitly requires a particular splitting of the
group G. Fix a fiber 6 ↪→ M and let ψ : 6 → 6 be the corresponding pseudo-Anosov
monodromy. We will denote by Hψ = Hom(H 1(6,Z)ψ ,Z) the dual of the ψ-invariant
cohomology of 6. The natural map π1(S) → H1(S,Z) → Hψ determines an infinite
abelian covering

ρ : 6̃→ 6

with deck transformation groupHψ . We can think of 6̃ as a component of the preimage of
a fixed fiber 6 in the covering π : M̃ → M , and of Hψ as the subgroup of Deck(π) = G
fixing 6̃. For every lift

ψ̃ : 6̃→ 6̃ (3.1)

of ψ , the 3-manifold M̃ can be easily described in terms of 6̃ and ψ̃ as follows. For
every k ∈ Z let Ak denote a copy of 6̃ × [0, 1]. Then M̃ is obtained from

⊔
k∈ZAk by

identifying (s, 1) ∈ Ak with (ψ̃(s), 0) ∈ Ak+1, for every k ∈ Z. In this setting, the deck
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transformation group of M̃ splits as

G = Hψ ⊕ Z9̃

where the map 9̃ acts on M̃ as 9̃(s, t) = (ψ̃(s), t−1). Equipped with these coordinates,
if F ⊂ H 1(M,R) is the fibered face with [6] ∈ R+ · F , then we can regard 2F as a
Laurent polynomial 2F (t, u) ∈ Z[G] = Z[Hψ ] ⊕ Z[u] where t = (t1, . . . , tb−1) is a
basis of Hψ and u = 9̃.

Remark 3.1. If ψ̃1 and ψ̃2 are two different lifts of ψ to 6̃ then ψ̃1 = t · ψ̃2 for some
t ∈ Hψ = Deck(ρ). Hence, taking a different lift in (3.1) translates into a change of
variables of the form u′ = tu. On the other hand, since the topology of M̃ is independent
of ψ , the topology of the non-compact surface 6̃ is also independent of ψ .

3.3. Train tracks

A train track is a connected graph with an additional “smooth” structure. More precisely,
let τ be a graph and let h : τ → 6 be an embedding so that the edges are tangent at
the vertices. Since the vertices are smooth, at each vertex the edges can be partitioned
into two sets, called ingoing and outgoing for convenience (the choice of the partition
is arbitrary). We will also assume that at each vertex of τ we have a cyclic order (given
by h). This gives the notion of cusp at a vertex: this is a region formed by a consecutive
pair (in terms of a cyclic ordering) of either two ingoing or two outgoing edges.

The pair (τ, h) (often called simply τ if there is no confusion) is a train track if the
following additional properties are fulfilled:

(1) τ has no vertex of valence 1 or 2;
(2) the connected components of 6 \ h(τ) are either polygons with at least one cusp or

annuli with one boundary component contained in ∂6 and the other with one cusp.

A (transverse) measure µ on a train track is an assignment of a real number µ(e) ≥ 0
to each edge e of τ which satisfies the switch condition at each vertex: the sum of the
measures of the edges in the ingoing set is the same as that for the outgoing set. The train
track τ equipped with a measure µ will be called a measured train track, and will be
denoted (τ, h, µ).

3.4. Measured foliations and train tracks

We can construct a (class of) measured foliation F from a measured train track (τ, h, µ)
as follows. We replace each edge e of h(τ) by a rectangle, of arbitrary width and height
µ(e), foliated by horizontal leaves. According to the switch condition, the rectangles
glued together give a subsurface 6̃ ⊂ 6 (with boundaries) and a measured foliation F
on 6̃. Now to define the foliation on the whole surface, one has to collapse the comple-
mentary regions. By assumption, no complementary components of 6̃ into 6 are smooth
annuli, so that we can contract each boundary component to obtain a well-defined mea-
sured foliation on6 (see [PP87,FLP79] for details). We will call the sides of the polygons
of 6\τ around punctures or around the singularities of F infinitesimal edges.
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Remark 3.2. There are many arbitrary parameters in the above construction, but the
equivalence class [F] (up to isotopy and Whitehead moves) of F is well defined.

There is a converse to the above construction. Let F be a measured foliation representing
[F] and let p ∈ F be a singularity. Consider a polygon 1p embedded into the sur-
face 6, where each side 1p is contained in a leaf of F . We will say that the subsurface
6 \

⋃
p∈sing.1p has a partial foliation (still denoted by F) induced by F . Since all com-

plementary regions of this partial measured foliation have at least two cusps, we can
collapse the leaves of this foliation to obtain a measured train track (τ, h, µ).

By considering small segments transversal to the horizontal leaves on the rectangles
used in the above procedure, we obtain a fibered neighborhood N(τ) ⊂ 6 equipped
with a retraction N(τ)→ τ . The neighborhood N(τ) has cusps on its boundary, and the
fibers of the retraction are called ties. The train track τ can be recovered from N(τ) by
collapsing every tie to a point. We will say that F is carried by τ (written F ≺ τ ) if F
can be represented by a partial foliation contained in N(τ) whose leaves are transverse to
the ties. If in addition no leaves of F connect cusps of N(τ), we say that τ is suited to F .

The next sections are intended to make explicit some well-known relations between
pseudo-Anosov homeomorphisms and train track morphisms.

3.5. Invariant train tracks

By definition, any representative of a pseudo-Anosov class [ψ] ∈ Mod(6) leaves invari-
ant a pair of transverse measured foliations (F s,Fu). However, the action of ψ on these
foliations is rather difficult to describe. A good tool to understand this action is given by
train tracks (see e.g. [PP87, §4]). Let h : τ ↪→ 6 be suited to Fu. Since Fu is invariant
under ψ , it follows that τ is invariant under ψ , namely:

(1) The foliation Fu can be represented by a partial measured foliation F whose support
is a fibered neighborhood N(τ) of h(τ).

(2) The image ψ(h(τ)) can be isotoped to a train track h′(τ ′) which is contained in a
fibered neighborhood N(h(τ)) of h(τ), is transversal to the tie foliation of h(τ) and
has switches that are disjoint from the collection of central ties of h(τ).

If (2) holds, we will say that ψ(τ) is carried by τ and write ψ(τ) ≺ τ .

Convention. In this paper, we will work with labeled train tracks, that is, triples (τ, h, ε),
where ε : E(τ) → A is a labeling map from the set of edges of τ into a fixed finite
alphabet A. In the following we will abuse the notation and abbreviate (τ, h, ε) to τ
whenever the embedding of the graph h : τ ↪→ 6 and the labeling are clear from the
context.

In order to make a distinction between infinitesimal edges and other edges, we make
the following choice: we label infinitesimal edges by capital letters and other edges by
lower case letters. We denote by Aprong ⊂ A the n letters corresponding to the infinites-
imal edges E(τ)prong enclosing the punctures of Dn. We also denote by Areal ⊂ A the
letters corresponding to non-infinitesimal edges E(τ)real.
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3.6. Incidence matrix

In the above situation, if ψ(τ) = σ ≺ τ , we naturally associate an incidence matrix
M(ψ) ∈ GL(ZA) to ψ in the following way. For any edge e of τ we make a choice
of a tie above an interior point e (called the central tie associated to the edge e). Let σ ′

isotopic to σ be such that σ ′ ⊂ N(τ). For any edge f of σ we have a corresponding
edge f ′ of σ ′ given by the isotopy. We can furthermore isotope σ ′ slightly so that it is in
general position with respect to the central ties of τ . Now for any pair (e, f ) with labels
(α, β) (i.e. ε(e) = α and ε(f ) = β) we define Mβ,α(ψ) as the geometric intersection
of f ′ and the central tie associated to the edge e of τ .

A classical theorem [PP87, Theorem 4.1] asserts that in the pseudo-Anosov case, the
leading eigenvalue of this matrix equals the stretch factor of the pseudo-Anosov class [ψ]
(if one restricts to a good set of edges, the corresponding matrix is a Perron–Frobenius
matrix).

The determinant formula. Now consider a component τ̃ ⊂ 6̃ of ρ−1(τ ) lying in the
infinite surface 6̃, as defined in §3.2. This is an infinite train track whose sets of edges and
of vertices can be identified withE×Hψ and V ×Hψ respectively. Since τ isψ-invariant,
τ̃ is ψ̃-invariant. This means that ψ̃ (̃τ ) can be isotoped to a train track τ̃ ′ which lies in a tie
neighborhoodN(̃τ) of τ̃ , is transverse to τ̃ ’s ties and whose switches are disjoint from the
collection of central ties of τ̃ . As with the train track τ and the map ψ , we can associate to
τ̃ and ψ̃ an incidence matrix PE(t) ∈ GL(Z[Hψ ]A) with entries in Z[Hψ ]. Analogously,
there is a matrix PV (t) with entries in Z[Hψ ] associated to the set of vertices of τ̃ . The
next theorem states that the Teichmüller polynomial associated to the fibered face F can
be recovered from the matrices PE(t) and PV (t).

Theorem 3.3 ([McM00]). The Teichmüller polynomial of the fibered face F is given by

2F (t, u) =
det(u · Id− PE(t))
det(u · Id− PV (t))

. (3.2)

3.7. Train track morphisms

We begin with a classical definition (see e.g. [Los10]).

Definition 3.4. A map T between two train tracks (τ, h) and (τ ′, h′) is a train track
morphism if it is cellular and preserves the smooth structure. If in addition (τ, h) and
(τ ′, h′) are isomorphic as train tracks, we call T a train track map.

A train track morphism T : τ → τ ′ is a representative of [f ] ∈ Mod(6) if in addition

(1) the diagram

τ
h

−−−−→ 6

T

y yf
τ ′

h′

−−−−→ 6

commutes, up to isotopy, and
(2) f ◦ h(τ) ⊂ N(h′(τ ′)) and f ◦ h(τ) is transverse to the tie foliation of h′(τ ′).
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To any train track morphism T one can associate an incidence matrixM(T ) ∈ GL(ZA) in
the following way: for any pair (e, e′) with labels (α, β) (i.e. ε(e) = α and ε(e′) = β) we
define M(T )α,β as the number of occurrences of e′ in the edge path T (e). It is clear from
the definitions that if T : τ → τ is representative map of a homeomorphism f : 6 → 6

and if f (τ) ≺ τ then the incidence matrix M(f ) defined in the preceding section and the
incidence matrix M(T ) are equal.

Theorem 3.5 ([PP87]). Let ψ be pseudo-Anosov homeomorphism and let Fu be in the
class of its unstable foliation. There exists a train track τ suited to Fu such thatψ(τ) ≺ τ .
Furthermore ψ(τ) is isotopic to a train track τ ′ ⊂ N(τ) which is transverse to the ties so
that the matrix describing the linear map from the space of weights on real edges of τ ′ to
the space of weights on real edges of τ is primitive irreducible (i.e. some iterate has all
entries strictly positive).

3.8. Elementary operations

One of the main difficulties in using the aforementioned formulas (computing the matrix
M(ψ) and formula (3.2)) is that ψ(τ) (or ψ̃(τ̃ )) might look very complicated so that
the isotopy needed to embed this train track in a tie neighborhood of τ transverse to the
ties might be difficult to find. There is a general strategy that will simplify calculation,
involving two natural (dual) operations on train tracks, called folding and splitting.

Roughly speaking, they are defined by folding or splitting a fibered neighborhood
N(τ) along a cusp. For a more precise definition, see [Los10, PP87] (for splitting)
and [SKL02] (for folding). In this paper we shall make use of the folding operation which
will produce from a train track τ a new train track τ ′ with the property that τ ≺ τ ′. We
now briefly describe the combinatorial folding operations. Observe that these operations
first appear as (dual) right/left splits described in [PP87].

Let τ be a train track. Let e1, e2 be two edges of τ that are issued from the same
vertex v1 and that form a cusp C. We assume that one of the two edges (say e1) is not
infinitesimal. We describe the folding where edge e1 is folded onto edge e2 (the other
case being similar). The edge e2 (respectively, e1) is incident to two vertices v1 and v2
(respectively, v1 and v3). The orientation around v1 determines an edge e attached to v2
(see Figure 1). If the cusp determined by e is on the same side as the cusp C then we
cannot fold e1 onto e2. In the other case we form a new graph τ ′ in the following way: we
identify the edges e2 and e1 so that the new graph we obtain has a new edge e′1 from v3
to v2. If e is an infinitesimal edge we then fold e′1 on e again. The new train track (τ ′, h′)
naturally inherits a labeling ε′ induced from the one of τ : every edge of τ ′ shares the label
with the corresponding edge of τ .

Definition 3.6. We will say that a train track τ refines to a train track σ if there exists a
sequence

σ = τ1 ≺ τ2 ≺ · · · ≺ τk−1 ≺ τk = τ (3.3)

where τi is obtained from τi−1 by a folding operation.
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v1 e1
v3

e2

v2

C

e

We cannot fold e1 onto e2

v1 e1
v3

e2

v2

C

e

Folding e1 onto e2 allowed

v1

e′1

v3

e2

v2
e

Edge e1 folded onto e2

Fig. 1. The folding operation: edge e1 folded onto e2 produces a new train track.

Proposition 3.7 ([PP87]). Suppose that F ≺ σ ≺ τ where σ is contained in a fibered
neighborhood N(τ) and τ is suited to F . Then τ refines to σ .
Sketch of proof of Proposition 3.7. We use splitting instead of folding, as it is easier to
explain and the corresponding sequence of foldings is easy to derive. Up to isotopy, one
can find a fibered neighborhoodN(σ) contained in the interior ofN(τ)whose tie foliation
is formed by subarcs of the tie foliation of N(τ). The number of cusps of N(σ) and N(τ)
is the same and one can define a pairing between these two sets of cusps with a family
{0i}

I
i=1 of disjointly embedded arcs contained in N(τ) \ Int(N(σ)) which are transverse

to the ties [PP87, Lemma 2.1]. The sequence of splittings that defines the refinement is
obtained by cutting N(σ) along 0i , i = 1, . . . , n. Each time the arc 0i crosses a singular
tie of N(τ), the cutting along 0i defines a splitting operation on τ . The concatenation of
these operations produces the sequence (3.3). ut

The previous proposition has a simple but important consequence: the refinement of τ to
ψ(τ) allows us to factorize the incidence matrixM(ψ) as a product of matrices associated
to folding operations. Below we explain how this can be done.

3.9. Folding operations and train track morphisms

Each folding operation from a train track (τ, h, ε) to a train track (τ ′, h′, ε′) produces
a train track morphism T : τ → τ ′ that represents some [f ] ∈ Mod(6) such that
f (h(τ)) ≺ h′(τ ′). Hence our preceding discussion can be reformulated as follows.

Lemma 3.8 (Penner–Papadoupoulos [PP87]). Every (labeled) train track map repre-
senting a class [f ] ∈ Mod(6) is obtained by a finite sequence of train track maps induced
by folding operations and then followed by a relabeling operation.

Hence for any pseudo-Anosov class [ψ] and any invariant train track τ , one can define a
(non-unique) sequence of folding operations defined by the refinement sequence

ψ(τ) = τ1 ≺ τ2 ≺ · · · ≺ τk−1 ≺ τk = τ.
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The sequence of folding operations defines a sequence of train track maps:

ψ(τ) = (τ1, ε1)
T1
−→ (τ2, ε2)

T2
−→ · · ·

Tk−1
−−→ (τk, εk)

Tk
−→ (τ1, εk+1)

R
−→ (τ1, ε1).

Here R is just a relabeling map. Therefore Lemma 3.8 in this context implies that T =
R ◦ Tk ◦ Tk−1 ◦ · · · ◦ T1. Hence the incidence matrix M(ψ) or M(T ) is

M(T ) = M(R ◦ Tk ◦ Tk−1 ◦ · · · ◦ T1) = M(T1) · · ·M(Tk)M(R). (3.4)

Remark 3.9. Observe that since we work with labeled train tracks, all the transition
matrices M(Ti) have the form Id+ E where E is a non-negative matrix.

To summarize, to each pseudo-Anosov homeomorphisms, one can associate a train track
and a sequence of folding operations such that the corresponding product of matrices is
irreducible, i.e. it has some power such that every entry has positive coefficients (Theo-
rem 3.5). In general the converse is not true, but under a mild assumption one has:

Theorem 3.10. Let τ = τ1 ≺ τ2 ≺ · · · ≺ τk−1 ≺ τk = τ be a refinement sequence
defined by folding operations such that the corresponding incidence matrix is irreducible
and the Perron–Frobenius eigenvector satisfies the switch conditions of the train track τ .
Then the train track map T associated to this sequence is the representative of a pseudo-
Anosov homeomorphism.

3.10. Elementary operations and standardness

As we have seen in the preceding subsections, every train track map T : τ → τ represent-
ing a class in Mod(6) is the product of train track maps defined by elementary operations.
When 6 is the n-punctured disc Dn, this product can be refined by requiring that every
train track in (3.3) be standardly embedded. Since all the calculations that we present in
the present paper are described in this context, we will discuss these notions in detail.

In §3.5 we made the convention that the n letters in Aprong label the infinitesimal
edges enclosing punctures of Dn, hence any labeling using these letters defines a labeling
of the punctures of Dn. We consider Dn to be modeled on the unit disc in C with n
punctures along the real line R. Let lα be a vertical segment joining the puncture labeled
by α ∈ Aprong to the boundary of the disc. Now consider a train track h : τ ↪→ Dn. If all
the edges except these infinitesimal edges are embedded in the upper (or lower) half-disc,
then we say that (τ, h) is standard. If only one open real edge of h(τ) intersects

⋃
lα only

once, and all the other real edges are embedded in the upper (or lower) half-disc, then we
say that (τ, h) is almost standard. These notions were first introduced in [SKL02]; see
Figure 2.

We consider the n-th braid group Bn with standard generators σ1, . . . , σn−1 and con-
sider the natural map Bn → Mod(Dn) which associates to each braid β the mapping
class fβ . If (τ, h) is standard and we perform a folding operation on h(τ), then the result-
ing train track (τ1, h1) is either standard or almost standard. In the latter situation we can
easily turn (τ1, h1) into a standard marking.



Computing the Teichmüller polynomial 3879

Standard Almost standard

Fig. 2. Standardly and almost standardly embedded train tracks.

Lemma 3.11 ([SKL02]). Let (τ, h) be an almost standard train track in Dn. Then there
exists an n-braid of the form δ±

[l,m] = (σm−1σm−2 · · · σl)
± (called a standardizing braid)

such that (τ1, fδ±
[l,m]
◦ h1) is standard.

In this context we say that fδ±
[l,m]

is a standardizing homeomorphism for (τ1, h1).

Definition 3.12. Any infinitesimal edge around a puncture determines a cusp (enclosing
the puncture). Any standardizing homeomorphism fβ acts on those edges by a permuta-
tion π ∈ Sym(Aprong). Moreover if e, f are two infinitesimal edges (with labeling α, β
respectively) and if π(α) = β then fβ acts as a rotation whose support is contained in
a small neighborhood of the punctures. We encode this action by the rotation number
k ∈ Z (under the convention that a counterclockwise rotation has positive sign) and we
will write π(α) = βk .

Example 3.13. In Figure 3 we depict how the standardizing homeomorphism corre-
sponding to f

σ−1
1

acts on punctures in D3. If we identify punctures and infinitesimal
edges enclosing the punctures (with labels A, B, C, from left to right), it is easy to de-
duce that π(σ−1

1 ) =
(
A B C
B A−1 C

)
. An analogous figure helps one to conclude that π(σ2) =(

A B C
A C+1 B

)
. In particular, for any k ∈ Z, k > 0, the permutation associated to σ 2k

2 is
π(σ 2k

2 ) =
(
A B C
A Bk Ck

)
.

a

a
b

b

f
σ−1

1

Fba

frot

ba

Fig. 3. Rotation around a puncture induced by a standardizing homeomorphism.

4. Construction of the automaton

In this section, for simplicity, we specify to the case of the punctured disc. However, all
the discussion can be done for surfaces of higher genera. Let us fix n > 2, the number
of punctures, and the singularity data of train tracks (i.e. the number and type of prongs).
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We fix an alphabet A. We will also fix the maximal abelian covering of Dn induced by
H = Hom(H 1(Dn,Z),Z), and we fix a multiplicative basis t1, . . . , tn of H .

4.1. Graphs of foldings

We start with the following observation: the number of labeled train tracks (τ, h, ε) of Dn
where

• (τ, h) is standard,
• τ has prescribed singularity data and labeling ε : E(τ)→ A

(up to isotopy of Dn fixing the punctures) is finite.
Moreover this set is also (setwise) invariant under folding operations followed by

standardness operations. Finally, given a tuple (τ, h, ε) in this finite set, since the number
of cusps and edges is finite, there are only finitely many possible folding operations on
h(τ). These three finiteness ingredients allow us to construct a graph in the following
way.

(1) Vertices are tuples (τ, h, ε|E(τ)real)where h : τ → Dn is standard (up to isotopy fixing
the punctures).

(2) There is an edge between (τ1, h1, ε1) and (τ2, h2, ε2) if there is a folding operation
from (τ1, h1, ε1) to (τ2, h

′

1, ε2) and either

(a) h′1(τ2) is standard, then h2 = h
′

1, or
(b) h′1(τ2) is almost standard, then h2 = fβ ◦ h

′

1 where fβ is a standardizing braid.

(3) There is an edge between (τ, h, ε) and (τ, fβ ◦ h, ε) where β ∈ Bn and fβ ◦ h(τ) is
also standard.

The resulting directed graph is called the folding automaton associated to the number of
marked points of Dn and the type of singularities. Observe that this graph is not necessar-
ily strongly connected (or even connected). It would be nice to have a description of the
topology of these graphs in general.

For any train track (τ, h, ε) we will denote by N lab(τ, h, ε) the connected component
of the folding automaton containing (τ, h, ε). One can also perform the same construc-
tion without labeling; the connected components containing (τ, h) are then denoted by
N (τ, h).

Example 4.1. See Figures 14–18 for examples of automata.

4.2. Closed loops in N (τ, h) and pseudo-Anosov homeomorphisms

The labeling allows us to define for each edge of N lab(τ, h, ε) a train track map and its
associate transition matrix. Hence given a path η in N lab(τ, h, ε) (not necessarily closed)
represented by

(τ1, ε1)
T1
−→ (τ2, ε2)

T2
−→ · · ·

Tk−1
−−→ (τk, εk)

Tk
−→ (τ1, εk+1)
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one defines the matrix M(η) by using formula (3.4):

M(η) = M(Tk ◦ Tk−1 ◦ · · · ◦ T1) = M(T1) · · ·M(Tk).

Now if γ is a loop in N (τ, h) starting at some point (τi, hi), we can lift γ to some path γ̂
in N lab(τ, h, ε) starting at (τi, hi, εi). Here ε is any labeling of (τ, h). The end point of γ̂
(that is, (τi, hi, ε′i)) defines a train track map

R : (τi, hi, ε
′

i)→ (τi, hi, εi).

The associated matrix M(R) ∈ GL(ZA) is induced by a permutation, namely Rα,β = 1
if π(α) = β and 0 otherwise, where π = ε′i ◦ (εi)

−1
∈ Sym(A). We then define

M(γ ) := M(γ̂ ) ·M(R).

Obviously the conjugacy class of the matrix M(γ ) does not depend on the choice of the
labeling ε.

Remark 4.2. The above discussion allows us to reformulate Theorem 3.5 and Lemma 3.8
as follows: any pseudo-Anosov homeomorphism is obtained from a closed loop in some
graph N (τ, h) by using the above construction. The converse is almost true: this is The-
orem 3.10.

We end this section with a useful description of the train track map representing the lift
of homeomorphisms to D̃n.

4.3. Lifting train tracks

Let ρ : D̃n → Dn be a normal covering of the punctured disc and H the corresponding
deck transformation group. The surface D̃n can be constructed by glueing H copies of the
simply connected domain obtained by cutting the base Dn along n disjoint segments from
the punctures to the exterior boundary. The way of glueing is dictated by the monodromy
of the covering. We call each of these simply connected domains a leaf of the covering
ρ : D̃n → Dn. In this paper we will usually choose a leaf in D̃n, label it with eH (the
identity element in H) and call it the leaf at level zero. As explained in Section 3.2, we
will be considering infinite coverings ρ : D̃n → Dn where H is given by the maximal
abelian covering of Dn or by the dual of the invariant cohomology of Dn with respect to
the action of a pseudo-Anosov class.

For each standard (τ, h, ε), h̃(̃τ ) := ρ−1(h(τ )) defines an infinite train track h̃ :
τ̃ → D̃n. The edges and vertices of τ̃ are in bijection with E(τ) × H and V (τ) × H
respectively, and there are several ways to label the edges of τ̃ .

Every permutation η ∈ Sym(Aprong) defines a labeling of the edges of τ̃ as follows.
For every edge e of τ̃ whose image under h̃ is properly contained in the leaf at level zero
we define ε̃(e) = ε(e), where ρ(e) = e. Now by the way we defined the leaves of the
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covering, and given that we are working with standardly embedded train tracks, there are
exactly 2n edges of τ̃ whose images under h̃ are not properly contained in the leaf of level
zero. Moreover, these edges can be grouped into pairs {e1, e2

} where ρ(e1) = ρ(e2) = e,
and e is an infinitesimal edge of τ around a puncture. For every such edge e we define
ε̃(e1) = η(ε(e)) where ε(e) ∈ Aprong. Finally, we extend ε̃ to the remaining edges of τ̃
by using the H-monodromy action of the covering.

4.4. Lifting train track maps

Let (τ, h) and (τ ′, h′) be two train tracks in Dn and let T : τ → τ ′ be a train track
map representing a class [f ] ∈ Mod(Dn). Now let f̃ : D̃n → D̃n be a lift of [f ] to
the H = Zb1(M)−1-covering of the punctured disc ρ : D̃n → Dn, and let (̃τ , h̃) and
(τ̃ ′, h̃′) be lifts of (τ, h) and (τ ′, h′) respectively to this covering. As with finite train
tracks, a cellular map T̃ : τ̃ → τ̃ ′ that preserves the smooth structure will be called a
train track morphism. If in addition the domain and image train tracks of the morphism
are isomorphic as train tracks, we speak of a train track map. A train track morphism
T̃ : τ̃ → τ̃ ′ is a representative of the lift f̃ if:

(1) The diagram

τ̃
h̃

−−−−→ D̃n
T̃

y yf̃
τ̃ ′

h̃′
−−−−→ D̃n

commutes, up to isotopy, and
(2) f̃ ◦ h̃( τ̃ ) ⊂ N(h̃′(τ̃ ′)) and f̃ ◦ h̃( τ̃ ) is transverse to the tie foliation of h̃′(τ̃ ′).

It is clear that for every lift f̃ of f there is a train track map representing it.
Let η ∈ Sym(Aprong) be any permutation and π ∈ Sym(Aprong) be the permutation

defined by f . These permutations define labelings (̃τ , h̃, ε̃) and (τ̃ ′, h̃′, ε̃′) by η and π ◦ η
respectively. As in the case of finite train tracks we can associate to the train track map
T̃ : τ̃ → τ̃ ′ representing f̃ an incidence matrix. The matrixM(T̃ ) ∈ GL(Z[H ]A) records
how the edges of f̃ ◦ h̃( τ̃ ) intersect the central ties of h̃′(τ̃ ′). Obviously by construction
one has M(T̃ ) = M(T ) · Diag(v) for a suitable vector v ∈ Z[H ]A. In the next section
we explain how to compute this vector in the particular situation where T : τ → τ ′ is an
edge of the folding automaton.

5. Computing the Teichmüller polynomial

In this section we shall prove our main result. The statement uses what we call the deco-
rated folding automaton. The idea is to enrich the folding automaton by adding additional
information to each of its edges so that the computation of the Teichmüller polynomial
can be carried out using just the decorated folding automaton. This represents a simplifi-
cation of the problem of computing2F , for with the method we propose there is no need
to pass to an abelian infinite covering.
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Recall that we have fixed the maximal abelian covering of Dn induced by H =
Hom(H 1(Dn,Z),Z), and t1, . . . , tn is a multiplicative basis of H .

5.1. The decorated folding automaton

In the next subsections we define the extra piece of information needed to obtain the
decorated folding automaton. Roughly speaking, this extra element is a vector v with
entries in Z[H ] that encodes the incidence matrix M(T̃ ) of the lift of a train track map T
coming from a folding operation (see §4.4).

Recall that when defining the folding automaton in §4.1, the labeling map ε in (τ, h, ε)
is restricted to the set E(τ)real of real edges of τ . We will often choose the conven-
tion that, for any train track, the infinitesimal edges enclosing punctures are labeled by
{A,B,C, . . .} = Aprong where the alphabetical order is set to match the order on the
punctures of Dn induced by the natural order of R.

Let (τ, h, ε)
T
−→ (τ ′, h′, ε′) be a train track map associated to an edge in the folding

automaton which corresponds to a folding operation F and that represents a standardizing
homeomorphism fβ , where β is a braid in Bn. If h′(τ ′) is standardly embedded we say
that the folding F is standard. For every edge in the folding automaton corresponding to
a standard folding we define v ∈ Z[H ]Areal as the constant vector on which each entry is
equal to 1.

Henceforth we assume that the folding F is not standard. There are two real edges
{e, e′} ⊂ E(τ) and three vertices {v0, v1, v2} ⊂ V (τ) involved when performing F . We
observe that:

(1) there is a unique edge f ∈ {e, e′} in fβ(h(τ )) which is not properly embedded, i.e. it
traverses to the lower half of the punctured disc Dn,

(2) there exists a unique vertex vfix ∈ {v0, v1, v2} which is fixed by fβ , and
(3) after performing the folding operation on F , a new cusp in (τ ′, h′, ε′) appears. This

cusp is incident to a vertex vend ∈ {v0, v1, v2}. Let X ∈ Aprong be the label of the
unique infinitesimal edge of τ enclosing a puncture that is incident to vend.

Definition 5.1. We denote by N(T ) the connected component of τ \ f which does not
contain the vertex vfix (possibly N(T ) = ∅). We define f ′ ∈ {e, e′} by f ′ 6= f . There are
two cases to consider:

• Case 1: f ′ /∈ N(T ). We define v ∈ Z[H ]Areal by{
vα = X

±1 if ε(e) = α ∈ Areal and e ∈ N(T ) ∪ f ,
vα = 1 otherwise.

• Case 2: f ′ ∈ N(T ). We define v ∈ Z[H ]Areal by{
vα = X

±1 if ε(e) = α ∈ Areal and e ∈ N(T ),
vα = 1 otherwise.
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The sign of the exponent in X±1 is determined by the choice of the counterclockwise
direction as positive direction for rotations on the disc. The decorated folding automa-
ton N aug(τ, h) is N lab(τ, h, ε) where we add the information (π, v) at each edge (π ∈
Sym(Aprong) is the permutation given by Definition 3.12).

Remark 5.2. A priori one would expect the vector v encoding the matrix M(T̃ ) to be
larger, that is, v ∈ Z[H ]A. However, as we will see in the next section, the contribution
of infinitesimal edges to the determinant formula (3.2) cancels out with the contribution
of the matrix PV (t), and hence one can restrict the computation of the Teichmüller poly-
nomial to the subset Areal ⊂ A formed by the real edges.

If there is an edge between (τ, h, ε) and (τ, fβ ◦ h, ε) where β ∈ Bn and fβ ◦ h(τ) is
also standard then the vector v ∈ Z[H ]A is defined by v = (X±1, . . . , X±1) depending
the orientation of the braid β, and X is the label associated to the first, respectively last,
prong of Dn.

Example 5.3. We consider the folding automaton for the train track depicted in Figure 4.

a b

A B C

σ−1
1

πba=(B,A
−,C)

vba=(A
−1,1)

σ2

πab=(A,C
+,B)

vab=(1,C+)

Fig. 4. The decorated folding automaton for B3. The two edges represent σ−1
1 (left) and σ2 (right).

We have depicted only real edges. Infinitesimal edges enclosing punctures are labeled
by {A,B,C} = Aprong, where the alphabetical order is set to match the order on the
punctures of D3 induced by the natural order of R. This automaton has two edges. The
one on the right corresponds to the non-standard folding Fab that folds the real edge
labeled with a over the real edge labeled with b. The standardizing homeomorphism in
this case is given by fσ2 and a direct computation shows that:

• vfix is the vertex to which the infinitesimal edge A is incident and vend is the vertex to
which the infinitesimal edge C is incident. Therefore the label of the unique infinites-
imal edge of τ enclosing a puncture that is incident to vend is given by X = C.
• The edge f in Definition 5.1 is the edge labeled with a. ThereforeN(Tab) is the graph

containing the infinitesimal edgesB andC, the vertices to which they are incident and
the real edge b. Thus, according to Definition 5.1, we are in Case 2.

Hence we deduce that the vector corresponding to this edge of the automaton is given by
vab = (1, C+1). We leave the rest of the computations to the reader. To deduce the signed
permutations corresponding to the edges of the automaton it is useful to look at Figure 13.
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5.2. Maximal abelian covering and intermediate abelian coverings

We stress that the Teichmüller polynomial depends on some covering induced by
Hψ = Hom(H 1(S,Z)ψ ,Z), whereas all the above computations depend only on H =
Hom(H 1(S,Z),Z).

In order to recall the action of ψ = [fβ ] ∈ Mod(Dn) on punctures, we appeal to the
function

t : Aprong → Hfβ = Hom(H 1(Dn,Z)fβ ,Z) (5.5)

constructed as follows. We have a collection of cycles sα = [∂Uα], α ∈ Aprong, that
form a basis for H1(Dn,Z). Moreover fβ acts on this basis: for every α ∈ Aprong we
have fβ(sα) = sβ(α), where β ∈ Sym(Aprong) is the permutation that β defines on the
punctures. For each cycle σ of β let tσ =

∑
α∈Supp(σ ) sα . This defines a multiplicative

basis for H , which we denote by t1, . . . , tr for simplicity. The map t : Aprong → Hfβ is
given by t (α) = tσ whenever α ∈ Supp(σ ).

Convention. Let A±1
prong := {α

+1, α−1
}α∈Aprong . We extend the function t : Aprong→Hfβ

(respectively, π ∈ Sym(Aprong)) to a function {1} ∪ A±1
prong → Hfβ (respectively, a per-

mutation of {1} ∪ A±1
prong) by t (α±1) = t (α)±1 if α ∈ Aprong and t (1) = 1 (respectively,

s(α±1) = s(α)±1 and s(1) = 1).
Finally, if v is a vector with entries in {1, α±1

| α ∈ Aprong}, we define t (v) (respec-
tively, π(v)) as the vector that results from the evaluation of t (respectively, π ) on each
coordinate.

5.3. Main result

Theorem 5.4. Let [fβ ] be a pseudo-Anosov class given by the loop

(τ1, ε1)
T1
−→ (τ2, ε2)

T2
−→ · · ·

Tk−1
−−→ (τk, εk)

Tk
−→ (τ1, εk+1)

R
−→ (τ1, ε1)

in the decorated folding automaton. Assume that the matrix describing the linear map on
the space of weights on real edges is primitive irreducible. Then the Teichmüller polyno-
mial 2F (t, u) of the associated fibered face F determined by [fβ ] is

2F (t1, . . . , tr , u) = det(u · Id−M) (5.6)

where
M = M(T1)D1 · · ·M(Tk)Dk ·M(R), (5.7)

and, for i = 1, . . . , k,Di = Diag(t (wi)) ∈ GL(Z[H ]Areal),

wi = ηi(vi),

η1 = IdAprong and ηi = πi−1 ◦ ηi−1 for i ≥ 2.
(5.8)

Proof. We first observe that the assumption on the real edges implies that the contribution
of the infinitesimal edges to the numerator in the determinant formula (3.2) cancels out
with the denominator. This fact, together with the discussion in Sections 4.2–4.4, implies
(5.6) and (5.7).
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We now need to show that each diagonal matrixDi is given by (5.8). Throughout this
proof, D̃n denotes the infinite abelian covering with deck transformation group Hfβ =
Hom(H 1(Dn,Z)fβ ,Z) associated to the fβ -invariant cohomology of Dn.

We will first prove that given an edge

(τi, εi, hi)
Ti
−→ (τi+1, εi+1, hi+1) (5.9)

of the decorated automaton representing a standardizing homeomorphism fβ , the inci-
dence matrix M(T̃i) associated to a lift of Ti to D̃n is of the form M(Ti)Diag(t (ηi(vi)).
This is the longest part of the proof and is done case-by-case depending on the train track
(τi, εi, hi). We deal with the recursive nature of formula (5.8) at the end. In order to
present the list of cases, we observe that:

(1) No train track of the decorated folding automaton defines a polygon whose sides are
real edges. More precisely, if (τ, h, ε) ∈ N lab(τ, h, ε), then no connected component
of Dn \ h(τ) homeomorphic to a disc with boundary formed by real edges of τ .

(2) All standardizing homeomorphisms are simple in the sense of Ko–Los–Song [SKL02].
More precisely, let δ[l,m] := σm−1σm−2 · · · σl , where the σi’s are the standard Artin
generators of the braid group Bn. Then we can suppose that all the homeomor-
phisms used to standardize train tracks in the augmented folding automaton are of
the form δ±1

[l,m].

To understand the proof it will be useful to describe the covering D̃n discussed in Sec-
tion 4.3 more precisely. LetD be the leaf of this covering obtained by cutting the base Dn
along n disjoint vertical segments that go from the punctures to the lower part of the exte-
rior boundary. Any labeling by elements of Aprong of the infinitesimal edges surrounding
punctures defines a natural labeling of these vertical segments. Denote them by ια where
α ∈ Aprong. The infinite covering D̃n is obtained by glueing the disjoint family of copies
ofD in the family {Dh}h∈Hfβ as follows: for every h ∈ Hfβ , crossing inDh the segment ια
in the counterclockwise direction takes one toDt (α)h, where t is the map defined in (5.5).
From this detailed description we deduce that if the train track map corresponding to the
edge (5.9) comes from a standard folding Fi then M(T̃i) = M(Ti). Indeed, it is sufficient
to remark that no real edge of f̃β (̃τi) intersects a vertical segment ια .

Now suppose that the edge (5.9) comes from a non-standard folding Fi . We justify
in detail the equality M(T̃i) = M(Ti)Diag(t (ηi(vi))) in two illustrative cases. Then we
explain how to proceed with all the cases that remain (see Appendix C).

Case A.1. This case is formed by an infinite family of train tracks arising from a graph 0
embedded in Dn. This graph 0 will be called a basic type and consists of: two real edges
{e, e′}, three vertices {v0, v1, v2} and at most three infinitesimal edges, each of which
encloses a puncture of Dn and is incident to a vertex in {v0, v1, v2}. For the situation of
Case A.1, the graph 0 is depicted in Figure 5.

The idea now is to add edges and vertices to 0 to form vertices (τi, εi, hi) of the
folding automaton in Dn. There are many ways to do this, some of which are depicted
in Figure 5. In fact, given that the vertices of the automaton are properly embedded train
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e
e′

v0 v2 v1

Basic type 0

Fig. 5. Basic type A.1 and some train tracks that arise from it.

tracks, there are only finitely many types of train tracks that can be obtained this way (for
a fixed number n of punctures in the disc). To illustrate what we mean by a type of a train
track we display in Figure 6 all possible types of train tracks arising from the basic type
0 in Figure 5.1 In Figure 6, each of the small boxes represents a subgraph of (τi, εi, hi).

Now consider an edge of the automaton (5.9) where (τi, hi, εi) is the type A.1.1 de-
picted in Figure 6 and the train track map Ti represents the homeomorphism fβ that stan-
dardizes the train track Fee′(τi) that arises when folding edge e over edge e′. In Figure 7
we depict this edge of the automaton in detail. The numbers 0, 1, 2 in this figure represent
the vertices {v0, v1, v2} respectively. Note that for this edge of the automaton we have
vfix = v0 and vend = v1. Moreover, edges f , f ′ from Definition 5.1 are given by f = e,

Type A.1.1 Type A.1.2

Fig. 6. Types A.1.1 and A.1.2 arising from simple type A.1.

e
e′

0 2 1

Fee′

fβ

τi
e′

e

0 2 1

fβ

e′ e

0 1 2

τi+1

e′ e

0 1 2

Fig. 7. A detailed edge of the automaton in Case A.1.1.

1 For this particular case we depict 0 embedded in D4.
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f ′ = e′ and the subgraph N(Ti) is highlighted in bold. We observe that f ′ /∈ N(Ti),
hence we are in Case 1 of that definition.

Now consider the lift D̃n
f̃β
−→ D̃n which fixes the point in the fiber over vfix contained

in the leaf of level zero. Such a lift always exists, for fβ fixes vfix downstairs by definition.
We now consider the lift

(̃τi, ε̃i, h̃i)
T̃i
−→ (̃τi+1, ε̃i+1, h̃i+1) (5.10)

representing f̃β . To computeM(T̃i) we present Figure 8 where f̃β (̃τi) and h̃i+1(̃τi+1) are
both depicted at the leaf DeHfβ

of level zero. Observe that at the leaf of level zero, except
for the real edges in f̃β (̃τi) depicted in bold, all real edges of f̃β (̃τi) are labeled by ε̃i
with letters in A. Labels given by ε̃i to the edges in bold are of the form t−1

i x, where x
ranges over labels in A reserved for real edges in N(Ti) ∪ f and t (X) = ti ∈ Hfβ . Here,
X ∈ Aprong is the label (given by εi) of the unique infinitesimal edge of τi enclosing
a puncture and incident to vend. Now the projections to the base Dn of the real edges
depicted in bold in Figure 8 are precisely the edges in fβ(τi) contained in N(Ti) ∪ f .

e′ e

0 1 2

τ̃i+1
f̃β (̃τi )

e′ t−1
i
e

0

1

2
e

Fig. 8. Lifting an edge of the automaton in Case A.1.1.

From this data, a straightforward calculation yields M(T̃i) = M(Ti)Diag(t (ηi(vi))),
where all entries in the diagonal matrix Diag(t (ηi(vi))) different from 1 are equal to ti .
The case when Ti represents the homeomorphism fβ that standardizes the train track
Fee′(τi) that arises when folding e′ over e is treated in the same way.

Case B.1. This case is very similar to the preceding one. Consider the basic type 0 given
by Figure 9. We consider all possible types of train tracks arising from 0, which are dis-
played in the same figure. Among these, consider the edge of the automaton (5.9) where
(τi, hi, εi) is the type B.1.1 depicted in Figure 9 and the train track map Ti represents
the homeomorphism fβ that standardizes the train track Fee′(τi) that arises when folding
edge e over edge e′.

In Figure 10 we depict this edge of the automaton in detail. Note that vfix = v2,
vend = v1, f = e, f ′ = e′ and the subgraph N(Ti) is highlighted in bold. We remark that
f ∈ N(Ti), hence we are in Case 2 of Definition 5.1. This is the main difference with
Case A.1.

Now consider the lift D̃n
f̃β
−→ D̃n which fixes the point in the fiber over vfix contained

in DeH . To compute M(T̃i) we present Figure 11 where f̃β (̃τi) and h̃i+1(̃τi+1) are both
depicted at the leaf of level zero. Note that at the leaf of level zero, except for the real edges
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e e′

v2 v0 v1
Basic type 0 Type B.1.1

Type B.1.2

Fig. 9. Types B.1.1 and B.1.2 arising from simple type B.1.

2 0 1

e

e′

Fee′
τi

fβ

2 0 1

e
e′

fβ

2
1

0

e

e′

2 1 0

e e′

Fig. 10. A detailed edge of the automaton in Case B.1.1.

in f̃β (̃τi) depicted in bold, all real edges in f̃β (̃τi) are labeled by ε̃i with letters in A. La-
bels given by ε̃i to the edges in bold are of the form t−1

i x, where x ranges over labels in A
reserved for real edges in N(Ti) ∪ f and t (X) = ti . Here, X ∈ Aprong is the label (given
by εi) of the unique infinitesimal edge of τi enclosing a puncture and incident to vend. Now
the projections of the real edges depicted in bold in Figure 11 to the base Dn are precisely
the edges in fβ(τi) contained in N(Ti). From this data, a straightforward calculation
shows thatM(T̃i) = M(Ti)Diag(t (ηi(vi))), where all entries in Diag(t (ηi(vi))) different
from 1 are equal to ti . The case when Ti represents the homeomorphism fβ that standard-
izes the train track Fee′(τi) that arises when folding e′ over e is treated in the same way.

2

1

0

e

t−1
i
e′

t−1
i
e 2 1 0

e e′

Fig. 11. Lifting an edge of the automaton in Case B.1.1.
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The remaining cases are treated as follows:

(1) Pick a basic type 0 from the list presented in Appendix C and consider (τi, hi, εi),
one of the finitely many possible types of train tracks that can be constructed from 0.

(2) Consider an edge (5.9) of the folding automaton starting from the train track chosen
in the preceding step and where Ti comes from either the folding Fee′ or Fe′e,2 and

represents a standardizing homeomorphism Dn
fβ
−→ Dn.

(3) Pick the lift D̃n
f̃β
−→ D̃n which fixes the point in the fiber over vfix contained in

DeH and the corresponding train track map of the form (5.10) representing it. Then,
depending on the case of Definition 5.1, perform analogous calculations to the ones
presented in Cases A.1 and B.1.

To finish the proof consider any edge (5.9) in the decorated folding automaton with extra
information (πi, vi). If e is an infinitesimal edge in τi+1, we define εi+1(e) := πi(εi(e)).
Hence wi+1 = πi ◦ · · · ◦ π1(vi+1). This implies the recursive nature of (5.8). ut

Remark 5.5. Let t be the variable of Hfβ and let u correspond to the lift ψ̃ . Then

2F (t, u) ∈ Z[G] = Z[t] ⊕ Z[u].

From Remark 3.1 we conclude that picking different lifts of the standardizing homeo-
morphism fβ results in multiplying M(T̃ ) by some t0 ∈ Hfβ . This does not affect the
expression for the Teichmüller polynomial since 2F (t, u) = det(u · Id − t0M(T̃ )) =
tb0 det(t−1

0 u · Id − M(T̃ )) = tn−1
0 2F (u

′, t), where u′ = t−1
0 u is the coordinate corre-

sponding to the other lift.

Remark 5.6. Observe that we can formally apply the above theorem to any isotopy class
(not necessarily pseudo-Anosov). See the example below.

Example 5.7. Consider the class [fβ ] where β = σ 2
2 is a braid in B3 (see Figure 4). The

corresponding loop is

(τ, ε)
T1
−→ (τ, ε)

T2
−→ (τ, ε).

In this example the map t : {A,B,C} → H is given by t (α) = tα for all α ∈ Aprong =

{A,B,C} since the permutation on the punctures defined by fβ is the identity. In other
words,H is isomorphic to Z3. A direct calculation shows thatw1 = η1(1, C+) = (1, C+)
since η1 = Id|Aprong . Hence t (w1) = (1, tC). On the other hand, w2 = η2(1, C+) =
(1, B+) since η2(A,B,C) = (A,C,B). Hence t (w2) = (1, tB). A direct calculation
also shows that the matrix associated to Ti is

(
1 1
0 1
)

for i = 1, 2. Theorem 5.4 gives

M(σ 2
2 ) =

(
1 1
0 1

)
·

(
1 0
0 tC

)
·

(
1 1
0 1

)
·

(
1 0
0 tB

)
=

(
1 tB + tB tC
0 tB tC

)
.

Similarly for β = σ−2
1 we have t (α) = tα and H isomorphic to Z3. A direct calculation

shows that w1 = η1(A
−1, 1) = (A−1, 1). Hence t (w1) = (t−1

A , 1). On the other hand,

2 For some simple types only one of these two foldings is possible.
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w2 = η2(A
−1, 1) = (B−1, 1) with η2(A,B,C) = (B,A,C). Hence t (w2) = (t

−1
B , 1).

A direct calculation also shows that the matrix associated to Ti is
(

1 0
1 1

)
for i = 1, 2.

Theorem 5.4 then gives

M(σ−2
1 ) =

(
1 0
1 1

)
·

(
t−1
A 0
0 1

)
·

(
1 0
1 1

)
·

(
t−1
B 0
0 1

)
=

(
t−1
A t−1

B 0
t−1
A t−1

B + t
−1
B 1

)
.

Remark 5.8. Compare with the formula in [McM00, §11] (here the presentation of the
group H is different):

M(σ−2
2 ) =

(
1 0

t−1
2 + t

−1
2 t−1

3 t−1
2 t−1

3

)
and M(σ 2

1 ) =

(
t1t2 t1t2 + t2
0 1

)
.

For instance our algorithm applied to σ−2
1 σ 6

2 given by the loop(
(τ, ε)

T1
−→ (τ, ε)

)3 T2
−→ (τ, ε)

(where T1 represents σ 2
2 and T2 represents σ−2

1 ) shows that the Teichmüller polynomial
is

2F (tA, tB , tC, u) = det
(
u · Id−

(
1 tB + tB tC
0 tB tC

)3

·

(
t−1
A t−1

B 0
t−1
A t−1

B + t
−1
B 1

))
.

5.4. Implementation of the algorithm

We end this section with a step-by-step description of the algorithm according to the proof
of Theorem 5. The following is a pseudocode for a computer program to generate the
decorated folding automata. This paper will not cover the details of its implementation,
and a list of examples will be the subject of a forthcoming paper.

Input: Number of punctures n > 2, an alphabet A and a labeled train track (τ0, h0, ε0)

on S = Dn where (τ0, h0) is standard, and τ0 has prescribed singularity data and labeling
ε0 : E(τ0)→ A.

Output: Decorated folding automaton N aug(τ0, h0).

Step 1. Initialization: Set (τ, h, ε) = (τ0, h0, ε0). The vertices of the folding automata
N lab(τ0, h0) are train tracks and the set of elementary folding maps forms the
arrows. Recall that we consider labeling ε restricted to the set of real edges.

Step 2. Given (τ, h, ε) compute all the elementary folding operations followed by stan-
dardness operations. This gives edges from (τ, h, ε) to a finite collection of la-
beled train tracks (τi, hi, εi) as explained in Section 4.1. Repeat Step 2 until
N lab(τ0, h0) is invariant under the folding operation.

Step 3. The resulting directed graph N lab(τ0, h0) is connected by construction. To com-
plete the construction of the folding automaton, for each arrow, compute the as-
sociated transition matrix, following Section 4.2.
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Step 4. Choose a multiplicative basis t = (t1, . . . , tn) of H = Hom(H 1(S,Z),Z). For
each arrow of N lab(τ0, h0), compute the associated vector v ∈ Z[H ]Areal fol-
lowing Definition 5.1 and the permutation π ∈ Sym(Aprong) defined in Def-
inition 3.12. This set of pairs (π, v) gives the decorated folding automaton
N aug(τ, h).

6. Topology of a fiber

In this section we provide a way to compute the topology (genus, number and type of
singularities) of a fiber. We begin by introducing some notation that will be used through-
out. As usual we will consider a mapping torus Mψ = Dn × [0, 1]/(x, 1) ∼ (ψ(x), 0)
induced by a pseudo-Anosov braid β ∈ Bn. It turns out that there is a natural model
for Mψ as a link complement S3

\ N (L) where N (L) is a regular neighborhood of a
link L in the 3-sphere. To construct the link L = Lβ , simply close the braid β represent-
ing ψ while passing it through an unknot α (representing the boundary of the disc Dn).
Let 6 → M → S1 be a fibration with monodromy ϕ : 6 → 6. Recall that if 6 has
genus g and b boundary components, then χ−(6) = 2g+b−2. Hence the Thurston norm
does not completely determine the topology of 6. To achieve this we have to determine
one of the numbers g or b (the surface 6 is orientable).

6.1. Computing the number of boundary components

Since Mψ is homeomorphic to the link complement S3
\ N (L), we can easily describe

its homology group. First there is an embedding i : Dn ↪→ M such that the image of the
exterior boundary of Dn spans α and i(Dn) is punctured by the n strands of β. The bound-
ary of M is a union of tori T1, . . . , Tr , where r = b1(M) (viewed as the boundary of a
regular neighborhood of the link components ∂N (Li)). Let [S1], . . . , [Sr ] be a basis of
H2(M, ∂M;R) (e.g. take Seifert surfaces whose boundary is Ti). By convention we nor-
malize so that Sr = i(Dn). This normalization implies that Tr comes from the unknot α.
The meridians of the components of Lβ give a natural basis for H1(M,Z) [Hil12].

Now let {[mi], [li]} be a meridian and longitude basis for H1(Ti,R), where the ori-
entation of li ⊂ ∂Si is induced by the orientation of [Si].We consider the long exact
sequence of the homology groups of the pair (M, ∂M). We write the boundary map

∂∗ : H2(M, ∂M;R)→ H1(∂M,R).

On the chosen basis, for any i = 1, . . . , r , one has

∂∗[Si] =

r∑
j=1

(aij [mj ] + bij [lj ])

with aij , bij ∈ Z. We set A = (aij )ri,j=1 and B = (bij )ri,j=1.
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Proposition 6.1. Let κ =
∑r
i=1 ci[Si], where c = (c1, . . . , cr) ∈ Zr , be an integral

homology class (not necessarily primitive). Then for any embedded surface S ⊂ Mψ (not
necessarily minimal representative) such that [S] = κ , and for any j = 1, . . . , r , the
number of connected components of S ∩ Tj is gcd(aj , bj ) where (a1, . . . , ar) = cA and
(b1, . . . , br) = cB.

Proof. Write [S] =
∑r
i=1 ci[Si] ∈ H2(M, ∂M;R). Elementary linear algebra gives

∂∗[S] =

r∑
i=1

r∑
j=1

(ciaij [mj ] + cibij [lj ]).

Now S∩Tj ⊂ ∂S is a union of oriented parallel simple closed curves. Hence its homology
class is given by ( r∑

i=1

ciaij

)
[mj ] +

( r∑
i=1

cibij

)
[lj ] ∈ H1(Tj ,R).

Thus the number of connected components of S ∩ Tj is

gcd
( r∑
i=1

ciaij ,

r∑
i=1

cibij

)
.

The proposition is proved. ut

Remark 6.2. In our situation, since Si is a Seifert surface whose boundary is the torus Ti ,
one has

∂∗[Si] = [li] −

r∑
j=1

Lk(Li, Lj )[mj ],

where Lk(Li, Lj ) is the linking number of the two closed curves Li and Lj with ori-
entations given by the orientations of [li] and [lj ]. In other words, B = Id and A =
(Lk(Li, Lj )))ri,j=1.

We end this section with the following corollary on the connected components of 6 ∩ Ti .

Corollary 6.3. For any [6] =
∑r
i=1 ci[Si] ∈ H2(M, ∂M;R) where c = (c1, . . . , cr)

∈ Zr , let a = cA and b = cB as above. Then each connected component of 6 ∩ Tj is
identified to a curve (well defined up to isotopy)

cp/q = p[mj ] + q[lj ] ∈ H1(Tj ,R) with p =
aj

gcd(aj , bj )
, q =

bj

gcd(aj , bj )
.

From the last corollary we make the following definition. If T is a torus, and if H1(T ,Z)
is equipped with its preferred basis given by meridian and longitude (denoted by [m]
and [l]), then the slope of an essential simple closed curve [c] = p[m] + q[l] (with
gcd(p, q) = 1) is p/q. Conversely, for any r ∈ Q ∪ {∞} one defines the (isotopy class)
cr of the corresponding simple closed curve.
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6.2. Computing the number and type of singularities of the fiber

Let 6→ Mψ → S1 be a fibration in R+ · F with pseudo-Anosov monodromy φ. In this
section we explain how to compute the singularity data of the stable measured foliation
of 6 that is invariant under φ using the singularity data of the stable measured foliation
of ψ . The arguments are based on work of Fried.

In the following we denote by F the stable measured foliation invariant under ψ . Up
to isotopy one can assume that ψ(F) = F . This determines a 2-dimensional lamination
Lψ = F ×R/〈(s, t) ∼ (ψ(s), t − 1)〉 obtained as the mapping torus of ψ : F → F . The
“vertical flow lines” {s} ×R ⊂ 6 ×R descend to the leaves of a 1-dimensional foliation
whose leaves will be called the flow lines of ψ . Hence Lψ is swept out by the leaves of
the flow lines passing through F .

We distinguish two cases: F has no singularities in the interior of Dn (see Propo-
sition 6.4) or F has some singularities in the interior of Dn (see Proposition 6.6). Any
singularity s of F in the boundary of Dn determines a closed curve γs of slope ps/qs on
the torus Ts ⊂ ∂M , given by the flow line passing through s. See for example [KT13, Fig-
ures 4 and 5].

Proposition 6.4 (F has no singularities in the interior of Dn). For any [6] ∈ R+ · F ⊂
H2(M, ∂M;R) with monodromy φ : 6 → 6, the singularity data of the stable foliation
Fφ of the pseudo-Anosov map φ is given by:

(1) Fφ has no singularities in the interior of 6.
(2) At each connected component of ∂6∩Ts (of slope p/q given by Corollary 6.3), there

is a k|psq − qsp|-prong singularity of Fφ if s is a k-prong singularity.

Remark 6.5. In all examples that we will be treating in this article, every singularity of F
in the boundary of Dn that does not intersect Tr is a 1-prong. Except for the example in B4
treated in Section 8, Fφ has no singularities in the interior of 6 and for each 1 ≤ i < r , if
we write ∂6 ∩Ti = a[mi]+ b[li] ∈ H1(Ti,R), Fφ has gcd(a, b) singularities in Ti , each
of which is a |piq − qip|-prong, where p = a/gcd(a, b), q = b/gcd(a, b) and pi/qi is
the slope of the curve γi ⊂ Ti . The type of the remaining singularity can be determined
using the Euler–Poincaré formula.

Proof of Proposition 6.4. Let [6] ∈ R · F ⊂ H2(Mψ , ∂Mψ ;R) be a fiber of M with
monodromy φ : 6 → 6. We will use the following result of Fried [Fri82, McM00].
After an isotopy:

(1) The fiber 6 is transverse to the flow lines of ψ .
(2) The monodromy of the fibration determined by [6] coincides with the first return

map of the foliation F .

Hence the monodromies of any two points in R · F ⊂ H2(Mψ , ∂Mψ ;R) determine,
up to isotopy, the same lamination Lψ . Let τ ↪→ Dn be a train track invariant under
our given pseudo-Anosov homeomorphism ψ . Up to isotopy we assume that ψ(τ) is
contained a fibered neighborhood of τ and transverse to the tie foliation. We assume that
τ carries the measured foliation F . Let Lτ be the mapping torus of τ , that is, Lτ =
τ × [0, 1]/〈(x, 1) ∼ (ψ(x), 0)〉.
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The aforementioned result of Fried implies that the intersection Fφ = 6∩Lψ defines
an invariant measured foliation for φ and Fφ is carried by the train track τφ = 6 ∩ Lτ .
By construction Lψ is carried by the branched surface Lτ . For any singularity s of F ,
one obtains a simple closed curve γs ⊂ M which is the closed orbit of the flow line
passing through s. Notice that the union of all γs is the branched locus of Lτ . Since F
has no singularities in the interior of Dn, all curves γs lie in Ti for some i. Hence all the
singularities of Fφ lie in ∂6 ∩ Ti , which proves the first point of the proposition.

Now we determine the number and type of prongs of τφ . For that we consider the
number of prongs of Fφ at each component of ∂6 ∩ Tj for each j (clearly for a given j
the type of the singularity at each component is the same). Let c[p/q] = p[mj ] + q[lj ] ∈
H1(Tj ,R) be the corresponding curve representing a connected component of ∂6 ∩ Tj
(see Corollary 6.3). By the aforementioned result of Fried, each intersection between
c[p/q] and γs contributes to k-infinitesimal edges (if s is a k-prong singularity). Hence the
total number of prongs of Fφ at ∂6 ∩ Tj is equal to

k · i(c[p/q], γs).

Since the slope of γs is ps/qs , it follows that

i(c[p/q], γs) = |psq − qsp|.

This ends the proof of Proposition 6.4. ut

We now address the case when F has singularities in the interior of Dn. Roughly speaking,
the idea is to remove the interior singularities in order to be in the preceding case.

Note that in the definition of a pseudo-Anosov homeomorphism we can remove or
add punctures while keeping the “same” map ψ : S → S. More precisely when {ψ i(x)}
is a periodic orbit of unpunctured points, puncturing at {ψ i(x)} means adding them to
the puncture set {pi}. Conversely, when {ψ i(p)} is a periodic orbit of k-prong punctured
singularities for k > 1, capping them off means removing them from the puncture set.
For pseudo-Anosov braids, puncturing or capping off corresponds to adding or removing
some strands.

Proposition 6.6 (F has singularities in the interior of Dn). Puncturing at {ψ i(s)} for
any singularity s of F in the interior of Dn gives rise to a pseudo-Anosov ψ̃ : Dm→ Dm
where m > n. By construction Fψ̃ has no interior singularities. Moreover the injec-
tion Dn → Dm induces a map Mψ → Mψ̃ =: M̃ and each class [6] ∈ R+ · F ⊂
H2(M, ∂M;R) (with monodromy φ) determines a class [6̃] ∈ R+ ·F ⊂ H2(M̃, ∂M̃;R)
with monodromy φ̃. The map φ is obtained by capping the singularities of φ̃ that lie in the
interior of Dn. In particular Fφ and Fφ̃ share the same number and type of singularities.

Proof. This is clear from the definition of capping off and puncturing at singularities. ut

6.3. Orientability of a singular foliation

In this section we determine whether or not the measured foliation Fφ is orientable. For
that we will use the following well known theorem of Thurston:
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Theorem. For any pseudo-Anosov homeomorphism φ on a surface 6 the following are
equivalent:

(1) The stretch factor of φ is an eigenvalue of the linear map φ∗ defined on H1(6,Z).
(2) The invariant measured foliation Fφ of φ is orientable.

To compute the homological dilatation we will make use of the Alexander polynomial.
Just as the Teichmüller polynomial, the Alexander polynomial of M ,

1M =
∑
g∈G

bg · g,

is an element of the group ring Z[G], where G = H1(M,Z)/Tor. For a precise defini-
tion see [McM02, §2]. The Alexander polynomial can be evaluated on a homology class
[6] ∈ H2(M, ∂M;R) using Poincaré–Lefschetz duality and then proceeding as with the
Teichmüller polynomial in the corresponding dual cohomology class. We have the fol-
lowing classical result (see e.g. [Mil68]):

Theorem 6.7. Let [α] ∈ R+ · F ⊂ H 1(M,R) with monodromy φ : 6 → 6. Then the
characteristic polynomial of φ∗ acting on H1(6,Z) is given by the Alexander polyno-
mial 1M evaluated on [α].

7. First examples in B3

The goal of this section is to revisit classical examples, first studied by Hironaka [HK06],
[Hir10], Kin–Takasawa [KT13] and McMullen [McM00]. We stress that the novelty in
this section is the methods presented to perform calculations, and not the results of these.
In the next sections we will address examples in Bn for n ≥ 4.

Convention. The natural order on R induces an order on the punctures of Dn and thus
a labeling. We label the infinitesimal edges enclosing punctures in D3, from left to right,
by A,B,C so that Aprong = {A,B,C}. Hence the standard generators σ1, σ2 (induced
by left Dehn half-twists around loops enclosing the punctures) define the permutations
(A,B,C) 7→ (B,A,C) and (A,B,C) 7→ (A,C,B) respectively.

7.1. The simplest pseudo-Anosov braid

We first consider the homeomorphism ψ = f
σ−1

1 σ2
and treat this example in detail.

7.1.1. Invariant train track. It is well known that the isotopy class of ψ is pseudo-
Anosov. Indeed, ψ leaves invariant the train track τ0 presented in Figure 12. The map
f
σ−1

1 σ2
is then represented by the train track map T : τ0 → τ0 defined by a 7→ aab and

b 7→ ab. The incidence matrix, ( 2 1
1 1 ), is irreducible.

We now quickly review how one can find a sequence of foldings discussed in the
previous sections. For this purpose, consider the folding automaton and the two folding
maps Fba , Fab corresponding to the two standardizing homeomorphisms f

σ−1
1

and fσ2

depicted in Figure 13.



Computing the Teichmüller polynomial 3897

a a

a

a b b b

fσ2
f
σ−1

1

Fig. 12. An invariant train track τ0 for f
σ−1

1 σ2
.

a

aa
b

b

b

f
σ−1

1

Fba

fσ2

Fab

frot

f−1
rot

ba

ba

Fig. 13. The folding automaton for B3. The map frot is an isotopy (rotation in the neighborhood
of punctures). Observe that the folding Fba induces a train track map Tab that represents f

σ−1
1

. The
same is true for Fba with fσ2 .

Remark 7.1. We will encode the folding automaton by representing the isotopy near
the punctures by a permutation (see Definition 3.12 and Example 3.13). This defines a
simpler automaton: see Figure 14.

a

aa
b

b

b

f
σ−1

1

Fba

(A,B,C) 7→(B,A−,C)

fσ2

Fab

(A,B,C)7→(A,C+,B)

Fig. 14. The folding automaton for B3. Note that the graphs N lab(τ, h, ε) and N (τ, h) coincide:
they each have only one vertex and two edges represented by the two folding maps Fab and Fba .
For each edge we have represented the action of the standardizing braids on the punctures.
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The two foldings Fba and Fab define two train track maps Tba and Tab (representing the
two homeomorphisms f

σ−1
1

and fσ2 , respectively):

Tba : τ0 → τ0, a 7→ a, b 7→ ba,

Tab : τ0 → τ0, a 7→ ab, b 7→ a,

whose incidence matrices are Mba := M(Tba) =
(

1 0
1 1

)
and Mab := M(Tab) =

(
1 1
0 1
)
. To

be more precise, one sees that in this very particular example τ0 is invariant under both
fσ2 and f

σ−1
1

and the associated train track maps are given by Tab and Tba . Hence the path
in the automaton representing f

σ−1
1 σ2
= f

σ−1
1
◦fσ2 has train track map given by Tba ◦Tab.

Therefore the incidence matrix is

M(Tba ◦ Tab) = Mab ·Mba =

(
2 1
1 1

)
.

Observe that in this case the relabeling map involved is the identity map. In the above
situation, the matrices belong to GL(ZAreal) = GL(Z{a,b}).

7.1.2. The Teichmüller polynomial. We now compute the Teichmüller polynomial of the
fibered face containing the fibration defined by the suspension of f

σ−1
1 σ2

. Recall that D3

is the complement of three round discs DA, DB and DC lying along a diameter of the
closed unit disc. The rank of the group Hf

σ
−1
1 σ2

is given by the number of cycles of the

permutation induced by the action of f
σ−1

1 σ2
on the boundary {[∂Dα]}α∈Aprong . Since the

braid β = σ−1
1 σ2 permutes the three strands cyclically, H is isomorphic to Z. Therefore

π : D̃3 → D3 is a Z-covering. The infinite surface D̃3 can be constructed by glueing
Z copies of the simply connected domain obtained by cutting D3 along three disjoint
segments going from Dα to the exterior boundary of D3. These are called the leaves of
the covering π : D̃3 → D3 (see §4.3). For our computations, we fix a labeling by t ∈ Z
of the set of leaves forming D̃3 that is coherent with the action of Deck(π). This labeling
induces a labeling for the edges and vertices of the infinite train track (̃τ0, h̃).

As noted before, the path in the automaton N (h, τ0) representing f
σ−1

1 σ2
is Tba ◦ Tab.

In Figure 15 we depict the lift to D̃3 of each factor in this path.

a a ata

t−1a

b b

tb

b t−1b
f̃
σ−1

1
f̃σ2

Fig. 15. The lift of homeomorphisms induced by folding operations.

The first train track map Tab corresponds to the homeomorphism fσ2 . We choose
the lift f̃σ2 of fσ2 that fixes the vertex vfix, which in Figure 15 is the vertex on the
left. Equipped with this choice we get a train track map T̃ab : τ̃0 → τ̃0 induced by
f̃σ2 (̃τ0) ≺ τ̃0. Similarly the train track map Tba represents the homeomorphism f

σ−1
1

and
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we choose the lift f̃
σ−1

1
of f

σ−1
1

that fixes vfix, which in Figure 15 is the vertex on the

right. This lift is represented by the train track map T̃ba : τ̃0 → τ̃0. As in Example 5.7, a
direct calculation shows that

w1 = η1(1, C+) = (1, C+) since η1(A,B,C) = (A,B,C),

w2 = η2(A
−1, 1) = (A−1, 1) since η2(A,B,C) = π1 ◦ η1(A,B,C) = (A,C,B).

In this particular case, all punctures are permuted cyclically, hence t (w1) = (1, t) and
t (w2) = (t−1, 1). Theorem 5.4 then implies that the incidence matrix of the train track
map T̃ representing f̃

σ−1
1 σ2

is

M(T̃ ) = M(T̃ba ◦ T̃ab) =

(
1 1
0 1

)(
1 0
0 t

)(
1 0
1 1

)(
t−1 0
0 1

)
=

(
1+ t−1 t

1 t

)
.

Therefore the characteristic polynomial is

2F (t, u) = u
2
− (1+ t + t−1)u+ 1.

Remark 7.2. From the preceding calculations it is easy to compute the Teichmüller poly-
nomials associated to braids in B3 that permute the strands cyclically (by considering
products of M(T̃ba) and M(T̃ab). Compare with [McM00, §11].

7.1.3. Evaluating the Teichmüller polynomial of σ−1
1 σ2. First, given a class fβ ∈

Mod(Dn) we explain how to assign coordinates on H 1(M,Z) such that the cohomology
class corresponding to the fibration defined fβ is (0, . . . , 0, 1). Following Section 6.1, we
choose an ordered basis B = {[m1], . . . , [mr ]} of H1(M,Z) formed by the meridians
of the tori T1, . . . , Tr respectively. Since H1(M,Z) is torsion free, the base B defines a
base B∗ = {[s1], . . . , [sr−1], [y]} for H 1(M,Z) ' Hom(H1(M,Z),Z) by duality. Here
si = m∗i for i = 1, . . . , r − 1 and mr = y. Let [Sr ] = i(Dn) denote the class of the
fiber of the fibration defined by fβ . The intersection of [Sr ] with [mi] is given by δrj ,
and hence, using the Universal Coefficient Theorem and Poincaré duality, we deduce that
the coordinates of [Sr ]∗ ∈ H 1(M,Z) ' H2(M, ∂M;Z) for the basis B∗ are precisely
(0, . . . , 0, 1). In the rest of the examples presented in this text we always choose the or-
dered basis B∗. Note that {[m1], . . . , [mr−1]} generate the fβ -invariant homology of the
r − 1-punctured disc and [mr ] corresponds to the natural lifting f̃β of fβ , hence we can
identify {[m1], . . . , [mr−1], [mr ]} with the variables {t1, . . . , tr−1, u} of the Teichmüller
polynomial (see Section 3.1). In Figure 16 we depict the link complement defined by
σ−1

1 σ2.
We now determine the Thurston norm for β = σ−1

1 σ2. We achieve this by computing
first the Alexander norm of M = Mfβ . Direct computation shows that the Alexander
polynomial of β is

1M(t, u) = u+ u
−1
− (−t−1

+ 1− t) (7.11)

(well defined up to multiplication by a unit in Z[G]; see [McM02]). The Newton poly-
gon N(1M) of this polynomial is the symmetric diamond forming the convex hull
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of the points {(0,±1), (±1, 0), (0, 0)}; its Newton polytope is the square of vertices{(
±

1
2 ,±

1
2

)}
. By Remark B.3 the unit ball of the Alexander norm is the square of vertices{(

±
1
2 ,±

1
2

)}
(in H 1(M,Z)). Hence

‖(s, y)‖A = max(|2s|, |2y|) for all (s, y) ∈ H 1(M,Z).

By Theorems B.1–B.2 we conclude that the segment joining the points
(
−

1
2 ,

1
2

)
and( 1

2 ,
1
2

)
is the fibered face F of the Thurston norm ball whose cone R+ · F contains the

fibration defined by σ−1
1 σ2. Hence

‖(s, y)‖T = max(|2s|, |2y|)

for all fibrations (s, y) ∈ R+ · F ∩H 1(M,Z).
We finally explain how to evaluate 2F on a point (s, y) ∈ H 1(M,Z). Let fs, fy :

H1(M,Z) → Z be the duals of [s] and [y] respectively. Hence, the dual of a point
(s, y) ∈ H 1(M,Z) is given by f(s,y) := sfs + yfy . Since by definition f(s,y)(u) = y and
f(s,y)(t) = s, one has

2F (s, y) = X
f(s,y)(u

2)
− (1+Xf(s,y)(t) +Xf(s,y)(t

−1))Xf(s,y)(u) + 1

= X2y
− (1+Xs +X−s)Xy + 1.

7.1.4. The topology of the fiber. Let 6 be the fiber of the fibration determined by the
point (s, y) ∈ R+ · F , where F is the segment joining the points

(
−

1
2 ,

1
2

)
and

( 1
2 ,

1
2

)
.

Since every fiber is (Thurston) norm minimizing in its homology class, we have

‖(s, y)‖T = |y| = −χ(6) = 2 genus(6)−2+#{boundary components of 6}. (7.12)

We now calculate the number of boundary components of 6 as follows. We choose a
basis {[S1], [S2]} of H2(M, ∂M;Z) by taking two Seifert surfaces of the components of
the 62

2 link shown in Figure 16. By Remark 6.2, we have

∂∗[S1] = l1 − Lk(L1, L2)m2, ∂∗[S2] = l2 − Lk(L2, L1)m1.

Fig. 16. The link 62
2 and the fiber of the fibration defined by σ−1

1 σ2.



Computing the Teichmüller polynomial 3901

A straightforward computation shows that |Lk(L1, L2)| = |Lk(L2, L1)| = 3. Let A =
( 0 3

3 0 ). Proposition 6.1 implies that the number of connected components of ∂6 ∩ Tj is
gcd(aj , bj ) where a = (s, y), A = (3y, 3s) and b = (s, y). Therefore the total number
of connected components of ∂6 is gcd(s, 3y) + gcd(3s, y) = gcd(3, s) + gcd(3, y).
Plugging this data into (7.12) we get

genus(6) = |y| + 1−
gcd(3, s)+ gcd(3, y)

2
.

With the notation of Corollary 6.3 the slopes of the boundary components are 3/s and 3/y.

7.1.5. The singularities of the fiber. We already observed that 6 has gcd(3, s) boundary
components at T1 and gcd(3, y) boundary components at T2.

For any singularity s of F one needs to determine the slope of γs ⊂ M where γs is
the closed orbit of the flow line passing through s. Since F has no singularities in the
interior of Dn, all curves γs lie in Ti for some i. We label the prongs with the capital
letters A,B,C. One sees that the braid β permutes the prongs (A,B,C) to (C,A,B).
We denote the corresponding permutation π(β). Since π(β) has only one cycle, there
is only one torus component (see Figure 17). Now when performing the pseudo-Anosov
braid and isotopy, one needs to understand the rotation in the neighborhood of punctures
(see Definition 3.12 and Example 3.12).

mi

pp p

BA C

γp

Fig. 17. Computing the slope of the curve γp .

As usual one can obtain the permutation π(β) as follows. For each elementary step
we have a permutation encoding how the isotopy (rotation) acts in the neighborhood of
punctures. More precisely,

π(σ2) : (A,B,C) 7→ (A,C+, B) and π(σ−1
1 ) : (A,B,C) 7→ (B,A−, C).

Composition gives the desired slope:

π(β) = π(σ−1
1 σ2) = π(σ2) ◦ π(σ

−1
1 ).

Hence π(β) : (A,B,C) 7→ (C+, A−, B) and so γ = [l], i.e. its slope is 0/1 (no Dehn
twist around the meridian).
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Concretely the slope of γp is p/q = 0/1. The slope for the other component T2 is 1/0.
We apply Proposition 6.4 at each connected component of ∂6 ∩ Tj as follows.

(1) For T1 (coordinate t): One has (a1, b1) = (3y, s). Thus at each of the gcd(3y, s)
components there is a 3y/gcd(3, s)-prong singularity of Fφ .

(2) For T2 (coordinate t): One has (a2, b2) = (3s, y). Thus at each of the gcd(3s, y)
components there is a y/gcd(3, y)-prong singularity of Fφ .

7.1.6. Orientability of the singular foliation. To compute the homological dilatation we
will use the Alexander polynomial1M(t, u) = u2

−u(−t−1
+1− t)+1 (up to a factor).

By Theorem 6.7, the homological dilatation is the maximal root of1M (in absolute value)
evaluated on (s, y), that is, the maximal root (in absolute value) of the polynomial

Q(X) = X2y
− (1−Xs −X−s)Xy + 1, y > s.

Recall that the stretch factor is the maximal root of

P(X) = X2y
− (1+Xs +X−s)Xy + 1.

Since Q(−X) = P(X) when s is odd and y is even, we infer that the invariant measured
foliation is orientable if s is odd and y is even.

In the rest of this paper we will focus only on computing the Teichmüller polynomials,
for the rest (Thurston norm, topology of fibers and type of singularities) can be found
using the methods presented for the simplest pseudo-Anosov braid.

7.2. The Teichmüller polynomial of σ2σ
−1
1 σ2 ∈ B3

The link complement M = S3
\ L(β) of the braid β = σ2σ

−1
1 σ2 is homeomorphic

to the magic manifold (see [KT13] for more details). This braid fixes one strand and
permutes the other two, hence the H

σ2σ
−1
1 σ2

-covering D̃3 is a Z2-covering. Denote by
(tA, tB) the variables of the deck transformation group of π : D̃3 → D3 corresponding to
the permuted and fixed strands, respectively. From the automaton of Figure 14 one sees
that the path in the automaton N (h, τ0) representing f

σ2σ
−1
1 σ2

is the composition of three
folding maps. By Theorem 5.4,

w1 = η1(1, C+) = (1, C+) since η1(A,B,C) = (A,B,C),

w2 = η2(A
−1, 1) = (A−1, 1) since η2(A,B,C) = π1 ◦ η1(A,B,C) = (A,C,B),

w3 = η3(1, C+) = (1, B+) since η3(A,B,C) = π2 ◦ π1(A,B,C) = (C,A,B).

Hence t (w1) = (1, tA), t (w2) = (t
−1
A , 1) and t (w3) = (1, tB), and the incidence matrix

M(T̃ ) of the train track map representing a lift of f
σ2σ
−1
1 σ2

is

M(T̃ ) =

(
1 tA
0 tA

)(
t−1
A 0
t−1
A 1

)(
1 tB
0 tB

)
=

(
t−1
A + 1 tAtB + tB + tB t

−1
A

1 tAtB + tB

)
.

Taking the characteristic polynomial we get

2F (tA, tB , u) = u
2
− (tAtB + tB + 1+ t−1

A )u+ tB .
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8. The Teichmüller polynomial of σ−1
1 σ2σ3 ∈ B4

In this section we illustrate our algorithm, described in Section 5.4, on several examples
defined on the punctured disc.

8.1. Invariant train track

The homeomorphism f
σ−1

1 σ2σ3
is a pseudo-Anosov homeomorphism: it leaves invariant

the train track τ1 (see Figure 18), and the train track map T : τ1 → τ1 induced by
f
σ−1

1 σ2σ3
(τ1) ≺ τ1 is given by

a 7→ cbaa, b 7→ c, c 7→ d, d 7→ ba.

Its incidence matrix M(T ) =
( 2 1 1 0

0 0 1 0
0 0 0 1
1 1 0 0

)
is irreducible. In Figure 19 we depict part of the

folding automaton N (τ1, h).

a

b c

d

τ1

a b c

d

τ0

dac

b

τ2

a

b

c

d

a

b c

d

a

b c

d

d

cb

a
d

cb

a

d

a

c

b

f
σ−1

2 σ−1
1

Fba
f
σ−1

1
Fda

Id

Fab Fda

fσ3

Fba

Fad Fad

f
σ−1

1

fσ2σ3

Fig. 18. Detail of foldings and standardizing braids in the automaton in B4.

In this part we see three vertices (τi for i = 1, 2, 3, bolder train tracks). More precisely
the (standard) folding Fab induces a train track map T1 : τ1 → τ2 that represents [Id] ∈
Mod(D4). On the other hand the folding Fad induces a train track map T2 : τ2 → τ1 that
represents [fσ2σ3 ] ∈ Mod(D4). Finally, Fba induces a train track map T3 : τ1 → τ1 that
represents [f

σ−1
1
] ∈ Mod(D4). Hence the closed path representing f

σ−1
1 σ2σ3

is given by
the sequence of train track maps in the labeled automaton

(τ1, ε1)
T1
−→ (τ2, ε2)

T2
−→ (τ1, ε3)

T3
−→ (τ1, ε3)

R
−→ (τ1, ε1)
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Fba

Fda

Fca

F ′
ab

F
′′

ad

F
′′

ac

F ′
ad

F ′ac F
′′

ab

a

b c

d

a

d b

c

a

c d

b

a b c

d

A B C D

a d b

c

a c d

b

Fig. 19. Detail of the labeled folding automaton in B4.

with the relabelingR : (τ1, ε3)→ (τ1, ε1). Direct computation gives (in the ordered basis
(a, b, c, d))

M(T1) =

( 1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, M(T2) =

( 1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

)
, M(T3) =

( 1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

)
, M(R) =

( 1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
.

We recover our incidence matrixM(T ) asM(R◦T3◦T2◦T1)=M(T1)M(T2)M(T3)M(R).

8.2. Teichmüller polynomial

We now calculate the Teichmüller polynomial of the fibered face containing the fibration
defined by the suspension of f

σ−1
1 σ2σ3

. Since the braid permutes all the strands cyclically,

π : D̃4 → D4 is a Z-covering. We now apply Theorem 5.4 step by step.

(1) The folding Fab is standard, hence v1 = (1, 1, 1, 1), which implies that D1 is the
identity matrix.

(2) The folding Fad is not standard. By Definition 5.1, in (τ2, ε2) we have f = a, f ′ =
d ∈ N(T2), hence we are in Case 2. We conclude that v2 = (1,D,D,D). Since
σ−1

1 σ2σ3 permutes the strands cyclically, we have w2 = (1, t, t, t). Therefore

D2 =

( 1 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

)
.

(3) The folding Fba is not standard. By Definition 5.1, in(τ3, ε3) we have f = b, f ′ =
a /∈ N(T2), hence we are in Case 1. We conclude that v3 = (A−1, 1, 1, 1). Since
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σ−1
1 σ2σ3 permutes the strands cyclically , we have w2 = (t

−1, 1, 1, 1). Therefore

D3 =

(
t−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

Hence, the matrix whose characteristic polynomial is 2F is given by:

M(T̃ ) = M(T1)

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
M(T2)

(
t−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
M(T3)

( 1 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

)
M(R)

=


1+ t−1 t t 0

0 0 t 0
0 0 0 t

1 t 0 0

 .
We conclude that the Teichmüller polynomial of f

σ−1
1 σ2σ3

is

2F (t, u) = u
4
− (1+ t−1)u3

− (t2 + t3)u+ t2.

This calculation can also be performed without the use of elementary operations: τ̃1 is
f̃
σ−1

1 σ2σ3
-invariant and the corresponding incidence matrix is precisely M(T̃ ) (see Fig-

ure 20).

a b c

d
a

t−1a

t−1b t−1c

t−1d

ta

d

a
t−1a

t−1d

t−1b t−1c

ta

d

a
t−1a

t−1d t−1b

t−1c

fσ2σ3

f
σ−1

1
Isotopy

Fig. 20. The lift of f
σ−1

3 σ−1
2 σ1

to D̃4.

Appendix A. An infinite family of braids

We consider, for each n ∈ N, n > 0, the braid βn ∈ Bn+4 given by

βn = δnσ4 · · · σn+1σn+2δnσ1

where δn = (σ1 · · · σn+3)
−1. Consider the train track (τ1, ε1) given by Figure 21. We have
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τ1
a1

a2

an+3

a4

a3

Fig. 21. The train track (τ1, ε1).

a train track map (τ1, ε1)
T
−→ (τ1, ε1) representing fβn induced by the loop

(τ1, ε1)
T1
−→ (τ2, ε2)

T2
−→ · · ·

Tn
−→ (τn+1, εn+1)

Tn+1
−−→ (τ1, εn+1)

Tn+2
−−→ (τ1, εn+1)

R
−→ (τ1, ε1)

so that T = R ◦ Tn+2 ◦ Tn+1 ◦ · · · ◦ T1, where:

(1) The train track map T1 is induced by folding the edge labeled a1 onto the edge labeled
a2; it represents the braid σ1.

(2) The train track morphism T2 is induced by folding the edge labeled an+3 onto the
edge labeled a1; it represents the braid δn.

(3) For every i = 3, . . . , n + 1 the train track morphism Ti is induced by folding the
edge labeled an+5−i onto the edge labeled a1 and then applying a standardizing braid
σn+5−i .

(4) Tn+2 is induced by the braid δn since δ−1
n ◦ h(τ1) is standard.

(5) R is the relabeling.

We easily obtain

M(T1) = IdAreal + Ea1a2 , M(Ti) = IdAreal + Ean+5−ia1 for i = 2, . . . , n+ 1,
M(Tn+2) = IdAreal ,

where Eαβ is the matrix having all entries zero except at position (α, β) where the entry
is 1. We also have (in the ordered basis (a1, . . . , an+3))

M(R) =



1 0 0 0 · · · · · · 0
0 0 0 0 · · · · · · 1
0 1 0 0 · · · · · · 0
0 0 1 0 · · · · · · 0
...

... 0 1 · · · · · · 0
...

...
... 0

. . . 0 0
0 0 0 0 · · · 1 0


(a1,...,an+3)

.

Therefore the incidence matrix M(T ) is M(T1) . . .M(Tn+2)M(R), with characteristic
polynomial

P(X) = Xn+3
−Xn+2

− · · · −X + 1.

We now calculate the Teichmüller polynomial of the fibered face F containing the fibra-
tion defined by the suspension of fβn . Since the braid permutes all the strands cyclically,
π : D̃n → Dn is a Z-covering and we fix a labeling by t ∈ Z of the set of leaves forming
D̃n that is coherent with the action of Deck(π).
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One needs to compute the vectors wi = ηi(vi) for i = 1, . . . , n+ 1. The first case is
similar to the situation discussed in other examples: w1 = v1 = (1, B, 1, . . . , 1). Hence
t (w1) = (1, t, 1, . . . , 1).

For the map T2 one has f = an+3 and f ′ = a1. On the other hand, f ′ ∈ N(T2),
thus we are in Case 2, hence v2 = (X−1, . . . , X−1, 1). For the other vectors, for each
i = 3, . . . , n + 1 we have f = an+5−i and f ′ = a1. Since N(Ti) = ∅, f ′ 6∈ N(Ti) and
we are in Case 1. Hence (vi)an+5−i = X and (vi)α = 1 otherwise. Finally, for Tn+2, one
has (vn+2)α = X

−1 for every α. In conclusion, a straightforward computation shows

t (w1) = (1, t, 1, . . . , 1),

t (w2) = (t
−1, . . . , t−1, 1),

t (wi) = (1, . . . , 1, t, 1, . . . , 1) for i = 3, . . . , n+ 1,

t (wn+2) = (t
−1, . . . , t−1).

where the entry t in t (wi) is at position n+ 5− i.
We can apply (5.6) to obtain 2F (t, u) = det(u · Id −M) where M = M(T1)D1 · · ·

M(Tn+2)Dn+2M(R) with Di = Diag(t (wi)). Therefore

M =



t−2 0 0 0 · · · · · · t−1

0 0 0 0 · · · · · · t−1

0 t−2 0 0 · · · · · · 0
t−2 0 t−1 0 · · · · · · 0
...

... 0 t−1
· · · · · · 0

...
...

... 0
. . . 0 0

t−2 0 0 0 · · · t−1 0


,

and its associated characteristic polynomial, that is, the Teichmüller polynomial of fβ , is

2F (t, u) = u
n+3
− t−2un+2

− t−3un+1
− · · · − t−(n+3)u+ t−(n+5).

Appendix B. Computing the Thurston norm

The Thurston norm of a link complement can be computed directly in some simple ex-
amples (see for example [Thu86]). Our calculations will make use of the Alexander norm.
Its definition makes use of the Alexander polynomial1M =

∑
g∈G bg · g ∈ Z[G], where

G = H1(M,Z)/Tor. The Alexander norm is defined on H 1(M,R) by

‖α‖A := sup
bg 6=0 6=bh

α(g − h). (B.13)

The next two theorems explain how the Alexander and Thurston norms are related.



3908 Erwan Lanneau, Ferrán Valdez

Theorem B.1 ([McM02]). LetM be a compact, orientable 3-manifold whose boundary,
if any, is a union of tori. If b1(M) ≥ 2 then for all [α] ∈ H 1(M,Z),

‖α‖A ≤ ‖α‖T .

Moreover, equality holds when α : π1(M) → Z is represented by a fibration 6 →
Mψ → S1, where 6 has non-positive Euler characteristic.

Theorem B.2 ([McM00]). Let F be a fibered face inH 1(M,R) with b1(M) ≥ 2. Then:

(1) F ⊂ A for a unique face A of the Alexander unit norm ball.
(2) F = A and 1M divides 2F if the lamination L associated to F is transversally

orientable.

In particular, the Thurston and Alexander norms agree on integer classes in the cone over
a fibered face of the Thurston norm ball. The condition “the lamination L associated to
F is transversally orientable” is equivalent to the following condition: there exists a fi-
bration 6 → Mψ → S1 whose pseudo-Anosov monodromy fixes a projective measured
lamination [(l, µ)] ∈ PML(6) which is transversally orientable. Equivalently, this last
condition is equivalent to the orientability of a train track τ carrying l. From these the-
orems we can deduce the following simple fact: if b1(M) = 2 and all faces of BT are
fibered, then the Thurston and Alexander norms coincide. The effective calculation of the
Alexander norm is possible thanks to the following obvious remark:

Remark B.3. Since the Alexander polynomial of a 3-manifold is symmetric, the Alexan-
der norm ball is dual to the Newton polytope of the Alexander polynomial, scaled by a
factor of 2.

For completeness we end this section by discussing the Teichmüller norm and how it can
also be used to calculate the Thurston norm. Fix a fibered face F ⊂ H 1(M,R) and let
2F =

∑
g∈G ag · g be the corresponding Teichmüller polynomial. The Teichmüller norm

(relative to F ) is defined by

‖α‖2F := sup
ag 6=0 6=ah

α(g − h). (B.14)

Compare with (B.13). The unit ball B2F of the Teichmüller norm is dual to the Newton
polytope N(2F ) of the Teichmüller polynomial [McM00]. Moreover,

Theorem B.4 ([McM00]). For any fibered face F of the Thurston norm ball, there exists
a face D of the Teichmüller norm ball,

D ⊂ {[α] | ‖[α]‖2F = 1},

such that R+ · F = R+ ·D.
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Appendix C. Basic types

In Figure 22 we present the basic types that remain to complete the proof of Theorem 5.4.
To understand the picture it is important to consider:

(1) For each basic type depicted in the figure we omit the basic type obtained by per-
forming a reflection with respect to a vertical line. We have to take these ‘reflected’
basic types into consideration for the proof.

(2) At most three infinitesimal edges are depicted, nevertheless the types presented can
live in any punctured disc.

(3) The little black dot to which in some basic types the real edges are incident needs to
be changed, when constructing a train track from the basic type, to either a vertex or
a multigon formed by infinitesimal edges.

A.1 A.2 A.3 A.4 A.5

B.1 B.2 B.3 B.3

Fig. 22. Basic graphs.
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