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Abstract. Let S be an essentially smooth scheme over a field and ` 6= char S a prime number. We
show that the algebra of bistable operations in the mod ` motivic cohomology of smooth S-schemes
is generated by the motivic Steenrod operations. This was previously proved by Voevodsky for S a
field of characteristic zero. We follow Voevodsky’s proof but remove its dependence on characteristic
zero by using étale cohomology instead of topological realization and by replacing resolution of
singularities with a theorem of Gabber on alterations.
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1. Introduction

The Steenrod algebra and its dual [Mil58] are among the most influential tools in algebraic
topology. One of the innovations in Voevodsky’s solution of the Milnor and Bloch–Kato
conjectures on Galois cohomology [Voe03b, Voe11] was the construction of the motivic
Steenrod algebra [Voe03a], making it possible to import some topological techniques
into an algebro-geometric setting. Two fundamental questions that were left unanswered
in [Voe03a] are whether the motivic Steenrod operations generate the whole algebra
of bistable operations, and whether this algebra can be identified with the algebra of
endomorphisms of a motivic Eilenberg–Mac Lane spectrum. These questions were settled
in [Voe10b] in the case of a base field of characteristic zero. In this paper we answer these
questions affirmatively for an arbitrary base field, and more generally for any base scheme
that is essentially smooth over a field.

Let k be a perfect field and ` 6= char k a prime number. We denote by M∗∗ the
algebra of bistable operations in the motivic cohomology of smooth k-schemes with
coefficients in Z/` introduced in [Voe03a, §2]. Examples of such operations are the reduced
power operations P i ∈ M2i(`−1),i(`−1) for i ≥ 1, the Bockstein operation β ∈ M1,0,
and the operations given by multiplication by cohomology classes in H∗∗(k,Z/`); we
denote by A∗∗ the subalgebra of M∗∗ generated by these operations. The structure of
the algebra A∗∗ was completely determined in [Voe03a]. On the other hand, motivic
cohomology with coefficients in Z/` is represented, in the stable motivic homotopy
category SH(Smk), by the motivic Eilenberg–Mac Lane spectrum MZ/`. It follows that
any morphism MZ/`→ 6p,qMZ/` in SH(Smk) induces a bistable operation of bidegree
(p, q), and in fact that every operation arises in this way. We therefore have the following
situation:

A∗∗ ↪→M∗∗ � MZ/`∗∗MZ/`.

Everything just described can be extended to essentially smooth schemes over fields (see
Definition 2.8). Our main results are gathered in the following theorem.

Theorem 1.1. Suppose S is a Noetherian scheme of finite Krull dimension that is essen-
tially smooth over a field, and let ` 6= char S be a prime number.

(1) The operations

{βεrP ir . . . βε1P i1βε0 | r ≥ 0, ij > 0, εj ∈ {0, 1}, ij+1 ≥ `ij + εj }

form a basis of M∗∗ as a left H∗∗(S,Z/`)-module. In particular, A∗∗ =M∗∗.
(2) The map MZ/`∗∗MZ/`→M∗∗ is an isomorphism.
(3) There is an equivalence of MZ/`-modules

MZ/` ∧MZ/` '
∨
α

6pα,qαMZ/`

where (pα, qα) are the bidegrees of the operations in (1).
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In characteristic zero, Theorem 1.1 is a consequence of the results of [Voe03a] and
[Voe10b]. We emphasize that the identification of the mod `motivic cohomology of MZ/`
with M∗∗ is nontrivial, and it is a new result for fields of positive characteristic. It implies
that the mod ` motivic cohomology of any motivic spectrum over S has a well-defined left
A∗∗-module structure.

One crucial step in the proof of Theorem 1.1 makes use of base change arguments. It
reduces the proof to the case when S is a perfect field k.

Voevodsky’s proof of Theorem 1.1(1) for fields of characteristic zero [Voe10b, §3.4]
proceeds by realizing the inclusion A∗∗ ↪→M∗∗ as the cohomology of a map of split proper
Tate motives M → A [Voe10b, Lemma 3.50]. Since field extensions are conservative
for split proper Tate motives [Voe10b, Corollary 2.70], one reduces to the case when k
is the field of complex numbers. The calculations concluding the proof use a topological
realization functor to compare M∗∗ with the classical Steenrod algebra. The main problems
with attempting this proof in positive characteristic are:

(a) There is no topological realization functor.
(b) The only known technique for proving that motives of motivic Eilenberg–Mac Lane

spaces are split proper Tate motives uses symmetric products, a construction which
takes us out of the category Smk of smooth schemes. Resolution of singularities is
then used to bridge the gap between the motivic homotopy category and its nonsmooth
analog, and likewise for the category of motives.

We solve these problems by replacing the topological realization functor with a coho-
mological étale realization functor (§3.3), and resolution of singularities with a theorem
of Gabber on alterations [Ill, ILO12] (see Theorem 4.4). To apply the latter we use the
`dh-topology introduced in [Kel13]. The `dh-topology is a refinement of the cdh-topology
that allows finite flat surjective maps of degree prime to ` as coverings (see Definition 4.1).
While the cdh-topology is designed to make schemes locally smooth in the presence of
resolutions of singularities, Gabber’s theorem implies that every separated scheme of finite
type over a perfect field admits an `dh-covering by smooth schemes.

In §2 we first present some results on presheaves with transfers. We proceed by explain-
ing our base change arguments for motivic Eilenberg–Mac Lane spaces and operations
in motivic cohomology. Theorem 1.1 is proved in §3 modulo the commutativity of the
“fundamental square” formulated in Theorem 3.1, whose proof is deferred to §4. Our proof
of the latter relies on the central result of [Kel13, §5] which states that MZ(`)-modules
satisfy `dh-descent. For completeness, we repeat in §4.2, with minor modifications, the
proof of this result from [Kel13, §5].

In §5 we gather some applications of our results and of Gabber’s theorem. As a
direct consequence of Theorem 1.1, we show that for any motivic spectrum E over S,
MZ/`∗∗E is a left comodule over the dual motivic Steenrod algebra A∗∗. This fact is
essential for adapting Adams spectral sequence techniques to motivic homotopy theory
[DI10], [HKO11]. Secondly, we generalize the main result of [RØ08] by showing that
Voevodsky’s category of motives DM(Smk,Z(`)) is equivalent to the homotopy category
of MZ(`)-modules when k is perfect and ` is invertible in k.
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The results of this paper are used in [AF13] to study Euler classes and splittings of
vector bundles, and in [Hoy13] to prove the Hopkins–Morel equivalence relating algebraic
cobordism to motivic cohomology as well as the computation of the slices of Landweber
exact motivic spectra and of the motivic sphere spectrum. Further applications are being
developed in work on Morel’s π1-conjecture [OØ13] and on Milnor’s conjecture on
quadratic forms [RØ13].

2. Background

2.1. Main categories and functors

Let S be a Noetherian scheme of finite Krull dimension. We refer to such schemes as base
schemes for short. In this section we set notation by reviewing the homotopy theories of
motivic spaces, spaces with transfers, spectra, and spectra with transfers over S, and the
various adjunctions between them. We refer to [RØ08, §2] and [Voe10b, §1.1] for more
detailed expositions.

Let SchS be the category of separated schemes of finite type over S. A full sub-
category C of SchS is called an admissible category if the following conditions hold
[Voe10b, §0]:

(1) S ∈ C and A1
S ∈ C.

(2) If X ∈ C and U → X is étale with U affine, then U ∈ C.
(3) C is closed under finite products and finite coproducts.

The most important example is the admissible category SmS of separated smooth S-
schemes of finite type, which we will simply call smooth schemes.

If C is an admissible category, let Cor(C) be the category with the same objects as C
but whose morphisms are the finite S-correspondences. In the notation of [CD12, §9.1.1],
the set of morphisms from X to Y in Cor(C) is the abelian group c0(X ×S Y/X,Z).1 This
is a subgroup of the free abelian group generated by the closed integral subschemes Z of
X ×S Y such that the induced morphism Z → X is finite and dominates an irreducible
component of X. If X is regular, then c0(X ×S Y/X,Z) is the entire free abelian group
[SV00b, Corollary 3.4.6], but in general it is a proper subgroup [SV00b, Example 3.4.7].
The category Cor(C) is additive, with direct sum given by disjoint union, and it has a
symmetric monoidal structure such that the graph functor 0 : C→ Cor(C) is symmetric
monoidal.

We denote by sPre∗(C) the category of pointed simplicial presheaves on C. If R is
any commutative ring, we denote by sPretr(C, R) the category of additive presheaves of
simplicial R-modules on Cor(C). By left Kan extension, we obtain an adjunction

Rtr
: sPre∗(C)� sPretr(C, R) : utr, (1)

where the right adjoint is the obvious forgetful functor. By the Dold–Kan correspondence,
sPretr(C, R) is equivalent to the category of nonnegatively graded (homological) chain

1 In [SV00b] this group is denoted by cequi(X ×S Y/X, 0) [CD12, §D.3].
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complexes of additive presheaves of R-modules on Cor(C), but the simplicial description
gives the functor Rtr a symmetric monoidal structure. In fact, the adjunction (1) is a
symmetric monoidal Quillen adjunction for the usual projective model structures (i.e., the
model structures where weak equivalences and fibrations are determined schemewise). The
associated homotopy categories will be denoted by H∗(C) and Htr(C, R), respectively.

If τ is a Grothendieck topology on C, consider the classes of maps

WA1 = {(A1
×X)+→ X+ |X ∈ C},

Wτ = {X+→ X+ |X ∈ C and X→ X is a τ -hypercover}

in sPre∗(C). If E is any set of maps in sPre∗(C), we can consider the left Bousfield
localization (see [Hir09]) of sPre∗(C) at E (resp. of sPretr(C, R) at RtrE). Although the
class Wτ is not essentially small, it is well-known that there exists a set S ⊂ Wτ such that
an object in H∗(C) is Wτ -local if and only if it is S-local. It follows that the left Bousfield
localization of sPre∗(C) at Wτ (resp. of sPretr(C, R) at RtrWτ ) also exists.

The left Bousfield localization of the projective structure on sPre∗(C) at WA1 ∪WNis
(resp. of sPretr(C, R) at Rtr(WA1 ∪WNis)) is called the motivic model structure and its
weak equivalences are the motivic weak equivalences. The associated motivic homotopy
categories will be denoted by H∗Nis,A1(C) and Htr

Nis,A1(C, R), respectively. Occasionally we
will consider intermediate localizations or other topologies, in which case we will use self-
explanatory notations for the associated homotopy categories, e.g., H∗ét(C), H

tr
cdh,A1(C, R),

etc.
In general, Htr

τ (C, R) is not equivalent to the unstable derived category of the additive
category of τ -sheaves of R-modules with transfers on C. The following lemma provides
necessary and sufficient conditions for this to be true.

Lemma 2.1. Let C ⊂ SchS be an admissible category, R a commutative ring, and τ a
topology on C. The following assertions are equivalent:

(1) utrRtr
: sPre∗(C)→ sPre∗(C) sends Wτ to Wτ -local equivalences.

(2) A morphism f in sPretr(C, R) is an RtrWτ -local equivalence if and only if utr(f ) is a
Wτ -local equivalence.

(3) The square

Htr(C, R)
L id //

Rutr

��

Htr
τ (C, R)

Rutr

��

H∗(C)
L id // H∗τ (C)

is commutative.

Proof. The implication (2)⇒(1) is obvious, and the equivalence (2)⇔(3) is essentially
formal. Let us prove (1)⇒(2). Assume (1) and let f be a morphism in sPretr(C, R). Since
the functor utr

: sPretr(C, R) → sPre∗(C) takes values in the subcategory of simplicial
radditive functors on C+, [Voe10c, Theorem 4.20] shows that, if f is an RtrWτ -local
equivalence, then utr(f ) is a Wτ -local equivalence. Conversely, suppose that utr(f ) is a
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Wτ -local equivalence. Choose a map f̃ between RtrWτ -local objects in sPretr(C, R) which
is RtrWτ -locally equivalent to f . Since we already proved that the functor utr preserves
equivalences, utr(f̃ ) is Wτ -locally equivalent to utr(f ), and since the source and target
of utr(f̃ ) are Wτ -local, utr(f̃ ) is a projective equivalence. Therefore, f̃ is a projective
equivalence, and hence f is an RtrWτ -local equivalence as desired. ut

Definition 2.2. Let C ⊂ SchS be an admissible category and let R be a commutative
ring. A topology τ on C is compatible with R-transfers if the equivalent conditions of
Lemma 2.1 are satisfied.

This definition agrees with [CD12, Definition 10.3.2]. By [CD12, Proposition 10.3.3], the
Nisnevich topology is compatible with transfers on any admissible category C, and by
[CD12, Propositions 10.4.8 and 10.3.17], the cdh-topology is compatible with transfers
on SchS . Both facts are also proved in [Voe10b, §1].

An object of H∗(C) is called A1-local (resp. τ -local) if it isWA1 -local (resp.Wτ -local)
in the sense of [Hir09, Definition 3.1.4(1)(a)]. Since S is Noetherian and of finite Krull
dimension, a simplicial presheaf F is Nisnevich-local if and only if F(∅) is contractible
and F(Q) is homotopy cartesian for any cartesian square

Q =

W //

��

V

p

��

U
i // X

in C, where i is an open immersion, p is étale, and p induces an isomorphism Z×XV ∼= Z

for some closed complement Z of i(U); we will call such a square a Nisnevich square.
By the general principles of left Bousfield localization, H∗Nis,A1(C) can be identified with

the full subcategory of H∗(C) spanned by the A1- and Nisnevich-local objects. Similarly,
Htr

Nis,A1(C, R) is the full subcategory of Htr(C, R) spanned by the A1- and Nisnevich-local

objects (i.e., those objects F such that utrF is A1- and Nisnevich-local).
We note that the forgetful functor utr

: sPretr(C, R)→ sPre∗(C) detects motivic weak
equivalences. Indeed, utr sends RtrWNis to equivalences since the Nisnevich topology is
compatible with R-transfers, and it is an easy exercise to show that it also sends RtrWA1 to
A1-local equivalences [Voe10b, Theorem 1.7]. As a result, we will also denote by utr the
induced functor Htr

Nis,A1(C, R)→ H∗Nis,A1(C), right adjoint to LRtr.
An inclusion of admissible categories i : C ↪→ D induces Quillen adjunctions (i!, i∗)

on the model categories sPre∗(−) and sPretr(−, R) with any of the model structures
considered, where i∗ is the restriction functor. These adjunctions commute with the
adjunctions (1) since the right adjoints obviously commute. Since the functor i! is fully
faithful, its derived functor Li! will also be fully faithful provided that i∗ preserves weak
equivalences. It is clear that i∗ always preserves A1-local equivalences. If τ is a topology
on D, then i∗ : sPre∗(D) → sPre∗(C) preserves τ -local equivalences if and only if i is
cocontinuous for τ [SGA72, III, Definition 2.1]. For i∗ : sPretr(D, R)→ sPretr(C, R) to
preserve RtrWτ -local equivalences, we have the following criterion.
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Lemma 2.3. Let i : C ↪→ D be an inclusion of admissible subcategories of SchS , τ a
topology on D, and R a commutative ring. Suppose that i is cocontinuous for τ and
that τ is compatible with R-transfers on D. Then τ is also compatible with R-transfers
on C and the restriction functor i∗ : sPretr(D, R)→ sPretr(C, R) preserves RtrWτ -local
equivalences.

Proof. For the first claim we must verify that utrRtr
: sPre∗(C) → sPre∗(C) sends

τ -hypercovers in C to τ -local equivalences. Since the functor i! is fully faithful, we
have

utrRtr ∼= u
tri∗i!R

tr ∼= i
∗utrRtri!.

Now utrRtri! sends τ -hypercovers in C to τ -local equivalences on D by the assumption
that τ is compatible with R-transfers on D, and since i is cocontinuous, i∗ preserves
τ -local equivalences. The second claim follows from the isomorphism i∗utr ∼= utri∗ and
Lemma 2.1(2). ut

The Nisnevich topology satisfies the hypotheses of Lemma 2.3 for any i : C ↪→ D,
so that the functors i∗ preserve motivic weak equivalences. In particular, the derived
functors Li! : H∗Nis,A1(C)→ H∗Nis,A1(D) and Li! : Htr

Nis,A1(C, R)→ Htr
Nis,A1(D, R) are

fully faithful.
We now turn to the stable theory. As (Gm, 1) is not projectively cofibrant, we choose a

projectively cofibrant replacement G [RØ08, Section 2.2]. If p ≥ q ≥ 0, define as usual

Sp,q = (S1)∧p−q ∧G∧q ∈ sPre∗(C).

According to the general principles of [Hov01], the motivic model structures induce
symmetric monoidal stable model structures on the category

Spt(C) = Sp6(sPre∗(C), S2,1)

of symmetric S2,1-spectra and on the category

Spttr(C, R) = Sp6(sPretr(C, R), RtrS2,1)

of symmetric RtrS2,1-spectra. The fibrant objects are the levelwise motivically fibrant
spectra (E0, E1, . . . ) such that the maps Ei → �2,1Ei+1 adjoint to the bonding maps are
motivic weak equivalences [RØ08, Definition 14]. The associated homotopy categories
will be denoted SH(C) and DM(C, R), respectively.

There is a commutative diagram of symmetric monoidal Quillen adjunctions

sPre∗(C)
Rtr
//

6∞

��

sPretr(C, R)
utr

oo

6∞

��

Spt(C)

�∞

OO

Rtr
//
Spttr(C, R)

utr
oo

�∞

OO

(2)

where the functors in the bottom row are defined levelwise. We will denote by 1 the
motivic sphere spectrum 6∞S+ in Spt(C). When there is no danger of confusion, we will
sometimes omit 6∞ from the notation.

We make the following observation which is lacking in [RØ08, §2].
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Lemma 2.4. The functor utr
: Spttr(C, R)→ Spt(C) detects stable motivic weak equiva-

lences.

Proof. It detects levelwise motivic equivalences since utr
: sPretr(C, R) → sPre∗(C)

detects motivic equivalences. Define a functor Q : Spt(C) → Spt(C) by (QE)n =
Hom(S2,1, En+1) (with action of 6n induced by that of 6n+1), and let Q∞E =
colimn→∞Q

nE. Similarly, let Qtr
: Spttr(C, R) → Spttr(C, R) be given by (QtrE)n =

Hom(RtrS2,1, En+1). Then a morphism f in Spt(C) (resp. in Spttr(C, R)) is a stable mo-
tivic equivalence if and only if Q∞(f ) (resp. Q∞tr (f )) is a levelwise motivic equivalence.
The proof is completed by noting that utrQ∞tr

∼= Q∞utr. ut

As a result, we simply denote by utr
: DM(C, R) → SH(C) the induced functor on

homotopy categories.

2.2. Change of base scheme

In what follows we suppose we are given a class C of morphisms in the category of base
schemes which is stable under base change and such that, for any base scheme S, the
category CS of S-schemes whose structure map is in C is an admissible category. Denote
by E(−) any of the model categories sPre∗(−), sPretr(−, R), Spt(−), Spttr(−, R). As
S varies, E(CS) is then a monoidal C-fibered model category over the category of base
schemes, in the sense of [CD12, §1.3.d]. In particular, a morphism f : T → S of base
schemes induces a symmetric monoidal Quillen adjunction

f ∗ : E(CS)� E(CT ) : f∗,

where f ∗ is induced by the base change functors f ∗ : CS → CT and f ∗ : Cor(CS) →
Cor(CT ). If f belongs to CS , there is also a Quillen adjunction

f] : E(CT )� E(CS) : f
∗,

where f] is induced by the forgetful functors f] : CT → CS and f] : Cor(CT )→ Cor(CS).
The C-fibered structure of E(C) is moreover compatible with all the standard adjunctions
between the various choices of E, in the sense that the functors f ∗ and f] commute with
all left adjoints. For the adjunction (Rtr, utr), this follows from the commutativity of the
squares

CS
0 //

f ∗

��

Cor(CS)

f ∗

��

CT
0 // Cor(CT )

and

CT
0 //

f]

��

Cor(CT )

f]

��

CS
0 // Cor(CS)

from [CD12, Lemmas 9.3.3 and 9.3.7]. For the other adjunctions it is obvious.
Define a new class Ĉ of morphisms as follows. A map of base schemes T → S belongs

to Ĉ if it is the limit of a cofiltered diagram (Tα) in CS whose transition maps Tβ → Tα
are affine and dominant (the dominance condition is needed in the proof of Lemma 2.5(2)
below). If U is any T -scheme of finite type, then by [Gro66, Théorème 8.8.2] it is the
limit of a diagram of schemes (Uα) of finite type over the diagram (Tα). Moreover, if the
morphism U → T is either
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• separated,
• smooth or étale, or
• an open immersion or a closed immersion,

then we can choose each Uα → Tα to have the same property (this follows from [Gro66,
Proposition 8.10.4], [Gro67, Proposition 17.7.8], and [Gro66, Proposition 8.6.3], respec-
tively). We shall assume that this is also true for C-morphisms: we require any U ∈ CT to
be the limit of schemes Uα with Uα ∈ CTα (by the above, this holds if C = Sm). It is then
clear that Ĉ is closed under composition.

From now on we fix a Ĉ-morphism of base schemes f : T → S, the cofiltered limit of
C-morphisms fα : Tα → S.

Lemma 2.5. Consider the categories sPre∗ and sPretr with the schemewise model struc-
tures. Let X ∈ CT be a cofiltered limit of schemes Xα in CTα and let p ≥ q ≥ 0.

(1) For any F ∈ sPre∗(CS), the canonical map

hocolim
α

R Map(6p,q(Xα)+,Lf ∗αF)→ R Map(6p,qX+,Lf ∗F)

is an equivalence.
(2) For any F ∈ sPretr(CS, R), the canonical map

hocolim
α

R Map(LRtr6p,q(Xα)+,Lf ∗αF)→ R Map(LRtr6p,qX+,Lf ∗F)

is an equivalence.

Proof. Note that 6p,qX+ can be obtained from copies of (G×nm × X)+ using finite
homotopy colimits in a way which is compatible with base change. Since filtered homotopy
colimits commute with finite homotopy limits, we can assume that p = q = 0. Both
sides then preserve homotopy colimits in F , so we may further assume that F = Y+ (resp.
F = LRtrY+) where Y ∈ CS . Then Lf ∗F is represented by Y ×S T and the claim follows
from [Gro66, Théorème 8.8.2] (resp. [CD12, Proposition 9.3.9]). ut

We now make the following observations.

• Any trivial line bundle in CT is the cofiltered limit of trivial line bundles in CTα .
• Any Nisnevich square in CT is the cofiltered limit of Nisnevich squares in CTα .

The former is obvious. Any Nisnevich square in CT is a cofiltered limit of cartesian squares

Wα
//

��

Vα

pα

��

Uα
iα // Xα

in CTα , where iα is an open immersion and pα is étale. Let Zα be the reduced complement
of iα(Uα) in Xα . It remains to show that Zα ×Xα Vα → Zα is an isomorphism for large α.
By [Gro66, Corollaire 8.8.2.5], it suffices to show that Z = limα Zα as closed subschemes
of X. Now limα Zα ∼= Zα ×Xα X for large α, and so limα Zα is a closed subscheme of X
with the same support as Z. Moreover, it is reduced by [Gro66, Proposition 8.7.1], so it
coincides with Z.
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Lemma 2.6. The functors Lf ∗ : H∗(CS) → H∗(CT ) and Lf ∗ : Htr(CS, R) →

Htr(CT , R) preserve A1-local objects and Nisnevich-local objects.

Proof. If f is in C this follows from the existence of the Quillen left adjoint f] to f ∗

and the observation that f] sends trivial line bundles to trivial line bundles and Nisnevich
squares to Nisnevich squares. Thus, each Lf ∗α preserves A1-local objects and Nisnevich-
local objects. Since any trivial line bundle (resp. Nisnevich square) over T is a cofiltered
limit of trivial line bundles (resp. Nisnevich squares) over Tα , Lemma 2.5 shows that Lf ∗
preserves A1-local objects and Nisnevich-local objects in general. ut

Lemma 2.7. Consider the categories sPre∗ and sPretr with the motivic model structures.
Let X ∈ CT be a cofiltered limit of schemes Xα in CTα and let p ≥ q ≥ 0.

(1) For any F ∈ sPre∗(CS), the canonical map

hocolim
α

R Map(6p,q(Xα)+,Lf ∗αF)→ R Map(6p,qX+,Lf ∗F)

is an equivalence.
(2) For any F ∈ sPretr(CS, R), the canonical map

hocolim
α

R Map(LRtr6p,q(Xα)+,Lf ∗αF)→ R Map(LRtr6p,qX+,Lf ∗F)

is an equivalence.

Proof. Combine Lemmas 2.5 and 2.6. ut

A morphism in Ŝm will be called essentially smooth:

Definition 2.8. A morphism of Noetherian schemes of finite Krull dimension T → S

is said to be essentially smooth if it is the limit of a cofiltered diagram (Tα) of smooth
S-schemes whose transition maps Tβ → Tα are affine and dominant.

For example, if X ∈ SmS and x ∈ X, the local schemes SpecOX,x , SpecOh
X,x , and

SpecOsh
X,x (corresponding to the Zariski, Nisnevich, and étale topologies, respectively) are

essentially smooth over S. The following lemma shows that an essentially smooth scheme
over a field is in fact essentially smooth over a finite field Fp or over Q, and in particular
over a perfect field. Together with the previous continuity results, this will allow us to
extend many results from perfect fields to essentially smooth schemes over arbitrary fields.

Lemma 2.9. Let k be a perfect field and L a field extension of k. Then the map SpecL→
Spec k is essentially smooth.

Proof. Since SpecL = limK SpecK where K ranges over the finitely generated field
extensions of k contained in L, we may assume that L = k(x1, . . . , xn) for some xi ∈ L.
Since k is perfect, Spec k[x1, . . . , xn] has a smooth dense open subsetU [Gro67, Corollaire
17.15.13]. Then SpecL is the cofiltered limit of the nonempty affine open subschemes
of U . ut
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2.3. Eilenberg–Mac Lane spaces and spectra

Let C ⊂ SchS be an admissible category and letR be a commutative ring. Given p ≥ q ≥ 0
and an R-module A, the motivic Eilenberg–Mac Lane space K(A(q), p)C ∈ H∗Nis,A1(C)

is defined by
K(A(q), p)C = u

tr(LRtrSp,q ⊗L
R A)

(cf. [Voe10b, §3.2]). Note that this space does not depend on R since K(A(q), p)C
= utr(LZtrSp,q ⊗L

Z A). The motivic Eilenberg–Mac Lane spectrum MAC ∈ SH(C) is
defined by

MAC = u
tr(LRtr1⊗L

R A).

More explicitly, MAC is given by the sequence of spaces K(A(n), 2n)C with bonding
maps 62,1K(A(n), 2n)C → K(A(n + 1), 2n + 2)C. Note that 1 ∈ Spt(C) is cofibrant,
and therefore MRC is equivalent to the commutative monoid utrRtr1 in the symmet-
ric monoidal model category Spt(C). According to [RØ08, Proposition 38], there is a
symmetric monoidal model category MRC -mod of MRC-modules. In addition, since
MAC ' u

tr(Rtr1⊗R Ã) where Ã→ A is a cofibrant replacement of A in Spttr(C, R), the
object MAC has a canonical structure of MRC-module. When C = SmS , we will write
K(A(q), p) for K(A(q), p)C and MA for MAC.

The symmetric monoidal adjunction (Rtr, utr) between Spt(C) and Spttr(C, R) lifts to
a symmetric monoidal adjunction

8 : MRC -mod � Spttr(C, R) : 9

such that 8(MRC ∧ −) = R
tr. This is in fact a symmetric monoidal Quillen adjunction

(see [RØ08, §2]). In §5.2 we will show that it is a Quillen equivalence when C = SmS and
S is the spectrum of a perfect field whose characteristic exponent is invertible in R. Here
we recall a weaker result which holds over any base. Call an MR-module cellular if it is an
iterated homotopy colimit of MR-modules of the form 6p,qMR with p, q ∈ Z. Similarly,
an object in DM(SmS, R) is cellular if it is an iterated homotopy colimit of objects of the
form Rtr6p,q1 with p, q ∈ Z.

Lemma 2.10. The derived adjunction (L8,R9) between the categories Ho(MR -mod)
and DM(SmS, R) restricts to an equivalence between the full subcategories of cellular
objects.

Proof. The proof of [RØ08, Corollary 62] works with any ring R instead of Z. ut

Let C be a class of morphisms of schemes as in §2.2, and let f : T → S be a morphism of
base schemes. For any p ≥ q ≥ 0 and any R-module A there is a canonical map

Lf ∗K(A(q), p)CS → K(A(q), p)CT , (3)

adjoint to the composition

LRtrLf ∗utr(LRtrS
p,q
S ⊗

L
R A) ' Lf ∗LRtrutr(LRtrS

p,q
S ⊗

L
R A)

→ Lf ∗(LRtrS
p,q
S ⊗

L
R A) ' LRtrLf ∗Sp,qS ⊗

L
R Lf ∗A ' LRtrS

p,q
T ⊗

L
R A.
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Similarly, by applying (3) levelwise we obtain a canonical map

Lf ∗MACS → MACT . (4)

Theorem 2.11. Let U be a base scheme and let f : T → S a morphism in ĈU . Then
(3) and (4) are equivalences.

Proof. It suffices to show that (3) is an equivalence. We may clearly assume S = U , so
that f itself is a Ĉ-morphism. It suffices to show that the canonical map

Lf ∗utr
→ utrLf ∗ (5)

is an equivalence. If f is in C, then the functors f ∗ have Quillen left adjoints f] such that
Lf]LRtr

' LRtrLf], and so (5) is an equivalence by adjunction. In the general case, let
f be the cofiltered limit of C-morphisms fα : Tα → S. Let F ∈ Htr

Nis,A1(CS, R). To show
that Lf ∗utrF → utrLf ∗F is an equivalence in H∗Nis,A1(CT ), it suffices to show that for
any X ∈ CT , the induced map

R Map(X+,Lf ∗utrF)→ R Map(X+, utrLf ∗F) ' R Map(LRtrX+,Lf ∗F)

is an equivalence. Write X as a cofiltered limit of schemes Xα in CTα . Then by Lemma 2.7,
the above map is the homotopy colimit of the maps

R Map((Xα)+,Lf ∗α u
trF)→ R Map(LRtr(Xα)+,Lf ∗αF),

which are equivalences since fα is in C. ut

Now we specialize to the case when C = SmS and S is essentially smooth over a field. If k is
a field andX is a smooth k-scheme, the motivic cohomology groups Hp,q(X,A) are defined
in [MVW06, Definition 3.4] for any abelian group A. By [MVW06, Proposition 3.8], these
groups do not depend on the choice of the field k. More generally, if X is an essentially
smooth scheme over a field k, cofiltered limit of smooth k-schemes Xα , we define

Hp,q(X,A) = colim
α

Hp,q(Xα, A).

This definition does not depend on the choice of the diagram (Xα) since it is unique as
a pro-object in the category of smooth k-schemes [Gro66, Corollaire 8.13.2]. Moreover,
by [MVW06, Lemma 3.9], it is also independent of the choice of k. Theorem 4.24 in
[Hoy13] shows that the motivic Eilenberg–Mac Lane spaces and spectra represent motivic
cohomology:

Theorem 2.12. Assume that S is essentially smooth over a field. Let A be an R-module
and X ∈ SmS . For any p ≥ q ≥ 0 and r ≥ s ≥ 0, there is a natural isomorphism

Hp−r,q−s(X,A) ∼= [6r,sX+,K(A(q), p)]

and the canonical maps

K(A(q), p)→ R Hom(Sr,s,K(A(q + s), p + r)) (6)

are equivalences. For any p, q ∈ Z, there is a natural isomorphism

Hp,q(X,A) ∼= [6∞X+, 6
p,qMA].
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The following consequence of Theorem 2.12 summarizes the standard vanishing results
for motivic cohomology [Hoy13, Corollary 4.26].

Corollary 2.13. Assume that S is essentially smooth over a field. Let X ∈ SmS and
p, q ∈ Z satisfy any of the following conditions:
(1) q < 0,
(2) p > q + d ,
(3) p > 2q,
where d is the least integer such that X can be written as a cofiltered limit of smooth
d-dimensional schemes over a field. Then, for any abelian group A,

[6∞X+, 6
p,qMA] = 0.

2.4. Operations in motivic cohomology

Let S be essentially smooth over a field. We fix a prime number ` 6= char S and we
abbreviate K(Z/`(n), 2n) to Kn and MZ/` to M. Denote by M∗∗ the algebra of bistable
operations on the motivic cohomology of motivic spaces over S: an element φ ∈Mp,q is
a collection of natural transformations

φr,s : H̃
r,s(−,Z/`)→ H̃r+p,s+q(−,Z/`), r, s ∈ Z,

on H∗Nis,A1(SmS) such that, under the bistability isomorphisms, φr,s62,1
= φr−2,s−1. If

ιn ∈ H̃2n,n(Kn,Z/`) is the tautological class, it is clear that we have an isomorphism

M∗∗ ∼= lim
n≥0

H̃∗+2n,∗+n(Kn,Z/`), φ 7→ (φ2n,n(ιn))n

(see [Voe03a, Proposition 2.7]). As a result, by Theorem 2.11, if S and T are both essen-
tially smooth over a field, a map f : T → S induces a map of algebras

f ∗ : M∗∗S →M∗∗T . (7)

Note that any morphism M→ 6p,qM in SH(SmS) induces a bistable operation of
bidegree (p, q), which defines a canonical map

M∗∗M→M∗∗. (8)

In particular, any cohomology class α ∈ Hp,q(S,Z/`) defines an element of Mp,q . The
Bockstein map M → 61,0M is the composition of the first and last maps in the distin-
guished triangle

MZ/`→ 61,0MZ `
→ 61,0MZ→ 61,0MZ/`.

By (8), it induces an operation β ∈M1,0. We can also define the reduced power operations

P i ∈M2i(`−1),i(`−1)

as follows. If S is the spectrum of a perfect field, these are defined in [Voe03a, §9]. It is
easy to see by inspecting their definition that if f : Spec k′ → Spec k is an extension of
perfect fields, then f ∗(P i) = P i . Thus, if f : S → Spec k is essentially smooth where k
is a perfect field, the operation f ∗(P i) ∈M∗∗S is independent of the choice of f .



3826 Marc Hoyois et al.

Let A∗∗ ⊂M∗∗ be the subalgebra generated by

• the reduced power operations P i for i ≥ 0,
• the Bockstein β,
• the operations u 7→ αu for α ∈ H∗∗(S,Z/`).
Clearly, the map (7) sends A∗∗S to A∗∗T , so that we have a commutative square of algebras:

A∗∗S
f ∗
//

� _

��

A∗∗T� _

��

M∗∗S
f ∗
// M∗∗T

(9)

3. Main results

3.1. The fundamental square

The following theorem is our key technical result. It will be proved in §4.

Theorem 3.1. Let k be a perfect field, ` 6= char k a prime number, R a Z(`)-algebra, and
i : C ↪→ D an inclusion of admissible subcategories of Schk with C ⊂ Smk . Then the
square

H∗Nis,A1(D)
i∗ //

LRtr

��

H∗Nis,A1(C)

LRtr

��

Htr
Nis,A1(D, R)

i∗ // Htr
Nis,A1(C, R)

commutes up to natural isomorphism. More precisely, the canonical natural transformation

LRtri∗→ i∗LRtr

is an isomorphism.

If k admits resolution of singularities in the sense of [FV00, Definition 3.4], this holds for
any commutative ring R by [Voe10b, Theorem 1.21]. However, resolution of singularities
is only known to hold for fields of characteristic zero.

3.2. Motives of Eilenberg–Mac Lane spaces

Let F be a field. Recall that a split proper Tate motive of weight ≥ n in Htr
Nis,A1(C, F )

is a direct sum of objects of the form LF trSp,q with p ≥ 2q and q ≥ n [Voe10b,
Definition 2.60].

Theorem 3.2. Let S be essentially smooth over a field of characteristic exponent c. Let A
be a finitely generated Z[1/c]-module, F a field of characteristic 6= c, and p ≥ 2q ≥ 0.
Then LF trK(A(q), p)SmS

is a split proper Tate motive of weight ≥ q in Htr
Nis,A1(SmS, F ).
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Proof. We abbreviate K(A(q), p)C to KC. By Theorem 2.11 we can assume that S is the
spectrum of a perfect field. The theorem is obvious if p = 0, so assume further that p > 0.
Let D ⊂ SchS be the admissible subcategory of normal quasi-projective S-schemes (see
[Voe10b, Lemma A.4]) and let i : SmS ↪→ D be the inclusion. Note that i∗KD ' KSmS

.
By Theorem 3.1, we have

i∗LF trKD ' LF tri∗KD ' LF trKSmS
. (10)

By [Voe10b, Corollary 3.28], LF trKD is split proper Tate of weight ≥ q. We conclude by
noting that the adjunction (Li!, i∗) restricts to an equivalence between the subcategories of
split proper Tate motives of weight ≥ q since Li! is fully faithful. ut

We now fix a prime number ` 6= char S and we abbreviate MZ/` to M. The following
corollary is assertion (2) of Theorem 1.1:

Corollary 3.3. The canonical map M∗∗M→M∗∗ is an isomorphism.

Proof. Recall that we abbreviate K(Z/`(n), 2n) to Kn. This canonical map fits in the
exact sequence

0→
1

lim H̃p−1+2n,q+n(Kn,Z/`)→ Mp,qM→ lim H̃p+2n,q+n(Kn,Z/`)→ 0,

and we must show that the lim1 term vanishes. By Theorem 3.2, LZ/`trKn ' 6
2n,nMn

whereMn is split proper Tate of weight≥ 0. All functors should be derived in the following
computations. Using standard adjunctions, we get

H̃p−1+2n,q+n(Kn,Z/`) ∼= [6∞Kn, 6p−1+2n,q+nM]

∼= [6
∞Z/`trKn, 6

p−1+2n,q+nZ/`tr1] ∼= [62n,n6∞Mn, 6
p−1+2n,q+nZ/`tr1]

∼= [6
∞Mn, 6

p−1,qZ/`tr1].

To show that lim1
[6∞Mn, 6

p−1,qZ/`tr1] = 0, it remains to show that the cofiber se-
quence ⊕

n≥0

6∞Mn→

⊕
n≥0

6∞Mn→ hocolim
n→∞

6∞Mn

splits in DM(SmS,Z/`). If S is the spectrum of a perfect field, this follows from [Voe10b,
Corollary 2.71]. In general, let f : S → Spec k be essentially smooth where k is a perfect
field. Then by Theorem 2.11, the above cofiber sequence is the image by f ∗ of the
corresponding cofiber sequence over k, and hence it splits. ut

Corollary 3.4. M ∧M is equivalent to an M-module of the form
∨
α 6

pα,qαM.

Proof. By Theorem 3.2, LZ/`trKn ' 6
2n,nMn where Mn is split proper Tate of weight

≥ 0. By [Voe10b, Corollary 2.71] and Theorem 2.11, hocolimn→∞Mn is again a split
proper Tate object of weight ≥ 0, i.e., can be written in the form

hocolimMn '

⊕
α

LZ/`trSpα,qα
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with pα ≥ 2qα ≥ 0. In the following computations, all functors must be appropriately
derived. We have the equivalences

Z/`trM ' Z/`tr colim6−2n,−n6∞Kn ' colim6−2n,−n6∞Z/`trKn

' colim6−2n,−n6∞62n,nMn ' colim6∞Mn ' 6
∞ colimMn

' 6∞
⊕
α

Z/`trSpα,qα ' Z/`tr
∨
α

6∞Spα,qα .

In particular, Z/`trM = 8(M∧M) is cellular. By Lemma 2.10, we obtain the equivalences

M ∧M ' M ∧
∨
α

6∞Spα,qα '
∨
α

6pα,qαM. ut

3.3. Comparison with étale Steenrod operations

In this section we are interested in the case when k is an algebraically closed field. We will
denote by aét the localization functors

aét : H
∗(Smk)→ H∗ét(Smk) and aét : D(Smk)→ Dét(Smk).

Here D(Smk) is the homotopy category of chain complexes of presheaves of abelian groups
on Smk , and Dét(Smk) is the full subcategory spanned by chain complexes satisfying étale
hyperdescent or, equivalently, the category obtained from D(Smk) by inverting maps
inducing isomorphisms on étale homology sheaves.

The shifted Suslin–Voevodsky motivic complex Z(1)[1] ∈ DNis(Smk) of weight one
is quasi-isomorphic, as a chain complex of Nisnevich sheaves, to the presheaf represented
by the multiplicative group scheme Gm [MVW06, Theorem 4.1]. By assuming 1/m ∈ k,
the Kummer short exact sequence of étale sheaves 0→ µm→ Gm

m
→ Gm→ 0 produces

a quasi-isomorphism aétZ/m(1) ' µm, whence

aétZ/m(q)[p] ' µ
⊗q
m [p] (1/m ∈ k, p, q ∈ Z, q ≥ 0). (11)

This equivalence induces for every pointed simplicial presheaf X on Smk a canonical map

H̃p,q(X,Z/m) = H̃
p

Nis(X,Z/m(q))→ H̃
p

ét(X,µ
⊗q
m ) (12)

from motivic to étale cohomology. Moreover, it is easy to show that (12) is compatible
with cup products and the bigraded suspension isomorphisms. In étale cohomology the
latter is the canonical isomorphism

H̃
p+2
ét (Gm ∧6X,µ

⊗q+1
n ) ∼= H̃

p

ét(X,µ
⊗q
n ).

Lemma 3.5. Let X be a pointed simplicial presheaf on Smk . The canonical map (12)

H̃p,q(X,Z/`)→ H̃
p

ét(X,µ
⊗q
` )

is an isomorphism when p ≤ q.
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Proof. The lemma holds for pointed simplicial smooth schemes by [Voe11, Theorem
6.17]. A standard argument implies that it automatically holds for all simplicial presheaves.
In more detail, consider the map

aét : R Map(ZX,Z/`(q)[p])→ R Map(ZX,µ⊗q` [p]) (13)

between derived mapping spaces, which on π0 gives the map of the lemma. If X = Z+
for some Z ∈ Smk and K is any simplicial set, applying the functor [K,−] to (13) yields
the instance of (12) with the pointed simplicial smooth scheme (Z ×K)+. Hence, (13)
is a weak equivalence for such X. Since an arbitrary simplicial presheaf is a homotopy
colimit of representable presheaves and both sides of (13) transform homotopy colimits
into homotopy limits, the general case follows. ut

Corollary 3.6. Let X be a pointed simplicial presheaf on Smk . The map (12) induces an
isomorphism

H̃∗∗(X,Z/`)[τ−1
] ∼= H̃∗ét(X,µ

⊗∗

` ),

where τ ∈ H0,1(Spec k,Z/`) ∼= µ`(k) is a primitive `th root of unity.

Proof. By Lemma 3.5, the kernel and cokernel of H̃∗∗(X,Z/`) → H̃∗ét(X,µ
⊗∗

` ) are
concentrated in bidegrees (p, q) with p > q. In particular, every element is annihilated by
a power of τ , whence the result. ut

Remark 3.7. In [Lev00] Levine constructs for X ∈ Smk an isomorphism
H∗∗(X,Z/`)[τ−1

] ∼= H∗ét(X,µ
⊗∗

` ), assuming only that k contains a primitive `th root
of unity. It is likely that this isomorphism is the same as that of Corollary 3.6 for repre-
sentable presheaves.

When p ≥ q ≥ 0, the chain complex Z/m(q)[p] ∈ DNis(Smk) is concentrated in nonneg-
ative degrees and its underlying simplicial presheaf (via the Dold–Kan correspondence) is,
by definition, the motivic Eilenberg–Mac Lane space K(Z/m(q), p) ∈ H∗Nis(Smk) which
represents the functor H̃p,q(−,Z/m). The underlying simplicial presheaf of µ⊗qm [p] is the
Eilenberg–Mac Lane object K(µ⊗qm , p) ∈ H∗ét(Smk) which represents H̃pét(−, µ

⊗q
m ). In

view of the commutativity of the square

D
≤0
Nis(Smk)

aét //

��

D
≤0
ét (Smk)

��

H∗Nis(Smk)
aét // H∗ét(Smk)

where the vertical arrows are the forgetful functors, we may restate (11) as an equivalence

aétK(Z/m(q), p) ' K(µ
⊗q
m , p) (1/m ∈ k, p ≥ q ≥ 0) (14)

in H∗ét(Smk). Using the shorthands Kn = K(Z/`(n), 2n) and K ét
n = K(µ

⊗n
` , 2n), we can

write aétKn ' K
ét
n . Combining (14) and Corollary 3.6, we get:
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Corollary 3.8. Étale sheafification induces an isomorphism

H̃∗∗(Kn,Z/`)[τ−1
] ∼= H̃∗ét(K

ét
n , µ

⊗∗

` ).

Let M∗∗ét be the algebra of bistable étale cohomology operations on H∗ét(Smk) with twisted
µ`-coefficients. We then have a canonical isomorphism

M∗∗ét
∼= lim
n≥0

H̃∗+2n
ét (K ét

n , µ
⊗∗+n
` )

where the transition map

H̃∗+2n+2
ét (K ét

n+1, µ
⊗∗+n+1
` )→ H̃∗+2n

ét (K ét
n , µ

⊗∗+n
` )

is induced by the canonical map Gm ∧6K
ét
n → K ét

n+1 and the suspension isomorphism

H̃∗+2n+2
ét (Gm ∧6K

ét
n , µ

⊗∗+n+1
` ) ∼= H̃∗+2n

ét (K ét
n , µ

⊗∗+n
` ).

From now on we assume that k is algebraically closed. Then µ` is a constant sheaf
and so K ét

n is equivalent to the constant simplicial presheaf with value K(µ`(k)⊗n, 2n) ∼=
K(Z/`, 2n). Moreover, if R0 : Hét(Smk) → Ho(sSet) is the derived global section
functor, with left adjoint c, then R0(F) ' F(Spec k) since Spec k has no nontrivial étale
hypercovers. Thus, the unit id → R0 ◦ c is an isomorphism, i.e., c is fully faithful. It
therefore induces an isomorphism

H̃∗(K(µ`(k)
⊗n, 2n),A) ∼= H̃∗ét(K

ét
n , A)

for any abelian group A. In particular, there is a canonical isomorphism

χ : A∗
∼=
→M

∗,0
ét

where A∗ is the topological Steenrod algebra, and multiplication by τ induces isomor-
phisms M∗,iét

∼=M
∗,i+1
ét . If we define

P iét = τ
i(`−1)χ(P i) ∈M

2i(`−1),i(`−1)
ét

(note that τ `−1 is independent of the choice of τ ), we obtain the following presentation
of the algebra M∗∗ét : it is generated by τ±1

∈ M
0,±1
ét , the Bockstein βét ∈ M

1,0
ét , and the

operations P iét ∈M
2i(`−1),i(`−1)
ét for i ≥ 1; if ` is odd, the relations are the usual topological

Adem relations, while if ` = 2 (in which case P i = Sq2i) we get the topological Adem
relations with additional τ -multiples dictated by the second grading.

Since (12) is compatible with the suspension isomorphisms and aét is a functor, it
induces an algebra map

φ : M∗∗→M∗∗ét .

On the other hand, comparing the motivic and étale Adem relations and sending generators
to generators yields a well-defined algebra map

ψ : A∗∗→M∗∗ét

identifying A∗∗ with the subalgebra M
∗,≥0
ét .
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Lemma 3.9. The following triangle commutes:

A∗∗
� � //

ψ
""

M∗∗

φ

��

M∗∗ét

Proof. It suffices to show that φ maps P i to P iét and β to βét. Since the identification of
aétKn with K ét

n is compatible with cup products, the motivic Cartan formula [Voe03a,
Proposition 9.7] shows that the operations χ−1(τ−i(`−1)φ(P i)) ∈ A∗ satisfy the axioms
(1)–(5) of [Ste62, VI, §1] (if ` = 2, it shows that the operations χ−1(τ−bi/2cφ(Sqi))
satisfy the axioms (1)–(5) of [Ste62, I, §1]). Therefore, by [Ste62, VIII, Theorems 3.9 and
3.10] and the definition of P iét ∈M∗∗ét , we have φ(P i) = P iét.

It remains to show that φ(β) = βét. Let α denote the identification (14). The right
column in the diagram

�aétK(Z/`2(n), 2n+ 1) �α

'
//

��

�K(µ⊗n
`2 , 2n+ 1)

��

aétK(Z/`(n), 2n)
γ

'
//

aétβ

��

K(µ⊗n` , 2n)

β

��

aétK(Z/`(n), 2n+ 1) α

'
//

��

K(µ⊗n` , 2n+ 1)

��

aétK(Z/`2(n), 2n+ 1) α

'
// K(µ⊗n

`2 , 2n+ 1)

is a fiber sequence, and so is the left column because aét preserves finite homotopy limits.
Since the bottom square commutes, there exists an equivalence γ rendering the diagram
commutative [Hov99, Proposition 6.3.5]. To show that φ(β) = βét, it suffices to show that
γ = α. Taking into account that the canonical equivalences

�aétK(Z/`2(n), 2n+1) ' aétK(Z/`2(n), 2n) and �K(µ⊗n
`2 , 2n+1) ' K(µ⊗n

`2 , 2n)

are compatible with α, we can identify the top square with

aétK(Z/`2(n), 2n) α //

mod `
��

K(µ⊗n
`2 , 2n)

`

��

aétK(Z/`(n), 2n)
γ
// K(µ⊗n` , 2n)

Here all objects are Eilenberg–Mac Lane objects of degree 2n. The full subcategory of
H∗ét(Smk) spanned by these objects is equivalent, via π2n, to the category of étale sheaves
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of abelian groups on Smk [Lur09, Proposition 7.2.2.12]. Therefore there exists at most
one bottom horizontal map making the diagram commutative. Since this square commutes
with α instead of γ , we must have γ = α. ut

3.4. Proof of the main theorem

In this section we prove the remaining parts of Theorem 1.1, namely (1) and (3). Let S be
an essentially smooth scheme of a field and ` 6= char S a prime number.

We first prove (1) when S = Spec k for a perfect field k. We already know from the
computation of A∗∗ in [Voe03a] that the claimed basis of M∗∗ is a basis of A∗∗, so it will
suffice to prove that A∗∗ =M∗∗. Theorem 3.2 implies (cf. [Voe10b, Lemma 3.50]) that
there exist split proper Tate motives A and M whose cohomology agrees with A∗∗ and
M∗∗, respectively, and a map M → A which is invariant under change of perfect base
field and induces the inclusion A∗∗ ↪→ M∗∗. Thus, A∗∗ = M∗∗ if and only if M→ A

is an equivalence. By [Voe10b, Corollary 2.70(2)] we may assume that k is algebraically
closed. In this case, M∗∗ ∼= Z/`[τ ] where τ ∈ H0,1(Spec k,Z/`) ∼= µ`(k) is a primitive
`th root of unity.

We claim that (1) follows from the following statements:

(i) A∗∗/τA∗∗→M∗∗/τM∗∗ is injective.
(ii) A∗∗[τ−1

] →M∗∗[τ−1
] is surjective.

Indeed, let x ∈M∗∗. By (ii), τnx belongs to A∗∗ for some n ≥ 0. If n > 0, τnx becomes
zero in M∗∗/τM∗∗. By (i) it is zero in A∗∗/τA∗∗. Thus, there exists y ∈ A∗∗ such that
τnx = τy. Since M∗∗ is the cohomology of a split Tate object, it has no τ -torsion. Hence,
τn−1x = y and so τn−1x belongs to A∗∗. Induction on n implies x ∈ A∗∗.

The injectivity of A∗∗/τA∗∗→M∗∗/τM∗∗ is proved in [Voe10b, Proposition 3.56].
To finish the proof we show that A∗∗[τ−1

] → M∗∗[τ−1
] is surjective. By Lemma 3.9,

there is a commutative diagram

A∗∗[τ−1
] //

ψ

'

%%

M∗∗[τ−1
] //

φ

��

H̃∗+2n,∗+n(Kn,Z/`)[τ−1
]

'

��

M∗∗ét
// H̃∗+2n

ét (K ét
n , µ`(k)

⊗∗+n)

where the rightmost map is an isomorphism by Corollary 3.8. We are thus reduced to
showing that M∗∗[τ−1

] → M∗∗ét is injective. If x = (x0, x1, . . . ) ∈ M∗∗ maps trivially
to M∗∗ét then xn maps trivially to H̃∗+2n,∗+n(Kn,Z/`)[τ−1

] for all n. By Theorem 3.2,
LZ/`trKn is a split proper Tate motive and in particular H̃∗+2n,∗+n(Kn,Z/`) has no
τ -torsion. It follows that xn = 0 for all n, whence x = 0. This concludes the proof of
assertion (1) of Theorem 1.1 when the base is a perfect field.

We now turn to the proof of assertion (3). By Corollaries 3.3 and 3.4, we have

M∗∗ ∼= [M, 6∗∗M] ∼= [M ∧M, 6∗∗M]M ∼=
[∨
α

6pα,qαM, 6∗∗M
]
M
∼=

∏
α

M∗−pα,∗−qα .

(15)
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To determine this family of bidegrees (pα, qα), we can again assume, by Theorem 2.11,
that S is the spectrum of an algebraically closed field, so that M∗∗ ∼= Z/`[τ ]. In this
case we also know by part (1) that M∗∗ ∼=

⊕
γ M
∗−rγ ,∗−sγ where the family of bidegrees

(rγ , sγ ) is the desired one. In particular, Mp,q is finite for every (p, q) ∈ Z, which
shows that the product (15) is a direct sum. Thus, we find a bigraded isomorphism of free
Z/`[τ ]-modules ⊕

α

6−pα,−qαZ/`[τ ] ∼=
⊕
γ

6−rγ ,−sγZ/`[τ ]

(where 6i,j indicates shifting of the bidegree), and it follows that the indexing families
(pα, qα) and (rγ , sγ ) coincide.

Finally, we prove (1) of Theorem 1.1 in general. Choose an essentially smooth mor-
phism f : S → Spec k where k is a perfect field. By Corollary 2.13, for any (p, q) ∈ Z,
there are at most finitely many α such that Mp+pα,q+qα

S 6= 0. It follows that the product
in (15) is a direct sum, and hence the map

f ∗ : M∗∗k →M∗∗S

induces an isomorphism of left M∗∗S -modules M∗∗S ⊗M∗∗k
M∗∗k
∼=M∗∗S . From the commu-

tative square (9), we obtain A∗∗S = M∗∗S . The more precise statement of assertion (1) is
automatic since f ∗ : M∗∗k →M∗∗S is an algebra map.

4. Commutativity of the fundamental square

In this section we prove Theorem 3.1. Throughout, the base scheme is a perfect field k of
characteristic exponent c, and ` 6= c is a fixed prime number.

4.1. The `dh-topology

We start with the definition of the `dh-topology introduced in [Kel13]. The basic idea is to
enlarge the cdh-topology of Suslin–Voevodsky [SV96] by including finite flat surjective
maps of degree prime to `.

We say that a family {Vj → X}j∈J of maps is a refinement of another family
{Ui → X}i∈I if for each j ∈ J there exists an ij ∈ I and a factorization Vj → Uij → X.

Definition 4.1. Let ` 6= char k be a prime number.

(1) An fps`′-cover (fini-plat-surjectif-premier-à-`) is a finite flat surjective map f : U→X

such that f∗OU is a free OX-module of rank prime to `.
(2) An `dh-cover is a finite family {Ui → X} of maps of finite type which admits a

refinement {V ′j → Vj → X} where {Vj → X} is a cdh-cover and each V ′j → Vj is an
fps`′-cover.

Definition 4.2. The `dh-topology on Schk is the topology generated by the `dh-covers.
If C ⊂ Schk is a subcategory, the `dh-topology on C is the topology induced by the
`dh-topology on Schk .
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Remark 4.3. The `dh-topology is a “global” version of the topology of `′-alterations
appearing in [Ill] and [ILO12].

Theorem 4.4 (Gabber [Ill, Theorem 1.3], [ILO12, IX, Theorem 1.1]). Let X ∈ Schk and
let Z ⊂ X be a nowhere dense closed subset. There exists a map f : Y → X in Schk such
that:

(1) Y is smooth and quasi-projective over k.
(2) f is proper, surjective, and sends generic points to generic points.
(3) For each generic point ξ of X there is a unique point η of Y over it, and [k(η) : k(ξ)]

is finite of degree prime to `.
(4) f−1(Z) ⊂ Y is a divisor with strict normal crossings.

We shall make use of the following formulation of the Raynaud–Gruson flattening theorem
[RG71].

Theorem 4.5 ([SV00b, Theorem 2.2.2]). Let p : X → S be a map of Noetherian
schemes and U an open subscheme in S such that p is flat over U . Then there exists a
closed subscheme Z in S such that U ∩Z = ∅, and the proper transform of X with respect
to the blow-up BlZ S → S with center in Z is flat over S.

Corollary 4.6. For every X ∈ Schk there exists an `dh-cover {Ui → X} where each Ui
is smooth and quasi-projective over k.

Proof. The proof uses Noetherian induction. Suppose the result holds for all proper
closed subschemes of X. We may assume that X is integral since the set of inclusions of
irreducible components is a cdh-cover. Let Y → X be the map provided by Theorem 4.4,
so that Y is smooth and quasi-projective over k. By Theorem 4.5, there exists a blow-up
with nowhere dense center X′→ X such that the proper transform Y ′→ X′ of Y → X is
Zariski-locally an fps`′-cover. If Z ⊂ X is a proper closed subscheme such that X′→ X

is an isomorphism outside of Z, then {Z→ X,X′→ X} is a cdh-cover. By the inductive
hypothesis, there exists an `dh-cover {Zj → Z}j∈J with each Zj quasi-projective and
smooth over k. We claim that {Zj → X}j∈J ∪ {Y → X} is an `dh-cover. Indeed, it
is refined by {Zj → X}j∈J ∪ {Y

′
→ X}, which is the composition of the cdh-cover

{Z→ X,X′→ X} with the `dh-covers {Zj → Z}j∈J and {Y ′→ X′}. ut

It is easy to show that any presheaf of Z(`)-modules with transfers on Schk is an fps`′-sheaf.
In particular, such a presheaf is a cdh-sheaf if and only if it is an `dh-sheaf. More generally,
we have:

Theorem 4.7 ([Kel13, Theorem 3.4.17]). Suppose F is a presheaf of Z(`)-modules with
transfers on Schk . Then for every X ∈ Schk , the canonical map

H n
cdh(X, acdhF)→ H n

`dh(X, a`dhF)

is an isomorphism for all n ≥ 0.

Recall the notion of a τ -local presheaf from §2.1.
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Lemma 4.8. Let C be a small category, σ ≤ τ Grothendieck topologies on C, and F a
presheaf of spectra on C. Assume that:

(1) F is σ -local.
(2) Every X ∈ C has finite σ -cohomological dimension.
(3) For every X ∈ C and every p, q ∈ Z, the canonical map Hp

σ (X, aσπqF) →

H
p
τ (X, aτπqF) is an isomorphism.

Then F is τ -local.

Proof. Denote by Sp(C) the triangulated category of presheaves of spectra on C. It is
endowed with a t-structure for which the truncation functors τ≤n and τ≥n are defined
objectwise. For a topology ρ on C, let iρ : Spρ(C) ↪→ Sp(C) be the inclusion of the
triangulated subcategory of ρ-local presheaves and aρ : Sp(C)→ Spρ(C) its left adjoint.
The subcategory Spρ(C) inherits a t-structure whose truncation functors are aρτ≤niρ and
aρτ≥niρ . Moreover, the functors aρ and iρ are both left t-exact [Lur11, Remark 1.9].

By (1), we have F ∈ Spσ (C). We first prove the lemma under the assumption that F is
bounded below for the t-structure on Spσ (C), i.e., F ' aσ τ≥kF for some k ∈ Z. By (2),
the t-structure on Spσ (C) is left complete [Jar97, §6.1], so that F ' holimn→∞ aσ τ≤nF .
Since the inclusion Spτ (C) ↪→ Sp(C) preserves homotopy limits, it suffices to show that
aσ τ≤nF is τ -local for all n ∈ Z. Using the fiber sequences

(πnF)[n] → τ≤nF → τ≤n−1F

and the fact that aσ τ≤nF = 0 for n < k, we are reduced to proving that aσ ((πnF)[n]) is
τ -local for all n≥k, or equivalently that the canonical map aσ ((πnF)[n])→aτ ((πnF)[n])

induces an isomorphism on presheaves of homotopy groups. By definition of cohomology,
we have

π∗aσ ((πnF)[n]) = H
n−∗
σ (−, aσπnF),

so the desired result holds by (3).
For a general F , the previous proof applies to the presheaves of spectra aσ τ≥kF for all

k ∈ Z and shows that
aσ τ≥kF ' aτ τ≥kF.

To complete the proof we observe that, for any topology ρ on C, the canonical map

colim
k→−∞

iρaρτ≥kF → iρaρF

is an equivalence of presheaves of spectra. Its cofiber is colimk→−∞ iρaρτ<kF . Since both
iρ and aρ are left t-exact, iρaρτ<kF is a presheaf of (k − 1)-truncated spectra, and hence
colimk→−∞ iρaρτ<kF is a presheaf of spectra which are (k − 1)-truncated for all k ∈ Z,
i.e., it is contractible. ut

Remark 4.9. We sketch a different proof of Lemma 4.8 assuming that the topologies σ
and τ have enough points, which holds for all the topologies we consider. The cosimplicial



3836 Marc Hoyois et al.

Godement resolutions give rise for every X ∈ C to spectral sequences {σE∗∗r }r≥1 and
{τE
∗∗
r }r≥1 with

σE
p,q

2
∼= H

p
σ (X, aσπqF) and τE

p,q

2
∼= H

p
τ (X, aτπqF),

and to a morphism of spectral sequences from the former to the latter, which by (3) is
an isomorphism starting from the second page. By (2), σE

p,∗

2 = 0 for p � 0, so both
spectral sequences stabilize after finitely many steps. It follows from the second part of
[Tho85, Proposition 5.47] that ρE∗∗∞ is the associated graded of a complete, Hausdorff,
and (trivially) exhaustive filtration on π∗(aρF)(X), for ρ = σ, τ . This shows that the
canonical map π∗(aσF)(X)→ π∗(aτF)(X) is an isomorphism for all X ∈ C, and hence
aσF ' aτF .

Proposition 4.10. Let R be a Z(`)-algebra.

(1) The `dh-topology on Schk is compatible with R-transfers.
(2) The `dh-topology on Smk is compatible with R-transfers.
(3) The functor i∗ : sPretr(Schk, R)→ sPretr(Smk, R) preserves RtrW`dh-local equiva-

lences.

Proof. To prove (1) we must show that, for any `dh-hypercover f ∈ W`dh, utrRtr(f ) is an
`dh-local equivalence; we will show that it is in fact a cdh-local equivalence. Since cdh is
compatible with transfers on Schk [Voe10b, Lemma 1.24], we know from Lemma 2.1 that
utrRtr(f ) is a cdh-local equivalence if (and only if) Rtr(f ) is an RtrWcdh-local equivalence,
and by assumption it is an RtrW`dh-equivalence. By adjunction, it will suffice to show that
if F ∈ sPretr(Schk, R) is RtrWcdh-local, then F is in fact RtrW`dh-local, or equivalently
utr(F ) is `dh-local.

We have a canonical identification of presheaves πqutr(F ) ∼= utrπq(F ) and since the
latter have a structure of presheaves with transfers, it follows from Theorem 4.7 that

H
p

cdh(X, acdhπqu
tr(F )) ∼= H

p

`dh(X, a`dhπqu
tr(F )).

Since the cdh-topology is cohomologically bounded [SV00a], Lemma 4.8 shows that
utr(F ) is `dh-local (to apply the lemma, we view simplicial abelian groups as connective
spectra). This proves (1).

By Corollary 4.6, i : Smk ↪→ Schk is cocontinuous for the `dh-topology. Assertions
(2) and (3) now follow from (1) by virtue of Lemma 2.3. ut

4.2. Descent for MZ(`)-modules

In this section we review the proof from [Kel13, §5] that MZ(`)-modules are `dh-local
(see Definition 4.23), which is a key ingredient in the proof of Theorem 3.1. The argument
can be summarized as follows. We know from Ayoub’s proper base change theorem that
motivic spectra are cdh-local. The notion of “structure of traces” (Definition 4.11) is
designed to bridge the gap between cdh-descent and `dh-descent. A first step is therefore
to show that the motivic cohomology spectrum MZ(`) ∈ SH(Smk) has a structure of traces.
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Roughly speaking, this follows from the facts that homotopy algebraic K-theory KGL has
a structure of traces and that MZ(`) is the zeroth slice of KGL(`).

We first recall the notion of a structure of traces introduced in [Kel13].

Definition 4.11. Let E : Schk → Cat be a 2-functor (or equivalently a cofibered category
over Schk) with values in additive categories and F an additive section of E (i.e., a section
of the associated cofibered category such that FXqY ∼= (i1)∗FX ⊕ (i2)∗FY ). A structure of
traces on F is a family of maps Trf : f∗FY → FX, defined for every finite flat surjective
map f : Y → X in Schk , subject to the following coherence conditions (where f and g
are finite flat surjective maps).

• (Additivity) Trfqg = (i1)∗Trf ⊕ (i2)∗Trg .
• (Functoriality) TridX = idFX , and if g : Z→ Y and f : Y → Z, Trfg = Trf ◦ f∗Trg .
• (Base change) For every cartesian square

W
g
//

q

��

Z

p

��

Y
f
// X

in Schk , we have Fp ◦ Trf = p∗Trg ◦ f∗Fq .
• (Degree) If f is globally free of degree d (i.e., f∗OY ∼= OdX), then Trf ◦ Ff = d · idFX .

When E is the constant functor with value Ab, this definition specializes to the notion
of presheaf with traces on Schk . The other example that we will use is the 2-functor
X 7→ SH(SmX) on Schk , which takes values in triangulated categories. This is a stable
homotopy 2-functor in the sense of [Ayo07]. In this context, we will simply write f∗, f ∗,
and f] for the derived functors Rf∗, Lf ∗, Lf] associated to a change of base scheme f
(see §2.2).

Suppose that the cofibered category E is bifibered, i.e., for every f : Y → X in Schk
the functor f∗ : E(Y )→ E(X) has a left adjoint f ∗. Then, to any object E ∈ E(Spec k),
we can associate a section X 7→ EX of E as follows: if a : X → Spec k is the structure
map of X ∈ Schk , then EX = a

∗E, and given f : Y → X, the map EX → f∗EY is the unit
of the adjunction (f ∗, f∗). Under some mild assumptions on E (for example, axioms 1 to 3
in [Ayo07, §1.4.1]), this is an additive section of E. A structure of traces on E ∈ E(Spec k)
is a structure of traces on the corresponding section X 7→ EX.

Remark 4.12. When E = MA ∈ SH(Smk) there is a notational conflict: if X is not
smooth over k, the object EX is not known to coincide with the motivic Eilenberg–Mac
Lane spectrum MAX defined in §2.3. When we speak of a structure of traces on MA, we
mean a structure of traces on the cartesian section (a : X→ Spec k) 7→ a∗MAk , not on
the section X 7→ MAX.

Remark 4.13. If φ : E1 → E2 is a 2-natural transformation and F is an additive section
of E1, it is clear that a structure of traces on F induces a structure of traces on φF . For
example, if F is a section of X 7→ SH(SmX) with a structure of traces, then for any
E ∈ SH(Spec k), X 7→ [EX, FX] is a presheaf with traces on Schk .
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We recall two important results on traces. The first one relates traces to transfers:

Theorem 4.14. Suppose F is a presheaf of Z(`)-modules with traces on Schk such that:

(1) F(X)→ F(Xred) is an isomorphism for every X ∈ Schk .
(2) aNisF |Smk

is unramified in the sense of [Mor12, Definition 2.1].

Then acdhF has a canonical structure of presheaf with transfers.

Proof. We will apply [Kel13, Theorem 3.8.1(3)] to the Nisnevich sheaf aNisF . It has a
canonical structure of traces by [Kel13, Proposition 3.3.3]. It is clear that aNisF still satis-
fies condition (1), hence it satisfies condition (Tri1)≤0 of loc. cit. by [Kel13, Lemma 3.3.6].
Finally, the proof of [Kel13, Theorem 3.8.1] goes through if we replace the assumption
that aNisF is a Gersten presheaf with condition (2). ut

The second result on traces concerns the compatibility of traces with the slice filtration. To
state it we need a few preliminary definitions.

Definition 4.15. A weak structure of smooth traces on E ∈ SH(Smk) is a family of
maps Trf : f∗EY → EX, defined for every finite, flat, globally free, and surjective map
f : Y → X in Smk such that if f is of degree d , Trf ◦ Ef = d · idEX .

Clearly, a structure of traces on E induces a weak structure of smooth traces on E.

Definition 4.16. Let R ⊂ Q be a subring of the rational numbers. We say that a motivic
spectrum E ∈ SH(Smk) is R-local if the abelian group [E,E] is an R-module.

Theorem 4.17 ([Kel13, Proposition 4.3.7]). Suppose E ∈ SH(Smk) is Z[1/c]-local with
a structure of traces, and sqE has a weak structure of smooth traces for every q ∈ Z. Then
sqE has a structure of traces for every q ∈ Z.

Proposition 4.18 ([Kel13, Proposition 5.2.3]). The homotopy algebraic K-theory spec-
trum KGL ∈ SH(Smk) has a structure of traces.

Proof. Let f : Y → X be a finite flat surjective map in Schk . It induces an exact func-
tor f∗ between the biWaldhausen categories of perfect complexes, whence a morphism
of K-theory spectra Trf : K(Y) → K(X) in the sense of Thomason–Trobaugh. It fol-
lows from standard properties of algebraic K-theory that this defines a structure of traces
on the presheaf of spectra X 7→ K(X): for additivity use [TT90, 1.7.2], for functori-
ality [TT90, 1.5.4], for base change [TT90, 3.18], and for degree [TT90, 1.7.3]. Given
X ∈ Schk , let KX ∈ Ho(SptSmop

X ) be the restriction of K to SmX. The trace maps
Trf×XU : K(Y ×X U) → K(U) define morphisms of presheaves Trf : f∗KY → KX
which endow X 7→ KX with a structure of traces.

The Bass K-theory presheaf KB
X can be defined by

KB
X = K

]
X = hocolim

n
R Hom(6∞(P1)∧n,KX)

(see [Cis13, end of §2.5, Propositions 2.7 and 2.10]). For any morphism f : Y → X

in Schk , the derived pushforward functor f∗ : Ho(SptSmop
Y )→ Ho(SptSmop

X ) right adjoint
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to f ∗ commutes with homotopy colimits by abstract nonsense, and so f∗KB
X ' (f∗KX)

].
It follows that the structure of traces on the section X 7→ KX induces a structure of traces
on the section X 7→ KB

X .
The homotopy algebraic K-theory presheaf of spectra KHX : SmX → Spt is by

definition the A1-localization of the presheaf KB
X , that is,

KHX = LA1K
B
X = hocolim

n
R Hom(6∞(1nX)+,K

B
X ),

where 1•X is the usual cosimplicial diagram in SmX with 1nX = AnX. As before, we have
f∗KHY ' LA1f∗K

B
Y and hence an induced structure of traces on the section X 7→ KHX.

Denote by E(X) the homotopy category of P1-spectra in the category of presheaves
of spectra on SmX; its objects are sequences (E0, E1, . . . ) of presheaves of spec-
tra on SmX together with equivalences Ei ' R Hom(6∞P1, Ei+1). The 2-functor
X 7→ SH(SmX) can then be identified with the sub-2-functor of E spanned by
the A1- and Nisnevich-local objects. Under this identification, the motivic spectrum
KGLX ∈ SH(SmX) is the P1-spectrum (KHX,KHX, . . . ) where the equivalences
KHX ' R Hom(6∞P1,KHX) are given by Bott periodicity. Thus, it remains to ob-
serve that the trace maps Trf : f∗KHY → KHX are compatible with these equivalences,
which follows easily from the definitions. ut

Proposition 4.19. For any E ∈ DM(Smk, R), utrE has a weak structure of smooth traces.

Proof. If f : Y → X is a finite flat surjective map of degree d in Smk , its transpose tf is a
finite correspondence X→ Y such that f ◦ tf = d · idX in Cor(Smk). It therefore induces,
for any F ∈ sPretr(Smk, R), a map Trf : f∗FY → FX such that Trf ◦Ff = d · idFX . Since
a : X→ Spec k is smooth, the functor La∗ : Htr(Smk, R)→ Htr(SmX, R) preserves A1-
and Nisnevich-local objects and commutes with �2,1 (see §2.2), so we obtain trace maps
for the section (a : X→ Spec k) 7→ La∗E of the 2-functor X 7→ DM(SmX, R) on Smk .
Since utr is a morphism of 2-functors which moreover commutes with La∗ for a smooth,
there is an induced weak structure of smooth traces on utrE. ut

Corollary 4.20 ([Kel13, Corollary 5.2.4]). Let 1/c ∈ R ⊂ Q. Then the motivic cohomol-
ogy spectrum MR has a structure of traces in SH(Smk).

Proof. By [Lev08, Theorem 6.4.2] (or [GP12, Theorem 7.10]), the qth slice of KGL is
62q,qMZ. As sq preserves homotopy colimits, the qth slice of KGL ⊗ R is 62q,qMR,
which has a weak structure of smooth traces by Proposition 4.19. Since KGL⊗ R itself
has a structure of traces by Proposition 4.18, we may apply Theorem 4.17 to deduce that
s0(KGL⊗ R) ' MR has a structure of traces. ut

Proposition 4.21. Let E ∈ SH(Smk) be a motivic spectrum with a structure of traces
(resp. a weak structure of smooth traces). Then for any F ∈ SH(Smk), E ∧ F has a
structure of traces (resp. a weak structure of smooth traces).

Proof. By [Ayo07, Theorems 2.3.40 and 1.7.17], if f : Y → X is a projective morphism
in Schk , E ∈ SH(SmY ), and F ∈ SH(SmX), the canonical map

f∗E ∧ F→ f∗(E ∧ f
∗F) (16)
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is an isomorphism. Thus, if f : Y → X is a finite flat surjective map, we can define Trf as
the composition

f∗(E ∧ F)Y ∼= f∗(EY ∧ f
∗FX) ∼= f∗EY ∧ FX

Trf∧FX
−−−−→ EX ∧ FX ∼= (E ∧ F)X,

where the second isomorphism is an instance of (16). It is then easy to verify that this
definition satisfies the axioms for a structure of traces (resp. a weak structure of smooth
traces). ut

Corollary 4.22. Let 1/c ∈ R ⊂ Q and E ∈ SH(Smk). Then MR ∧ E has a structure of
traces.

Proof. Combine Corollary 4.20 and Proposition 4.21. ut

We now turn to the proof that MZ(`)-modules are `dh-local.

Definition 4.23. Let τ be a Grothendieck topology on Smk . A motivic spectrum E ∈
SH(Smk) is τ -local if it is local with respect to the class of maps

{6p,q6∞X+→ 6p,q6∞X+ | X→ X is a τ -hypercover and p, q ∈ Z}.

Since Spt(Smk) is a stable model category, SH(Smk) is canonically enriched in the stable
homotopy category Ho(Spt). That is, for every E,F ∈ SH(Smk), we have a derived
mapping spectrum R Hom(E,F) such that �∞R Hom(E,F) ' R Map(E,F). By [CD12,
Theorem 3.2.15], there exists a presheaf of (symmetric) spectra E : Schop

k → Spt such that
the composition of E with the canonical functor Spt→ Ho(Spt) coincides with the functor

(a : X→ Spec k) 7→ R Hom(1,Ra∗La∗E).

Note that the restriction of E to Smk is equivalent to X 7→ R Hom(6∞X+,E). We can
thus rephrase Definition 4.23 as follows: E ∈ SH(Smk) is τ -local if and only if, for every
p, q ∈ Z, the presheaf of spectra 6p,qE|Smk

satisfies τ -descent.

Theorem 4.24 ([Kel13, Theorem 5.3.7]). Every Z(`)-local motivic spectrum E ∈
SH(Smk) with a structure of traces is `dh-local.

Proof. We must show that the presheaf of spectra 6p,qE|Smk
satisfies `dh-descent for

every p, q ∈ Z. We will even prove that 6p,qE satisfies `dh-descent. We may clearly
assume that p = q = 0 since the hypotheses on E are bistable.

As the cdh topology has finite cohomological dimension [SV00a, Theorem 12.5] and
E is cdh-local [Cis13, Proposition 3.7], Lemma 4.8 will show that E is `dh-local provided
that the canonical maps

H s
cdh(X, acdhπtE)→ H s

`dh(X, a`dhπtE)

are isomorphisms for all s, t ∈ Z. By Theorems 4.7 and 4.14, this will be the case if

(0) πtE is a presheaf of Z(`)-modules with traces,
(1) πtE(X)→ πtE(Xred) is an isomorphism for every X ∈ Schk ,
(2) aNisπtE|Smk

is unramified.
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Assertion (0) holds by assumption on E (see Remark 4.13) and assertion (1) is clear
because the restriction functor SH(SmX)→ SH(SmXred) is an equivalence of categories.
The sheaf aNisπtE|Smk

is strictly A1-invariant [Mor03, Remark 5.1.13], and in particular
unramified [Mor12, Example 2.3]. ut

Corollary 4.25. Every MZ(`)-module spectrum in SH(Smk) is `dh-local.

Proof. Let E be an MZ(`)-module spectrum. Then E is a retract of MZ(`) ∧E in SH(Smk),
and so it suffices to show that MZ(`) ∧ E is `dh-local. This follows from Corollary 4.22
and Theorem 4.24. ut

Corollary 4.26 ([Kel13, Corollary 5.3.8]). Let R be a Z(`)-algebra. If X → X is a
smooth `dh-hypercover of X ∈ Smk , then the induced map LRtrX+ → LRtrX+ is an
isomorphism in Htr

Nis,A1(Smk, R).

Proof. By [Voe10b, Theorem 1.15] and Voevodsky’s Cancellation Theorem [Voe10a],
the stabilization functor 6∞ : Htr

Nis,A1(Smk, R)→ DM(Smk, R) is fully faithful. Thus,
it suffices to show that any smooth `dh-hypercover gives rise to an isomorphism in
DM(Smk, R). Recall from §2.3 that the functor LRtr6∞(−)+ factors through the functor
MR ∧ 6∞(−) : H∗Nis,A1(Smk) → Ho(MR -mod) to the highly structured category of
modules over MR, and this reduces the problem to showing that the map MR∧6∞X+→
MR ∧6∞X+ is an isomorphism for every smooth `dh-hypercover X→ X. This follows
from Corollary 4.25. ut

Corollary 4.27. Let R be a Z(`)-algebra. Then the localization functor Htr(Smk, R)→

Htr
Nis,A1(Smk, R) factors through Htr

`dh(Smk, R).

Proof. This is just a rephrasing of Corollary 4.26. ut

4.3. End of the proof

We now give the proof of Theorem 3.1. As in [Voe10b, end of §1.3], we may assume that
C = Smk and D = Schk . Since the restriction functors i∗ : H∗(Schk)→ H∗(Smk) and
i∗ : Htr(Schk, R)→ Htr(Smk, R) preserve A1-Nisnevich-local equivalences, it suffices
to show that for any F ∈ H∗(Schk) the canonical map

LRtri∗F → i∗LRtrF

in Htr(Smk, R) becomes an isomorphism in Htr
Nis,A1(Smk, R). In the commutative square

LRtri∗Li!i∗ //

��

LRtri∗

��

i∗LRtrLi!i∗ // i∗LRtr

the top horizontal arrow and the left vertical arrow are isomorphisms since Li! is fully
faithful and commutes with LRtr. Thus, it suffices to show that the bottom horizontal arrow
becomes an isomorphism in Htr

Nis,A1(Smk, R). Since Li!i∗F → F is an isomorphism when
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restricted to Smk , it is an `dh-local equivalence by Corollary 4.6. Thus, LRtrLi!i∗F →
LRtrF is an RtrW`dh-local equivalence. By Proposition 4.10(3), i∗LRtrLi!i∗F→ i∗LRtrF

is therefore an RtrW`dh-local equivalence in Htr(Smk, R). Finally, by Corollary 4.27,
RtrW`dh-local equivalences in Htr(Smk, R) become equivalences in Htr

Nis,A1(Smk, R), as
was to be shown.

5. Complements

In this section we record some complements of the results of this paper which were
previously only known for fields of characteristic zero.

5.1. The structure of the motivic Steenrod algebra and its dual

The goal of this subsection is to generalize the structure theorems of Voevodsky for the
motivic Steenrod algebra over perfect fields to essentially smooth schemes over fields.
Throughout, the base scheme S is essentially smooth over a field, and ` 6= char S is a fixed
prime number. We abbreviate MZ/` to M, and we write A∗∗ for the motivic Steenrod
algebra at `, which by Theorem 1.1 is the algebra of all bistable operations in mod `motivic
cohomology of smooth S-schemes, and also the algebra of bigraded endomorphisms of
the motivic Eilenberg–Mac Lane spectrum M. Recall that A∗∗ is generated by the reduced
power operations P i , the Bockstein β, and the subalgebra H∗∗(S,Z/`). As usual, we write

Bi = βP i,

and if ` = 2,
Sq2i
= P i and Sq2i+1

= Bi .

If ` = 2, let ρ be the image of −1 ∈ Gm(S) in

H1,1(S,Z/2) = H1
ét(S, µ2)

and let τ be the nonvanishing element of

H0,1(S,Z/2) = µ2(S) ∼= Hom(π0(S),Z/2)

(recall that char S 6= 2 if ` = 2).

Theorem 5.1 (The Adem relations). (1) Assume ` 6= 2. If 0 < a < `b, then

P aP b =

ba/`c∑
t=0

(−1)a+t
(
(`− 1)(b − t)− 1

a − `t

)
P a+b−tP t .

If 0 < a ≤ `b, then

P aBb =

ba/`c∑
t=0

(−1)a+t
(
(`− 1)(b − t)

a − `t

)
Ba+b−tP t

+

b(a−1)/`c∑
t=0

(−1)a+t−1
(
(`− 1)(b − t)− 1

a − `t − 1

)
P a+b−tB t .
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(2) Assume ` = 2 and 0 < a < 2b. If a and b are even, then

Sqa Sqb =
ba/2c∑
t=0

τ t mod 2
(
b − t − 1
a − 2t

)
Sqa+b−t Sqt .

If a is even and b is odd, then

Sqa Sqb =
ba/2c∑
t=0

(
b − t − 1
a − 2t

)
Sqa+b−t Sqt

+

ba/2c∑
t=0
t odd

(
b − t − 1
a − 2t

)
ρ Sqa+b−t−1 Sqt .

If a is odd and b is even, then

Sqa Sqb =
ba/2c∑
t=0
t even

(
b − t − 1
a − 2t

)
Sqa+b−t Sqt

+

ba/2c∑
t=0
t odd

(
b − t − 1
a − 2t − 1

)
ρ Sqa+b−t−1 Sqt .

If a and b are odd, then

Sqa Sqb =
ba/2c∑
t=0
t odd

(
b − t − 1
a − 2t

)
Sqa+b−t Sqt .

Proof. If S is a perfect field, this was originally proved in [Voe03a, Theorems 10.2 and
10.3], but with some typos that were corrected in [Rio12, Théorèmes 4.5.1 et 4.5.2]. In
general, choose an essentially smooth morphism f : S → Spec k where k is a perfect field.
The theorem follows from the fact that the base change map f ∗ : A∗∗k → A∗∗S is an algebra
homomorphism which preserves P i and β, and when ` = 2, also τ and ρ. ut

Note that in the case ` = 2, the Adem relations for a odd are obtained from the ones for a
even by application of β, using the fact that β is a derivation, β(τ) = ρ, and β(ρ) = 0. The
Adem relations (together with the relation β2

= 0) can be used to express any monomial
in the operations P i and β as a linear combination of the basis operations described in
Theorem 1.1. The only additional piece of information needed to obtain a presentation of
A∗∗ as an algebra is thus the action of A∗∗ on H∗∗(S,Z/l).

Let now A∗∗ be the dual motivic Steenrod algebra over S, that is,

A∗∗ = HomM∗∗(A
−∗,−∗,M∗∗).

By duality, A∗∗ has a structure of commutative Hopf algebroid which is described in detail
in [Voe03a, §12] in the case where S is the spectrum of a perfect field. Our goal is now to
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identify A∗∗ with the Hopf algebroid of co-operations in mod ` motivic cohomology, i.e.,
M∗∗M. This is achieved in Propositions 5.3 and 5.5 below. For the following lemma, recall
that Ho(M-mod) is a closed symmetric monoidal category.

Lemma 5.2. Let (pα, qα) be a family of bidegrees with pα ≥ 2qα ≥ 0 and such that,
for every q ∈ Z, there are only finitely many α with qα ≤ q. Let E =

∨
α 6

pα,qαM ∈
Ho(M-mod). Then the canonical map E→ HomM(HomM(E,M),M) is an equivalence
of M-modules, and the pairing π∗∗ HomM(E,M)⊗M∗∗ π∗∗E→ M∗∗ is perfect.

Proof. The hypothesis on (pα, qα) together with Corollary 2.13 implies that

E =
∨
α

6pα,qαM '
∏
α

6pα,qαM,

HomM(E,M) '
∏
α

6−pα,−qαM '
∨
α

6−pα,−qαM.

This implies the first statement and, after taking homotopy groups, the second. ut

Proposition 5.3. There is a canonical isomorphism A∗∗ ∼= M∗∗M, and the canonical
map A−∗,−∗→ HomM∗∗(A∗∗,M∗∗) is an isomorphism.

Proof. By Theorem 1.1, we have A∗∗ ∼= M∗∗M. Therefore it suffices to show that there is
a perfect pairing M−∗,−∗M⊗M∗∗ M∗∗M→ M∗∗. This follows from Theorem 1.1(3) and
Lemma 5.2. ut

Lemma 5.4. Let R be a motivic E∞-ring spectrum and let E and F be R-modules. The
canonical map

π∗∗E⊗R∗∗ π∗∗F→ π∗∗(E ∧R F)

is an isomorphism under either of the following conditions:

(1) F is a cellular R-module and π∗∗E is flat over R∗∗.
(2) F '

∨
α 6

pα,qαR as an R-module.

Proof. This is obvious if F ' 6p,qR. As both sides preserve coproducts in F, we deduce
the result under assumption (2).

If π∗∗E is flat over R∗∗, then both sides also transform cofiber sequences in F into long
exact sequences, whence the result under assumption (1). ut

Proposition 5.5. Let E be an M-module. Then there is a canonical isomorphism

π∗∗E⊗M∗∗ A∗∗
∼= π∗∗(E ∧M).

In particular, A⊗i∗∗ ∼= M∗∗(M
∧i) for all i ≥ 0 (where the tensor product is over M∗∗).

Proof. Since M ∧ M '
∨
α 6

pα,qαM and M∗∗M ∼= A∗∗, this is a special case of
Lemma 5.4. ut
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Proposition 5.5 is of computational interest because it implies that for any E ∈ SH(SmS),
M∗∗E is a left comodule over A∗∗. For instance, the E2-page of the homological motivic
Adams spectral sequence consists of all Ext-groups in the category of A∗∗-comodules. See
e.g. [DI10] and [HKO11] for precise statements concerning the construction and conver-
gence of the motivic Adams spectral sequence, which can be generalized to essentially
smooth schemes over fields by the above results.

We can now give a complete description of the Hopf algebroid A∗∗ = M∗∗M. First,
define a Hopf algebroid (A, 0) as follows. Let

A = Z/`[ρ, τ ], 0 = A[τ0, τ1, . . . , ξ1, ξ2, . . . ]/(τ
2
i − τξi+1 − ρτi+1 − ρτ0ξi+1).

The structure maps ηL, ηR , ε, and 1 are given by the formulas

ηL : A→ 0, ηL(ρ) = ρ, ηL(τ ) = τ,

ηR : A→ 0, ηR(ρ) = ρ, ηR(τ ) = τ + ρτ0,

ε : 0→ A, ε(ρ) = ρ, ε(τr) = 0,
ε(τ ) = τ, ε(ξr) = 0,

1 : 0→ 0 ⊗A 0, 1(ρ) = ρ ⊗ 1, 1(τr) = τr ⊗ 1+ 1⊗ τr +
r−1∑
i=0

ξ l
i

r−i ⊗ τi,

1(τ) = τ ⊗ 1, 1(ξr) = ξr ⊗ 1+ 1⊗ ξr +
r−1∑
i=1

ξ l
i

r−i ⊗ ξi .

The coinverse map c : 0→ 0 is determined by the identities it must satisfy. Namely, we
have

c(ρ) = ρ, c(τr) = −τr −

r−1∑
i=0

ξ l
i

r−ic(τi),

c(τ ) = τ + ρτ0, c(ξr) = −ξr −

r−1∑
i=1

ξ l
i

r−ic(ξi).

We view M∗∗ as an A-algebra via the map A→ M∗∗ defined as follows: if ` is odd it
sends both ρ and τ to 0, while if ` = 2 it sends ρ and τ to the elements of the same name
in M∗∗.

Theorem 5.6. A∗∗ is isomorphic to 0 ⊗A M∗∗ with

|τr | = (2`r − 1, `r − 1) and |ξr | = (2`r − 2, `r − 1).

The map M∗∗ → A∗∗ dual to the left action of A∗∗ on M∗∗ is a left coaction of (A, 0)
on the ring M∗∗, and the Hopf algebroid (M∗∗,A∗∗) is isomorphic to the twisted tensor
product of (A, 0) with M∗∗, i.e.,

• ηL and ε are extended from (A, 0),
• ηR : H∗∗→ A∗∗ is the coaction,
• 1 : A∗∗→ A∗∗ ⊗M∗∗ A∗∗ is induced by the diagonal of 0 and ηR to the second factor,
• c : A∗∗→ A∗∗ is induced by the coinverse of 0 and ηR .



3846 Marc Hoyois et al.

Proof. If S is the spectrum of a perfect field, this is proved in [Voe03a, §12]. In general,
choose an essentially smooth morphism f : S → Spec k where k is a perfect field. Note
that the induced map (Mk)∗∗→ (MS)∗∗ is a map of A-algebras. It remains to observe that
the Hopf algebroid A∗∗ is obtained from (Mk)∗∗Mk by extending scalars from (Mk)∗∗ to
(MS)∗∗, which follows formally from the following facts: Lf ∗ is a symmetric monoidal
functor, Theorem 2.11, and Corollary 3.4. ut

5.2. Modules over motivic cohomology

In this subsection we generalize the main result of [RØ06], [RØ08]. Recall that there is a
symmetric monoidal Quillen adjunction

8 : MR -mod � Spttr(SmS, R) : 9

which is a Quillen equivalence when S is a field of characteristic zero [RØ08, Theorem 1]
or when S is any perfect field and Q ⊂ R [RØ08, Theorem 68]. In the following, all
functors are derived by default.

Lemma 5.7. Let k be a perfect field, g : V → U an fps`′-cover in Smk , and R a Z(`)-
algebra. Then MR ∧ g+ has a section in the homotopy category of MR-modules.

Proof. Since Ho(MR-mod) is a triangulated category, it suffices to show that MR ∧ g+ is
an epimorphism, i.e., for every MR-module E,

[U+,E] → [V+,E] (17)

is injective. If a : U → Spec k is the structure map, we have U+ = a]a
∗1 and V+ =

(ag)](ag)
∗1. For any smooth map f , f]f ∗ is left adjoint to f∗f ∗. Using this adjunction,

we can identify (17) with the map

[1, a∗a∗E] → [1, (ag)∗(ag)∗E]

induced by the unit of the adjunction (g∗, g∗). Since E is a retract of MR ∧ E in SH(Smk),
we can assume that E is a free MR-module. By Propositions 4.19 and 4.21, E then has
a weak structure of smooth traces. Since R is a Z(`)-algebra, it follows that a∗a∗E →
(ag)∗(ag)

∗E has a retraction, namely (1/d)a∗(Trg) where d is the degree of g. ut

Theorem 5.8. Assume that S is the spectrum of a perfect field of characteristic p > 0 and
let R be a commutative ring in which p is invertible. Then (8,9) is a Quillen equivalence.

Proof. As in [RØ08], it suffices to prove that the unit ηX+ : MR∧X+→ 98(MR∧X+)
is a weak equivalence for all quasi-projective and connected X ∈ SmS , knowing that
this holds if X is projective (more generally, ηE is an equivalence if E ∈ SH(SmS) is
dualizable). A map of MZ-modules is an equivalence if and only it induces equivalences
of MZ(`)-modules for every prime `, and since both 8 and 9 preserve filtered homotopy
colimits we can assume that R is a Z(`)-algebra for some prime ` 6= char k. In this case
we follow the proof of the rational result [RØ08, Theorem 68] but use Gabber’s theorem
instead of de Jong’s theorem.
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We proceed by induction on the dimension of X, the case d = 0 being taken
care of since X is then necessarily projective. Let SHd(k) be the localizing subcat-
egory of SH(Smk) generated by shifted suspension spectra of smooth connected k-
schemes of dimension ≤ d. By induction hypothesis, ηE is an equivalence for every
E ∈ SHd−1(k). Choose an open embedding j : X ↪→ Y into an integral projective k-
scheme. Let f : Y ′→ Y be the map given by Gabber’s Theorem 4.4, so thatX′ = f−1(X)

is the complement of a divisor with strict normal crossings. Let U ⊂ X be an open subset
on which f restricts to an fps`′-cover g : V = f−1(U) → U . Since Y ′ is smooth and
projective, Y ′+ is dualizable in SH(Smk). By homotopy purity and induction on the number
of irreducible components of Y ′ rX′ [RØ08, proof of Theorem 52], X′+ is dualizable in
SH(Smk) and hence ηX′+ is an equivalence. Consider the cofiber sequences

V+ ↪→ X′+→ X′/V, U+ ↪→ X+→ X/U.

By [RØ08, Lemma 66], X′/V and X/U belong to SHd−1(k). By induction hypothesis,
ηX′/V and ηX/U are equivalences. Thus, ηV+ is also an equivalence, and it remains to
prove that ηU+ is an equivalence. This follows from Lemma 5.7, since MR ∧ U+ is a
retract of MR ∧ V+ in Ho(MR-mod). ut
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