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Abstract. We study the conjecture that
∑
n≤x χ(n) = o(x) for any primitive Dirichlet character χ

modulo q with x ≥ qε , which is known to be true if the Riemann hypothesis holds for L(s, χ). We
show that it holds under the weaker assumption that “100%” of the zeros ofL(s, χ) up to height 1/4
lie on the critical line. We also establish various other consequences of having large character sums;
for example, that if the conjecture holds for χ2 then it also holds for χ .
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1. Introduction

A central quest of analytic number theory is to estimate the character sum

S(x, χ) =
∑
n≤x

χ(n), (1.1)

where χ is a primitive character modulo q. We would like to show that

S(x, χ) = o(x) (1.2)

in as wide a range for x as possible, and in particular whenever x ≥ qε for any fixed
positive ε (which implies Vinogradov’s conjecture that the least quadratic non-residue
modulo q is �ε q

ε). In [8] we showed that (1.2) holds when log x/log log q → ∞,
assuming the Riemann Hypothesis for L(s, χ), and proved unconditionally that this range
is the best possible. Burgess [3, 4] gave the best unconditional result, now more than fifty
years old, that (1.2) holds for all x ≥ q1/4+ε if q is assumed to be cube-free, and slightly
weaker variants for general q. The main results of this paper give further connections
between large values of character sums and zeros of the corresponding L-function.

Before describing our two main theorems, we give the following corollaries which
give a qualitative feel for what is established.
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succ. Centre-Ville, Montréal, QC H3C 3J7, Canada, and Department of Mathematics, University
College London, Gower Street, London WC1E 6BT, England; e-mail: andrew@dms.umontreal.ca
K. Soundararajan: Department of Mathematics, Stanford University, Stanford, CA 94305, USA;
e-mail: ksound@stanford.edu

Mathematics Subject Classification (2010): Primary 11M26; Secondary 11L40, 11M20



2 Andrew Granville, Kannan Soundararajan

Corollary 1.1. Let χ be a primitive quadratic character modulo q, let ε > (log q)−1/3 be
real. If the region {s : Re(s)≥ 3/4, |Im(s)| ≤ 1/4} contains no more than ε2(log q)/1600
zeros of L(s, χ), then for all x ≥ qε we have∣∣∣∑

n≤x

χ(n)

∣∣∣� x

(log x)1/100 .

There are � log q zeros β + iγ of L(s, χ) with 0 < β < 1 and |γ | ≤ 1/4, and we
expect these zeros to satisfy the Riemann Hypothesis β = 1/2. Our result can therefore
be paraphrased as stating that if (1.2) is false for x = qε then a positive proportion (� ε2)
of the zeros of L(s, χ), up to height 1, lie off the 1/2-line. We believe that the method
could be adapted to increase this proportion to � ε1+δ for any δ > 0, but we do not
pursue this here. A similar result holds for arbitrary primitive characters.

Corollary 1.2. Let χ be a primitive character modulo q. Let ε and T be real numbers
with 1 ≤ T ≤ (log q)1/200 and ε ≥ (log q)−1/3. Suppose that for every real φ with
|φ| ≤ T the region {s : Re(s) ≥ 3/4, |Im(s) − φ| ≤ 1/4} contains no more than
ε2(log q)/1440 zeros of L(s, χ). Then for all x ≥ qε we have∣∣∣∑

n≤x

χ(n)

∣∣∣� x

T
.

We now state our main theorems, from which the corollaries above follow as special
cases.

Theorem 1.3. Let χ be a primitive character modulo q, and let exp(
√

log q) ≤ x ≤
√
q

be such that |S(x, χ)| = x/N where 1 ≤ N ≤ (log x)1/100. There exists an absolute
positive constant c > 0 such that for some real number φ with |φ| ≤ cN , and any
parameter (log x)/2 ≥ L ≥ cN6, the region{

s : |s − (1+ iφ)| < L
log q
(log x)2

}
contains at least L/360 zeros of the Dirichlet L-function L(s, χ).

When the character χ has small order, we give the following variant which removes the
parameter φ in Theorem 1.3.

Theorem 1.4. Let χ be a primitive Dirichlet character modulo q of order k, and let x
and N be as in Theorem 1.3. There exists an absolute constant c > 0 such that for any
parameter L in the range (log x)/2 ≥ L ≥ (cN)2k

2
, the region{

s : |s − 1| < L
log q
(log x)2

}
contains at least L/400 zeros of L(s, χ).

Our first corollaries showed that large character sums produced many violations to the
GRH. Our next corollary shows that large character sums force some zeros of L(s, χ)
to lie very close to the 1-line (refining an old result of Rodosskiı̆ [13] who treated the
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related problem of determining the smallest prime p with χ(p) 6= 1, for characters of
small order; see [12] for a lucid exposition).

Corollary 1.5. Let 1 ≥ ε ≥ (log q)−1/200, and suppose there exists x ≥ qε with
|S(x, χ)| ≥ εx. Then there is an absolute constant c > 0 such that there is at least
one zero of L(s, χ) inside the region{

s : Re(s) ≥ 1−
c

ε8 log q
, |Im(s)| ≤

c

ε

}
.

If χ has order k and ε ≥ (log q)−1/(4k2) then there is a zero in the region |s − 1| ≤
c/(ε2k2

+2 log q).

A classical argument of Backlund (see [15, Theorem 13.5]) could be adapted to show that
if almost all the zeros of L(s, χ) in intervals of length 1 have real part ≤ 1/2 + ε then
the Lindelöf hypothesis for L(s, χ) would follow. From such a bound, one could obtain
strong estimates for character sums. Our results provide a sharper version of such ideas
of Backlund and Rodosskiı̆, by finding zeros even closer to the 1-line, and localizing their
imaginary parts. A key ingredient in our argument is work on mean values of multiplica-
tive functions, in particular the feature that such mean values vary slowly (see Lemma 3.3
below).

By a compactness argument, another consequence of our work is that if (1.2) fails for
x ≥ qε for infinitely many characters of bounded order, then one can find a sequence of
L-functions with arbitrarily many pinpointed zeros near the 1-line.

Theorem 1.6. Fix an integer k ≥ 2 and a constant η > 0. Suppose there is an infinite
sequence of distinct primitive characters χj modulo qj of order k with |

∑
n≤x χj (n)| ≥

ηx for some x ≥ qηj . There exists an infinite sequence z1, z2, . . . of complex numbers with
|zn|+1 ≤ |zn+1| with the following property: There is a sequence of primitive characters
ψj modulo rj (in fact a subsequence of the original sequence χj ) with L(s`, ψj ) = 0 for
1 ≤ ` ≤ j and some s` satisfying

s` = 1+
z` + o(1)

log rj
,

and the o(1) term tends to zero as rj →∞.

Theorem 1.6 generalizes and gives a soft version of an unpublished observation of Heath-
Brown. Heath-Brown observed that if there is an infinite sequence of primes q for which
the least quadratic non-residue modulo q is ≥ q1/(4

√
e)+o(1) then one can locate precisely

many zeros of L
(
s,
(
·

q

))
. A precise version of his result, as described in [6, Appendix 2],

is as follows. Consider the zeros of

H(z) =
2
z

∫ 1

1/
√
e

(1− e−zu)
du

u
.
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These zeros lie in the half-plane Re(z) < 0, and occur in conjugate pairs. Let zk denote
the sequence of these zeros with positive imaginary parts, and arranged in ascending order
of the imaginary part. For each k ≥ 1, if q is sufficiently large (and the least quadratic
non-residue is as large as q1/(4

√
e)+o(1)), then there is a zero of L

(
s,
(
·

q

))
at

s = 1+
4zk + o(1)

log q
,

and at its complex conjugate. In this situation, one can also describe the zeros zk precisely:
arguing as in [6, Lemma 2] gives

zk = − log(πk)+ 2πi(k + 1/4)+ o(1), (1.3)

which corresponds well to the data given at the end of [6].
Recently Banks and Makarov [2] generalized Heath-Brown’s observation, and

showed that if there is a sequence of quadratic characters with a certain prescribed smooth
way in which (1.2) fails, then one can pinpoint the zeros near 1 of the corresponding L-
functions. The smoothness hypothesis that they assume permits them to locate the zeros
in a form similar to (1.3) (see [2, Proposition 3.1]). In contrast, our Theorem 1.6 is softer
but holds more generally; it would be interesting if some more precise version of Theo-
rem 1.6 incorporating behavior as in (1.3) could be established. We note here the recent
interesting work of Tao [14] relating Vinogradov’s conjecture to the Elliott–Halberstam
conjectures on the distribution of primes (and more general sequences) in progressions.

We also take this opportunity to record some other observations on large character
sums. In [11], we proved that if χ1, χ2, χ3 are three (not necessarily distinct) characters
modulo q which have large maximal character sums (that is, if maxx |

∑
n≤x χj (n)| �√

q log q for j = 1, 2, 3, which is the largest size permitted by the Pólya–Vinogradov
theorem) then there exists some x for which∣∣∣∑

n≤x

(χ1χ2χ3)(n)

∣∣∣� √q log q.

We will prove an analogous (but much easier) result with respect to (1.2).

Corollary 1.7. Suppose χ1 and χ2 are Dirichlet characters modulo q such that for some
x1, x2 and some η > 0 we have ( for j = 1, 2)∣∣∣∑

n≤xj

χj (n)

∣∣∣ ≥ ηxj .
Then, with ξ = cη6 for a suitable absolute constant c > 0, there exists x ≥ (min(x1, x2))

ξ

with ∣∣∣∑
n≤x

(χ1χ2)(n)

∣∣∣ ≥ ξx.
Corollary 1.7 implies, for example, that if χ is a character modulo p of order 4 for which
(1.2) fails for x ≥ pε , then (1.2) also fails for the Legendre symbol modulo p for some
suitably large x. We discuss Corollary 1.7 and related results in Section 6 below.



Large character sums: Burgess’s theorem and zeros of L-functions 5

Given a prime q, Burgess’s theorem guarantees that there are ∼ x/2 quadratic
residues and ∼ x/2 quadratic non-residues modulo q up to x, provided x ≥ q1/4+o(1).
One of the main results in [9] shows that if x is large enough, then at least 17.15% of
the integers below x are quadratic residues modulo q (uniformly for all primes q). In the
“Vinogradov range” q1/4

√
e+o(1)

≤ x ≤ q, Banks et al. [1, Theorem 2.1]) showed that a
positive proportion of the integers below x are quadratic non-residues modulo q. We give
the following strengthening of their work (as mentioned in §4 of [1]).

Corollary 1.8. Let q be a large prime, and suppose 1/
√
e ≤ u ≤ 1. The number of

quadratic non-residues modulo q up to x = qu/4 is at least(
min(δ0, 1/4− (log u)2)+ o(1)

)
x,

where

δ0 = 1− log(1+
√
e)+ 2

∫ √e
1

log t
t + 1

dt = 0.1715 . . . .

2. Mean values of multiplicative functions

In this section, we recall some results from the theory of mean values of multiplicative
functions. Let f be a multiplicative function for which each |f (n)| ≤ 1, and write F(s) =∑
∞

n=1 f (n)n
−s . Define the (square of the) “distance” between two such functions f and g

by

D(f, g; x)2 :=
∑
p≤x

1− Re f (p)g(p)
p

;

this distance function satisfies the triangle inequality

D(f, g; x)+ D(g, h; x) ≥ D(f, h; x). (2.1)

Further, the distance function is related to the Dirichlet series F(s) via the relation

F

(
1+

1
log x

+ it

)
� log x exp(−D(f, nit ; x)2). (2.2)

Given x, let φ = φf (x) be a real number in the range |t | ≤ log x where the function
|F(1 + 1/log x + it)| attains its maximum. Set M := Mf (x) = D(f, niφ; x)2. The first
fact that we need is Halász’s theorem (see, e.g., [10, Theorem 2b]), which gives

1
x

∑
n≤x

f (n)�
(M + 1)e−M

1+ |φ|
+

1

(log x)2−
√

3+o(1)
. (2.3)

Define fφ(n) := f (n)/niφ . We next need a relation between the mean value of f and the
mean value of fφ . From [10, Lemma 7.1], we quote the relation

1
x

∑
n≤x

f (n) =
xiφ

1+ iφ
·

1
x

∑
n≤x

fφ(n)+O

(
log log x

log x
exp

(∑
p≤x

|1− fφ(p)|
p

))
. (2.4)
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Finally from [10, Theorem 4] (refining work of Elliott [7]) we require the following Lip-
schitz estimate showing that the mean values of fφ vary slowly: for any

√
x ≤ z ≤ x2,

we have
1
x

∑
n≤x

fφ(n)−
1
z

∑
n≤z

fφ(n)�

(
1+ |log x/z|

log x

)1−2/π+o(1)

. (2.5)

3. Large character sums and zeros off the critical line

Let χ denote a primitive character modulo q. We shall make use of the Hadamard factor-
ization formula (see [5])

ξ(s, χ) =

(
q

π

)s+a/(2)
0

(
s + a

2

)
L(s, χ) = eA+Bs

∏
ρ

(
1−

s

ρ

)
es/ρ, (3.1)

where a = (1 − χ(−1))/2, ρ ranges over the non-trivial zeros of L(s, χ), and A and B
are constants (depending on χ ) with

ReB = −
∑
ρ

Re
1
ρ
. (3.2)

Lemma 3.1. Let 1/2 ≥ λ > 0 be a real number, and let t be a real number. Then

|L(1− λ+ it, χ)| �
1
λ

exp
(∑

ρ

2λ2

|1+ λ+ it − ρ|2

)
.

Proof. Set s0 = 1+λ+ it and s1 = 1−λ+ it . Applying (3.1) and (3.2) with s = s0 and
s = s1, and invoking Stirling’s formula, we see that∣∣∣∣L(s1, χ)L(s0, χ)

∣∣∣∣ � (q(1+ |t |))λ∣∣∣∣ξ(s1, χ)ξ(s0, χ)

∣∣∣∣ = (q(1+ |t |))λ∏
ρ

|s1 − ρ|

|s0 − ρ|
. (3.3)

Note that∣∣∣∣ s1 − ρs0 − ρ

∣∣∣∣ = (1−
|s0 − ρ|

2
− |s1 − ρ|

2

|s0 − ρ|2

)1/2

≤ exp
(
−2λ

Re(1− ρ)
|s0 − ρ|2

)
= exp

(
−2λRe

(
1

s0 − ρ

)
+

2λ2

|s0 − ρ|2

)
.

Using this in (3.3), we conclude that∣∣∣∣L(s1, χ)L(s0, χ

∣∣∣∣� (q(1+ |t |))λ exp
(

2λ
∑
ρ

(
−Re

(
1

s0 − ρ

)
+

λ

|s0 − ρ|2

))
. (3.4)

On the other hand, taking logarithmic derivatives in (3.1), we see that

−Re
L′

L
(s0, χ) =

1
2

log q(1+ |t |)+O(1)−
∑
ρ

Re
(

1
s0 − ρ

)
, (3.5)
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and the left hand side above is trivially bounded in magnitude by

≤

∞∑
n=1

3(n)

n1+λ =
1
λ
+O(1). (3.6)

Inserting this bound in (3.4), we conclude that∣∣∣∣L(s1, χ)L(s0, χ)

∣∣∣∣� exp
(∑

ρ

2λ2

|s0 − ρ|2

)
,

and since |L(s0, χ)| ≤ ζ(1+ λ) = 1/λ+O(1), the lemma follows. ut

Next, we show how character sums may be related to suitable averages of L-functions.

Lemma 3.2. Let φ be a real number, T a positive real number, and 0 ≤ λ ≤ 1/2. Let
χφ denote the completely multiplicative function χφ(n) = χ(n)n−iφ , and let S(x, χφ) =∑
n≤x χφ(n). Then

√
2πT

∫
∞

−∞

S(ey, χφ)

ey
exp

(
λy −

T

2
y2
)
dy

=

∫
∞

−∞

L(1− λ+ iφ + iξ, χ)
1− λ+ iξ

exp
(
−
ξ2

2T

)
dξ.

Proof. The Fourier transform of S(e
y ,χφ)

ey
exp(yλ) is∫

∞

−∞

S(ey, χφ)

ey
exp(yλ)e−iyξ dy =

∞∑
n=1

χ(n)

niφ

∫
∞

log n
exp(−y(1− λ+ iξ)) dy

=
L(1− λ+ iφ + iξ, χ)

1− λ+ iξ
.

The Fourier transform of exp
(
−
T
2 y

2) is∫
∞

−∞

exp
(
−
T

2
y2
− iyξ

)
dy =

√
2π
√
T

exp
(
−
ξ2

2T

)
.

The lemma follows by the Plancherel formula. ut

Our last ingredient comes from the theory of mean values of multiplicative functions.

Lemma 3.3. Let y0 ≥ 3 be a real number, and assume that |S(ey0 , χ)| ≥ ey0y
−1/100
0 .

There exists a real number φ = φ(y0), with |φ| � ey0/|S(ey0 , χ)|, such that for any real
number y, ∣∣∣∣S(ey, χφ)ey

−
S(ey0 , χφ)

ey0

∣∣∣∣� (
1+ |y − y0|

y0

)1/3

. (3.7)

Moreover
S(ey0 , χφ) = (1+ iφ)e−iφy0S(ey0 , χ)+O(ey0/y

3/4
0 ). (3.8)

Finally, if χ has small order k then the following stronger bound for φ holds: for some
absolute constant c > 0,

|φ| ≤
1
y0

(
cey0

|S(ey0 , χ)|

)2k2

. (3.9)
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Proof. Take x = ey0 and f = χ in Section 2. By (2.3) and the hypothesis we have |φ| �
ey0/|S(ey0 , χ)| ≤ y

1/100
0 as desired, and moreover M ≤ 1

100 log y0 + log log y0 +O(1).
To prove (3.7) we may clearly suppose that |y − y0| ≤ y0/2, in which case (3.7)

follows immediately from (2.5).
Next, by Cauchy–Schwarz (and using |1− χφ(p)|2 ≤ 2(1− Re(χφ(p))))

∑
p≤ey0

|1− χφ(p)|
p

≤

( ∑
p≤ey0

1
p

)1/2( ∑
p≤ey0

|1− χφ(p)|2

p

)1/2

≤ (log y0 +O(1))1/2(2M)1/2 ≤
log y0

7
+O(1).

Using this in (2.4), we obtain (3.8).
Finally, suppose that χ has order k. The triangle inequality (2.1) gives

M =
∑
p≤ey0

1− Reχφ(p)
p

≥
1
k2

∑
p≤ey0

1− Re(χ(p)p−iφ)k

p

≥
1
k2

∑
p≤ey0

1− cos(kφ logp)
p

.

Using the prime number theorem it follows that φ � exp(k2M)/y0, which yields the
final assertion (3.9) of the lemma. ut

Combining Lemmas 3.1–3.3, we arrive at the following proposition.

Proposition 3.4. Let y0 be large with |S(ey0 , χ)| =: ey0/N ≥ ey0y
−1/100
0 , and let φ be

as in Lemma 3.3. If cN6/y0 ≤ λ ≤ 1/2 for a suitably large constant c, then there exists
|ξ | ≤ 2λ

√
(log q)/y0 such that∑

ρ

λ

|1+ λ+ iφ + iξ − ρ|2
≥
y0

4
. (3.10)

Proof. Set T = λ/y0, and note that T ≤ 1/(2y0) < 1. Using Lemma 3.3 we find that

√
2πT

∫
∞

−∞

S(ey, χφ)

ey
exp

(
λy −

T

2
y2
)
dy

=
√

2πT exp
(
λy0

2

)∫
∞

−∞

(
S(ey0 , χφ)

ey0
+O

(
1+|y−y0|

1/3

y
1/3
0

))
exp

(
−
T

2
(y−y0)

2
)
dy.

A little calculation, together with (3.8), shows that this equals

2π exp
(
λy0

2

)(
(1+ iφ)S(ey0 , χ)

ey0(1+iφ)
+O

(
1

(λy0)1/6

))
,

which, by our assumed lower bound on λ, is in magnitude ≥ π exp(λy0/2)/N .
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Thus, by Lemma 3.2, we see that

π exp
(
λy0

2

)
/N ≤

∫
∞

−∞

|L(1− λ+ iφ + iξ, χ)|
|1− λ+ iξ |

exp
(
−
ξ2

2T

)
dξ

≤

(
max
ξ∈R

|L(1− λ+ iφ + iξ, χ)|
|1− λ+ iξ |

exp
(
−
ξ2

4T

))∫
∞

−∞

exp
(
−
ξ2

4T

)
dξ,

so that

max
ξ∈R

|L(1− λ+ iφ + iξ, χ)|
|1− λ+ iξ |

exp
(
−
ξ2

4T

)
≥

1
2

√
πy0

λ
exp

(
λy0

2

)
/N. (3.11)

If Re(s) = σ > 0 then note that

|L(s, χ)| =

∣∣∣∣s ∫ ∞
1

S(x, χ)

xs+1 dx

∣∣∣∣ ≤ |s| ∫ ∞
1

min(x, q)
xσ+1 dx = |s|

(
q1−σ

− 1
1− σ

+
q1−σ

σ

)
.

Therefore, if |ξ | > 2λ
√
(log q)/y0 then

|L(1− λ+ iφ + iξ, χ)|
|1− λ+ iξ |

exp
(
−
ξ2

4T

)
≤

∣∣∣∣1− λ+ iφ + iξ1− λ+ iξ

∣∣∣∣(qλ − 1
λ
+

qλ

1− λ

)
q−λ

≤
2(1+ 2|φ|)

λ
.

Since |φ| � N , and λy0 ≥ cN6 for a suitably large constant c, we may check that
the RHS above is smaller than the RHS in (3.11). Therefore the maximum on the LHS
of (3.11) is attained for some ξ with |ξ | ≤ 2λ

√
(log q)/y0, and at this point we have,

by (3.11),
|L(1− λ+ iφ + iξ, χ)| � (λy0)

1/3 exp(λy0/2).

Using now the bound from Lemma 3.1, we conclude that∑
ρ

λ

|1+ λ+ iφ + iξ − ρ|2
≥
y0

4
. ut

4. Proofs of Theorems 1.3 and 1.4 and of the corollaries

Proof of Theorem 1.3. We appeal to Proposition 3.4, taking there y0 = log x, and let
φ, λ and ξ be as given there. We then have the lower bound furnished by (3.10). Split the
zeros ρ into those with |1+ iφ− ρ| ≥ 40λ(log q)/log x and those lying closer to 1+ iφ.
Note that if |1+ iφ − ρ| ≥ 40λ(log q)/log x then, by the triangle inequality,

|1+ λ+ iφ + iξ − ρ| ≥
∣∣∣∣1+ 20λ

log q
log x

+ iφ − ρ

∣∣∣∣− 20λ
log q
log x

− |ξ |

≥
9

20

∣∣∣∣1+ 20λ
log q
log x

+ iφ − ρ

∣∣∣∣.



10 Andrew Granville, Kannan Soundararajan

Therefore the contribution of these zeros to the LHS of (3.10) is

≤ 5λ
∑
ρ

1
|1+ 20λ(log q)/log x + iφ − ρ|2

≤
log x

4 log q

∑
ρ

Re
(

1
1+ 20λ(log q)/log x + iφ − ρ

)
,

as Re(ρ) ≤ 1 for all such ρ. But, arguing as in (3.5) and (3.6), we see that the above is at
most

log x
4 log q

(
5
9

log q
)
=

5 log x
36

.

We conclude that the contribution of the zeros with |1 + iφ − ρ| ≤ 40λ(log q)/log x to
the LHS of (3.10) is at least (log x)/9. Since each such zero contributes at most 1/λ, it
follows that ∣∣∣∣{ρ : |1+ iφ − ρ| ≤ 40λ

log q
log x

}∣∣∣∣ ≥ λ log x
9
.

The theorem follows upon setting L = 40λ log x. ut

Proof of Theorem 1.4. We follow the argument above, now making use of the bound
(3.9) which gives |φ| ≤ (cN)2k

2
/log x. Therefore if now λ ≥ (cN)2k

2
/log x (≥ |φ|) and

|1−ρ| ≥ 40λ(log q)/log x then |1+ iφ−ρ| ≥ 39λ(log q)/log x, and the argument above
shows that the contribution of these zeros to the LHS of (3.10) is bounded by 0.15 log x.
Thus the conclusion of Theorem 1.4 follows. ut

Corollary 1.5 follows upon taking L = cε−6 in Theorem 1.3 and L = (c/ε)2k
2

in The-
orem 1.4. Corollaries 1.1 and 1.2 follow upon taking L = (ε2 log q)/4 in Theorems 1.4
and 1.3, respectively.

5. Locating zeros: Proof of Theorem 1.6

Choosing L = (c/η)2k
2

for a suitably large constant c, we find by Theorem 1.4 that
for each χj modulo qj there is a zero of L(s, χj ) satisfying s = 1 + wj/log qj with
|wj | ≤ C1(η) for a suitable constant C1(η). Since the region |w| ≤ C1(η) is compact,
we can extract from the sequence wj a convergent subsequence. Now take z1 to be the
limiting value of wj from this convergent subsequence.

By restricting to the subsequence above, suppose that we now have a sequence of
characters χj of order k with L(s, χj ) having a zero of the form 1 + (z1 + o(1))/log qj .
Now from the argument of (3.5) and (3.6) we may see that for any L-function there are at
most a bounded number of zeros of the form 1+w/log q with |w| ≤ 1+|z1|. Therefore, by
appealing to Theorem 1.4 with a suitably large value of L, we may conclude that L(s, χj )
has a zero of the form s = 1+wj/log qj with |z1| + 1 ≤ |wj | ≤ C2(η) for some suitably
large C2(η). Since this region is again compact, we can once again extract a subsequence
of characters for which wj converges, and we call one such limiting value z2.

Proceeding in this manner, we obtain Theorem 1.6.
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6. Relations among characters with large partial sums

We begin by showing that if a multiplicative function f is at a small distance from the
function niφ then the partial sums of f get large in suitable ranges.

Proposition 6.1. Let f be a multiplicative function with |f (n)| ≤ 1 for all n. Let x be
large, and set λ = M + log(1 + |φ|) + c where M = Mf (x) and φ = φf (x) are as in
Section 2, and c is a large constant. Then there exists y in the range x1/(λeλ)

≤ y ≤ x

such that ∣∣∣∑
n≤y

f (n)

∣∣∣� e−M

|1+ iφ|
y.

Proof. By (2.2) we know that∣∣∣∣F(1+
λ

log x
+ iφ

)∣∣∣∣ � log x
λ

exp(−D(f, niφ; x1/λ)2)�
log x
λ
e−M .

On the other hand, with δ = λ/log x,
∞∑
n=1

f (n)

n1+δ+iφ = (1+ δ + iφ)
∫
∞

1

1
y2+δ+iφ

∑
n≤y

f (n) dy.

Set η = 1/(λeλ). Assuming that |
∑
n≤y f (n)| ≤ e

−λy for all xη ≤ y ≤ x, and using
the trivial bound |

∑
n≤y f (n)| ≤ y otherwise, we find that the right hand side above is

bounded in size by

≤ |1+ δ + iφ|
(∫ xη

1

dy

y1+δ + e
−λ

∫ x

xη

dy

y1+δ +

∫
∞

x

dy

y1+δ

)
= |1+ δ + iφ|

log x
λ

(
(1− e−ηλ)+ e−λ(e−ηλ − e−λ)+ e−λ

)
≤ 6(1+ |φ|)e−λ

log x
λ
.

This yields a contradiction, provided c is sufficiently large. ut

Our next result shows that if the partial sums of two completely multiplicative functions
get large, then the product of these functions also has large partial sums. Corollary 1.7
follows immediately from this result.

Theorem 6.2. Let f1 and f2 be completely multiplicative functions with |f1(n)| and
|f2(n)| bounded by 1 for all n. Suppose that η is a positive real number and x1 and x2
are such that ( for j = 1, 2) ∣∣∣∑

n≤xj

fj (n)

∣∣∣ ≥ ηxj . (6.1)

Then, with ξ = cη6 for a suitable absolute constant c > 0, there exists x ≥ (min(x1, x2))
ξ

such that, for some absolute constant c > 0,∣∣∣∑
n≤x

f1(n)f2(n)

∣∣∣ ≥ ξx.
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Proof. By (2.3) there exist φ1, φ2 with |φj | � 1/η such that

D(fj , niφj ; xj )2 ≤ log(1/η)+ log log(1/η)+O(1).

LetX =min{x1, x2}, f = f1f2 and φ = φ1+φ2. Since D(fj , niφj ;X)≤D(fj , niφj ; xj ),
the triangle inequality (2.1) gives

D(f, niφ;X) ≤ D(f1, n
iφ1;X)+ D(f2, n

iφ2;X),

so that D(f, niφ;X)2 ≤ 4 log(1/η)+4 log log(1/η)+O(1). The result now follows from
Proposition 6.1. ut

Another variant of the argument of Theorem 6.2 is the following. Suppose f is completely
multiplicative with |f (n)| ≤ 1 and |

∑
n≤x f (n)| ≥ ηx. Then for any natural number k,

there exists y ≥ xcη
2k2

(for a suitable absolute constant c > 0) with∣∣∣∑
n≤y

f (n)k
∣∣∣ ≥ cη2k2

y.

To see this, note that our hypothesis on f implies (as in Theorem 6.2) that

D(f, niφ; x)2 ≤ log(1/η)+ log log(1/η)+O(1)

for some |φ| � 1/η. By the triangle inequality it follows that D(f k, nikφ; x) ≤
kD(f, niφ; x). Now we invoke Proposition 6.1, and obtain the stated conclusion. One
application of this variant is that (stated informally) if a small power of a character χ
equals a non-principal character of small conductor, then one can obtain cancelations in
the character sums for χ .

7. Producing many quadratic residues below p1/4

Corollary 1.8 follows immediately from the Burgess bound together with the follow-
ing general result on completely multiplicative functions taking values in [−1, 1], which
largely follows from the work in [9].

Proposition 7.1. Let x be large, and let f be a completely multiplicative function with
−1 ≤ f (n) ≤ 1 for all n. Suppose that∑

n≤x

f (n) = o(x).

Then for 1/
√
e ≤ α ≤ 1 we have

1
xα

∣∣∣∑
n≤xα

f (n)

∣∣∣ ≤ max
(
|δ1|,

1
2
+ 2(logα)2

)
+ o(1),

where

δ1 = 1− 2 log(1+
√
e)+ 4

∫ √e
1

log t
t + 1

dt = −0.656999 . . . .
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Proof. We make free use of the work in [9]. Set y = exp((log x)2/3) and let g be the
completely multiplicative function defined by g(p) = 1 for p ≤ y and g(p) = f (p) for
p > y. Then (see [9, p. 439]) for x1/

√
e
≤ z ≤ x we have∑

n≤z

f (n) =

(∏
p≤y

(
1−

1
p

)(
1−

f (p)

p

)−1)∑
n≤z

g(n)+ o(z).

If now ∏
p≤y

(
1−

1
p

)(
1−

f (p)

p

)−1

≤
1

10
,

then the result follows at once. So let us assume that the product above is at least 1/10, so
that we have ∑

n≤x

g(n) = o(x).

Now we may pass from mean values of multiplicative functions to solutions of integral
equations as in [9], and use the results established there. Set

τ(α) =
∑
p≤xα

1− g(p)
p

.

By inclusion-exclusion (see [9, Proposition 3.6]) we have

o(x) =
∑
n≤x

g(n) ≥ x(1− τ(1)+ o(1)),

so that τ(1) ≥ 1+ o(1) and more generally

τ(α) ≥ 1− 2
∑

xα≤p≤x

1
p
= 1+ 2 logα + o(1).

Applying [9, Theorem 5.1] we see that if τ(α) ≥ 1 then∣∣∣∑
n≤xα

g(n)

∣∣∣ ≤ (|δ1| + o(1))xα.

If 1 + 2 logα ≤ τ(α) ≤ 1, then an inclusion-exclusion argument (see again [9, Proposi-
tion 3.6]) gives∣∣∣∑

n≤xα

g(n)

∣∣∣ ≤ (1− τ(α)+ τ(α)2/2+ o(1))xα ≤ (1/2+ 2(logα)2 + o(1)
)
xα.

The proposition follows. ut

There is some scope to improve the bound in Proposition 7.1, especially when α is close
to 1. Here Lipschitz estimates like (2.5) show that

x−α
∑
n≤xα

f (n)� (1− α)1−2/π+o(1),

which is plainly better than the bound in Proposition 7.1 for α sufficiently close to 1.
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