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Abstract. An enumerative problem on a variety V is usually solved by reduction to intersection
theory in the cohomology of a compactification of V . However, if the problem is invariant under
a “nice” group action on V (so that V is spherical), then many authors suggested a better home
for intersection theory: the direct limit of the cohomology rings of all equivariant compactifications
of V . We call this limit the affine cohomology of V and construct affine characteristic classes of
subvarieties of a complex torus, taking values in the affine cohomology of the torus.

This allows us to make the first steps in computing affine Thom polynomials. Classical Thom
polynomials count how many fibers of a generic proper map of a smooth variety have a prescribed
collection of singularities and our affine version addresses the same question for generic polynomial
maps of affine algebraic varieites. This notion is also motivated by developing an intersection-
theoretic approach to tropical correspondence theorems: they can be reduced to the computation of
affine Thom polynomials, because the fundamental class of a variety in the affine cohomology is
encoded by the tropical fan of this variety.

The first concrete answer that we obtain is the affine version of what were, historically speaking,
the first three Thom polynomials—the Plücker formulas for the degree and the number of cusps and
nodes of a projectively dual curve. This, in particular, characterizes toric varieties whose projective
dual is a hypersurface, computes the tropical fan of the variety of double tangent hyperplanes to a
toric variety, and describes the Newton polytope of the hypersurface of non-Morse polynomials of
a given degree. We also make a conjecture on the general form of affine Thom polynomials; a key
ingredient is the n-ary fan, generalizing the secondary polytope.

Keywords. Intersection theory, enumerative geometry, tropical geometry, Newton polytope, dis-
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1. Introduction

1.1. Affine Plücker formulas

Thom polynomials compute how many fibers of a generic proper morphism of a smooth
variety have a prescribed collection of singularities. More generally, they count the co-
homology class of a multisingularity stratum (the closure of the set of all points whose
preimages have a prescribed collection of singularities). Historically, the first Thom poly-
nomials are the Plücker formulas, expressing the degree and the number of cusps and
double points of the curve C∨ projectively dual to a generic plane curve C in terms of the
degree of C. To see these expressions as Thom polynomials, note that C∨ is the discrimi-
nant of the tautological projection

π : {(l, x) ∈ CP2∨
× CP2

| x ∈ l ∩ C} → CP2∨, (∗)

i.e. the closure of all points l ∈ CP2∨ whose fiber under π has one singularity of local
degree 2 (A1 singularity). Similarly, the cusps and double points of C∨ are the images of
the fibers with one singularity of local degree 3 (A2 singularity) or two A1 singularities
respectively. So the dual curve C∨, the set of its cusps and the set of its double points are
the multisingularity strata of the projection π .

The contemporary versions of the Plücker formulas are the Thom polynomials, ex-
pressing the fundamental classes of the multisingularity strata for a generic map π :
M → N of arbitrary compact smooth surfaces in terms of the characteristic classes of
these surfaces: the fundamental classes of the three multisingularity strata in H(N) equal
the direct images of c1, c2

1 + c2 and −2(2c2
1 + c2) respectively, where ci are the charac-

teristic classes of the virtual vector bundle π∗TN − TM . We take [Kn03] as a general
reference for this fact and all subsequent appeals to Thom polynomials and multisingular-
ity theory. In the special case of the tautological projection (∗), the characteristic classes
are functions of the degree d of the given curve C, the fundamental class of the stratum C∨
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in H1(CP2
;Z) = Z equals d(d − 1) and counts its degree, and the fundamental classes

of the 0-dimensional multisingularity strata in H0(CP2
;Z) = Z equal 3d(d − 2) and

(d − 3)(d − 2)d(d + 3)/2 and count their cardinality.
We shall make the first steps towards computation of affine Thom polynomials that

count how many fibers of a generic polynomial map of an affine algebraic variety have
a prescribed collection of singularities. An example of the affine version of the Plücker
formulas is as follows.

Example 1.1. Let a : {1, . . . , n + 1} → Z be a non-negative concave function with
a(n + 1) = 0, and ci be a generic univariate polynomial of degree a(i). For how many
values of the parameter t ∈ C, is the polynomial ft (x) = c1(t)x + · · · + cn(t)x

n
+ xn+1

not Morse?
To answer this question, let π be the restriction of the projection (C \0)3 → (C \0)2,

(x, y, t) 7→ (y, t), to the graphM = {(x, y, t) | ft (x) = y}, and letA1,A2 and 2A1 be its
open multisingularity strata, i.e. the sets of points (y, t) ∈ (C \ 0)2 such that the equation
ft (x) = y has exactly one root of multiplicity 2, exactly one root of multiplicity 3,
and exactly two roots of multiplicity 2 respectively. The sought number of non-Morse
polynomials equals |2A1|+ |A2|, which can be found from the following three equations.
Denote the Euler characteristics by e; then

e(A1)+ 2|2A1| + 2|A2| = a(1)− 2
∑
i

a(i),

e(A1)+ 2|2A1| + |A1| = 3a(1)− 4
∑
i

a(i),

e(A1)− |A2| = a(1)− 2
∑
i

(3i − 2)a(i).

Proof. Let N ⊂ R3 be the Newton polytope of the polynomial F(x, y, t) = y − ft (x),
and let D ⊂ (C \ 0)2 be the set of critical values of π (i.e. the union of the strata A1, A2
and 2A1). Then, by the Kouchnirenko–Bernstein–Khovanskii formula [Kh77b], the Euler
characteristic of the surface F = 0 in (C \ 0)3 equals the lattice volume of N . This is the
first of the above equations, because, counting e(F = 0) fiberwise, we obtain

e(F = 0) = (n+ 1) · e((C \ 0)2 \D)+ ne(A1)+ (n− 1)e(2A1)+ (n− 1)e(A2)

= (n+ 1) · e(C \ 0)2 − e(A1)− 2|2A1| − 2|A2|

= −e(A1)− 2|2A1| − 2|A2|

by the additivity of the Euler characteristic.
The set of critical points of π is given by the equations F = x ∂F

∂x
= 0. These equa-

tions are degenerate with respect to the Newton polytope N in the sense of [Kh77b],
because the closure C of this curve in the N -toric variety intersects the 1-dimensional or-
bit, corresponding to the edge [(1, 0, 0), (1, 0, a(1))] in a(1) points. However, one can
easily check that, at every such point, C transversally intersects each of the adjacent
2-dimensional orbits. Thus, the Euler characteristic of F = x ∂F

∂x
= 0 is a(1) greater

than the Euler characteristic of its perturbation F = x ∂F
∂x
+ G = 0, where G is a small
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generic polynomial with Newton polytope N . The latter system of equations is non-
degenerate with respect toN , so the Euler characteristic of its solutions equals−2 Vol(N)
by [Kh77b]. This gives the second equation, because the Euler characteristic of the critical
locus of π equals e(A1)+ 2|2A1| + |A1| by the additivity of the Euler characteristic.

Finally, by [EKh08], the Newton polygon ND ofD is the fiber polytope ofN . Explic-
itly, it has the vertices (0, 0), (n, 0) and (i−1, 2a(n)+2a(n−1)+· · ·+2a(i)+(i−1)a(i))
for i = 1, . . . , n. The closure of D in the ND-toric surface has three types of singular-
ities: |2A1| transversal self-intersections, |A2| simple cusps and a(1) simple tangencies
with the 1-dimensional orbit y = 0. If we pass from D to its generic perturbation D̃ with
the same Newton polygon ND , the singularities resolve and decrease the Euler character-
istic of the curve by |2A1|, 2|A2| and a(1) respectively. The resulting Euler characteristic
of D̃ equals −VolND by [Kh77b], which gives the third of the stated equations. ut

The statements regarding transversality and singularity types in this reasoning are justified
by the results of Sections 2.7 and 3.4. The same computation is applicable to count the
multisingularities of the projection M ⊂ (C \ 0)3 → (C \ 0)2 for a generic surface M
with an arbitrary Newton polytope N , although the answer is lengthy.

Remark 1.2. Note that we could not reduce this example to classical Thom polynomials
by compactifying the ambient tori (C \ 0)3 ⊃ M and (C \ 0)2: any such compactifica-
tion would give a highly non-generic projection of the closure of M , to which classical
Thom polynomials are not applicable. For example, ifM is a generic surface with Newton
polytope conv{(−2, 0, 0), (2, 0, 1), (0, 1, 0), (2k− 1, 1, 1), (2k, 1, 1)}, andD ⊂ (C \ 0)2

is the set of critical values of the projection M ⊂ (C \ 0)3x,y,t → (C \ 0)2y,t , then the
closure of D in an arbitrary toric compactification of (C \ 0)2 has a highly non-generic
cusp with Milnor number 2k − 6. The aim of the present paper is to develop a version of
characteristic classes and Thom polynomials applicable in such settings.

1.2. Affine cohomology ring

In order to obtain an affine version of the Plücker formula for degree, we have to choose
a cohomology-like ring in which we shall compute the fundamental class of the discrim-
inant of π . Remark 1.2 suggests that the Chow ring of any particular compactification of
(C\0)2 is not a good choice from the perspective of classical Thom polynomials. For this
reason we shall switch to the direct limit of the cohomology of all toric compactifications
of a complex torus (C \ 0)n. We shall call this graded ring the affine cohomology and
denote it by C. The ring C governs all equivariant enumerative problems in (C \ 0)n in
the sense that the subvarieties U , V ⊂ (C \ 0)n have the same fundamental class in C
if and only if every subvariety of complementary codimension, shifted by a generic el-
ement of the torus, has the same intersection number with U as with V . This fact was
first noticed in [DCP85] for certain homogeneous spaces different from complex tori, but
all of the arguments in this important paper are actually applicable to arbitrary spherical
homogeneous spaces, including (C \ 0)n (see also [B89] and [FMSS95] for details on the
spherical setting).
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The affine cohomology ring of the complex torus is isomorphic to the polytope al-
gebra, which had been introduced in [M89] and extensively studied ([M93], [PK93]) by
the time when these two rings were identified in [FS94] and [B96]. In particular, compu-
tation of the fundamental class of an algebraic hypersurface H ⊂ (C \ 0)n in the affine
cohomology of (C \ 0)n amounts to computation of the Newton polytope of the defining
equation of H .

Example 1.3. If we denote by N the Newton polytope of M from Example 1.1, then the
fundamental class of the discriminant A1 (i.e. the Newton polygon of this plane curve) is
the fiber polytope of N (see [G00]). As explained above, one can see this equality as the
affine version of the Plücker formula for degree in the setting of Example 1.1.

Recall that the Minkowski sum of polytopes A+ B = {a + b | a ∈ A, b ∈ B} obviously
extends to the notion of Riemann integral of a polyhedral-valued function, and the fiber
polytope of S ⊂ R3 in a plane L ⊂ R3 is the Riemann integral

∫
I
S(t) dt , where the

segment I ⊂ R3/L is the projection of S along L, the volume form dt on the line R3/L

is induced by the lattice Z3/L, and S(·) is a polygon-valued function on I that sends
every t to the plane section S ∩ (L+ t) (see [BS92] for details).

Remark 1.4. More generally, computation of the affine fundamental class of an arbitrary
subvariety H ⊂ (C \ 0)n in the affine cohomology of (C \ 0)n amounts to computation
of the tropical fan of H (see [K99], [K03], [ST08], [GKM07]). However, we prefer to
think here in terms of affine cohomology classes, because some of our constructions and
reasonings work well in the context of arbitrary spherical spaces, to which the notion of
tropical fan has not been generalized so far.

1.3. Affine multisingularity theory

The setting in Example 1.1 admits many variations: we can consider more complicated
M ⊂ (C \ 0)3, increase the dimensions of the complex tori, replace the projection of tori
with a generic polynomial map, look for the fundamental classes of more complicated
singularity strata and so on. However, all of these variations can be reduced to the uni-
versal Problem 1.5 which follows. The reduction is outlined in Section 3.6 and will be
treated in detail in a separate paper.

Choose a finite set A in the character lattice Zn of the torus (C \ 0)n, and consider the
space CA of all linear combinations of characters from A. For every finite collection S
of isolated hypersurface singularities, consider the universal S-multisingularity stratum
{S} ⊂ CA, i.e. the set of all f ∈ CA such that the singularities of the hypersurface f = 0
in (C\0)n are in one-to-one correspondence with the singularities of S and are equivalent
to them; see Section 3.1 for a more precise definition.

Problem 1.5. Compute the fundamental class of the universal S-multisingularity stratum
{S} ⊂ CA in the affine cohomology of (C \ 0)A.

Many recent works can be seen as solutions of this problem for different A and S (see
Section 3.1 for an overview). We now describe our contribution and its immediate appli-
cations.
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Corollary 3.20 solves Problem 1.5 for the universal codimension 1 stratum: it de-
scribes the Newton polytope of the A-discriminant. Although this Newton polytope has
been extensively studied ([GKZ94], [G00], [DFS07], [E10], [CC+13], [DEK14], [AT12],
etc.), even in this special case our approach yields something new: Corollary 3.20 is a
positive formula for the tropicalization of the A-discriminant, different from the known
one [DFS07] and sufficient to classify non-dual defective toric varieties.

Recall that a projective variety is called dual defective if its projectively dual variety
is not a hypersurface. Classification of dual defective varieties is a classical problem, and
even the toric case remains unsolved (smooth dual defective toric varieties are classified
in [DR06]; see also [CC07] and [CDR08] for further results). We classify the non-dual
defective toric varieties. A set B ⊂ Zn is called a circuit if it consists of n+ 2 points, any
n+1 of which are affinely independent. It is called an iterated circuit if there exists a flag

∅ = L0 ⊂ {0} = L1 ⊂ L2 ⊂ · · · ⊂ Lk = Zn

such that, for every i = 1, . . . , k, the set B ∩Li \Li−1 consists of dimLi − dimLi−1+ 1
points whose images under the projection Li → Li/Li−1 together with 0 form a circuit.

Theorem 1.6 (Corollary 3.20.2). An A-toric variety is not dual defective if and only if,
up to a translation, A contains an iterated circuit.

Problem 1.5 for the universal codimension 2 strata A2 and 2A1 is solved by Theorems
3.25, 3.26 and 3.30, which generalize the three equations from Example 1.1. The answer
is illustrated for a particular simple A ⊂ Z2 in Section 3.9; see also [K09] for another
example.

In particular, this allows the description of the Newton polytope of the hypersurface
H ⊂ (C \ 0)A of all polynomials f : (C \ 0)n → C that are not Morse functions (i.e.
have two equal critical values or a degenerate critical value; see Section 3.6). At the level
of degrees (i.e. when A = d · (standard simplex), and we are computing the degrees of
the sets A2, 2A1 and H in terms of d), these problems were solved in [A98] and [LZ04]
(for n = 1) respectively.

1.4. Affine characteristic classes

Multisingularity theory is based on characteristic classes, and the proof of the aformen-
tioned results will be based on affine characteristic classes of subvarieties of a complex
torus, taking values in the affine cohomology ring C.

Theorem 1.7. For every algebraic set V ⊂ (C \ 0)n, the Schwartz–MacPherson charac-
teristic classes of V in the toric compactifications of (C \ 0)n converge to a certain class
α ∈ C: there exists a toric compactification X0 ⊃ (C \ 0)n such that the restriction of α
to the cohomology of any richer smooth toric compactification X 7→ X0 is Poincaré dual
to the Schwartz–MacPherson characteristic class of V in X.

See the original papers [M74] and [Sch82] and e.g. the survey [A05] for background
information on Schwartz–MacPherson classes.
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Definition 1.8. The limit in Theorem 1.7 is called the affine characteristic class of V and
will be denoted by 〈V 〉.

This class inherits nice functorial properties of the Schwartz–MacPherson classes, e.g.
〈U ∩ V 〉 + 〈U ∪ V 〉 = 〈U〉 + 〈V 〉 and 〈U ∩ gV 〉 = 〈U〉〈V 〉 for a generic g ∈ (C \ 0)n.
Denoting the codimension i component of 〈V 〉 by 〈V 〉i , we have 〈V 〉n = e(V ), 〈V 〉i = 0
for i < codimV , and 〈V 〉codimV is the fundamental class of V in C.

Example 1.9. The formal rational function N1...Nk
(N1+1)...(Nk+1) of the Newton polytopes of

the polynomials f1, . . . , fk , which was considered in [Kh77b] and in subsequent liter-
ature in relation to the non-degenerate complete intersection f1 = · · · = fk = 0 in a
complex torus, turns out to equal the affine characteristic class of this complete intersec-
tion (when evaluated on the affine cohomology ring); see Examples 2.8 and 2.13 for more
details.

Remark 1.10. Affine characteristic classes seem to be indispensable in solving Prob-
lem 1.5, because they appear by themselves even in the answer for the universal strata A2
and 2A1 of codimension 2. More specifically, the answer given by Theorems 3.25, 3.26
and 3.30 is a system of three independent linear equations for the fundamental classes
of A2 and 2A1 and one more unknown class, which turns out to be the second affine
characteristic class of the discriminant A1. Note the similarity to Example 1.1, where the
third unknown e(A1) can also be interpreted as the second affine characteristic class of
the discriminant.

Remark 1.11. Note that in Theorem 1.7 we take the Schwartz–MacPherson classes of
V itself, and not of the closure of V in X. The statement of the theorem obviously gen-
eralizes to an arbitrary spherical homogeneous space, but I have no proof. For the toric
case, the proof occupies Section 2.6 and is indirect: first, affine characteristic classes
are constructed in a different way and shown to have functorial properties, similar to
Schwartz–MacPherson classes. Secondly, these properties are shown to imply that the
restriction of the affine characteristic class to the cohomology ring of a sufficiently rich
compactification equals the Schwartz–MacPherson class.

1.5. Relation to tropical enumeration

The classical approach to enumerative geometry is through intersection theory, charac-
teristic classes and Thom polynomials. Answers to enumerative questions can usually be
given by certain Thom-like polynomials; see e.g. [G98] and [T10] for the problem of
counting rational curves passing through given generic points of a given surface. In the
last decade, a fundamentally new class of enumerative results was invented by Mikhalkin
[M05]. Results of this type are seemingly unrelated to the aforementioned classical ap-
proach to enumerative geometry, and are referred to as tropical correspondence theorems.
Such theorems state that the answers to certain enumerative questions coincide over C
and over the tropical semifield T = (R ∪ {−∞},max,+). Since enumerative geometry
over T is combinatorics, this gives a new combinatorial answer to classical problems of
enumerative geometry over C.
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Proofs of tropical correspondence theorems usually rely upon some kind of deforma-
tion theory technique. Every such proof, besides establishing the desired equality between
the number of complex and tropical objects, implicitly contains an algorithm for recon-
structing the whole 1-parameter family of complex objects being deformed to a given
tropical one. E.g. for a given 1-parameter family of points P(t) in the projective plane
and a given rational tropical curve T , passing through the points of the tropicalization
of P(t), the deformation-theoretic proof of Mikhalkin’s correspondence theorem ([S06],
[SN06], [T12]) provides an algorithm for computing (up to an arbitrary power of t) the
1-parametric family of rational curves passing through P(t) and tending to T . One might
hope that another approach to the proof, which does not inevitably provide such excessive
information, would necessarily be more universally applicable.

One such intersection-theoretic approach was recently developed in [G14] and refer-
ences therein. It is oriented towards enumeration of rational curves.

We suggest yet another approach, oriented towards curves and hypersurfaces given by
implicit equations. It turns out that once we know the fundamental class of a universal S-
multisingularity stratum in the affine cohomology, we can obtain tropical correspondence
theorems for hypersurfaces with multisingularity S and various incidence conditions. So
tropical enumeration can be regarded as the classical approach to enumerative geome-
try, in which cohomology, characteristic classes and Thom polynomials are replaced by
their affine versions. This is because the affine fundamental class of a subvariety of a
torus is encoded by its tropicalization ([K99], [K03], [ST08], [GKM07]). See Section 3.2
for details, and a simple illustration below: we deduce Mikhalkin’s correspondence the-
orem for curves with one node from the description of the Newton polyhedron of the
A-discriminant (i.e. the affine fundamental class of the universal singularity stratum of
codimension 1). We start with the definition of tropical numbers.

Let T = R t {−∞} be the tropical semifield with the operations

a ·
T
b = a +

R
b and a +

T
b =

{
max(a, b) if a 6= b,
[−∞, a] if a = b.

Remark 1.12. Multivalued tropical summation that we use is a little more convenient
than the conventional one (see e.g. the subsequent definition) and is also more natural:
the tropical summation and multiplication should simulate the behavior of the degree of
the sum and the product of two polynomials, whereas deg(f + g) can attain any value
within [−∞, deg f ] if deg f = deg g.

In what follows, 1 ∈ T always stands for 0 ∈ R, and 0 ∈ T for −∞. Moreover, due to
multivaluedness, “= 0” in the tropical context always means “3 −∞”.

Remark 1.13. We shall denote tropical objects in Fraktur, because we think of the trop-
ical torus T \ 0 as the Lie algebra of the complex torus C \ 0.

Definition 1.14. A tropical hypersurface is a set of the form S = {x | f (x) = 0},
where f is a tropical polynomial. In a small neighborhood of a generic point x ∈ S, the
polynomial f can be represented as g · hk , where g(x) 6= 0 and h is irreducible. The
integer k is called the multiplicity of S at x.
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For example, the following picture shows the graph of f (x) = x3
+ x2

+ 6x + 8 in bold
lines, and the set {f = 0} = {2, 3} with multiplicities 1 and 2 respectively as white dots.

Tropical hypersurfaces H1, . . . , Hn in the tropical torus Rn = (T \ 0)n are said to in-
tersect transversally if they intersect in finitely many points, and, in a small neighborhood
of every such point p, everyHi is given by a tropical equation of the form xap,i+pap,i = 0
for some ap,i ∈ Zn. The intersection number of H1, . . . , Hn is then defined as the sum∑
p |det(ap,1, . . . , ap,n)|. The tropical Kouchnirenko–Bernstein formula states that the

intersection number equals the mixed volume of the Newton polytopes of H1, . . . , Hn.

Example 1.15 (Mikhalkin’s correspondence for curves with one node). For a given
A ⊂ Z2, 0 ∈ A, we wish to count polynomials f ∈ CA such that the curve f = 0
has one singularity and passes through a given collection of generic q = |A| − 2 points
p1, . . . , pq ∈ (C \ 0)2. In other words, we wish to count the intersection number I of the
following hypersurfaces in CA:

• the incidence conditions H1, . . . , Hq , where Hi = {f | f (pi) = 0};
• the normalization H0 = {f | f (0) = 1};
• the A-discriminant S = {f | f = 0 is not regular}.

Let us tropicalize these objects: choose points p1, . . . , pq ∈ (T \ 0)2 and define the trop-
ical hypersurfaces Hi = {f | f (pi) = 0} in TA and H0 = {f | f (0) = 1}. Choose
the tropical polynomial D with unit coefficients and the same Newton polytope as the
A-discriminant S, and define the tropical discriminant S by the equation D = 0. For a
generic choice of p1, . . . , pq , the tropical hypersurfaces H0, . . . ,Hq ,S are transversal,
and we denote their intersection number by I. Then

I = I,

because both sides equal the mixed volume of the Newton polytopes ofH0, . . . , Hq and S
by the Kouchnirenko–Bernstein formula over C and T respectively.

The description of S (see Section 3.3) shows that the intersection points f ∈
H0 ∩ · · · ∩ Hq ∩ S are exactly the equations of the tropical curves with one node in
the sense of Mikhalkin, passing through p1, . . . , pq . Moreover, the intersection multiplic-
ity of H0, . . . ,Hq and S at every such intersection point f equals the multiplicity assigned
to the curve f = 0 by Mikhalkin’s correspondence theorem.
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2. Affine characteristic classes

Affine intersection theory and affine characteristic classes are introduced for arbitrary
spherical homogeneous spaces in Section 2.1 and specialized to the toric case in Sections
2.2 and 2.3 respectively. The rest of Section 2 is more technical: Sections 2.4–2.6 are
devoted to the proof of existence of affine characteristic classes in the toric setting, and
Section 2.7 is devoted to characteristic classes of degenerate complete intersections of a
certain type, whose importance will become clear in Section 3.

2.1. Affine intersection theory and characteristic classes

Let G be a reductive algebraic group (i.e. the complexification of a real compact con-
nected group), and let X be an n-dimensional spherical homogeneous G-space (i.e. a
space with a transitive action of G such that some Borel subgroup of G has a dense orbit
in X). For algebraic subsets P,Q ⊂ X of complementary dimensions p + q = n, the set
gQ = {gq | q ∈ Q}, the shift ofQ by a generic element g ∈ G, meets P in finitely many
points, and we denote the number of these points by |P ·Q|.

Denote by Zk the space of linear combinations of irreducible codimension k algebraic
subsets ofX; then the aforementioned pairing extends to a pairing | · | : Zp×Zq → Z by
linearity, and the space C =

⊕
k Ck =

⊕
k Zk/{P | ∀Q |P ·Q| = 0} has a natural ring

structure, compatible with this pairing (see [DCP85], [B89], [FMSS95]): for algebraic
subsets R, S ⊂ X of arbitrary dimensions, the intersection of R and gS represents the
same element of C for almost all g ∈ G, and this element is called the product R · S. We
shall call this ring the affine cohomology, or, following [DCP85], the ring of conditions
of X.

Remark 2.1. Recall that this multiplication does not exist for non-spherical spaces: for
example, if G = X = C3, then two lines represent the same class in C if and only if they
are parallel, but the intersection of the surface z = xy and the plane x = 0, shifted by
g ∈ R3, is a line whose direction depends on g.

Definition 2.2. The affine characteristic class is a mapping that sends every algebraic
subset V ⊂ X to an element 〈V 〉 = 〈V 〉0 + · · · + 〈V 〉n ∈ C, 〈V 〉i ∈ Ci , with the
following properties:

(1) If V ⊂ X has codimension k, then 〈V 〉i = 0 for i < k, 〈V 〉k is the equivalence class
of V in Ck , and 〈V 〉n ∈ Cn = Z is the Euler characteristic e(V ).

(2) For any U and V ⊂ X and generic g ∈ G, we have 〈U ∩ gV 〉 = 〈U〉〈V 〉/〈X〉. Note
that 〈X〉 is invertible by (1).

(3) For any spherical homogeneous spaces X and Y and any algebraic subsets U ⊂ X

and V ⊂ Y , we have 〈U × V 〉 = 〈U〉 × 〈V 〉.
(4) The mapping that assigns 〈V 〉 to the characteristic function of V extends by linearity

to the space of all constructible functionsX→ Z, i.e. 〈U∩V 〉+〈U∪V 〉 = 〈U〉+〈V 〉.
Recall that a constructible function is a linear combination of characteristic functions
of algebraic sets.
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(5) For a morphism p : X → Y of spherical homogeneous spaces and an algebraic
subset V ⊂ X, we have p∗〈V 〉 = 〈p∗V 〉. Here p∗V : Y → Z is the MacPherson
direct image of V , whose value at every y ∈ Y is defined as e(p−1(y) ∩ V ).

(6) For a smooth equivariant compactification X ⊃ X such that the affine characteristic
class 〈V 〉 is contained in the cohomology H •(X) ⊂ C, this class is Poincaré dual to
the Schwartz–MacPherson class of V in X ([M74], [Sch82]). Recall that the natural
inclusions H •(X) ⊂ C are induced by the fact that C is the direct limit of H •(X)
over all equivariant compactifications X ⊃ X.

Note that the affine characteristic class is uniquely defined by (1)–(6).

Theorem 2.3. In the toric case G = X = (C \ 0)n, the affine characteristic class exists,
and property (2) reads 〈U ∩ gV 〉 = 〈U〉〈V 〉, because 〈X〉 = 1.

The proof is given in Section 2.6 and is based on an explicit combinatorial model for the
ring of conditions C of a complex torus. This combinatorial model is widely known as the
ring of tropical fans ([ST08], [GKM07]), although they are essentially the same thing as
Minkowski weights from [FS94] and c-fans from [K03]. The affine characteristic class,
considered as an element of the ring of tropical fans, will be referred to as the tropical
characteristic class.

Remark 2.4. I cannot generalize Theorem 2.3 to an arbitrary spherical space X, but this
formal problem is not the main difficulty with affine characteristic classes for arbitraryX.
For instance, the class 〈X〉, which is especially important due to property (2), has already
been considered in [Kir06] under the name of the non-compact characteristic class of X
(see also [BK05] and [BJ08] for its equivariant version), but it is not yet computed even
for X = SLn with large n.

So, from now on, we restrict our attention to the toric case, recalling the notion of a tropi-
cal fan (we actually need the slightly more general notion of tropical fan with polynomial
weights), and develop the technique of computation of tropical characteristic classes to
the extent that we need in this paper.

2.2. Toric intersection theory and tropical fans

The complex torusG = X = (C\0)n is the only spherical homogeneous space for which
the structure of the ring of conditions is completely understood. More specifically, the
definition of the intersection product as the class of U ∩ gV for generic g ∈ G is not
constructive because of the word ‘generic’. However, for G = X = (C \ 0)n, we know
how to check explicitly if the intersection number of algebraic subsetsU and V ⊂ (C\0)n
of complementary dimension equals the product of the classes of U and V in the ring of
conditions. In what follows, we write this equality as 〈U ∩ V 〉 = 〈U〉〈V 〉 in accordance
with our notation for characteristic classes.

Let L be the character lattice of the complex torus, and let I , J ⊂ C[L] be the
radical ideals defining U and V . For a linear function γ : L → Z, define inγ I as the
ideal generated by the initial terms of the polynomials from I in the sense of the partial
ordering γ on the lattice of monomials. The ideal inγ I defines a variety denoted by inγ U .
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Proposition 2.5 ([K03]). If inγ U ∩ inγ V is empty for every non-zero γ ∈ L∗, then
〈U ∩ V 〉 = 〈U〉〈V 〉.

In particular, this leads to a combinatorial representation of C as the space of certain
fans, based on the fact that the set {γ | inγ U 6= ∅} is a polyhedral fan. We recall this
combinatorial representation in the form of [E12p].

Let L be an n-dimensional integer lattice. Consider a pair (P, ϕ), where

• P ⊂ L⊗R is a union of finitely many disjoint rational convex relatively open codimen-
sion k polyhedral cones, so that P coincides with a codimension k plane in a neighbor-
hood of any of its points p (this plane is denoted by TpP );
• the function ϕ : P → R equals a rational polynomial ϕp : TpP → R in a small

neighborhood of every p ∈ P .

Two such pairs (P, ϕ) and (Q,ψ) are said to be equivalent if ϕ(p) = ψ(p) for every
p ∈ P ∩Q such that TpP = TpQ, and ϕ = 0 on P \Q and ψ = 0 on Q \ P .

For a rational k-dimensional plane R ⊂ L⊗R and a point x ∈ L⊗R, the affine plane
R+ x is said to be transversal to (P, ϕ) if it meets P in finitely many points and does not
meet P \ P . The tropical intersection number (R + x) · (P, ϕ) is then defined as

∑
p∈(R+x)∩P

ϕ(p)

∣∣∣∣ L

(R ∩ L)+ (TpP ∩ L)

∣∣∣∣.
This number is a locally polynomial function of x, defined on an open dense subset of
L ⊗ R. If it extends to a continuous function iR : L ⊗ R → R for every R, then the
pair (P, ϕ) is said to be tropical, and the tropical intersection number (R + x) · (P, ϕ) is
defined to be iR(x) for every x by continuity, even if R + x is not transversal to (P, ϕ).

Equivalence classes of codimension k tropical pairs are called tropical fans and form
the set Kk(L). For any two fans P and Q, there exists a unique (up to equivalence) fan S
such that P · R + Q · R = S · R for every affine plane R. This fan S is called the sum
P +Q (see [E12p] for a more constructive definition).

The set Kk(L) is a Q-vector space with respect to this summation. It splits into the
sum

⊕
d Kdk (L), where Kdk (L) consists of pairs (P, ϕ) ∈ Kk(L) such that ϕ is locally

a homogeneous polynomial of degree d . The direct sum
⊕

k Kk(L) is denoted by K(L)
and will be called the space of tropical fans with polynomial weights.

For (P, ϕ) ∈ K(L) and (Q,ψ) ∈ K(M), their Cartesian product is defined as
(P × Q,ϕ + ψ) ∈ K(L ⊕ M). For an epimorphism of lattices f : L → M of di-
mension n and m respectively, the push-forward f∗(P) of P ∈ Kk(L), k ≥ n − m, is
defined as the unique S ∈ Kk−n+m(M) such that P · f−1(R) = S · R for every affine
(k − n + m)-dimensional plane R ⊂ M ⊗ Q. A more explicit description is as follows
(see [E12p]).

Proposition 2.6. The image of the tropical fan P that consists of (n − k)-dimensional
cones Ci ⊂ L ⊗ R with weights mi : Ci → R is a tropical fan f∗P that consists of all
(n− k)-dimensional cones f (Ci) with multiplicities (mi ◦ f−1) · |L/(Ci + ker f )|.
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The vector space K(L) has the natural differential ring structure: the intersection prod-
uct of P ∈ Kk(L) and Q ∈ Km(L) is the unique S ∈ Kk+m(L) such that S · R =
(P ×Q×R) · (diagonal) in (L⊕L⊕L)⊗Q for every (k+m)-dimensional affine plane
R ⊂ L⊗Q. The corner locus derivation δ : Kdk (L)→ Kd−1

k+1 (L) is the unique derivation
such that δ(P) ∈ K0

1(L) is the corner locus of a continuous piecewise linear function
P ∈ K1

0(L) (see [E12p] for more constructive definitions).
Denote the subrings

⊕
k K0

k(L) and
⊕

d Kd0 (L) of K(L) by K0(L) and K0(L) re-
spectively. The former is also known as the ring of tropical fans (see e.g. [FS94], [K03],
[ST08], [GKM07] for a more explicit description of the sum and product in this ring), and
the latter is the ring of all continuous piecewise polynomial functions on L⊗Q (with the
conventional sum and product). The subrings K0(L

∗) and K0(L∗) provide well known
combinatorial models for the ring of conditions C of (C \ 0)n with character lattice L:

C = K0(L∗) = K0(L
∗)/I,

where I is the ideal generated by all linear functions on Qn. The first of these models
was found in [FS94], [M96] and [K03], and the second one in [S87] and [B96]. The iso-
morphism between the two models is established by the maps δk : Kk0(L

∗) → K0
k(L
∗)

([E12p]; see also [B97] and [KP08] for other descriptions of this isomorphism). The el-
ement of K0(L∗) corresponding to the class of a subvariety V ⊂ (C \ 0)n in the ring of
conditions C is called the tropical fan TropV , and admits the following description:

Proposition 2.7 ([K03]). Let V be given by a radical ideal I ∈ C[L]. Then its tropical
fan is represented by the pair (P, ϕ) ∈ K0(L∗), P ⊂ Qn, ϕ : P → Q, where P = {γ |
inγ I ( C[L]}, and ϕ(γ ) equals the Hilbert–Samuel multiplicity of inγ I .

Example 2.8. If N is the Newton polytope of a Laurent polynomial on (C \ 0)n, then
the tropical fan of the hypersurface f = 0 equals the corner locus of the support function
of N . We denote this fan by [N ] ∈ K0

1(Z
n) and call it the dual fan of N .

Remark 2.9. This isomorphism between K0(L∗) and C respects epimorphisms of tori
([K03], [ST08]): it sends the epimorphism of the rings of conditions induced by an epi-
morphism (C \ 0)n → (C \ 0)m to the epimorphism K0(L∗)→ K0(M∗) induced by the
corresponding epimorphism of the dual character lattices L∗→ M∗.

2.3. Tropical characteristic classes

Definition 2.10. The element of the ring K0(L∗) of tropical fans corresponding to the
affine characteristic class of a subvariety V ⊂ (C\0)n is called the tropical characteristic
class of V .

Remark 2.11. Here are some natural interesting questions about tropical characteristic
classes that we do not address in this paper:

1. Construct “higher Newton polytopes” of a codimension k variety V , i.e. codimension 1
tropical fans B1, B2, . . . such that 〈V 〉k+i = 〈V 〉kB1 . . . Bi . Are they dual to convex
polytopes if V is smooth?
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2. Express 〈V 〉 in terms of an arbitrary (not necessarily toric!) compactification C ⊃
(C \ 0)n such that the closure of V is transversal to the strata of C.

3. Define and study the “generalized Severi variety”, whose points parameterize all sub-
varieties V ⊂ (C \ 0)n with a given tropical characteristic class. Classical Severi
varieties are such spaces for plane curves. See [KP11] for the first step in this direction
at the level of fundamental classes.

4. Obtain a linear-algebraic description for the tropical characteristic class of a variety in
terms of its defining ideal, similarly to Proposition 2.7.

5. Try to apply tropical characteristic classes to the conjectures in [HS13].

We now compute 〈V 〉 under the assumption that V is schön, i.e. there exists a fan 6
such that the closure of V in the corresponding toric compactification X6 ⊃ (C \ 0)n is
smooth and intersects the orbits of X6 transversally (see for instance [Kh77a] and [D78]
for background on toric varieties and their relation to Newton polyhedra). Note that our
definition of schön varieties is a bit more restrictive than in the original paper [T07].

For every cone 0 ∈ 6, denote by V0 the intersection of the closure of V with the
0-orbit of X6 .

Proposition 2.12. If V is schön, then the class 〈V 〉i ∈ K0
i (L
∗) is represented by the pair

(P, ϕ), P ⊂ Qn, ϕ : P → Q, such that P is the union of all codimension i cones in 6,
and the value of ϕ at every such cone 0 is the Euler characteristic e(V0).

The proof will be given in Section 2.6, because it comes as a byproduct when we prove
the existence of affine characteristic classes.

Example 2.13. In particular, if V is a generic hypersurface with Newton polytope 1,
then counting e(V0) by the Kouchnirenko formula, we obtain 〈V 〉 = [1]

1+[1] , or 〈V 〉i =
−(−[1])i . Recall that [B] is the dual fan of the polytope B (see Example 2.8).

Further, if V1, . . . , Vk are generic hypersurfaces with Newton polytopes 11, . . . ,1k ,
then, by the multiplicativity of affine characteristic classes, we have

〈V1 ∩ · · · ∩ Vk〉 =
[11〉 . . . [1k]

(1+ [11]) . . . (1+ [1k])
. (1)

In particular, this gives Khovanskii’s formula [Kh77b] for the Euler characteristic of
a nondegenerate complete intersection and assigns a geometrical meaning to the right
hand side of (1), which appeared in [Kh77b] and in subsequent literature as a formal
expression.

2.4. Polynomial functions of polytopes

This section prepares polyhedral-geometric tools to prove the existence of tropical char-
acteristic classes. Let P(L) be the semigroup of convex polytopes in an l-dimensional
lattice L, and let [·] : P(L)→ K0

1(L
∗) be the inclusion sending a polytope to its dual fan

(see Example 2.8). In accordance with this notation, we denote the integer mixed volume
of the polytopes B1, . . . , Bn in Qn by [B1] . . . [Bn].
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Let e0, . . . , em be the vertices of the standard simplex in Qm, let B0, . . . , Bm and
A1, . . . , Ak be polytopes in Qn, and let B be the convex hull of

⋃
Bi × {ei} in Qm.

The volume of the Cayley polytope B can be expressed in terms of mixed volumes of
B0, . . . , Bm as follows (setting k = 0):

Lemma 2.14. For any polytopes A1, . . . , Ak ⊂ Qm, we have

[A1] . . . [Ak]
∑

b0+···+bm=n−k
b0≥0,...,bm≥0

[B0]
b0 . . . [Bm]

bm = [A1] . . . [Ak][B]
n+m−k.

See e.g. [E10, Lemma 1.7] for a proof, based on the Kouchnirenko–Bernstein–Khovanskii
formula, or [E12m, Theorem 24] for a combinatorial proof.

Definition 2.15. We say that a function f : P(L) → Q is a polynomial starting from
S ∈ P(L) if there exist tropical fans Fi ∈ K0

i (L
∗) such that f (B) =

∑
i Fi[B]

n−i for
every B that contains S.

Remark 2.16. The coefficients of the polynomial are uniquely determined by the values
of the function f .

Let C be the standard m-dimensional simplex in Qm. For a polytope B ⊂ Qn, denote
the convex hull of the union of B × {0} and {0} × C by C(B) ⊂ Qn × Qm. Let 6 ⊂
(Qm)∗ ⊂ (Qn × Qm)∗ be the set of covectors with at least one positive coordinate, i.e.
all γ such that the support face Cγ does not contain 0. Recall that the support face 1γ of
a polytope 1 with respect to a linear function γ is the set of points where the restriction
γ : 1→ R attains its maximal value. Also recall that faces of two polytopes are said to
be compatible if they support the same covector.

Lemma 2.17. For every polytope 1 ⊂ Qn × Qm there exists a polytope S ⊂ Qn such
that for every larger B ⊃ S we have the following: if a face of C(B) disjoint from B is
compatible with a face F ⊂ 1, then F = 1γ for some γ ∈ 6.

Proof. Passing to the projections of the polytopes along (δ, γ ) : Qn × Qm → Q2 for
finitely many pairs of δ ⊂ (Qm)∗ and γ ∈ 6, we can reduce the question to the case
m = n = 1. This case is obvious: we should take S such that the edges of the triangle
C(S) are parallel to the edges of 1 adjacent to the edge 1(0,1). ut

Let A ∈ K0
n−k(Z

n
× Zm) be a tropical fan, k ≥ 0.

Proposition 2.18. The number A[C(B)]m+k, k ≥ 0, is a polynomial PA(B) =∑
i PA,i[B]

n−i, PA,i ∈ K0
i (Z

n), starting from some S. This polynomial is multiplicative
in A: if A ∈ K0(Zn × Zm) and A′ ∈ K0(Zn′ × Zm′), then PA×A′,i =

∑
j PA,j × PA,i−j .

Proof. Since the ring K0 is isomorphic to the polytope algebra, it is generated by its
order 1 component K0

1, i.e. every fan A can be represented as a linear combination of
complete intersections of the form [A1] . . . [An−k] for polytopes Ai ⊂ Qn × Qm, so we
assume with no loss in generality that A = [A1] . . . [An−k]. Let Ti be the projection of Ai
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to Qm. For every face F of T =
∑
i Ti , represent F as a sum

∑
i F̃i of faces F̃i ⊂ Ti , and

denote by Fi the preimage of F̃i under the projection Ai → Ti .
Let CI be the standard |I |-dimensional simplex in QI ⊂ Qm, where QI is the coor-

dinate plane, defined by vanishing of the i-th coordinates for i /∈ I ⊂ {1, . . . , m}. Let C0
I

be its facet, disjoint from 0, and let CI (B) ⊂ C(B) be the convex hull of B and CI . For
every face F ⊂ T , let IF be the maximal I such that the faces C0

I ⊂ C and F ⊂ T are
compatible (i.e. F + C0

I is a face of T + C).
Choose any i1 < · · · < ip and j . Then the interiors of the sums Aı̄,jF = Fi1 +

· · · + Fip + jCIF (B) for any two faces F ⊂ T do not intersect. The key observation
is as follows: there exists S ⊂ Qn (provided by Lemma 2.17) such that for B ⊃ S the
union of Aı̄,jF over all faces F ⊂ T equals Ai1 + · · · + Aip + jC(B), so the volume of

Ai1 + · · · + Aip + jC(B) equals the sum of the volumes of the Aı̄,jF . Combining this
observation with the formula [B1] . . . [Bq ] =

∑
i1<···<ip

(−1)p Vol(Bi1 + · · · + Bip ) for
any polytopes B1, . . . , Bk ⊂ Rq , we conclude that [A1] . . . [An−k][C(B)]

m+k equals the
sum of [F1] . . . [Fn−k][CIF (B)]

m+k over all faces F ⊂ T for B ⊃ S.
Each of the summands [F1] . . . [Fn−k][CIF (B)]

m+k is a polynomial of B, because
we can compute it by Lemma 2.14 with B0 = B, B1 = C0

IF
and B0,1 = CIF (B). This

gives an explicit polynomial formula
∑
i PA1,...,An−k,i[B]

i for [A1] . . . [An−k][C(B)]
m+k .

Also by Lemma 2.14, one can check that PA1,...,An−k,A
′

1,...,A
′

n′−k′
,i =

∑
j PA1,...,An−k,j ×

PA′1,...,A
′

n′−k′
,i−j for A1, . . . , An−k ⊂ Qn ×Qm and A′1, . . . , A

′

n′−k′
⊂ Qn′ ×Qm′ . ut

2.5. Base points at infinity

In this section, we discuss families of subvarieties Bs ⊂ (C \ 0)n that are flat at infinity in
the following sense: for every variety V of a complementary codimension, almost all Bs
“do not intersect V at infinity” (i.e. V and Bs satisfy the assumption of Proposition 2.5).

Let A and B be irreducible algebraic varieties of dimensions a and b, andX ⊂ A×B
be a codimension k irreducible subvariety whose projections πA : X → A and πB :
X→ B are surjective. For every s ∈ A, denote πBπ−1

A (s) by Bs .

Definition 2.19. The variety X is called the family of subvarieties Bs ⊂ B (members of
the family) parameterized by s ∈ A. A point y ∈ B is said to be a base point of the family
if dimAy > a − k.

The following fact is obvious.

Lemma 2.20. If the family X ⊂ A×B has no base points, then every subvariety V ⊂ B
whose dimension is less than k has empty intersection with a generic member of the
family.

We are interested in the special case A = (C \ 0)a and B = (C \ 0)b.

Definition 2.21. The family X ⊂ A × B is said to have no base points at infinity if, for
any non-zero γ ∈ {0} × Qb ⊂ Qa × Qb, the family inγ X ⊂ A × B has no base points
(see the paragraph before Proposition 2.5 for the meaning of inγ ).
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Denote by LX the intersection product of the tropical fan of X and {0} ×Qb ⊂ Qa ×Qb.

Proposition 2.22. (1) The tropical fan of a generic member of the family X ⊂ A × B

equals LX.
(2) If X ⊂ A×B has no base points at infinity, and V ⊂ B is a k-dimensional subvariety,

then the intersection number of V and a generic member of the family is well defined
and equals the tropical intersection number of the tropical fan of V and LX.

Proof. Part (1) is the definition of the product in the ring of conditions for X and a fiber
of πA. If X has no base points at infinity, then, for generic s ∈ A and any non-zero
γ ∈ Qb, the set inγ Bs is either empty (for γ /∈ LX), or does not intersect inγ V by
Lemma 2.20 (for γ ∈ LX, becauseX has no base points at infinity). Thus, Proposition 2.5
is applicable to Bs and V . ut

We are especially interested in the following two special cases. Recall that, for a finite
subset A in the character lattice of (C \ 0)n, we denote by CA the space of linear combi-
nations of characters from A.

Example 2.23. Obviously, the family of planes {f ∈ CA | f (g) = 0} for all g ∈ (C\0)n
has no base points at infinity.

Definition 2.24. The a-logarithmic differential of f ∈ CA, A ⊂ Zn, a ∈ Rn, is the map

dloga f =
(
x1
∂f

∂x1
− a1f, . . . , xn

∂f

∂xn
− anf

)
.

Lemma 2.25. The graphs of dloga f for a ∈ Cn \ (the union of the affine spans of the
facets of A) and f ∈ CA form a family in (C \ 0)n × (C \ 0)n with no base points at
infinity.

Proof. For any (x, y) = (x1, . . . , xn, y1, . . . , yn) and any non-trivial face F ⊂ A, the
dimension of the set of all pairs (a = (a1, . . . , an), f =

∑
b∈A cbx

b) satisfying the
equalities yi =

∑
b∈F (bi − ai)cbx

b, i = 1, . . . , n, does not depend on (x, y). ut

2.6. Existence of characteristic classes

We refer to e.g. [Kh77a] and [D78] for background on toric compactifications. For an ar-
bitrary bounded subsetB ⊂ Rn, the space of Laurent polynomials of the form

∑
b∈B cbx

b

will be denoted by CB instead of CB∩Zn by a small abuse of notation.
Let V ⊂ (C \ 0)n be a smooth subvariety.

Definition 2.26. The logarithmic conormal variety V ⊂ (C\0)n×(C\0)n ⊂ T ∗(C\0)n
of V is the set of all (x, l) such that x ∈ V and the restriction of

∑
li
dxi
xi

to TxV equals 0.

Our idea is to prove that the coefficients of the polynomial PTropV (see Proposition 2.18)
satisfy the properties of tropical characteristic classes of V . The proof starts from the
observation that Proposition 2.22 and Lemma 2.25 imply the following.
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Lemma 2.27. The intersection number of V and the graph of dloga f in (C\0)n×(C\0)n
equals the tropical intersection number of TropV and [C(B)]n.

Definition 2.28. Denote the Euler characteristic e(V ∩ {f1 = · · · = fi = 0}) for generic
f1 ∈ CB1 , . . . , fi ∈ CBi by e(V, B1, . . . , Bi).

An explicit sufficient genericity condition for f1, . . . , fi is as follows (the proof is stan-
dard).

Lemma 2.29. Choose a smooth toric compactification of M ⊂ (C \ 0)n whose fan is
compatible with the lattice polytopes B1, . . . , Bk in Qn so that the closure M inter-
sects the orbits properly (see e.g. [K99] or [T07]). Let M be a Whitney stratification
of M , compatible with the orbit stratification of the ambient toric variety. The tuples
(f1, . . . , fk) ∈ CB1 ⊕ · · · ⊕ CBk such that the closure of fi1 = · · · = fip = 0 is smooth
and transversal to all strata of M for every sequence i1 < · · · < ip is a non-empty Zariski
open subset in CB1 ⊕ · · · ⊕ CBk . The Euler characteristic e(M ∩ {f1 = · · · = fk = 0})
is the same for all tuples (f1, . . . , fk) in this Zariski open set.

The quantities e(V, B1, . . . , Bi) satisfy the following higher additivity property (cf.
higher additivity for Newton polytopes of discriminants in [E10]).

Lemma 2.30. We have

e(M,B0 + B
′

0, B1, . . . , Bk)+ 2e(M,B0, B
′

0, B1, . . . , Bk)

= e(M,B0, B1, . . . , Bk)+e(M,B
′

0, B1, . . . , Bk)+e(M,B0+B
′

0, B0, B
′

0, B1, . . . , Bk).

Proof. Compare the Euler characteristic of M ∩ {gh = f1 = · · · = fk = 0} and its
smoothening M ∩ {gh + εf = f1 = · · · = fk = 0} for generic g ∈ CB0 , h ∈ CB

′

0 ,
f ∈ CB0+B

′

0 . ut

Proposition 2.31. If V is not empty, then there exists a polytope S ⊂ Qn such that, for
any n-dimensional polytope B ⊃ S,

e(V, B) = e(V )− (−1)dimVPTropV (B) = e(V )− (−1)dimV
∑
j

PTropV,j [B]
n−j .

Proof. For a generic f ∈ CB in the sense of Lemma 2.29 and a in the interior of B, by the
standard Morse theory argument for the function h : V → R, h(x) = |f (x)/xa|, we have
e(V, B) = e(V ) − (−1)dimV

· (the number of critical points of h). The key observation
is that the number of critical points equals the intersection number of V and the graph of
dloga f . The latter, by Lemma 2.27, equals the tropical intersection number of TropV and
[C(B)]n, which equals PTropV (B) starting from some polytope by Proposition 2.18. ut

We can drop the assumption of non-emptiness of the conormal variety as follows.

Proposition 2.32. (1) If V is empty, then V is preserved by the action of a certain non-
trivial subtorus of (C \ 0)n.



Characteristic classes of affine varieties 33

(2) Let (C\0)k be the maximal subtorus of (C\0)n preserving V with V =V ′× (C\0)k .
Then there exists a polytope S⊂Qn−k such that e(V, B)=−(−1)dimV+kPTropV ′(B)
for any n-dimensional B ⊃ S.

The proof is the same as for Proposition 2.31: Let x1, . . . , xn be monomial coordinates on
(C \ 0)n such that (C \ 0)k = {xk+1 = · · · = xn = 1}. Then the set of critical points of h
can be represented as the intersection of V ′×(C\0)k and the set {(x, y) | yi = xi

∂f
∂xi
−aif

for i ≤ k and ∂f
∂xi
= 0 for i > k}.

Proposition 2.33. There exists a polytope S ⊂ Qn such that, for polytopes B0, . . . , Bm
⊃ S, we have

e(V, B0, . . . , Bm)

= e(V )−(−1)dimV
(
PTropV,n+(−1)m

∑
j<n−m

PTropV,j
∑

b0+···+bm=n−j
b0∈N,...,bm∈N

[B0]
b0 . . . [Bm]

bm
)
.

Proof. In the notation of Lemma 2.14, let fI be the polynomial
∑
i∈I λifi on (C \ 0)n ×

(C \ 0)I , and let BI be its Newton polytope. Consider the action of C \ 0 on (C \ 0)I by
coordinatewise multiplication, and the projection πI : (C \ 0)n × (C \ 0)I → (C \ 0)n.
By the additivity of the Euler characteristic,

e(V ∩ {f0 = · · · = fm = 0}) =
∑
I

e({fI = 0} ∩ (V × (C \ 0)n)/(C \ 0))−me(V ),

because the restriction of the projection CPm × V → V to {
∑
i λifi}/(C \ 0) has fibers

CPm−1 over the points of {f0 = · · · = fm = 0} and CPm over the other points of V .
We can now compute e({fI = 0}∩ (V × (C\0)n)/(C\0)) for every I by Proposition

2.31 or 2.32 in terms of PTropV (BI ), and simplify the answer by using Lemma 2.14. ut

Proposition 2.34. If V is non-empty (i.e. V ⊂ (C \ 0)n is not preserved by non-trivial
tori), then the leading term of the polynomial PTropV (B) equals Trop(V )[B]dimV , and
the constant term equals (−1)dimV e(V ).

Proof. The equalities PTropV,j = 0, j < n − dimV , PTropV,n−dimV = TropV and
PTropV,n = (−1)dimV e(V ) follow from Proposition 2.33 for m = dimV − 1, because
e(V, B0, . . . , Bm) = [B0] . . . [Bm]TropV for all B0, . . . , Bm. ut

Proposition 2.35. The equality of Proposition 2.33 is valid without the assumptions
dimB = n and B ⊃ S.

Proof. For m = dimV − 1, the statement follows from Proposition 2.34. Assume that
we have proved the statement for all m > m0. Then we can prove it for m = m0 by in-
duction on the number p of the polytopes Bi that do not contain S or have dimension less
than n. For p = 0, the statement coincides with the one of Proposition 2.33. For p > 0,
apply Lemma 2.30 with k = m, B0, . . . , Bp−1 containing S and n-dimensional, and
B ′0, Bp, . . . , Bm arbitrary. Note that B0 + B

′

0 is also n-dimensional and contains S, so all
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the terms in the equality of Lemma 2.30, except for e(M,B ′0, B1, . . . , Bm), can be com-
puted by the inductive assumption. This can be used to compute e(M,B ′0, B1, . . . , Bm)

and leads to the desired formula. ut

Definition 2.36. Let V : (C \ 0)n→ R be a constructible function (that is, a linear com-
bination of characteristic functions of algebraic subsets). Define its characteristic class
〈V 〉 =

∑
i〈V 〉i , 〈V 〉i ∈ K0

i (Z
k), as follows.

(1) If V is (the characteristic function of) a smooth subvarietyW ⊂ (C \ 0)n, then define
〈W 〉i as (−1)i+n+dimWPTropW,i .

(2) If V is (the characteristic function of) a smooth subset of {f 6= 0}, f : (C\0)n→ C,
then define 〈V 〉i as the image of 〈V ×(C\0)∩(the graph of f )〉i under the projection
(C \ 0)n × (C \ 0)→ (C \ 0)n.

(3) For arbitrary V , represent it as a linear combination
∑
i αjVj of functions Vi of the

form (2), and define 〈V 〉i as
∑
j αj 〈Vi〉j .

Theorem 2.37. (1) For all lattice polytopes B1, . . . , Bk in Qn and generic fi ∈ CBi , the
Euler characteristic integral of V over {f1 = · · · = fk = 0} (see e.g. [M74] and
[V88]) equals

(−1)dimV+k
∑
j≤n−k

〈V 〉j
∑

b1+···+bk=n−j
b1,...,bk∈N

[B1]
b1 . . . [Bk]

bk .

(2) 〈U × V 〉 = 〈U〉 × 〈V 〉.
(3) 〈V 〉n equals the Euler characteristic integral of V .
(4) 〈V 〉 does not depend on the decomposition of V into a linear combination of charac-

teristic functions, chosen in Definition 2.36.
(5) For generic c ∈ (C \ 0)n, we have 〈U ∩ (cV )〉 = 〈U〉〈V 〉.
(6) For a generic hypersurface V with Newton polytope 1, we have 〈V 〉 = [1]

1+[1] .

Proof. For characteristic functions of smooth subvarieties of tori, (1) is Proposition 2.35,
(3) is Proposition 2.34, and (2) follows from multiplicativity of PA(B) (Proposition 2.18).
For arbitrary characteristic functions, (1)–(3) follow by the additivity of the Euler char-
acteristic. They imply (4), because 〈V 〉i , i < n, are uniquely determined by (1) for
k = 1, and 〈V 〉n is uniquely determined by (3). To prove (5), represent U ∩ (cV ) as
U × V ∩ {(x, y) | xi − ciyi = 0}; then the desired equality follows from (1)–(2).
Part (6) follows from Proposition 2.31, because, computing e(V, B) in its statement by the
Kouchnirenko–Bernstein–Khovanskii formula [Kh77b], we have PTropV,j = [1]j . ut

We now prove the relation of tropical characteristic classes to Schwartz–MacPherson
classes (Definition 2.2(6) and Proposition 2.12). For this, recall the description of the co-
homology ring of a smooth toric variety in terms of tropical fans. Let6 be a Z-simple fan,
and let X6 be the corresponding smooth toric compactification of (C \ 0)n. We say that
a k-dimensional tropical fan (P, ϕ) is compatible with 6 if its support set P is contained
in the union of k-dimensional cones of 6.
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Proposition 2.38 ([B96], [FS94]). The cohomology ring of X6 is naturally isomorphic
to the ring of tropical fans compatible with 6. The isomorphism sends a codimension k
cohomology class α to the tropical fan (P, ϕ), where P is the union of the k-dimensional
cones of 6, and the value of ϕ on every such cone C equals the restriction of α to the
closure of the C-orbit in X6 .

We identify the cohomology and homology of X6 by means of Poincaré duality. For
a subvariety V ⊂ (C \ 0)n, we consider the Schwartz–MacPherson class cSM

i,6(V ) ⊂

H i(X6) of a non-closed set V ⊂ X6 as a tropical fan, compatible with 6.

Theorem 2.39. (1) If the closure of V in X6 is smooth and transversal to the orbits,
then the multiplicity of every cone C ∈ 6 in the tropical fan cSM

i,6(V ) equals the Euler
characteristic of (closure of V ) ∩ (C-orbit).

(2) If U ⊂ (C \ 0)n is arbitrary, V ⊂ (C \ 0)n is a generic complete intersection, defined
by equations with Newton polytopes N1, . . . , Nk , and the dual fans [N1], . . . , [Nk]

are compatible with 6, then cSM
6 (U ∩ V ) = cSM

6 (U)cSM
6 (V ).

(3) For arbitrary U ⊂ (C \ 0)n, choose 6 compatible with the tropical characteristic
class 〈U〉 constructed above. Then 〈U〉 equals cSM

6 (U).

Lemma 2.40 ([A11, Theorem 3.1]). Let M be a smooth compact variety, V ⊂ M an
arbitrary subvariety, and D a smooth hypersurface transversal to V . Then

(1) cSM(V ∩D) = cSM(V ) · cSM(D) in the cohomology ring H •(M),
(2) cSM(V ∩D) ∈ H •(D) is the restriction of cSM(V \D) ∈ H •(M).

Proof of Theorem 2.39. Part (1) follows from Lemma 2.40(2) and Proposition 2.38, be-
cause the highest Schwartz–MacPherson class equals the Euler characteristic. Part (2)
follows from Lemma 2.40(1) for a generic hypersurface V and by induction for a generic
complete intersection V .

Part (3) for a generic complete intersection follows from (1) and Theorem 2.37(6). For
an arbitrary U , choose a generic complete intersection V such that the dual fans of the
Newton polytopes of its equations are compatible with 6. Then we have cSM

6 (V ) = 〈V 〉,
and the highest components of cSM

6 (U) · cSM
6 (V ) and 〈U〉 · 〈V 〉 are both equal to the Euler

characteristic of U ∩ V (by (2) and Theorem 2.37(5) respectively). This equality for ar-
bitrary V implies that 〈U〉 = cSM

6 (U), because the cohomology ring of X6 is generated
by complete intersections, and multiplication of cohomologies of complementary dimen-
sions is a non-degenerate bilinear form. ut

2.7. Characteristic classes of critical complete intersections

Non-degenerate complete intersections are the simplest example of schön varieties. We
shall need the next simplest example: the set of critical points of a projection {f = 0} ⊂
(C \ 0)n

p
→ (C \ 0)k , where f is a Laurent polynomial with generic coefficients, and p is

a morphism of complex tori. This complete intersection is degenerate, but still schön, as
we prove below.
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Denote the (n+ 1)-dimensional space of affine linear functions on Zn by (Zn)?, to be
distinguished from the dual space (Zn)∗. For every subspace L ⊂ Zn, let L⊥ ⊂ (Zn)?
be the set of affine functions on Zn that vanish on L. For a Laurent polynomial f (x) =∑
b∈Zn cbx

b on (C \ 0)n with the standard coordinates x = (x1, . . . , xn) and an element
α ∈ (Zn)?, denote the polynomial

∑
b∈Zn α(b)cbx

b by ∂αf .

Example 2.41. If α is the i-th coordinate function, then ∂αf = xi
∂f
∂xi

.

Definition 2.42. The set {∂Df = 0} ⊂ (C\0)n given by the equations ∂αf = 0, α ∈ D,
is called a critical complete intersection.

Proposition 2.43. (1) For every finite B ⊂ Zn, every vector subspace D ⊂ (Zn)? and
a generic Laurent polynomial f (x) =

∑
b∈B cbx

b, the critical complete intersection
{∂Df = 0} is indeed a regular complete intersection.

(2) Moreover, it is schön.

Note that the schön complete intersection {∂Df = 0} is not in general non-degenerate
with respect to its Newton polytope [Kh77a] even for generic f : for instance, if f ∈
C[x, y] is a generic polynomial with a given Newton polygon N , then the restrictions of
the equations f = y ∂f

∂y
= 0 to each of the horizontal edges of N are compatible, because

the restriction of y ∂f
∂y

is proportional to the restriction of f .
Part (1) of Proposition 2.43 is a standard corollary of the Bertini–Sard theorem (see

the subsequent paragraph). The proof of (2), including an explicit construction of a schön
compactification, occupies the rest of this subsection.

Proof of (1). With no loss in generality we can assume that B is not contained in an affine
hyperplane. Then we can choose a basis α0, . . . , αk in D and points b0, . . . , bk in B such
that the matrix αi(bj ) is triangular and non-degenerate, i.e. ∂αif does not depend on
cbi+1 , . . . , cbk . Then, by induction on i, we can prove that ∂α0f = · · · = ∂αif = 0 is a
regular complete intersection for almost all f : for every i, take cbi to be a regular value of
the restriction of the function −

∑
b∈B\{bi }

αi (b)
αi (bi )

cbx
b−bi to the regular set ∂α0f = · · · =

∂αi−1f = 0. ut

The proof of (2) is based on an explicit construction of a schön compactification for
{∂Df = 0}. We shall use the following notation. For every γ ∈ (Zn)? and B ⊂ Zn, let
Bγ be the set of points at which the restriction of γ to B attains its maximum. For every
sequence of sets Bk ⊂ Zn, denote the affine span of

⋃
i<k Bi by B<k .

Definition 2.44. (1) For every γ ∈ (Zn)?, define a finite sequence of subsets Bγk ⊂ B

inductively by k ≥ 0 as follows: the set Bγk consists of all points at which the restric-
tion of γ to B \Bγ<k attains its maximal value, unless (Bγ<k)

⊥
∩D = 0, in which case

Bk is not defined.
(2) For a finite sequence of non-empty non-intersecting subsets Bk ⊂ B, the cone CB• is

the set of all γ ∈ (Zn)∗ such that the sequence Bγk equals the sequence Bk . The fan
that consists of the cones CB• as B• runs over all sequences of subsets of B will be
denoted by CB .
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Remark 2.45. The codimension of a non-empty cone CB• equals the dimension
of
∑
i Bi .

Example 2.46. If B = {0, e1, e2, e3} is the standard simplex in R3, and D is generated
by the functions 1 and x + y, then CB is the minimal subdivision of the dual fan of B by
the line generated by x + y. For example, the 1-dimensional cone generated by −x − y
corresponds to the sequence B• = (B0, B1) = ({0, e1}, {e2, e3}).

Now Proposition 2.43(2) can be restated in more detail as follows. For every sequence
of non-intersecting sets Bk ⊂ Zn, choose a direct sum decomposition D =

⊕
i B

i such
that

⊕
i≥k B

i equals B⊥<k ∩ D for every k. For every subset B ′ ⊂ B and a polynomial
f (x) =

∑
b∈B cbx

b, denote the restriction of f to B ′ by f B
′

(x) =
∑
b∈B ′ cbx

b.
Choose any subdivision C̃B of the fan CB such that the C̃B -toric variety is smooth.

For every cone CB• , the orbits of the C̃B -toric variety corresponding to subcones of CB•
will be called the CB• -orbits.

Proposition 2.47. (1) For almost all f of the form
∑
b∈B cbx

b, the closure of the critical
complete intersection {∂Df = 0} in the C̃B -toric variety is smooth and intersects its
orbits transversally.

(2) The closure of {∂Df = 0} intersects a CB• -orbit in the same set as the closure of
{∂Bif

Bi = 0 for all i}.

Proof. Choose a basis α0i, . . . , αki i in Bi . The union of these bases is a basis in D.
For every linear function l ∈ CB• , the maximum of l on the Newton polytope of the
polynomial ∂αjif is attained on its face Bi . Thus, the intersection of a CB• -orbit and
the closure of {∂Df = 0} is contained in the intersection of the CB• -orbit and the clo-
sure of

⋂
i,j {∂αjif = 0}, and contains the regular part of the latter intersection. How-

ever, the latter intersection is regular for generic f , because, for every i, the equations
∂Bif

Bi = 0 define a regular set Si by Proposition 2.43(1), and, for generic ci ∈ (C \ 0)n,
the sets ciSi intersect transversally. Thus we have proved that the intersection of the clo-
sure of {∂Df = 0} with every CB• -orbit is regular for every cone CB• , and is given by the
equations ∂Bif

Bi = 0. This concludes the proof of Propositions 2.47 and 2.43. ut

Proposition 2.12 reduces computation of tropical characteristic classes of critical com-
plete intersections to computation of the Euler characteristics of critical complete inter-
sections. For every sequence B•, let ZB• be (the set given by the equations ∂Bif

Bi = 0
for all i)/(the subtorus of (C \ 0)n generated by tγ over all γ ∈ CB•).

Corollary 2.48. The j -th tropical characteristic class of {∂Df = 0} consists of the
cones CB• over all sequences B• such that j = dim

∑
i Bi , with multiplicities equal

to the Euler characteristics of ZB• .

Remark 2.49. For most of the sequences B•, the cone CB• is either empty or of multi-
plicity 0. For example, CB• is empty unless the sets Bi are non-empty and non-overlap-
ping and B0 is contained in the boundary of the convex hull of B. The multiplicity of CB•
also equals 0 if dimD ∩ B⊥<k > dim

∑
i<k Bi for some k.
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The sets of the form ZB• that we face in the framework of this paper are very simple
(points and lines). However, we notice that such Euler characteristics can be computed in
the general case by methods of [E10]. For example, we give the answer for 0-dimensional
critical complete intersections.

Notation. Assume that D ⊂ (Zn)? is a hyperplane. It is uniquely determined by the
common zero z ∈ RPn of all affine linear functions α ∈ D. Let A be the set of all faces 0
of the convex hull of A such that the affine span of 0 contains z. Let N(A,D) be the sum∑
0∈A e

0
A Vol0, where e0A is the Euler obstruction ofA at 0 (see [E10] for the definition).

Lemma 2.50. IfA generates Zn andD is a hyperplane, then, for a generic Laurent poly-
nomial f (x) =

∑
a∈A cax

a , the 0-dimensional critical complete intersection {∂Df = 0}
consists of N(A,D) points.

This is the Bernstein formula [B76] with some roots hidden at infinity (more precisely, at
the orbits of the A-toric variety, corresponding to the faces from A; see [E10] for details).

3. Affine Plücker formulas

The problematics of affine multisingularity theory is introduced in Section 3.1. Its rela-
tion to tropical enumerative geometry is outlined in Section 3.2. The affine version of the
Plücker formulas is obtained in Sections 3.3–3.5: the tropical fan of the universal sin-
gularity stratum of codimension 1 (i.e. the Newton polytope of the A-discriminant for a
non-dual defective set A ⊂ Zn) is computed in Section 3.3; additional assumptions on A
(k-versality, Definition 3.21), playing the role of dual defectiveness for the codimension 2
universal multisingularity strata, are introduced in Section 3.4; the tropical fans of these
strata are described in Section 3.5 (see Section 3.8 for a proof of this description). Sec-
tion 3.6 explains how to specialize these results to various non-universal settings such as
generic polynomial maps of generic affine hypersurfaces, and an example of the com-
putation for a simple special case is given in Section 3.9. Application of affine Plücker
formulas requires somewhat tedious computations with secondary fans that can be sim-
plified by using a formula for the volume of a fiber body, presented in Section 3.7.

3.1. Affine multisingularity theory

A singularity theory is an equivalence relation on the set of germs of algebraic varieties.
An equivalence class is called a singularity.

Example 3.1. We shall study A1 and A2 singularities. The Ai singularity is the class of
hypersurface germs in Cn that can be represented as xi+1

1 + x2
2 + · · ·+ x

2
n = 0 in suitable

local coordinates. In particular, for n = 2, the A1 and A2 singularities are nodes and
cusps of plane curves, and we shall denote them by × and ≺ respectively.

A finite tuple S = (S1, . . . , Sk) of isolated singularities is called a multisingularity. The
S-multisingularity stratum of a proper morphism N → M of varieties is the set of all
x ∈ M whose preimages have exactly k singularities S1, . . . , Sk . One of the first goals of
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singularity theory is to describe the topology (e.g. the homology class) of a multisingular-
ity stratum in terms of the topology (e.g. the characteristic classes) ofM and N , provided
that the morphism is “generic enough”.

However, this theory does not suit the study of multisingularity strata of polynomial
mappings f : Cn → Cm or (C \ 0)n → (C \ 0)m, as explained in the introduction.
A possible way to understand singularity theory in this affine setting is as follows: a
generic mapping f = (f1, . . . , fm) is a mapping whose components fi are generic linear
combinations of given monomials, and the goal of our singularity theory is to describe
the cohomology classes of multisingularity strata of the map f in the ring of conditions
of (C \ 0)n, that is, in the ring K0(Zn) of tropical fans.

Instead of studying individual maps, we first study the universal setting: identify el-
ements of Zn with monomials in the variables x1, . . . , xn, let CA be the space of linear
combinations of monomials from a finite set A ⊂ Zn, and choose finite sets A1, . . . , Am
in Zn. The universal S-multisingularity stratum is the set of all tuples of polynomials
f ∈ CA1 ⊕ · · · ⊕ CAm such that the variety f = 0 has exactly k singularities S1, . . . , Sk ,
and our goal is to describe tropical fans of universal multisingularity strata in terms of the
sets A1, . . . , Am. Then we explain how to reduce individual problems regarding generic
mappings f : Cn→ Cm or (C \ 0)n→ (C \ 0)m to the universal case.

A lot of recent research can be considered from this point of view: Newton poly-
topes of A-discriminants, sparse resultants and mixed discriminants ([GKZ94], [S94],
[G00], [EKh08], [STY07], [DFS07], [ST08], [E10], [E13], [CC+13], [DEK14], [AT12])
are tropical fans of the (×)-singularity stratum. The tropical fan of higher dual toric vari-
eties [DDRP14] is the tropical fan of the stratum of hypersurfaces with a single singularity
of a given order.

If the setsA1, . . . , Am are “small enough”, then collections of isolated singularities do
not appear at all in the fibers f = 0 with f ∈ CA1 ⊕· · ·⊕CAm , and one can be interested
instead in the strata 6k of all f such that the singular locus of f has a given dimension k.
For m = 1, the lowest codimension non-empty stratum 6k is the A-discriminant variety,
and its tropical fan is computed in [DFS07] (for any k). If A1 = · · · = Am is the standard
simplex, then the strata 6k are determinantal varieties. In [S13], all triples (m, n, k) are
classified for which the minors of the matrix form a tropical basis of the ideal of the
determinantal variety. This, in particular, gives the tropical fan of 6k . For other triples
(m, n, k), the tropical fan is unknown.

Tropical enumeration of plane curves with nodes and cusps [M05], [BBM14], [S06],
[S12] can also be seen as a partial computation of tropical fans of corresponding Severi va-
rieties, that is, the universal (×, . . . ,×,≺, . . . ,≺)-multisingularity strata (see Section 3.2
and [Y13] for details).

Summarizing, the only singularity strata whose complete tropical fans are known are

• the lowest codimension singularity strata,
• the single singularity strata for singularities of a given order,
• the strata with known tropical bases of their defining ideals.

We shall compute the tropical fan of the simplest possible strata outside of this list,
namely, the codimension 2 multisingularity strata: the (××)-stratum of all f ∈ CA with
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two non-degenerate singular points and the (≺)-stratum of all f ∈ CA with a single
minimally degenerate singular point.

Many relations for tropical characteristic classes of multisingularity strata follow di-
rectly from additivity of the Euler characteristic. For example, let X be a smooth toric
variety, and let V ⊂ X × (C \ 0)N be a subvariety. For every multisingularity S =
(S1, . . . , Sk), let e(S) be the sum of the reduced Euler characteristics of the Milnor fibers
of the isolated singularities S1, . . . , Sk , let 〈S〉 be the tropical characteristic class of the
S-multisingularity stratum of the projection π : V → (C \ 0)N , and let p be the codi-
mension of the set of all points x ∈ (C\0)N such that the fiber π−1(x) has a non-isolated
singularity. If a generic fiber of π is smooth, then, denoting its Euler characteristic by e0,
we have for i < p:

Proposition 3.2.

e0 · 〈π(V )〉i −
∑
S

e(S) · 〈S〉i =
∑
T⊂X

π∗〈V ∩ T 〉i+dim T , (∗)

where T runs over all orbits of X, and S runs over all (isolated) multisingularities.

Proof. Choose an arbitrary subvariety Y ⊂ (C \ 0)N with dimY < p and a generic
element g ∈ (C \ 0)N . Counting the Euler characteristic of π−1(gY ) fiberwise, we
see that it equals

∑
S(e0 − e(S))e(gY ∩ S), because the Euler characteristic of every

fiber π−1(y), y ∈ S, equals e0 − e(S). Since e(π−1(gY )) =
∑
T e(π

−1(gY ) ∩ T ) =∑
i,T 〈Y 〉N−iπ∗〈V ∩ T 〉i+dim T and e(gY ∩ S) =

∑
i〈Y 〉N−i〈S〉i , we have∑

i

〈Y 〉N−i

(
e0 · 〈π(V )〉i −

∑
S

e(S) · 〈S〉i

)
=

∑
i

〈Y 〉N−i

(∑
T⊂X

π∗〈V ∩ T 〉i+dim T

)
for arbitrary Y . By the non-degeneracy of the intersection pairing in the ring of tropical
fans, this is equivalent to (∗). ut

3.2. Relation to tropical correspondence theorems

In this subsection, we restate tropical correspondence theorems in terms of intersection
numbers of tropical fans of multisingularity strata. This allows us to consider tropical enu-
meration as the classical approach to enumerative geometry, up to replacing the conven-
tional cohomology rings, Chern classes and Thom polynomials with the ring of tropical
fans, tropical characteristic classes and tropical fans of multisingularity strata.

Recall that we write tropical objects in Fraktur. Every codimension 1 tropical fan
with positive multiplicities equals the hypersurface f = 0 for some tropical polynomial f
with unit coefficients. Conversely, for every tropical hypersurface {x | f(x) = 0} and ev-
ery point x0 in (T \ 0)m, the shifted hypersurface {x | f(x/x0) = 0} coincides in a small
neighborhood of (1, . . . , 1) with a certain codimension 1 tropical fan that we denote by
{f = 0}x0 ∈ K0

1(Z
m).

Definition 3.3. For any collection of tropical fans and hypersurfaces H1, . . . ,Hk in
(T \ 0)m whose codimensions sum to m, the number (H1)x · . . . · (Hk)x ∈ K0

m(Zm) = Q
is called the tropical intersection number of H1, . . . ,Hk at x ∈ (T \ 0)m.
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Recall that the following displacement rule allows us to count the tropical intersection
number and can be taken as its definition. For a rational affine subspace L ⊂ Rm, by a
slight abuse of notation, denote the lattice {l ∈ (Zm)∗ | l(L) = const} by L⊥.

Proposition 3.4. (1) Assume H1, . . . ,Hk intersect transversally at x, i.e. Hi ⊂ (T \ 0)m
= Rm coincides with a rational affine space Li 3 x endowed with a multiplicity mi
in a small neighborhood of x, and

∑
i L
⊥

i is an m-dimensional lattice L. Then the
tropical intersection number of H1, . . . ,Hk at x equals m1 . . . mk · |(Zm)∗/L|.

(2) In the general case, let H̃i be the copy of Hi shifted by a small generic vector. Then
H̃1, . . . , H̃k intersect in finitely many points x1, . . . , xN near x (if any), the intersection
is transversal at each of these points, and the intersection number of H1, . . . ,Hk at x
equals the sum of the intersection numbers of H̃1, . . . , H̃k at x1, . . . , xN .

From now on, let K denote either C or T.
Let A ⊂ Zn be a finite set containing 0. Let KA be the set of Laurent polynomials

of the form
∑
a∈A cax

a, ca ∈ K, and let its subset (K \ 0)A1 consist of all polynomials
whose constant term c0 equals 1 and whose other coefficients are non-zero. For K = C,
let S ⊂ (K \ 0)A1 be the (S1, . . . , Sk)-multisingularity stratum, and let Bgi ⊂ (K \ 0)A1 ,
gi ∈ Gi, be a family of conditions of incidence parameterized by the setGi . For instance,
gi ∈ Gi = (K \ 0)n, and Bgi is the set of all f ∈ (K \ 0)A1 such that f (gi) = 0;
or gi ∈ Gi = C1, 1 ⊂ Zn, and Bgi is the closure of the set of all f such that f = 0 is
tangent to gi = 0 at some point.

We shall be interested in counting hypersurfaces of the form f = 0, f ∈ (C \ 0)A1 ,
with prescribed singularities S1, . . . , Sk , satisfying prescribed conditions of incidence
Bg1 , . . . , BgI for generic parameters gi ∈ Gi . More accurately, we shall be interested
in the number of isolated intersection points of the stratum S and the pencils Bgi for
generic gi . Most of the classical problems of enumerative geometry can be restated in
this form.

Remark 3.5. However, note that the relevant number is not in general equal to the global
intersection number of S and Bgi in the ring of conditions, because the intersection
S∩

⋂
i Bgi may have non-isolated components even for generic gi . A classical example is

the count of conics that are tangent to five generic lines: the intersection of the correspond-
ing pencils

⋂5
i=1 Bgi in the 5-dimensional space of conics contains a two-dimensional

component that consists of all two-fold lines.

We now describe the tropical version of counting hypersurfaces with prescribed singu-
larities and conditions of incidence. Let S be the tropical fan of the stratum S. It is a
tropical fan in the real part of the Lie algebra of the complex torus (C \ 0)A1 ; this real part
is naturally identified with the tropical torus (T \ 0)A1 .

Definition 3.6. A tropical hypersurface f = 0 is said to have (S1, . . . , Sk)-multisingu-
larity if f is contained in S.

Assume that each parameter space Gi is a complex torus, denote the real part of its Lie
algebra by Gi , and consider the tropical fan Bi of the set {(f, g) | f ∈ Bg, g ∈ Gi}.

Definition 3.7. For every gi ∈ Gi , define the tropical condition of incidence Bgi as the
tropical intersection of Bi and the plane (T \ 0)A1 × {gi}.
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It is convenient to give tropical conditions of incidence a more geometric interpretation
in important special cases. For instance, if gi ∈ Gi = (C \ 0)n and Bgi is the set of all
f ∈ (C \ 0)A1 such that f (gi) = 0, then gi ∈ Gi = (T \ 0)n and Bgi is the set of all
f ∈ (T \ 0)A1 such that f(gi) = 0. If gi ∈ Gi = C1, 1 ∈ Z2, and Bgi is the closure
of the set of all f ∈ (C \ 0)A1 such that the curves f = 0 and g = 0 are tangent, then
gi ∈ Gi = (T \ 0)A1 and Bgi is the the set of all f ∈ (T \ 0)A1 such that the tropical curves
f = 0 and gi = 0 are tangent in the sense of [BBM14].

Definition 3.8. The problem of counting hypersurfaces with prescribed singularities
S1, . . . , Sk satisfying prescribed conditions of incidence Bg1 , . . . , BgI is said to be trop-
icalizable if the answer equals the number of isolated points in S ∩

⋂
i Bgi for generic

gi ∈ L
∗

i (counted with intersection multiplicities, see Definition 3.3).

In these terms, the correspondence theorem [M05] reduces to the computation of the
tropical fan of the Severi variety, because the problem of counting plane curves with a
prescribed number of self-intersections through prescribed generic points g1, . . . , gI is
tropicalizable (see Proposition 3.9 below). Recall that the Severi variety S is the closure
of the set of all f ∈ (C \ 0)A, A ⊂ Z2, such that the curve f = 0 is nodal with d nodes.

Similarly, the correspondence theorem [BBM14] reduces to computation of the trop-
ical fan S of the Severi variety, because the problem of counting plane rational curves
containing prescribed generic points and tangent to prescribed generic lines g1, . . . , gI is
tropicalizable (this is difficult, but can be extracted from [BBM14]). More specifically,
the tropical curves counted in the correspondence theorems are given by the equations
f = 0 such that f is an isolated point of the intersection S ∩

⋂
i Bgi , and the multiplicity

assigned to such a curve by the correspondence theorem equals the tropical intersection
multiplicity of S and Bgi , i = 1 . . . , I , at f.

However, the class of tropicalizable enumerative problems is much wider than count-
ing nodal curves. E.g. the problem of counting hypersurfaces with an arbitrary given
multisingularity, passing through a given collection of generic points, is tropicalizable:

Proposition 3.9. Let S be any codimension p subset of (C \ 0)A1 (for example, a multi-
singularity stratum). Then, for generic points g1, . . . , gp ∈ (C \ 0)n and g1, . . . , gp ∈
(T \ 0)n, the intersection number of S and the conditions of incidence {f ∈ (C \ 0)A1 |
f (gi) = 0} coincides with the tropical intersection number of the tropical fan S and the
conditions of incidence {f ∈ (T \ 0)A1 | f(gi) = 0}, i = 1, . . . , p.

Proof. The condition of passing through a generic point has no base points at infinity by
Definition 2.21, so the desired equality follows from Proposition 2.22(2). ut

Remark 3.10. The intersection number of S and the conditions of incidence
{f ∈ (C \ 0)A1 | f (gi) = 0} equals the number of f ∈ S such that f (g1) = · · · =

f (gp) = 0, counted with their local intersection multiplicities. Conjecturally, all of these
local multiplicites are 1 (i.e. generic conditions of incidence are transversal to S), pro-
vided that S is a multisingularity stratum and n > 1. Although this conjecture is well
known to be true for (A1, . . . ,A1)-multisingularity strata (the Severi varieties), even in
this case it may seem surprising. For instance, it is not valid for n = 1, and for any n the
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A1-singularity stratum (theA-discriminant) is the envelope of the conditions of incidence
(i.e. is tangent to the hyperplane {f ∈ (C \ 0)A1 | f (g) = 0} for every g).

3.3. Tropical fan of the discriminant

For a finite set A in the character lattice L of (C \ 0)n, let us define the tautological
polynomial s on (C \ 0)n × (C \ 0)A by s(x, f ) = f (x). We shall describe the tropical
characteristic classes of the critical complete intersection s = ∂s/∂x1 = · · · = ∂s/∂xn
= 0, where (x1, . . . , xn) are the standard coordinates on (C \0)n. As a corollary, we shall
obtain a new description of the Newton polytope of the A-discriminant, provided that it
is a hypersurface, and a new characterization of dual defective toric varieties (projective
toric varieties whose projectively dual variety is not a hypersurface).

The tropical fan of s = ∂s/∂x. = 0 lives in the dual character lattice of (C \ 0)n ×
(C\0)A, i.e. in L∗⊕(T\0)A. We shall use the following notation to describe it. For every
γ ∈ L∗⊕ (T\0)A, consider its components γ ′ ∈ L∗ and γ ′′ ∈ (T\0)A, γ = γ ′+γ ′′, as
functions onA: γ ′ is the restriction of γ ′ : L→ Z toA ⊂ L, and the value of γ ′′ at a ∈ A
is the coefficient of the degree a monomial in the tropical polynomial γ ′′ ∈ (T \ 0)A. For
every sequence of sets Ak ⊂ L, denote by A<k the affine span of

⋃
i<k Ai . Assume that

A is not contained in an affine hyperplane.

Definition 3.11. (1) For every γ ∈ L∗ ⊕ (T \ 0)A, define a finite sequence of subsets
A
γ

k ⊂ A inductively for k ≥ 0 as follows: Aγk consists of all points at which the
restriction of γ ′′ − γ ′ : A → Z to A \ Aγ<k attains its maximal value, provided that
A
γ

<k ( L, and Aγk is not defined otherwise.
(2) For a finite sequence of non-empty non-intersecting subsets Ak ⊂ A, the cone CA• is

the set of all γ ∈ L∗ ⊕ (T \ 0)A such that the sequence Aγk equals the sequence Ak .
The fan that consists of the cones CA• as A• runs over all sequences of non-empty
non-intersecting subsets of A will be denoted by CA.

Remark 3.12. The codimension of the cone CA• equals
∑
i(|Ai | − 1).

Remark 3.13. It would be useful to prove that the fan CA is regular (i.e. can be repre-
sented as the set of domains of linearity of a convex piecewise linear function).

For every sequence of sets Ak ⊂ L, decompose the space L? (see Section 2.7) into
a direct sum

⊕
i A

i such that
⊕

i≥k A
i is the orthogonal complement to A<k (that is,

{l | l(A<k) = 0}) for every k. For every B ⊂ A and f (x) =
∑
a∈A cax

a , denote the
restriction of f to B by f B(x) =

∑
a∈B cax

a , and define the corresponding tautological
polynomial sB on (C\0)n×(C\0)A by sB(f, x) = f B(x). Applying Proposition 2.47(2)
to the critical complete intersection s = ∂s/∂x. = 0, we obtain the following.

Proposition 3.14. (1) The closure of s = ∂s/∂x. = 0 in the CA-toric variety intersects
its orbits transversally.

(2) The closure of s = ∂s/∂x. = 0 intersects the CA• -orbit in the same set as the closure
of the complete intersection given by the equations ∂Ai s

Ai = 0 for all i.
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This fact leads to the following description of the characteristic classes of s=∂s/∂x.=0.

Definition 3.15. The rank rkk B of a subset B ⊂ Ak is |B|−dim(affine span of B∪A<k)
+ dimA<k − 1. A sequence Ak is said to be essential if rkk B < rkk Ak for every k and
every B ( Ak . The number of minimal subsets B ⊂ Ak such that rkk B = rkk Ak − 1 is
denoted bym(Ak). The numberm(Ak) for the maximal k such that rkk Ak > 0 is denoted
by m(A•). If |L/

⋃
i{a − b | a, b ∈ Ai}| is finite, then denote it by i(A•), otherwise set

i(A•) = 0.

Example 3.16. We shall work out all the notation for the following examples (in what
follows, A0 is always indicated by solid lines and A1 by dashed lines).

In the first example, i(A•) = 1, D0 = L
?, codimCA• = |A0| − 1 = 4, rk0A0 = 2,

and the four minimal sets B ⊂ A0 with rank 1 are as follows (so that m(A•) = 4):

In the second example, i(A•) = 2, codimCA• = |A0| − 1 + |A1| − 1 = 3, D1 is
generated by the function l(x, y) = x, and D0 is any plane such that D0+D1 = L

?. The
third example is not essential, and the last one is essential with i(A•) = 0.

Corollary 3.17. (1) The support set of the characteristic class 〈s = ∂s/∂x. = 0〉j is
contained in the union of the cones CA• where A• runs over all essential sequences
such that

∑
i(|Ai | − 1) = j .

(2) For j ≤ n, we have 〈s = ∂s/∂x. = 0〉j = 0.
(3) The multiplicity of the cone CA• in the tropical fan 〈s = ∂s/∂x. = 0〉n+1 equals 1 for

every essential A• such that
∑
i(|Ai | − 1) = n+ 1.

(4) The multiplicity of the cone CA• in the tropical fan 〈s = ∂s/∂x. = 0〉n+2 equals
2−m(A•) for every essential A• such that

∑
i(|Ai | − 1) = n+ 2.

Proof. Choose any sequence A• and denote
∑
i(|Ai | − 1) by d. Proposition 3.14(2) im-

plies that the intersection of the closure of s = ∂s/∂x. = 0 and the CA• -orbit in the
CA-toric variety is a (d − n − 1)-dimensional variety V in a d-dimensional complex
torus. The following facts immediately follow from the definitions:

• If A• is not essential, then V is empty.
• If A• is essential and d = n+ 1, then V consists of one point.
• If A• is essential and d = n+ 2, then V is a projective line minus m(A•) points.

The statement follows from these facts and Propositions 3.14 and 2.12. ut

One can compute the multiplicities of all cones for all the characteristic classes of s =
∂s/∂x. = 0 in the same way as we do in the proof of (3) and (4) for the first two non-zero
classes. The complete answer will be given elsewhere, because we do not need it to study
multisingularities in codimensions 1 and 2.
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Example 3.18. It may well happen that the multiplicity 2 − m(A•) is 0 in the situ-
ation of (4), i.e. the cone CA• for some essential A• with

∑
i(|Ai | − 1) = n + 2

does not contribute to 〈s = ∂s/∂x. = 0〉n+2. For example, this happens for A0 =

{(0, 0, 0), (0, 0,±1)} and A1 = {(0,±1, 0), (±1, 0, 0)}. In particular, (1) gives a non-
sharp estimate on the support sets of the characteristic classes.

The aim of our computation is the image π∗〈s = ∂s/∂x. = 0〉j under the projection
π : (C\0)n⊕(C\0)A→ (C\0)A rather than the class 〈s = ∂s/∂x. = 0〉j itself. LetwA•
be the weight of the cone CA• in the characteristic class 〈s = ∂s/∂x. = 0〉j ,

∑
i(|Ai |−1)

= j . Then, by Proposition 2.6 and Corollary 3.17.1, we have the following.

Proposition 3.19. The tropical fan π∗〈s = ∂s/∂x. = 0〉j consists of the cones
π(CA•) with weights wA• · i(A•), where A• runs over all essential sequences such that∑
i(|Ai | − 1) = j and i(A•) > 0.

Together with Corollary 3.17(2)–(4), this completely describes π∗〈s = ∂s/∂x. = 0〉j for
j ≤ n + 2. In particular, since the closure of the image of the complete intersection s =
∂s/∂x. = 0 under the projection π : (C\0)n×(C\0)A→ (C\0)A is theA-discriminant,
this gives new information about tropical fans of A-discriminants. Recall that a finite set
in Zn is called an iterated circuit if it can be decomposed into the union of an essential
sequence of non-empty non-intersecting subsets Ak such that

∑
i(|Ai | − 1) = n+ 1 and

dim
∑
i Ai = n. A more explicit version of this definition is given in the introduction and

in [E10], where (2) of the following statement was conjectured.

Corollary 3.20. (1) The dual fan of the Newton polytope of the A-discriminant equals
π∗〈s = ∂s/∂x. = 0〉n+1.

(2) The A-toric variety is not dual defective if and only if A contains an iterated circuit.

Proof. (1) follows from Remark 2.9. The “if” direction of (2) is proved in [E10], so
it remains to prove the “only if” direction: if the A-toric variety is not dual defective,
then the A-discriminant is a non-empty hypersurface; hence the dual fan of its Newton
polytope is not empty, so 〈s = ∂s/∂x. = 0〉n+1 6= 0 according to (1), and, by Corollary
3.17(1), there exists an essential sequence of subsets Ak ⊂ A such that

∑
i(|Ai | − 1) =

n+ 1. Its union is an iterated circuit. ut

Actually the “if” direction of (2) also follows from Corollary 3.17(3) and Proposition
3.19, because, for every sequence A• such that dim

∑
i Ai = n, we have i(A•) > 0.

3.4. Tropical fan of the (××) and (≺) strata: the assumptions

We now compute tropical fans of the codimension 2 multisingularity strata. Let A be a
finite set in the character lattice L of (C \ 0)n.

Let {×}, {××} and {≺} be the sets of all f ∈ CA such that the closure of the hypersur-
face {f = 0} in the smooth toric variety XA has one A1 singularity, two A1 singularities,
and one A2 singularity respectively. Denote the tropical characteristic classes of these
strata by 〈×〉, 〈××〉 and 〈≺〉. Note that, unlike the classical multisingularity theory, we
do not switch to the closures of the sets {×}, {××} and {≺}: these sets are smooth (which
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is not important for us), but not closed! Passing to the closure would not change their
tropical fans (that is, their highest characteristic class), but would affect the other charac-
teristic classes.

Theorems 3.25, 3.26 and 3.30 below provide three independent linear equations on
the tropical fans 〈×〉2, 〈×,×〉2 and 〈≺〉2. We can solve this linear system and compute
〈××〉2 and 〈≺〉2, the desired tropical fans of the {××} and {≺} multisingularity strata. In
Section 3.9, we give an example of explicit computation of 〈×〉2, 〈××〉2 and 〈≺〉2 for a
particular set A (i.e. we list all cones and their weights in these tropical fans).

We shall obtain these results under certain assumptions on A, resembling non-dual
defectiveness.

Definition 3.21. For a Laurent polynomial g ∈ C[L] = C[x1, x
−1
1 , . . . , xn, x

−1
n ], let

Ig ⊂ C[L] be the ideal generated by g and its partial derivatives ∂g/∂xi . The set A is said
to be versal in codimension k if the set of all points f ∈ CA such that the natural map
CA→ C[L]/If is not of full rank at f has codimension > k.

Informally, this means that, for each tuple of singularities S1, . . . , Sm whose Tyurina num-
bers sum to M ≤ k, the (S1, . . . , Sm)-multisingularity stratum has codimension M and
the same adjacencies as in the product of the versal deformations of S1, . . . , Sm (cf. the
notions of T-smoothness and deformation completeness of families of curves, see e.g.
[GLSh]). For codimension 2, we can restate this definition more explicitly:

Definition 3.22. The set A is versal in codimension 2 if there exists a codimension 3 set
6 ⊂ CA such that every f ∈ CA \6 is of one of the following three types:

(1) f is not in the image of the projection {s = ∂s/∂x. = 0} → (C \ 0)A. In this case,
the hypersurface f = 0 has no singularities.

(2) f is a regular value of the projection {s = ∂s/∂x. = 0} → (C \ 0)A with one
or two preimages (z(i), f ). In this case, the z(i) are the only singular points of the
hypersurface f = 0, and both are A1. Moreover, the tautological hypersurface s = 0
is given by z2

(i)1 + · · · + z
2
(i)n = yi for suitable local coordinates (y1, . . . , y|A|) near

f ∈ CA and (z(i)1, . . . , z(i)n, y1, . . . , y|A|) near (z(i), f ).
(3) f is a critical value of the projection {s = ∂s/∂x. = 0} → (C\0)A with one preimage

(z, f ). In this case, z is the only singular point of f = 0, and it is A2. Moreover, the
tautological hypersurface s = 0 is given by z3

1 + y1z1 + z
2
2 + . . . + z

2
n = y2 for

suitable local coordinates (y1, . . . , y|A|) near f ∈ CA and (z1, . . . , zn, y1, . . . , y|A|)

near (z, f ).

In what follows, we always assume that A is versal in codimension 2. For instance, every
non-dual defective set in Z2 and every set containing 4 · (simplex of volume 1) is versal.

Remark 3.23. It would be interesting to obtain more accurate sufficient conditions of
versality in small codimension and prove its monotonicity, similarly to the monotonicity
of non-dual defectiveness (if a subset of a finite set A in the lattice L is not dual defective
and is not contained in a proper affine sublattice of L, then A is not dual defective either;
see [E10]). One obvious but weak version of monotonicity is: A ⊂ L is called k-strongly
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versal if it is versal and every polynomial g ∈ C[L] such that dimC C[L]/Ig ≤ k admits
f ∈ CA such that Ig = If . If a k-strongly versal A is not contained in a proper affine
sublattice of L and is contained in B, then B is (k − 1)-strongly versal.

In what follows, we also always assume that A ⊂ L is simple in edges [T01], i.e. A is the
set of lattice points in a lattice polytope such that every edge is contained in n− 1 facets,
and the n − 1 external normal covectors to these facets form a part of a basis in (Zn)∗.
Geometrically, this means that the A-toric variety XA has at most isolated singularities.
This assumption is similar to versality of A in codimension 2 with respect to singularities
at infinity (see the proposition below).

For every B ⊂ Zn and every f =
∑
a∈A cax

a
∈ (C \ 0)A, let f B =

∑
a∈B cax

a

and denote sB(x, f ) = s(x, f B). If B is a face of the convex hull of A, then let TB ⊂
(C \ 0)n be the subtorus given by xa = xb for all a, b ∈ B, so that the B-orbit of
the toric variety XA is naturally identified with (C \0)n/TB . Similarly, the intersection of
(B-orbit)×(C\0)A with the closure of {sB = 0} is naturally identified with {sB = 0}/TB .
For every facet 0 of the convex hull of A, let 0′ be the maximal face of the convex hull
of A \ 0, parallel to 0 and “looking in the same direction” (so that 0′ + 0 is a face of
(A \ 0)+ A).

Proposition 3.24. Assume that A is simple in edges. Then one can choose a codimen-
sion 3 set 6 ⊂ CA such that every f ∈ CA \6 is of one of the following two types:

(1) f is in the image of the projection {s0 = ∂s0/∂x. = s0
′

= 0}/T0 → (C \ 0)A for
some facet 0 of the convex hull of A. In this case, the unique preimage of f is (z, f )
where z ∈ (0-orbit of XA) is the unique singular point of the closure of f = 0,
and this singularity is A1. Moreover, (0-orbit) × (C \ 0)A and the closure of the
hypersurface s = 0 are given by the equations z1 = 0 and (z1 − y1)

2
+ z2

2 + · · · +

z2
n = y2 respectively for suitable local coordinates (y1, . . . , y|A|) near f ∈ CA and
(z1, . . . , zn, y1, . . . , y|A|) near (z, f ).

(2) Otherwise, the closure of f = 0 in the toric variety XA is smooth at every point
outside (C \ 0)n.

The proof is based on the same arguments as Proposition 2.47 (note that the lattice dis-
tance between the parallel hyperplanes containing 0 and 0′ equals 1, because A is simple
in edges).

3.5. Tropical fan of the (××) and (≺) strata: the answer

Recall that we assume that A ⊂ Zn is simple in edges and versal in codimension 2 (see
Section 3.4).

The first equation

Theorem 3.25. If A is versal in codimension 2 and simple in edges, then

〈×〉2 + 2〈××〉2 + 2〈≺〉2 =
∑
0

π∗〈{s
0
= 0}/T0〉dim0+2,

where 0 runs over all positive-dimensional faces of the convex hull of A.
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Here 〈{s0 = 0}/T0〉j for all j can be expressed in terms of the Newton polytope of s0

(see Example 2.8). So the only unknown terms are on the left hand side.

Proof of Theorem 3.25. The equality is Proposition 3.2 for i = 2 and for the projection
π : XA × (C \ 0)A→ (C \ 0)A, restricted to the closure of the tautological hypersurface
{s = 0} ⊂ XA × (C \ 0)A, s(x, f ) = f (x). More complicated multisingularities do
not appear on the left hand side by the versality of A in codimension 2 and by Proposi-
tion 3.24. ut

The second equation

Theorem 3.26. If A is versal in codimension 2 and simple in edges, then

〈×〉2 + 2〈××〉2 + 〈≺〉2

= π∗

〈
s =

∂s

∂x.
= 0

〉
n+2
+

∑
0

π∗

〈{
s0 = s0

′

=
∂s0

∂x.
= 0

}
/T0

〉
n+1

,

where 0 runs over all facets of the convex hull of A.

Here 〈{s0 = s0
′

= ∂s0/∂x. = 0}〉n+1 = 〈{s
0
= ∂s0/∂x. = 0}〉n · 〈s0

′

= 0〉1 and
〈s = ∂s/∂x. = 0〉n+2 are computed in Corollary 3.17. So the only unknown terms are on
the left hand side.

Proof. The equality is Proposition 3.2 for i = 2 and for the projection π : XA× (C \ 0)A

→ (C \ 0)A, restricted to the closure of the first Boardman stratum {s = ∂s/∂x. = 0}.
More complicated multisingularities do not appear on the left hand side by the versality
of A in codimension 2 and by Proposition 3.24. The explicit expression for the intersec-
tion with the orbit on the right hand side is given by Proposition 3.14(2). ut

Remark 3.27. The equalities of Theorems 3.25 and 3.26 are already enough to compute
the tropical fan of the singularity stratum {≺}. In the same way as we deduced Theorems
3.25 and 3.26, we can also compute the left hand side of the equality in Proposition 3.2
for all higher Boardman strata of the projection {s = 0} → CA. However, for the (1, 1)-
Boardman stratum (i.e. the set of critical points of the restriction of π to its set of critical
points) we shall obtain an equation on 〈≺〉2 that is linearly dependent with the equations
of Theorems 3.25 and 3.26, and for higher Boardman strata (see e.g. [AGV]) the equations
will be trivial in codimension 2. So Proposition 3.2 alone is not enough to find the tropical
fan even for the simplest multisingularity stratum {××}.

The third equation. To formulate it, we define a certain continuous piecewise linear func-
tion lA on the support set of the tropical fan 〈s = ∂s/∂x. = 0〉n+1. Its definition relies
upon the notions and notation from Section 3.3.

Consider γ ∈ (T \ 0)n ⊕ (T \ 0)A such that i(Aγ• ) > 0. Recall that we consider
its components γ ′ ∈ (T \ 0)n and γ ′′ ∈ (T \ 0)A, γ = γ ′ + γ ′′, as functions on A:
γ ′ is the restriction of γ ′ : Rn → Z to A ⊂ Zn, and the value of γ ′′ at a ∈ A is the
coefficient of the degree a monomial in γ ′′ ∈ (T \ 0)A. For every k, denote by γ̃k the
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value of γ̃ = γ ′′ − γ ′ : A→ Z at Aγk , and define Aγk (r) as the set of all a ∈ A such that
γ̃ (a) ∈ [γ̃k, γ̃k + r]. Define

iγ (r) =

∣∣∣Zn/⋃
k

{a − b | a, b ∈ A
γ

k (r)}

∣∣∣ for r ∈ R

and

lA(γ ) =
∫
∞

0
(iγ (r)− 1) dr for γ ∈ {γ | i(Aγ• ) > 0}.

The function lA : {γ | i(A
γ
• ) > 0} → R is well-defined, because i(Aγ• ) > 0 implies

iγ (r) ≤ iγ (0) < ∞, and the assumption that A affinely generates Zn implies iγ (r) = 1
for r large enough. Moreover, the function is continuous, because, for γ1 in a small neigh-
borhood of γ , the functions iγ and iγ1 coincide outside a small neighborhood of the dis-
continuities of iγ .

Let l̃A be any continuous extension of lA to the support set of the fan
〈s = ∂s/∂x. = 0〉n+1. Then l̃A · 〈s = ∂s/∂x. = 0〉n+1 is an element of the component
K1
n+1(Z

n
⊕ ZA) of the differential ring of tropical fans (see Section 2.2). Since its image

π∗(l̃A · 〈s = ∂s/∂x. = 0〉n+1) under the projection π : (C \ 0)n × (C \ 0)A → (C \ 0)A

does not depend on the choice of l̃A by Proposition 3.19, we shall denote it by

π∗

(
lA ·

〈
s =

∂s

∂x.
= 0

〉
n+1

)
∈ K1

1(Z
A).

Definition 3.28. The corner locus

δπ∗

(
lA ·

〈
s =

∂s

∂x.
= 0

〉
n+1

)
∈ K0

2(Z
A)

is a codimension 2 tropical fan in (T \ 0)A and will be called the ternary fan of A (by
analogy with the codimension 1 secondary fan introduced in [GKZ94] and containing
π∗(〈s = ∂s/∂x. = 0〉n+1) ∈ K0

1(Z
A) as a summand).

Remark 3.29. Note that the corner locus of the product fF ∈ K1
1 of a continuous piece-

wise linear function f ∈ K1
0 and a tropical fan F ∈ K0

1 is known as the Cartier divisor
of f on F (see e.g. [M06]), and the geometric meaning of δπ∗(l · 〈s = ∂s/∂x. = 0〉n+1)

is similar. However, the element π∗(l · 〈s = ∂s/∂x. = 0〉n+1) ∈ K1
1(Z

A) that we have
to differentiate cannot be decomposed into the product of a continuous piecewise linear
function from K1

0(Z
A) and a tropical fan with constant weights from K0

1(Z
A).

Theorem 3.30. If A is versal in codimension 2 and simple in edges, then

〈×〉2 − 〈≺〉2 = δπ∗

(
l ·
〈
s =

∂s

∂x.
= 0

〉
n+1

)
−

(
π∗

〈
s =

∂s

∂x.
= 0

〉
n+1

)2

.

See Section 3.8 for a proof. The only unknown classes in this theorem are on the left hand
side, and, together with Theorems 3.25 and 3.26, we obtain three independent equations
on 〈×〉2, 〈×,×〉2 and 〈≺〉2.
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Remark 3.31. The geometric meaning of the piecewise linear function π∗(lA · 〈s =
∂s/∂x. = 0〉n+1) is clear: it is the tropicalization of the function on the A-discriminant
D = π∗{s = ∂s/∂x. = 0}, assigning the determinant of the Jacobian matrix( ∂2f
∂xi∂xj

(z)
)
i,j=1,...,n to every f ∈ D with a unique point z ∈ (C \ 0)n such that f (z) = 0

and df (z) = 0. However, I do not know how to prove Theorem 3.30 using this interpre-
tation.

Remark 3.32. The cones of the fan (π∗〈s = ∂s/∂x. = 0〉n+1)
2 correspond to the two-

dimensional faces of the polytope, dual to the fan π∗〈s = ∂s/∂x. = 0〉n+1. The multi-
plicities of the cones equal the areas of the corresponding faces. Every such face is either
a parallelogram (whose area is easy to compute) or the secondary polygon of a certain
subset of A (whose area can be computed by the formula from Example 3.41 below).

We now conjecture how the tropical fan of the (×, m. . . ,×)-stratum might look like for
arbitrary m.

Definition 3.33. The tropical fan δkπ∗(lk · 〈s = ∂s/∂x. = 0〉n+1) is called the k-ary fan
of A and is denoted by Ak .

For every linear γ : Zn → Z, define Aγ = A
γ

1 as the set of all points of A where γ
attains its maximum, and then inductively set Aγk+1 = (A \

⋃k
i=1A

γ

k )
γ .

Conjecture 3.34. There exists a universal function Pm of a collection of disjoint sets
B1, . . . , Bm ⊂ Zn, taking values in K0

m(Z
⋃
i Bi ), such that

(1) for given dimB1, . . . , dimBm, the value Pm(B1, . . . , Bm) is a polynomial of the k-
ary fans (Bi)k and the characteristic classes π∗〈si = ∂si/∂x. = 0〉j for the tauto-
logical polynomials si =

∑
b∈Bi

cbx
b on (C \ 0)n × (C \ 0)Bi ;

(2) the tropical fan of the (×, m. . . ,×)-stratum in (C \ 0)A is the sum of Pm(A
γ

1 , . . . , A
γ
m)

over all primitive γ (including γ = 0).

3.6. Reduction to the universal case

We have described the tropical fans of the universal multisingularity strata {××} and {≺}
in (C \ 0)A. We now outline how to apply this result to more down-to-earth settings, such
as the multisingularity strata {××} and {≺} of a generic polynomial map (C\0)m→ Cn.
The details will be given in a separate paper.

Non-Morse polynomials. Let A 63 0 be a finite set generating Zn. The set of polynomials
f ∈ (C\0)A such that f : (C\0)n→ C has a degenerate critical point is called a caustic;
the set of polynomials f ∈ (C \ 0)A such that f : (C \ 0)n → C takes the same value
at two critical points is called the Maxwell stratum (see [LZ04] for the study of the case
n = 1).

Denote A∪ {0} by A′ and the natural projection (C \ 0)A
′

→ (C \ 0)A by p. Then the
tropical fan of the caustics equals p∗(〈≺〉2), and the tropical fan of the Maxwell stratum
equals p∗(〈××〉2), where {××} and {≺} are the codimension 2 multisingularity strata in
(C \ 0)A

′

.
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{××} and {≺} for complete intersections. For a collection of finite setsA0, . . . , Ak⊂Zm,
let {×} be the set of all (f1, . . . , fk) ∈ CA0 ⊕ · · · ⊕ CAk such that f1 = · · · = fk = 0
is a complete intersection with a unique singular point, and its type is A1. Similarly,
define {≺} and {××} ⊂ CA0 ⊕ · · · ⊕ CAk as the sets of all complete intersections with
one A2 singularity and two A1 singularities respectively. Define the Cayley configuration
A0 ∗ · · · ∗ Ak ⊂ Zn × Zk as the union of A0 × {0} and Ai × {i-th vector of the standard
basis} over i = 1, . . . , k, and consider the natural isomorphism p : (C \ 0)A0∗···∗Ak →

(C \ 0)A0 × · · · × (C \ 0)Ak .

Proposition 3.35. Assume that none of the Ai is contained in an affine hyperplane, and
A0 ∗ · · · ∗ Ak is 2-versal. Then

〈×〉1 = p∗〈×〉1, 〈≺〉2 = p∗〈≺〉2, 〈××〉2 = p∗〈××〉2.

Proof. Denote by S0 the closure of the highest dimension component of a constructible
set S. Then the statement follows from the equalities

{×}0 = p({×}0), {≺}0 = p({≺}0), {××}0 = p({××}0).

For the discriminant {×}0, this equality is proved in [E10, Theorem 2.31] (see also
[CC+13]), and for the codimension 2 strata the proof follows the same lines. ut

Note however that the inclusion p({×}) ⊂ {×} is proper, and thus 〈×〉2 6= p∗〈×〉2 in
general.

{××} and {≺} for projections of complete intersections. Let B0, . . . , Bk be finite sets in
Zn⊕Zm, gi ∈ (C\0)Bi be generic polynomials, and π be the restriction of the projection
(C\0)n× (C\0)m→ (C\0)m to the complete intersection g0 = · · · = gk = 0. We shall
compute the tropical fans of the multisingularity strata {××}π and {≺}π ⊂ (C \ 0)m.

For this, denote by Ai the image of Bi under the projection Zn ⊕ Zm → Zn, and let
x and y be the standard coordinates on (C \ 0)n and (C \ 0)m respectively. In the product
(C\0)A0×· · ·×(C\0)Ak×(C\0)m, consider the setsGi = {(f0, . . . , fk, y) | ∀x fi(x) =

gi(x, y)} and the projections p to (C \ 0)m and q to (C \ 0)A0 × · · · × (C \ 0)Ak . The
tropical fans of {××}π and {≺}π equal

p∗(〈G0〉|A0| · . . . · 〈Gk〉|Ak | ·q
∗
〈××〉2) and p∗(〈G0〉|A0| · . . . · 〈Gk〉|Ak | ·q

∗
〈≺〉2). (∗)

In this formula, the tropical fan 〈Gi〉|Ai | of the setGi is known for generic gi ∈ (C\0)Bi :
the set Gi is a non-degenerate complete intersection, so its tropical fan is the product
of the dual fans of the Newton polytopes of its equations. Computation of the tropical
fans 〈××〉2 and 〈≺〉2 on the right hand side reduces to Theorems 3.25, 3.26 and 3.30 by
Proposition 3.35.

Remark 3.36. This result covers the setting of Example 1.1, but reducing the general
answer (∗) to the elementary one given in Example 1.1 is a non-trivial combinatorial
problem, which will be treated in a subsequent paper. On the other hand, (∗) remains
valid for generic hypersurfaces M ⊂ (C \ 0)3 with arbitrary Newton polytopes.
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{××} and {≺} for maps of complete intersections. LetA0, . . . , Ap,D1, . . . , Dm be finite
sets in Zn, fi ∈ (C \ 0)Ai and hi ∈ (C \ 0)Di be generic polynomials, and H be the
restriction of (h1, . . . , hm) : (C \ 0)n → Cm to the complete intersection f0 = · · · =

fk = 0. We shall compute the tropical fans of the multisingularity strata {××}H and
{≺}H ⊂ (C \ 0)m. For this, note that {××}H and {≺}H equal {××}π and {≺}π , where
π is the restriction of (C \ 0)n × (C \ 0)m → (C \ 0)m to the complete intersection
f0 = · · · = fp = h1 − y1 = · · · = hm − ym = 0, and (y1, . . . , ym) are the standard
coordinates on (C \ 0)m. The tropical fans of {××}π and {≺}π can now be computed as
in (∗).

Remark 3.37. If we try to apply Proposition 3.35 to compute the tropical fans 〈××〉2
and 〈≺〉2 on the right hand side of (∗) in this setting, we observe that the assumption of
Proposition 3.35 is not satisfied. Nevertheless one can easily verify that the conclusion of
Proposition 3.35 remains valid in this setting.

3.7. Volume of a fiber body

Choose a codimension k subspace L ⊂ Rn. There exists a unique additive symmetric
functionML of k+ 1 convex bodies in Rn, taking values in convex bodies in L, such that
ML(A,

k+1. . . , A) is the fiber body of A for every convex body A ⊂ Rn. See Example 1.3
or [BS92] for the definition of the fiber body, and [M04] or [E08] for a proof of the fact.

Definition 3.38. The convex body ML(A0, . . . , Ak) is called the mixed fiber body of
A0, . . . , Ak .

See [EKh08] for a relation of mixed fiber polytopes to algebraic geometry and the fol-
lowing characterization.

Proposition 3.39. The mixed fiber body of A0, . . . , Ak is the unique convex body X such
that the Euclidean mixed volume of A0, . . . , Ak, B1, . . . , Bn−k−1 in Rn equals the Eu-
clidean mixed volume of X,B1, . . . , Bn−k−1 in L.

Proposition 3.40. LetL be a codimension k subspace in Rn, andAji ⊂ Rn, i = 0, . . . , k,
j = 1, . . . , n − k, be convex bodies. Set K = {(v1, . . . , vn−k) | v1 + · · · + vn−k = 0}
⊂ Ln−k and denote by Ãij the image of

{0} ×
i−1
· · · ×{0} × Aij × {0} × · · · × {0} ⊂ (R

n)n−k

under the projection (Rn)n−k → (Rn)n−k/K . Then the mixed volume of the mixed fiber
bodies ML(A

i
0, . . . , A

i
k), i = 1, . . . , n− k, equals the mixed volume of Ãji , i = 0, . . . , k,

j = 1, . . . , n− k.

The proof is by n− k − 1 applications of the equality from Proposition 3.39.
An important special case of a fiber body is a secondary polytope [GKZ94], and

Proposition 3.40 gives a formula for its volume (see e.g. [Or99] for motivation to study
volumes of secondary polytopes). We shall need the following special case.
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Example 3.41. Let A ⊂ Rn be a lattice polytope. For every vertex v of A, let cvA be
the volume of the difference of A and the convex hull of A ∩ Zn \ {v}. If the secondary
polytope of A is 2-dimensional, then its lattice area equals (n+ 1)!VolA− n!

∑
v c

v
A.

Another important special case of a mixed fiber body is the Newton polytope of a sparse
resultant [EKh08], and Proposition 3.40 gives a formula for its volume. This may already
be of interest in the case of the Newton polytope of the determinant, that is, the Birkhoff
polytope (see e.g. [DLLY09] for the study of its volume).

3.8. Proof of the third equation

Let i = (i1, i2, . . .) be a sequence of integers stabilizing at 1 such that ir | ir−1 for every r .

Definition 3.42. An i-forking paths singularity is a plane singularity with i1 distinct reg-
ular branches ϕq1,q2,... : (C, 0)→ (C2, 0), qr = 1, . . . , ir/ir+1, such that the intersection
number of ϕp1,p2,... and ϕq1,q2,... at 0 equals the minimal r such that pr 6= qr .

Lemma 3.43. The Milnor number of an i-forking paths singularity equals µ(i) =
i1
∑
r(ir − 1)− (i1 − 1).

Proof. Perturb the branches of the singularity independently; then the union U of the
perturbations has exactly N =

∑
r
i1
ir

ir (ir−1)
2 nodes. The Euler characteristic of the nor-

malization of U equals i1 and differs by 2N from the desired Euler characteristic of the
Milnor fiber. ut

Proof of Theorem 3.30. We can now prove the following equality, equivalent to the state-
ment of Theorem 3.30. Note that the tropical fan π∗〈s = ∂s/∂x. = 0〉n+1 is the dual fan
of the Newton polytope NA of the Gelfand–Kapranov–Zelevinsky A-discriminant DA.

Proposition 3.44. For a generic lattice polytope B ⊂ RA (that is, every polytope outside
finitely many hypersurfaces in the cone of polytopes), we have

− [NA]
2
[B]|A|−2

− (|A| − 2)[NA][B]
|A|−1

= 〈×〉2[B]
|A|−2

− (|A| − 2)〈×〉1[B]|A|−1

− 〈≺〉2[B]
|A|−2

− δπ∗

(
l ·
〈
s =

∂s

∂x.
= 0

〉
n+1

)
[B]|A|−2.

This is equivalent to Theorem 3.30, because the second terms on both sides cancel with
each other: [NA] = 〈×〉1, and so the multiplier [B]|A|−2 can be cancelled by the non-
degeneracy of the intersection number pairing in the ring K0(ZA) of tropical fans.

Proof of Proposition 3.44. For M ∈ Z, consider the map M : CA → CA, M(
∑
a cax

a)

=
∑
a c

M!
a xa , raising the standard coordinates to a large power. Choose generic polyno-

mials h1, . . . , h|A|−2 ∈ CZA∩B , generic g ∈ CZA∩MNA close to DA ◦M ∈ CZA∩MNA ,
a smooth toric compactification X of CA compatible with the polytopes B and NA, and
denote its big torus by T . Denote the closures of h1 = · · · = h|A|−2 = 0, h1 = · · · =
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h|A|−2 = g = 0 and h1 = · · · = h|A|−2 = DA ◦M = 0 in X by V , C and C̃ respectively.
The smooth curve C̃ is a smoothening of the curve C in the smooth surface V , so we have

e(T ∩ C̃) = e(smooth part of C)+
∑

p∈singC

e
(
T ∩ (Milnor fiber of C at p)

)
where all points of C outside the big torus T are considered singular.

The curve C has the following singularities:

• A2 singularities appear at the points of the intersection of V and the singularity stratum
M−1

{≺} (because the discriminant of the versal deformation of an A2 singularity is
itself an A2 singularity).
• A1 singularities appear at the points of the intersection of V and the multisingularity

stratum M−1
{××}.

• For large M , all singularities of C outside the big torus of X are forking paths singu-
larities (this is not always true for M = 1).

Thus, the previous formula can be rewritten more precisely as follows:

e(T ∩ C̃) = e(smooth part of C)− (the number of A2 singularities of C)

+

∑
p∈T∩singC

e
(
T ∩ (Milnor fiber of C at p)

)
. (1)

As we evaluate the terms of this equality, they turn out to be equal to the respective
terms of the desired equality in the statement.

By the Khovanskii formula [Kh77b], the left hand side of (1) equals

−M!2 · [NA]
2
[B]|A|−2

−M! · (|A| − 2)[NA][B]
|A|−1.

For the first term on the right hand side of (1), we have

e(smooth part of C) = 〈smooth part of C〉|A| = (〈h1 = 0〉 · . . . · 〈h|A|−2 = 0〉 · 〈×〉)|A|

= M!2 · 〈×〉2[B]
|A|−2

−M! · (|A| − 2)〈×〉1[B]|A|−1.

For the second term on the right hand side of (1), the A2 singularities appear at
the points of the intersection of V and the singularity stratum M−1

{≺}, so there are
M!2 · 〈≺〉2[B]

|A|−2 of them.
For the last term of (1), let us describe the forking paths singularities of C in more

detail. For a generic lattice polytope B ⊂ Zn, the tropical fans [B]|A|−2 and [NA] inter-
sect transversally (outside the origin), and the 1-dimensional fan [B]|A|−2

[NA] consists
of finitely many rays with weightsmα ∈ Z and primitive generators λα ∈ (ZA)∗. Consid-
ering λα ∈ (ZA)∗ ∼= ZA as a function A → Z, we can find a linear (but not necessarily
integer-valued!) function γ ′α : Zn → Q such that λα − γ ′α : A → Z attains its maxi-
mum on a certain set Aα ⊂ A that is not the set of vertices of a simplex. Moreover, for a
generic B, such an Aα is unique and is a circuit. Define γα = (λα, γ ′α) ∈ (QA ⊕ Qn)∗.
For r ∈ Z, set iαr = i

(
r−1
M!

)
, where i(·) is as in Definition 3.28 for γ = γα .
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In this notation and under these genericity assumptions for the lattice polytope
B ⊂ RA, the codimension 1 orbit of X corresponding to the covector λα contains
mαM!/i

α
1 singularities of the curve C, and each of them is an (iα1 , i

α
2 , . . .)-forking paths

singularity, all of whose branches are transversal to the orbit. Other orbits of X do not
contain singularities of C. Counting the Euler characteristic of the Milnor fibers of the
forking paths singularities by using Lemma 3.43, we conclude that the last term in (1)
equals −M!2 · δπ∗(l · 〈s = ∂s/∂x. = 0〉n+1)[B]

|A|−2. ut

3.9. Example

We compute the tropical fans of the {××} and {≺}-strata in CA with A as follows:

1

1

We shall describe the cones in QA that we encounter in the process of computation by
drawing coherent subdivisions of the convex hull of A; a coherent subdivision will be the
cone that consists of all γ ∈ QA such that the upper faces F of the convex hull of the
graph of γ : A → Q form the given subdivision. A point a is shown in black or white
depending on whether (γ (a), a) is in F or not, as in [GKZ94].

The right hand side in Theorem 3.25 consists of the cones

−1 · −1 · −1 · −1 · −1 · −1 ·

The right hand side in Theorem 3.26 consists of the cones

−3 · −1 · −2 · −2 · −4 · −4 ·

The fan dπ∗(l · 〈s = ∂s/∂x. = 0〉n+1) consists of the cones

1 · 3 · 1 · 1 · −1 · −1 · −2 ·

Here the last picture denotes the cone that consists of all γ such that Aγ0 is the square
and Aγ1 is the dotted segment. This is the simplest example of a cone of a multisingularity
stratum that cannot be represented as the set of all γ ∈ ZA that induce a given regular
subdivision of A. Although there is only one such cone in our example, most of the cones
are like this for large A. They are not among the cones of Severi varieties, whose weights
are described in [Y13].

The fan (π∗〈s = ∂s/∂x. = 0〉n+1)
2 consists of the cones

8 · 4 · 5 · 5 · 9 · 9 · 2 ·
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See Remark 3.32 on how to compute it. As a result, the tropical fan of the {××}-stratum
consists of the cones

1 · 1 ·

and the tropical fan of the {≺}-stratum consists of the cones

2 · 1 · 1 · 3 · 3 ·

which can be easily verified manually for this example.
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[T10] Tzeng, Y.-J.: A proof of the Göttsche–Yau–Zaslow formula. J. Differential Geom. 90,
439–472 (2012) Zbl 1253.14054 MR 2916043

[V88] Viro, O.: Some integral calculus based on Euler characteristic. In: Topology and
Geometry—Rohlin Seminar, Lecture Notes in Math. 1346, Springer, 127–138 (1988)
Zbl 0686.14019 MR 0970076

[Y13] Yang, J. J.: Tropical Severi varieties. Portugal. Math. 70, 59–91 (2013)
Zbl 1312.14147 MR 3074395

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1087.52006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2096746
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0686.52005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1021549
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1092.14068&format=complete
http://www.ams.org/mathscinet-getitem?mr=2137980
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1103.14034&format=complete
http://www.ams.org/mathscinet-getitem?mr=2275625
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0779.52016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1200289
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0962.14032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1741673
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0513.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0684735
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=34.0699.01&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1300.14065&format=complete
http://www.ams.org/mathscinet-getitem?mr=3044537
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1100.14046&format=complete
http://www.ams.org/mathscinet-getitem?mr=2159589
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1291.14084&format=complete
http://www.ams.org/mathscinet-getitem?mr=2884046
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1105.14073&format=complete
http://www.ams.org/mathscinet-getitem?mr=2259922
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0652.52007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0951205
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0798.05074&format=complete
http://www.ams.org/mathscinet-getitem?mr=1268576
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1157.14038&format=complete
http://www.ams.org/mathscinet-getitem?mr=2407231
http://www.ams.org/mathscinet-getitem?mr=2387885
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1133.13026&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1154.14039&format=complete
http://www.ams.org/mathscinet-getitem?mr=2343384
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1009.52020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1864987
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1272.14045&format=complete
http://www.ams.org/mathscinet-getitem?mr=2923954
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1253.14054&format=complete
http://www.ams.org/mathscinet-getitem?mr=2916043
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0686.14019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0970076
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1312.14147&format=complete
http://www.ams.org/mathscinet-getitem?mr=3074395

	1. Introduction
	1.1. Affine Plücker formulas
	1.2. Affine cohomology ring
	1.3. Affine multisingularity theory
	1.4. Affine characteristic classes
	1.5. Relation to tropical enumeration

	2. Affine characteristic classes
	2.1. Affine intersection theory and characteristic classes
	2.2. Toric intersection theory and tropical fans
	2.3. Tropical characteristic classes
	2.4. Polynomial functions of polytopes
	2.5. Base points at infinity
	2.6. Existence of characteristic classes
	2.7. Characteristic classes of critical complete intersections

	3. Affine Plücker formulas
	3.1. Affine multisingularity theory
	3.2. Relation to tropical correspondence theorems
	3.3. Tropical fan of the discriminant
	3.4. Tropical fan of the () and () strata: the assumptions
	3.5. Tropical fan of the () and () strata: the answer
	3.6. Reduction to the universal case
	3.7. Volume of a fiber body
	3.8. Proof of the third equation
	3.9. Example

	References

