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Abstract. We compare two statements of the refined local Langlands correspondence for con-
nected reductive groups defined over a p-adic field: one involving Kottwitz’s set B(G) of isocrys-
tals with additional structure, and one involving the cohomology set H 1(u → W,Z → G) of
[Kal16b]. We show that if either statement is valid for all connected reductive groups, then so
is the other. We also discuss how the second statement depends on the choice of an element of
H 1(u→ W,Z→ G).
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1. Introduction

The basic form of the local Langlands conjecture predicts a correspondence between
Langlands parameters ϕ for a given connected reductive group G′ defined over a local
field F and finite sets5ϕ(G′) of irreducible admissible representations of the topological
group G′(F ). Refinements of this conjecture give a description of the elements of 5ϕ .
When the group G′ is not quasi-split, these refinements involve the choice of realization
of G′ as an inner form of a quasi-split group G, as well as further objects of Galois-
cohomological nature. More precisely, one fixes a quasi-split group G and an inner twist
ψ : G → G′. Then σ 7→ ψ−1σ(ψ) is a 1-cocycle of the absolute Galois group of F
with values in the adjoint group ofG. To state the refined local Langlands conjecture, one
needs to fix a lift of this 1-cocycle to a 1-cocycle of a certain modification of the Galois
group of F with values in G, rather than its adjoint quotient.

One statement of the refined local Langlands conjecture uses Kottwitz’s set B(G) of
isocrystals withG-structure [Kot85], [Kot97], [Kot], and in particular the subset B(G)bas
of basic isocrystals, to provide a lift [xiso] ∈ B(G)bas of ψ−1σ(ψ). This statement will be
referred to as LLCiso(ψ, xiso) in this paper (for the purposes of the introduction, we will
be vague about the difference between the 1-cocycle xiso and its cohomology class [xiso]).
We will denote by LLCiso the totality of all statements LLCiso(ψ, [xiso]) for all possible
quasi-split groups G, inner twists ψ : G→ G′, and lifts [xiso] ∈ B(G)bas of ψ−1σ(ψ).

The statement LLCiso(ψ, xiso) is formulated in [Kal14, §2.4] for discrete parameters
(see also [Rap95, §5]), and in [KMSW, §1.6.1] for tempered parameters of unitary groups.
A general formulation can be found in [Kal16a, §2.5]. The set B(G) occurs naturally
in the study of Shimura varieties and Rapoport–Zink spaces. A conjecture of Kottwitz
[Rap95, Conjecture 5.1] describes the contribution of cuspidal L-packets to the coho-
mology of Rapoport–Zink spaces in terms of the parameterization given by LLCiso. This
makes LLCiso well suited for the study of these geometric objects and conversely hints at
the possibility of finding a proof of LLCiso by studying Rapoport–Zink spaces and their
generalizations. A conjectural program for this was recently announced by Fargues [Far],
building on his description of vector bundles on the Fargues–Fontaine curve [FF] and ideas
of Scholze. At the same time, this statement of the local Langlands conjecture has the dis-
advantage of not being available for all connected reductive groups, because the 1-cocycle
ψ−1σ(ψ)may fail to lift to an element of B(G)bas. This is not a problem when the center
ofG is connected, but it is a significant problem whenG is simply connected, for example.
A further disadvantage of LLCiso is that it is unclear how it relates to Arthur’s work on
the stabilization of the trace formula for groups which do not satisfy the Hasse principle.

Another statement of the refined local Langlands conjecture uses the cohomology set
H 1(u → W,Z(G) → G) defined in [Kal16b] to provide a lift [xrig] of ψ−1σ(ψ). This
statement, which we will call LLCrig(ψ, xrig) in this paper, is available for all connected
reductive groups (without assumption on the center). There is an explicit connection be-
tween it and the stabilization of the Arthur–Selberg trace formula [Kal]. It has been fur-
thermore shown [Kal16b, §5.6] that when the ground field is R this statement is true and
that the setH 1(u→ W,Z(G)→ G) is in canonical bijection with the set of equivalence
classes of strong real forms of G due to Adams–Barbasch–Vogan [ABV92]. However, it
is not clear how LLCrig relates to the cohomology of Rapoport–Zink spaces.
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Our main goal in this paper is to compare the statements LLCiso and LLCrig, thereby
building a bridge between the stable Arthur–Selberg trace formula and the cohomology
of Rapoport–Zink spaces, and in particular Fargues’ conjectural program. We expect that
this bridge will be useful in both ways. In one direction, it will facilitate applications
of the trace formula to the study of Shimura varieties and their local analogs. In the
other direction, it will transfer potential results of Fargues’ program to the setting of
the trace formula and also to the setting of arbitrary connected reductive groups without
assumptions on their center.

The comparison of the two statements is based on a comparison of the cohomology
sets B(G)bas andH 1(u→ W,Z(G)→ G). The set B(G)was initially defined as a set of
Frobenius-twisted conjugacy classes in the group G [Kot85] and was later reinterpreted
as the cohomology of a certain Galois gerbe with values in G, initially in the case of tori
in [Kot97, §8], and then later in general in [Kot]. The set H 1(u→ W,Z(G)→ G) was
defined directly using Galois gerbes [Kal16b, §3]. The two Galois gerbes underlying
B(G) and H 1(u→ W,Z(G)→ G) are of quite different nature. The one for B(G) is
bound by a split pro-torus, while the one for H 1(u→ W,Z(G)→ G) is bound by a
profinite multiplicative group which is far from being split and whose character module
encodes the arithmetic of the ground field F . For this reason, we did not initially expect
that there can be any reasonable comparison between the two. However, it turns out that
a certain universal property of the profinite multiplicative group that binds the gerbe of
[Kal16b] is responsible for the existence of an essentially unique homomorphism between
the two gerbes. This homomorphism leads in turn to a comparison map B(G)bas →

H 1(u → W,Z(G) → G). The comparison map is in general neither injective, nor
surjective. For example we have B(Gm)bas = Z and H 1(u → W,Gm → Gm) = 0,
while for a 1-dimensional anisotropic torus S we have B(S)bas = H

1(0, S) = Z/2Z and
H 1(u→ W,S → S) = Q/2Z. In general, there is a simple description of the comparison
map B(G)bas → H 1(u → W,Z(G) → G) in terms of generalized Tate–Nakayama
duality. This description plays a central role in the comparison between LLCiso and LLCrig.

We will now describe the structure of this paper. The reader who wishes a more general
introduction to the different statements of the refined local Langlands conjecture and the
problems presented by non-quasi-split groups might find the survey [Kal16a] useful. The
comparison of the cohomology sets B(G)bas and H 1(u→ W,Z(G)→ G) is done in
Section 3. In Section 4 we briefly recall the statements LLCiso(ψ, xiso) and LLCrig(ψ, xrig)

for a fixed inner twist ψ : G→ G′ of a quasi-split connected reductive group G. They
depend on the choice of lifts [xiso] ∈ B(G)bas and [xrig] ∈ H

1(u→ W,Z(G)→ G) of
the class of ψ−1σ(ψ). The lift [xiso] will not always exist, but in Section 4 we assume
that it does. We then give a comparison between LLCiso(ψ, xiso) and LLCrig(ψ, xrig).
The backbone of this comparison is the map B(G)bas → H 1(u → W,Z(G) → G)

studied in Section 3. The comparison is given by an explicit formula and can be cal-
culated explicitly for any given example. A consequence of this comparison is that the
statements LLCiso(ψ, xiso) and LLCrig(ψ, xrig) are equivalent.

In particular, once LLCrig(ψ, xrig) is proved for all ψ and all [xrig], it implies
LLCiso(ψ, xiso) for all ψ and all xiso. This establishes the implication LLCrig ⇒ LLCiso.
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We also want to obtain the converse implication, but the fact that ψ−1σ(ψ) does not
always lift to B(G)bas necessitates further work, which is done in Sections 5 and 6.

In Section 5 we deal with the problem that the comparison of Section 4 was done un-
der the assumption that ψ−1σ(ψ) lifts to B(G)bas. This assumption cannot be removed
and the way we deal with it is necessarily roundabout. Namely, given a connected reduc-
tive groupGwe introduce a procedure that embedsG into a connected reductive groupGz
with connected center and comparable representation theory and endoscopy. The idea for
this procedure is due to Kottwitz and was communicated verbally to the author some
years ago. This procedure, which we call z-embedding, is formalized and generalized in
Subsection 5.1, where we also study its implications to representations, endoscopy, and
inner twistings. In particular, to any inner twist ψ : G→ G′ there is an associated inner
twist ψz : Gz → G′z of z-embeddings. The natural map H 1(u → W,Z(G) → G) →

H 1(u → W,Z(Gz) → Gz) is bijective. Let [xrig] ∈ H
1(u → W,Z(G) → G) lift

the class of ψ−1σ(ψ) = ψ−1
z σ(ψz). We show that the statements LLCrig(ψ, xrig) and

LLCrig(ψz, xrig) are equivalent.
A consequence of the results of Sections 4 and 5 is the following. Let [xiso] ∈

B(Gz)bas be a lift of ψ−1σ(ψ) = ψ−1
z σ(ψz). It exists since Z(Gz) is connected. Let

[xrig] ∈ H
1(u → W,Z(Gz) → Gz) = H 1(u → W,Z(G) → G) be its image under

the comparison map B(Gz)bas → H 1(u → W,Z(Gz) → Gz). Then the statements
LLCiso(ψz, xiso) and LLCrig(ψ, xrig) are equivalent. In other words, once the statement
LLCiso(ψ̃, x̃iso) is proved for every inner twist ψ̃ : G̃→ G̃′ of a quasi-split connected re-
ductive group G̃with connected center, and some [xiso] ∈ B(G̃)bas lifting ψ−1σ(ψ), then
this implies the validity of the statement LLCrig(ψ, xrig) for every inner twistψ : G→ G′

of a quasi-split connected reductive groupG, without assumptions on the center, and some
[xrig] ∈ H

1(u→ W,Z(G)→ G) lifting ψ−1σ(ψ).
In order to complete the proof of the implication LLCiso ⇒ LLCrig, we must

now show that if [x1,rig], [x2,rig] ∈ H 1(u → W,Z(G) → G) both lift the class of
ψ−1σ(ψ), then the statements LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig) are equivalent.
This is done in Section 6. We give an explicit relationship between LLCrig(ψ, x1,rig) and
LLCrig(ψ, x2,rig). The experience of [KMSW] has shown that such a relationship is of
interest in its own right. For example, it would be useful when one proves LLCrig(ψ, xrig)

using the trace formula and the local-global methods of [Kal].

2. Notation

Throughout this paper, F will denote a p-adic field, i.e. a finite extension of the field Qp of
p-adic numbers. We fix an algebraic closure F of F and let 0 denote the absolute Galois
group of F/F andWF the absolute Weil group. We will writeLF for the Langlands group
of F , which we can interpret either as the product WF × SL2(C) or as WF × SU2(R).

Given a group scheme G defined over F we will denote by G× E its base change to
an extension E of F . Given an abelian group G, we will write G[n] for the subgroup of
n-torsion points, and G[tor] for the torsion subgroup of G. Given a topological group G
we will write GD for the group of continuous homomorphisms G→ C×.
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3. Comparison of the cohomology of two Galois gerbes

The purpose of this section is to construct for any affine algebraic group G a comparison
map B(G)bas → H 1(u → W,Z(G) → G), where B(G)bas is the set of isomorphism
classes of basic isocrystals with G-structure [Kot85], and H 1(u→ W,Z(G)→ G) is a
variant of the cohomology set introduced in [Kal16b]. We will first review each of these
sets from a point of view that is slightly different than their original definition.

3.1. Review of B(G)

Let G be an affine algebraic group. In [Kot85], Kottwitz studies the set B(G) of Frobe-
nius-twisted conjugacy classes of elements of G(L), where L is the completion of the
maximal unramified extension of F . This set can also be described as the set of continuous
cohomology classes ofWF with values inG(L) [Kot97, §1.4], or as the set of continuous
cohomology classes of a certain Galois gerbe with values in G(F) [Kot97, §8], [Kot].

In this subsection we will review the set B(G), as well as a certain subset of it called
B(G)bas. We will give a slightly different construction, again in terms of Galois gerbes,
but closer in spirit to the point of view of [Kal16b].

We begin by recalling the pro-torus D = DF defined in [Kot]. Consider the contravari-
ant functor 8 from the category of all finite Galois extensions of F contained in F with
morphisms given by F -algebra homomorphisms, to the category of affine group schemes
over F , defined to send every extension E/F to the split one-dimensional torus Gm and
every homomorphism E → K to the [K : E]-power map. The pro-torus D is defined
as the limit of 8. We claim that the group H 2(0,D(F )) has a distinguished element. To
construct it, we will introduce a variation of the construction of D that will be useful later
as well. Consider the functor 8′ between the same categories as 8, but now defined by
8′(E/F) = µ[E:F ] and 8′(E → K) = ( )[K:E] : µ[K:F ] → µ[E:F ]. Let µ be the limit
of 8′. If we identify H 2(0, µn(F )) = Z/nZ via local class field theory, then according
to [NSW08, Corollary 2.7.6], we have

H 2(0, µ(F )) = lim
←−
n

H 2(0, µn(F )) = Ẑ.

We have the obvious map µ → D, and the image of 1 ∈ Ẑ under this map is the distin-
guished element of H 2(0,D(F )).

Let
1→ D(F )→ E → 0→ 1 (3.1)

be an extension corresponding to the distinguished class. The topological group E acts
on the discrete group G(F) via the map E → 0 and we consider the cohomology
set H 1(E,G(F )). The restriction of an element of this set to D is a 0-invariant G(F)-
conjugacy class of continuous group homomorphisms D(F ) → G(F). The set B(G) is
defined to be the subset ofH 1(E,G(F )) consisting of those classes whose restriction to D
is given by algebraic homomorphisms D→ G. The smaller set B(G)bas consists of those
elements of B(G) for which the restriction to D(F ) consists of homomorphisms taking
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image in Z(G). Then the G(F)-conjugacy class of these homomorphisms consists of a
single element, and this element is 0-fixed, i.e. it is an element of HomF (D, Z(G)).

We note that, while this construction of B(G) and B(G)bas used a specific choice
of the extension E within the isomorphism class given by the distinguished element of
H 2(0,D(F )), the result is in fact independent of this choice up to a unique isomor-
phism. It is clear that if E ′ is another extension in the same isomorphism class and if
we fix an isomorphism f : E ′ → E , then composing 1-cocycles with f provides a bi-
jection H 1(E,G(F )) → H 1(E ′,G(F )) and this bijection identifies the corresponding
versions of B(G) and B(G)bas. We claim now that this bijection does not depend on
the choice of f . A second such isomorphism has the form f ′(e) = f (e) · x(σe), where
x ∈ Z1(0,D(F )) and σe ∈ 0 is the image of e. For any z ∈ Z1(E,G(F )) we have
z(f ′(e)) = z(f (e) · x(σe)) = z(f (e)) · z(x(σe)). The restriction z|D factors through the
projection D → 8(E/F) = Gm for a suitable finite extension E/F . By Hilbert’s The-
orem 90 the composition of x with the projection D → Gm is a coboundary, and hence
e 7→ z(x(σe)) is itself a coboundary.

Now let G = S be a torus. Then we trivially have B(S) = B(S)bas. The restriction of
an element of B(S) to the pro-torus D is an element of HomF (D, S) = Hom(X∗(S),Q)0
= [X∗(S)⊗Q]0 . Thus restriction provides a map

B(S)→ [X∗(S)⊗Q]0 (3.2)

which is sometimes called the Newton map. The kernel of the Newton map is equal to the
image of the inflation H 1(0, S) → B(S). Furthermore, Kottwitz constructs a functorial
isomorphism

X∗(S)0 → B(S). (3.3)

The composition of this isomorphism with the Newton map is given by

N� : X∗(S)0 → [X
∗(S)⊗Q]0, y 7→ [E : F ]−1NE/F (y),

where E/F is any finite Galois extension that splits S. Altogether we obtain the commu-
tative diagram with exact rows

0 // H 1(0, S) // B(S) // HomF (D, S)0

0 // X∗(S)0[tor] //

TN

OO

X∗(S)0
N� //

(3.3)

OO

[X∗(S)⊗Q]0

(3.4)

where TN is the Tate–Nakayama isomorphism. The isomorphism (3.3) can be phrased
as a duality statement. If Ŝ = X∗(S) ⊗ C× denotes the complex torus dual to S, then
X∗(Ŝ0) = X∗(S)0 , and thus (3.3) becomes the duality pairing

Ŝ0 ⊗ B(S)→ C×. (3.5)

This duality in turn generalizes to the case where G is a connected reductive group. In
that case, we have the duality

Z(Ĝ)0 ⊗ B(G)bas → C×. (3.6)
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3.2. Review of H 1(u→ W,Z→ G)

We will now give a short review of the cohomology set H 1(u → W,Z → G) intro-
duced in [Kal16b] for an affine algebraic group G and a multiplicative finite central
subgroup Z, both defined over F . Consider the functor 8′′ from the category of finite
Galois extensions of F contained in F to the category of affine group schemes over F
that sends the object E/F to uE/F = ResE/Fµ[E:F ]/µ[E:F ] and the morphism E → K

to the map uK/F → uE/F that assigns to f ∈ uK/F the function σ 7→
∏
τ 7→σ f (τ)

m/n.
Here µ[E:F ] is the group scheme of roots of unity of order [E : F ], which we can think
of as being defined either over F or over E. Moreover, we are using the interpretation
ResE/Fµ[E:F ](F ) = Maps(0E/F , µ[E:F ](F )), and we are seeing µ[E:F ] as embedded
diagonally into ResE/Fµ[E:F ]. Let u be the limit of this functor. It is a multiplicative
profinite algebraic group. According to [Kal16b, Theorem 3.1] we have H 1(0, u) = 0
and H 2(0, u) = Ẑ. Let

1→ u(F )→ W → 0→ 1 (3.7)

be an extension corresponding to the element −1 ∈ Ẑ = H 2(0, u). As in the pre-
vious subsection we can consider the cohomology set H 1(W,G(F)) and we define
H 1(u→ W,Z → G) to be the subset of those cohomology classes whose restriction to
u(F ) takes image in Z. Then this restriction is the composition of the natural projection
u(F )→ uE/F (F ) for some E/F with a group homomorphism uE/F (F )→ Z(F). This
composition is automatically an element of HomF (u, Z). The set H 1(u→ W,Z → G)

is independent of the choice of W up to a unique isomorphism due to the vanishing
of H 1(0, u).

For the purposes of comparing with B(G)bas we define, for any multiplicative central
subgroup Z ⊂ G defined over F (but not necessarily finite),

H 1(u→ W,Z→ G) = lim
−→
Z′

H 1(u→ W,Z′→ G) (3.8)

where Z′ runs over all finite subgroups of Z defined over F .
Let S = G be a torus and Z ⊂ S a finite subgroup. Restricting an element

of H 1(u → W,Z → S) to the group u provides an element of Hom(u, Z)0 =
Hom(X∗(Z),Q/Z). There is a functorial isomorphism

Ȳ

IY
[tor] → H 1(u→ W,Z→ S), (3.9)

where Ȳ = X∗(S/Z), Y = X∗(S), and IY = 〈σ(y)−y | y ∈ Y, σ ∈ 0〉. Taking the limit
over all finite subgroups Z of S we obtain a restriction map H 1(u → W,S → S) →

Hom(u, S)0 = Hom(X∗(S),Q/Z) and a functorial isomorphism (Y ⊗ Q/IY )[tor] →
H 1(u→ W,S → S). Altogether we obtain a commutative diagram with exact rows

0 // H 1(0, S) // H 1(u→ W,S → S) // HomF (u, S)

0 // Y
IY
[tor]

TN

OO

// Y⊗Q
IY
[tor]

(3.9)

OO

// Y⊗Q
Y

(3.10)
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Again we can phrase the isomorphism (3.9) as a duality pairing. Indeed, let ̂̄S → Ŝ be the
universal cover of Ŝ, that is, the projective limit of all tori Ŝ′ that are finite covers of Ŝ.
Let [̂S̄]+ be the preimage in ̂̄S of Ŝ0 , which can also be identified with the projective limit
of [Ŝ′]+, the latter being the preimage in Ŝ′ of Ŝ0 . Moreover, let [̂S̄]+,◦ be the projective

limit of [Ŝ′]+,◦, and define [̂S̄]0,◦ analogously. We have the chain of subgroups [̂S̄]+,◦ =
[̂S̄]0,◦ ⊂ [̂S̄]0 ⊂ [̂S̄]+ and the equalities π0([̂S̄]

+) = lim
←−

π0([Ŝ
′
]
+), X∗(̂S̄) = Y ⊗ Q,

and Y⊗Q
IY
[tor] = X∗(π0([̂S̄]

+)). The isomorphism (3.9) becomes the duality pairing

π0([̂S̄]
+)⊗H 1(u→ W,S → S)→ C×. (3.11)

This duality pairing again generalizes to the case of a connected reductive groupG. Let Ĝ
be the complex Langlands dual group of G and let ̂̄G be the projective limit of all central
isogenies with target Ĝ. Defining Z(̂̄G)+ to be the preimage of Z(Ĝ)0 we again obtain

the tower of subgroups Z(̂̄G)+,◦ = Z(̂̄G)0,◦ ⊂ Z(̂̄G)0 ⊂ Z(̂̄G)+. We have the duality
pairing

π0(Z(
̂̄G)+)⊗H 1(u→ W,Z(G)→ G)→ C×. (3.12)

3.3. A comparison map B(G)bas → H 1(u→ W,Z(G)→ G)

According to [Kal16b, Proposition 3.2] there exists a unique φn ∈ HomF (u, µn) with
the property that the image of −1 ∈ Ẑ = H 2(0, u) under φn is equal to 1 ∈ Z/nZ =
H 2(0, µn). For two natural numbers n |m, the composition of φm with ( )m/n : µm→ µn

is equal to φn. Thus we obtain φ ∈ HomF (u, µ), which sends −1 ∈ Ẑ = H 2(0, u) to
1 ∈ Ẑ = H 2(0, µ). We compose φ with the obvious map µ → D and denote the result
again by φ ∈ HomF (u,D). We can then realize the extension (3.1) as the push-out of the
extension (3.7) along φ, i.e.

1 // u //

φ

��

W //

��

0 // 1

1 // D // E // 0 // 1

(3.13)

Composing 1-cocycles with the homomorphism W → E provides a map

B(G)bas → H 1(u→ W,Z(G)→ G). (3.14)

Note that when G is a torus, this map is a homomorphism of abelian groups and
is moreover functorial. For general G, the map is a map of sets. It does not make
sense to ask for its functoriality, because the assignments G 7→ B(G)bas and G 7→
H 1(u→ W,Z(G)→ G) are not functors.

We will now discuss how the map (3.14) translates under the isomorphisms (3.3) and
(3.9), as well as under the dualities (3.6) and (3.12).
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Lemma 3.1. Let E/F be a finite Galois extension and n a divisor of [E : F ]. Consider
the map

ResE/F µ[E:F ]
−NE/F
−−−−→ µ[E:F ]

( )[E:F ]/n

−−−−−→ µn.

This map descends to uE/F and its composition with the natural projection u → uE/F
equals φn.

Proof. We have H 2(0,ResE/F µ[E:F ]) = H 2(0E, µ[E:F ]) = Z/[E : F ]Z. The
image of −1 ∈ Ẑ = H 2(0, u) in H 2(0, uE/F ) is equal to the image of −1 ∈
Z/[E : F ]Z = H 2(0,ResE/F µ[E:F ]) there. The lemma will be proved once we show
that the map in the statement of the lemma maps −1 ∈ Z/[E : F ]Z to 1 ∈ Z/nZ =
H 2(0, µn).

The composition of the isomorphism H 2(0E, µ[E:F ]) ∼= H
2(0,ResE/F µ[E:F ]) with

NE/F is equal to the corestriction map. The composition

Z/[E : F ]Z = H 2(0E, µ[E:F ])
cor
−→ H 2(0, µ[E:F ]) = Z/[E : F ]Z,

where we have used the local reciprocity maps for the fields E and F , respectively, is
equal to the identity. This completes the proof. ut

Proposition 3.2. Let S be a torus. The composition of (3.14) for G = S with the iso-
morphisms (3.3) and (3.9) is given by

Y

IY
→

Y ⊗Q
IY
[tor], y 7→ y −N�(y).

Proof. Let us denote by α the composition we are studying, and by β the displayed map.
Both of these are functorial homomorphisms and our goal is to show that they are equal.
Taking a look at diagrams (3.4) and (3.10) we note that both α and β identify the copies of
Y
IY
[tor] embedded into their source and target: For α this follows from the fact that (3.14)

identifies the copies of H 1(0, S) in B(S) and H 1(u → W,S → S) and both (3.3) and
(3.9) restrict to the classical Tate–Nakayama isomorphism on Y

IY
[tor]; for β this follows

from the fact that Y
IY
[tor] = ker(NE/F : Y → Y )/IY . This leads to the diagram

0 // Y
IY
[tor] // Y

IY

N� //

β

��

α

��

[Y ⊗Q]0

γ

��

0 // Y
IY
[tor] // Y⊗Q

IY
[tor] // Y⊗Q

Y

We claim that if γ is given by multiplication by−1, followed by the inclusion [Y⊗Q]0 →
Y ⊗Q, followed by the projection Y ⊗Q→ Y ⊗Q/Y , then the diagram commutes with
both α and β. In the case of β this is obvious, because the image of β(y) = y − N�(y)
in Y ⊗Q/Y is equal to −N�(y) and thus coincides with the image of N�(y) under γ . In
the case of α we take y ∈ Y and send it via (3.3) to an element by ∈ B(S). The restriction
of by to D is the element of Hom(D, S)0 = [Y ⊗ Q]0 given by N�(y) according to
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diagram (3.4). The image of this element under γ is then −N�(y) ∈ Y ⊗ Q/Y . On
the other hand, let cy ∈ H 1(u → W,S → S) be the image of by under (3.14). Then
cy |u = φ ◦ by |D. To describe this, we use Lemma 3.1. It tells us that the dual of φn is the
map Z/nZ→ (Z/[E : F ]Z)[0E/F ] that sends 1 ∈ Z/nZ to −([E : F ]/n)

∑
σ∈0E/F

[σ ].
If we identify X∗(u) = Q[0] and X∗(D) = Q, this means that the dual of φ is the
composition

Q→ Q→ Q/Z→ Q/Z[0]
of the negation, the natural projection, and the diagonal embedding. Hence composing
by |D with φ is the same as sending N�(y) under

[Y ⊗Q]0 = Hom(X,Q)0 → Hom(X,Q/Z[0])0 =
Y ⊗Q
Y

,

the result of which is −N�(y).
We have thus proved the commutativity of the above diagram for both α and β. This

proves the lemma for all tori S for which Y/IY [tor] = 0. In particular, the lemma is
proved for induced tori. The general case can be easily reduced to the case of induced
tori using the functoriality of α and β. Indeed, let S be any torus and let E/F be a finite
extension splitting S. Then Y is a finitely generated Z[0E/F ]-module and we choose a
free Z[0E/F ]-module Ỹ with a surjection Ỹ → Y . If S̃ is the torus with X∗(S̃) = Ỹ we
obtain a surjection of tori S̃ → S. According to [Kot, Proposition 10.4] the natural map
B(S̃) → B(S) is surjective. This, together with the equality α

S̃
= β

S̃
that we have just

shown, implies αS = βS . ut

Let now G be a connected reductive group defined over F . In order to discuss how the
comparison map (3.14) translates under the dualities (3.6) and (3.12) we need a conve-
nient presentation of the cover ̂̄G. For this, let Zn ⊂ Z(G) be the preimage in Z(G) of
(Z(G)/Z(Gder))[n]. Then the Zn form an exhaustive tower of finite subgroups of Z(G).
Set Gn = G/Zn. Then Gn = Gad × Z(Gn) with Z(Gn) = Z(G1)/Z(G1)[n], and
Z(G1) = Z(G)/Z(Gder). Note that Z(G1), and hence also Z(Gn), is a torus. Dually we
obtain

Ĝn = Ĝsc × Ĉn

where Ĉn is the torus dual to Z(Gn). Since Z(G1) = G/Gder is the maximal torus quo-
tient of G, its dual Ĉ1 is the maximal normal torus in Ĝ, i.e. Z(Ĝ)◦. It will be convenient
to identify Ĉn = Ĉ1. Then the map Ĉm → Ĉn becomes the m/n-power map on Ĉ1. We
obtain ̂̄G = lim

←−
Ĝn = Ĝsc × Ĉ∞, Ĉ∞ = lim

←−
Ĉn.

Elements ofZ(̂̄G) can thus be written as tuples (a, (bn)n), where a ∈ Z(Ĝsc) and bn ∈ Ĉ1

with bm/nm = bn for n |m. We make explicit the condition of (a, (bn)n) to belong to each
of the subgroups Z(̂̄G)+,◦ = Z(̂̄G)0,◦ ⊂ Z(̂̄G)0 ⊂ Z(̂̄G)+ as follows. To be in Z(̂̄G)+, a
tuple (a, (bn)n)must have a 0-fixed image in Z(Ĝ). This image is simply ader ·b1, where
ader is the image of a in Z(Ĝder). The condition of belonging to Z(̂̄G)0 is a ∈ Z(Ĝsc)

0

and bn ∈ Ĉ01 . The condition of belonging toZ(̂̄G)+,◦ = Z(̂̄G)0,◦ is a = 1 and bn ∈ Ĉ
0,◦
1 .
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Proposition 3.3. Under the dualities (3.6) and (3.12), the comparison map (3.14) is
translated to the map

π0((Z(Gsc)× Ĉ∞)
+)→ Z(Ĝ)0 (3.15)

sending a tuple (a, (bn)n) with a ∈ Z(Gsc) and bn ∈ Ĉn to

ader · b1

NE/F (b[E:F ])

for a sufficiently large finite Galois extension E/F .

Before we give the proof, let us note that this map is well-defined. By assumption,
ader · b1 ∈ Z(Ĝ)

0 , and moreover NE/F (b[E:F ]) ∈ Z(Ĝ)0 , so the image of this map
does belong to Z(Ĝ)0 . The term NE/F (b[E:F ]) is independent of the choice of E/F pro-
vided 0E acts trivially on Ĉ1. Finally, if (a, (bn)n) ∈ Z(̂̄G)+,◦, then a = 1 and bn ∈ Ĉ

0,◦
1 .

Therefore NE/F (b[E:F ]) = b
[E:F ]
[E:F ] = b1, so the image of (a, (bn)n) is indeed equal to 1.

Proof of Proposition 3.3. Let S⊂G be an elliptic maximal torus. Then for each b∈B(S)
the restriction b|D takes values in Z(G), because D is a split pro-torus. It follows that
(3.14) maps B(S) to the subgroup H 1(u → W,Z(G) → S) of H 1(u → W,S → S).
We can write this subgroup as the colimit

H 1(u→ W,Z(G)→ S) = lim
−→
n

H 1(u→ W,Zn→ S)

where Zn ⊂ Z(G) is as above. We can describe the subgroup of Y⊗Q
IY
[tor] to which

H 1(u → W,Z(G) → S) corresponds under the isomorphism (3.9) as follows. The
quotient Sn = S/Zn is an elliptic maximal torus of Gn and equals Sad × Z(Gn). Thus
X∗(Sn) = X∗(Sad)⊕

1
n
X∗(Z(G1)) and if we let S̄ = lim

−→
Sn, then we get

Ȳ = X∗(S̄) = X∗(Sad)⊕X∗(Z(G1))⊗Q ⊂ Y ⊗Q.

Now let y ∈ Y and consider the element y − N�(y) ∈ Y ⊗ Q that is the image of y
under the map of Proposition 3.2. Since S is elliptic, we have N�(y) ∈ [X∗(S)⊗Q]0 =
[X∗(Z(G)) ⊗ Q]0 . Under the natural pairing between X∗(S) and X∗(S) the element
N�(y) thus annihilatesX∗(Sad)⊗Q, which implies that its image inX∗(Sad)⊗Q is zero.
It follows that in the decomposition Y ⊗Q = X∗(Sad)⊗Q⊕X∗(Z(G))⊗Q the element
y −N�(y) ∈ Y ⊗Q has the coordinates (y, y −N�(y)). The map

Y → Ȳ , y 7→ (y, y −N�(y)),

dualizes to the map

Ŝsc × Ĉ∞→ Ŝ, (a, (bn)) 7→
ader · b1

NE/F (b[E:F ])
.

To complete the proof, we use [Kot85, Proposition 5.3], which says that the image ofB(S)
in B(G) equals B(G)bas, together with the fact that the map B(S) → B(G)bas dualizes
under (3.6) to the inclusion Z(Ĝ)0 → Ŝ0 , while the map H 1(u → W,Z(G) → S) →

H 1(u→W,Z(G)→G) dualizes under (3.12) to the inclusion π0(Z(
̂̄G)+)→π0([̂S̄]

+).
ut
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4. The relationship between LLCrig and LLCiso

Let G be a quasi-split connected reductive group defined over F . Let ψ : G → G′ be
an inner twist. In this section we are going to compare two different statements of the
refined local Langlands correspondence for G′. One is based on Kottwitz’s cohomology
set B(G) of isocrystals withG-structure and is formulated in [Kal14, §2.4]; we shall refer
to it as LLCiso. The other one is based on the cohomology set H 1(u→ W,Z(G)→ G)

and is formulated in [Kal16b, §5.4]; we will call it LLCrig.
The statement LLCiso is defined for the given inner twist ψ if and only if the class in

H 1(0,Gad) of the 1-cocycle ψ−1σ(ψ) belongs to the image of the natural map B(G)bas
→ H 1(0,Gad). This map is surjective when Z(G) is connected, thanks to [Kot, Propo-
sition 10.4], and in this case LLCiso is always defined. In this section we will not assume
that Z(G) is connected, but instead we will assume that the class of ψ−1σ(ψ) does lift
to B(G)bas, so that LLCiso is defined and we can compare it to LLCrig. In the case when
ψ−1σ(ψ) does not lift to B(G)bas, only the statement LLCrig is defined. In the next sec-
tion we will establish results which allow us to compare LLCrig for the inner twist ψ to
LLCiso for a different group, for which it is defined.

4.1. Review of LLCrig and LLCiso

We will give here a brief review of the two formulations in order to establish the necessary
notation. The reader may wish to consult the expository note [Kal16a] as well as [Kal14]
and [Kal16b] for further details. The language we will use here is slightly different than
in these references. This is done in order to emphasize the formal similarity of the two
statements and facilitate their comparison. At the same time, we hope that the slightly
different presentation given here can help to further illuminate the statements.

Let ϕ : LF → LG be a tempered Langlands parameter. Set Sϕ = Cent(ϕ, Ĝ). The
basic form of the local Langlands conjecture asserts the existence of an L-packet5ϕ(G′)
of irreducible tempered representations of G′(F ). The two statements of the refined lo-
cal Langlands conjecture we will review provide a parameterization of 5ϕ(G′) and a
description of its endoscopic transfer. They both depend on the choice of a Whittaker
datum w for G as well as on the choice of a certain 1-cocycle that lifts the 1-cocycle
ψ−1σ(ψ) ∈ Z1(0,Gad).

We recall that an endoscopic datum for G is a tuple e = (H,H, s, ξ) consisting
of a quasi-split connected reductive group H , a split extension H of Ĥ by WF such
that the homomorphism WF → Out(Ĥ ) that it induces coincides under the canonical
isomorphism Out(H) = Out(Ĥ ) with the homomorphism 0 → Out(H) given by the
rational structure of H , an element s ∈ Z(Ĥ )0 , and an L-embedding ξ : H → LG that
identifies Ĥ with Cent(ξ(s), Ĝ)◦.

Given a semisimple element s ∈ Sϕ , the pair (s, ϕ) leads to an endoscopic datum e
as follows. Set Ĥ = Cent(s, Ĝ)◦, H = Ĥ · ϕ(WF ), and ξ = id. The image of ϕ is now
trivially contained in H.

We also recall that a z-pair for e is a tuple z = (H1, ξ1) consisting of a z-extension
H1 of H and an L-embedding ξ1 : H→ LH1 that extends the embedding Ĥ → Ĥ1 dual
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to the projection H1 → H . Note that if we compose ϕ with ξ1, we obtain a tempered
Langlands parameter for H1.

In what follows we will use the normalization of the transfer factor 1′w described
in [KS, (5.5.2)]. It is a function that takes as arguments an element γ1 ∈ H1(F ) and
an element δ ∈ G(F), both strongly regular semisimple. We will also use a theorem of
Steinberg which asserts that for any strongly regular semisimple δ′ ∈ G′(F ) there exists
δ ∈ G(F) that is stably conjugate to δ′, by which we mean that the G(F)-conjugacy
classes of δ and ψ−1(δ′) coincide. See [PR94, Proposition 6.19], which is to be applied
to S′der = Cent(δ,G′der).

The statement of LLCiso involves the choice of an algebraic 1-cocycle xiso : E → G

such that the image of xiso in Z1(0,Gad) is equal to the 1-cocycle σ 7→ ψ−1σ(ψ).
While such a 1-cocycle may not exist in general, we are operating in this section under
the assumption that it does. The pair (ψ, xiso) is then called an extended pure inner twist.
The duality (3.6) turns the cohomology class [xiso] into a character 〈[xiso],−〉 of Z(Ĝ)0 .

Let δ ∈ G(F) and δ′ ∈ G′(F ) be strongly regular semisimple elements and assume
that they are stably conjugate. For any g ∈ G(F) with δ′ = ψ(gδg−1) the 1-cocycle

E → G, e 7→ g−1xiso(e)σe(g),

takes values in S = Cent(δ,G). Its class is independent of the choice of g and will be
denoted by inv[xiso](δ, δ

′) ∈ B(S). Here σe ∈ 0 is the image of e ∈ E under the natural
projection E → 0.

We now recall the normalization 1′[w, e, z, (ψ, xiso)] of the Langlands–Shelstad
transfer factor for the group G′ from [Kal14, §2.3]. Let γ1 ∈ H1(F ) and δ′ ∈ G′(F )
be strongly regular related elements. Write γ ∈ H(F) for the image of γ1 and SH =
Cent(γ,H). Choose δ ∈ G(F) that is stably conjugate to δ′. Then

1′[w, e, z, (ψ, xiso)](γ1, δ
′) = 1′w(γ1, δ) · 〈inv[xiso](δ, δ

′), sγ,δ〉. (4.1)

Here sγ,δ ∈ Ŝ0 is the image of s ∈ Z(Ĥ )0 under the composition of the natural inclusion
Z(Ĥ ) → ŜH with φ̂−1

γ,δ , where φγ,δ : SH → S is the unique admissible isomorphism
mapping γ to δ, and 〈−,−〉 is the duality (3.5).

We will now formulate the statement LLCiso(ψ, xiso). Let Sϕ ∩ Ĝsc denote the sub-
group of Ĝsc consisting of elements fixed by the action of LF on Ĝsc given by Ad ◦ ϕ.
Let S\ϕ be the quotient of Sϕ by the image in Ĝ of [Sϕ ∩ Ĝsc]

◦. This is a complex al-
gebraic group. Note that the image of [Sϕ ∩ Ĝsc]

◦ in Ĝ is equal to [Sϕ ∩ Ĝder]
◦. Then

LLCiso(ψ, xiso) asserts that there is a bijection between the L-packet 5ϕ(G′) and the
set Irr(S\ϕ, [xiso]) of those irreducible algebraic representations of S\ϕ whose restriction to
Z(Ĝ)0 is 〈[xiso],−〉-isotypic. If for π ∈ 5ϕ(G′) we denote by 〈π,−〉 the character of the
corresponding irreducible representation of S\ϕ , and by 2π the Harish-Chandra character
of the representation π , then for any semisimple element s ∈ Sϕ we can form the virtual
character

2sϕ,[xiso]
= e(G′)

∑
π∈5ϕ(G′)

〈π, s〉2π . (4.2)
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Here e(G′) is the Kottwitz sign [Kot83] of G′. Then LLCiso(ψ, xiso) asserts further that
for all f ′ ∈ C∞c (G′(F )) the following character identity should hold:

21
ξ1◦ϕ,1(f

H ) = 2sϕ,[xiso]
(f ′). (4.3)

Here we have constructed an endoscopic datum e from s and ϕ and have chosen an arbi-
trary z-pair z for e. The function fH ∈ C∞c (H1(F )) is chosen to have matching orbital
integrals with f ′ with respect to the transfer factor 1′[w, e, z, (ψ, xiso)] as defined in
[KS99, §5.5].

We will now review LLCrig. It involves the choice of xrig ∈ Z
1(u→ W,Z(G)→ G)

whose image in Z1(0,Gad) is equal to σ 7→ ψ−1σ(ψ). The existence of this xrig is guar-
anteed by [Kal16b, Corollary 3.8]. The pair (ψ, xrig) is called a rigid inner twist. The du-

ality (3.12) turns the cohomology class of xrig into a character 〈[xrig],−〉 of π0(Z(
̂̄G)+).

Here we are using the notation ̂̄G introduced in Subsection 3.3.
Let δ ∈ G(F) and δ′ ∈ G′(F ) be strongly regular semisimple and assume that they

are stably conjugate. For any g ∈ G(F) with δ′ = ψ(gδg−1) the 1-cocycle

W → G, w 7→ g−1xrig(w)σw(g),

takes values in S = Cent(δ,G). Its class is independent of the choice of g and will be
denoted by inv[xrig](δ, δ

′) ∈ H 1(u → W,Z(G) → S). Here σw ∈ 0 is the image of
w ∈ W under the natural projection W → 0.

Let e = (H,H, s, ξ) and z = (H1, ξ1) be an endoscopic datum and a z-pair. There
is again a normalization of the transfer factor, but it involves a refinement of e. This
refinement is a tuple ė = (H,H, ṡ, ξ). The only difference is the element ṡ ∈ Z( ̂̄H)+,
which is a lift of s. Here ̂̄H is the inverse limit of Ĥn, where the quotient Hn = H/Zn is
formed by using the canonical injection Z(G)→ Z(H) to map Zn ⊂ Z(G) into Z(H).
The definition of the transfer factor is then given by

1′[w, ė, z, (ψ, xrig)](γ1, δ
′) = 1′w(γ1, δ) · 〈inv[xrig](δ, δ

′), ṡγ,δ〉. (4.4)

To describe ṡγ,δ , recall the map Z(Ĥ )→ Ŝ induced by the admissible isomorphism φγ,δ .
It lifts uniquely to a map Z( ̂̄H)→ ̂̄S and ṡγ,δ is the image of ṡ under this map. It is paired
with inv[xrig](δ, δ

′) ∈ H 1(u→ W,Z(G)→ S) using the duality (3.11).

Let now S+ϕ be the preimage of Sϕ in ̂̄G. Then LLCrig(ψ, xrig) asserts that there is
a bijection between the L-packet 5ϕ(G′) and the set Irr(π0(S

+
ϕ ), [xrig]) of those irre-

ducible representations of the profinite group π0(S
+
ϕ ) whose restriction to π0(Z(

̂̄G)+) is
〈[xrig],−〉-isotypic. If for π ∈ 5ϕ(G′) we denote by 〈π,−〉 the character of the corre-
sponding irreducible representation of π0(S

+
ϕ ), then for any semisimple element ṡ ∈ S+ϕ

we can form the virtual character

2ṡϕ,[xrig]
= e(G′)

∑
π∈5ϕ(G′)

〈π, ṡ〉2π , (4.5)



Rigid inner forms vs isocrystals 75

and LLCrig(ψ, xrig) asserts further that for all f ′ ∈ C∞c (G′(F )) the following character
identity should hold:

21
ξ1◦ϕ,1(f

H ) = 2ṡϕ,[xrig]
(f ′). (4.6)

Here we have constructed a refined endoscopic datum ė from ṡ and ϕ and have chosen
an arbitrary z-pair z for e. The function fH ∈ C∞c (H1(F )) is chosen to have matching
orbital integrals with f ′ with respect to the transfer factor 1′[w, ė, z, (ψ, xrig)].

4.2. Comparison

We will now show that LLCiso(ψ, xiso) and LLCrig(ψ, xrig) are equivalent, provided xrig
is the image of xiso under the comparison map (3.14). As in the previous subsection, we
fix a Whittaker datum w forG and let ϕ : LF → LG be a tempered Langlands parameter.
Recall from Subsection 3.3 that ̂̄G = Ĝsc × Ĉ∞. We can thus write elements of S+ϕ ⊂

̂̄G
as pairs (a, (bn)n) with a ∈ Ĝsc and bn ∈ Ĉn. Taking our cue from Proposition 3.3 we
introduce the homomorphism

S+ϕ → Sϕ, (a, (bn)) 7→
ader · b1

NE/F (b[E:F ])
. (4.7)

Here again ader ∈ Ĝder is the image of a, E/F is a suitably large finite Galois extension
and the expression NE/F (b[E:F ]) is independent of the choice of E/F . The fact that this
map is a group homomorphism is clear since the elements bn are central. Furthermore,

we have S+,◦ϕ = Cent(ϕ, ̂̄G)◦ = [Sϕ ∩ Ĝsc]
◦
× Ĉ

0,◦
∞ . Thus for (a, (bn)n) ∈ S+,◦ϕ we have

N[E:F ](b[E:F ]) = b1 and the image of (a, (bn)n) in Sϕ is simply a ∈ [Sϕ∩Ĝsc]
◦, showing

that (4.7) induces a group homomorphism π0(S
+
ϕ )→ S

\
ϕ .

Let xiso : E → G be a 1-cocycle whose image in Z1(0,Gad) equals ψ−1σ(ψ). Let
xrig : W → G be the composition of xiso with the homomorphism W → E of diagram
(3.13). Thus the class [xrig] ∈ H

1(u → W,Z(G) → G) of xrig is the image of the
class [xiso] ∈ B(G)bas of xiso under (3.14). We denote by 〈[xiso],−〉 and 〈[xrig],−〉 the

characters of Z(Ĝ)0 and π0(Z(
̂̄G)+) given by the dualities (3.6) and (3.12).

Lemma 4.1. Pull-back along (4.7) induces a bijection

Irr(S\ϕ, [xiso])→ Irr(π0(S
+
ϕ ), [xrig]). (4.8)

Proof. For the proof we need to study the kernel and image of (4.7). By definition of S+ϕ ,
the map (a, (bn)n) 7→ ader · b1 is a surjection onto Sϕ , and we see that Sϕ is equal to the
product of Z(Ĝ)0 with the image of (4.7). This implies that composing an irreducible
representation of S\ϕ with (4.7) leads to an irreducible representation of π0(S

+
ϕ ). More-

over, according to Proposition 3.3, if we start with an element of Irr(S\ϕ, [xiso]), the result
will be an element of Irr(π0(S

+
ϕ ), [xrig]).

We have thus shown that composition with (4.7) induces a map Irr(S\ϕ, [xiso]) →

Irr(π0(S
+
ϕ ), [xrig]). We will now argue that this map is bijective. Injectivity follows im-
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mediately from the fact that Z(Ĝ)0 and the image of (4.7) generate S\ϕ , as one sees for
example by examining the characters of the irreducible representations.

For surjectivity, we study the kernel of (4.7). If (a, (bn)n) ∈ S+ϕ belongs to that ker-
nel, then aderb1N[E:F ](b[E:F ])

−1 lifts to an element e ∈ [Sϕ ∩ Ĝsc]
◦. We have already

noted that [Sϕ ∩ Ĝsc]
◦
⊂ S+,◦ϕ , so we may replace a by ae−1 without changing the class

of (a, (bn)n) modulo S+,◦ϕ , thereby achieving aderb1 = N[E:F ](b[E:F ]) ∈ Z(Ĝ)
0 . Thus

(a, (bn)n) is an element of Z(̂̄G)+ and moreover belongs to the kernel of (3.15). We con-
clude that under the natural map π0(Z(

̂̄G)+) → π0(S
+
ϕ ) the kernel of (3.15) surjects

onto the kernel of (4.7). Since 〈[xrig],−〉 is the pull-back of 〈[xiso],−〉 under (3.15), any
ρ ∈ Irr(π0(S

+
ϕ ), [xrig]) is trivial on the kernel of (4.7) and thus descends to a representa-

tion of the image of this map. We extend this representation to S\ϕ by letting it be given by
〈[xiso],−〉 on the image of Z(Ĝ)0 in S\ϕ . The result is an element of Irr(S\ϕ, [xiso]) whose
pull-back to π0(S

+
ϕ ) equals ρ. This completes the proof of surjectivity. ut

We will now compare the character identities (4.3) and (4.6). Let ṡrig ∈ S+ϕ and let
siso ∈ Sϕ be the image of ṡrig under (4.7). By construction of the bijection (4.8) we
have

2
siso
ϕ,[xiso]

= 2
ṡrig
ϕ,[xrig]

, (4.9)

so the right-hand sides of (4.3) and (4.6) agree. To compare the left-hand sides, we let
ėrig = (H,H, ṡrig, ξ) be the refined endoscopic datum corresponding to ṡrig and ϕ. The
endoscopic datum corresponding to siso and ϕ is then eiso = (H,H, siso, ξ). That is, the
termsH , H, and ξ are common to both ėrig and eiso. The reason for this is that if we write
ṡrig = (a, (bn)n), the image of ṡrig in Sϕ under the natural projection S+ϕ → Sϕ is equal to
ader · b1 and differs from siso only by the element NE/F (b[E:F ]) ∈ Z(Ĝ)0 . In particular,
we may fix a z-pair z = (H1, ξ1) that serves both ėrig and eiso.

We claim that for any strongly regular semisimple elements γ1∈H1(F ) and δ′∈G′(F )
we have

1′[w, ėrig, z, (ψ, xrig)](γ1, δ
′) = 1′[w, eiso, z, (ψ, xiso)](γ1, δ

′).

For this, fix δ ∈ G(F) and g ∈ G(F) such that δ′ = ψ(gδg−1). Setting as before
S = Cent(δ,G) we have inv[xrig](δ, δ

′) ∈ H 1(u → W,Z(G) → S) represented by the
1-cocycle w 7→ g−1xrig(w)σw(g) as well as inv[xiso](δ, δ

′) ∈ B(S) represented by the
1-cocycle e 7→ g−1xiso(e)σe(g). Since xiso is the composition of xrig with the homomor-
phismW → E of diagram (3.13), the same is true for the 1-cocycles representing the two
invariants. In other words, inv[xiso](δ, δ

′) is the image of inv[xrig](δ, δ
′) under the map

(3.14) for the torus S. Proposition 3.3 applied to the torus S then implies that

〈inv[xiso](δ, δ
′), siso〉 = 〈inv[xrig](δ, δ

′), ṡrig〉,

and this proves the claim about the equality of transfer factors. This in turn implies that
the function fH occurring on the left-hand side of (4.3) is the same as the function fH

occurring on the left-hand side of (4.6). Thus the two left-hand sides are equal. This shows
that the equations (4.3) and (4.6) are equivalent.
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5. Reducing LLCrig to the case of groups with connected center

In the last section we showed that when G is a connected reductive group defined and
quasi-split over F , and ψ : G → G′ is an inner twist whose corresponding class in
H 1(0,Gad) lifts to an element [xiso] ∈ B(G)bas, then LLCiso(ψ, xiso) is equivalent to
LLCrig(ψ, xrig), where xrig is the image of xiso under the comparison map (3.14). When
G does not have connected center, then the class of ψ may fail to lift to B(G)bas (for
example, this is always the case when G is simply connected). In that case we do not
have a statement for LLCiso. There is however a statement for LLCrig, since the class of
ψ always lifts to H 1(u→ W,Z(G)→ G).

In this section we will construct for any connected reductive group G an embedding
G → Gz into a connected reductive group Gz that has connected center and compa-
rable endoscopy. We will also construct an inner twist ψz : Gz → G′z corresponding
to ψ . We will then show that LLCrig(ψ, xrig) is equivalent to LLCrig(ψz, xrig) for any
xrig ∈ Z

1(u → W,Z(G) → G) lifting ψ−1σ(ψ). Combining this with the result of
the previous section, and using the fact that now there does exist [xiso] ∈ B(Gz)bas lift-
ing the class of ψz, we find that LLCrig(ψ, xrig) is equivalent to LLCiso(ψz, xiso) pro-
vided that the images of [xrig] ∈ H

1(u → W,Z(G) → G) and [xiso] ∈ B(Gz)bas in
H 1(u → W,Z(Gz) → Gz) coincide. In other words, once the validity of LLCiso is es-
tablished for all extended pure inner twists of connected reductive groups with connected
center, it implies the validity of LLCrig(ψ, xrig) for all inner twists ψ : G→ G′ of con-
nected reductive groups, without assumptions on the center, and some suitable xrig lifting
ψ−1σ(ψ). The final step would then be to establish the validity of LLCrig(ψ, xrig) for
all xrig lifting ψ−1σ(ψ), not just those corresponding to elements [xiso] ∈ B(Gz)bas. This
will be addressed in the next section.

5.1. z-embeddings

We will introduce here the notion of a z-embedding and collect some of its properties.
A z-embedding is a procedure which embeds a given connected reductive group G over
a p-adic field F into a connected reductive group Gz with comparable endoscopy and
connected center. The idea of the construction of Gz is due to Kottwitz, who commu-
nicated it verbally to the author some years ago. It forms the core of Proposition 5.2. It
turns out, however, that the procedure of taking a z-embedding is not directly compatible
with passage to endoscopic groups, and moreover it is not transitive. Luckily, a somewhat
weaker notion, that of a pseudo-z-embedding, does have the necessary flexibility. For this
reason we work in this subsection with the weaker notion, which turns out to suffice for
our applications. The main properties of pseudo-z-embeddings are the fact that their rep-
resentation theory and endoscopy is related to that of the original group in a very close
and straightforward way, and that they are in some sense stable under taking endoscopic
groups and also under iteration.

We alert the reader that the requirement that a (pseudo-)z-embedding have the same
endoscopy as the original group makes it a much more delicate object than an arbitrary
group with connected center into which the original group embeds. For example, the
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embedding of SLn into GLn is not a z-embedding. Furthermore, a z-embedding is not
simply the dual notion to a z-extension, as it has to satisfy a more stringent cohomological
requirement. Finally, we want to point out that a z-embedding is usually a ramified group,
even if the original group is unramified. This additional ramification is benign, as it only
affects the center, but it is nonetheless present. This makes the application of this notion
to a global setting problematic. Thankfully, our needs here are purely local.

5.1.1. Definition and construction. LetG be a connected reductive group defined over F .

Definition 5.1. A pseudo-z-embedding of G is an embedding G → Gz of G into a
connected reductive group Gz defined over F , subject to the following conditions:

1. Gz/G is a torus;
2. H 1(F,Gz/G) = 1;
3. the natural map H 1(F, Z(G))→ H 1(F, Z(Gz)) is bijective.

If moreover Z(Gz) is connected and Gz/G is an induced torus, we will call this a z-em-
bedding.

Proposition 5.2. Let Z be a diagonalizable group defined over F . There exists an em-
bedding Z → T of Z into a torus T defined over F with the property that T/Z is an
induced torus and H 1(0, Z)→ H 1(0, T ) is a bijection.

Proof. Let Z → T0 be an embedding of Z into an arbitrary F -torus T0 and let C0 be
the cokernel of that embedding. Let K1/F be the splitting extension of T0, and let K/K1
be an extension which we will specify in a moment. Set C = ResK/F (C0 × K). Since
C0 × K is split, C is induced. Let T be the fiber product of T0 and C over C0. This is a
diagonalizable group and a quick look at its character module reveals that it is in fact a
torus. We obtain the diagram

1 // Z // T //

��

C //

NK/F

��

1

1 // Z // T0 // C0 // 1

where NK/F is the norm map. Since C is induced, H 1(F, C) vanishes and hence the
natural map H 1(F, Z) → H 1(F, T ) is surjective (for any choice of K). We claim that
we can choose K in such a way that this map is also injective. This is equivalent to
demanding that the map

C(F)
NK/F
−−−→ C0(F ) −→ H 1(F, Z)

be trivial. We split this map as follows:

C(F) = C0(K)
NK/K1
−−−−→ C0(K1)

NK1/F
−−−−→ C0(F )→ H 1(F, Z).
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Fix an isomorphism [Gm,K1 ]
n
→ C0 ×K1. Then we have

C0(K)
NK/K1 // C0(K1)

NK1/F // C0(F ) // H 1(F, Z)

[K×]n
[NK/K1 ]

n

//

OO

[K×1 ]
n

OO

If ik denotes the inclusion of the k-th coordinate, then the map

K×1
ik
−→ [K×1 ]

n
→ H 1(F, Z)

is continuous and its target is finite, so its kernel is a norm subgroup ofK×1 . The intersec-
tion of these norm subgroups for 1 ≤ k ≤ n is again a norm subgroup, and we choose K
to be the corresponding abelian extension of K1. We have thus shown the existence of an
extension K/K1 for which the canonical map H 1(F, Z) → H 1(F, T ) is bijective, and
this completes the proof of the proposition. ut

Corollary 5.3. Any connected reductive F -group G has a z-embedding. Moreover, there
is a natural choice for it.

Proof. Apply Proposition 5.2 to the diagonalizable group Z(G) to obtain an embedding
Z(G)→ T . Form the push-out

Z(G) //

��

G

��

T // Gz

The maps T → Gz and G→ Gz are injective, because Z(G)→ G and Z(G)→ T are.
Moreover, the injection T → Gz identifies T with Z(Gz), and

coker(G→ Gz) = coker(Z(G)→ T ) = C.

We come now to the naturality assertion. In the proof of Proposition 5.2 we made two
choices—that of the torus T0 and of the field extensionK . In fact, there is always a natural
choice for K once T0 has been fixed: Let 2 be the preimage in C0(K1) of the kernel of
C0(F ) → H 1(F, Z). For any two extensions K,K ′ of K1 we have im(NK∩K ′/K1) =

im(NK/K1) · im(NK ′/K1). Thus the set of extensions K/K1 for which im(NK/K1) ⊂ 2

has a smallest element, namely their intersection.
There is also a natural choice for T0, namely the minimal Levi subgroup of the quasi-

split inner form of G. ut
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5.1.2. Basic properties. Let 1→ G→ Gz → C → 1 be a pseudo-z-embedding.

Fact 5.4. If Gz → Gx is a pseudo-z-embedding, then so is G→ Gx .

Proof. The map H 1(F, Z(G)) → H 1(F, Z(Gx)) is the composition of the bijections
H 1(F, Z(G)) → H 1(F, Z(Gz)) and H 1(F, Z(Gz)) → H 1(F, Z(Gx)) and thus itself
bijective. Moreover, the reductive groupGx/G is an extension of the torusGx/Gz by the
torus C and hence itself a torus with H 1(F,Gx/G) = 1. ut

Fact 5.5. The map Z(Gz)(F )→ C(F) is surjective and Gz(F ) = Z(Gz)(F ) ·G(F).

Proof. The injectivity of H 1(F, Z(G))→ H 1(F, Z(Gz)) implies the first point. For the
second, we note that Gz,der ⊂ G, and hence we have an exact sequence

1→ Z(G)→ Z(Gz)×G→ Gz → 1.

The surjectivity of Z(Gz)(F ) × G(F) → Gz(F ) is equivalent to the injectivity of
H 1(F, Z(G))→ H 1(F, Z(Gz))×H

1(F,G), which in turn follows from the injectivity
of H 1(F, Z(G))→ H 1(F, Z(Gz)). ut

It follows from this fact that if πz is an irreducible representation of Gz(F ), then its
restriction π to G(F) is still irreducible. Conversely, any irreducible representation π
of G(F) can be extended to an irreducible representation πz of Gz(F )—for this one
needs to choose an extension ωz : Z(Gz)(F ) → C× of the central character ω of π .
Then π⊗ωz is a representation ofG(F)×Z(Gz)(F )which factors through the surjection
G(F)×Z(Gz)(F )→ Gz(F ). The set of extensions of π to a representation ofGz(F ) is
a torsor for C(F)D .

Fact 5.6. If G → G1 and G → G2 are pseudo-z-embeddings, then there exists a con-
nected reductive group G3 with embeddings G1 → G3 and G2 → G3 that are both
pseudo-z-embeddings.

Proof. We construct G3 as the push-out of the diagram G1 ← Z(G) → Z(G2), i.e.
the quotient of G1 × Z(G2) by the subgroup {(z, z−1) | z ∈ Z(G)}. The map G1 → G3
given by g 7→ (g, 1) is injective and its cokernel isZ(G2)/Z(G) = G2/G. It is a pseudo-
z-embedding, because H 1(F,G2/G) = 1 and Z(G2)(F ) → [G2/G](F ) is surjective.
The map G2 → G3 given by writing an element g2 ∈ G2 as a product g · z2 with g ∈ G
and z2 ∈ Z(G2) and mapping it to (g, z2) ∈ G3 is well-defined and injective, and its
cokernel is G1/G. This map is also a pseudo-z-embedding because H 1(F,G1/G) = 1
and Z(G1)(F )→ [G1/G](F ) is surjective. ut

Fact 5.7. We have mutually inverse bijections

{maximal tori of G} ↔ {maximal tori of Gz},

T 7→ Z(Gz)
◦
· T ,

(Tz ∩G)
◦
← [ Tz.

Proof. This follows from Gz,der ⊂ G. ut



Rigid inner forms vs isocrystals 81

Fact 5.8. Let Z ⊂ G be a finite central subgroup. The natural map

H 1(u→ W,Z→ G)→ H 1(u→ W,Z→ Gz)

is bijective. If T and Tz correspond under the bijection of Fact 5.7, then the natural map

H 1(u→ W,Z→ T )→ H 1(u→ W,Z→ Tz)

is bijective.

Proof. We will discuss the second map, the argument for the first being the same. From
the long exact sequence for W -cohomology we obtain the exact sequence

Tz(F )→ C(F)→ H 1(u→ W,Z→ T )→ H 1(u→ W,Z→ Tz)→ H 1(0, C).

The surjectivity of H 1(u → W,Z → T ) → H 1(u → W,Z → T1) follows from the
vanishing ofH 1(0, C), and its injectivity is a consequence of the surjectivity of Tz(F )→
C(F), which follows from the surjectivity of Z(Gz)(F )→ C(F) stated in Fact 5.5. ut

Fact 5.9. Let ψ : G → G′ be an inner twist and u ∈ Z1(F,Gad) be the element such
that ψ−1σ(ψ) = Ad(u(σ )). Then there exists a connected reductive group G′z and an
inner twist ψz : Gz → G′z such that ψ−1

z σ(ψz) = Ad(u(σ )) fitting into the diagram

1 // G //

ψ

��

Gz //

ψz

��

C // 1

1 // G′ // G′z
// C // 1

Proof. We construct G′z as the push-out

Z(G) //

ψ

��

Z(Gz)

��

G′ // G′z

Then the map id × ψ : Z(Gz) × G→ Z(Gz) × G
′ descends to a map ψz : Gz → G′z,

which clearly has the desired property. ut

We now consider the dual side. We have the exact sequence

1→ Ĉ → Ĝz → Ĝ→ 1. (5.1)

Let 9+(G) denote the set of Ĝ-conjugacy classes of admissible L-homomorphisms
LF × SL2 →

LG. This set contains all Langlands parameters (those homomorphisms
that are trivial on SL2) as well as the set of Arthur parameters (those homomorphisms
whose restriction to LF projects to a relatively bounded subset of Ĝ). We will also inter-
pret 9+(G) as a subset of H 1(LF × SL2, Ĝz) via the projection LGz → Ĝz.

Lemma 5.10. The three maps

H 1(WF , Ĉ)→ H 1(WF , Z(Ĝz))→ H 1(WF , Ĝz)→ 9+(Gz)

are injective.
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Proof. We have

H 1(WF , Ĉ) // H 1(WF , Z(Ĝz))� _

��

C(F)D // Gz(F )
D

and the first of the three maps is injective because Gz(F ) → C(F) is surjective. The
second map is injective due to [Kot84, 1.6]. The third map is injective because it can be
seen as the inflation map associated to the quotient map LF × SL2 → WF . ut

Lemma 5.11. The action of H 1(WF , Ĉ) on 9+(Gz) given by pointwise multiplication
of cocycles is simple.

Proof. Consider the braided crossed module Ĝsc → Ĝz. According to [Kal15, Proposi-
tion 5.19], there is a canonical isomorphism

H 1(WF , Ĝsc → Ĝz)→ Z(Gz)(F )
D.

Composing the restriction map 9+(Gz) → H 1(WF , Ĝz) with the natural map
H 1(WF , Ĝz) → H 1(WF , Ĝsc → Ĝz) we obtain the top left horizontal map in the dia-
gram

9+(Gz) // H 1(WF , Ĝsc → Ĝz)
∼= // Z(Gz)(F )

D

H 1(WF , Ĉ)
∼= //

OO

H 1(WF , 1→ Ĉ)
∼= //

OO

C(F)D
?�

OO

The simplicity of the action of C(F)D on Z(Gz)(F )D by multiplication of characters
now implies the simplicity of the action of H 1(WF , Ĉ) on 9+(Ĝz). ut

Lemma 5.12. Let ϕz ∈ 9+(Gz) and let ϕ ∈ 9+(G) be its image. Then we have the
exact sequence

1→ Ĉ0 → Sϕz → Sϕ → 1.

Recall that Sϕ = Cent(ϕ, Ĝ) and Sϕz = Cent(ϕz, Ĝz).

Proof. The exact sequence (5.1) has an action of WF , and hence also of LF . We twist it
by ϕz and obtain the long exact cohomology sequence

1→ Ĉ0 → Sϕz → Sϕ → H 1(LF , Ĉ)→ H 1(LF , ϕz, Ĝz). (5.2)

Here, H 1(LF , ϕz, Ĝz) is the continuous cohomology group of Ĝz for the action of WF

given by ϕz. To prove the lemma, we must show that the map H 1(LF , Ĉ) →

H 1(LF , ϕz, Ĝz) is injective.
By [Ser97, §5.3, Prop. 35], we have a bijection

H 1(LF , ϕz, Ĝz)→ H 1(LF , Ĝz).
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Composing this bijection with the last arrow in the long exact cohomology sequence (5.2),
we obtain a map

H 1(LF , Ĉ)→ H 1(LF , Ĝz).

This map is in fact the orbit map through ϕz for the action of H 1(LF , Ĉ) on H 1(LF , Ĝz)

by multiplication of 1-cocycles. Since Ĉ is abelian, H 1(LF , Ĉ) = H 1(WF , Ĉ). More-
over, since ϕz belongs to the subset 9+(Gz) ⊂ H 1(LF , Ĝz), so does also its orbit under
H 1(WF , Ĉ). According to Lemma 5.11 the orbit map is injective, and the proof is com-
plete. ut

Corollary 5.13. The map 9+(Gz) → 9+(G) is surjective and its fibers are torsors
for the action of H 1(WF , Ĉ) on 9+(Gz) by multiplication of cocycles. This map also
induces a surjection between the sets of Langlands parameters and between the sets of
Arthur parameters.

Proof. Let ϕ ∈ 9+(G) and let ϕ0 ∈ H 1(WF , Ĝ) be its restriction to WF . We will
argue that there exists a lift ϕ0,z ∈ H

1(WF , Ĝz) of ϕ0. Moreover, we will show that if
ϕ0(WF ) ⊂ Ĝ is bounded, then ϕ0,z can be chosen in such a way that ϕ0,z(WF ) ⊂ Ĝz is
bounded.

From the exact sequence (5.1) of WF -modules we obtain the following diagram with
exact rows:

H 1(WF , Ĉ) // H 1(WF , Ĝz) //

��

H 1(WF , Ĝ) //

��

H 2(WF , Ĉ)

H 1(WF , Ĉ) // H 1(WF , Ĝsc → Ĝz) // H 1(WF , Ĝsc → Ĝ) // H 2(WF , Ĉ)

It implies that if ϕ′ ∈ H 1(WF , Ĝsc → Ĝz) is an element whose image in the group
H 1(WF , Ĝsc → Ĝ) is the same as the image of ϕ0 there, then there exists ϕ0,z ∈

H 1(WF , Ĝz) mapping simultaneously to ϕ0 and to ϕ′.
By [Kal15, Proposition 5.19] we have the functorial isomorphismH 1(WF , Ĝsc→Ĝ)

= Homcts(Z(G)(F ),C×). Note that under this isomorphism, the unitary characters of
Z(G)(F ) correspond to precisely those elements of H 1(WF , Ĝsc → Ĝ) whose image
in H 1(WF , cok(Ĝsc → Ĝ)) is bounded. Indeed, this image corresponds by the usual
Langlands duality for tori to a character of Z(G)◦(F ), and it is bounded if and only if the
character is unitary; but a character of Z(G)(F ) is unitary if and only if its restriction to
Z(G)◦(F ) is unitary.

The image of ϕ0 in H 1(WF , Ĝsc → Ĝ) thus corresponds to a character χ0 of
Z(G)(F ). Write this character as a product χu · χs where χu : Z(G)(F ) → C× is
unitary and χs : Z(G)(F ) → R>0. By Pontryagin theory, χu extends to a unitary
character χu,z : Z(Gz)(F ) → C×. On the other hand, χs kills the maximal compact
subgroup K ⊂ Z(G)(F ). If Kz ⊂ Z(Gz)(F ) is the maximal compact subgroup, then
Z(G)/K ⊂ Z(Gz)/Kz is an inclusion of finite-rank free Z-modules. Since R>0 is injec-
tive, the homomorphism χs extends to a homomorphism χs,z : Z(Gz)(F )/Kz → R>0.
We set χ0,z = χu,z · χs,z. If χ0 is unitary, so that χs = 1, we choose χs,z = 1 and



84 Tasho Kaletha

χ0,z is unitary. Let ϕ′ ∈ H 1(WF , Ĝsc → Ĝz) correspond to χ0,z. Choose ϕ0,z to map to
the pair (ϕ0, ϕ

′). Thus ϕ0,z lifts ϕ0. Moreover, if ϕ0 is bounded, then so is its image in
H 1(WF , cok(Ĝsc → Ĝ)), and hence the character χ0 is unitary. Then χ0,z is also unitary,
and thus the image of ϕ′ in Z1(WF , cok(Ĝsc → Ĝz)) is bounded. To show that ϕ0,z is
bounded consider the diagonal map

Ĝz → Ĝ× cok(Ĝsc → Ĝz).

The composition of ϕ0,z with this map is bounded, but the kernel of this map is the finite
central subgroup Ĉ ∩ Ĝz,der, and thus ϕ0,z is itself bounded.

Our next step is to extend ϕ0,z to an admissible 1-cocycle LF → Ĝz that lifts ϕ|LF .
We apply Lemma 5.12 to ϕ0,z to obtain a surjective homomorphism

Cent(ϕ0,z(WF ), Ĝz)→ Cent(ϕ0(WF ), Ĝ)

of complex algebraic groups with reductive connected components. The restriction of
this map to the neutral connected components remains surjective and its kernel is still
central. Thus this map restricts further to an isogeny on the level of derived subgroups.
The restriction of ϕ to SL2 ⊂ LF is a homomorphism of algebraic groups SL2 →

Cent(ϕ0(WF ), Ĝ)
◦

der and lifts uniquely along this isogeny to a homomorphism SL2 →

Cent(ϕ0,z(WF ), Ĝz)
◦

der. We thus obtain a lift ϕ1,z : LF → Ĝz of ϕ|LF → Ĝ. This com-
pletes the proof for the case of Langlands parameters.

To handle general elements of 9+(G), we repeat this argument again to accom-
modate the second copy of SL2. That is, we apply Lemma 5.12 to ϕ1,z and obtain an
isogeny Cent(ϕ1,z(LF ), Ĝz)

◦

der → Cent(ϕ(LF ), Ĝ)◦der and obtain a lift of ϕ|SL2 : SL2 →

Cent(φ(LF ), Ĝ)◦der to a homomorphism SL2 → Cent(ϕ1,z(LF ), Ĝz)
◦

der, which together
with ϕ1,z provides a lift ϕz ∈ 9+(Gz) of ϕ.

We have thus proved that 9+(Gz) → 9+(G) is surjective and induces a surjection
between the sets of Langlands parameters and between the sets of Arthur parameters. To
show that the group H 1(WF , Ĉ) acts transitively on the fibers of this map, consider the
exact sequence (5.1) with action of LF × SL2 given by the quotient map of this group
to WF and the corresponding exact sequence of pointed sets

H 1(LF × SL2, Ĉ)→ 9+(Gz)→ 9+(G).

According to [Ser97, §5.7, Prop. 42] the group H 1(LF × SL2, Ĉ) acts transitively on the
fibers. But since Ĉ is a torus, this group is equal to H 1(WF , Ĉ). Finally, the simplicity of
this action comes from Lemma 5.11. ut

5.1.3. Endoscopy. We continue with a pseudo-z-embedding 1→ G→ Gz → C → 1,
but assume now that G, and hence also Gz, is quasi-split. As before, we set Zn ⊂ Z(G)
to be the preimage of (Z(G)/Z(Gder))[n] and form Gn = G/Zn, Ḡ = lim

−→
Gn, and̂̄G = lim

←−
Ĝn. We also form Gz,n = Gz/Zn, Ḡz = lim

−→
Gz,n and ̂̄Gz = lim

←−
Ĝz,n.

For every n we have the exact sequence

1→ Gn→ Gz,n→ C → 1.
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Since the composition Z(Gz)(F )→ Z(Gz,n)(F )→ C(F) is surjective, so must be the
map Z(Gz,n)(F ) → C(F). Thus the above exact sequence is a pseudo-z-embedding.
Dually we obtain the exact sequence

1→ Ĉ → Ĝz,n→ Ĝn→ 1,

and taking the limit over n we arrive at the exact sequence

1→ Ĉ → ̂̄Gz → ̂̄G→ 1.

Let ė = (H,H, ṡ, ξ) be a refined endoscopic datum for G. We are going to construct
a refined endoscopic datum ėz = (Hz, ṡz,Hz, ξz) for Gz. Let ṡz ∈ ̂̄Gz be any preimage
of ṡ. We form Hz and ξz using the following pull-back diagram:

1 // Ĉ // LGz // LG // 1

1 // Ĉ // Hz
//

ξz

OO

H //

ξ

OO

1

Dually, we construct Hz as the push-out

Z(G) //

��

H

��

Z(Gz) // Hz

Lemma 5.14. The quadruple ėz is a refined endoscopic datum for Gz. Furthermore, the
natural embedding H → Hz is a pseudo-z-embedding with cokernel C.

Proof. Let us consider the second statement first. By construction we have the exact
sequence

1→ H → Hz → C → 1.

It provides the exact sequence

1→ Z(H)→ Z(Hz)→ C → 1.

The surjectivity of H 1(F, Z(H)) → H 1(F, Z(Hz)) follows from the vanishing of
H 1(F, C), and the injectivity of the same map is equivalent to the surjectivity of
Z(Hz)(F ) → C(F), which in turns follows from the fact that the composition of this
map with the natural inclusion Z(Gz)(F ) → Z(Hz)(F ) is equal to the surjective map
Z(Gz)(F )→ C(F) of Fact 5.5.

To ease notation we now assume H ⊂ LG and Hz ⊂
LGz, so that ξ and ξz are the

natural inclusions. Let sz ∈ Ĝz be the image of ṡz. We will argue that ez = (Hz,Hz, sz, ξz)

is an endoscopic datum for Gz. Let s ∈ Ĝ be the image of ṡ.
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1.Hz is quasi-split: This holds becauseH is quasi-split and containsHz,der, since the
quotient Hz/H is a torus.

2. [Ĝz]◦sz is a dual group for Hz: Let T H → T G be an admissible isomorphism from
a maximal torus of H to a maximal torus of G. We form the push-outs

Z(G) //

��

T H

��

Z(G) //

��

T G

��

Z(Gz) // T Hz Z(Gz) // T Gz

and obtain an isomorphism T Hz → T Gz from a maximal torus in Hz to a maximal torus
in Gz. Let T Ĝz ⊂ Ĝz be a maximal torus containing sz. Its image T Ĝ in Ĝ contains s.
There exists an admissible isomorphism T̂ Gz → T Ĝz with the following property: The
induced isomorphism T̂ G → T Ĝ when composed with T̂ H → T̂ G identifies the coroot
system R∨(T H , H) with the root system R(T Ĝ, Ĥ ). But in the diagram

T̂ Hz //

��

T Ĝz

��

T̂ H // T Ĝ

the left arrow induces a bijection R∨(T Hz , Hz) → R∨(T H , H), while the right arrow
induces a bijection R(T Ĝz , [Ĝz]◦sz) → R(T Ĝ, Ĝs). This implies that the top horizontal
arrow induces a bijection

R∨(T Hz , Hz)→ R(T Ĝz , [Ĝz]
◦
sz
).

This shows that [Ĝz]◦sz is a dual group of Hz.

3. Hz is an extension of WF by Ĥz: Since LGz → LG is surjective, so is Hz → H.
Composing the latter map with H → WF we obtain a continuous surjective map
Hz → WF . Its kernel is the preimage of Ĥ in Hz. Call this kernel K for a moment.
Then we have the exact sequence of topological groups and continuous homomorphisms

1→ K → Hz → WF → 1.

We claim that this is an extension, i.e. the induced map Hz/K → WF is an isomorphism
of topological groups. To prove this, we will use the fact that Hz is locally compact and
σ -compact. Indeed, since H is a split extension of WF by Ĥ , and both WF and Ĥ are
locally compact and σ -compact, so is H, and so is the product LGz × H, of which Hz

is a closed subgroup. It follows that Hz is locally compact and σ -compact, and the open
mapping theorem implies that the surjection Hz → WF is open. This proves the claim
that the natural continuous bijective homomorphism Hz/K → WF is an isomorphism of
topological groups.
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Next, one checks that ξz restricts to a continuous bijective homomorphism from K to
the preimage of ξ(Ĥ ) in LGz, the latter being precisely [Ĝz]◦sz . Now K , being a closed
subgroup of Hz, is also locally compact and σ -compact, so ξz : K → [Ĝz]◦sz is an iso-
morphism of topological groups. Having already shown in the previous point that [Ĝz]◦sz
is a dual group for Ĥz, we conclude that indeed Hz is an extension of WF by Ĥz.

4. The extension 1 → Ĥz → Hz → WF → 1 is split: We know that the extension
1 → Ĥ → H → WF → 1 is split, so we may choose a splitting WF → H, which
we then compose with ξ : H → LG and obtain an element a ∈ Z1(WF , Ĝ). According
to Corollary 5.13, a lifts to an element az ∈ Z1(WF , Ĝz), which we interpret as an L-
homomorphism WF →

LGz. Its image is contained in the image of ξz. But ξz is an
isomorphism of topological groups onto its image, due to the local compactness and σ -
compactness of Hz, so in the end we obtain a continuous L-homomorphism WF → Hz,
which is just the splitting we were looking for.

5. ṡz ∈ Z( ̂̄H z)
+: It is enough to show sz ∈ Z(Ĥz)

0 . Consider the exact sequence of
WF -modules

1→ Ĉ → Z(Ĥz)→ Z(Ĥ )→ 1.

Then s ∈ Z(Ĥ )0 maps to an element of H 1(WF , Ĉ) whose image in H 1(WF , Z(Ĥz))

is trivial. By Lemma 5.10 and the already proved fact that H → Hz is a pseudo-z-
embedding, we conclude that the image of s in H 1(WF , Ĉ) is trivial, so s can be lifted
to an element of Z(Ĥz)0 . But the set of such lifts is a torsor under Ĉ0 ⊂ Z(Ĥz)0 , hence
sz ∈ Z(Ĥz)

0 as claimed.

6. The L-action of WF on Ĥz obtained from the extension Hz is the same as the
L-action coming from the rational structure of Hz: We have to show that the image of
σ ∈ 0 in Out(Hz) corresponds via the canonical isomorphism Out(Hz) ∼= Out(Ĥz) to the
image of Ad(gσ ) for some gσ ∈ LGz mapping to σ . For this it is enough to show that the
action of σ on R∨(T Hz , Hz) is translated via the isomorphism T Hz → T Gz to the action
of an element of w · σ , where w belongs to the Weyl group of T Gz . The vertical arrows
in the diagram

T Hz // T Gz

T H //

OO

T G

OO

induce bijections of root and coroot systems and Weyl groups. Since the assertion holds
for the bottom map, it also holds for the top. ut

There is an inverse construction as well. Let ėz = (Hz,Hz, ṡz, ξz) be a refined endo-
scopic datum for Gz. Then ξz(Ĥz) contains the central torus Ĉ and this gives an injec-
tion Ĉ → Ĥz, which dually provides a surjection Hz → C. Let H = ker(Hz → C),
Ĥ = cok(Ĉ → Ĥz), let ṡ be the image of ṡz under Z( ̂̄H z) → Z( ̂̄H) and ξ be the com-
position of ξz with the canonical projection Ĝz → Ĝ. One checks that (H,H, ṡ, ξ) is a
refined endoscopic datum for G in a way similar to the above argument.
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Fact 5.15. The above constructions provide mutually inverse bijections between the iso-
morphism classes of refined endoscopic data for G and those for Gz.

Proof. The assignment (Hz,Hz, ṡz, ξz) 7→ (H,H, ṡ, ξ) is a map between the two sets
of isomorphism classes. We claim that the assignment (H,H, ṡ, ξ)→ (Hz,Hz, ṡz, ξz) is
also a map. We needed to choose a lift ṡz of ṡ. The set of choices is a torsor under Ĉ0 ,
which is a connected subgroup of Z( ̂̄H z)

+ (because 1 = H 1(F, C) = π0(Ĉ
0)D). The

image of ṡz in π0(Z(
̂̄H z)
+) is thus uniquely determined by ṡ and the claim is proved.

Checking that the two maps are inverses of each other is straightforward. ut

Lemma 5.16. Let (H, s,H, ξ) and (Hz, sz,Hz, ξz) correspond under the mutually in-
verse bijections. Then either both are elliptic or both are not.

Proof. By construction of Hz the left square below is cocartesian, and applying the left-
exact functor X∗(−)0 we obtain the right square below, which is then cartesian.

Z(G) //

��

Z(H)

��

X∗(Z(Hz))
0 //

��

X∗(Z(H))0

��

Z(Gz) // Z(Hz) X∗(Z(Gz))
0 // X∗(Z(G))0

The top map of the right diagram provides an isomorphism

ker
(
X∗(Z(Hz))

0
→ X∗(Z(Gz))

0
)
→ ker

(
X∗(Z(H))0 → X∗(Z(G))0

)
.

The lemma now follows from the fact that ellipticity of Hz resp. H is equivalent to the
corresponding kernel being finite. ut

We continue with ėz = (Hz,Hz, ṡz, ξz) and ė = (H,H, ṡ, ξ) corresponding under the
mutually inverse bijections. Let zz = (Hz,1, ξz,1) be a z-pair for ėz. Thus Hz,1 → Hz is
a z-extension, whose kernel we denote by K , and ξz,1 : Hz →

LHz,1 is an L-embedding
extending the embedding Ĥz → Ĥz,1. From zz we can construct a z-pair z = (H1, ξ1) for
ė as follows: H1 is the fiber product of Hz,1 and H over Hz, and ξ1 : H → LH1 is the
unique factoring of

Hz

ξz,1
−−→

LHz,1 →
LH1

through Hz → H.

Lemma 5.17.

1. H1 → Hz,1 is a pseudo-z-embedding with cokernel C.
2. H1 → H is a z-extension with kernel K .
3. (H1, ξ1) is a z-pair for ė and the map (Hz,1, ξz,1) 7→ (H1, ξ1) from the set of z-pairs

for ėz to the set of z-pairs for ė has fibers which are torsors for Z1(WF , Ĉ) acting on
the second component of the z-pairs by pointwise multiplication.
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Proof. By construction we have the diagram

1

��

1

��

1 // K // H1 //

��

H //

��

1

1 // K // Hz,1 //

��

Hz //

��

1

C

��

C

��

1 1

We see thatH1 embeds intoHz,1 with abelian quotient, so the derived group ofH1 equals
that of Hz,1. This shows that H1 is a z-extension of H . To prove that H1 → Hz,1 is a
pseudo-z-embedding, we only need to show that Hz,1(F ) → C(F) is surjective. This
follows from the surjectivity of Hz,1(F ) → Hz(F ) (which relies on the fact that K is
induced), and the surjectivity ofHz(F )→ C(F) (asH → Hz is a pseudo-z-embedding).
The final point now follows easily from the fact that the kernels of the maps Hz → H
and LHz,1 →

LH1 are both equal to Ĉ. ut

Recall that we are assuming that G, and hence also Gz, is quasi-split. The bijection of
Fact 5.7 extends to a bijection between the sets of splittings of G and Gz, as well as a
bijection between the sets of Whittaker data for G and Gz.

Lemma 5.18. Let ėz = (Hz,Hz, ṡz, ξz) and ė = (H,H, ṡ, ξ) be refined endoscopic data
for Gz and G, whose equivalence classes correspond via the bijections of Fact 5.15. Let
zz = (Hz,1, ξz,1) and z = (H1, ξ1) be z-pairs for ėz and ė, corresponding as in Lemma
5.17. Let ψ : G→ G′ and ψz : Gz → G′z be compatible inner twists, as in Fact 5.9. Let
x ∈ Z1(u→ W,Z → G) map to ψ−1σ(ψ) ∈ Z1(0,Gad). Let wz and w be Whittaker
data that correspond to each other. If γ1 ∈ H1(F ) and δ′ ∈ G′(F ) are stronglyG-regular
elements, then

1′[wz, ėz, zz, (ψz, x)](γ1, δ
′) = 1′[w, ė, z, (ψ, x)](γ1, δ

′).

Proof. Choose δ ∈ G(F) which is stably conjugate to δ′ and let γ be the image of γ1
in H(F). Let T ′=Cent(δ′,G′), T =Cent(δ,G), T H1=Cent(γ1, H1), T H =Cent(γ,H).
Each of the groups G, G′, H , H1 has the corresponding pseudo-z-inflation, which we
denote by a subscript z, and each of the tori T , T ′, T H , T H1 has a torus corresponding
under the bijections of Fact 5.7, which we will also denote by a subscript z.

We now recall from (4.4) and [KS, (5.5.2)] that 1′[w, ė, z, (ψ, x)](γ1, δ
′) is given by

ε1−1
I (γ, δ)1II (γ, δ)1III2(γ1, δ)1IV (γ, δ)〈inv[x](δ, δ′), ṡγ,δ〉.
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Note that we are dealing with untwisted endoscopy, and 1new
I in [KS] is the same as

the original 1I . We will now discuss the individual terms and show that they match the
corresponding terms in 1′[wz, ėz, zz, (ψz, x)](γ1, δ

′).
Write w = (B0, χ0), where B0 ⊂ G is a Borel subgroup and χ0 is a generic char-

acter of the F -points of the unipotent radical U0 of B0. Extend B0 to a pinning spl =
(T0, B0, {Xα}) of G and choose a character χF : F → C× so that χ0 corresponds
to spl and χF as in [KS99, §5.3]. Let T H0 ⊂ H be a minimal Levi subgroup. Then ε
is the Langlands normalization of the ε-factor εL(X∗(T0) ⊗ C − X∗(T H0 ) ⊗ C, ψF ).
Analogously, the ε-factor in the definition of 1′[wz, ėz, zz, (ψz, x)](γ1, δ

′) is given by
εL(X

∗(T0,z)⊗C−X∗(T Hz0 )⊗C, ψF ), where T0,z ⊂ Gz and T Hz0 ⊂ Hz correspond to T0

and T H0 as in Fact 5.7. But then T0,z is an extension of C by T0, and T Hz0 is an extension
of C by T H0 . The two epsilon factors above are thus equal, due to their additivity [Tat79,
(3.4.2)].

For the discussion of the remaining factors, we fix the admissible isomorphism
T H → T that sends γ to δ. It extends uniquely to an admissible isomorphism T Hz → Tz.
We furthermore choose a-data and χ -data for T . Since they depend only on the roots, they
work equally well for Tz.

The factor 1I (γ, δ) depends on the admissible isomorphism, the splitting spl and a-
data. Since its construction involves only the preimage of T in Gsc, which is the same
as the preimage of Tz in Gz,sc = Gsc, we see that this factor matches the corresponding
factor for Gz.

The factors1II and1IV are also immediately seen to match their counterparts inGz,
because they only depend on the chosen χ -data and the root values of δ.

The factor 1III2(γ1, δ) needs closer attention. We recall briefly its construction, fol-
lowing loosely [KS99, §4.4] but specializing to the non-twisted setting at hand. We
have chosen χ -data for T , which we transport via the chosen admissible isomorphism
T H → T to obtain χ -data for T H . The surjection T H1 → T H induces an L-embedding
LT H → LT H1 . It also induces a bijection on the root systems, so we also obtain χ -data
for T H1 . These χ -data provide, according to the procedure of [LS87, §2.6], admissible
L-embeddings LT → LG and LT H1 →

LH1. The admissible isomorphism T H → T

induces an L-isomorphism LT → LT H . We obtain the diagram

LH1
LT H1? _oo LT H1oo LT H? _oo

H
?�

ξ1

OO

� � ξ
// LG LT?

_oo

∼=

OO

(5.3)

The dotted arrow is defined to be the uniqueL-automorphism of LT H1 extending the iden-
tity on T̂ H1 and making the diagram commutative. The restriction of thisL-automorphism
to WF is then a Langlands parameter a : WF →

LT H1 and

1III2(γ
H1 , γ ) = 〈a, γH1〉,

where 〈·, ·〉 is the Langlands duality pairing. The construction of the term 1III2 con-
tributing to 1′[wz, ėz, zz, (ψz, x)](γ1, δ

′) is the same, but involves the analog of diagram
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(5.3) where all objects and arrows have subscript z. This latter diagram surjects onto
(5.3), with the kernel at each node being Ĉ. In particular, we see that the composition
of az : WF →

LT Hz,1 with the natural projection LT Hz,1 → LT H1 is equal to a. The
functoriality of the pairing 〈·, ·〉 and the fact that γ1 belongs to the subgroup T H1(F ) of
T Hz,1(F ) now implies that the two versions of 1III2 agree.

The final term to be compared is 〈inv[x](δ, δ′), ṡγ,δ〉. Here we have inv[x](δ, δ′) ∈
H 1(u → W,Z → T ). It is a direct observation that mapping this element into
H 1(u → W,Z → Tz) gives the same result as mapping δ and δ′ into Tz(F ) and T ′z(F )
and then computing inv[x](δ, δ′). At the same time, tracing through the definition of ṡγ,δ
we see that it is the image of ṡz,γ,δ under the projection ̂̄Tz → ̂̄T . The functoriality of the
duality pairing 〈−,−〉 completes the proof. ut

5.2. Comparison of LLCrig(ψ, xrig) and LLCrig(ψz, xrig)

We now assume that for all inner twists ψ̃ : G̃ → G̃′ of connected reductive quasi-split
groups with connected center, and all x̃rig ∈ Z

1(u→ W,Z(G̃)→ G̃) lifting ψ̃−1σ(ψ̃),
the statement LLCrig(ψ̃, x̃) holds. Furthermore, we assume the following natural com-
patibility. If G̃ → G̃z is a pseudo-z-embedding into a group G̃z with connected center
and ψ̃z : G̃z → G̃′z is the inner twist compatible with ψ̃ as in Fact 5.9, then for any
tempered parameter ϕ̃z : LF → LG̃z with corresponding ϕ̃ : LF → LG̃, restriction of
representations provides a bijection5ϕ̃z(G̃

′
z)→ 5ϕ̃(G̃

′), and this bijection is compatible
with the bijection π0(S

+

ϕ̃z
)→ π0(S

+

ϕ̃
) (see below for an argument why the second map is

bijective).
Under this assumption, we will show that LLCrig(ψ, xrig) holds for any connected

reductive quasi-split group G with fixed Whittaker datum w, inner twist ψ : G → G′,
and xrig ∈ Z

1(u → W,Z(G) → G) lifting ψ−1σ(ψ). For this, we choose a pseudo-z-
embeddingG→ Gz such thatGz has connected center. This is possible by Corollary 5.3.
Let wz be the Whittaker datum for Gz determined by w. Let ψz : Gz → G′z be the inner
twist corresponding to ψ as in Fact 5.9.

Let ϕ : LF → LG be a tempered Langlands parameter. Choose a tempered Lang-
lands parameter ϕz : LF → LGz lifting ϕ. It exists by Corollary 5.13. Let 5ϕz(G

′
z)

be the corresponding tempered L-packet. All elements of 5ϕz(G
′
z) have the same cen-

tral character and Fact 5.5 implies that restriction to G′(F ) provides an injective map
5ϕz(G

′
z) → 5temp(G

′). Define 5ϕ(G′) to be the image of this map so that we obtain a
bijection

5ϕz(G
′
z)→ 5ϕ(G

′). (5.4)

Applying Lemma 5.12 to each pseudo-z-embedding Gn → Gz,n and taking the limit we
obtain the exact sequence

1→ Ĉ0 → S+ϕz → S+ϕ → 1.

Applying the right-exact functor π0 and noting that Ĉ0 is connected we obtain the iso-
morphism

π0(S
+
ϕz
)→ π0(S

+
ϕ ). (5.5)
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From (5.4) and (5.5) we obtain the bijection

Irr(π0(S
+
ϕ ), [xrig])→ 5ϕ(G

′). (5.6)

A priori the packet5ϕ(G′) and the bijection (5.6) could depend on the choice of the lift ϕz
of ϕ, as well as on the choice of the z-embedding G→ Gz. We claim that this is not the
case. Indeed, any other lift of ϕ is of the form ϕz · ϕc for some ϕc ∈ Z1(WF , Ĉ). Then
πz 7→ πz ⊗ χc is a bijection 5ϕz(G

′
z) → 5ϕz·ϕc (G

′
z), where χc : C(F) → C× is the

character corresponding to ϕc. This bijection is compatible with the identity Sϕz = Sϕz·ϕc .
Since χc restricts trivially toG′(F ) we conclude that the packet5ϕ(G′) and the bijection
(5.6) are indeed independent of the choice of ϕz.

We will now argue that they are also independent of the choice of z-embedding. If
G → Gz and G → Gy are two z-embeddings, we construct as in Fact 5.6 a common
refinementGx . ThenG→ Gx ,Gz → Gx , andGy → Gx are pseudo-z-embeddings and
the center of Gx is connected. Choose ϕx : LF → LGx lifting ϕ by Corollary 5.13 and
let ϕz : LF → LGz and ϕy : LF → LGy be the corresponding parameters. We have the
commutative diagrams of bijections

π0(S
+
ϕx
)

zz $$

5ϕx (G
′
x)

yy %%

π0(S
+
ϕy
)

$$

π0(S
+
ϕz
)

zz

5ϕy (G
′
y)

%%

5ϕz(G
′
z)

yy

π0(S
+
ϕ ) 5ϕ(G

′)

This together with the natural compatibility of LLCrig along the pseudo-z-embeddings
Gz → Gx and Gy → Gx assumed above implies that the set 5ϕ(G′) and the bijection
(5.6) provided by Gz coincide with those provided by Gy .

The sets 5ϕ(G′) for various ϕ exhaust 5temp(G
′). Indeed, for any π ∈ 5temp(G

′)

we can find an extension of its central character to a unitary character χ : Z(G′z)(F )→
C×. Then πz = π ⊗ χ is an extension of π to an element πz ∈ 5temp(G

′
z), which by

LLCrig(ψz, xrig) belongs to some packet 5ϕz(G
′
z). By construction, π then belongs to

5ϕ(G
′), where ϕ is the composition of ϕz with the projection LGz →

LG. The same
argument also shows that the sets 5ϕ(G′) for various parameters ϕ are disjoint.

We will now argue that the character identity (4.6) holds for the packet5ϕ(G). It will
be more convenient to consider the following formulation:

2ṡϕ,xrig
(δ′) =

∑
γ1

1′[w, ė, z, (ψ, xrig)](γ1, δ
′)1IV (γ1, δ

′)−221
ξ1◦ϕ,1(γ

1), (5.7)

which is equivalent to (4.6), as one sees using the Weyl integration formula. Here
δ′ ∈ G′(F ) is a strongly regular semisimple element and γ1 runs over the set of stable
conjugacy classes of strongly regular semisimple elements in H1(F ).

According to the construction of 5ϕ(G), the virtual character 2ṡϕ,xrig
is the restric-

tion to G′(F ) of the virtual character 2ṡϕz,xrig
of the group G′z(F ) for any lift ϕz of ϕ.
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In the same way, 21
ξ1◦ϕ,1

is the restriction to H1(F ) of the virtual character 21
ξz,1◦ϕz,1

of
the group Hz,1(F ). Lemma 5.18 implies that the transfer factor 1′[w, ė, z, (ψ, xrig)] re-
mains unchanged if we pass fromG′ toG′z. In the proof, we mentioned the much simpler
statement that the factor 1IV does not change either. Finally, the set of stable classes in
Hz,1(F ) of the element γ1 ∈ H1(F ) is the same as the set of stable classes in H1(F ). The
identity (5.7) thus follows from the corresponding identity for the parameter ϕz.

6. Changing the rigidifying datum in LLCrig

In this section we will study the following question: Given a connected reductive groupG
defined and quasi-split over F , an inner twist ψ : G→ G′, and two elements x1,rig, x2,rig
∈ Z1(u → W,Z(G) → G) lifting ψ−1σ(ψ) ∈ Z1(0,Gad), what is the relationship
between the statements LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig)? The answer will be given
by an explicit relation between the two statements. This relation can be used either to
switch from one normalization to another in applications, or to deduce the validity of one
normalization from the validity of another as a step in the proof of LLCrig. The latter
situation will occur if one wants to deduce LLCrig from LLCiso using the results of the
previous two sections, because not all elements xrig will come from B(G)bas or B(Gz)bas.
This situation would also occur if one wants to deduce LLCrig using the stabilized trace
formula and the local-global passage established in [Kal].

6.1. Description of H 1(W,Z)

In [Kal16b] we studied the cohomology set H 1(u→ W,Z → G), where G is an affine
algebraic group, in particular a torus, and Z is a multiplicative finite central subgroup. In
order to understand how LLCrig(ψ, xrig) depends on the choice of xrig, we will also need
to understand the cohomology group H 1(u→ W,Z → Z), where Z is a multiplicative
finite algebraic group defined over F . This cohomology group is the same as H 1(W,Z),
the group of continuous cohomology classes of the topological group W with values in
the finite group Z(F).

Let S be a torus over F , Z ⊂ S a finite subgroup, and S̄ = S/Z. We write again
Y = X∗(S) and Ȳ = X∗(S̄). The following is part of [Kal16b, diagram (3.6)]:

1 // H 1(0, Z)
Inf //

��

H 1(u→ W,Z→ Z)
Res //

��

Hom(u, Z)0

1 // H 1(0, S)
Inf // H 1(u→ W,Z→ S)

Res //

��

Hom(u, Z)0

��

H 1(0, S) // H 1(0, S̄) //

��

H 2(0, Z)

��

1 1

(6.1)
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describing the relationship between H 1(u → W,Z → S) and the usual cohomology
groups H 1(0, S) and H 1(0, S̄). We have so far the following diagram that is isomorphic
to diagram (6.1):

1 // Ĥ−2(0, Ȳ /Y ) //

��

? //

��

Ẑ−1(0, Ȳ /Y )

1 // Ĥ−1(0, Y ) // Ẑ
−1(0,Ȳ )

B̂−1(0,Y )
//

��

Ẑ−1(0, Ȳ /Y )

��

Ĥ−1(0, Y ) // Ĥ−1(0, Ȳ ) // Ĥ−1(0, Ȳ /Y )

��

1

(6.2)

Here we are using hats to denote Tate cohomology groups. Since 0 is not a finite group,
we must explain what we mean by that. We warn the reader that we do not mean the Tate
cohomology groups for profinite groups as defined for example in [NSW08, Ch. 1, §9].
Let A be a discrete 0-module that is finitely generated over Z. Then it is inflated from
0E/F for some finite Galois extension E/F . For any finite Galois extension K/F con-
taining E, the identity map Ĉ−1(0E/F , A) = A = Ĉ

−1(0K/F , A) respects the subgroups
Ẑ−1 and B̂−1 and hence produces a map Ĥ−1(0E/F , A)→ Ĥ−1(0K/F , A). We declare
Ĥ−1(0,A) to be the colimit of this system. It is easily seen that this colimit stabilizes.
As for degree −2, assume further that A is finite and define Ĥ−2(0,A) to be equal to
H1(0,A). This is the limit of the finite groups Ĥ−2(0K/F , A) = H1(0K/F , A) with
respect to the coinflation map. It is argued in [Lan83, VI.1] that this limit stabilizes.

The isomorphism Ĥ−1(0, Y ) → H 1(0, S) and its analog for S̄ are the
usual Tate–Nakayama isomorphisms. The isomorphism Ẑ−1(0, Ȳ )/B̂−1(0, Y ) →

H 1(u → W,Z → S) was constructed in [Kal16b, §4], where also the more ele-
mentary isomorphism Ẑ−1(0, Ȳ /Y ) → Hom(u, Z)0 is discussed. The isomorphisms
Ĥ−2(0, Ȳ /Y )→ H 1(0, Z) and Ĥ−1(0, Ȳ /Y )→ H 2(0, Z) are variants of Poitou–Tate
duality and are discussed in [Lan83, VI.1].

The purpose of this section is to demystify the question mark in diagram (6.2) and the
arrows connecting with it. We claim that

? = Ĉ−2(0, Ȳ /Y )/B̂−2(0, Ȳ /Y ) = lim
←−

Ĉ−2(0E/F , Ȳ /Y )/B̂
−2(0E/F , Ȳ /Y ),

where again the limit is taken over all finite Galois extensions K/F through which the
action of 0 on Ȳ /Y factors, and the transition maps are given by coinflation. In diagram
(6.2), the horizontal map going into this term is given by the natural inclusion of Ẑ−2

into Ĉ−2, the horizontal map going out of this term is given by the differential, and the
vertical map going out of this term is given by first lifting an element of ? to an element
of C−2(0E/F , Ȳ ) and then taking the differential. A simple computation shows that all
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these maps respect the relevant transition maps in the direct and inverse systems involved
and that the diagram is commutative. It is also clear that the outer rim of that diagram, i.e.
the sequence

1→ Ĥ−2(0, Ȳ /Y )→
Ĉ−2(0, Ȳ /Y )

B̂−2(0, Ȳ /Y )
→ Ẑ−1(0, Ȳ /Y )→ Ĥ−1(0, Ȳ /Y )→ 1, (6.3)

is exact. The latter corresponds to the exactness of the part of diagram (6.1) corresponding
to the inf-res sequence [Kal16b, (3.5)] for G = Z.

Recall Ĉ−2(0E/F , Ȳ /Y ) = Maps(0E/F , Ȳ /Y ) and that given such a (−2)-co-
chain f , its differential is df =

∑
σ∈0E/F

(σ−1f (σ) − f (σ)) ∈ Ĉ−1(0E/F , Ȳ /Y )

= Ȳ /Y . Recall further that the coinflation map sends f ′ ∈ Maps(0K/F , Ȳ /Y ) to
f ∈ Maps(0E/F , Ȳ /Y ) given by f (σ) =

∑
σ ′ 7→σ f

′(σ ′). From this formula it is ob-
vious that coinflation is surjective. Moreover, since the first, third, and fourth (co)limits
of the above four-term exact sequence all stabilize, so must also the second term.

Next we define an isomorphism

Ĉ−2(0, Ȳ /Y )/B̂−2(0, Ȳ /Y )→ H 1(W,Z). (6.4)

We choose S so that H 1(0, S̄) = 1 and the map H 1(0, Z) → H 1(0, S) is bijective.
This is possible according to Proposition 5.2. We claim that then the map H 1(W,Z)→

H 1(u→W,Z→S) is also bijective. Indeed, its surjectivity is immediate from H 1(0, S̄)

= 1. Its kernel is equal to the image of S̄(F ) = S̄(F )W inH 1(W,Z) under the connecting
homomorphism. This is the same as the inflation of the kernel ofH 1(0, Z)→ H 1(0, S),
which is trivial. A similar argument shows that the map Ĉ−2(0, Ȳ /Y )/B̂−2(0, Ȳ /Y )→

Ẑ−1(0, Ȳ )/B̂−1(0, Y ) is bijective. We now define (6.4) as the composition of the three
bijections

Ĉ−2(0, Ȳ /Y )

B̂−2(0, Ȳ /Y )
→

Ẑ−1(0, Ȳ )

B̂−1(0, Y )
→ H 1(u→ W,Z→ S)→ H 1(W,Z). (6.5)

We must now argue that this composition is independent of the choice of S and is functo-
rial in Z. For independence of S, let Z→ S1 and Z→ S2 be two choices of S. Let S3 be
the push-out of the diagram S1 ← Z → S2, which we think of as a quotient of S1 × S2.
Then Z → S3 given by z 7→ (z, 1) = (1, z) is a third embedding with the same proper-
ties. Moreover, we have the embeddings S1 → S3 and S2 → S3 given by s1 7→ (s1, 1)
and s2 7→ (1, s2). The first one leads to the exact sequence

1→ S1 → S3 → S̄2 → 1,

from which, by taking W -cohomology, we obtain the exact sequence

S3(F )→ S̄2(F )→ H 1(u→ W,Z→ S1)→ H 1(u→ W,Z→ S3)→ H 1(0, S̄2).

Now S3(F ) contains S2(F ) which surjects onto S̄2(F ), while H 1(0, S̄2) = 1, and we
conclude that H 1(u→ W,Z → S1)→ H 1(u→ W,Z → S3) is bijective. In the same
way we conclude that H 1(u → W,Z → S2) → H 1(u → W,Z → S3) is bijective.
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This, together with the fact that all maps in (6.5) are functorial in S, proves that S1 and S2
lead to the same isomorphism (6.4).

The proof of functoriality of (6.4) in Z is similar. Given Z1 → Z2, choose embed-
dings Z1 → S1 and Z2 → S2 and take S3 to be the push-out of S1 ← Z1 → S2. Then
we obtain the exact sequence

1→ Z2 → S3 → S̄1 × S̄2 → 1.

The map S3(F )→ S̄2(F )× S̄1(F ) is surjective, because its composition with the obvious
map S1(F )×S2(F )→ S3(F ) gives the surjective map S1(F )×S2(F )→ S̄1(F )×S̄2(F ).
Moreover, H 1(0, S̄1 × S̄2) = 1. Thus we may construct the isomorphism (6.4) for Z2 by
using (6.5) with the embedding Z2 → S3. But we now have the morphism [Z1 → S1] →

[Z2 → S3] of embeddings and the functoriality of (6.4) follows from the functoriality of
the three arrows in (6.5).

Although we will not need this, we remark that there is an explicit formula for the
isomorphism (6.4) that does not involve a choice of S. In order to give it, we will use the
notation established in [Kal16b, §4.4–4.6]. In particular we have the exhaustive tower
of finite Galois extensions Ek/F , a cofinal sequence nk ∈ N (which we may spec-
ify to be nk = [Ek : F ]), a 1-cocycle ck ∈ Z2(0Ek/F , E

×

k ) representing the funda-
mental class, and an nk-th root map lk : F

×
→ F

×
. This data leads to explicit el-

ements ξk ∈ Z2(0, uEk/F,nk ) given by [Kal16b, (4.7)] and thus to explicit extensions
Wk = uEk/F,nk �ξk 0. There are also surjective transition mapsWk+1 → Wk and the limit
of this system is W .

In order to give the intrinsic formula of (6.4), we first replace the finite 0-module
Ȳ /Y , which a priori depends on the choice of S, by the isomorphic module A∨ =
Hom(X∗(Z),Q/Z). Let [λ̄] ∈ Ĉ−2(0,A∨). Choose k large enough so that exp(Z) | nk
and let [λ̄k] ∈ Ĉ−2(0Ek/F , A

∨) be the image of [λ̄]. Then the map

z
[λ̄k]
: Wk → Z(F), x � σ 7→ φd[λ̄k],k(x) · (−dlkck tEk/F [λ̄k])(σ ),

is an element of Z1(Wk, Z). In the first factor on the right we are using the isomorphism
[A∨]NEk/F → Hom(uEk/F,nk , Z)

0 discussed in [Kal16b, beginning of §4.6] to obtain
φd[λ̄k],k . In the second factor on the right tEk/F is the unbalanced cup product of [Kal16b,
§4.3] and we are using the isomorphism A∨ = Hom(µnk , Z). One can check that the
inflation of the class [z

[λ̄k]
] to an element [z

[λ̄]] ∈ H
1(W,Z) is independent of the choice

of k and that [λ̄] 7→ [z
[λ̄]] is an explicit realization of (6.4). This formula for z

[λ̄k]
follows

directly from (6.5) and the corresponding formula for zλ̄,k from [Kal16b, beginning of
§4.6]. However, we will not need it and shall therefore skip the details.

6.2. From isomorphism to duality

In this section we are going to explicitly describe the Pontryagin dual of the commutative
diagram (6.2).
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Let again S be a torus over F , Z ⊂ S a finite subgroup, and S̄ = S/Z. Let Y = X∗(S)
and Ȳ = X∗(S̄). We consider the dual tori Ŝ = Hom(Y,C×) and ̂̄S = Hom(Ȳ ,C×). They
form the isogeny

1→ Ẑ→ ̂̄S → Ŝ → 1

with Ẑ = Hom(Ȳ /Y,C×) being the Pontryagin dual of Z. We claim that the Pontryagin
dual of diagram (6.2) is

1 H 1(0, Ẑ)oo Z1(0, Ẑ)oooo Ĉ0(0, Ẑ)/B̂0(0, Ẑ)
−d
oo

1 Ĥ 0(0, Ŝ)oo

−δ

OO

π0([̂S̄]
+)oo

−d

OO

Ĉ0(0, Ẑ)/B̂0(0, Ẑ)oo

Ĥ 0(0, Ŝ) Ĥ 0(0,̂̄S)oo

OO

Ĥ 0(0, Ẑ)oo

OO
(6.6)

Here we have defined Ĥ 0(0,−) in the same way as we defined Ĥ−1(0,−) in the pre-
vious section—as the colimit with respect to the transition maps induced by the identity
Ĉ0(0E/F , A) = A = Ĉ0(0K/F , A) for any tower K/E/F of finite Galois extensions
with A being inflated from 0E/F .

In the middle term of the diagram, [̂S̄]+ is again the preimage in ̂̄S of Ŝ0 . We have
written d for the obvious differentials, and δ for the connecting homomorphism. We are
forced to place minus signs in order to obtain the correct duality, as we shall now see.

To describe how each term of this diagram is the Pontryagin dual of the corresponding
term in diagram (6.2), we begin with the term involving Ŝ and ̂̄S. We have the natural
pairing Y ⊗ Ŝ → C×. If we write N for the norm map of the action of 0E/F , where E/F
is any finite Galois extension splitting S, then the kernel of N in Y is the exact annihilator
of the image of N in Ŝ, the latter happening to be Ŝ0,◦. At the same time, IE/FY is the
exact annihilator of Ŝ0 . This explains why the bottom left square in diagram (6.6) is dual
to the bottom left square in diagram (6.2). To describe the terms involving Ẑ, we use the
following.

Lemma 6.1. Let 1 be a finite group and let A and B be finite 1-modules in duality. For
any i ≥ 0, cup product induces perfect duality of finite groups

Ĉ−i−1(1,A)⊗ Ĉi(1,B)→ Ĉ−1(1,Q/Z) = Q/Z

under which Ẑ−i−1(1,A)⊥ = B̂i(1,B) and B̂−i−1(1,A)⊥ = Ẑi(1,B). If 1′ → 1

is a surjection of finite groups, then

a ∪ inf(b) = inf(coinf(a) ∪ b), a ∈ Ĉ−i−1(1′, A), b ∈ Ĉi(1,B).

Proof. The perfect duality and the compatibility with inflation and coinflation can be
seen by a direct computation using the formula for the cup product. The statement about
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annihilators comes from the formula da ∪ b + (−1)i+1a ∪ db = d(a ∪ b) and the fact
that B̂−1(1,Q/Z) = 0. ut

This lemma shows that each term in diagram (6.6) involving Ẑ is dual to the correspond-
ing term in (6.2). To show commutativity, we reinterpret the natural pairing Y ⊗ Ŝ → C×
as the pairing Ĉ−1(0E/F , Y )⊗ Ĉ

0(0E/F , Ŝ)→ Ĉ−1(0E/F ,C×) given by the cup prod-
uct, where E/F is any finite Galois extension splitting S. The commutativity of the di-
agram now follows from the formula da ∪ b + (−1)i+1a ∪ db = d(a ∪ b) and the fact
that B̂−1(1,Q/Z) = 0. The occurrence of (−1)i+1 in this cup product formula is what
forces the appearance of the minus signs in (6.6).

6.3. Switching between normalizations

We will now discuss the effect of changing the rigidifying element xrig of the rigid in-
ner twist (ψ, xrig) on the statement LLCrig(ψ, xrig). Let ψ : G → G′ be an inner
twist and x1,rig, x2,rig ∈ Z1(u → W,Z(G) → G) be elements lifting ψ−1σ(ψ) ∈

Z1(0,Gad). Given a tempered Langlands parameter ϕ : LF → LG we have the state-
ments LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig), each of which leads to one of the two bi-
jections

Irr(π0(S
+
ϕ ), [x1,rig])→ 5ϕ(G

′)← Irr(π0(S
+
ϕ ), [x2,rig]).

We will now describe an explicit bijection

Irr(π0(S
+
ϕ ), [x1,rig])→ Irr(π0(S

+
ϕ ), [x2,rig]), (6.7)

and then argue that this bijection is compatible with the above two bijections in the ob-
vious way.

For this let n be large enough so that x1,rig, x2,rig ∈ Z
1(u→ W,Zn → G), and their

images in Z1(0,Gn) become cohomologous. Then there exists y ∈ Z1(W,Zn) with
x2,rig = y · x1,rig. We have the exact sequence

1→ Ẑn→ Ĝn→ Ĝ→ 1,

where we have defined Ẑn to be the kernel of the projection Ĝn → Ĝ, which is at the
same time the Pontryagin dual of Zn. On this sequence we have an action of LF via
Ad◦ϕ. Since each element of Irr(π0(S

+
ϕ ), [xi,rig]) kills the kernel of ̂̄G→ Ĝn, we may re-

place S+ϕ with its image in Ĝn, which we do without change in notation. We have S+,◦ϕ ⊂

Z0(LF , Ĝn), which implies that the differential d : C0(LF , Ĝn) → C1(LF , Ĝn), when
restricted to the subgroup S+ϕ , factors through π0(S

+
ϕ ) and takes image in Z1(LF , Ẑn).

The action of LF on Ẑn by Ad ◦ ϕ is inflated from WF and is the same as the action
of WF on Ẑn coming from the 0-structure on ̂̄G. Moreover, since Ẑn is finite, we have
Z1(LF , Ẑn) = Z

1(WF , Ẑn) = Z
1(0, Ẑn). The differential thus leads to a group homo-

morphism d : π0(S
+
ϕ )→ Z1(0, Ẑn). The element [y] ∈ H 1(W,Zn) provides a character

on Z1(0, Ẑn) as discussed in Subsection 6.2. Via the negative differential −d, we pull
this character to a linear character π0(S

+
ϕ )→ C×. The bijection (6.7) is given by tensor

product with this linear character.
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Lemma 6.2. Assume the validity of LLCrig(ψ, x2,rig). Then the composition of the bi-
jection Irr(π0(S

+
ϕ ), [x2,rig]) → 5ϕ(G

′) with the bijection (6.7) is the unique bijection
Irr(π0(S

+
ϕ ), [x1,rig])→ 5ϕ(G

′) that makes LLCrig(ψ, x1,rig) true.

Proof. Consider the left-hand side of (4.6) for the two rigid inner twists (ψ, x1,rig) and
(ψ, x2,rig). Let us denote the two functions occurring there by f ė,1 and f ė,2. The con-
dition of matching orbital integrals together with Lemma 6.3 below implies f ė,2

=

〈[y], (−d)ṡ〉f ė,1. Looking at the right-hand side of (4.6) and its definition (4.5) we con-
clude that LLCrig(ψ, x1,rig) is equivalent to the equation∑

π∈5ϕ(G′)

〈π̇ , ṡ〉22π̇ = 〈[y], (−d)ṡ〉
∑

π∈5ϕ(G′)

〈π̇ , ṡ〉12π̇ ,

where we have inserted the subscripts 1 and 2 to distinguish between the two pairings
coming from the two statements LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig). The linear in-
dependence of the characters of tempered representations of G′(F ) implies 〈π̇ , ṡ〉2 =
〈[y], (−d)ṡ〉〈π, ṡ〉1. Since this is true for all ṡ ∈ π0(S

+
ϕ ), we are done. ut

In order to complete the proof of Lemma 6.2 we must state and prove Lemma 6.3,
which tells us how the transfer factor (4.4) changes when we switch from x1,rig to x2,rig.
For this we take a second look at the complex number 〈[y], (−d)ṡ〉. It can be reinter-
preted as follows. Let ė = (H,H, ṡ, ξ) be the refined endoscopic datum associated to
(ϕ, ṡ), as explained in Subsection 4.1. We map Zn under Z(G) → Z(H) and form
H̄ = H/Zn. If we restrict the differential d : C0(0, Z( ̂̄H)) → C1(0, Z( ̂̄H)) to the
subgroup Z( ̂̄H)+ ⊂ C0(0, Z( ̂̄H)), then it kills the connected component Z( ̂̄H)+,◦ =
Z( ̂̄H)0,◦ ⊂ Z0(0, Z( ̂̄H)) and its image belongs to Z1(0, Ẑn). We can thus map the
element ṡ ∈ π0(Z(

̂̄H)+) of the refined endoscopic datum ė under the negative of this
differential and obtain an element (−d)ṡ ∈ Z1(0, Ẑn). We can then pair this element
with the class of y in H 1(W,Zn) using the duality discussed in Section 6.2 and obtain
the complex number 〈[y], (−d)ṡ〉. Of course, this coincides with the previous definition
of 〈[y], (−d)ṡ〉, but this interpretation makes the following lemma independent of the
previous discussion.

Lemma 6.3. We have

1′[w, ė, z, (ψ, x2,rig)] = 〈[y], (−d)ṡ〉1
′
[w, ė, z, (ψ, x1,rig)].

Proof. Let γ1 ∈ H1,G-sr(F ) and δ′ ∈ G′sr(F ) be a pair of related elements and fix δ ∈
Gsr(F ) stably conjugate to δ′. Then according to (4.4) we have

1′[w, ė, z, (ψ, x2,rig)](γ1, δ
′)

1′[w, ė, z, (ψ, x1,rig)](γ1, δ′)
=
〈inv[x2,rig](δ, δ

′), ṡγ,δ〉

〈inv[x1,rig](δ, δ′), ṡγ,δ〉
.

Both inv[x2,rig](δ, δ
′) and inv[x1,rig](δ, δ

′) are elements of H 1(u→ W,Zn→ S), where
S ⊂ G is the centralizer of δ. The difference inv[x2,rig](δ, δ

′)− inv[x1,rig](δ, δ
′) is equal

to the image of [y] ∈ H 1(W,Zn). It follows that the right-hand side above is equal
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to 〈[y], ṡγ,δ〉. According to diagram (6.6), we would get the same result if we mapped
ṡγ,δ ∈ π0([̂S̄]

+) to the group Z1(0, Ẑn) via −d and then paired the result with [y] ∈
H 1(W,Zn). The image of ṡγ,δ in Z1(0, Ẑn) is the same as the image of ṡ under the
differential −d : π0(Z(

̂̄H)+) → Z1(0, Ẑn) and we see that the right-hand side is equal
to 〈[y], (−d)ṡ〉, as claimed. ut
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