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Abstract. We show that the order three algebraic differential equation over Q satisfied by the
analytic j -function defines a non-ℵ0-categorical strongly minimal set with trivial forking geom-
etry relative to the theory of differentially closed fields of characteristic zero, answering a long-
standing open problem about the existence of such sets. The theorem follows from Pila’s modular
Ax–Lindemann–Weierstrass theorem with derivatives using Seidenberg’s embedding theorem. As
a by-product of this analysis, we obtain a more general version of the modular Ax–Lindemann–
Weierstrass theorem, which, in particular, applies to automorphic functions for arbitrary arithmetic
subgroups of SL2(Z). We then apply the results to prove effective finiteness results for intersections
of subvarieties of products of modular curves with isogeny classes. For example, we show that if
ψ : P1

→ P1 is any non-identity automorphism of the projective line and t ∈ A1(C)r A1(Qalg),
then the set of s ∈ A1(C) for which the elliptic curve with j -invariant s is isogenous to the elliptic
curve with j -invariant t , and the elliptic curve with j -invariant ψ(s) is isogenous to the elliptic
curve with j -invariant ψ(t), has size at most 238

· 314. In general, we prove that if V is a Kolchin
closed subset of An, then the Zariski closure of the intersection of V with the isogeny class of a
tuple of transcendental elements is a finite union of weakly special subvarieties. We bound the sum
of the degrees of the irreducible components of this union by a function of the degree and order
of V .
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1. Introduction

According to Sacks, “[t]he least misleading example of a totally transcendental theory is
the theory of differentially closed fields of characteristic 0 (DCF0)” [28]. This observa-
tion has been borne out through the discoveries that a prime differential field need not
be minimal [27], the theory DCF0 has the ENI-DOP property [15], and Morley rank and
Lascar rank differ in differentially closed fields [11], amongst others. However, the the-
ory of differentially closed fields of characteristic zero does enjoy some properties not
shared by all totally transcendental theories, most notably the Zilber trichotomy holds for
its minimal types [12] and there are infinite definable families of strongly minimal sets for
which the induced structure on each such definable set is ℵ0-categorical and orthogonality
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between the fibers is definable [7, 9]. Early in the study of the model theory of differential
fields, Lascar asked whether the induced structure on every strongly minimal set orthogo-
nal to the constants must be ℵ0-categorical [14] (Lascar’s formulation of the question was
slightly different, though implies the condition we stated; also, Lascar attributed the ques-
tion to Poizat, but the question does not appear in the paper to which Lascar refers). From
the existence of Manin kernels, one knows that there are strongly minimal sets relative
to DCF0 which are not ℵ0-categorical [8], but the question of whether there are non-ℵ0-
categorical strongly minimal sets with trivial forking geometry has remained open (see
[26] for instance). We exhibit an explicit equation defining a set with these properties.

The analytic j -function, j : h → C, which has been known to mathematicians for
quite some time, appearing implicitly in the work of Gauss already in the late eighteenth
century [6], satisfies a differential equation over Q which when evaluated in a differen-
tially closed field defines a non-ℵ0-categorical strongly minimal set with trivial forking
geometry. The specific differential equation satisfied by the j -function is given by the
vanishing of a differential rational function. In addition to the fiber of the function above
zero (the equation of the j -function), we prove that all fibers are strongly minimal, trivial,
and pairwise orthogonal.

Besides the applications to differential-algebraic geometry, we give some number-
theoretic applications. Specifically, we use our differential-algebraic approach to prove
effective bounds on the size of the intersection of Hecke orbits of transcendental points
on products of modular curves with non-weakly special varieties.

Mazur posed some effective finiteness questions in connection with a recent theorem
of Orr [22]. Of course, knowing the isogeny class of an elliptic curve determines that
curve only to within a countably infinite set. Mazur surmised that the data of the isogeny
class of an elliptic curveE and of the isogeny class of some other naturally associated (but
not so naturally associated as to respect the Hecke correspondences) elliptic curve might
pin down E or at least constrain it to a finite set. In fact, it is a consequence of the main
theorem of [22] that if C ⊆ A2

C is an irreducible affine plane curve which is not modular
or horizontal or vertical, then for any point (a, b) ∈ C(C) there are only finitely many
other points (c, d) ∈ C(C) for which the elliptic curve coded by a is isogenous to the
elliptic curve given by c and the curve corresponding to b is isogenous to that coded by d.
In this sense, if we regard C as a correspondence which associates to an elliptic curve E
with j -invariant a one of the elliptic curves having j -invariant b with (a, b) ∈ C(C), then
the data of the isogeny class of E and of the C-associated elliptic curve determine E up
to a finite set.

Orr’s theorem applies to arbitrary points without any hypothesis on the degree of
the point over Q. However, this generality incurs a cost: his argument follows the Pila–
Zannier strategy for proving diophantine geometric finiteness theorems which depends in
an essential way on ineffective results in the Pila–Wilkie o-minimal counting theorem and
in class field theory. On the other hand, by restricting attention to transcendental points,
we may compute explicit bounds on the sizes of these finite sets. While our proof that the
sets in question are finite also passes through the Pila–Wilkie o-minimal counting theorem
in the guise of Pila’s modular Ax–Lindemann–Weierstrass theorem with derivatives, this
appeal does not leave a trace of ineffectivity.
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Let us describe the basic tactics involved in our approach to the general problem. The
key point is to replace the Hecke orbits by solution sets to particular differential equa-
tions. This approach already appears in Buium’s article [2]. The obvious downside to
this move is that (as referenced above) the Kolchin (differential Zariski) topology has
wild behavior compared to the Zariski topology. This is mitigated by our model-theoretic
work understanding the differential equation satisfied by the j -function. Here we use the
strong minimality and triviality of the differential equation which the j -function satisfies
in order to establish the finiteness of its intersection with non-weakly special algebraic
varieties. The advantage of this approach is uniformity—we replace an arithmetic ob-
ject by a (differential) variety. The finiteness of certain intersections then follows by our
proof of strong minimality, and the actual bounds come from an effective version of uni-
form bounding for definable sets in differential fields due to Hrushovki and Pillay [10]
(with improvements due to Binyamini [1]); essentially these bounds come from doing
intersection theory (of algebraic varieties) in jet spaces of algebraic varieties. The actual
bounds are rather tractable, being doubly exponential in the various inputs—the degrees
and dimensions of certain associated algebraic varieties.

This paper is organized as follows. In Section 2, we recall some of the basic theory
of the j -function, including the theory of the Schwarzian derivative and the differential
equation satisfied by j . With Section 3 we complete the proof of our main theorem and
draw some corollaries. The main ingredients of the proof are Seidenberg’s embedding
theorem, Pila’s modular Ax–Lindemann–Weierstrass theorem with derivatives and a con-
struction of a nonlinear order three differential rational operator χ for which χ(j) = 0.
In Section 4, we show via a change of variables trick and some basic forking calculus that
for any parameter a the set defined by χ(x) = a is strongly minimal. In Section 4.2 we
show that these fibers are orthogonal. The final section is devoted to arithmetic applica-
tions, where we use our main theorem to get bounds on the intersections of non-weakly
special varieties with Hecke orbits in products of modular curves.

2. Basic theory and the j -function

In this section we summarize some of the basic theory of the j -function and of geometric
stability theory.

We denote the upper half-plane by

h := {z ∈ C : Im(z) > 0}.

We write t for the variable ranging over h (or some open subdomain).
The j -function is an analytic function on h whose Fourier expansion begins with

j (t) = exp(−2πit)+ 744+ 196 884 exp(2πit)+ 21 493 760 exp(4πit)+ · · · .

The algebraic group SL2(C) acts on the projective line via linear fractional transfor-
mations, and the restriction of this action to SL2(R) induces an action of SL2(R) on h.
The j -function is a modular function for SL2(Z) in the sense that j (γ · t) = j (t) for each
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γ ∈ SL2(Z). Indeed, more is true: for a, b ∈ h one has j (a) = j (b) if and only if there
is some γ ∈ SL2(Z) with γ · a = b.

The differential equation satisfied by j is best expressed using the Schwarzian deriva-
tive. We shall write x′ for ∂x/∂t . More generally, in any differential ring (R, ∂) we shall
write x′ for ∂(x). We define the Schwarzian by

S(x) =

(
x′′

x′

)′
−

1
2

(
x′′

x′

)2

.

When dealing with the Schwarzian derivative associated with a particular derivation ∂ ,
we will use the notation S∂ , but when ∂ is fixed or clear from the context, we will drop
the subscript.

The Schwarzian satisfies a chain rule:

S(f ◦ g) = (g′)2S(f ) ◦ g + S(g).

A characteristic feature of the Schwarzian is that if (K, ∂) is a differential field of
characteristic zero with field of constants C = {x ∈ K : x′ = 0} and f and g are two
elements of K , then one has S(f ) = S(g) if and only if f = ag+b

cg+d
for some constants a,

b, c and d. In particular, one computes immediately from the formula for the Schwarzian
that if z′ = 1, then S(z) = 0 so that the solutions to the equation S(x) = 0 are precisely
the degree one rational functions in z with coefficients from C.

The following is an order three algebraic differential equation satisfied by j (see [17,
p. 20]):

S(y)+ R(y)(y′)2 = 0, (?)

where

R(y) =
y2
− 1968y + 2 654 208

2y2(y − 1728)2
.

For the remainder of this paper, when we speak of the differential equation satisfied
by j , we mean equation (?). We will also make use of the differential rational function
which gives the equation; throughout the paper, we will denote

χ(y) := S(y)+ R(y)(y′)2.

Similarly, when there is some ambiguity or choice about the particular derivation ∂
with which we are working, we will write χ∂ for the resulting differential rational func-
tion.

Our model-theoretic notation is standard and generally follows that of [25].
Non-forking (for which we use the symbol |^) is a notion of independence in model

theory, which we will not define in general, but we will describe its manifestation in
differential fields of characteristic zero [16, Section 2].

Let (U, ∂) ⊃ (K, ∂) be an extension of differential fields and a be a tuple of elements
from U. Let L/K be an extension of differential fields inside U. Then a 6 |^K

L if and only
if for some k ∈ N,

tr.degL L(a, ∂(a), . . . , ∂
k(a)) < tr.degK K(a, ∂(a), . . . , ∂

k(a)). (†)
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Read more algebraically, if we let I (a/L) be the differential ideal of all differential poly-
nomials over Lwhich vanish on a andK is algebraically closed, then a |^K

L if and only
if I (a/L) is generated by differential polynomials with coefficients from K .

If a 6 |^K
L, then in the language of types, we say that tp(a/L) is a forking extension

of tp(a/K).
When p is a type over A, the Lascar rank of p, denoted U(p), is defined as follows.

In general, U(p) ≥ 0 for every consistent type p, U(p) ≥ α + 1 if and only if there is a
forking extension q of p with U(q) ≥ α, and U(p) ≥ λ for λ a limit ordinal just in case
U(p) ≥ α for all α < λ. Generally, Lascar rank is ordinal-valued, when defined, but in
this paper, we only deal with finite Lascar rank types. By our characterization of forking
in DCF0, transcendence calculations (as in (†)) control forking and thus Lascar rank.

Let us recall a basic principle in stability theory, called in [4] the “Shelah reflection
principle”. In a stable theory, let p be a stationary type; then the canonical base of p is
definable from a Morley sequence in p. A proof of this principle in the more general
context of simple theories may be found in [3, Proposition 17.24]. A proof in the stable
case may be found in [25, Lemma 2.28]. We will use a consequence of this principle.
Namely, if A ⊂ B are subsets of some model of a stable theory and a is a tuple from the
model, then if a 6 |^A

B there is a Morley sequence (di)∞i=0 in tp(a/B) such that (di) is not
independent over A. In particular, there is a finite initial segment of the Morley sequence
which is not independent over A.

3. Minimality and the j -function

In this section, we deduce our main theorem on the strong minimality of the set defined
by equation (?). We regard the differential field C〈j〉 = C(j, j ′, j ′′) as a subdifferential
field of some differentially closed field with field of constants C.

Let us recall Seidenberg’s embedding theorem [30].

Theorem 3.1 (Seidenberg). Let K = Q〈u1, . . . , un〉 be a differential field generated by
n elements over Q and let K1 = K〈v〉 be a differential field extension of K generated by
a single element v. Suppose U ⊂ C is an open ball and ι : K → M(U) is a differential
field embedding of K into the differential field of meromorphic functions on U . Then
there is an open ball V ⊆ U and an extension of ι to a differential field embedding of K1
into M(V ).

We will use Seidenberg’s theorem in conjunction with analyses of Morley sequences (as
discussed in Section 2).

Lemma 3.2. We can realize any finite sequence {d1, . . . , dn} of solutions to (?) as
{j (g1t), . . . j (gnt)} where gi ∈ GL2(C) for i = 1, . . . , n.

Remark 3.3. The first author discussed portions of this argument with Ronnie Nagloo,
who made several essential suggestions.
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Proof of Lemma 3.2. By using Theorem 3.1, we may assume that {d1, . . . , dn} are real-
ized as meromorphic functions on some domain U contained in h. Since the j -function is
a surjective analytic function from h to C, it follows that there are holomorphic functions
ψi : U → h such that j (ψi(t)) = di(t). By hypothesis, j (ψi(t)) satisfies (?). Hence,

0 = χ(j ◦ ψi) = S(j ◦ ψi)+ R(j ◦ ψi)((j ◦ ψi)′)2

= (S(j) ◦ ψi) · (ψ
′

i)
2
+ S(ψi)+ R(j ◦ ψi)(j

′
◦ ψi)

2
· (ψ ′i)

2

= (χ(j) ◦ ψi) · (ψ
′

i)
2
+ S(ψi) = S(ψi).

Thus, if j ◦ ψi is a solution to χ(x) = 0, then S(ψi) = 0. As we noted in Section 2, all
such solutions are rational functions of degree one. That is, there is some gi ∈ GLs(C)
for which ψi(t) = gi · t , showing that di is realized as j (gi t) as required. ut

The second main ingredient in the proof of our main theorem is a result of Pila [24].
Before stating the theorem, we define some terminology.

Let W ⊆ AmC be an irreducible affine algebraic variety. Let a1, . . . , an ∈ C(W) be
rational functions onW and suppose that p ∈ W(C) is a point for which ai(p) ∈ h for all
i ≤ n. Then the maps j (a1), . . . , j (an) can be considered as functions in a neighborhood
of the point p. The functions a1, . . . , an are geodesically independent if the ai are all
non-constant and they satisfy no relations of the form ai = gaj for some g ∈ GL+2 (Q).
Under these circumstances, Pila proved:

Theorem 3.4 (Pila). The 3n functions j (ai), j ′(ai) and j ′′(ai) for i = 1, . . . , n are
algebraically independent over C(W).

Remark 3.5. If W is a curve and ∂ : C(W) → C(W) is a non-zero C-derivation
on C(W), then using the chain rule and the algebraic independence of j (ai), j ′(ai),
and j ′′(ai) over C(W), we deduce the algebraic independence of j (ai), ∂(j (ai)), and
∂2(j (ai)) over C(W).

Remark 3.6. In fact, [24] proves a stronger result giving the independence of the above
3n functions over a larger field which includes exponential functions and Weierstrass ℘
functions. One can deduce this more general form of the Ax–Lindemann–Weierstrass
theorem from the results of this paper, as we will explain in Remark 3.9 below.

With the next theorem we deduce from Theorem 3.4 that tp(j/C) is minimal.

Theorem 3.7. U(tp(j/C)) = 1.

Proof. By the superstability of DCF0, we may find a finitely generated algebraically
closed subfield A ⊆ C for which U(j/A) = U(j/C).

We need to check that any forking extension of tp(j/A) is algebraic. By the finite
character of forking, it suffices to consider extensions of the type to finitely generated
extensions of A. If B ⊇ A is any such finitely generated differential field extension in our
differentially closed field for which tp(j/B) forks over A, then by the Shelah reflection
principle described in Section 2, we may find a finite initial segment of a Morley sequence
{d1, . . . , dn} in tp(j/B) which is not independent over A. By Lemma 3.2, we may realize
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d1, . . . , dn as j (g1t), . . . , j (gnt) for some gi ∈ GL2(C). By Theorem 3.4 with W = A1

and ai(t) := gi · t , if g1, . . . , gn are in distinct cosets of GL2(Q), then j (g1t), . . . , j (gnt)

are forking independent over C. On the other hand, if gi and gj are in the same coset of
GL2(Q), then j (gi t) and j (gj t) are interalgebraic over Q as witnessed by an appropriate
modular polynomial FN (x, y) ∈ Z[x, y] [18, pp. 183–186]; we will refer to this relation
(between solutions of the differential equation (?)) as a Hecke correspondence; Pila [24,
23] calls these modular relations. The only way that the elements of a Morley sequence
may be interalgebraic is if the type itself is algebraic. Hence, from the dependence of the
Morley sequence we deduce that tp(j/B) is algebraic, as required. ut

Via another use of Pila’s theorem, we strengthen Theorem 3.7 to the conclusion that E
defines a strongly minimal set, that is, every definable subset is either finite or cofinite.

Theorem 3.8. The set defined by the differential equation (?) is strongly minimal.

Proof. As (?) is of degree one in the order three variable, it suffices to show that any
differential specialization of j over C satisfies no lower order differential equation. By
Lemma 3.2 we may realize f as f = j (gt) for some g ∈ GL2(C). Applying Theo-
rem 3.4 with W = A1, n = 1, and a1(t) = g · t , we see that tr.degC(t)(f, f

′, f ′′) = 3.
(Alternatively, this result follows from the main theorem of [21].) ut

Remark 3.9. Recall that in Remark 3.6 we stated that Pila proved a more general state-
ment than the independence of j , j ′, and j ′′ over the function field of some variety W . In
fact, he proves that the conclusion holds over C(W) for the derivatives of the j -functions
along with a collection of exponential and Weierstrass ℘ functions. In fact, the conclu-
sion for the entire collection follows from minimality of the type tp(j/C). Indeed, this
depends very little on the nature of the exponential and Weierstrass ℘-functions. Similar
conclusions hold for any function (or collection of functions) f (t) so that f (t) satisfies
an order two (or lower) differential equation over C.

To see this, we show by induction on n that if f1, . . . , fn is a finite sequence of func-
tions all of which satisfy differential equations of order at most two, then j is independent
from f1, . . . , fn over C. The case of n = 0 is trivial. For the inductive case of n + 1, let
K := C〈f1, . . . , fn〉 be the differential field generated by f1, . . . , fn over C. By induc-
tion, j is free from K over C so that tp(j/K) is minimal as well, implying that if j
depends on f1, . . . , fn+1 over C, then j ∈ K〈fn+1〉

alg, but tr.degK(K〈j〉) = 3 > 2 ≥
tr.degK(K〈fn+1〉

alg).

The main theorem of Hrushovski’s manuscript [7] is that if the definable set X is defined
by an order one differential equation over the constants and is orthogonal to the constants,
then the induced structure on X over any finite set of parameters over which it is defined
is ℵ0-categorical. Under additional technical assumptions, Rosen [26] proved the theo-
rem without the hypothesis that X is defined over the constants (however, the technical
assumptions are of a nature such that it is not obvious if they ever hold). It has been
known since the identification of Manin kernels that not every strongly minimal which is
orthogonal to the constants must have ℵ0-categorical induced structure, but the question
of whether a strongly minimal set with trivial forking geometry must have ℵ0-categorical
induced structure has remained open until now.
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Theorem 3.10. Let X be the set defined by equation (?). For each natural number n,
every definable subset of Xn is defined by a Boolean combination of formulae of the form
x` = ζ for some ζ ∈ X and ` ≤ n and FN (xi, xk) = 0 for some N ∈ Z+ and j, k ≤ n.
Moreover, the definable sets {(x, y) ∈ X2

: FN (x, y) = 0} as N ranges through Z+ give
infinitely many distinct 0-definable subsets of X2. Consequently, X is strongly minimal,
has trivial forking geometry, but is not ℵ0-categorical.

Proof. Our main theorem, Theorem 3.8, asserts that X is strongly minimal. Triviality of
the forking geometry of the generic type of X (and hence of X itself) is an immediate
consequence of Pila’s Theorem 3.4.

We claim that if (a1, . . . , an) ∈ X
n and (b1, . . . , bn) ∈ X

n and they agree with respect
to all formulae of the form FN (xi, xk) = 0 for someN ∈ Z+ and j, k ≤ n, then they have
the same type over Qalg. Indeed, reordering the coordinates if need be, we may assume
that no equation of the form FN (ai, ak) = 0 holds with i ≤ m but thatm is maximal with
this property. It is an immediate consequence of Theorem 3.4 that (a1, . . . , am) realizes
the generic type ofXm as does (b1, . . . , bm). On the other hand, the remaining coordinates
are algebraic over the first m, and their algebraic types are described by which modular
polynomials they satisfy.

Thus, the 0-definable sets are given by finite Boolean combinations of modular rela-
tions. Since X is stably embedded (because DCF0 is stable), the induced structure on X
over any other set of parameters is given by an expansion by constants of the 0-definable
structure.

Since the set X is closed under isogeny in the sense that if x ∈ X and y is the
j -invariant of an elliptic isogenous to an elliptic curve with j -invariant x, then y ∈ X
(see [2]), it is clear that the binary relations on X2 given by the modular polynomials are
infinite and distinct. ut

Remark 3.11. Suppose that 0 ≤ SL2(Z) is an arithmetic subgroup. One might inquire
about the differential-algebraic properties of j0 , where j0 is the analytic function ex-
pressing the quotient space 0\h as an algebraic curve. Since j0 is interalgebraic with j
over C, the type of j0 is strongly minimal. Further, for g ∈ SL2(C), we have the following
diagram:

j0(t) j0(gt)

j (t) j (gt)

The solid vertical lines indicate interalgebraicity. The relationship of j (t) and j (gt) is
completely controlled by Theorem 3.4. It follows from the interalgebraicity of j (gt)
and j0(gt) that if g1, . . . , gn lie in distinct cosets of SL2(Q), then the functions
j0(g1t), . . . , j0(gnt) are differentially algebraically independent. That is, the relation-
ship (in terms of algebraic closure in the sense of differential fields) indicated by the top
(curly) line is completely controlled by the modular Ax–Lindemann–Weierstrass theorem
and the results of this paper; naturally, one obtains as a by-product the Ax–Lindemann–
Weierstrass theorem with derivatives for j0(t).
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4. The other fibers

In the previous sections, we investigated the properties of the algebraic differential equa-
tion satisfied by the j -function, or in the language of [2], we investigated the fiber of χ
above 0. In this section, we will investigate the other fibers as well as the possible alge-
braic relations across fibers in order to prove finiteness results. The general problem will
be reduced to an analytic one via Seidenberg’s theorem combined with the special nature
of the differential equations in question.

4.1. Minimality, strong minimality and other trivialities

Fix as , an element in some differential field extension of Q. (Here the subscript “s”
is meant to suggest the Schwarzian. The reason for this choice of notation should be-
come clear shortly.) By Seidenberg’s Theorem 3.1 we may realize the abstract differen-
tial field Q〈as〉 as a differential subfield of M(U), the field of meromorphic functions on
some connected open subset U of h. We shall write the variable ranging over U as t and
will write as(t) when we wish to regard as as a meromorphic function. Perhaps at the
cost of shrinking the open domain U , we may find some ã(t), an analytic function on
some U , such that χ(j (ã(t))) = as(t) as functions of t . Alternatively, from the analytic
description of χ we see that as is the Schwarzian of ã. Define a := j (ã) ∈M(U).

For a given derivation ∂ , we remind the reader of our notation from the introduction:

χ∂(x) := S∂(x)+
x2
− 1968x + 2 654 208
2x2(x − 1728)2

(∂x)2.

The following obvious observation (which is an immediate consequence of the chain
rule) will be used throughout the remainder of the section.

Lemma 4.1. If V ⊆ U is a small enough connected open domain on which ã is holomor-
phic and one-to-one and K is a d/dt-differential subfield of M(V ) containing a and ã,
then K is also a d/du-differential field where u = ã(t). Furthermore, χd/du(a) = 0.

Proposition 4.2. The set defined by the formula χ(x) = as is strongly minimal. More-
over, if a1, . . . , an satisfy χδ(ai) = as and B is any algebraically closed differential field
containing as , then {a1, . . . , an} is independent overB, unless there is some k with ak ∈ B
or there is a pair i < ` for which FN (ai, a`) = 0 for some modular polynomial FN .

Proof. Let us first address strong minimality. It suffices to show that in some differen-
tially closed field U extending Q〈as〉 the set Fas := {x ∈ U : χd/dt (x) = as} is infinite
but every differentially constructible subset is finite or cofinite. Taking U to be a differen-
tial closure of Q〈as, ã〉 and using Seidenberg’s Theorem 3.1 repeatedly, we may realize
U as a differential field of germs of meromorphic functions. By Lemma 4.1, the differ-
ential field U is also a differential field with respect to d/du and the set Fas is equal to
{x ∈ U : χd/du(x) = 0}. By the strong minimality of the equation for the j -function,
this latter set is infinite and every d/du-differentially constructible subset is finite or cofi-
nite. In particular, since every d/dt-differentially constructible set is d/du-differentially
constructible, Fas is strongly minimal.
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For the “moreover” clause describing dependence amongst the solutions to χ(x)=as ,
replacing a1, . . . , an with realizations of the non-forking extension of tp(a1, . . . , an/B)

to B〈ã〉, we may assume that a1, . . . , an is independent from ã over B. Then as in the
proof of strong minimality, we see that a1, . . . , an satisfy χd/du(x) = 0. Regarded now in
the differential field (U, d/du), any dependence amongst {a1, . . . , an} must come from
either ak being algebraic over B〈ã〉 for some k, or FN (ai, a`) = 0 for some i < ` and
natural number N . By transitivity of forking independence, algebraicity over B〈ã〉 would
imply algebraicity over B. ut

Remark 4.3. Proposition 4.2 characterizes algebraic closure in χ−1
δ (as) and shows that

the sets have trivial forking geometry which is not ℵ0-categorical.

4.2. Orthogonality

We begin this section with some standard notation from differential-algebraic geometry,
which we will require in the proof of our result. The constructions of prolongation spaces
and of the corresponding differential sections are valid in a much more general context
than what we present here where we specialize to embedded affine varieties and work
with coordinates. Further details may be found in [20].

Let (K, ∂) be a differential field of characteristic zero and n and ` a pair of natural
numbers. We define the `th prolongation space of affine n space, τ`An, to be the An(`+1)

where if the coordinates on An are x1, . . . , xn, then the coordinates on τ`An are xi,j for
1 ≤ i ≤ n and 0 ≤ j ≤ `. We define ∇` : An(K)→ τ`An(K) by the rule

(a1, . . . , an) 7→ (a1, . . . , an; a
′

1, . . . , a
′
n; . . . ; a

(`)
1 , . . . , a(`)n )

where as above we write x′ for ∂(x) and x(`) for ∂`(x). If (L, ∂) is a differential field
extension of (K, ∂), we continue to write ∇` for the corresponding map on An(L).

If X ⊆ An is an embedded affine variety and T ⊂ S ⊆ τ`An are two subvarieties of
the prolongation space, then we define the differential constructible set (X, S r T )] by

(X, S r T )](K) := {a ∈ X(K) : ∇(a) ∈ (S r T )(K)}.

The particular differential-algebraic varieties which interest us are given by the fibers
of χ :

χ∂(x) := S∂(x)+
x2
− 1968x + 2 654 208
2x2(x − 1728)2

(∂x)2.

Thus, χ−1
δ (as) is given by the set of x such that(

x′′′x′ − 3
2 (x
′′)2
)
(2x2(x − 1728)2)+ (x2

− 1968x + 2 654 208)(x′)4

= as · (x
′)2(2x2(x − 1728)2)

and x′ 6= 0 (note that this implies that 2x2(x − 1728)2 6= 0). In this case, the variety S
is given by the above algebraic equation on τ3(A1) = A4 and T is given by the equation
x′ = 0 in the same space. We note that S is an irreducible hypersurface of degree 6.
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When analyzing possible algebraic relations between collections of solutions (and
their derivatives) to various fibers of χ , the previous section gives a complete account
of the algebraic relations within a given fiber. In this section, we prove that there are no
algebraic relations across fibers.

Theorem 4.4. If the parameters bs and cs are distinct, then in the sense of stability theory
the definable sets χ−1(bs) and χ−1(cs) are orthogonal.

Proof. By Proposition 4.2, each of the definable sets χ−1(bs) and χ−1(cs) is strongly
minimal. Hence, non-orthogonality of χ−1(bs) and χ−1(cs) would be equivalent to the
existence of a finite-to-finite definable correspondence between these fibers, possibly de-
fined over new parameters. We shall show that any finite-to-finite correspondence between
two fibers of χ must be given by a modular polynomial. Since the fibers of χ are pre-
served by Hecke correspondences, it will then follow that there can be no finite-to-finite
correspondences between different fibers.

For the sake of this argument, we work with models of our equations over finitely
generated rings (rather than fields) so that we may specialize parameters.

Using Seidenberg’s Theorem 3.1 and then shrinking the domain if need be to avoid
poles, we may fix some domain U ⊆ h so that we may realize bs and cs as elements
of O(U), the differential ring of holomorphic functions on U . Moreover, we may assume
that there are b̃, c̃ ∈ O(U) with bs = Sd/dt (b̃) and cs = Sd/dt (c̃). Note that in partic-
ular we have arranged that d

dt
(b̃) and d

dt
(c̃) have no zeros on U . We set b := j (b̃) and

c := j (c̃).
By quantifier elimination, the description of algebraic closure in differential fields,

and the fact that the third derivative of a solution to a fiber of χ is rational over the
previous derivatives, we may assume that the finite-to-finite correspondence 00 is given
by ∇−1

2 0 where 0 ⊆ τ2(A1
×A1) = A3

×A3. By induction (it is only necessary to get a
contradiction for irreducible correspondences) and possibly further shrinking U , we may
assume that 0 is an absolutely integral O(U)-scheme and that 0 gives a finite-to-finite
correspondence on A3

O(U) × A3
O(U).

Take t0 ∈ U and consider the fiber 0t0(C) ⊆ τ2(A1
× A1)(C).

For a review of the prolongation spaces and their relation to differential-geometric jet
spaces, see [29, Sections 2.1 and 2.2]. Taking differential-geometric jets we obtain a map
J2(j) : J2(h)→ τ2(A1)(C) which fits into the following commutative diagram:

h× h

j×j

��

J2(h× h)

J2(j×j)
��

πoo J2(h)× J2(h)

J2(j)×J2(j)
��

(A1
× A1)(C) τ2(A1

× A1)(C)πoo (A3
× A3)(C)

Claim 4.5. The set

A :=

{(x(t0), x
′(t0), x

′′(t0), y(t0), y
′(t0), y

′′(t0)) ∈ 0(C) : χ(x) = bs, χ(y) = cs} ⊆ τ3A2

is Zariski dense in 0t0 .
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Proof of Claim. The first projection of A to τ3A1 contains the set

B :=

{(
j (g · b̃(t0)),

d

dt
j (g · b̃(t))

∣∣∣∣
t=t0

,
d2

dt2
j (g · b̃(t))

∣∣∣∣
t=t0

) ∣∣∣∣ g ∈ GL+2 (R)
}
,

which is Zariski dense in τ3A1. Indeed, because GL+2 (R) acts transitively on h, we see
that the projection of B to the first coordinate is all of C. The fibers in the tangent space
over any such point are obtained by restricting g to the stabilizer of some point in h. From
the formula for the derivative, it is clear that the image ofB is dense in these fibers as well.
Likewise, the stabilizer of any point in J1(h) is one-dimensional, and again the formula
for the second derivative shows that the image of A in the fibers of J2(h) over J1(h) is
dense.

Since 0t0 is an irreducible finite-to-finite correspondence, A is Zariski dense in 0t0 . z

Note that the action of GL+2 (R)×GL+2 (R) on h× h extends canonically to an action on
J2(h× h) via the jets. Let 0̃t0 be a component of (J2(j)× J2(j))

−10t0 and let Ht0 be the
setwise stabilizer of 0̃t0 in GL+2 (R)× GL+2 (R).

Claim 4.6. For each γ ∈ GL+2 (Q) there is some δ ∈ GL+2 (Q) with (γ, δ) ∈ Ht0 and
likewise for each δ ∈ GL+2 (Q) there is some γ ∈ GL+2 (Q) with (γ, δ) ∈ Ht0 .

Proof of Claim. Let γ ∈ GL+2 (Q). We know that the image under j × j of the graph of
the action of γ on h is an algebraic correspondence on A1

×A1 which restricts to a finite-
to-finite correspondence from χ−1(bs) to itself. The image of this correspondence under
∇
−1
2 (0t0) is thus a finite-to-finite correspondence from χ−1(cs) to itself. By Proposi-

tion 4.2, this new correspondence must be given by a finite union of Hecke relations which
are themselves images under j×j of graphs of the action of some δ1, . . . , δn ∈ GL+2 (Q).

By Claim 4.5, there is a Zariski dense set of points (x, y) in 0t0(C) such that for any u
with (x, u) in the Hecke correspondence coming from γ , there is some v with (y, v) in
the Hecke correspondence coming from δi for some i ≤ n and (u, v) ∈ 0t0(C). As this
is an algebraic condition, it holds everywhere on 0t0 . Thus, for any (x, y) ∈ 0̃t0 , there
is some i ≤ n and some ε ∈ SL2(Z) such that (γ · x, εδi · y) ∈ 0̃t0 . For any given
δ ∈ GL+2 (Q) the set 0̃t0 ∩ (γ

−1, δ−1) · 0̃t0 is a closed analytic subset of 0̃t0 . As 0̃t0 is
irreducible and may be expressed as the countable union of such intersections we have
0̃t0 = 0̃t0 ∩ (γ

−1, δ−1) · 0̃t0 for some δ ∈ GL+2 (Q). That is, (γ, δ) ∈ Ht0 . Arguing with
the first and second coordinates reversed, we obtain the “likewise” clause. z

Let us writeHt0 for the image ofHt0 in PSL2(R)×PSL2(R). Note thatHt0 is the setwise
stabilizer of 0̃t0 in PSL2(R) × PSL2(R). From Claim 4.6 and the fact that the image of
GL+2 (Q) is dense in PSL2(R) we see that the projection ofHt0 to each PSL2(R) is surjec-
tive. Since 0̃t0 is a finite-to-finite correspondence between J2(h) and J2(h), necessarily
Ht0 is a proper subgroup of PSL2(R)×PSL2(R). Arguing as in [13] we see thatHt0 is the
graph of an automorphism of PSL2(R). Since every automorphism of PSL2(R) is inner,
we can find some g ∈ PSL2(R) for which Ht0 = {(γ, γ

g) : γ ∈ PSL2(R)}.
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Let us consider some point (x, y) ∈ 0̃t0 . Write π(x, y) =: (x0, y0) ∈ π(0̃t0) ⊆ h×h.
Let k ∈ PSL2(R) with k · x0 = y0. We will show that we may take k = g.

Let us write the stabilizer of x in PSL2(R) as Sx . Note that if h ∈ Sx , then because
(h, hg) ∈ H , we have (x, hg · y) = (h, hg) · (x, y) ∈ 0̃t0 . Since 0̃t0 is a finite-to-finite
correspondence, the fiber of 0̃t0 above x is finite. Hence, the orbit Sgx · y is finite. That
is, the group Sgx ∩ Sy has finite index in Sgx , but as this last group is connected, it follows
that Sgx ≤ Sy . Projecting π : J2(h) → h we conclude that Sgx0 = π(S

g
x ) ≤ π(Sy) =

Sy0 = S
k
x0

. Since the group Sx is self-normalizing, we conclude that gSx0 = kSx0 . That
is, it would have been possible to take k = g. Thus, π(0̃t0) is the graph of the action of g
on h.

Since J2(j × j)(0̃t0) = 0t0 is an algebraic variety, necessarily g ∈ GL+2 (Q). As there
are only countably many Hecke relations, it follows that one must hold for the generic
fiber of 0. This finishes the proof of the theorem, because it contradicts bs 6= cs . ut

5. Effective finiteness results

In this section, we compute explicit upper bounds on certain intersections of isogeny
classes of products of elliptic curves with algebraic varieties. As we explained in the
introduction to this paper, the questions we address were posed to us by Mazur in con-
nection with theorems of Orr in line with the Zilber–Pink conjectures. In [22], Orr proves
the following theorem.

Theorem 5.1 (Orr, [22, Theorem 1.3]). Let3 be the isogeny class of a point s ∈ Ag(C),
the moduli space of principally polarized abelian varieties of dimension g. Let Z be an
irreducible closed subvariety of Ag such thatZ∩3 is Zariski dense inZ and dim(Z) > 0.
Then there is a special subvariety S ⊆ Ag which is isomorphic to a product of Shimura
varieties S1 × S2 with dim S1 > 0 and such that

Z = S1 × Z
′
⊆ S

for some irreducible closed Z′ ⊆ S2.

If Z is a curve, Theorem 5.1 implies that Z must be a weakly special variety. We refer the
reader to the original paper for a discussion of special and weakly special varieties, but
note that if S ⊆ Ag is the subvariety corresponding to the abelian varieties expressible
as a product of g elliptic curves, then on identifying S with An, the special subvarieties
of S are the components of varieties defined by equations of the form FN (xi, xk) = 0
where FN is a modular polynomial and 1 ≤ i ≤ k ≤ n. The weakly special varieties are
obtained by allowing in addition equations of the form x` = ζ for some ζ ∈ A1(C).

Taking the contrapositive of Theorem 5.1, again for curves, one sees that if Z ⊆ Ag
is an algebraic curve which is not weakly special, then Z ∩3 is finite. One might wonder
how large this finite set is. Since Orr’s argument depends on ineffective constants coming
from the Pila–Wilkie o-minimal counting theorem, it does not yield a method to compute
a bound onZ∩3. Using differential-algebraic methods, we can find explicit upper bounds
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depending only on geometric data, but we must restrict our attention to transcendental
points.

Let us begin with a specific example before giving a general theorem. The general
idea we are following is a familiar one in the model theory of fields (e.g. [8, 2]). Take a
setAwhich has some arithmetic meaning (in our case, isogeny classes viewed in a moduli
space); we wish to study the intersection of A with varieties. Instead of considering the
intersections directly, take the closure A

Kol
of A in the Kolchin topology, and study inter-

sections of A
Kol

with varieties. The sacrifice which one makes in moving to the Kolchin
closure is offset by a reasonable understanding of the properties of the closure. The ad-
vantage is that the object in question is now a variety in the sense of differential-algebraic
geometry, so we can apply tools and uniformities from the general theory.

The sort of problem which we are attacking has, on the face of it, nothing to do
with differential algebra. This allows us a good deal of freedom in equipping the fields
over which we are working with a derivation. Equip C with a derivation ∂ so that (C, ∂)
is differentially closed and the field of constants of (C, ∂) is Qalg. Given a particular
isogeny class viewed in the moduli space of elliptic curves, in order to apply the results of
the previous sections, we must know that the elements in the class satisfy the differential
equation χ(x) = a for some a in the differential field. This is possible precisely when the
element is transcendental.

For background on the theory of moduli spaces of elliptic curves, we refer to [19].
One key tool is an effective finiteness theorem of Hrushovski and Pillay [10] (for

which some gaps are filled by León-Sanchez and Freitag [5]).

Theorem 5.2. Let X be a closed subvariety of An, with dim(X) = m, and let T ⊂
S ⊆ τ`An be closed subvarieties (not necessarily irreducible) of τ`An. Then the degree of
the Zariski closure of (X, SrT )](C, ∂) is at most deg(X)`2

m`
deg(S)2

m`
−1. In particular,

if (X, SrT )](C, ∂) is a finite set, this expression bounds the number of points in that set.

Remark 5.3. In [16, Dave Marker’s differential fields article], there is a non-effective
proof of the non-finite cover property in differential fields, that is, the assertion that for
a differentially constructible family {Xb}b∈B of differentially constructible sets over a
differentially closed field U of characteristic zero there is a bound N such that for any b,
if Xb(U) is finite, then |Xb(U))| ≤ N .

Remark 5.4. In a recent preprint [1], using the theory of Newton polyhedra, Binyamini
establishes much better bounds than those in Theorem 5.2. From this improvement and
the remaining finiteness results of the present paper, he deduces sharper estimates than
we give here.

Convention 5.5. When we compute degrees of closed subsets of affine space in what
follows, we take the definition of degree to be the sum of the geometric degrees of the
irreducible components.

Our second ingredient is the fact that the fibers of χ are invariant under isogeny. In fact,
by Theorem 4.2, we know that for any non-constant a, the equation χ(x) = χ(a) holds
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on the isogeny class of a. (In fact, by a theorem of Buium [2], it defines the Kolchin
closure of the isogeny class of a.) The third ingredient is our characterization of algebraic
relations across the fibers of χ . We begin with a specific example.

5.1. Automorphisms of the Riemann sphere

Fix some non-identity element of GL2(C), which we will write as α =
(
a b
c d

)
. Throughout

this section, we let Ex denote an elliptic curve with j -invariant x and we write x ∼ y to
mean that the elliptic curves Ex and Ey are isogenous.

Fix τ transcendental. The goal here is to establish an upper bound on the number of
elliptic curves Eη such that Eτ ∼ Eη and Eα·τ ∼ Eα·η.

Unless α · τ is algebraic (a case we will consider separately), since the fibers of χ
are closed under isogeny, all such η belong to the set {z ∈ A1(C) : χ(z) = χ(τ) and
χ(α ·z)) = χ(α ·τ)}which is the projection to the first coordinate of the intersection of the
graph of α (regarded as a linear fractional transformation) withχ−1(χ(τ))×χ−1(χ(α·τ)).
From Theorem 4.4, because the graph of α is not a modular relation, we know that this
intersection is finite. If α · τ is algebraic, the isogeny class of α · τ is contained in the set
of constants, which is itself a strongly minimal set orthogonal to χ−1(χ(τ)), because
the former has non-trivial forking geometry while the latter does have trivial forking
geometry. Hence, for the same reason this set is finite.

Next, we apply Theorem 5.2. We explain the details in the case where α · τ is tran-
scendental. The other case is even easier.

Let X = A1 and let ` = 3, and write τ3A1 in coordinates (z, ż, z̈,
...
z ). Let S be

given by the equations χ(z) = χ(τ) and χ(α · z) = χ(α · τ) re-expressed as algebraic
equations in z, ż, z̈,

...
z . By Bézout’s theorem, S is of degree at most 36. By Theorem 5.2,

|(X, S)]| ≤ 224
· 367

= 238
· 314. Hence, given an elliptic curve Eτ with transcendental

j -invariant, there are at most 238
· 314 elliptic curves Eη in the isogeny class of Eτ for

which Eα·η is in the isogeny class of Eα·τ .

Remark 5.6. We will state our results in full generality, but we should point out that in
certain special cases, better bounds are available via comparably elementary reasoning.

Proposition 5.7. Let C ⊆ A2 be some non-weakly-special irreducible curve defined
over Qalg and let P = (a, b) be some transcendental point. Then there can be at most
one point in the isogeny class of P on C.

Proof. Without loss of generality, we may assume that P ∈ C. Suppose that (a′, b′) ∈ C
is distinct from (a, b) but isogenous to (a, b) via isogenies of degrees n and m, respec-
tively. Then P would belong to the intersection of C with the transform of C by the cor-
respondence {(x, y), (u, v) : Fn(x, u) = 0 & Fm(y, v) = 0}. As C is not weakly special,
this intersection is zero-dimensional and defined over Qalg, contradicting the presence
of P on the intersection. ut
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5.2. A general finiteness result

For the remainder of the paper, we will be considering Kolchin closed subvarieties V
of
∏n
i=1 χ

−1(ai), so we may assume, without loss of generality, that V is written as
∇
−1
3 S∩

∏n
i=1 χ

−1(ai) for an algebraic subvariety S of τ3(An). For the purposes of stating
the theorem, we will define deg(V ) := deg(S).

Theorem 5.8. Let V ⊆ An be a Kolchin closed subset. Let a = (a1, . . . , an) be an
n-tuple of transcendental points. Let

Iso(a) := {(b1, . . . , bn) ∈ Cn : ai ∼ bi for i ≤ n}

be the isogeny class of a. Let W be the Zariski closure of V ∩ Iso(a). Then:

(1) W is a finite union of weakly special subvarieties of An.
(2) The degree of W is bounded by (6n · deg(V ))2

3n
−1.

(3) V ∩ Iso(a) = W ∩ Iso(a).

Proof. Since the fibers of χ are closed under isogeny, V ∩ Iso(a) is contained in
V ∩

∏n
i=1 χ

−1(ai). By our orthogonality Theorem 4.4 and our description of dependence
within fibers from Theorem 4.2, V ∩

∏n
i=1 χ

−1(ai) is equal to
⋃m
j=1Xj ∩

∏n
i=1 χ

−1(ai)

where each Xi is an irreducible weakly special variety. It is easy to see that if an irre-
ducible weakly special variety X meets Iso(ā) non-trivially, then X ∩ Iso(a) is Zariski
dense in X. Hence W , the Zariski closure of V ∩ Iso(a), is equal to

⋃
j∈J Xj for some

J ⊆ {1, . . . , m}.
Write V as (An, 4a∩S)

] where4a is given by the equations χ(xj ) = χ(aj ) for j ≤ n
in which χ(xj ) is re-expressed as a rational function in xj , ẋj , ẍj and

...
xj . Examining the

explicit equations for χ , one sees that deg(4a) = 6n. By computing degrees and applying
Theorem 5.2, the degree of the Zariski closure of V is bounded by (6n · deg(V ))2

3n
−1 .As

W is a union of some of the components of this Zariski closure, this number also bounds
deg(W). ut

If V is actually an algebraic variety, then we have S = τ3V , so that deg(V ) as defined
with deg(S) is the same as deg(V ) as usually defined. Thus, we obtain:

Corollary 5.9. Let V ⊆ An be a Zariski closed subset. Let a = (a1, . . . , an) be an n-
tuple of transcendental points. LetW denote the Zariski closure of V ∩Iso(a). ThenW is a
finite union of weakly special subvarieties. The degree of W is at most (6n · deg(V ))2

3n
−1.

Remark 5.10. As we noted in Remark 5.4, using his improvement on Theorem 5.2 and
our finiteness theorem, Binyamini has established much better estimates. In particular,
he shows that in Corollary 5.9 the bound may be taken to be singly rather than doubly
exponential in n.
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