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Introduction

Embeddings of maximal tori into classical groups over global fields of characteristic 6= 2
are the subject matter of several recent papers (see for instance [PR10], [F12], [Lee14],
[B14], [B15]), with special attention to the Hasse principle. The present paper gives nec-
essary and sufficient conditions for the Hasse principle to hold.

The results can be summarized as follows. As in [PR10], the embedding problem
will be described in terms of embeddings of étale algebras with involution into central
simple algebras with involution. Let (E, σ ) be an étale algebra with involution defined
over a global field, satisfying certain dimension conditions (§1). In §3, we define a group
X(E, σ ) depending only on (E, σ ). Let (A, τ) be a central simple algebra with involu-
tion defined over the same global field, and assume that everywhere locally there exists an
(oriented) embedding of (E, σ ) in (A, τ). Then we define a map f :X(E, σ )→ Z/2Z
such that (E, σ ) can be embedded in (A, τ) globally if and only if f = 0 (Theorem 4.6.1).

To illustrate our results, let us first recall one of the main theorems of [PR10], which
is concerned with the Hasse principle in the case where E is a field. Assuming that E is
a field and also a hypothesis on (A, τ) (some orthogonal involutions are excluded), the
Hasse principle holds (see [PR10, Theorem A, p. 584] for details). In the present paper we
introduce the notion of oriented embedding (§2), and obtain the following improvement
of [PR10, Theorem A]:
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Theorem A′. Assume that E is a field, and that there exists an oriented embedding of
(E, σ ) into (A, τ) everywhere locally. Then there exists a global embedding of (E, σ )
into (A, τ).

In [PR10], it is shown that the Hasse principle does not hold in general (except in the
symplectic case), and the paper [Lee14] establishes that the Brauer–Manin obstruction is
the only one, building upon some results of Borovoi [Bo99]). On the other hand, [B14]
gives a combinatorial criterion for the Hasse principle to hold in the case where A is a
matrix algebra and the involution is of orthogonal type. Inspired by these points of view,
in Sections 3 and 4 we construct an obstruction to the Hasse principle which in particular
explains all these earlier results.

We define a group X(E, σ ) that encodes some of the ramification properties of the
components of the étale algebra E with involution. A closely related group X(E′, σ )

(see §5) is isomorphic to a Tate–Shafarevich group associated to the embedding functor
defined in [Lee14]; see also [BLP15].

In §4, we describe some data associated to oriented local embeddings of (E, σ ) into
(A, τ), called local embedding data. Set F = {e ∈ E | σ(e) = e}. Denote by �K the set
of places of K , and let Kv be the completion of K at v ∈ �K . Then a local embedding
datum consists of some elements of (F ⊗ Kv)× obtained from the embedding of (E, σ )
into (A, τ) at v.

Using a local embedding datum, we define a group homomorphism f :X(E, σ )→

Z/2Z, and we show that f does not depend of the choice of the local embedding datum.
The main result of the paper is the following (see Theorem 4.6.1):

Theorem. Assume that for all v ∈ �K there exists an oriented embedding of (E, σ ) into
(A, τ) over Kv . Then (E, σ ) can be embedded into (A, τ) if and only if f = 0.

The paper is organized as follows. The first section recalls some preliminary results, most
of which can be found in [PR10]. The second section concerns the notions of orientation
and oriented embeddings. In that section, (A, τ) is supposed to be orthogonal, and A of
even degree. We recall several notions and results concerning algebras with involution, in
particular the discriminant algebra 1(E) and the center Z(A, τ) of the Clifford algebra.
An orientation is the choice of an isomorphism 1(E)→ Z(A, τ). In §2.5 we define the
notion of compatible orientations, and we recall a result of Brusamarello, Chuard and
Morales [BCM03] concerning Clifford algebras of orthogonal involutions that is used in
§4. We then define oriented embeddings and their parameters (§2.6). Finally, in §2.7 and
§2.8 we show that in some cases it is possible to change the orientation keeping the same
parameters.

Sections 3 and 4 are the technical heart of the paper. In §3 we define the obstruction
group X(E, σ ), and prove some of its properties that are then used in §4. In §4, we
introduce the notion of local embedding data. Assuming the existence of an oriented local
embedding of (E, σ ) into (A, τ) for all v ∈ �K , we obtain elements av ∈ (F ×Kv)× for
all v ∈ �K . These are not unique, and most of §3 and §4 is aimed at understanding how
far one can modify them. The Brauer–Manin homomorphism is defined in §4.4, and the
Hasse principle theorem (Theorem 4.6.1) is proved in §4.6.
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Section 5 contains some examples and applications. In particular, we show that the
Hasse principle results of Prasad and Rapinchuk [PR10] (in particular, Theorem A) can
be explained by the vanishing of the Tate–Shafarevich group. Moreover, the results of
[Lee14] and [B14] are consequences of Theorem 4.6.1. We also show that the Tate–
Shafarevich group vanishes if E is a CM étale algebra with involution, hence the Hasse
principle holds (for oriented embeddings) in this case (Corollary 5.2.5); we also show
by an example that the non-oriented Hasse principle does not always hold (§5.3). This
answers a question of Jean-Pierre Serre. Note that [BLP16] gives necessary and suffi-
cient conditions for an embedding to exist everywhere locally, and [BLP15] clarifies the
relationship with the Brauer–Manin obstruction.

§1. Definitions, notation and basic facts

1.1. Embeddings of algebras with involution

Let L be a field with char(L) 6= 2, and let A be a central simple algebra over L. Let τ
be an involution of A, and let K be the fixed field of τ in L. Recall that τ is said to be
of the first kind if K = L and of the second kind if K 6= L; in the latter case, L is a
quadratic extension of K . Let dimL(A) = n2. Let E be a commutative étale algebra of
rank n over L, and let σ : E → E be a K-linear involution such that σ |L = τ |L. Set
F = {e ∈ E | σ(e) = e}. Assume that dimL(E) = n, and that ifL = K , then dimK(F ) =

[(n+ 1)/2]. Note that if L 6= K , then dimK(F ) = n [PR10, Proposition 2.1].
An embedding of (E, σ ) in (A, τ) is by definition an injective homomorphism f :

E → A such that τ(f (e)) = f (σ(e)) for all e ∈ E. It is well-known that embeddings
of maximal tori into classical groups can be described in terms of embeddings of étale
algebras with involution into central simple algebras with involution satisfying the above
dimension hypothesis (see for instance [PR10, Proposition 2.3].

We say that a separable field extension E′/L is a factor of E if E = E′×E′′ for some
étale L-algebra E′′.

Proposition 1.1.1. The étale algebraE can be embedded in the central simple algebraA
if and only if for every factor E′ of E, the algebra A⊗L E′ is a matrix algebra over E′.

Proof. See for instance [PR10, Proposition 2.6]. ut

Let ε : E → A be an L-embedding which may not respect the given involutions. The
following properties are well-known:

Proposition 1.1.2. There exists a τ -symmetric α ∈ A× such that for θ = τ ◦ Int(α) we
have

ε(σ (e)) = θ(ε(e)) for all e ∈ E,

in other words, ε : (E, σ )→ (A, θ) is an L-embedding of algebras with involution.

Proof. See [K69, §2.5] or [PR10, Proposition 3.1]. ut

Note that θ and τ are of the same type (orthogonal, symplectic or unitary), since α is
τ -symmetric.
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For all a ∈ F×, let θa : A→ A be the involution given by θa = θ ◦ Int(ε(a)). Note
that ε : (E, σ )→ (A, θa) is an embedding of algebras with involution.

Proposition 1.1.3. The following conditions are equivalent:

(a) There exists an L-embedding ι : (E, σ )→ (A, τ) of algebras with involution.
(b) There exists an a ∈ F× such that (A, θa) ' (A, τ) as algebras with involution.

Proof. See [PR10], Theorem 3.2. ut

If ι : (E, σ ) → (A, τ) is an embedding of algebras with involution, and if a ∈ F×,
α ∈ A× are such that Int(α) : (A, θa) → (A, τ) is an isomorphism of algebras with
involution satisfying Int(α)◦ε = ι, then (ι, a, α) are called parameters of the embedding.

1.2. Invariants of central simple algebras with involution

If (A, τ) is of orthogonal type and n is even, we denote by C(A, τ) its Clifford alge-
bra [KMRT98, Chap. II, (8.7)], and by Z(A, τ) the center of C(A, τ). Then Z(A, τ)
is a quadratic étale algebra over K . If (A, τ) is unitary, then we denote by D(A, τ) its
discriminant algebra [KMRT98, Chap. II, (10.28)].

§2. Orientation

In order to treat the non-split orthogonal case, we need an additional tool, namely the
notion of orientation. Assume that (A, τ) is an algebra with an orthogonal involution,
and that the degree of A is even. Set deg(A) = 2r .

The existence of an embedding (E, σ )→ (A, τ) of algebras with involution implies
that the discriminant algebra of E (see below) is isomorphic to the K-algebra Z(A, τ).
However, such an isomorphism is not unique. This leads to the notions of orientation, and
of oriented embedding, needed for the analysis of the Hasse principle.

2.1. Discriminant algebra

We have E ' F [X]/(X2
− d) for some d ∈ F×. Consider the F -linear involution

σ ′ : F [X]/(X2
− d) → F [X]/(X2

− d) determined by σ ′(X) = −X. Then we have
an isomorphism (E, σ ) ' (F [X]/(X2

− d), σ ′) of algebras with involution. Let x be the
image of X in E, and note that σ(x) = −x. Let 1(E) be the discriminant algebra of E
[KMRT98, Chap. V, §18, p. 290].

Lemma 2.1.1. We have an isomorphism of K-algebras

1(E) ' K[Y ]/(Y 2
− (−1)rNE/K(x)).

Proof. Recall that TE/K : E × E → K defined by TE/K(e, f ) = TrE/K(ef ) is the trace
form of E. Then by [KMRT98, Proposition (18.2)] we have

1(E) ' K[Y ]/(Y 2
− det(TE/K)).
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Note that TrE/K = TrF/K ◦TrE/F , and that the trace form TE/F : E×E→ F , defined by
TE/F (e, f ) = TrE/F (ef ) is isomorphic to 〈2, 2d〉. Further, we have d = −NE/F (x) and
hence NF/K(d) = (−1)rNE/K(x). Therefore det(TE/K) = (−1)rNE/K(x) ∈ K×/K×2,
and this concludes the proof of the lemma. ut

Let y be the image of Y in1(E). The elements x and y will be fixed in what follows. Let
ρ : 1(E)→ 1(E) be the automorphism of1(E) induced by σ . Note that ρ(y) = (−1)r ,
and hence ρ is the identity if r is even, and the non-trivial automorphism of the quadratic
algebra 1(E) if r is odd.

2.2. Generalized Pfaffian

For any central simple algebra A over K of degree 2r with an orthogonal involution θ ,
denote by Skew(A, θ) the set {a ∈ A | θ(a) = −a} of skew elements of A with respect
to θ . Recall that C(A, θ) is the Clifford algebra of (A, θ), and Z(A, θ) is the center of
C(A, θ). Recall that Z(A, θ) is a quadratic étale algebra over K . Denote by γ the non-
trivial automorphism of Z(A, θ) over K .

The generalized Pfaffian [KMRT98, Chap. II, §8] of (A, θ) is a homogeneous poly-
nomial map of degree r , denoted by

πθ : Skew(A, θ)→ Z(A, θ),

such that for all a ∈ Skew(A, θ), we have γ (πθ (a)) = −πθ (a) and πθ (a)
2
=

(−1)rNrd(a); for all x ∈ A and a ∈ Skew(A, θ), we have πθ (xaθ(x)) = NrdA(x)πθ (a)
[KMRT98, Proposition (8.24)].

2.3. Orientation

For any orthogonal involution (A, τ), an isomorphism of K-algebras

1(E)→ Z(A, τ)

will be called an orientation.
Assume that the étale algebra E can be embedded in the central simple algebra A,

and fix such an embedding ε : E → A. By Proposition 1.1.2 there exists an involution
θ : A→ A of orthogonal type such that ε : (E, σ )→ (A, θ) is an embedding of algebras
with involution.

Fix such an involution θ . We now define an orientation u : 1(E)→ Z(A, θ) that will
be fixed in what follows. Fix a generalized Pfaffian map πθ : Skew(A, θ)→ Z(A, θ) as
above. Recall that E ' F [X]/(X2

− d), 1(E) ' K[Y ]/(Y 2
− (−1)rNE/K(x)), and we

have fixed the images x of X in E and y of Y in 1(E). Define

u : 1(E)→ Z(A, θ), y 7→ πθ (ε(x)).

Lemma 2.3.1. The map u is an isomorphism of K-algebras.

Proof. We have γ (ε(x)) = −ε(x). Furthermore, (πθ (ε(x)))2 = (−1)rNrdA(ε(x)) =
(−1)rNE/K(x) = y2. This implies that u is an isomorphism of K-algebras. ut
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2.4. Similitudes

Let α ∈ A×. Following [KMRT98, Definition (12.14), p. 158], we say that α is a simil-
itude of (A, τ) if ατ(α) ∈ K×. For a similitude α ∈ A×, the scalar ατ(α) is called the
multiplier of α. We say that α is proper if

Nrd(α) = (ατ(α))r ;

otherwise, α is improper. Note that α is a similitude if and only if Int(α) : (A, τ) →
(A, τ) is an isomorphism of algebras with involution. If A is split, then (A, τ) admits
improper similitudes (indeed, any reflection is one).

Any isomorphism Int(α) : (A, τ) → (A, τ ′) of algebras with involution induces an
isomorphism C(A, τ)→ C(A, τ ′) of the Clifford algebras. Let

c(α) : Z(A, τ)→ Z(A, τ ′)

be the restriction of this isomorphism to the centers of the Clifford algebras. The following
property will be important.

Lemma 2.4.1. Let (A, τ) be an orthogonal involution, and let α ∈ A× be a similitude.
Then α is a proper similitude if and only if c(α) is the identity.

Proof. See for instance [KMRT98, Proposition (13.2), p. 173]. ut

2.5. Compatible orientations

Recall that ε : E → A is an embedding of algebras, θ : A → A is an orthogonal
involution such that ε : (E, σ ) → (A, θ) is an embedding of algebras with involution,
and we have fixed an orientation u : 1(E) → Z(A, θ). We now define a notion of
compatibility of orientations.

Lemma 2.5.1. Let (A, τ) be a central simple algebra with an orthogonal involution, and
let ι : (E, σ ) → (A, τ) be an embedding of algebras with involution. Let α ∈ A× be
such that Int(α) : (A, τ)→ (A, τ) is an automorphism of algebras with involution, and
Int(α) ◦ ι = ι. Then:

(a) There exists x ∈ E× such that α = ι(x) and NE/F (x) ∈ K×.
(b) The map c(α) is the identity.

Proof. Since Int(α) ◦ ι = ι, the restriction of Int(α) to ι(E) is the identity. Note that
ι(E) is a maximal commutative subalgebra of A. Hence α = ι(x) for some x ∈ E×.
As Int(α) : (A, τ) → (A, τ) is an automorphism of algebras with involution, we have
ατ(α) = λ for some λ ∈ K×. Hence (ιx)τ (ιx) = λ. Since ι : (E, σ ) → (A, τ) is an
embedding of algebras with involution, we have ι(xσ (x)) = λ. This completes the proof
of (a).

Let us prove (b). By (a), we have ατα = ι(xσ (x)) = ι(λ) = λ. This implies that α is
a similitude. Moreover, Nrd(α) = NE/K(x) = NF/K(λ) = λr . Hence α is proper, and by
Lemma 2.4.1 this implies that c(α) is the identity. ut

Let Ks be a separable closure of K , and set As = A⊗K Ks .
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Definition 2.5.2. Let θ ′ : A → A be an orthogonal involution such that ε : (E, σ ) →
(A, θ ′) is an embedding of algebras with involution, and let u′ : 1(E)→ Z(A, θ ′) be an
orientation. We say that the orientations u and u′ are compatible if for every isomorphism
Int(α) : (As, θ)→ (As, θ

′) of algebras with involution such that Int(α) ◦ ε = ε, we have
u′ = c(α) ◦ u.

Recall that for all a ∈ F×, we define an involution θa : A→ A by θa = θ◦Int(ε(a)). Note
that the embedding ε : (E, σ )→ (A, θ) induces an embedding ε : (E, σ )→ (A, θa) of
algebras with involution. Our next aim is to define an orientation of (A, θa) compatible
with the orientation u of (A, θ).

Proposition 2.5.3. Let a ∈ F×. Then there exists a unique isomorphism φa : Z(A, θ)→
Z(A, θa) such that for all α ∈ A×s giving an isomorphism Int(α) : (As, θ)→ (As, θa) of
algebras with involution with Int(α) ◦ ε = ε, we have c(α) = φa .

Proof. Let d ∈ K× represent the square class of disc(A, θ), and writeZ(A, θ) = K⊕Kz
with z2

= d. Note that d also represents the square class of disc(A, θa), since a ∈ F×.
Write Z(A, θa) = K ⊕Kza with z2

a = d.
Let b ∈ (E⊗K Ks)× be such that bσ(b) = a−1. Then Int(ε(b)) : (As, θ)→ (As, θa)

is an isomorphism of algebras with involution commuting with ε, and it induces an iso-
morphism C(As, θ)→ C(As, θa) of the Clifford algebras.

We have As = M2r(Ks), and θ : As → As is induced by a quadratic form q :

V × V → Ks . Let (e1, . . . , e2r) be an orthogonal basis for q. Since Z(A, θ) = K ⊕

K(e1 . . . e2r), we have z = µ(e1 . . . e2r) for some µ ∈ K×s . We replace e1 by µ−1e1.
Then z = e1 . . . e2r .

Set q = ε(b)tqaε(b). Since a−1
= bσ(b) and a is θ -symmetric, the involution

induced by qa is θa . Consider the isometry ε(b) : (V , q) → (V , qa). It induces a
map c(ε(b)) : C(V, q) → C(V, qa) which sends e1 . . . e2r to (ε(b)e1) . . . (ε(b)e2r).
Therefore (ε(b)e1) . . . (ε(b)e2r)

2
= qa(ε(b)e1) . . . qa(ε(b)e2r) = q(e1) . . . q(e2r) =

(e1 . . . e2r)
2
= d. This implies that ε(b)(e1) . . . ε(b)(e2r) = ±za and c(ε(b))(z) = ±za .

Hence the restriction of the map c(ε(b)) to Z(As, θ) is defined over K .
Set φa = c(ε(b)), and note that φa : Z(A, θ)→ Z(A, θa) is an isomorphism.
Let us show that φa is independent of the choice of b. Let b′ ∈ As be such that

b′σ(b′) = a. Then c(Int(ε(b′))) = c(Int(ε(b))).We have an isomorphism Int(ε(b−1b′)) :

(A, θ)→ (A, θ) of algebras with involution satisfying Int(ε(b−1b′)) ◦ ε = ε. Hence by
Lemma 2.4.1 the map

c(Int(ε(b−1b′))) : Z(A, θ)→ Z(A, θ)

is the identity. Therefore c(ε(b)) = c(ε(b′)), so c(ε(b)) is independent of the choice of b.
Let α ∈ A×s be such that Int(α) : (As, θ)→ (As, θa) is an isomorphism of algebras

with involution with Int(α) ◦ ε = ε. Then by Lemma 2.4.1 there exists x ∈ (E ⊗K Ks)×

such that α = ε(x). This implies c(Int(ε(x))) = c(ε(b)) = φa . Hence c(α) = φa , as
required. This also shows the uniqueness of φa , and completes the proof of the proposi-
tion. ut
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Recall that we have fixed an isomorphism u : 1(E)→ Z(A, θ). For all a ∈ F×, define
an orientation by ua = φa ◦ u : 1(E)→ Z(A, θa). Then ua is compatible with u. Note
that φ1 is the identity, hence u1 = u.

For all a ∈ F×, let us identify 1(E) with Z(A, θa) via the orientation ua . This
endows the Clifford algebra C(A, θa) with the structure of a 1(E)-algebra.

Lemma 2.5.4. For all a ∈ F× we have

C(A, θa) = C(A, θ)+ res1(E)/K corF/K(a, d) in Br(1(E)).

Proof. This follows from [BCM03, Proposition 5.3]. ut

2.6. Oriented embeddings

Recall that the existence of an embedding (E, σ )→ (A, τ) of algebras with involution is
equivalent to the existence of an element a ∈ F× such that the algebras with involution
(A, θa) and (A, τ) are isomorphic. We need the stronger notion of oriented embedding:

Definition 2.6.1. Let (A, τ) be an orthogonal involution, and let ν : 1(E) → Z(A, τ)

be an orientation. An embedding ι : (E, σ )→ (A, τ) is said to be oriented with respect
to ν if there exist a ∈ F× and α ∈ A× satisfying the following conditions:

(a) Int(α) : (A, θa) → (A, τ) is an isomorphism of algebras with involution such that
Int(α) ◦ ε = ι.

(b) The induced automorphism c(α) : Z(A, θa)→ Z(A, τ) satisfies c(α) ◦ ua = ν.

We say that there exists an oriented embedding of algebras with involution with respect
to ν if there exists (ι, a, α) as above. The elements (ι, a, α, ν) are called parameters of
the oriented embedding.

2.7. Changing the orientation—improper similitudes

Let ν : 1(E)→ Z(A, τ) be an orientation.

Proposition 2.7.1. Suppose that (A, τ) admits an improper similitude. Assume that there
exists an embedding (E, σ ) → (A, τ) of algebras with involution. Then there exists
an oriented embedding (E, σ ) → (A, τ) with respect to ν. Moreover, if (ι, a, α) are
parameters of an embedding of (E, σ ) in (A, τ), then there exist ι′ and β such that
(ι′, a, β, ν) are parameters of an oriented embedding.

Proof. If c(α) ◦ ua = ν, then (Int(α) ◦ ε, a, α) are parameters of an oriented embedding
(E, σ ) → (A, τ). Suppose that c(α) ◦ ua 6= ν. Let γ ∈ A× be an improper simil-
itude. Then c(γ ) is not the identity, and hence c(γ α) ◦ ua = ν. Set β = γα. Then
(Int(β) ◦ ε, a, β) are parameters of an oriented embedding, as claimed. ut

Lemma 2.7.2. Suppose that K is a local field or the field of real numbers, and let
(A, τ) be an orthogonal involution. Assume that if A is non-split, then disc(A, τ) 6=
1 ∈ K×/K×2. Then (A, τ) admits improper similitudes.

Proof. If A is split, then any reflection is an improper similitude. Suppose now that A is
not split. Then A ' Mr(H), where H is a quaternion division algebra. Let Z = Z(A, τ).
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Set D = disc(A, τ), and note that Z ' K(
√
D). Then Z is a quadratic extension of K ,

since D 6∈ K×2. Hence H is split by Z. The involution τ is induced by an r-dimensional
hermitian form h over H . If r > 3, then the hermitian form h is isotropic (see [T61,
Theorem 3] if K is a local field, and [Sch85, Theorem 10.3.7] if K is the field of real
numbers). Therefore h ' h′ ⊕ h′′, where h′ and h′′ are hermitian forms over H with
dim(h′) ≤ 3 and h′′ hyperbolic. Let r ′ = dim(h′) and B = Mr ′(H). Let τ ′ be the
involution of B induced by h′, and note that disc(B, τ ′) = disc(A, τ) = D. Since H is
split by Z, we have H = (λ,D) ∈ Br(K) for some λ ∈ K×.

We claim that λ is the multiplier of a similitude of (B, τ ′). Indeed, since r ′ ≤ 3,
we may apply the criterion of [PT04, Theorem 4]. Let γ (B, τ ′) ∈ Br(K) be such that
γZ = C(B

′, τ ′) in Br(Z) [PT04, Theorem 2]. Then by [PT04, Theorem 4], the element
λ is the multiplier of a similitude of (B, τ ′) if and only if λ.γ = 0 in H 3(K)/(K×.A). If
K is a local field, then H 3(K) = 0, hence the condition is fulfilled. Assume that K is the
field of real numbers. Then either γ = 0 or γ = H in Br(K). Since A is non-split, we
have A = H in Br(K). Therefore λ.γ = 0 in H 3(K)/(K×.A) in both cases.

Hence by [PT04, Theorem 4], the element λ is the multiplier of a similitude of (B, τ ′),
therefore also of the hermitian form h′. The hermitian form h′′ is hyperbolic, so it has a
similitude of multiplier λ. Thus h also has a similitude, and hence so does (A, τ). By
[PT04, Theorem 1], using the fact that A = H = (λ,D) ∈ Br2(K), we see that λ is the
multiplier of an improper similitude. ut

Corollary 2.7.3. Suppose that there exists an embedding (E, σ ) → (A, τ) of algebras
with involution, and that one of the following holds:

(i) A is split.
(ii) K is a local field or the field of real numbers, and disc(A, τ) 6= 1 in K×/K×2.

Then there exists an oriented embedding (E, σ ) → (A, τ) with respect to ν. Moreover,
if (ι, a, α) are parameters of an embedding of (E, σ ) in (A, τ), then there exist ι′ and β
such that (ι′, a, β, ν) are parameters of an oriented embedding.

Proof. In both cases, (A, τ) admits an improper similitude. If A is split, then any reflec-
tion in the unitary group U(A, τ) is an improper similitude. If K is local or the field of
real numbers, then Lemma 2.7.2 implies that (A, τ) has an improper similitude. Hence
the corollary follows from Proposition 2.7.1. ut

2.8. Changing the orientation—r odd

Recall that E ' F [X]/(X2
− d), 1(E) ' K[Y ]/(Y 2

− (−1)rNE/K(x)), and we have
fixed the images x of X in E and y of Y in 1(E). Recall that ρ : 1(E)→ 1(E) is the
automorphism of 1(E) induced by σ : E→ E, and ρ is the identity if r is even, and the
non-trivial automorphism of 1(E) over K if r is odd.

Recall also that u : 1(E)→ Z(A, θ) is defined by y 7→ πθ (ε(x)).

Lemma 2.8.1. Let Int(γ ) : (A, θ)→ (A, θ) be an isomorphism of algebras with involu-
tion satisfying Int(γ ) ◦ ε ◦ σ = ε. Then c(γ ) ◦ u ◦ ρ = u.
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Proof. It suffices to prove that this is true over a separable closure. Therefore we may
assume that A = M2r(K) and θ : A → A is the transposition. We have γ θ(γ ) =
γ γ t = λ for some λ ∈ K×. Recall that Nrd(γ ) = ηλr , where η = 1 if γ is a proper
similitude, and η = −1 if γ is an improper similitude. We have ε(x) = Int(γ )◦ε◦σ(x) =
γ ε(σ (x))γ−1

= λ−1γ ε(σ (x))γ t .
On the other hand, πt (λ−1γ (ε(σ (x))γ t )) = λ−rNrd(γ )πt (ε(σ (x)) = ηπt (−ε(x)) =

(−1)rηπt (ε(x)). Hence (−1)rηπt (ε(x)) = πt (ε(x)), thus η = (−1)r . This implies that
γ is a proper similitude if r is even, and an improper similitude if r is odd. By Lemma
2.4.1 this implies that c(γ ) is the identity if r is even, and the non-trivial automorphism
of Z(A, θ) if r is odd. Therefore c(γ ) ◦u ◦ρ(y) = u(y), and hence c(γ ) ◦u ◦ρ = u. ut

Proposition 2.8.2. Let a, b ∈ F×, and let Int(α) : (A, θa) → (A, τ) and Int(β) :
(A, θb)→ (A, τ) be isomorphisms of algebras with involution such that Int(α) ◦ ε ◦ σ =
Int(β) ◦ ε. Then c(α) ◦ ua ◦ ρ = c(β) ◦ ub.

Proof. Let Ks be a separable closure of K , and let γa, γb ∈ K×s be such that Int(γa) :
(A, θ) → (A, θa) and Int(γb) : (A, θ) → (A, θb) are isomorphisms of algebras with
involution commuting with ε. Then ua = c(γa) ◦ u and ub = c(γb) ◦ u. We have
Int(γ−1

b β−1αγa) ◦ ε ◦ σ = Int(γ−1
b β−1α) ◦ Int(γa) ◦ ε ◦ σ = Int(γ−1

b β−1) ◦ Int(α) ◦
ε ◦ σ = Int(γ−1

b β−1) ◦ Int(β) ◦ ε = Int(γ−1
b ) ◦ ε = ε. By Lemma 2.8.1 this implies that

c(γ−1
b β−1αγa) ◦ u ◦ ρ = u, hence c(α) ◦ ua ◦ ρ = c(β) ◦ ub. ut

Let ν : 1(E)→ Z(A, τ) be an orientation.

Corollary 2.8.3. Suppose that r is odd and there exists an embedding (E, σ )→ (A, τ)

of algebras with involution. Then there exists an oriented embedding (E, σ ) → (A, τ)

with respect to ν. Moreover, if (ι, a, α) are parameters of an embedding of (E, σ ) in
(A, τ), then there exist ι′, b and β such that (ι′, b, β, ν) are parameters of an oriented
embedding.

Proof. Let (ι, a, α) be parameters of an embedding of (E, σ ) in (A, τ). If c(α) ◦ ua = ν,
then (ι, a, α, ν) are parameters of an oriented embedding with respect to ν. Otherwise,
c(α) ◦ ua ◦ ρ = ν. Set ι′ = ι ◦ σ . Then there exist b ∈ F× and β ∈ A× such that
ι′ = Int(β)◦ε. By Proposition 2.8.2, c(β)◦ub = c(α)◦ua ◦ρ = ν, and hence (ι′, b, β, ν)
are parameters of an oriented embedding. ut

§3. The Tate–Shafarevich group

We keep the notation of the previous sections, and suppose thatK is a global field. Recall
that either L = K , or L is a quadratic extension of K . The aim of this section is to define
a group that measures the failure of the Hasse principle.

Let �K be the set of places of K . For all v ∈ �K , we denote by Kv the completion
of K at v. For all K-algebras B, set Bv = B ⊗K Kv .

The commutative étale algebra E is by definition a product of separable field exten-
sions of L. Write E = E1 × · · · × Em, with σ(Ei) = Ei for all i = 1, . . . , m, and with
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each Ei either a field stable by σ or a product of two fields exchanged by σ . Recall that
F = Eσ .

Set I = {1, . . . , m}. We have F = F1 × · · · × Fm, where Fi is the fixed field of σ
in Ei for all i ∈ I . Note that either Ei = Fi = K , Ei = Fi × Fi , or Ei is a quadratic
field extension of Fi . For all i ∈ I , let di ∈ F×i be such that Ei = Fi(

√
di) if Ei/Fi is a

quadratic extension, and di = 1 otherwise. Set d = (d1, . . . , dm).
If i ∈ I is such that Ei is a quadratic extension of Fi , let 6i be the set of places

v ∈ �K such that all the places of Fi over v split in Ei . If Ei = Fi × Fi or Ei = K , set
6i = �K .

Given an m-tuple x = (x1, . . . , xm) ∈ (Z/2Z)m, set

I0 = I0(x) = {i | xi = 0}, I1 = I1(x) = {i | xi = 1}.

Note that (I0, I1) is a partition of I . Let

S′ =
{
(x1, . . . , xm) ∈ (Z/2Z)m

∣∣∣ (⋂
i∈I0

6i

)
∪

( ⋂
j∈I1

6j

)
= �K

}
,

S = S′ ∪ {(0, . . . , 0), (1, . . . , 1)}.

We define an equivalence relation on S by

(x1, . . . , xm) ∼ (x
′

1, . . . , x
′
m) if (x1, . . . , xm)+ (x

′

1, . . . , x
′
m) = (1, . . . , 1).

Let X =X(E, σ ) be the set of equivalence classes of this relation.
For all x ∈ S, we denote by x its class in X, and by (I0(x), I1(x)) the corresponding

partition of I . Let P ′ be the set of non-trivial partitions (I0, I1) of I such that (
⋂
i∈I0

6i)∪

(
⋂
j∈I1

6j ) = �K , and set P = P ′∪{(I,∅), (∅, I )}. Define an equivalence relation on P
by (I0, I1) ∼ (I1, I0). Sending x to (I0(x), I1(x)) induces a bijection between X and the
set of equivalence classes of P under this relation.

Componentwise addition gives a group structure on the set of equivalence classes of
(Z/2Z)m. Denote this group by (Cm,+). We have

Lemma 3.1.1. The set X is a subgroup of Cm.

Proof. It is clear that the class of (0, . . . , 0) is the neutral element, and that every element
is its own opposite, so we only need to check that the sum of two elements of X is again
in X. For J ⊂ I , set �(J ) =

⋂
i∈J 6i . As we have seen above, X is in bijection with

P/∼. Moreover, the transport of structure induces

(I0, I1)+ (I
′

0, I
′

1) =
(
(I0 ∩ I

′

0) ∪ (I1 ∩ I
′

1), (I0 ∩ I
′

1) ∪ (I1 ∩ I
′

0)
)
.

Let us show that this is an element of P/∼. This is equivalent to proving that�K is equal
to

[(�(I0 ∩ I
′

0)) ∩ (�(I1 ∩ I
′

1))] ∪ [(�(I0 ∩ I
′

1)) ∩ (�(I
′

0 ∩ I1))],

and this follows from the equalities �(I0) ∪ �(I1) = �K and �(I ′0) ∪ �(I
′

1) = �K ,

which hold as (I0, I1) and (I ′0, I
′

1) are in P/∼. ut
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The following propositions will be used in order to give necessary and sufficient condi-
tions for the Hasse principle to hold. Let us start by introducing some notation.

Set CI = {(i, j) ∈ I × I | i 6= j and 6i ∪ 6j 6= �K}. For any subset J of I , we
say that i, j ∈ J are connected in J if there exist j1, . . . , jk ∈ J with j1 = i, jk = j and
(jr , jr+1) ∈ CI for all r = 1, . . . , k − 1.

Lemma 3.1.2. Let (i, j) ∈ CI , and let v ∈ �K be such that v 6∈ 6i ∪6j . Let aur ∈ (F
u
r )
×

for all r ∈ I and u ∈ �K . Then there exist bur ∈ (F
u
r )
× such that

• bur = a
u
r whenever u 6= v or r 6= i, j , and

• corF vi /Kv (b
v
i , di) 6= corF vi /Kv (a

v
i , di) and corF vi /Kv (b

v
j , dj ) 6= corF vi /Kv (a

v
j , dj ).

In particular, ∑
v∈�K

corF vi /Kv (a
v
i , di) 6=

∑
v∈�K

corF vi /Kv (b
v
i , di),∑

v∈�K

corF vj /Kv (a
v
j , dj ) 6=

∑
v∈�K

corF vj /Kv (b
v
j , dj ).

Proof. Since (i, j) ∈ CI , we have 6i ∪ 6j 6= �K . Hence by Chebotarev’s density theo-
rem, the complement of the set6i ∪6j contains finite places. Let us choose a finite place
v of K such that v 6∈ 6i ∪ 6j . As v 6∈ 6i , we have Evi = E

′

i ×M , where M is a field
stable by σ , and Mσ

6= M . Set M0 = M
σ . Similarly, Evj = E

′

j × N , where N is a field
stable by σ , and Nσ

6= N . Set N0 = N
σ . Then M/M0 and N/N0 are quadratic exten-

sions of local fields. Let γ ∈ M0 be such that γ 6∈ NM/M0(M), and let δ ∈ N0 be such
that δ 6∈ NN/N0(N). Write avi = (α1, α2) with α1 ∈ (E

′

i)
σ , α2 ∈ M0, and avj = (β1, β2)

with β1 ∈ (E
′

j )
σ , β2 ∈ N0.

Set bvi = (α1, α2γ ) and bvj = (β1, β2δ). If r ∈ I is such that r 6= i, j , then set
bvr = a

v
r . For all u 6= v, set bur = a

u
r for all r ∈ I . Then bur ∈ (F

u
r )
× have the required

properties for all u ∈ �K and r ∈ I . ut

Proposition 3.1.3. Let i, j ∈ I be connected, and let aur ∈ (F
u
r )
× for all r ∈ I and

u ∈ �K . Then there exist bur ∈ (F
u
r )
× satisfying the following conditions:∑

v∈�K

corF vi /Kv (a
v
i , di) 6=

∑
v∈�K

corF vi /Kv (b
v
i , di),(i) ∑

v∈�K

corF vj /Kv (a
v
j , dj ) 6=

∑
v∈�K

corF vj /Kv (b
v
j , dj ),(ii) ∑

v∈�K

corF vr /Kv (a
v
r , dr) =

∑
v∈�K

corF vr /Kv (b
v
r , dr) if r 6= i, j ,(iii) ∑

i∈I

corF vi /Kv (b
v
i , di) =

∑
i∈I

corF vi /Kv (a
v
i , di) for all v ∈ �K ,(iv)

if v is an infinite place of K , then bvr = a
v
r for all r ∈ I .(v)

Proof. Let j1, . . . , jk ∈ J with j1 = i, jk = j and (js, js+1) ∈ CI for all s =
1, . . . , k − 1. Starting with aur ∈ (F

u
r )
×, we apply Lemma 3.1.2 successively to each

of the pairs (js, js+1), and let bur ∈ (F
u
r )
× be the elements obtained at the end of the

process.
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Note that if s 6= 1, k, then we have applied Lemma 3.1.2 twice. Hence∑
v∈�K

corF vjs /Kv (b
v
js
, djs ) =

∑
v∈�K

corF vjs /Kv (a
v
js
, djs ) for s 6= 1, k.

On the other hand, if s = 1 or s = k, then we have applied Lemma 3.1.2 only once.
Note also that j1 = i and jk = j . Therefore

corF vi /Kv (b
v
i , di) 6= corF vi /Kv (a

v
i , di) for a certain v ∈ �K ,

corF vi /Kv (b
u
i , di) = corF vi /Kv (a

u
i , di) for all u ∈ �K with u 6= v.

Similarly,

corFwj /Kw (b
w
j , dj ) 6= corFwj /Kw (a

w
j , dj ) for a certain w ∈ �K ,

corF uj /Ku(b
u
j , dj ) = corF uj /Ku(a

u
j , dj ) for all u ∈ �K with u 6= w.

Therefore ∑
v∈�K

corF vi /Kv (a
v
i , di) 6=

∑
v∈�K

corF vi /Kv (b
v
i , di),∑

v∈�K

corF vj /Kv (a
v
j , dj ) 6=

∑
v∈�K

corF vj /Kv (b
v
j , dj ).

Note that for r 6= i, j we have∑
v∈�K

corF vr /Kv (a
v
r , dr) =

∑
v∈�K

corF vr /Kv (b
v
r , dr).

Moreover, all the applications of Lemma 3.1.2 concern a place v ∈ �K and two
distinct indices (js, js+1) ∈ CI . This implies that for all v ∈ �K , we have∑

i∈I

corF vi /Kv (b
v
i , di) =

∑
i∈I

corF vi /Kv (a
v
i , di).

All the changes were made at finite places, hence bvr = avr for all r ∈ I if v is an
infinite place. This completes the proof of the proposition. ut

Proposition 3.1.4. Let avi ∈ (F
v
i )
×, for all v ∈ �K and i ∈ I , be such that:∑

v∈�K

∑
i∈I

corF vi /Kv (a
v
i , di) = 0,(i) ∑

v∈�K

∑
i∈I0(x)

corF vi /Kv (a
v
i , di) = 0 for all x ∈X.(ii)

Then there exist bvi ∈ F
v
i for all v ∈ �K and i ∈ I such that:∑

v∈�K

corF vi /Kv (b
v
i , di) = 0 for all i ∈ I ,(iii) ∑

i∈I

corF vi /Kv (b
v
i , di) =

∑
i∈I

corF vi /Kv (a
v
i , di) for all v ∈ �K ,(iv)

if v is an infinite place of K , then bvi = a
v
i .(v)
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Proof. For all i ∈ I , set Ci = Ci(a) =
∑
v∈�K

corF vi /Kv (a
v
i , di). If Ci = 0 for all i ∈ I ,

we set bvi = avi for all i ∈ I and v ∈ �K . If not, then we construct a connected graph
with vertex set V and edge set E in order to make successive modifications.

Our aim is to construct a graph containing elements i0, ik ∈ I such that Ci0 = Cik = 1
and i0 and ik are connected within the graph.

We start with the empty graph, and add edges and vertices as follows. Choose i0 ∈ I
such thatCi0 = 1, and add {i0} to V . Set I0 = {i0} and I1 = I−I0. Note that (I0, I1) 6∈X.
Indeed, if (I0, I1) ∈X, then by (ii) we have

∑
v∈�K

∑
i∈I0

corF vi /Kv (a
v
i , di) = 0. But on

the other hand this sum equals Ci0 = 1, a contradiction. Therefore, by definition of X,
we have (⋂

i∈I0

6i

)
∪

(⋂
j∈I1

6j

)
6= �K . (∗)

Hence there exist i1 ∈ I1 and v ∈ �K such that v 6∈ 6i0 ∪ 6i1 . In other words, we have
(i0, i1) ∈ CI , hence i0 and i1 are connected. Add {i1} to V , and add the edge connecting
i0 to i1 to E . If Ci1 = 1, we stop. If not, set I0 = {i0, i1} and I1 = I − I0. We again have
(I0, I1) 6∈X. Indeed, if (I0, I1)∈X, then by (ii) we have

∑
v∈�K

∑
i∈I0

corF vi /Kv (a
v
i , di)

= 0. But this sum equals Ci0 +Ci1 , and Ci0 = 1, Ci1 = 0, so this is again a contradiction.
Therefore, by definition of X, (∗) holds again. Hence there exist i2 ∈ I1 and v ∈ �K
such that v 6∈ (

⋂
i∈I0

6i) ∪ 6i2 . This implies that at least one of (i0, i2), (i1, i2) belongs
to CI . We now add i2 to V , and add to E all the edges connecting j to i2 with j ∈ V such
that (j, i2) ∈ CI . Note that i0 and i2 are connected within the graph. We continue this
way, adding vertices to V and edges to E . Since I is finite, and since by (i) there exists
j ∈ I with j 6= i0 and Cj = 1, the process will stop after a finite number of steps.

In other words, after a finite number of steps we find ik ∈ I such that Cik = 1 and
the resulting graph with vertices V and edges E has the following property: there exists
a loop-free path in E connecting i0 to ik such that for any two adjacent vertices i, j ∈ V
we have (i, j) ∈ CI . In other words, i0 and ik are connected in V . By Proposition 3.1.3
this implies that there exist cvi ∈ F

v
i for all v ∈ �K and i ∈ I such that for (c) = (cvi )

we have Ci0(c) = Cik (c) = 0 and Ci(c) = Ci(a) for all i 6= i0, ik . Therefore the number
of i ∈ I with Ci(c) = 1 is less than the number of i ∈ I with Ci(a) = 1. Moreover,
for all v ∈ �K , we have

∑
i∈I corF vi /Kv (c

v
i , di) =

∑
i∈I corF vi /Kv (a

v
i , di), and if v is

an infinite place, then cvi = avi for all i ∈ I . Continuing this way leads to the desired
conclusion: we obtain bvi ∈ F

v
i for all v ∈ �K and i ∈ I such that for (b) = (bvi ) we have

Ci(b) =
∑
v∈�K

corF vi /Kv (b
v
i , di) = 0 for all i ∈ I , and this implies (iii). Note that for all

v ∈ �K , we have
∑
i∈I corF vi /Kv (b

v
i , di) =

∑
i∈I corF vi /Kv (a

v
i , di). This implies that (iv)

holds. Moreover, all the modifications were made at finite places, hence (v) holds. ut

Proposition 3.1.5. Let avi ∈ (F
v
i )
×, for all v ∈ �K and i ∈ I , be such that:∑

v∈�K

∑
i∈I

corF vi /Kv (a
v
i , di) = 0(i) ∑

v∈�K

∑
i∈I0(x)

corF vi /Kv (a
v
i , di) = 0 for all x ∈X.(ii)
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Then for all i ∈ I there exist bi ∈ F×i such that (bi, di)v = (avi , di) for all real places v
and

(iii)
∑
i∈I

corF vi /Kv (bi, di) =
∑
i∈I

corF vi /Kv (a
v
i , di) for all v ∈ �K .

Proof. By Proposition 3.1.4 conditions (i) and (ii) imply that for all v ∈ �K and all i ∈ I ,
there exist bvi ∈ (F

v
i )
× such that

∑
v∈�K

corF vi /Kv (b
v
i , di) = 0 for all i ∈ I , bvi = a

v
i if v

is an infinite place of K , and,∑
i∈I

corF vi /Kv (b
v
i , di) =

∑
i∈I

corF vi /Kv (a
v
i , di) for all v ∈ �K .

Let i ∈ I . Since
∑
v∈�K

corF vi /Kv (b
v
i , di) = 0, we have

∑
w∈�Fi

(bwi , di) = 0. The
Brauer–Hasse–Noether theorem implies that there exists a quaternion algebra Qi over Fi
such that Qv

i ' (bvi , di) for all v ∈ �K . Since Qv
i splits over Evi for all v ∈ �K , the

algebra Qi splits over Ei . Therefore there exists bi ∈ (Fi)× such that Qi ' (bi, di).
Then, for all v ∈ �K ,∑

i∈I

corFi/K(bi, di) =
∑
i∈I

corF vi /Kv (b
v
i , di) =

∑
i∈I

corF vi /Kv (a
v
i , di).

Therefore (iii) holds. ut

§4. The Brauer–Manin map

Assume that K is a global field and (Ev, σ ) can be embedded in (Av, τ ) for all v ∈ �K .
This implies that there exists an embedding ε : E → A of algebras. By Proposition
1.1.2 there exists an involution θ : A → A of the same type as τ such that ε induces an
embedding (E, σ )→ (A, θ) of algebras with involution. We fix such an involution θ .

The aim of this section is to define a map X(E, σ ) → Z/2Z whose vanishing is
necessary and sufficient for the existence of an embedding (E, σ )→ (A, τ) of algebras
with involution. To define this map, we need the notion of embedding data (§§4.1–4.3).
The Brauer–Manin map is defined in §4.4.

4.1. Local embedding data—even degree orthogonal case

Assume that (A, τ) is an orthogonal involution, with A of degree n. Assume that n is
even, and set n = 2r . Fix an isomorphism u : 1(E) → Z(A, θ) of K-algebras, and
recall (§2.5) that for all av ∈ (F v)× this induces a uniquely defined isomorphism uav :

1(Ev)→ Z(A, θav ) of Kv-algebras.
We are assuming that for all v ∈ �K , there exists an embedding (Ev, σ )→ (Av, τ )

of algebras with involution. This implies that the K-algebras 1(E) and Z(A, τ) are iso-
morphic. Fix such an isomorphism

ν : 1(E)→ Z(A, τ).
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Let O(E,A) be the set of (a) = (av), with av ∈ (F v)×, such that for all v ∈ �K
there exists αv ∈ (Av)× with the properties:

(a) Int(α) : (Av, θav )→ (Av, τ ) is an isomorphism of Kv-algebras with involution.
(b) The induced automorphism c(α) : Z(Av, θav )→ Z(Av, τ ) satisfies c(α) ◦ uav = ν.

In other words, (Int(α) ◦ ε, av, αv, ν) are parameters of an oriented embedding.

Proposition 4.1.1. Let (a) = (av) ∈ O(E,A). Then:

(i) res1(Ev)/Kv corF v/Kv (a
v, d) = 0 for almost all v ∈ �K , and∑
v∈�K

res1(Ev)/Kv corF v/Kv (a
v, d) = 0.

(ii) Let�′ be the set of places v∈�K such that1(Ev) ' Kv×Kv . Then corF v/Kv (a
v, d)

= 0 for almost all v ∈ �′, and∑
v∈�′

corF v/Kv (a
v, d) = 0.

Proof. By Lemma 2.5.4, C(Av, θav ) = C(Av, θ) + res1(Ev)/Kv corF v/Kv (a
v, d) in

Br(1(Ev)) for all v ∈ �K . Since (av) ∈ O(E,A), we have C(Av, θav ) = C(Av, τ )

for all v ∈ �K . Therefore

C(Av, τ )− C(Av, θ) = res1(Ev)/Kv corF v/Kv (a
v, d),

hence (i) holds. If 1(Ev) ' Kv ×Kv , then res1(Ev)/Kv is injective, and this implies (ii).
ut

Proposition 4.1.2. Let (av), (bv) ∈ O(E,A). Then, for all v ∈ �K :

(i) res1(Ev)/Kv corF v/Kv (a
v, d) = res1(Ev)/Kv corF v/Kv (b

v, d).
(ii) If moreover 1(Ev) ' Kv ×Kv , then corF v/Kv (a

v, d) = corF v/Kv (b
v, d).

Proof. We have C(Av, θav ) = C(Av, θ) + res1(Ev)/Kv corF v/Kv (a
v, d), and C(Av, θbv )

= C(Av, θ)+res1(Ev)/Kv corF v/Kv (a
v, d) in Br(1(Ev)) (Lemma 2.5.4). Since (av), (bv)

∈ O(E,A), we have C(Av, θav ) = C(Av, θbv ), and this implies (i). If1(Ev) ' Kv×Kv ,
then res1(Ev)/Kv is injective, hence (ii) follows. ut

A local embedding datum will be a set (a) = (av) ∈ O(E,A) such that:

• Let �′′ be the set of places v ∈ �K such that 1(Ev) is a quadratic extension of Kv .
Then corF v/Kv (a

v, d) = 0 for almost all v ∈ �′′.
•
∑
v∈�K

corF v/Kv (a
v, d) = 0.

We denote by L(E,A) the set of local embedding data.
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Remark. Let (av) ∈ L(E,A). Then corF v/Kv (a
v, d) = 0 for almost all v ∈ �K . Indeed,

by hypothesis this is true if 1(Ev) is a quadratic extension of Kv , and by Proposition
4.1.1(ii) it also holds if 1(Ev) ' Kv ×Kv .

Recall that the notion of oriented embedding was defined in §2.6.

Proposition 4.1.3. Assume that for all v ∈ �K , there exists an oriented embedding
(Ev, σ ) → (Av, τ ) with respect to ν. Then there exists a local embedding datum (a) =

(av) ∈ L(E,A) such that for all v ∈ �K there exist ιv and αv such that (ιv, av, αv, ν)
are parameters of an oriented embedding.

Proof. Case 1. Assume that 1(Ev)/Kv is a quadratic extension. Let (bv) ∈ O(E,A).
Then C(Av, τ ) = C(Av, θ) + res1(Ev)/Kv corF v/Kv (b

v, d) = C(Av, θ) in Br(1(Ev)),
since 1(Ev)/Kv is a quadratic extension. Moreover, disc(Av, τ ) = disc(Av, θbv ) =
disc(Av, θ). Hence (Av, θ) and (Av, τ ) are isomorphic. By Corollary 2.7.3(ii) there exist
ιv and αv such that (ιv, 1, αv, ν) are parameters of an oriented embedding.

Case 2. Assume now that 1(Ev) ' Kv × Kv . Let (ιv, av, αv, ν) be parameters of an
oriented embedding.

Let (a) = (av), where for v ∈ �K the element av is chosen as above, in each of
the two cases. We claim that (a) = (av) ∈ L(E,A). Since av = 1 when 1(Ev)/Kv
is a quadratic extension, we have corF v/Kv (a

v, d) = 0 for all such v. Let �′ be
the set of v ∈ �K such that 1(Ev) ' Kv × Kv . Then

∑
v∈�K

corF v/Kv (a
v, d) =∑

v∈�′ corF v/Kv (a
v, d), and by Proposition 4.1.1(ii) this sum is zero. It follows that

(a) ∈ L(E,A). ut

Proposition 4.1.4. Let (a) = (av), (b) = (bv) ∈ L(E,A). Then there exists λ ∈ K×

such that corF v/Kv (λb
v, d) = corF v/Kv (a

v, d) for all v ∈ �K .

Proof. We have res1(Ev)/K corF v/Kv (a
v, d)= res1(Ev)/K corF v/Kv (b

v, d) for all v ∈�K ,
and if 1(Ev) ' Kv ×Kv , then corF v/Kv (b

v, d) = corF v/Kv (a
v, d) (Proposition 4.1.2).

Let�′ = {v ∈ �K | corF v/Kv (b
v, d) 6= corF v/Kv (a

v, d)}. The above argument shows
that if v ∈ �′, then 1(Ev) is a quadratic extension of Kv . It follows from the definition
of L(E,A) that there exist only finitely many v ∈ �K such that corF v/Kv (a

v, d) 6= 0 or
corF v/Kv (b

v, d) 6= 0, hence �′ is a finite set.
Let v ∈ �′. Then 1(Ev) splits corF v/Kv (b

v, d) − corF v/Kv (a
v, d). Recall that

1(Ev) = Kv(
√
D), where D = (−1)rNE/K(

√
d) = NF/K(d). Then corF v/Kv (b

v, d)−

corF v/Kv (a
v, d) = (λv,D) for some λv ∈ K×v . Since (a), (b) ∈ L(E,A), by defini-

tion we have
∑
v∈�K

corF v/Kv (a
v, d) =

∑
v∈�K

corF v/Kv (b
v, d) = 0. This implies that∑

v∈�K
(λv,D) = 0. Hence by the Brauer–Hasse–Noether theorem, there exists λ ∈ K×

such that (λ,D) = (λv,D) ∈ Br(Kv) for all v ∈ �′, and λ has the required property. ut

4.2. Local embedding data—odd degree orthogonal case

In this section, we assume that A ' Mn(K) and that τ is induced by an n-dimensional
quadratic form q. We are primarily interested in the case where n is odd, but we also need
to consider the case of n even.
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For all a ∈ F×, let Ta : E × E → K be the quadratic form given by Ta(x, y) =
TrE/K(axσ(y)). The Hasse invariant of a quadratic form Q will be denoted by w(Q).

Assume that there exists an embedding (Ev, σ ) → (Av, τ ) of algebras with involu-
tion for all v ∈ �K . By [PR10, Proposition 7.1] this implies that for all v ∈ �K there
exists av ∈ (F v)× such that q ' Tav . Write av = (av1 , . . . , a

v
m) with avi ∈ (F

v
i )
×. The

set of (a) = (avi ) with this property will be denoted by L′(E,A).

Proposition 4.2.1. Let (a) ∈ L′(E,A) with (a) = (avi ). Then:

(i) corF v/Kv (a
v, d) = 0 for almost all v ∈ �K , and∑

v∈�K

corF v/Kv (a
v, d) = 0.

(ii) Let (b) ∈ L′(E,A) with (b) = (bvi ). Then

corF v/Kv (a
v, d) = corF v/Kv (b

v, d) for all v ∈ �K .

Proof. First assume that n is even. Since (a) ∈ L′(E,A), we have q ' Tav , and hence
w(Tav ) = w(q) for all v ∈ �K . By [BCM03, Theorem 4.3] we have w(Tav ) = w(T ) +
corF v/Kv (a

v, d). Hence w(q) = w(Tav ) = w(T )+ corF v/Kv (a
v, d) for all v ∈ �K . Note

that
∑
v∈�K

w(q) =
∑
v∈�K

w(T ) = 0. Therefore
∑
v∈�K

corF v/Kv (a
v, d) = 0, and

this proves (i).
For (ii), since (b) ∈ L′(E,A), for all v ∈ �K we have w(Tbv ) = w(q). By [BCM03,

Theorem 4.3] we have w(Tbv ) = w(T ) + corF v/Kv (b
v, d) for all v ∈ �K . Therefore

w(T ) + corF v/Kv (a
v, d) = w(q) = w(T ) + corF v/Kv (b

v, d) for all v ∈ �K . Hence
corF v/Kv (a

v, d) = corF v/Kv (b
v, d), and this implies (ii).

Suppose now that n is odd, and set A′ = Mn−1(K). Then by [PR10, Proposition 7.2]
there exists a σ -invariant étale subalgebra E′ of E of rank n − 1 with E = E′ × K , an
(n−1)-dimensional quadratic form q ′ and a 1-dimensional quadratic form q ′′ overK such
that q ' q ′ ⊕ q ′′ and the étale algebra with involution (E′, σ ) can be embedded in the
central simple algebra (A′, τ ′) over Kv for all v ∈ �K , where τ ′ : A′→ A′ is the involu-
tion induced by q ′. Moreover, there exists an embedding of (E, σ ) into (A, τ) if and only
if there exists an embedding of (E′, σ ) into (A′, τ ′). Note that L′(E,A) = L′(E′, A′)×
L′(K,K). We may suppose that Em = K . Then dm = 1. Set J = {1, . . . , m − 1}, and
note that

∑
i∈I corF vi /Kv (a

v
i , di) =

∑
i∈J corF vi /Kv (a

v
i , di) for all v ∈ �K . Since n− 1 is

even, statements (i) and (ii) easily follow. ut

If n is odd, then we set L(E,A) = L′(E,A), and an element (a) ∈ L(E,A) will be
called a local embedding datum. If n is even, then L(E,A) was defined in the previous
section. The relationship between L(E,A) and L′(E,A) is as follows:

Proposition 4.2.2. Assume that n is even. Then:

(i) L′(E,A) ⊂ L(E,A).
(ii) Let (a) ∈ L(E,A). Then there exists λ ∈ K× such that (λa) ∈ L′(E,A).
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Proof. Let (a) ∈ L′(E,A). Then corF v/Kv (a
v, d) = 0 for almost all v ∈ �K , and∑

v∈�K
corF v/Kv (a

v, d) = 0 (Proposition 4.2.1(i)). Since q ' Tav for all v ∈ �K , the
algebras with involution (Av, τ ) and (Av, θav ) are isomorphic. Since A is split, Corollary
2.7.3 implies that for all v ∈ �K there exist ιv and αv such that (ιv, av, αv, ν) are pa-
rameters of an oriented embedding (Ev, σ )→ (Av, τ ). This implies that (a) ∈ L(E,A),
hence (i) is proved.

For (ii), let S be the finite set of places of K at which q or T is not hyperbolic, or
(av, d) 6= 0. Since (a) ∈ L(E,A), there exists λv ∈ K×v such that q and λvTav are
isomorphic over Kv for all v ∈ S. There exists λ ∈ K× such that λ(λv)−1

∈ (Kv)
×2

for all v ∈ S. Then q and λTav are isomorphic over Kv for all v ∈ S. For v 6∈ S,
both q and Tav are hyperbolic over Kv , hence q ' λTav . Since λTav = Tλav , we have
(λa) ∈ L′(E,A). ut

4.3. Local embedding data—the unitary case

Assume that (A, τ) is a unitary involution. The set of (a) = (av), with av ∈ (F v)×, such
that (Av, τ ) ' (Av, θav ) for all v ∈ �K is called a local embedding datum. We denote by
L(E,A) the set of local embedding data.

Proposition 4.3.1. Let (a) ∈ L(E,A) be an embedding datum with (a) = (avi ). Then:

(i)
∑
v∈�K

corF v/Kv (a
v, d) = 0.

(ii) Let (b) ∈ L(E,A) be an embedding datum with (b) = (bvi ). Then

corF v/Kv (a
v, d) = corF v/Kv (b

v, d) for all v ∈ �K .

We need the following lemma:

Lemma 4.3.2. Let (A, θ) be a unitary involution, and let a ∈ F×. Then D(A, θa) =
D(A, θ)+ corF/K(a, d).

Proof. By [KMRT98, Chap. II, (10.36)],D(A, θa) = D(A, θ)+(NF/K(a), L/K). Since
(NF/K(a), L/K) = corF/K(a, E/F) = corF/K(a, d), the lemma is proved. ut

Proof of Proposition 4.3.1. Since (a) ∈ L(E,A), we have (Av, θav ) ' (Av, τ ) for
all v ∈ �K . Hence D(Av, θav ) = D(Av, τ ) for all v ∈ �K . By Lemma 4.3.2,
D(Av, θav ) = D(A

v, θ)+corF v/Kv (av, d) for all v ∈ �K . We have
∑
v∈�K

D(Av, τ ) =∑
v∈�K

D(Av, θ) = 0, hence
∑
v∈�K

corF v/Kv (a
v, d) = 0. This proves (i).

For (ii), let v ∈ �K . Since (b) ∈ L(E,A), from Lemma 4.3.2 we deduce that
D(Av, θ) + corF v/Kv (av, d) = D(Av, θav ) = D(Av, τ ) = D(Av, θbv ) = D(Av, θ) +

corF v/Kv (bv, d). Hence corF v/Kv (a
v, d) = corF v/Kv (b

v, d), as claimed. ut

4.4. The Brauer–Manin map

Let (a) ∈ L(E,A) be an embedding datum with (a) = (avi ). Define

f(a) :X(E, σ )→ Z/2Z, f(a)(I0, I1) =
∑
i∈I0

∑
v∈�K

corF vi /Kv (a
v
i , di).
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This is well-defined, since
∑
i∈I

∑
v∈�K

corF vi /Kv (a
v
i , di) = 0. As we will see, this map

is independent of the choice of (a). In other words, we have

Theorem 4.4.1. Let (a), (b) ∈ L(E,A) be two local embedding data. Then f(a) = f(b).

Proof. Suppose that (a), (b) ∈ L(E,A) are such that f(a) 6= f(b). Note that for all
λ ∈ K×, we have (λb) ∈ L(E,A) and f(b) = f(λb). Since there exists λ ∈ K× such that
for all v ∈ �K we have

∑
i∈I corF vi /Kv (a

v
i , di) =

∑
i∈I corF vi /Kv (λb

v
i , di) (Propositions

4.1.4, 4.2.1(ii) and 4.3.1(ii)), we may assume that for all v ∈ �K ,∑
i∈I

corF vi /Kv (a
v
i , di) =

∑
i∈I

corF vi /Kv (b
v
i , di).

Let (I0, I1) ∈ X(E, σ ) be such that f(a)(I0, I1) 6= f(b)(I0, I1). Then there exists
v ∈ �K such that

∑
i∈I0

corF vi /Kv (a
v
i , di) 6=

∑
i∈I0

corF vi /Kv (b
v
i , di). This implies that

v 6∈
⋂
i∈I0

6i . Since
∑
i∈I corF vi /Kv (a

v
i , di) =

∑
i∈I corF vi /Kv (b

v
i , di), there exists j ∈ I1

such that
corF vj /Kv (a

v
j , dj ) 6= corF vj /Kv (b

v
j , dj ).

Therefore v 6∈
⋂
i∈I1

6i , and this contradicts
⋃
i∈I0

6i ∪
⋂
i∈I1

6i = �K . Hence we have
f(a) = f(b) for all (a), (b) ∈ L(E,A). ut

Since f(a) is independent of (a), we obtain a map

f :X(E, σ )→ Z/2Z, f (I0, I1) =
∑
i∈I0

∑
v∈�K

corF vi /Kv (a
v
i , di),

for any (a) = (avi ) ∈ L(E,A). Note that f is a group homomorphism.
Recall that we have fixed an embedding ε : E → A and an involution θ : A → A

such that ε : (E, σ ) → (A, τ) is an embedding of algebras with involution. If (A, θ)
is orthogonal, then we also fix an orientation u : 1(E) → Z(A, θ). Our next aim is to
discuss the dependence of f on these choices. We first introduce some notation.

Recall that for all a ∈ F×, we set θa = θ ◦ Int(ε(a)). Similarly, if θ̃ : A → A is an
involution and if ε̃ : (E, σ )→ (A, θ) is an embedding of algebras with involution, then
we set θ̃a = θ̃ ◦ Int(ε̃(a)). Then θ̃a : A→ A is an involution, and ε̃ : (E, σ )→ (A, θ̃) is
an embedding of algebras with involution.

Definition 4.4.2. Let ε̃ : E → A be an embedding, and let θ̃ : A → A be an involution
such that ε̃ : (E, σ ) → (A, θ̃) is an embedding of algebras with involution. Let ũ :
1(E)→ Z(A, θ̃) be an orientation. We say that (ε, θ, u) and (ε̃, θ̃ , ũ) are compatible if
there exist α ∈ A× and c ∈ F× such that:

(a) Int(α) : (A, θ̃) → (A, θc) is an isomorphism of algebras with involution such that
Int(α) ◦ ε̃ = ε.

(b) The induced automorphism c(α) : Z(A, θ̃)→ Z(A, θc) satisfies c(α) ◦ ũ = uc.

Recall that if (A, τ) is orthogonal, then we fix an orientation ν : 1(E)→ Z(A, τ).
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Proposition 4.4.3. Assume that (ε, θ, u) and (ε̃, θ̃ , ũ) are compatible. Define L̃(A,E) to
be the set of local embedding data with respect to (ε̃, θ̃ , ũ), and let (a) ∈ L̃(A,E). Let

f ′(a) :X(E, σ )→ Z/2Z, f ′(a)(I0, I1) =
∑
i∈I0

∑
v∈�K

corF vi /Kv (a
v
i , di).

Then f ′(a) = f .

Proof. Let α ∈ A× and c ∈ F× be such that Int(α) : (A, θ̃)→ (A, θc) is an isomorphism
of algebras with involution satisfying Int(α) ◦ ε̃ = ε, and if θ is orthogonal, then c(α) ◦ ũ
= uc.

Let (a) = (av) ∈ L̃(A,E). We claim that (ca) ∈ L(E,A). A straightforward com-
putation shows that Int(α−1) : (A, θcav )→ (A, θ̃av ) is an isomorphism of algebras with
involution for all v ∈ �K .

For all v ∈ �K , let (Int(βv) ◦ ε̃, av, βv, ũ) be parameters of an oriented embedding.
Since ε̃ = Int(α−1)◦ε and c(α)◦ũa = uca , we see that (Int(βvα−1)◦εcav, βvα−1, u) are
parameters of an oriented embedding with respect to (ε, θ, u). Therefore (ca) ∈ L(E,A).

Let c = (c1, . . . , cm) with ci ∈ F×i . We have

f ′(a)(I0, I1) =
∑
i∈I0

∑
v∈�K

corF vi /Kv (a
v
i , di)

=

∑
i∈I0

∑
v∈�K

corF vi /Kv (a
v
i , di)+

∑
i∈I0

∑
v∈�K

corF vi /Kv (ci, di)

=

∑
i∈I0

∑
v∈�K

corF vi /Kv (cia
v
i , di) = f (I0, I1),

since (ca) ∈ L(E,A). ut

Corollary 4.4.4. Suppose that there exists an embedding (E, σ ) → (A, τ) of algebras
with involution. Then f = 0.
Proof. Since there exists an embedding (E, σ )→ (A, τ), there exists a ∈ F× such that
τ ' θa . We have a = (a1, . . . , am) with ai ∈ F×i . For all v ∈ �K , set avi = ai , and let
(a) = (avi ). By Theorem 4.4.1 it suffices to show that f(a) = 0. Let (I0, I1) ∈X(E, σ ).
Then

f(a)(I0, I1) =
∑
v∈�K

∑
i∈I0

corF vi /Kv (ai, di) =
∑
v∈�K

∑
i∈I0

corFi/K(ai, di) = 0.

Therefore f = f(a) = 0, as claimed. ut

4.5. Oriented embeddings

Definition 4.5.1. We say that there exists an oriented embedding (Ev, σ )→ (Av, τ ) for
all v ∈ �K if:

(i) For all v ∈ �K there exists an embedding (Ev, σ )→ (Av, τ ).
(ii) If moreover (A, τ) is of orthogonal type with A non-split, deg(A) = 2r with r even,

disc(Av, τ ) = 1 in K×v /K
×2
v for all v ∈ �K such that Av is non-split, then there

exists an orientation ν : 1(E) → Z(A, τ) such that for all v ∈ �K there exists an
oriented embedding (Ev, σ )→ (Av, τ ) with respect to ν.
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4.6. Hasse principle

The main result of the paper is the following:

Theorem 4.6.1. Suppose that for all v ∈ �K there exists an oriented embedding (Ev, σ )
→ (Av, τ ). Then there exists an embedding (E, σ )→ (A, τ) if and only if f = 0.

By Corollary 4.4.4 we already know that the existence of a global embedding (E, σ )→
(A, τ) implies that f = 0, hence it suffices to prove the converse.

Proof of Theorem 4.6.1 in the even degree orthogonal case. Suppose that deg(A) =
n = 2r . We fix an embedding ε : (E, σ ) → (A, θ) and an isomorphism u : 1(E) →

Z(A, θ) of K-algebras. Since for all v ∈ �K , there exists an embedding (Ev, σ ) →
(Av, τ ) of algebras with involution, the K-algebras 1(E) and Z(A, τ) are isomorphic.
Fix such an isomorphism ν : 1(E) → Z(A, τ). By Corollaries 2.7.3 and 2.8.3 we may
assume that there exists an oriented embedding with respect to ν for all v ∈ �K . Let
(a) = (avi ) ∈ L(E,A), and let (I0, I1) ∈ X. Then by hypothesis we have f (I0, I1) =

f(a)(I0, I1) = 0, hence ∑
v∈�K

∑
i∈I0

corF vi /Kv (a
v
i , di) = 0.

By Proposition 3.1.5 there exists b ∈ F× such that

corF v/Kv (b, d) = corF v/Kv (a
v, d) for all v ∈ �K .

Applying Lemma 2.5.4 we see thatC(Av,θav ) = C(Av,θb) in Br(1(Ev)) for all v ∈ �K .
Since the embedding is oriented with respect to ν, we have C(Av, τ ) = C(Av, θav )

in Br(1(Ev)) for all v ∈ �K . Therefore C(Av, τ ) = C(Av, θb) in Br(1(Ev)) for all
v ∈ �K . Then by the Brauer–Hasse–Noether theorem,C(A, τ) = C(A, θb) in Br(1(E)),
hence C(A, τ) and C(A, θb) are isomorphic over K . Note that (Av, τ ) ' (Av, θb) over
Kv if v is a real place. Hence by [LT99, Theorems A and B], we conclude that (A, τ) '
(A, θb). By Proposition 1.1.3 there exists an embedding of (E, σ ) into (A, τ). ut

Proof of Theorem 4.6.1 in the odd degree orthogonal case. If n = 1 then E = A = K ,
hence (E, σ ) can be embedded into (A, τ). Assume that n ≥ 3. SetA′ = Mn−1(K). Then
by [PR10, Proposition 7.2] there exists a σ -invariant étale subalgebraE′ ofE of rank n−1
withE = E′×K , an (n−1)-dimensional quadratic form q ′ and a 1-dimensional quadratic
form q ′′ over K such that q ' q ′ ⊕ q ′′, and the étale algebra (E′, σ ) with involution
can be embedded in the central simple algebra (A′, τ ′) over Kv for all v ∈ �K , where
τ ′ : A′ → A′ is the involution induced by q ′. Moreover, there exists an embedding of
(E, σ ) into (A, τ) if and only if there exists an embedding of (E′, σ ) into (A′, τ ′). Note
that L(E,A) = L′(E′, A′) × L(K,K). We may suppose that Em = K . Then dm = 1.
Set J = {1, . . . , m− 1}.

Let f ′ : X(E′, σ ) → Z/2Z be the Brauer–Manin map associated to (E′, σ ) and
(A′, τ ′). Let (a) = (avi ) ∈ L(E,A). Set bvi = a

v
i if i = 1, . . . , m− 1. Then (b) = (bvi ) is

an element of L′(E′, A′). By Proposition 4.2.2(i) we have L′(E′, A′) ⊂ L(E′, A′), hence
(b) ∈ L(E′, A′).

For all (J0, J1) ∈X(E′, σ ) we have f ′(J0, J1) = f
′

(b)(J0, J1) = f(a)(I0, I1), where
I0 = J0 and I1 = J1∪{m}. Since fa = f = 0 by hypothesis, this implies that f ′ = 0. By
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the even degree orthogonal case proved above, this implies that (E′, σ ) can be embedded
into (A′, τ ′). Therefore (E, σ ) can be embedded into (A, τ). ut

Proof of Theorem 4.6.1 in the unitary case. Let (a) = (avi ) ∈ L(E,A). Then by Propo-
sition 4.3.1 we have

∑
v∈�K

corF v/Kv (a
v, d) = 0. Let (I0, I1) ∈ X. By hypothesis we

have f(a)(I0, I1) = 0, therefore∑
v∈�K

∑
i∈I0

corF vi /Kv (a
v
i , di) = 0.

By Proposition 3.1.5 there exists b ∈ F× such that corF v/Kv (b, d) = corF v/Kv (a
v, d) for

all v ∈ �K , and bv = av if v is a real place. Since (Av, τ ) = (Av, θav ) for all v ∈ �K ,
we have D(A, τ) = D(A, θb). Hence (A, τ) ' (A, θb). By Proposition 1.1.3 there exists
an embedding of (E, σ ) into (A, τ). ut

§5. Applications and examples

The aim of this section is to describe some special cases in which the Hasse principle
for the embedding problem holds, and to give some examples. We keep the notation of
the previous sections. In particular, K is a global field, (E, σ ) is an étale algebra with
involution, and (A, τ) is a central simple algebra with involution.

5.1. The group X(E′, σ )

Let us write E = E1 × · · · × Em1 × Em1+1 × · · · × Em, where Ei/Fi is a quadratic
extension for all i = 1, . . . , m1 and Ei = Fi × Fi or Ei = K if i = m1 + 1, . . . , m. Set
E′ = E1 × · · · × Em1 . Recall that I = {1, . . . , m}, and set I (split) = {m1 + 1, . . . , m},
I ′ = I (non-split) = {1, . . . , m1}. If I ′ is empty, then we set X(E′, σ ) = 0.

Let π : X(E, σ ) → X(E′, σ ) be the map that sends the class of (I0, I1) to the
class of (I0 ∩ I

′, I1 ∩ I
′). Then π is surjective, and Ker(π) is the subgroup of X(E, σ )

consisting of the classes of partitions (I0, I1) such that I0 ⊂ I (split) or I1 ⊂ I (split).
Let f : X(E, σ ) → Z/2Z be the Brauer–Manin map (§4.4). Note that Ker(π) ⊂

Ker(f ), since if i ∈ I (split), then di = 1. Hence f induces a map f̄ :X(E′, σ )→ Z/2Z
such that f = f̄ ◦ π .

Proposition 5.1.1. We have f = 0 if and only if f̄ = 0.
Proof. This follows immediately from the definitions. ut

5.2. Sufficient conditions

We keep the notation of the previous sections. In particular, K is a global field of charac-
teristic 6= 2.

Theorem 5.2.1. Suppose that:

(i) For all v ∈ �K , there exists an oriented embedding (Ev, σ )→ (Av, τ ).
(ii) X(E′, σ ) is trivial.

Then there exists an embedding (E, σ )→ (A, τ).
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Proof. This follows from Theorem 4.6.1 and Proposition 5.1.1. ut

Theorem 5.2.1 implies that the Hasse principle is always true for oriented embeddings if
E′ is a field—indeed, if E′ is a field extension of L, then X(E′, σ ) is obviously trivial.
In particular, this implies Theorem A of Prasad and Rapinchuk [PR10, p. 584], where E
is a field.

Corollary 5.2.2. Suppose that:

(i) For all v ∈ �K , there exists an oriented embedding (Ev, σ )→ (Av, τ ).
(ii) There exists i0 ∈ I such that 6i0 ∪6i 6= �K for all i ∈ I .

Then there exists an embedding (E, σ )→ (A, τ).

This generalizes the Hasse principle results of [PR10], [Lee14] and [B14]. The corollary
is a consequence of Theorem 5.2.1 and the following lemma:

Lemma 5.2.3. Assume that there exists i0 ∈ I such that 6i0 ∪ 6i 6= �K for all i ∈ I .
Then the group X(E, σ ) is trivial. Therefore X(E′, σ ) is trivial.

Proof. Suppose that X(E, σ ) is not trivial, and let (I0, I1) be a partition of I representing
a non-trivial element of X(E, σ ). Then(⋂

i∈I0

6i

)
∪

(⋂
j∈I1

6j

)
= �K .

Assume that i0 ∈ I0. Then 6i0 ∪ (
⋂
j∈I1

6j ) = �K , hence 6i0 ∪6j = �K for all j ∈ I1,
contradicting the hypothesis. ut

Corollary 5.2.4. Suppose that:

(i) For all v ∈ �K , there exists an oriented embedding (Ev, σ )→ (Av, τ ).
(ii) There exists a real place u ∈ �K such that u 6∈ 6i for all i ∈ I .

Then there exists an embedding (E, σ )→ (A, τ).

Proof. By (ii), condition (ii) of Corollary 5.2.2 holds, hence there exists an embedding
(E, σ )→ (A, τ). ut

Assume now that K = Q. Recall that (E, σ ) is a CM étale algebra if E is a product of
CM fields and σ is complex conjugation. Then we have

Corollary 5.2.5. Suppose K = Q and (E, σ ) is a CM étale algebra. Assume that for all
v ∈ �K , there exists an oriented embedding (Ev, σ ) → (Av, τ ). Then there exists an
embedding (E, σ )→ (A, τ).

Proof. This follows from Corollary 5.2.4 since (ii) holds for CM étale algebras. ut
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5.3. An example

As we have seen in Corollary 5.2.5 above, the local-global principle holds for oriented
embeddings when (E, σ ) is a CM étale algebra with involution. The aim of this section is
to show that this is not the case for not necessarily oriented local embeddings. More pre-
cisely, there exist CM étale algebras (E, σ ) with involution and (non-split) central simple
algebras (A, τ) with orthogonal involution such that (E, σ ) embeds into (A, τ) every-
where locally, but not globally. Moreover, we can choose (A, τ) to be positive definite.

Let v1, v2 and v3 be three distinct places of K . Let a ∈ K× be such that a 6∈ K×2
vi

for i = 1, 2, 3, and let b ∈ K× be such that b 6∈ K×2
v2

and b ∈ K×2
vi

for i = 1 and
i = 3. Let E1 = K(

√
a), and let σ1 : E1 → E1 be the K-linear involution such that

σ1(
√
a) = −

√
a. Set E2 = K(

√
b) and let σ2 : E2 → E2 be the K-linear involution

such that σ2(
√
b) = −

√
b. Set E = E1 ⊗ E2 and σ = σ1 ⊗ σ2. Then (E, σ ) is a rank 4

étale K-algebra with involution, and F = Eσ = K(
√
ab).

Let H1 be the quaternion skew field over K ramified exactly at v1 and v2, and H2 the
quaternion skew field over K ramified exactly at v2 and v3. Let τi : Hi → Hi be the
canonical involution for i = 1, 2, and set (A, τ) = (H1, τ1) ⊗ (H2, τ2). Since τ1 and τ2
are both symplectic involutions, their tensor product τ is an orthogonal involution. We
have H1 ⊗H2 ' M2(H), where H is a quaternion skew field over K .

Proposition 5.3.1. For all v ∈ �K , there exists an embedding (Ev, σ ) → (Av, τ ) of
algebras with involution.

Proof. Since E1 splits H1 and H2 locally everywhere, it splits H locally everywhere too,
and hence E embeds in H as a maximal subfield globally. Let τ0 be the canonical invo-
lution of H . Since τ0 restricts to the non-trivial automorphism on any maximal subfield,
there exists an embedding (E1, σ1)→ (H, τ0) of algebras with involution.

Let w ∈ �K be such that w 6= v2. By hypothesis, either H1 or H2 is split over Kw.
Hence either (Hw

1 , τ1) ' (M2(Kw), σ0) or (Hw
2 , τ2) ' (M2(Kw), σ0), where σ0 denotes

the symplectic involution of M2(Kw). Therefore

(M2(H
w), τ ) ' (Hw

1 ⊗H
w
2 , τ1 ⊗ τ2) ' (M2(Kw), σ0)⊗ (H

w, τ0).

The algebra with involution (Ew1 , σ1) can be embedded into (Hw, τ0), and the algebra
with involution (Ew2 , σ2) can be embedded into (M2(Kw), σ0). Hence (Ew, σ ) embeds
into (M2(H

w), τ ).
At v2, bothH1 andH2 are non-split, and E1, E2 are quadratic field extensions ofKv2 .

Hence E1 embeds into H1, and E2 embeds in H2. Therefore (Ev2
1 , σ1) embeds into

(H
v2
1 , τ1), (E

v2
2 , σ2) embeds into (H v2

2 , τ2), and hence (Ev2 , σ ) embeds into (Av2 , τ ). ut

Proposition 5.3.2. There is no global embedding (E, σ )→ (A, τ).

Proof. Denote by H 0
i the skew elements of H1 for i = 1, 2. Then every skew element

of H1 ⊗ H2 belongs to H 0
1 ⊕ H

0
2 . Moreover, if a skew element is square central, then

it has to be in H 0
1 or in H 0

2 . Assume for contradiction that there exists an embedding
f : (E, σ ) → (A, τ) of algebras with involution. Note that f (

√
b) is a square central



162 E. Bayer-Fluckiger et al.

skew element. Therefore it has to belong toH 0
1 or toH 0

2 . But this contradicts the fact that
E2 = K(

√
b) does not split H1 or H2. ut

In the above example, we can take K = Q, and let v1 and v3 be two distinct finite places
and v2 the infinite place of Q. Choose a and b as above. Since a and b are negative at the
real place v2, the algebra E is a CM étale algebra. Note thatH1 andH2 are both non-split
at v2. The involution on H1 ⊗ H2 is the involution on M4(R) adjoint to the norm form
of the non-split quaternion algebra, which is definite. This provides the desired counter-
example to the Hasse principle.
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