
DOI 10.4171/JEMS/765

J. Eur. Math. Soc. 20, 259–260 c© European Mathematical Society 2018
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In this erratum, the authors would like to correct an error in the characterization of the
dual of the Banach space of some vector-valued stochastic processes having different
integrability with respect to the time variable and the probability measure, which appeared
in [2].

In [2, Lemma 2.1], we presented the following result (see [2] for the notation used
below):

Lemma 1. LetH be a Banach space, (X1,M1, µ1) and (X2,M2, µ2) be finite measure
spaces, M be a sub-σ -field of M1 ⊗M2, and let 1 ≤ p, q < ∞. Then H ∗ has the
Radon–Nikodým property with respect to (X1 × X2,M, µ1 × µ2) if and only if for any
F ∈ L

p

M(X1;L
q(X2;H))

∗, there exists a unique g ∈ Lp
′

M(X1;L
q ′(X2;H

∗)) such that

F(f ) =

∫
X1×X2

(f (x1, x2), g(x1, x2))H,H ∗ dµ1 dµ2, ∀f ∈ L
p

M(X1;L
q(X2;H)),

and
‖F‖LpM(X1;Lq (X2;H))∗

= ‖g‖p′,q ′,H ∗ .

It turns out that for the conclusion to be true, a further assumption is needed (see [1] for a
counterexample). The reason is that the function f constructed in Cases 1–4 in the proof
of the necessity of [2, Lemma 2.1] for H = R (i.e., in [2, Subsection 2.2]) might not be
M-measurable. To avoid this, we need to introduce the following assumption:

Condition 2. For any M-measurable, nonnegative and bounded function ξ , the follow-
ing function 4 (defined on X1 ×X2) is M-measurable:

4(x1, x2) =

(∫
X2

ξ(x1, s) dµ2(s)

)p′/q ′−1

, (x1, x2) ∈ X1 ×X2.

Once Condition 2 is assumed, there is no gap in the proof of [2, Lemma 2.1].
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Note that in [2, proofs of Theorems 3.1–3.2] we only applied the above lemma to the
space LrF(0, s;L

p(�;H)) (with r = 1 and p ∈ [1,∞) for Theorem 3.1, and r ∈ (1,∞]
and p ∈ (1,∞) for Theorem 3.2), for which Condition 2 automatically holds. Indeed,
if ξ ∈ LrF(0, s;L

p(�;H)), then Eξ ∈ LrF(0, s;H) ⊂ LrF(0, s;L
p(�;H)). Elsewhere

in [2], the above lemma was not used. Hence, the main results in [2] remain true. More
precisely, the answers to our Problems (E), (R) and (C) remain true without assuming
Condition 2, or with this condition holding automatically.

References

[1] Lü, Q., van Neerven, J.: Conditional expectations in Lp(µ;Lq (ν;X)). arXiv:1606.02780
(2016)
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