DOI 10.4171/JEMS/765

Qi Lü · Jiongmin Yong · Xu Zhang

© European Mathematical Society 2018

Erratum to "Representation of Itô integrals by JE!" Lebesgue/Bochner integrals"

(J. Eur. Math. Soc. 14, 1795–1823 (2012))

Received August 24, 2017

In this erratum, the authors would like to correct an error in the characterization of the dual of the Banach space of some vector-valued stochastic processes having different integrability with respect to the time variable and the probability measure, which appeared in [2].

In [2, Lemma 2.1], we presented the following result (see [2] for the notation used below):

Lemma 1. Let *H* be a Banach space, $(X_1, \mathcal{M}_1, \mu_1)$ and $(X_2, \mathcal{M}_2, \mu_2)$ be finite measure spaces, \mathcal{M} be a sub- σ -field of $\mathcal{M}_1 \otimes \mathcal{M}_2$, and let $1 \leq p, q < \infty$. Then H^* has the Radon–Nikodým property with respect to $(X_1 \times X_2, \mathcal{M}, \mu_1 \times \mu_2)$ if and only if for any $F \in L^p_{\mathcal{M}}(X_1; L^q(X_2; H))^*$, there exists a unique $g \in L^{p'}_{\mathcal{M}}(X_1; L^{q'}(X_2; H^*))$ such that

$$F(f) = \int_{X_1 \times X_2} (f(x_1, x_2), g(x_1, x_2))_{H, H^*} d\mu_1 d\mu_2, \quad \forall f \in L^p_{\mathcal{M}}(X_1; L^q(X_2; H)),$$

and

$$\|F\|_{L^{p}_{M}(X_{1};L^{q}(X_{2};H))^{*}} = \|g\|_{p',q',H^{*}}.$$

It turns out that for the conclusion to be true, a further assumption is needed (see [1] for a counterexample). The reason is that the function f constructed in Cases 1–4 in the proof of the necessity of [2, Lemma 2.1] for $H = \mathbb{R}$ (i.e., in [2, Subsection 2.2]) might not be \mathcal{M} -measurable. To avoid this, we need to introduce the following assumption:

Condition 2. For any \mathcal{M} -measurable, nonnegative and bounded function ξ , the following function Ξ (defined on $X_1 \times X_2$) is \mathcal{M} -measurable:

$$\Xi(x_1, x_2) = \left(\int_{X_2} \xi(x_1, s) \, d\mu_2(s)\right)^{p'/q'-1}, \quad (x_1, x_2) \in X_1 \times X_2$$

Once Condition 2 is assumed, there is no gap in the proof of [2, Lemma 2.1].

J. Yong: Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA; e-mail: jyong@mail.ucf.edu

Q. Lü, X. Zhang: School of Mathematics, Sichuan University, Chengdu 610064, China; e-mail: lu@scu.edu.cn, zhang_xu@scu.edu.cn

Note that in [2, proofs of Theorems 3.1–3.2] we only applied the above lemma to the space $L_{\mathbb{F}}^{r}(0, s; L^{p}(\Omega; H))$ (with r = 1 and $p \in [1, \infty)$ for Theorem 3.1, and $r \in (1, \infty)$ and $p \in (1, \infty)$ for Theorem 3.2), for which Condition 2 automatically holds. Indeed, if $\xi \in L_{\mathbb{F}}^{r}(0, s; L^{p}(\Omega; H))$, then $\mathbb{E}\xi \in L_{\mathbb{F}}^{r}(0, s; H) \subset L_{\mathbb{F}}^{r}(0, s; L^{p}(\Omega; H))$. Elsewhere in [2], the above lemma was not used. Hence, the main results in [2] remain true. More precisely, the answers to our Problems (E), (R) and (C) remain true without assuming Condition 2, or with this condition holding automatically.

References

- [1] Lü, Q., van Neerven, J.: Conditional expectations in $L^p(\mu; L^q(\nu; X))$. arXiv:1606.02780 (2016)
- [2] Lü, Q., Yong, J., Zhang, X.: Representation of Itô integrals by Lebesgue/Bochner integrals. J. Eur. Math. Soc. 14, 1795–1823 (2012) Zbl 1323.60076 MR 2984588