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Abstract.
We say an excellent local domain (S, n) satisfies the vanishing conditions for maps of Tor if for
every A → R → S with A regular and A → R a module-finite torsion-free extension, and every
A-module M , the map TorA

i
(M,R)→ TorA

i
(M, S) vanishes for every i ≥ 1. Hochster–Huneke’s

conjecture (theorem in equal characteristic) states that regular rings satisfy such vanishing condi-
tions [HH95]. The main theorem of this paper shows that, in equal characteristic, rings that satisfy
the vanishing conditions for maps of Tor are exactly derived splinters in the sense of Bhatt [Bha12].
In particular, rational singularities in characteristic 0 satisfy the vanishing conditions. This greatly
generalizes Hochster–Huneke’s result [HH95] and Boutot’s theorem [Bou87]. Moreover, our result
leads to a new (and surprising) characterization of rational singularities in terms of splittings in
module-finite extensions.

Keywords. The vanishing conjecture for maps of Tor, derived splinters, rational singularities

1. Introduction

Hochster and Huneke proved the following extremely strong vanishing result in equal
characteristic:

Theorem 1.1 (cf. [HH95, Theorem 4.1]). Let A be an equal characteristic regular do-
main, let R be a module-finite and torsion-free extension of A, and let R → S be any
homomorphism from R to a regular ring S. Then for every A-module M and every i ≥ 1,
the map TorAi (M,R)→ TorAi (M, S) vanishes.

They also conjectured that Theorem 1.1 holds in mixed characteristic. This is one of the
well-known homological conjectures: the vanishing conjecture for maps of Tor. The im-
portance of Theorem 1.1, as well as the corresponding conjecture in mixed characteristic,
lies in the fact that, in any characteristic, it implies both the direct summand conjecture
and the conjecture that direct summands of regular rings are Cohen–Macaulay [HH95].
Indeed, it was shown in [Ran00] that the vanishing conjecture for maps of Tor is equiva-
lent to a strong form of the direct summand conjecture (we refer to [Ran00] for details).
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In fact, results very similar to Theorem 1.1 were first proved in [HH93], in charac-
teristic p > 0 only, using tight closure and phantom homology theory.1 The proof given
in [HH95] makes crucial use of the existence of weakly functorial balanced big Cohen–
Macaulay algebras in equal characteristic. In characteristic p > 0, the existence of such
algebras follows directly from [HH92], where it was shown that the absolute integral
closure R+ is such an algebra. In characteristic 0, the construction of weakly functorial
balanced big Cohen–Macaulay algebras depends on a very delicate and difficult reduction
to a characteristic p > 0 argument (we refer to [HH95, Section 3] for details). In mixed
characteristic, the analogy of Theorem 1.1 is known whenA, R, S all have dimension less
than or equal to three [Hoc02], based on Heitmann’s results [Hei02]. However, in general
the vanishing conjecture for maps of Tor is wide open in mixed characteristic.

In this paper, we investigate Theorem 1.1 in some new and different ways. We study
the “converse” of Theorem 1.1 in the following sense: in a given characteristic, for which
local domain S, does the map TorAi (M,R)→ TorAi (M, S) vanish for every A→ R→ S

and every A-module M (where A is regular and A → R is a module-finite torsion-free
extension)? We will say such an S satisfies the vanishing conditions for maps of Tor (see
Section 2 for precise definitions). We will show that, in all characteristics, such vanishing
conditions imply S has only pseudo-rational singularities, which is a characteristic-free
analogue of rational singularities. Our main result in equal characteristic is the following:

Theorem 1.2 (= Theorem 5.5). Let S be a local domain that is essentially of finite type
over a field. The following are equivalent:

(1) S satisfies the vanishing conditions for maps of Tor.
(2) S is a derived splinter.
(3) For every regular local ring A with S = A/P and every module-finite torsion-free

extension A→ B withQ ∈ SpecB lying over P , the map P → Q splits as a map of
A-modules.

We note that derived splinters are formally introduced by Bhatt [Bha12], and are well
understood in equal characteristic: they are equivalent to rational singularities in charac-
teristic 0 [Kov00], [Bha12], and in characteristic p > 0, they turn out to be the same as
splinters [Bha12] (see Section 2 for precise definitions of splinters and derived splinters).
In fact, at least in characteristic 0, the idea of derived splinters plays a crucial role in our
proofs.

As regular local rings in equal characteristic are derived splinters, Theorem
1.2[(1)⇔(2)] greatly extends Theorem 1.1. We will see in Remark 5.7 that Theorem 1.2
also generalizes Boutot’s theorem that direct summands of rational singularities are ra-
tional singularities [Bou87] (Boutot’s theorem follows from the vanishing of Tor applied

1 It is pointed out in the introduction of [HH93] that by reduction to characteristic p > 0, one
can develop the corresponding theory in characteristic 0. The full results in [HH93] are, in some
sense, even stronger than Theorem 1.1, but are slightly technical to state here. However, we point
out that all these (stronger) results can be established by the argument used in [HH95]. Our method
can also provide generalizations of these results, both in characteristic p > 0 and characteristic 0
(see Remark 5.6).
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to M = EA, the injective hull of A). Moreover, as an immediate consequence of Theo-
rem 1.2[(2)⇔(3)], we obtain the following new characterization of rational singularities.
We find this characterization surprising as it only addresses splittings in module-finite
extensions.

Corollary 1.3 (= Corollary 5.8). Let (S, n) be a local domain essentially of finite type
over a field of characteristic 0. Then S has rational singularities if and only if for every
regular local ring A with S = A/P , every module-finite torsion-free extension A → T ,
and every Q ∈ Spec T lying over P , the map P → Q splits as a map of A-modules.

This paper is organized as follows. In Section 2, we recall and review the basic theories,
and we introduce two important concepts: the vanishing conditions for maps of Tor and
the vanishing conditions for maps of local cohomology. The rest of the paper is devoted
to the proof of Theorem 1.2. In Section 3 we show that the vanishing conditions for maps
of Tor implies pseudo-rationality. In Section 4 we prove (1)⇔(3) of Theorem 1.2. Finally,
in Section 5 we prove (1)⇔(2) of Theorem 1.2 and we also prove some partial results in
mixed characteristic: for example, we show that the vanishing conjecture for maps of Tor
implies the derived direct summand conjecture. Throughout this paper, unless otherwise
stated, we will make the following assumptions on commutative rings and schemes (we
will sometimes repeat and emphasize these conditions):

(1) All rings are Noetherian, excellent and are homomorphic images of regular rings.
(2) All schemes are Noetherian, separated, excellent and admit dualizing complexes.
(3) In characteristic 0, all rings and schemes are essentially of finite type over a field.

We point out that (1) and (2) are very mild conditions (e.g., all rings essentially of
finite type over a complete local ring satisfy (1)). We make the assumption (3) mainly
because we need to apply the Grauert–Riemenschneider type vanishing theorems [GR70],
[Kol86] in characteristic 0.

2. Definitions and preliminaries

We begin with some basic definitions of plus closure. Let S be an integral domain and I ⊆
S be an ideal. The plus closure of I , I+, is the set of elements x ∈ S such that x ∈ IT for
some module-finite extension T of S; and I is called plus closed if I+ = I . The absolute
integral closure of S, denoted by S+, is the integral closure of S in the algebraic closure
of the fraction field of S, which is also the direct limit of all the module-finite domain
extensions of S [HH92]. It follows that I+ = IS+ ∩ S. The plus closure of 0 in H d

n (S),
the top local cohomology module, is defined as 0+

H d
n (S)
= ker(H d

n (S)→ H d
n (S
+)).

A domain S (resp., an integral schemeX) is called a splinter if for every module-finite
extension T of S (resp., every finite surjective map Y → X), the natural map S → T

(resp., OX → OY ) is split in the category of S-modules (resp., OX-modules). It is easy
to see that S is a splinter if and only if every ideal in S is plus closed.

Let (S, n) be an excellent local domain of characteristic p > 0. The top local co-
homology module H d

n (S) has a natural Frobenius action. In this situation, there is a
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unique largest proper submodule of H d
n (S) that is stable under the Frobenius action,

namely 0∗
H d
n (S)

, the tight closure of 0 in H d
n (S) [Smi97]. (S, n) is called F -rational if

it is Cohen–Macaulay and 0∗
H d
n (S)
= 0 [HH94], [Smi97]. This is not the original defini-

tion of F -rationality, but it turns out to be extremely useful in many applications. It is
worth mentioning that a deep result of Smith [Smi94] shows that 0∗

H d
n (S)
= 0+

H d
n (S)

, which
we will need in Section 5.

We make some more comments on splinters. In equal characteristic 0, using the trace
map, it is straightforward to check that splinters are exactly normal schemes. However,
even in equal characteristic p > 0 in the affine case, splinters are quite mysterious. It
is known that affine splinters in characteristic p > 0 are always F -rational [Smi94],
[Bha12], and it is conjectured that they are F -regular, which is a natural strengthening
of F -rationality and an important concept in tight closure theory.2 We refer to [Sin99]
and [CEMS18] for the best partial results on this conjecture. In mixed characteristic, our
knowledge about splinters is minimal: Hochster’s famous direct summand conjecture as-
serts that regular local rings are splinters. This conjecture is known to be true in dimension
≤ 3 [Hei02], and is open (in mixed characteristic) in dimension ≥ 4.

Following [Bha12], we say an integral schemeX is a derived splinter if for any proper
surjective map f : Y → X, the pull-back map OX → Rf∗OY is split in the derived cate-
goryD(Coh(X)) of coherent sheaves on X. This is the same as requiring OX → Rf∗OY
to split inD(QCoh(X)), the derived category of quasi-coherent sheaves onX. It is easy to
see that derived splinters are splinters. It was first observed in [Kov00] that derived splin-
ters in characteristic 0 coincide with rational singularities,3 while it was shown in [Bha12]
that, quite surprisingly, derived splinters are equivalent to splinters in characteristic p > 0.

Next we recall pseudo-rational singularities [LT81]: A d-dimensional local ring
(R,m) is called pseudo-rational if it is normal, Cohen–Macaulay, analytically unrami-
fied (i.e., the completion R̂ is reduced), and if for every proper, birational map π : W →
SpecR with W normal, the canonical map H d

m(R) → H d
E(W,OW ) is injective where

E = π−1(m) denotes the closed fiber. Pseudo-rationality is a property of local rings
which is an analog of rational singularities for more general schemes, e.g., rings which
may not have a desingularization. When the ring is essentially of finite type over a
field of characteristic 0, pseudo-rational singularities are the same as rational singular-
ities. In characteristic p, pseudo-rationality is slightly weaker than F -rationality [Smi97],
[Har98].

We summarize the relations between these concepts. In characteristic 0, we have

derived splinter = rational singularities = pseudo-rational⇒ splinter.

In characteristic p > 0, we have

derived splinter = splinter⇒ F -rational⇒ pseudo-rational.

2 As we will not use deep results in tight closure theory, we omit the precise definition of F -
regularity (and the original definition of F -rationality). We refer to [HH90] for details on tight
closure theory.

3 This was proved in [Kov00] when Y → X has connected fibers (which was sufficient for the
applications in [Kov00]). A complete proof was given in [Bha12, Theorem 2.12].
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Now we introduce the central concepts that we will study in this paper:

Definition 2.1. We say a local domain (S, n) satisfies the vanishing conditions for maps
of Tor if for every A → R → S such that A is a regular domain, A → R is a module-
finite torsion-free extension, and A, R, S have the same characteristic,4 the natural map
TorAi (M,R)→ TorAi (M, S) vanishes for every A-module M and every i ≥ 1.

It is also quite natural to ask: if (R,m) � (S, n) is a surjection of local domains, when
does H j

m(R) → H
j
n (S) vanish for every j < dimR? (this is inspired by [HH93, Corol-

lary 4.24], which is itself a consequence of Theorem 1.1). Hence similar to the vanishing
conditions for maps of Tor, we want to introduce certain vanishing conditions for maps of
local cohomology. Since there are several equivalent ways to define this, we summarize
them into a proposition.

Proposition/Definition 2.2. Let (S, n) be a local domain of dimension d. Then the fol-
lowing are equivalent (we always assume R and S have the same characteristic):

(1) For every surjection (R,m)� (S, n) with (R,m) equidimensional, the induced map
H
j
m(R)→ H

j
n (S) vanishes for every j < dimR.

(2) For every surjection (R,m) � (S, n) with (R,m) a local domain, the induced map
H
j
m(R)→ H

j
n (S) vanishes for every j < dimR.

(3) S is Cohen–Macaulay and for every surjection (R,m) � (S, n) such that (R,m) is
a local domain with dimR > d, the induced map H d

m(R)→ H d
n (S) vanishes.

(4) S is Cohen–Macaulay and for every surjection (R,m) � (S, n) such that dimR/P

> d for every minimal prime of P of R, the induced mapH d
m(R)→ H d

n (S) vanishes.

We say (S, n) satisfies the vanishing conditions for maps of local cohomology if it satisfies
the above equivalent conditions.

Proof. (1)⇒(2): This is obvious.
(2)⇒(3): Applying (2) to R = S, we see that the identity map H j

n (S) → H
j
n (S)

vanishes for every j < dim S = d. Thus S is Cohen–Macaulay. The remaining part is
obvious (note that one cannot apply (3) to R = S, because the hypothesis on R in (3)
forces dimR > d).

(3)⇒(4): Since S is a domain, every surjection R � S factors as R � R′ � S,
where R′ = R/P for some minimal prime P of R. Now (3) implies H d

m(R
′)→ H d

n (S)

vanishes because dimR′ = dimR/P > d. Thus H d
m(R)→ H d

n (S) also vanishes.
(4)⇒(1): If dimR = dim S = d (i.e.,R = S) in (1), thenH j

m(R)→ H
j
n (S) vanishes

for every j < dimR = d because H j
n (S) = 0 (S is Cohen–Macaulay). Otherwise we

have dimR > d . Since R is equidimensional, dimR/P > d for every minimal prime P
of R. Thus applying (4), we know that H d

m(R)→ H d
n (S) vanishes. ut

Remark 2.3. One cannot expect that H d
m(R) → H d

n (S) vanishes for all R � S with
dimR > d , even when S is regular. For example, let R = k[[x,y,z]]

(x,y)∩(z)
and S = k[[z]]. We

4 This means A,R, S all have equal characteristic, i.e., they all contain a field, or they all have
mixed characteristic (i.e., the characteristic of the ring is different from that of its residue field).
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know that dimR = 2 and dim S = 1. But it is easy to check that H 1
m(R) → H 1

n(S)

is surjective and hence does not vanish. The trouble here is that there is a component
of R that has the same dimension as S. Thus the hypotheses in Definition 2.2(1)–(4) are
necessary.

We will see in later sections that the vanishing conditions for Tor and for local cohomol-
ogy are deeply related (Proposition 3.4, Theorem 5.10).

3. Vanishing of Tor, vanishing of local cohomology and pseudo-rationality

In this section we will show that the vanishing conditions for maps of Tor implies pseudo-
rationality, which will be a crucial ingredient in proving (1)⇒(2) in Theorem 1.2. We also
obtain many characteristic-free results of independent interest.

Lemma 3.1. Let (S, n) be a local domain that is a homomorphic image of a regular ring.
Then ∑

R

im(H d
m(R)→ H d

n (S)) ⊇ 0+
H d
n (S)

(3.1.1)

where the sum is taken over all R � S such that dimR/P > dim S = d for every
minimal prime P of R. In particular, if (S, n) satisfies the vanishing conditions for maps
of local cohomology, then 0+

H d
n (S)
= 0.

Proof. Since 0+
H d
n (S)
= ker(H d

n (S)→ H d
n (S
+)) =

⋃
T ker(H d

n (S)→ H d
n (T )) where T

runs over all module-finite domain extensions of S, it suffices to show that the inclusion∑
R im(H d

m(R)→ H d
n (S)) ⊇ ker(H d

n (S)→ H d
n (T )) holds for every such T .

We write S = A/P for some regular local ring A such that dimA ≥ d + 1. Let
t1, . . . , tn be a set of generators of T over S. Since T is integral over S, each ti satis-
fies a monic polynomial fi over S. We can lift each fi to A and form the ring B =
A[x1, . . . , xn]/(f1, . . . , fn). We have a natural surjective map B � T with kernel Q ∈
SpecB. It is clear that Q lies over P in A. Let R = A + Q ⊆ B. We know that
R/Q = A/P = S. In sum, we have

0 // Q // B // T // 0

0 // Q //

∼=

OO

R

OO

// S //

OO

0

Let m be the pre-image of n in R. Because B is free over A and R is a subring of B,
R is torsion-free over A. Now localizing at m if necessary, we know that (R,m) is equi-
dimensional and dimR = dimB = dimA ≥ d + 1. This guarantees that dimR/P > d
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for every minimal prime P of R. The induced long exact sequences on local cohomology
gives

H d
m(B)

// H d
m(T ) = H

d
n (T )

// H d+1
m (Q) // H d+1

m (B)

H d
m(R)

// H d
m(S) = H

d
n (S)

OO

// H d+1
m (Q)

∼=

OO

By chasing this diagram, it is easy to see that

ker(H d
n (S)→ H d

n (T )) ⊆ im(H d
m(R)→ H d

n (S)).

This proves (3.1.1). Finally, if S satisfies the vanishing conditions for maps of local coho-
mology, then the left hand side of (3.1.1) is 0 by Definition 2.2(4), thus 0+

H d
n (S)
= 0. ut

Corollary 3.2. If (S, n) satisfies the vanishing conditions for maps of local cohomology,
then every ideal generated by a full system of parameters in S is plus closed. In particular
this implies S is normal.

Proof. Let I = (x1, . . . , xd) be any ideal generated by a full system of parameters of S.
Consider the commutative diagram

H d
n (S)

� � // H d
n (S
+)

S/I //
?�

OO

S+/IS+

OO

The left vertical map is injective because S is Cohen–Macaulay by Definition 2.2, and
the map in the top row is injective by Lemma 3.1. Chasing this diagram we find that
S/I ↪→ S+/IS+ is injective. This proves that I is plus closed.

Finally, if every ideal generated by a system of parameters is plus closed then
every ideal generated by part of a system of parameters is plus closed: Suppose that
(x1, . . . , xt ) is part of a system of parameters, contained in (x1, . . . , xt , xt+1, . . . , xd).
If y ∈ (x1, . . . , xt )

+, then y ∈ (x1, . . . , xt , x
s
t+1, . . . , x

s
d)
+
= (x1, . . . , xt , x

s
t+1, . . . , x

s
d)

for every s > 0. So

y ∈
⋂
s

(x1, . . . , xt , x
s
t+1, . . . , x

s
d) = (x1, . . . , xt ).

In particular, every principal ideal is plus closed. Let y ∈ (x), the integral closure of the
ideal generated by x. Then y ∈ (x)R+ = (x)R+ because R+ is integrally closed. So
y ∈ (x)+ = (x). This proves every principal ideal is integrally closed, and hence S is
normal. ut

Lemma 3.3. If S satisfies the vanishing conditions for maps of local cohomology, then S
is pseudo-rational.
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Proof. By our general assumption on commutative rings, S is an excellent local do-
main, hence is analytically unramified. By Definition 2.2 and Corollary 3.2, S is Cohen–
Macaulay and normal. To check the last condition of pseudo-rationality, we let W →
Spec S be a proper birational map with W normal, and we can assume this map is pro-
jective and birational by Chow’s Lemma. Therefore W → Spec S is just the blow-up of
some ideal J in S, i.e.,

W = Proj S ⊕ J t ⊕ J 2t2 ⊕ · · · =: ProjR.

Now we apply the Sancho de Salas exact sequence (see [SdS87, p. 202], or take coho-
mology of (5.11.1) below) to W = ProjR→ Spec S to get (d = dim S)

H d−1
E (W,OW ) // [H d

n+R>0
(R)]0 //
� _

��

H d
n (S)

//

∼=

��

H d
E(W,OW )

// [H d+1
n+R>0

(R)]0

H d
n+R>0

(R)
0 // H d

n (S)

Since R has dimension d + 1 and S satisfies the vanishing conditions for maps of local
cohomology, the bottom map is the zero map. By the commutativity of the diagram, the
map [H d

n+R>0
(R)]0 → H d

n (S) vanishes. Therefore H d
n (S) → H d

E(W,OW ) is injective.
This finishes the proof. ut

Proposition 3.4. If S is a complete local domain, then S satisfying the vanishing con-
ditions for maps of Tor implies S satisfies the vanishing conditions for maps of local
cohomology. Hence both imply S has only pseudo-rational singularities.

Proof. Let (R,m) � (S, n) be a surjection with R a domain. We may complete R to
get R̂ � Ŝ = S. Since R is excellent by our general assumptions on commutative rings,
R̂ is equidimensional. Since S is a domain, the map R̂ � S factors as R̂ � R′ � S

where R′ = R̂/P for P a minimal prime of R̂. Thus in order to show H
j
m(R)→ H

j
n (S)

vanishes for j < dimR, it suffices to show H
j
m(R

′)→ H
j
n (S) vanishes for j < dimR′.

Hence without loss of generality, we may replace R by R′ and assume R is a complete
local domain.

Now by Cohen’s structure theorem, we have a module-finite extension (A,m0) ↪→

(R,m) with (A,m0) regular local. Let EA = EA(A/m0) ∼= H n
m0
(A) be the injective

hull of the residue field of A. Since the Čech complex gives a flat resolution of EA, we
know that TorAi (EA, R) ∼= H

n−i
m (R) and TorAi (EA, S) ∼= H

n−i
m (S). Since S satisfies the

vanishing conditions for maps of Tor, by considering the map A → R → S, we find
that TorAi (EA, R) → TorAi (EA, S) vanishes for every i ≥ 1. Hence H j

m(R) → H
j
n (S)

vanishes for j < n = dimR. The last assertion then follows from Lemma 3.3. ut

Remark 3.5. We assume (S, n) is complete in the proof of Proposition 3.4 because we
use Cohen’s structure theorem to find A → R module-finite with A regular. Hence the
conclusion of Proposition 3.4 still holds when we work with rings that are essentially of
finite type over a field (we can use Noether normalization instead).
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4. Vanishing conditions for maps of Tor and the splitting property

The goal of this section is to prove (1)⇔(3) in Theorem 1.2. As a corollary we will see
that if S satisfies the vanishing conditions for maps of Tor then S is a splinter. We start
with a lemma restating [HH95, (4.5)]. This was only stated in the complete case, but the
same argument works for rings essentially of finite type over a field (one needs to replace
in [HH95] Cohen’s structure theorem by Noether normalization).

Lemma 4.1 (cf. [HH95, (4.5)]). Let (S, n) be either complete or essentially of finite type
over a field. To show (S, n) satisfies the vanishing conditions for maps of Tor in a given
characteristic, we may assume A is local, R is a domain, A→ S is surjective and M is
finitely generated. Furthermore, it suffices to prove the vanishing of Tor for i = 1.

Remark 4.2. Suppose A → R → S has the property that A → R is module-finite
and torsion-free, and the composite map A→ S is surjective. In this situation, if we set
S = A/P = R/P̃ , then modulo P̃ , elements of R come from elements of A. Thus in this
case R = A+ P̃ .

Theorem 4.3. Let (S, n) be either complete or essentially of finite type over a field.

(1) S satisfies the vanishing conditions for maps of Tor.
(2) For every regular local ring A with S = A/P , and every module-finite torsion-free

extension A→ B with Q ∈ SpecB lying over P , the map P → Q splits as a map of
A-modules.

(3) For every regular local ring A with S = A/P , every module-finite torsion-free exten-
sion A→ B that splits as a map of A-modules, and every Q ∈ SpecB lying over P ,
the map P → Q splits as a map of A-modules.

Then (2)⇒(1)⇒(3). In particular, (1)⇔(2)⇔(3) in equal characteristic.

Proof. Let S = A/P with A regular. Let A → B be a module-finite torsion-free exten-
sion with Q ∈ SpecB lying over P . We form the ring R0 = A + Q ⊆ B. Then R0 is
also a module-finite torsion-free extension of A and we have R0/Q = A/P = S. Now
we look at the commutative diagram

0 // Q // R0 // S // 0

0 // P //

α

OO

A

β

OO

// S //

∼=

OO

0

Tensoring it with an arbitrary A-module M , we get

TorA1 (M,R0)
ϕM // TorA1 (M, S) // Q⊗A M // R0 ⊗A M // S ⊗A M // 0

0 // TorA1 (M, S) //

∼=

OO

P ⊗A M //

α⊗idM

OO

A⊗A M

β⊗idM

OO

// S ⊗A M //

∼=

OO

0
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By diagram chasing, one can see that

α ⊗ idM is injective ⇔ ϕM = 0 and β ⊗ idM is injective. (4.3.1)

(1)⇒(3): Suppose A → B splits (i.e., we are in condition (3)); then A → R0 also
splits, in particular β ⊗ idM is injective. Applying the vanishing conditions for maps of

Tor to A→ R0 → S, we know ϕM = 0. Now (4.3.1) implies P ⊗A M
α⊗idM
−−−−→ Q⊗A M

is injective for every M . But this implies P → Q splits by [HR76, Corollary 5.2] since
Q/P is a finitely generated A-module.

(2)⇒(1): By Lemma 4.1, we may assume A→ R→ S has A� S surjective. Now
we set B = R and Q = ker(R → S). By Remark 4.2, we have Q = P̃ and hence
R = A+ P̃ = A+Q = R0 in this situation. Now (2) implies P → Q splits, in particular
α ⊗ idM is injective. Thus (4.3.1) implies

ϕM : TorA1 (M,R) = TorA1 (M,R0)→ TorA1 (M, S)

vanishes for every M . This proves S satisfies the vanishing conditions for maps of Tor,
since it is enough to check the vanishing of Tor for i = 1 by Lemma 4.1.

Finally, in equal characteristic, every module-finite extension A → B splits when A
is regular. So (2)⇔(3) and hence (1)⇔(2)⇔(3). ut

Lemma 4.4. Let A → B be a module-finite extension. Suppose Q ∈ SpecB lies over
P ∈ SpecA. If P → Q splits as a map of A-modules and depthP A ≥ 2, then A → B

splits compatibly with P →Q, i.e., there exists a splitting θ : B→A such that θ(Q)= P .
In particular, A/P → B/Q splits as a map of A-modules.

Proof. Let φ : Q→ P be a splitting. The exact sequences 0→ Q→ B → B/Q→ 0
and 0→ P → A induce a commutative diagram

HomA(B,A) // HomA(Q,A) // Ext1A(B/Q,A)

HomA(Q, P )
?�

OO

Since B/Q is a finitely generated A-module annihilated by P , and depthP A ≥ 2, we
know that Ext1A(B/Q,A) = 0 by [Eis95, Proposition 18.4]. Hence HomA(B,A) maps
onto HomA(Q,A), in particular it maps onto the image of HomA(Q, P ). Thus there is a
map θ : B → A such that θ |Q = φ. We show that θ has to be a splitting from B to A.
Suppose θ(1) = a ∈ A. Then for every nonzero element r ∈ P we have

ra = rθ(1) = θ(r) = φ(r) = r.

So a = 1 and hence θ is a splitting from B to A such that θ(Q) = P . Finally, θ gives a
splitting B/Q→ A/P . ut

Corollary 4.5. If S satisfies the vanishing conditions for maps of Tor, then S is a splinter.
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Proof. We use a construction similar to the one used in the proof of Lemma 3.1. We write
S = A/P with A a regular local ring with depthP A ≥ 2 (this can be achieved, for ex-
ample, by adding indeterminates). Let S → T be a module-finite domain extension. Let
t1, . . . , tn be a set of generators of T over S = A/P . Each ti is a zero of a monic polyno-
mial fi over S. We lift each fi to A and form the ring B = A[x1, . . . , xn]/(f1, . . . , fn).
We have a natural surjection B � T with kernel Q ∈ SpecB. It is straightforward to
check that Q lies over P .

SinceB is finite free overA, we know thatA→ B splits as a map ofA-modules. Now
by (1)⇒(3) of Theorem 4.3, P → Q is split. Since depthP A ≥ 2, by Lemma 4.4, S =
A/P → B/Q = T splits as a map of A-modules (hence also as a map of S-modules). As
this is true for any module-finite domain extension T of S, S is a splinter. ut

Remark 4.6. Applying Corollary 4.5 with S a regular local ring, we see that the van-
ishing conjecture for maps of Tor implies the direct summand conjecture in all char-
acteristics. Although this is well known, we want to point out that the original proof
given in [HH95] and [Ran00] depends on applying the vanishing conjecture to the map
A→ R → S = R/m, i.e., studying the map from a mixed characteristic ring (R,m) to
its residue field S = R/m. Such a map, though being very natural, does not preserve the
characteristic of the rings! Our theorem above gives a totally different proof, and it shows
that the vanishing conjecture for maps of Tor, even if we restrict to A → R → S all of
the same characteristic, still implies the direct summand conjecture.

5. Main results

In this section we prove our main theorem in equal characteristic. We begin by recalling
some facts about dualizing complexes. For an integral scheme X, a normalized dualizing
complex ω•X is an object in DbCoh(X) which has finite injective dimension, the canonical
map OX → R HomX(ω

•

X, ω
•

X) is an isomorphism in DbCoh(X), and the first nonzero
cohomology of ω•X lies in degree − dimX. Note that under this definition, if ω•X is a
normalized dualizing complex, then so is ω•X ⊗L for any line bundle L (in fact, this is
all the ambiguity for a connected scheme [Har66]).

To clear this ambiguity, notice that all our rings and schemes in this section are essen-
tially of finite type over a field k (or over a fixed scheme Spec S as in Theorem 5.11 and
Remark 5.13). Therefore we simply define ω•X = π

!k (resp., π !ω•S for some chosen ω•S),
where π : X → Spec k (resp., X → Spec S) is the structural map and π ! is the functor
from Grothendieck duality theory [Har66]. By standard duality theory, ω•X is a normal-
ized dualizing complex discussed in the previous paragraph. Moreover, after this choice,
we have

R HomX(Rf∗OY , ω•X) ∼= Rf∗ω•Y
for any proper and dominant morphism f : Y → X of integral schemes, where X, Y are
both essentially of finite type over a field k or over a fixed scheme Spec S. We refer to
[Har66] for details on Grothendieck duality theory and to [BST15, Section 2.3] for a very
nice summary.
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Next we recall that for an excellent local domain A, a complex

F• : 0→ Abn
αn
−→ Abn−1

αn−1
−−→ · · ·

α2
−→ Ab1

α1
−→ Ab0 → 0

of finitely generated free A-modules is said to satisfy the standard conditions on rank
and height (resp. rank and depth) if, for every 1 ≤ i ≤ n, rankαi + rankαi+1 = bi and
the height (resp. the depth) of the ideal Irankαi (αi) is at least i where It (αi) denotes the
ideal generated by the size t minors of a matrix for αi ; it is independent of the choice of
bases for Fi and Fi−1 (rankαi is the largest integer r such that Ir(αi) 6= 0). We use the
convention that I0(αi) = R and the unit ideal has height infinity.

Remark 5.1. Let F• be a complex of finite free A-modules. It is well known that F• is
acyclic (which means F• is exact except possibly in degree 0) if and only if F• satisfies
the standard conditions on rank and depth. Moreover, in characteristic p > 0, F• satisfies
the standard conditions on rank and height if and only if F• is phantom acyclic. We refer
to [HH93] and [Abe94] for details on phantom homology.

Now we are ready to state and prove our key theorem, which implies (and is in fact much
stronger than) (2)⇒(1) of Theorem 1.2.

Theorem 5.2 (Key Theorem). Let (A,m) be a local domain that is essentially of finite
type over a field and F• : 0 → Fn → · · · → F1 → F0 → 0 be a complex of finitely
generated free A-modules that satisfies the standard conditions on rank and height. Let

X
f0
−→ Y

f
−→ SpecA be maps of integral schemes such that Y → SpecA is proper

surjective and X is a derived splinter. Then the natural map

h−i(F• ⊗ Rf∗OY )→ h−i(F• ⊗ Rf∗Rf0∗OX)

induced by the pull-back f ∗0 is the zero map for every i > 0 (note that Fi has cohomo-
logical degree −i).

Proof. As the methods we use in characteristic 0 and p > 0 are very different, we sepa-
rate the proof in two parts.

Proof in characteristic 0: We assume (A,m) is of equal characteristic 0. Let p : Z→ Y

be a resolution of singularities and let W = X ×Y Z. We have the following diagram:

Z

p

��

g

||

W
f1oo

q

��
SpecA Y

foo X
f0oo

Since p is a resolution of singularities, the map q obtained by base change is proper
and surjective. Because X is a derived splinter, the natural map q∗ : OX → Rq∗OW has
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a splitting η in the derived category D(Coh(X)), i.e., η ◦ q∗ = id. Therefore we have the
following commutative diagram in D(QCoh(SpecA)):

Rg∗OZ
f ∗1 // Rg∗Rf1∗OW = Rf∗Rf0∗Rq∗OW

η

��
Rf∗OY

p∗

OO

f ∗0 // Rf∗Rf0∗OX

q∗

OO

Now we tensor the above diagram with F• inD(QCoh(SpecA)) and take cohomology
in negative degree; we get a commutative diagram (since F• is a complex of free A-
modules, ⊗L is the same as ⊗)

h−i(F• ⊗ Rg∗OZ)
f ∗1 // h−i(F• ⊗ Rf∗Rf0∗Rq∗OW )

η

��
h−i(F• ⊗ Rf∗OY )

p∗

OO

f ∗0 // h−i(F• ⊗ Rf∗Rf0∗OX)

q∗

OO

Since η ◦ q∗ = id, in order to show f ∗0 induces the zero map, it is enough to show
η ◦ f ∗1 ◦ p

∗ induces the zero map by the above commutative diagram. We will show this
by proving that h−i(F• ⊗ Rg∗OZ) = 0 for every i > 0, when F• satisfies the standard
conditions on rank and height and Z→ SpecA is proper surjective with Z smooth.

We use induction on the dimension ofA. When dimA = 0, (A,m) is Artinian and it is
easy to see that every complex F• that satisfies the standard conditions on rank and height
is split exact except at the zeroth spot. Hence the complex F•⊗Rg∗OZ ∼= An⊗Rg∗OZ =⊕n Rg∗OZ has no negative degree part, so h−i(F• ⊗ Rg∗OZ) = 0 for every i > 0.

Now let dimA = d. We set G• = F• ⊗ Rg∗OZ . Let x = x1, . . . , xd denote a full
system of parameters of A and let C•(x,A) be the Čech complex associated to x. We also
let

G̃• = G• ⊗L C•(x,A) = G• ⊗ C•(x,A).

We compute h−i(G̃•) using spectral sequences of the double complex

· · · // Gp+1
⊗ Cq(x,A) //

OO

Gp+1
⊗ Cq+1(x,A) //

OO

· · ·

· · · // Gp ⊗ Cq(x,A) //

OO

Gp ⊗ Cq+1(x,A) //

OO

· · ·
OO OO

Each Cq(x,A) is a direct sum of localizations ofA, in particular it is flat overA. So when
we take the cohomology of the columns, we get

E
pq

1 = h
p(G•)⊗ Cq(x,A).
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Note that when q = 0, this is just hp(G•), while when q > 0, this is a direct sum of
proper localizations of hp(G•). However, when p < 0, hp(G•) = hp(F• ⊗ Rg∗OZ)
is supported only at the maximal ideal m by the induction hypothesis. Because if it is
supported at another prime ideal, say P , then hp((F•)P ⊗ Rg∗OZ×SpecRSpecRP ) 6= 0.
But (F•)P satisfies the standard conditions on rank and height as a free complex over
RP (the ranks of all the Fi are preserved, and the height of an ideal does not decrease
when we localize), and Z ×SpecR SpecRP is smooth; we thus get a contradiction since
dimRP < d. Hence we know that Epq1 = 0 when p < 0 and q > 0. In sum, the E1-stage
of the spectral sequence looks like

· · ·

E00
1 = h

0(G•) // E01
1

// E02
1

// · · · // E0d
1

E
−1,0
1 = h−1(G•) // E−1,1

1 = 0 // E−1,2
1 = 0 // · · · // E−1,d

1 = 0

E
−2,0
1 = h−2(G•) // E−2,1

1 = 0 // E−2,2
2 = 0 // · · · // E−2,d

1 = 0

· · ·

From this we know that
h−i(G̃•) = E

−i,0
1 = h−i(G•) (5.2.1)

for every i > 0. This is because E−i,01 = h−i(G•) is the only nontrivial term that con-
tributes to h−i(G̃•) when i > 0, and all the further differentials at this spot,

E−i+r−1,−r
r → E−i,0r → E−i−r+1,r

r ,

vanish since E−i+r−1,−r
r = E

−i−r+1,r
r = 0 when i > 0 and r ≥ 1.

Rewriting (5.2.1), we have

h−i(F• ⊗ Rg∗OZ) = h−i(F• ⊗ Rg∗OZ ⊗ C•(x,A)). (5.2.2)

Since we have functorial isomorphism R0m(−)
∼=
−→ C•(x,A)⊗− in D(QCoh(SpecA))

by [Lip02, Proposition 3.1.2], the above yields

h−i(F• ⊗ Rg∗OZ) ∼= h−i(F• ⊗ R0mRg∗OZ). (5.2.3)

By local duality,

hj (R0mRg∗OZ) = h−j (R Hom(Rg∗OZ, ω•A))
∨
= h−j (Rg∗ω•Z)

∨ (5.2.4)

where ω•A, ω•Z are the normalized dualizing complexes of SpecA and Z. Since Z is
smooth, ω•Z ∼= ωZ[n] where n = dimZ. Hence h−j (Rg∗ω•Z) = hn−j (Rg∗ωZ) = 0
when n− j > n− d (equivalently, j < d) by [Kol86, Theorem 2.1].5 Now from (5.2.4),
we know that

hj (R0mRg∗OZ) = 0, ∀j < d. (5.2.5)

5 In [Kol86], the main theorem requires that the schemes are projective, but this is not essential.
One can refer to [EV92, Corollary 6.11].
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On the other hand, we know that F• satisfies the standard conditions on rank and
height. This implies Irankαn(αn) must be the unit ideal when n > d, because there are
no proper ideals in R with height strictly larger than the dimension of R. Hence F• is
split exact at cohomological degree −n when n > d by [BE73, Lemma 1]. Therefore, in
D(Coh(SpecA)) or D(QCoh(SpecA)), F• is quasi-isomorphic to a free complex

H• : 0→ Hk → Hk−1 → · · · → H1 → H0 → 0

with k ≤ d and Hj has cohomological degree −j . Now from (5.2.5), it is straightforward
to check that

h−i(F• ⊗ R0mRg∗OZ) = h−i(H• ⊗ R0mRg∗OZ) = 0

for every i > 0. Hence by (5.2.3) we know that h−i(F• ⊗ Rg∗OZ) = 0 for every i > 0.
This finishes our proof in equal characteristic 0.

Proof in characteristic p > 0: Now we assume (A,m) is of equal characteristic p > 0.
By [Bha12, Theorem 1.5], there exists a finite surjective morphism π : Z → Y such that
the pull-back π∗

≥1 : τ≥1Rf∗OY → τ≥1Rf∗π∗OZ is the zero map. From this it follows (see
[Bha12, proof of Theorem 1.4] or [BST15, Lemma 5.1]) that the natural map Rf∗OY →
Rf∗π∗OZ factors as

Rf∗OY
θ
−→ (f ◦ π)∗OZ

ι
−→ Rf∗π∗OZ. (5.2.6)

Let g = f ◦π . We know that g∗OZ is a module-finite extension ofA, as Z→ SpecA
is proper. Let W = Z ×Y X. We have the commutative diagram

Spec(g∗OZ)

��

Zoo

π

��

g

zz

W
f1

oo

��
SpecA Y

foo X
f0oo

This together with (5.2.6) tell us that there is a commutative diagram inD(QCoh(SpecA))

g∗OZ
ι // Rg∗OZ

f ∗1 // Rf∗Rf0∗π∗OW

Rf∗OY
θ

dd

π∗

OO

f ∗0 // Rf∗Rf0∗OX

OO
(5.2.7)

Now we pick an arbitrary element x ∈ h−i(F• ⊗ Rf∗OY ) for an arbitrary i > 0. We
want to show that x maps to 0 in h−i(F• ⊗ Rf∗Rf0∗OX). To prove this, we first look at
the image of x under the map

h−i(F• ⊗ Rf∗OY )
θ
−→ h−i(F• ⊗ g∗OZ).

Let y = θ(x). Since we are in equal characteristic p > 0 and A → g∗OZ is a module-
finite extension, A+ = (g∗OZ)

+ is a balanced big Cohen–Macaulay algebra over A
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[HH92]. Since F• satisfies the standard conditions on rank and height and (g∗OZ)+ is
big Cohen–Macaulay, it follows from the generalized Buchsbaum–Eisenbud criterion
[Abe94, Theorem 1.2.3] that h−i(F• ⊗ (g∗OZ)+) = 0 for i > 0. In particular, there
exists a module-finite extension B of g∗OZ such that the image of y in h−i(F• ⊗ B)
is 0. Let W ′ = W ×Spec(g∗OZ) SpecB. We know π ′ : W ′ → W → X is a finite
surjective map of schemes. Since X is a derived splinter, in particular a splinter, we
know that OX → π ′∗OW ′ has a splitting η. In sum, after tensoring (5.2.7) with F• in
D(QCoh(SpecA)) and taking cohomology, we get a commutative diagram

h−i(F• ⊗ B) // h−i(F• ⊗ Rf∗Rf0∗π
′
∗OW ′)

η

tt

h−i(F• ⊗ g∗OZ)

OO

f ∗1 ◦ι // h−i(F• ⊗ Rf∗Rf0∗π∗OW )

OO

h−i(F• ⊗ Rf∗OY )

θ

OO

f ∗0 // h−i(F• ⊗ Rf∗Rf0∗OX)

OO

From this diagram, it is easy to see that the image of x ∈ h−i(F• ⊗ Rf∗OY ) maps
to 0 under f ∗0 , because by our construction, the image of x in h−i(F• ⊗ B) is 0. Since
our choices of x and i > 0 are arbitrary, this proves that f ∗0 : h

−i(F• ⊗ Rf∗OY ) →
h−i(F• ⊗ Rf∗Rf0∗OX) is the zero map for every i > 0. This finishes our proof in equal
characteristic p > 0. ut

Remark 5.3. Note that in the above proof, in equal characteristic p > 0, we only need
to assume X is a splinter. But splinters and derived splinters are the same in characteristic
p > 0 [Bha12]. In fact, in the course of our proof we use Theorem 1.5 of [Bha12], which
is a key ingredient in proving splinters and derived splinters are equivalent in characteris-
tic p > 0. We refer to [Bha12] for details.

In the case of maps between rings instead of schemes, our Key Theorem 5.2 specializes
to the following corollary:

Corollary 5.4. Let (A,m) be a local domain that is essentially of finite type over a field
and let M be a finitely generated A-module of finite projective dimension. Let A →
R → S be ring homomorphisms such that A → R is a module-finite domain extension
and S is a derived splinter. Then the natural map

TorAi (M,R)→ TorAi (M, S)

is the zero map for every i > 0.

Proof. Since M has a finite projective dimension, it has a finite free resolution F•. As
F• is acyclic, it satisfies the standard conditions on rank and depth and hence also the
standard conditions on rank and height. Applying Theorem 5.2 to F•, Y = SpecR, X =
Spec S and noticing that there are no higher direct images because all the maps are affine,
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we find that h−i(F• ⊗ R)→ h−i(F• ⊗ S) vanishes for every i > 0. But TorAi (M,R) =
h−i(F• ⊗ R) and TorAi (M, S) = h

−i(F• ⊗ S), so the conclusion follows. ut

Now we state and prove our main theorem.

Theorem 5.5. Let S be a local domain that is essentially of finite type over a field. The
following are equivalent:

(1) S satisfies the vanishing conditions for maps of Tor.
(2) S is a derived splinter.
(3) For every regular local ring A with S = A/P and every module-finite torsion-free

extension A→ B withQ ∈ SpecB lying over P , the map P → Q splits as a map of
A-modules.

Proof. We already know (1)⇔(3) by Theorem 4.3. Moreover, recall that derived splin-
ters are the same as rational singularities (equivalently, pseudo-rational singularities) in
characteristic 0, and are equivalent to splinters in characteristic p > 0. Hence (1)⇒(2)
follows from Remark 3.5 and Corollary 4.5 in characteristic 0 and characteristic p > 0
respectively.

Finally, we prove (2)⇒(1). Suppose we have A → R → S with A regular and R
module-finite and torsion-free over A. To check TorAi (M,R) → TorAi (M, S) vanishes,
we can assume A is local, R is a domain and M is a finitely generated A-module by
Lemma 4.1. Since A is regular, M has finite projective dimension. Hence the vanishing
of TorAi (M,R)→ TorAi (M, S) follows immediately from Corollary 5.4. ut

Remark 5.6. (1) We point out that in Theorem 5.5, (2)⇒(1) in characteristic p > 0 also
follows directly from the fact that R+ is a balanced big Cohen–Macaulay algebra: one
can use the same argument as in [HH95, Theorem 4.1] and simply notice that the map
S → S+ is always pure when S is a splinter in characteristic p > 0.

(2) However, our method in characteristic 0 is of great interest: it gives the first proof
of Theorem 1.1 (even in the regular case) in characteristic 0 without using reduction to
characteristic p > 0. In fact, our result in characteristic 0 does not even seem to follow
from reduction to characteristic p > 0. It is well known from [Smi97] and [Har98] that a
local ring essentially of finite type over a field of characteristic 0 has rational singularities
if and only if its mod p reductions, for all sufficiently large p, are F -rational. But F -
rationality is known to be weaker than being a derived splinter in characteristic p > 0,
and hence F -rational rings do not satisfy the vanishing conditions for maps of Tor in
general by Theorem 5.5.

(3) Moreover, equal characteristic regular local rings satisfying the vanishing condi-
tions for maps of Tor is a very special case of our Key Theorem 5.2, the case where A
is regular with F• a free resolution of a finitely generated A-module M , Y → SpecA is
finite surjective and X is regular affine. So our Theorem 5.2 greatly extends Hochster–
Huneke’s Theorem 1.1, and actually it also generalizes the main theorems of [HH93].

Remark 5.7. We point out that Boutot’s theorem that direct summands of rational sin-
gularities are rational singularities [Bou87] follows from our vanishing conditions for
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maps of Tor applied to M = EA, the injective hull of A. Let (R,m) → (S, n) be a
split map of local rings essentially of finite type over a field of characteristic 0, and let
S have rational singularities. For every surjection (B,m1) � (R,m) with B equidimen-
sional, we can find (A,m0) → (B,m1) module-finite with (A,m0) regular by Noether
normalization. Now we consider the map A → B → R → S. Since S has ratio-
nal singularities, it satisfies the vanishing conditions for maps of Tor by Theorem 5.5.
Hence TorAi (EA, B) → TorAi (EA, R) → TorAi (EA, S) vanishes for i ≥ 1. This implies
TorAi (EA, B)→ TorAi (EA, R) vanishes for i ≥ 1 because R → S splits. Hence R satis-
fies the vanishing conditions for maps of local cohomology (recall that TorAi (EA, B) =
H d−i

m (B)). Therefore by Lemma 3.3, R has rational singularities.

As a consequence of Theorem 5.5, we obtain a new characterization of rational singular-
ities:

Corollary 5.8. Let (S, n) be a local domain essentially of finite type over a field of char-
acteristic 0. Then S has rational singularities if and only if for every regular local ring A
with S = A/P , every module-finite torsion-free extensionA→ T , and everyQ ∈ Spec T
lying over P , the map P → Q splits as a map of A-modules.

Proof. This follows immediately from (2)⇔(3) in Theorem 5.5, and the result that de-
rived splinters are exactly rational singularities in equal characteristic 0. ut

We next want to prove a theorem that characterizes the vanishing conditions for maps of
local cohomology in equal characteristic. We first prove a lemma that is of independent
interest. Recall that in characteristic p > 0, 0∗

H d
n (S)

(the tight closure of 0) is the largest

proper submodule of H d
n (S) that is stable under the natural Frobenius action [Smi97].

Lemma 5.9. Let (S, n) be a local domain of equal characteristic p > 0. Then∑
R

im(H d
m(R)→ H d

n (S)) = 0∗
H d
n (S)

(5.9.1)

where the sum is taken over all (R,m) � (S, n) such that dimR/P > dim S = d for
every minimal prime P of R.

Proof. Take a surjection (R,m) → (S, n). We first prove that the image of H d
m(R) →

H d
n (S) is contained in 0∗

H d
n (S)

. Since dimR/P > d for every minimal prime P of R,

R → S obviously factors as R → R′ → S for some domain R′ with dimR′ = d + 1.
Hence the image of H d

m(R) → H d
n (S) is contained in the image of H d

m(R
′) → H d

n (S),
which is clearly a submodule of H d

n (S) stable under the Frobenius action. Thus it is
contained in 0∗

H d
n (S)

as long as it is not equal to H d
n (S). Therefore, it suffices to show that

H d
m(R

′)→ H d
n (S) is not surjective. Writing S = R′/Q for some height one prime ideal

Q of R′ we have the long exact sequence of local cohomology

· · · → H d
m(R

′)→ H d
n (S)→ H d+1

m (Q)→ H d+1
m (R′). (5.9.2)
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Since R′ has dimension d + 1 and Q is a height one prime, H d+1
m (Q) → H d+1

m (R′) is
not injective by [Ma14, Lemma 3.3]. Therefore H d

m(R
′) → H d

n (S) is not surjective by
(5.9.2). Hence ∑

R

im(H d
m(R)→ H d

n (S)) ⊆ 0∗
H d
n (S)

.

On the other hand, Lemma 3.1 shows that∑
R

im(H d
m(R)→ H d

n (S)) ⊇ 0+
H d
n (S)
= 0∗

H d
n (S)

,

where the last equality follows from the main theorem of [Smi94]. ut

Theorem 5.10. Let (S, n) be a local domain that is essentially of finite type over a field.
In characteristic 0, S satisfying the vanishing conditions for maps of local cohomology
if and only if S has rational singularities, while in characteristic p > 0, S satisfies the
vanishing conditions for maps of local cohomology if and only if S is F -rational.

Proof. The characteristic 0 assertion follows (implicitly) from the proof of Theorem 5.5,
as S satisfying the vanishing conditions for maps of local cohomology implies S has
rational singularities by Lemma 3.3. It remains to prove the characteristic p > 0 state-
ment. But this follows immediately from Lemma 5.9 and Definition 2.2, since when S is
Cohen–Macaulay, S is F -rational if and only if 0∗

H d
n (S)
= 0 [HH94], [Smi97]. ut

Finally, it is quite natural to ask whether our main theorem, Theorem 5.5, holds in
mixed characteristic. By Theorem 4.3, (3)⇒(1) always holds, and the main obstruction to
(1)⇒(3) is the direct summand conjecture in mixed characteristic. Below we give a par-
tial answer for (1)⇒(2). We believe this result and its proof are of independent interest
(for example, see Remarks 5.12 and 5.13).

Theorem 5.11. If (S, n) is a quasi-Gorenstein complete local domain (of mixed charac-
teristic) that satisfies the vanishing condition for maps of Tor, then S is a derived splinter.

Proof. We first note that the conditions imply S is Cohen–Macaulay (and thus Goren-
stein) by Proposition 3.4 because S is complete and satisfies the vanishing conditions for
maps of Tor.

Let π : X → Spec S be a proper surjective map, we want to show S → Rπ∗OX
splits in the derived category of S-modules. By Chow’s Lemma we may assume that X
is projective. We claim we may reduce to the case where X → Spec S is a projective
and generically finite map between integral schemes.6 We first find an irreducible com-
ponent W of X and an affine open U = SpecB of W that dominates Spec S. It follows
that B is a domain containing S, finitely generated as an S-algebra. Let L be the fraction
field of S. We have dim(L ⊗ B) = dimB − dim S by [Eis95, Theorem 13.8]. Hence if
dimB−dim S ≥ 1, then dim(L⊗B) ≥ 1. This means there exist nonzero primes inB that
contract to 0 in S. Pick such a primeQ; then S ↪→ B/Q is injective. Thus V = SpecB/Q

6 This should be well known. We provide the argument because we cannot find a good reference
for this in mixed characteristic.
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still dominates Spec S. Let X be the closure of V in W . Then X′ → Spec S is projective
and surjective with dimX′ < dimX. We repeat this process until we get dimX = dim S,
i.e., X → Spec S is projective and generically finite. Next we consider the Stein factor-
ization

X→ Spec(π∗OX)→ Spec S.

Let T = π∗OX. We know that T is a module-finite domain extension of S. In particular,
since S is complete, this implies T is a local ring and nT is primary to the maximal ideal
of T . The map X → Spec T is projective and birational, thus it is just the blow-up of
some ideal J ⊆ T . Let R = T [J t] = T ⊕ J t ⊕ J 2t2 ⊕ · · · ; then we have X = ProjR.

Pick f1, . . . , fn ∈ J t = [R]1 such that U = {Ui = Spec[Rfi ]0} is an affine open
cover of X. We have an exact sequence of chain complexes [Lip94, p. 150]

0→ Č•(U,OX)[−1] → [C•(f1, . . . , fn, R)]0 → T → 0.

Since Č•(U,OX) ∼= Rπ∗OX, the above sequence gives (after rotating) an exact triangle

[R0R>0R]0 = [C
•(f1, . . . , fn, R)]0 → T → Rπ∗OX

+1
−→ .

Applying R0n, we get

[R0n+R>0R]0 → R0nT → R0nRπ∗OX
+1
−→ . (5.11.1)

Let d = dim S = dim T and d + 1 = dimR. Next we prove two claims:

Claim 5.11.2. [H d+1
n+R>0

(R)]0 = 0, thus [R0n+R>0R]0 lives in degree [0, 1, . . . , d].

Proof. This is well known, because the a-invariant of the Rees ring is always −1 (for
example, see [HS03, 2.4.2 and 2.5.2]). For the sake of completeness we point out that this
also follows from (5.11.1). By local duality, the dual of hd(R0nT )→ hd(R0nRπ∗OX)
is the natural inclusion π∗ωX ↪→ ωT (since X→ Spec T is birational). Hence

[H d+1
n+R>0

(R)]0 = h
d+1([R0n+R>0R]0) = 0. ut

Claim 5.11.3. There exists an S-linear surjection φ : T � S such that the composite

[H d
n+R>0

(R)]0 → H d
n (T )

φ
−→ H d

n (S)

is the zero map (the first map is induced by the natural surjection R � T ).

Proof. Let R′ = S⊕J t⊕J 2t2⊕· · · be the subring of R (they only differ at the degree 0
spot). We note that since J is a finitely generated S-module, R′ is a Noetherian graded
domain over S. We have the following commutative diagram:

0 // R>0 // R // T // 0

0 // R′>0

∼=

OO

// R′

OO

// S

OO

// 0
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If we view everything as modules or algebras over R′, the above diagram induces a com-
mutative diagram in local cohomology:

[H d
n+R>0

(R)]0
f // H d

n (T )
// [H d+1

n+R>0
(R>0)]0 // [H d+1

n+R>0
(R)]0 = 0

[H d
n+R>0

(R′)]0

OO

0 // H d
n (S)

OO

� � // [H d+1
n+R>0

(R′>0)]0

∼=

OO

The rightmost 0 on the first line comes from Claim 5.11.2, and the first map on the sec-
ond line is 0 because S is complete and satisfies the vanishing conditions for maps of Tor,
hence in particular it satisfies the vanishing conditions for local cohomology by Proposi-
tion 3.4. By chasing the diagram it follows immediately that H d

n (S) ↪→ H d
n (T )/im(f ).

Since S is quasi-Gorenstein, H d
n (S)

∼= ES is an injective S-module. So there is a map
g : H d

n (T )/im(f )→ H d
n (S) such that the composite

H d
n (S)→ H d

n (T )→ H d
n (T )/im(f )

g
−→ H d

n (S)

is the identity. In particular, there is a splitting H d
n (T )

φ
−→ H d

n (S) of H d
n (S) ↪→ H d

n (T )

such that the composite [H d
n+R>0

(R)]0
f
−→ H d

n (T )
φ
−→ H d

n (S) is the zero map. However,
it follows from the commutative diagram

HomS(H
d
n (T ),H

d
n (S))

//

∼=

��

HomS(H
d
n (S),H

d
n (S))

∼=

��
HomS(T , S) // HomS(S, S)

that every splitting H d
n (T )

φ
−→ H d

n (S) comes from some surjection T
φ
−→ S. ut

Now we return to the proof of Theorem 5.11. We claim that the composite

[R0n+R>0R]0 → R0nT → H d
n (T )[−d]

φ
−→ H d

n (S)[−d]
∼= R0nS

is the zero map in the derived category: it induces zero on the d-th cohomology by Claim
5.11.3, but by Claim 5.11.2, [R0n+R>0R]0 lives in degree [0, 1, . . . , d]whileH d

n (S)[−d]

lives only in degree d , so the map is zero in the derived category. The last isomorphism
follows because S is Cohen–Macaulay.

Let φ be the surjection in Claim 5.11.3. There exists t ∈ T such that φ(t) = 1 ∈ S,
in particular the composite S

· t
−→ T

φ
−→S is the identity. From the above discussion and

(5.11.1), we have a natural diagram in the derived category of S-modules

[R0n+R>0R]0

0

&&

// R0nT

φ

��

// R0nRπ∗OX
+1 //

R0nS

· t

UU
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Taking Matlis dual and applying local duality, we get

Rπ∗ω•X // ω•T

· t∨

��

// [R0n+R>0R]
∨

0
+1 //

ω•S

φ∨

TT
0

99
(5.11.4)

From (5.11.4) it follows that φ∨ factors through a map ω•S → Rπ∗ω•X such that the
composite

ω•S → Rπ∗ω•X → ω•T
· t∨

−−→ ω•S

is the identity. Applying R HomS(−, ω
•

S), we obtain

S
· t
−→ T = π∗OX → Rπ∗OX → S

such that the composite is the identity. But this implies S → Rπ∗OX
· t
−→ Rπ∗OX → S

is the identity (the second map is induced by OX
· t
−→ OX by viewing t as a section

of X → Spec S). Hence S → Rπ∗OX splits in the derived category of S-modules.
Therefore S is a derived splinter, as desired. ut

At the moment we do not see how to drop the quasi-Gorenstein hypothesis on S in Theo-
rem 5.11; the subtle point here seems to be Claim 5.11.3. However, the above result and
its proof already have some interesting consequences.

Remark 5.12. Since regular local rings are certainly quasi-Gorenstein, Theorem 5.11
immediately implies that Hochster–Huneke’s vanishing conjecture for maps of Tor (or
equivalently, the strong direct summand conjecture [Ran00]) implies the derived direct
summand conjecture of Bhatt [Bha12].

Remark 5.13. The argument used in Theorem 5.11 gives a new proof that splinters and
derived splinters are the same in characteristic p > 0 for all local rings that are ho-
momorphic images of Gorenstein local rings. First of all it is well known that splinters
are Cohen–Macaulay in characteristic p > 0 (we do not need completeness [HL07],
[HH92]). Now the only place in the argument where we use the vanishing conditions for
maps of Tor and the quasi-Gorenstein hypothesis seriously is in the proof of Claim 5.11.3.
But this claim is clear in characteristic p > 0 and we give a short argument as follows:
by [HL07, Theorem 2.1] we know that there exists a module-finite extension B of R such
that the induced mapH d

n+R>0
(R)→ H d

n+R>0
(B) is zero. Since B⊗R T is a module-finite

extension of T and hence a module-finite extension of S, the map S → B ⊗R T splits as
a map of S-modules. Let

φ : T → B ⊗R T
g
−→ S
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be the composite map for some splitting g : B ⊗R T → S. We have the commutative
diagram

H d
n+R>0

(B) // H d
n (B ⊗R T )

g

%%
[H d

n+R>0
(R)]0

OO

// H d
n (T )

OO

φ // H d
n (S)

Since the left vertical map is the zero map by our choice ofB, chasing through the diagram

shows that the composite [H d
n+R>0

(R)]0 → H d
n (T )

φ
−→ H d

n (S) is the zero map. Hence
Claim 5.11.3 holds in characteristic p > 0 as long as S is a splinter (without any quasi-
Gorenstein or complete hypothesis).
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