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Abstract. This paper provides a rigorous study of the localization transition for a Gaussian free
field on Zd interacting with a quenched disordered substrate that acts on the interface when its
height is close to zero. The substrate has the tendency to localize or repel the interface at different
sites and one can show that a localization-delocalization transition takes place when varying the
average pinning potential h: the free energy density is zero in the delocalized regime, that is, for h
smaller than a threshold hc, and it is positive for h > hc. For d ≥ 3 we compute hc and we
show that the transition happens at the same value as for the annealed model. However, we can
show that the critical behavior of the quenched model differs from the one of the annealed one.
While the phase transition of the annealed model is of first order, we show that the quenched free
energy is bounded above by ((h−hc)+)2 times a positive constant, and that, for Gaussian disorder,
the quadratic behavior is sharp. Therefore this provides an example in which a relevant disorder
critical exponent can be made explicit: in theoretical physics disorder is said to be relevant when
the disorder changes the critical behavior of a system, and while there are cases in which it is known
that disorder is relevant, the exact critical behavior is typically unknown. For d = 2 we are not able
to decide whether the quenched and annealed critical points coincide, but we provide an upper
bound for the difference between them.

Keywords. Lattice Gaussian free field, disordered pinning model, localization transition, critical
behavior, disorder relevance, co-membrane model

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2. Model and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3. Fractional moment: upper bound on the free energy . . . . . . . . . . . . . . . . . . . . 215
4. Elevated boundary conditions, stationary boundary conditions and a finite volume criterion 216
5. A lower bound on the free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6. The coarse graining procedure for the critical behavior (lower bound) . . . . . . . . . . 226
7. The two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Appendix A. Replica coupling: proof of Lemma 6.6 . . . . . . . . . . . . . . . . . . . . . . 250
Appendix B. Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
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1. Introduction

A central question in statistical mechanics is understanding the effect of disorder on phase
transitions and critical phenomena. This issue has been raised soon after Lars Onsager’s
celebrated solution of the two-dimensional Ising model with zero external field; see [28,
Section 5.3] for a historical overview and references. The model solved by Onsager has
constant couplings—Onsager’s solution actually allows couplings that are different in the
horizontal and vertical directions, but not more than that—and the question of whether
this result withstands, and to what extent, the introduction of impurities emerged as a
compelling stability issue. Modeling systems with impurities naturally led to consider-
ing systems in which the interaction terms, for example the potentials between nearest
neighbor spins, are chosen by sampling a random field—which we call disorder—with
good ergodic properties, often even a field of independent identically distributed random
variables. One then tries to understand the properties of the arising statistical mechanics
system which is no longer translation invariant, even if it retains some translation invari-
ance in a statistical sense. Some basic results like existence of the thermodynamic limit
and the fact that observables are self-averaging (i.e., independent of the sample of the
disorder) can be established [12]. When the variance of the disorder tends to zero, the
system approaches the non-disordered, or pure, case, but transferring a result proven for
the pure system to the disordered case, even if the disorder is very weak, is far from being
straightforward.

As a matter of fact, the first arguments set forth pointed toward predicting that even
a very low amount of disorder would wash out the phase transition completely [28, Sec-
tion 5.3]. Only later on did a substantially richer picture emerge. Since the Ising model
has to a certain extent driven the progress, it is worth recalling that a disorder in the form
of an external random field makes the Ising transition disappear in two dimensions [1],
while the transition persists in d ≥ 3 [13]. On the other hand, it is not difficult to re-
alize that introducing a disorder in the coupling potentials, for example by introducing
a dilution, may in general modify the precise value of the critical point, but preserves
the existence of a transition: the nature of the transition (for example, the critical expo-
nents) is however still an open question (at least in low dimensions) [28, Section 5.3].
Giving more details on this beautiful issue is beyond the scope of this article, but what
interests us most is that A. B. Harris [34] introduced an intriguing way of looking at the
problem and proposed a surprisingly easy criterion to predict whether a small amount of
disorder modifies the critical behavior with respect to that of the pure system (assuming
that the transition persists). Essentially, the Harris criterion says that if the transition for
the pure system is sufficiently smooth, a small or a moderate amount of disorder does
not modify the transition: this is the case of irrelevant disorder. When the Harris crite-
rion fails, one expects to be in a relevant disorder case, except possibly at the boundary
between these two situations where the analysis is trickier (marginal disorder). These
notions of relevant, irrelevant and marginal disorder are connected to the framework in
which the theory has been developed, that is, renormalization [12], and the idea behind
Harris’ approach is that disorder may be downsized or enhanced by the renormalization
transformation, leading, after repeated application of the transformation, in the first case
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to the pure system fixed point and, in the second case, to a different one or to no fixed
point at all [23, 28, 34].

One of the substantial obstacles to the mathematical exploration of the Harris crite-
rion is that a good understanding of the critical properties of pure systems is limited to
very special cases. But in the last twenty years this question has been addressed, first by
theoretical physicists (see e.g. [22] and references therein) and then by mathematicians,
for a simple model of one-dimensional interface interacting with a substrate: the random
walk (RW) disordered pinning model (see [27, 28]). For this model the interface is given
by the graph of a random walk which takes random energy rewards when it touches a
defect line. The random walk can be very general and the full class of RW pinning mod-
els is better apprehended if viewed in terms of renewal pinning: we refer the interested
reader to the introductions of [28, 27]. The pure system has the remarkable quality of
being what physicists call solvable, meaning that there exists an explicit expression for
the free energy [26]. All the results which have been obtained confirm the validity of the
Harris criterion and its interpretation for the RW pinning model [2, 3, 7, 16, 17, 21, 28,
31, 32, 36, 40].

A natural generalization of the RW pinning model is obtained by replacing the graph
of the random walk by a random surface, and one of the first natural choices is the Lattice
Gaussian Free Field (LGFF)—recently also called Discrete Gaussian Free Field—on a
subset, for example a (hyper)cube, of Zd , d ≥ 2. While the pure model is not exactly
solvable in that case, it has been studied and the nature of the phase transition is well
known [11, 42]. However, until now very few attempts have been made to understand the
quenched behavior of the system (see [19, 20]).

Our model has two parameters: the noise intensity β ≥ 0 and the average pinning
strength h ∈ R. In this paper, we completely describe the characteristics of the phase
transition in the case d ≥ 3 and the results can be summed up as follows:
(1) We identify the disordered critical point hc = hc(β). More precisely, with the choice

of the parameters we make, which is the same as the one adopted for RW pinning in
the mathematical literature, the critical point of the disordered (i.e. quenched) model
and the one of the annealed model coincide. However, the critical behaviors do not,
and this contrasts sharply with what happens for RW pinning where, except for the
marginal disorder case for which the question is open, coincidence of critical points
happens if and only if the critical behaviors coincide. We also stress that, with our
choice, the annealed model coincides with the one in which we simply switch off the
disorder by setting its intensity β to zero, and this is what we call the pure model.

(2) The free energy density, or just free energy for conciseness, is zero for h ≤ hc(β)

and positive for h > hc(β). We prove in full generality (in the choice of the disorder)
that the free energy is O((h − hc(β))2) as h ↘ hc(β), which implies that the first
derivative of the free energy is continuous at hc(β); this is what is usually called a
second order transition. The transition for the pure system instead is of first order, i.e.
the first derivative of the free energy is discontinuous (it has a jump) at hc(β), hence,
in Harris’ sense, disorder is relevant.

(3) When disorder is Gaussian we show that the behavior of the free energy at critical-
ity is precisely quadratic, and the critical exponent associated to the free energy is



202 Giambattista Giacomin, Hubert Lacoin

therefore precisely identified. Harris’ theory yields no prediction of how the critical
properties are modified when disorder is relevant. As a matter of fact, capturing the
critical exponent of transitions in disorder relevant cases appears to be a major chal-
lenge, and the authors do not know of any rigorous results in this direction when the
disorder is weakly correlated (for strongly correlated environment see [5, 6]). Even
in the RW pinning models several contrasting conjectures have been set forth, but a
certain consensus appears to emerge in favor of an infinite order transition, i.e. C∞

regularity of the free energy at the critical point (see the review of the literature in
[28, Section 5.3] to which one should add the recent contribution [23]).

We also present results for d = 2, but we are unable to show that disordered and pure
critical points coincide and, as a consequence, we are unable to establish results on the
critical behavior. Finally, we also take a quick look at the higher-dimensional analog of
the problem of a copolymer near an interface between selective solvents.

Note added in proof. Our two-dimensional result has been substantially improved in the
recent preprint [37], where it is proved that, for d = 2, the critical point for the disordered
system coincides with the pure one, with yet a different critical behavior: near the critical
point the free energy is shown to grow slower than any power of h−hc(β), which indicates
a phase transition of infinite order.

2. Model and results

2.1. The disordered model

Given a finite subset 3 of Zd , we let ∂3 denote the internal boundary of 3, 3̊ the set
of interior points of 3, and ∂−3 the set of interior points that are in contact with the
boundary:

∂3 := {x ∈ 3 : ∃y /∈ 3, x ∼ y}, 3̊ := 3 \ ∂3,

∂−3 := {x ∈ 3̊ : ∃y ∈ ∂3, x ∼ y}.
(2.1)

In general some of these sets could be empty, but throughout this work, 3 is going to be
a large (hyper)cube.

Given a real valued field (φ̂x)x∈Zd , one defines Pφ̂3 to be the law of the lattice Gaussian
free field on 3 (denoted by φ = (φx)x∈3) with boundary conditions φ̂ on ∂3. Formally
we set

φx := φ̂x for every x ∈ ∂3N ,

and consider Pφ̂3 as a measure on R3̊ whose density is given by

Pφ̂3(dφ) =
1

Z φ̂
3

exp
(
−

1
2

∑
(x,y)∈32

\(∂3)2
x∼y

(φx − φy)
2

2

)∏
x∈3̊

dφx, (2.2)
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where
∏
x∈3̊ dφx denotes the Lebesgue measure on R3̊ and

Z φ̂
3 :=

∫
R3̊

exp
(
−

1
2

∑
(x,y)∈32

\(∂3)2
x∼y

(φx − φy)
2

2

)∏
x∈3̊

dφx . (2.3)

For the particular case φ̂ ≡ u we write Pu3, and P3 when u = 0. One of the factors 1/2
in the exponential is present to compensate for the fact that each edge is counted twice.

In what follows we consider mostly the case 3 = 3N := {0, . . . , N}d for some
N ∈ N. Note that in this case 3̊N = {1, . . . , N − 1}d . We also introduce the notation
3̃N := {1, . . . , N}d . We simply write ZN and PN for Z3N and P3N .

Given a family ω = {ωx}x∈Zd of IID square integrable centered random variables (of
law P), we set

λ(β) := logE[eβωx ], (2.4)

and assume that there exists β ∈ (0,∞] such that

max(λ(2β), λ(−β)) <∞ for every β ∈ (0, β). (2.5)

Many of the arguments rely only on λ(β) < ∞: λ(2β) < ∞ is related to two replica
arguments (lower bounds), and λ(−β) < ∞ is exploited when fractional moments esti-
mates are performed (upper bounds); and a look at the proof of Proposition 3.1 suffices to
see that this second requirement can be relaxed. Moreover, a part of the results are given
for Gaussian ω and in that case β = ∞. Note that (2.5) implies smoothness of λ(·) for
β ∈ (−β, 2β) and around zero

λ(β) = β2/2+O(β3).

For x ∈ 3N set δx := 1[−1,1](φ(x)). For β > 0 and h ∈ R, we define a modified measure

Pω,β,φ̂N,h via

dPω,β,φ̂N,h

dPφ̂N
=

1

Z
β,ω,φ̂
N,h

exp
( ∑
x∈3̃N

(βωx − λ(β)+ h)δx

)
, (2.6)

where

Z
β,ω,φ̂
N,h := Eφ̂N

[
exp

( ∑
x∈3̃N

(βωx − λ(β)+ h)δx

)]
. (2.7)

Note that in the definition of Pω,β,φ̂N,h , the sum
∑
x∈3̃N

can be replaced by either
∑
x∈3N

or
∑
x∈3̊N

as these changes affect only the partition function. We have chosen to sum
over 3̃N for superadditivity reasons (see Proposition 4.2). The superscript φ̂ is dropped
when zero boundary conditions are considered, and replaced by u when φ̂ ≡ u.
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2.2. The pure model

The natural homogeneous model associated to the disordered model Pω,β,φ̂N,h can be ob-
tained by switching off the disorder: the pure model is therefore precisely Pω,0,φ̂N,h , but
the notation is heavy and a bit misleading because the measure does not depend on ω.
Moreover our choice of the parametrization is such that the pure model coincides with
the annealed model, that is, with the model with partition function E[Zβ,ω,φ̂N,h ]. For the
pure model we use the notation PN,h and we limit ourselves to the case φ̂ ≡ 0:

dPN,h
dPN

=
1

ZN,h
exp

(
h
∑
x∈3̊N

δx

)
.

It is very easy to see—the proof is detailed just below—that this model has a transition at
h = 0, in the sense that the free energy density

F(h) = lim
N→∞

1
Nd

logZN,h (2.8)

satisfies

F(h)

{
= 0 for h ≤ 0,
> 0 for h > 0,

(2.9)

and therefore it is not analytic at h = 0. Moreover, by standard convexity arguments
F(h) is differentiable everywhere except possibly at countably many values of h. When it
exists, the derivative of F(h) is equal to the asymptotic contact fraction defined by

lim
N→∞

1
Nd

EN,h
[ ∑
x∈3̃N

δx

]
. (2.10)

It is obvious from (2.9) that the asymptotic contact fraction is 0 for h < 0. Moreover,
since F(·) is convex, the asymptotic contact fraction is non-decreasing, and again because
of (2.9), it is positive for every h > 0.

The existence of the limit (2.8) is standard: the argument can be recovered from the
proof in Section 4.2 (it is an easy particular case). The limit is non-negative because

ZN,h ≥ PN (ϕx > 1 for every x ∈ 3̊N ), (2.11)

and it is not difficult to show that the logarithm of the latter expression is o(Nd): this is a
(rough) entropic repulsion type estimate and it is an easy consequence of the continuum
symmetry of the interaction that is broken only at the boundary [39]. On the other hand,
ZN,h ≤ 1 for h ≤ 0, and hence F(h) = 0 for h ≤ 0.

The fact that F(h) > 0 for every h > 0 can be established in a number of elementary
ways (see Section 2.3 for d ≥ 3 and Remark 7.10 for d = 2), but here we mention the
more refined estimate [19, Fact 2.4]: for every d = 2, 3, . . . there exists cd > 0 such that

F(h)
h↘0
∼

{
cdh for d ≥ 3,
c2h/

√
|logh| for d = 2.

(2.12)
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Therefore the transition is of first order for d ≥ 3 and the contact fraction has a jump
discontinuity. Note that the transition is of second order for d = 2: the contact fraction is
continuous at the transition, even if the continuity modulus vanishes (hence matching the
behavior in the delocalized phase) only logarithmically.

2.3. Some more details about the phase transition for d ≥ 3

The result in d ≥ 3 is going to be particularly relevant for us and we want to stress that a
rougher version of (2.12) is trivially established, and even the sharp statement is not much
harder. Note that

1
Nd

∂h logZN,h|h=0 =
1
Nd

EN
[∑
x

δx

]
.

Now notice that PN is a centered Gaussian measure and the variance of φx under PN
is uniformly bounded by the variance of the infinite volume free field which we denote
by σ 2

d (see Section 2.9). Hence

1
Nd

∂h logZN,h|h=0 ≥ P(σdN ∈ [−1, 1]) =: Cd ,

where N is a standard normal variable.
On the other hand, the same derivative is bounded above by 1, and therefore (using

convexity and the fact that ZN,0 = 1)

Cdh ≤
1
Nd

logZN,h ≤ h for all N ,

and therefore

Cdh ≤ F(h) ≤ h for every h ≥ 0.

This establishes a rougher version of (2.12) for d ≥ 3 (which is however a statement only
for h small).

In fact, we have cd = Cd . For this observe that if we go back to the partition function
in (2.7), but setting β = 0, that is, Zφ̂N,h := Z

0,ω,φ̂
N,h , we readily check that

1
(2N)d

log sup
φ̂

Z
φ̂

2N,h ≤
1
Nd

log sup
φ̂

Z
φ̂
N,h for every N ,

from which one infers that F(h) ≤ N−d log supφ̂ Z
φ̂
N,h for every N . Now we remark that

for every h > 0,

∂h logZφ̂N,h = Eφ̂N,h
[ ∑
x∈3̃N

δx

]
≤ eN

dhEφ̂N,0
[ ∑
x∈3̃N

δx

]
≤ eN

dhEN
[ ∑
x∈3̃N

δx

]
.
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In the last step we have used the fact that supm P(σN + m ∈ [−1, 1]) = P(σN ∈
[−1, 1]). Integrating the above inequality on the interval [0, h] we obtain

F(h)

h
≤

1
Nd

eN
dhEN

[ ∑
x∈3̃N

δx

]
,

and hence

lim sup
h↘0

F(h)

h
≤

1
Nd

EN
[ ∑
x∈3̃N

δx

]
for every N .

Now using the fact that the variance of φx is close to σ 2
d when the distance of x to the

boundary is large (see Section 2.9), it is standard to check that

lim
N→∞

1
Nd

EN
[ ∑
x∈3̃N

δx

]
= Cd ,

which is sufficient to conclude that cd = Cd .
The proof of (2.12) for d = 2 is substantially more involved and it is less related to

our results because in any case for d = 2 we are unable to address the issue of the order
of the transition when disorder is present. However, the reader can check that the above
method gives, for d = 2, an upper bound on F(h) of the right order of magnitude (that
is, h(logh)−1/2). See also Remark 7.10 for a proof of a lower bound of the same order
(which also implies that the transition is at h = 0 for d = 2 too).

Before moving to the disordered case it is worth recalling that the phase transition
we have just described is a localization transition, and the localized LGFF is profoundly
different from the LGFF since the continuum invariance of the latter is broken by the
localizing potential. In particular, correlations decay exponentially with the distance for
the localized measure [9, 35, 11, 42], while the decay of correlations for the LGFF is
power law (see Section 2.9). Moreover a directly related issue for an akin model is the
one of wetting [14, 10, 42]: in this case, added to the pinning potential, the LGFF is
constrained not to enter the lower half-plane. This constraint generates a repulsion, but
the transition is still at h = 0.

2.4. Free energy and transition for the disordered model

The existence of quenched free energy for the disordered model has been proved in [19,
Theorem 2.1]. We recall the result here:

Proposition 2.1. The free energy

F(β, h) := lim
N→∞

1
Nd

E
[
logZβ,ωN,h

] P(dω)-a.s.
= lim

N→∞

1
Nd

logZβ,ωN,h (2.13)

exists (and is self-averaging).
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Note that F(0, h) = F(h). Moreover it is easy to observe that F(β, h) is non-decreasing
and convex in h and we have (cf. (2.10))

∂hF(β, h) = lim
N→∞

1
Nd

Eβ,ωN,h
[ ∑
x∈3̃N

δx

]
,

as soon as the left-hand side is defined.
Furthermore, from Jensen’s inequality and convexity (we refer to the proof of [27,

Proposition 5.1] for more details) we have

F(0, h− λ(β)) ≤ F(β, h) ≤ F(0, h), (2.14)

which implies that F(β, h) ≥ 0 for every h ∈ R. This elementary but important lower
bound can be established in a direct fashion precisely in the same way as for the non-
disordered case (cf. (2.11)). But (2.14) also guarantees that F(β, h) = 0 for h ≤ 0 and
that F(β, h) > 0 if h > λ(β). Hence we have established the existence of a localization
transition, and the critical value

hc(β) := inf{h : F(β, h) > 0} (2.15)

satisfies
0 ≤ hc(β) ≤ λ(β). (2.16)

2.5. The main results

The aim of this paper is to investigate if the inequalities (2.14) and (2.16) are sharp, and
to compare the behavior of the model with respect to the pure, i.e. annealed, one.

The results we obtain are the following.

Theorem 2.2. When d ≥ 3, we have:

(i) For all β ∈ (0, β), with β defined in (2.5), there exists a constant C (depending on β,
d and the law of ω) such that

h66d
≤ F(β, h) ≤ Ch2 for h ∈ (0, 1). (2.17)

(ii) When ω is Gaussian, for every β > 0 there exists a constant c(β, d) such that

c(β, d)h2
≤ F(β, h) ≤ h2/β2 for h ∈ (0, 1). (2.18)

Moreover one can find a constant C(d) such that c(β, d) ≥ C(d)/β2 for every β ∈
(0, 1].

A trivial consequence of the theorem is that hc(β) = 0 for all β > 0.
For d = 2 we are yet unable to decide whether there is a critical-point shift. However,

in the Gaussian case, we are able to get a much better upper bound on hc(β) than the
annealed one in (2.16).

Theorem 2.3. When d = 2 and ω is Gaussian, for every ε > 0 there exists cε > 0 such
that

0 ≤ hc(β) ≤ cεβ3−ε for β ∈ (0, 1). (2.19)



208 Giambattista Giacomin, Hubert Lacoin

2.6. Behavior of the field under Pβ,ωN,h
The main focus of this paper is the free energy, but let us briefly discuss the properties
of the trajectories in the case d ≥ 3. The basic remark is that the behavior of the free
energy directly implies that the (asymptotic) contact fraction is zero for h < hc(β) and
it is positive and increasing for h > hc(β): strictly speaking, the existence of the contact
fraction is guaranteed by convexity only outside a countable subset of {h : h > hc(β)},
but one can extend the definition by taking limits (for example) from the right. For what
concerns h = hc(β), the smoothing of the phase transition (due to the disorder) directly
implies that the contact fraction is zero at the critical point (h = 0), and this is in strong
contrast with what happens in the pure case.

These are all issues that are closely related to convexity and free energy estimates,
but a number of sharper questions are very natural, notably the precise nature of the de-
localized phase, that is, when F(β, h) = 0: is it true that the total number of contacts
is O(Nd−1) and they are all close to the boundary? The analogous question even in the
one-dimensional set-up is not trivial, even if by now rather sharp results are available [4].
A precise path description in the localized phase raises a number of issues too, in partic-
ular those treated, not always with complete success, in the one-dimensional set-up (see
[28, Ch. 8] and references therein), but the situation in the higher-dimensional case may
be richer and harder to tackle.

Nevertheless we want to observe that the results that we prove suggest the following
typical behavior of φ for h > 0 small, so in the localized phase but close to criticality:
φ typically stands at a large but finite (depending on h) distance from the interaction zone
(the proof seems to indicate that |φx | should be of order u(h) ∼

√
2σ 2
d log(1/h)) since

otherwise it should be difficult to avoid having a larger density of contact. The contacts
with the interaction zone are typically produced by atypical peaks off the typical height
(since we are talking of peaks of finite height, there is a positive but small density of
them).

Here is a statement that goes in the direction of this conjecture, without getting close
to the constant we conjecture (in fact σ 2

d > 1/(2d), as one can directly extract for example
from the random walk representation that we recall in Section 2.9).

Proposition 2.4. For every ε > 0 there exists h0 = h0(ε) such that

lim
N→∞

E
[
Pβ,ωN,h

( ∑
x∈3̃N

1
{|φx |≤
√
(4d)−1 log(1/h)} ≥ εN

d
)]
= 0 for all h ∈ (0, h0). (2.20)

One is then tempted to conjecture that the interface chooses one side where to lie en-
tirely, close to criticality, but we make no claim about this. Proposition 2.4 is proven in
Appendix B.

2.7. Co-membranes and selective solvents

It is worth stating the generalization of the results to a model in which the localiza-
tion mechanism is somewhat different, but for which the techniques can be adapted in
a straightforward way. It is the analog of the model of a copolymer in the proximity of
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the interface between selective solvents (see [8, 15] and references therein). The model is
defined by

dP̌ω,%N,h
dPN

∝ exp
(
%
∑
x∈3̃N

(ωx + h) sign(φx)
)
, (2.21)

where without loss of generality we can assume that both h and % are non-negative and
sign(0) = +1. There is a rather natural way of understanding the model: imagine that the
free field models a membrane made up by portions, say the unit box around x, that have an
affinity for solvent A (if ωx+h > 0) or for solvent B (if ωx+h < 0). Moreover, solvent A
fills in the upper half-plane, and in the lower one there is solvent B. When h is positive
there is an overall preference, since ωx is centered, for solvent A, and the membrane in the
average sense prefers to fluctuate in the upper half-plane. However, there are membrane
trajectories that, staying close to the A-B interface, can collect more energetic rewards,
and the localization transition is between a regime in which the membrane trajectories
stay close to the A-B interface and a regime in which the membranes prefer to stay in
the A solvent (h ≥ 0, so if there is a globally preferred solvent, it has to be A).

A direct link with the pinning measure (2.6) can be made by observing that we can
write

dP̌ω,%N,h
dPN

=
1

Ž
ω,%

N,h

exp
(
−2%

∑
x∈3̃N

(ωx + h)1x

)
, (2.22)

where1x := (1− sign(φx))/2, that is,1x is the indicator function that φx is in the lower
half-plane. It is probably worth stressing that from (2.21) to (2.22) there is a non-trivial
(but rather simple) change in energy (and free energy), but this change does not affect
the measure, hence the model.1 And in the form (2.22) the analogy with the pinning
case is evident. In particular, the strict analog of Proposition 2.1 holds—the free energy
in this case is denoted by F̌(%, h)—and, precisely as for the pinning case, one sees that
F̌(%, h) ≥ 0. We then set ȟc(%) := inf{h > 0 : F̌(%, h) = 0}.

Theorem 2.5. For d ≥ 3 and under the most general assumptions on the IID field ω (i.e.
bounded exponential moments, centered and unit variance) we have

ȟc(%) =
1

2%
λ(−2%) for every % ∈ (0, β]. (2.23)

Moreover (2.17), with F(β, h) replaced by F̌(%, hc(%)− h), holds true, and if ω is Gaus-
sian, then also (2.18) holds once the same replacement is made.

For d = 2 and assuming ω to be Gaussian we have lim%↘0 ȟc(%)/% = 1.

We have preferred to put the emphasis on the critical curve and on (2.23) because that is
the same formula that appears for the copolymer, but as a strict upper bound, except for
the very particular case of inter-arrival laws of the formL(n)/n, withL(·) slowly varying,

1 It is however straightforward to see that the annealed models associated to (2.21) and (2.22) are
substantially different [15, 27].
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in which the upper bound (2.23) is achieved [8, 15, 27]. Moreover, a substantial emphasis
for the copolymer has been put on the slope at the origin of hc(%): in this case the slope
is simply one.

Theorem 2.5 also provides a smoothing result for d ≥ 3, and, which is most inter-
esting, when the disorder is Gaussian we have again a model in which the disorder is
relevant—in fact also for the co-membrane the pure model has a first order transition—
and we can compute the critical exponent of the free energy.

We will not give a detailed proof of Theorem 2.5, because the arguments are really
close to the ones for the pinning model, and we limit ourselves to Remarks 6.2 and 7.9.

2.8. Discussion of the results, sketch of proofs and structure of the paper

On the upper bound (and smoothing). The upper bound in (2.17) and (2.18) is quite easy
to prove and is valid in any dimension. Its proof can be read independently of the rest of
the paper; it relies on the disorder tilt and fractional moment bound introduced in [30, 21].
However, here the implementation of the idea is remarkably straightforward: no coarse
graining procedure is needed (see [28, Section 6] for a review of various coarse graining
procedures). The reason why things here are simpler is that the method is not used to
show that the free energy density is zero, as in the papers we have just mentioned, but
simply to have a positive upper bound on it.

Note that, on its own, the inequality F(β, h) ≤ Ch2 does not imply a rounding or
smoothing of the free energy function. It does only if one can prove that hc(β) = 0,
and this is precisely what we prove for the disordered LGFF pinning. Nevertheless, such
a bound recalls the smoothing inequality in [32], proven for RW pinning models. As a
matter of fact, the upper bound in (2.17), that is, Proposition 3.1, applies to RW pin-
ning models too, but in this case hc(β) = 0 only if disorder is irrelevant, and even if
the smoothing inequality in [32] and Proposition 3.1 are essentially the same result in
this case, both end up having little importance because a direct application of Jensen’s
inequality (annealed bound) and explicit computations lead to a better result (the expo-
nent is larger than 2! [27]). Of course the smoothing inequality for RW pinning holds
with respect to the correct critical point also when disorder is relevant and hc(β) 6= 0.
Generalizing the rare stretch approach of [32] to LGFF in order to establish a quadratic
bound on the critical behavior does not appear to be straightforward, and in any case such
a result would be weaker than what we prove here.

On the lower bound (d ≥ 3). But how can we match the upper bound? That is, how can
we show that hc(β) = 0 and find a lower bound on the free energy of quadratic type? We
try to sketch here an answer to this question in a few steps:

(1) We show in Section 4 that one can raise the boundary conditions from 0 to an ar-
bitrary u (which, conventionally, we choose positive). The reason why this is true is
the continuum symmetry enjoyed by the LGFF: the term in the exponent in (2.2) is
formally invariant when φx is mapped to φx+u for all x, if one chooses to neglect the
effect of the boundary, which is irrelevant for free energy computations (the reason is
that the volume of the boundary is negligible with respect to that of the whole box).
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We then choose h > 0 close to zero and a box of side-length N (N will be cho-
sen as a function of h and it will be somewhat large, see below). We then choose
u = u(h) such that the probability that φx ∼ N (u, σ 2

d ) is in [−1, 1] (the contact
probability) is ah, where a is a positive constant to be chosen. We have in particular
limh↘0 u(h) = ∞.

(2) We now make a bold proposal: we ask the reader to think of the variables φx as
independent. Of course they are not, but it is well known (see [18] for a quantitative
result) that extrema and large excursions of the LGFF in d ≥ 3 are close to what
we would get forgetting the correlations, and we are now rather far from the region
where the pinning acts (u = u(h) is large!). We stress that in the previous steps
we have invoked the continuum symmetry of the model, which leads to power law
correlations, so this step is a delicate one. If we accept this bold replacement, we are
now dealing with a model which is exactly solvable:

F̃N (β, h) :=
1
3N

E log E
[
exp

( ∑
x∈3N

(βωx − λ(β)+ h)̃δx

)]
,

where δ̃x = 1[−1,1](φ̃x) and the φ̃x’s are IID N (u, σ 2
d ) random variables. Recall that

we have chosen u, hence E[̃δx] = P(̃δx = 1) = ah, hence it is straightforward to see
that

F̃N (β, h) = E log E
[
exp

(
(βω − λ(β)+ h)̃δx

)]
= E log(1+ ahξ),

where x is arbitrary (the variables are IID) and ξ := exp(βω− λ(β)+ h)− 1 > −1.
If we assume that E[exp(3βω)] < ∞ (with some more effort one can generalize
the argument to β < β), for h ↘ 0 we have E[ξ ] = eh − 1 = h + O(h2) and
E[ξ2
] = cβ + O(h) with cβ := eλ(2β)−2λ(β)

− 1 > 0, and E[ξ3
+] is bounded. By

putting all this together with the elementary bound

x31[−1/2,0](x)
x≥−1/2
≤ log(1+ x)− x + 1

2x
2 x>−1
≤

1
3x

31[0,∞)(x),

one sees that
F̃N (β, h) = ah

2
− cβa

2h2/2+O(h3), (2.24)

and setting a = 1/cβ yields the quadratic behavior in h we were looking for. Note
that this gives a justification a posteriori for choosing E[̃δx] proportional to h: any
other choice would give a smaller, if not negative, lower bound on the free energy.

(3) It appears that N can be chosen arbitrarily up to now (and this is quite troublesome!).
However a closer look suggests that N has to be chosen large—at least like a power
of 1/h—because boundary effects have to be taken care of. In fact, in order to deal
with a superadditive model we do not choose boundary conditions equal to u, but
boundary conditions that are a sample from an infinite volume free field of mean u.
Therefore the value of the field at the boundary (hence also close to it) can occasion-
ally be also rather different from u, and that the contact probability is ah—which we
have used above—can be rather far from the truth. We need therefore to be able to
neglect a fairly large portion of sites close to the boundary in order to be sufficiently
far so that an averaging effect—the mean on a LGFF is the solution of a Dirichlet
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problem for the discrete Laplacian—takes place. It is not too difficult to get con-
vinced that one needs to take N to grow like a power of 1/h: even if we imagine that
we are able to make sufficiently sharp estimates for sites that are at a finite (large)
distance from the boundary, hence gaining in the bulk a contribution in any case not
larger (annealed bound!) than hPu(φ0 ∈ [−1, 1])Nd

= ah2Nd (we are assuming
that Pu(φx ∈ [−1, 1]) essentially does not feel the boundary), when one is on the
boundary it is not evident how to argue that one does not get a negative contribution.
Actually in (5.4) (but this is taken up in a more informal fashion in Section 5.3, no-
tably in (5.18)), it is argued that the boundary gives a contribution smaller, i.e. more
negative, than a β-dependent negative constant times Pu(φ0 ∈ [−1, 1])Nd−1, which
is hence of the order of hNd−1 and we have therefore to choose N � h−1 to have a
chance that the bulk prevails over the boundary term.

(4) At this point we get back with a last consideration on the bold replacement at step (2).
The structure of the result we got using this replacement, that is, (2.24), is quite clear:
we have an energetic gain (the first term on the right-hand side) that is what we
would get by Jensen’s inequality (annealed bound) even without the independence
assumption. We then have a quadratic loss, that is, the second term on the right-hand
side. So one needs to implement an efficient second moment method, and to do this
we resort to Gaussian interpolation techniques [33, 40], which limits our result to
Gaussian disorder. Still, even exploiting the interpolation formula, the result is not
straightforward because the quadratic coupling term grows too fast. So what we do is
to apply the interpolation after having restricted the model to trajectories of the LGFF
that have only a bounded number of contacts on suitably chosen intermediate scale
boxes (for example, if the box has volume smaller than 1/(ah) then on average there
will be less than one contact). We do not explain this procedure in detail here, but
we just remark that the event that the number of contacts is suitably limited becomes
improbable if the region in which this requirement is made is too large, but boxes of
edge-length that is a power of 1/h turn out to be fine.

(5) All of this targets the quadratic behavior. We can be much rougher if we just target h
to some (large) positive power (see the lower bound in (2.17)). In this case, once N is
chosen to grow like a power of 1/h, we can choose u(h) growing so that the contact
probability is h to some power larger than 1, and we choose the power so large that
the probability of having a contact in the whole box vanishes with h. Of course, this
way we will not get close to the quadratic behavior, but the boundary control, since
the field at the boundary is very high, is easier and the second moment procedure
is much less delicate because there are so little contacts in the underlying measure.
The whole argument then goes through using less sophisticated techniques, which are
however helpful in understanding the argument leading to the quadratic lower bound.

Structure of the paper. The rest of the paper is organized as follows:

• We conclude Section 2 by mentioning classical results for the lattice free field which
we will us throughout the paper.
• In Section 3, we use a very simple fractional moment method to show that F(β, h) ≤
Ch2 (in any dimension).



Disorder relevance for LGFF pinning model 213

• In Section 4 we show that the free energy is not sensitive to mild modifications of the
boundary conditions, and use this information to get a lower bound on F(β, h) which is
the free energy of a system of finite size (see (4.8); this is what we call a finite volume
criterion). This criterion is used in all the next sections.
• Sections 5 and 6 are dedicated to the lower bound on the free energy for d ≥ 3: In

Section 5, we establish the non-optimal lower bound in the non-Gaussian case (2.17).
In Section 6, we establish the sharp bound in the Gaussian case, which is the most tech-
nical result of the paper. We advise the reader to go through Section 5 before reading
Section 6.
• Finally, Section 7 is dedicated to the case d = 2 and the proof of Theorem 2.3; this last

section adapts and uses tools of Section 4.

2.9. A few fun facts about the free field

Let (Xt )t≥0 denote the continuous time simple random walk on Zd (let P x denote its
law starting from x) whose transition rates are 1 along Zd -edges (see [38] for a complete
reference on the subject). We let 1 denote the generator of X,

1f (x) :=
∑
y∼x

(f (y)− f (x)). (2.25)

Let us stress that the simple random walk in [38] is generated by 1/(2d)—the walk
jumps at rate 1 and chooses one of the 2d neighborhoods at random—but our choice (2.2)
requires speeding up the walk by a factor 2d so that the covariance of the φ field is the
random walk Green function (see (2.26) and (2.27)). For a set B ⊂ Z let τB be the first
hitting time of the set B by X. Note that the Gaussian free field is a Gaussian process. Its
covariance under measure Eφ̂3 does not depend on the boundary conditions and is given
by

G3(x, y) := E
x

[∫ τ∂3

0
1{Xt=y} dt

]
. (2.26)

Note that for d ≥ 3,G3(x, y) is uniformly bounded (in3). This is the reason why in this
case there exists a (unique) centered infinite volume version of the field whose covariance
function is given by

G(x, y) := Ex
[∫
∞

0
1{Xt=y} dt

]
. (2.27)

We have already introduced σ 2
d for the variance of the one-dimensional marginals of

the infinite volume field, and therefore σ 2
d coincides with G(x, x), independent of x by

translation invariance: more generally,G(x, y) = G(0, y−x). We use the standard bound

G(0, x) ≤
cd

(1+ |x|d−2)
, (2.28)

where cd is a constant that can be made explicit if one desires and |·| denotes the Euclidean
norm. We let P resp. Pu be the law of the field with covariance given by (2.27) with mean 0
resp. u. We use the notation P̂u when the field is denoted by φ̂ instead of φ.
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In d = 2 the infinite volume field does not exist and we will make use of the following
estimate [38, Prop. 6.3.2]:

G{x∈Z2: |x|≤N}(0, 0) =
1

2π
logN +O(1). (2.29)

One can easily extract a number of results from (2.29) by means of comparison arguments
(use G3(x, y) ≥ G3′(x, y) if 3′ ⊂ 3), notably for every ε > 0 we can find dε > 0 such
that if N > 2dε and if x ∈ 3N is such that dist(x, ∂3N ) > dε then

G3N (x, x) ≥ (1− ε)
1

2π
log dist(x, ∂3N ), (2.30)

where
dist(x,A) := min

y∈A
|y − x|. (2.31)

For m > 0, the massive free field with mass m is defined by adding a harmonic confine-
ment for each x:

Pφ̂,m3 (dφ) =
1

Z φ̂,m
3

exp
(
−

1
2

∑
(x,y)∈32

\(∂3)2
x∼y

(φx − φy)
2

2

)∏
x∈3̊

exp
(
−
m2

2
φ2
x

)
dφx .

(2.32)

Its covariance function is given by the Green function of the operator 1−m2, or

Gm3(x, y) := E
x

[∫ max(τ∂3,m−2T )

0
1{Xt=y} dt

]
. (2.33)

where X is a simple random walk and T is an exponential variable, of parameter 1,
independent of X. The infinite volume massive free field exists in any dimension d ≥ 1
and the covariance is given by

Gm(x, y) := Ex
[∫ m−2T

0
1{Xt=y} dt

]
. (2.34)

It follows from the expression (2.2) that the Gaussian free field (and the massive one)
satisfies the spatial Markov property. If 0 ⊂ 3 (or⊂ Zd for the infinite volume case), the
law of φ|0 knowing φ outside of 0̊ is given by Pφ|∂00 (Pφ|∂0,m0 in the massive case).

Moreover for m ≥ 0 the mean of φ under Pφ̂,m3 is given by H φ̂,m
3 , the solution of{

(1−m2)H(x) = 0 if x ∈ 3̊,
H(x) = φ̂x if x ∈ ∂3.

(2.35)

We will exploit the random walk (or Poisson kernel) representation of this solution,

H
φ̂,m
3 (x) = Ex[φ̂Xτ∂3 ; τ∂3 < m−2T ] (2.36)

with τA = inf{t : Xt ∈ A}. If m = 0, we just drop it from the notation.
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3. Fractional moment: upper bound on the free energy

Proposition 3.1. Choose β < β (see (2.5)). For every c > 1 there exists h0 > 0 such
that

F(β, h) ≤
ch2

λ′(β)2
for h ∈ (0, h0], (3.1)

where λ′(·) is the derivative of λ(·) defined in (2.4). In the Gaussian case we can choose
c = 1 and the result is valid for all h.

Proof. Let us first observe that by Jensen’s inequality,

E
[
logZβ,ωN,h

]
= 2E

[
log

√
Z
β,ω
N,h

]
≤ 2 logE

[√
Z
β,ω
N,h

]
.

This implies that

F(β, h) = lim sup
N→∞

2
Nd

logE
[√
Z
β,ω
N,h

]
. (3.2)

We are going to estimate E
[√
Z
β,ω
N,h

]
by making a change of measure on the environ-

ment. Let us start by making the preliminary observation that for every β > 0 and
h ∈ (0, λ(β)+ λ(−β)) there exists a unique solution α(β, h) ∈ (0, β) to

λ(β − α)− λ(−α)− λ(β)+ h = 0, (3.3)

which follows by observing that the left-hand side is positive for α = 0, negative for
α = β and decreasing in α in the interval (0, β). Moreover, when ω is Gaussian we have
α(β, h) = h/β and, in general,

α(β, h)
h↘0
∼

h

λ′(β)
. (3.4)

Now let P̃ = P̃N be a new measure on RZd (we are changing the law of the disorder
keeping its independent character) defined by

dP̃
dP
(ω) := exp

( ∑
x∈3̃N

(−αωx − λ(−α))
)
, (3.5)

and by the definition of α in (3.3) one has

Ẽ[eβωx−λ(β)+h] = 1 for x ∈ 3̃N . (3.6)

From the Cauchy–Schwarz inequality we obtain

(
E
[√
Z
β,ω
N,h

])2
≤ Ẽ

[
Z
β,ω
N,h

]
E
[

dP
dP̃

]
, (3.7)
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and the first factor on the right-hand side is equal to 1 because of (3.6). For the second
one we have instead

E
[

dP
dP̃

]
= exp

(
Nd(λ(α)+ λ(−α))

)
.

Hence one can deduce that

lim sup
N→∞

2
Nd

logE
[√
Z
β,ω
N,h

]
≤ λ(α)+ λ(−α)

α↘0
∼ α2,

and by (3.2) and (3.4) the proof is complete. ut

4. Elevated boundary conditions, stationary boundary conditions and a finite
volume criterion

In this section we manage to get a comparison between F(β, h) and the free energy per
unit site of a finite system. To obtain this inequality, we need to slightly change the bound-
ary conditions: instead of φ ≡ 0 on the boundary of3N , we take φ to be distributed as an
infinite volume LGFF (this requires d ≥ 3). We will also play on taking elevated bound-
ary conditions, in the sense that the infinite volume LGFF is centered at a non-zero value
u that will then be chosen suitably large (and will depend on h). For ease of exposition
we first show that replacing zero boundary conditions (PN = P0

N ) with u boundary con-
ditions (PuN ) does not change the free energy. We then show that the boundary conditions
u can be replaced by a typical realization of the infinite volume LGFF of mean u.

In this section the only requirement on β is λ(β) <∞.

4.1. Elevated boundary conditions

Proposition 4.1. For any u ∈ R,

lim
N→∞

1
Nd

E
[
logZβ,ω,uN,h

]
= F(β, h). (4.1)

Proof. We are going to prove almost sure convergence to F(β, h) rather than convergence
of the expectation; since |N−d logZβ,ω,uN,h | is bounded by N−d

∑
x∈3̃N

|βωx − λ(β)+ h|

and the latter forms a uniformly integrable sequence, almost sure convergence implies L1

convergence.
We now start the proof of the a.s. convergence by observing that for all u,

logZβ,ω,uN,h = −1{|u|>1}

( ∑
x∈3̃N∩∂3N

(βωx − λ(β)+ h)
)

+ log EN
[
exp

( ∑
x∈∂3N , y∈∂

−3N
x∼y

(uφy − u
2/2)

)
exp

( ∑
x∈3̃N

(βωx − λ(β)+ h)δx

)]
, (4.2)
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where we have used Zu
N = Z0

N (recall (2.3)). The first term on the right-hand side, call it
−bN,u(ω), yields a contribution which is o(Nd), and thus has no influence on the limit.
What one has to check is that the second term compares well with logZβ,ω,0N,h . For this
we first remark that if we choose a C > E[|βωx − λ(β) + h|], there exists N0(ω) with
P(N0(ω) <∞) = 1 such that for all N ≥ N0(ω) we have

sup
φ∈R3̊N

∣∣∣ ∑
x∈3̃N

(βωx − λ(β)+ h)δx

∣∣∣ ≤ CNd . (4.3)

Then one can check that under the probability law PN (recall the definition (2.1)),

T (φ) :=
∑

x∈∂3N , y∈∂
−3N

x∼y

φy (4.4)

is a centered Gaussian. Its variance is equal to 2d(N − 1)d−1, which is the number of
edges linking ∂3N to ∂−3N because

1 =
Zu
N

Z0
N

= EN
[
exp

( ∑
x∈∂3N , y∈∂

−3N
x∼y

(uφy − u
2/2)

)]
.

Hence there exists c > 0 such that for N sufficiently large,

PN (|T (φ)| ≥ Nd−1/4) ≤ exp(−cNd+1/2),

EN [euT (φ)1{|T (φ)|≥Nd−1/4}] ≤ exp(−cNd+1/2),
(4.5)

where, for the second inequality, how large N should be chosen may depend on u. We
now set AN := {|T (φ)| ≤ Nd−1/4

}. We observe (by (4.5) and (4.3) for the first line, and
by the law of large numbers for the second one) that

lim
N
N−d logZβ,ω,uN,h (A{N ) = −∞,

lim inf
N→∞

N−d logZβ,ω,uN,h ≥ −E|βω − λ(β)+ h|.
(4.6)

One can also easily show that the inferior limit in the second line is non-negative, but here
this bound suffices and we use it, coupled with the first inequality in (4.6), to establish the
first of the inequalities, which holds for N sufficiently large, in

1
2Z

β,ω,u
N,h ≤ Z

β,ω,u
N,h (AN ) = Z

β,ω,u
N,h − Z

β,ω,u
N,h (A{N ) ≤ Z

β,ω,u
N,h ,

and henceZβ,ω,uN,h (AN ) andZβ,ω,uN,h are equivalent for computing the free energy. Moreover
(recall that bN,u(ω) is defined right after (4.2))

e−uN
d−1/4

Z
β,ω,0
N,h (AN ) = e

−uNd−1/4
EN
[
e

∑
x∈3̃N

(βωx−λ(β)+h)δx
;AN

]
≤ EN

[
euT (φ)e

∑
x∈3̃N

(βωx−λ(β)+h)δx
;AN

]
= ebN,u(ω)Z

β,ω,u
N,h (AN ) ≤ e

uNd−1/4
Z
β,ω,0
N,h ,

which is enough to conclude since the result for Zβ,ωN,h = Z
β,ω,0
N,h is known (see Proposi-

tion 2.1). ut
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4.2. Stationary boundary conditions

When d ≥ 3, Pu is the law of the infinite volume free field (φ̂x)x∈Zd with mean u (re-
call Section 2.9). We have seen that we can approach the free energy by considering
the size N approximation of the free energy E[logZβ,ω,uN,h ]/N

d instead of the original one

E[logZβ,ωN,h]/N
d . Now we want to make the further step of replacing u at the boundary by

a typical configuration of the LGFF with mean u. We do this to recover a sharp superaddi-
tivity property, which in turn guarantees that, for every N , the new size N approximation
bound is a lower bound for the free energy.

Proposition 4.2. For any value of u,

lim
N→∞

1
Nd

EÊu
[
logZβ,ω,φ̂N,h

]
= F(β, h). (4.7)

Moreover, for any u and N ,

1
Nd

EÊu
[
logZβ,ω,φ̂N,h

]
≤ F(β, h). (4.8)

The result (4.7) is easy to believe because replacing u by a sequence of Gaussian variables,
of mean u and variance σd , in the boundary conditions does not look a very drastic change:
we are in the same framework as in Proposition 4.1. However, the random nature of the
boundary values makes the proof more technical. The second result, (4.8), just follows
from the Markov property of the LGFF and Jensen’s inequality.

Proof of Proposition 4.2. As for Proposition 4.1, (4.7) follows if we can show that

lim
N→∞

1
Nd

Êu
[
logZβ,ω,φ̂N,h

]
= F(β, h) P-a.s.

On the other hand, precisely by the same bound used at the beginning of the proof of
Proposition 4.1 we see that also N−d logZβ,ω,φ̂N,h forms a uniformly integrable sequence
(this time the measure is P⊗ P̂u). Therefore it suffices to show that

lim
N→∞

1
Nd

logZβ,ω,φ̂N,h = F(β, h) P⊗ P̂u-a.s. (4.9)

For this we first note that

logZβ,ω,φ̂N,h = −

( ∑
x∈3̃N∩∂3N

(βωx − λ(β)+ h)1φ̂x /∈[−1,1]

)
+ log(Z0

N/Z
φ̂
N )

+ log EN
[
exp

( ∑
x∈∂3N , y∈∂

−3N
x∼y

(φ̂xφy − φ̂
2
x/2)

)
exp

( ∑
x∈3̃N

(βωx − λ(β)+ h)δx

)]
.

The right-hand side is of the form T1 + T2 + T3. For T1 we observe that

|T1| ≤
∑

x∈3̃N∩∂3N

|βωx − λ(β)+ h| = O(N
d−1) P⊗ P̂u-a.s.,

and thus we can neglect T1.
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Let us now examine T3. First of all, the term 1
2
∑
... φ̂

2
x is a constant with respect to

PN (dφ) and drops out of the expectation and one can easily show that it yields P̂ u-a.s. an
additive contribution to T3 of order O(Nd−1 logN) and hence plays no role in the limit.
Let us then control the influence of the term in the exponential. Set

T (φ̂, φ) :=
∑

x∈∂3N , y∈∂
−3N

x∼y

φ̂xφy . (4.10)

Let MN = MN (φ̂) be the maximal value of |φ̂x | in ∂3N (note that MN is O(
√

logN)
P̂u-a.s.). Since the correlations are positive, the variance of T (φ̂, φ) under PN is smaller
than that of MN (φ̂)T (φ) (recall (4.4)). Hence similarly to (4.5) there exist c > 0 and N0
(not depending on φ̂) such that for N ≥ N0 we have

PN
(
|T (φ̂, φ)| ≥ Nd−1/4MN

)
≤ exp(−cNd+1/2),

EN [eT (φ̂,φ)1{∣∣T (φ̂,φ)∣∣≥Nd−1/4MN }
] ≤ exp(−cNd+1/2).

This together with (4.3) guarantees that if we set

AN := {|T (φ̂, φ)| ≥ N
d−1/4MN }, (4.11)

then, just as for Lemma 4.1, we readily see that P⊗ P̂u-a.s.,

lim
N→∞

N−d logZβ,ω,φ̂N,h (AN ) = −∞,

lim inf
N→∞

N−d logZβ,ω,φ̂N,h (AN ) ≥ E|βω − λ(β)+ h|,

and therefore there exists a random variable N0 with P⊗ P̂u(N0 <∞) = 1 such that

1
2Z

β,ω,φ̂
N,h ≤ Z

β,ω,φ̂
N,h (AN ) ≤ Z

β,ω,φ̂
N,h for N ≥ N0,

and analogously for Zβ,ω,0N,h . Then one concludes similarly to what we have done for
Lemma 4.1: we have

Z
β,ω,0
N,h (AN )e

−MNN
d−1/4
≤ EN

[
eT (φ̂,φ)e

∑
x∈3̃N

(βωx−λ(β)+h)δx
;AN

]
≤ eMNN

d−1/4
Z
β,ω,0
N,h ,

therefore limN N
−dT3 = limN N

−d logZβ,ω,0N,h , P⊗ P̂u-a.s., and the latter is just F(β, h).
Similarly (and even in a slightly easier way) one shows that

|log(Z0
N/Z

φ̂
N )| ≤ MNN

d−1/4,

and therefore T2 is negligible and the proof of (4.9) (hence (4.7)) is complete.
To prove (4.8) it is sufficient to show that (see (4.16))

1
(2N)d

EÊu
[
logZβ,ω,φ̂2N,h

]
≥

1
Nd

EÊu
[
logZβ,ω,φ̂N,h

]
.
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Let us divide the box 32N into 2d boxes 3iN , i = 1, . . . , 2d . Set

3iN := 3N + (α1(i), . . . , αd(i))N,

3̃iN := 3̃N + (α1(i), . . . , αd(i))N,
(4.12)

where αj (i) ∈ {0, 1} is the j -th digit of the dyadic development of i − 1. Let Pφ̂,iN be the
law of the free field on 3iN with boundary conditions φ̂, and set

Z
β,ω,φ̂,i
N,h := Eφ̂,iN

[
exp

( ∑
x∈3̃iN

(βωx − λ(β)+ h)δx

)]
. (4.13)

We define

0N :=
(2dd⋃
i=1

∂3iN

)
\ ∂32N . (4.14)

Now note that if one conditions on the realization of φ in 0N , the partition function of the
system of size 2N factors into 2d partition functions of systems of size N . The boundary
conditions of the systems of size N are determined by φ̂ and φ|0N . The final result is

Eφ̂2N
[
exp

( ∑
x∈3̃2N

(βωx − λ(β)+ h)δx

) ∣∣∣ φ|0N ]

=

2d∏
i=1

Eφ̂2N
[
exp

( ∑
x∈3̃iN

(βωx − λ(β)+ h)δx

) ∣∣∣ φ|0N ] =: 2d∏
i=1

Z̃i(φ̂, φ|0N , ω). (4.15)

Note that by the spatial Markov property for the infinite volume field, each Z̃i(φ̂, φ|0N , ω)

has the same distribution as Zβ,ω,φ̂N,h (if φ̂ and φ|0N have distributions Êu and Eφ̂2N respec-

tively and the ω are IID). By Jensen’s inequality for Eφ̂2N [· | φ|0N ] we have

EÊu
[
logZβ,ω,φ̂2N,h

]
≥

2d∑
i=1

EÊuEφ̂2N [log Z̃i(φ̂, φ|0N )] = 2dEÊu
[
logZβ,ω,φ̂N,h

]
.

Iterating this inequality we obtain

F(β, h) = lim
k→∞

1
2dk

1
Nd

EÊu
[
logZβ,ω,φ̂2kN,h

]
≥

1
Nd

EÊu
[
logZβ,ω,φ̂N,h

]
. (4.16)

ut

5. A lower bound on the free energy

In this section we prove the lower bound in part (i) of Theorem 2.2. The statement is:

Proposition 5.1. For d ≥ 3, for any β ∈ (0, β), there exists a constant h0 > 0 (which
depends on the dimension and on the law of ω) such that

F(β, h) ≥ h66d for any h ∈ (0, h0). (5.1)
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Remark 5.2. While the constant 66 is quite arbitrary and is the consequence of some
rough approximations made in the proof, there is a more serious reason why our bound
gets worse when the dimension increases: this is due to boundary effects which are more
important in high dimension (cf. the isoperimetric inequality). See Section 5.3 for more
on this.

We assume in this section that β is a fixed positive number and h is close to zero. Let us
set (recall from Section 2.9 that σd is the standard deviation of the infinite volume free
field)

u := 8σd
√
d logN and N = h−2, (5.2)

where, without true loss of generality, we are assuming h−2 to be an integer. We define
the event

Eu := {φ ∈ RZd
: φx > u/2 for x ∈ ∂3N }. (5.3)

The set Eu plays the role of the set of good boundary conditions. We are going to show
that Ecu has a very small probability, and use this to bound its contribution to the partition
function.

Proposition 5.1 follows from the next two lemmas. The first takes care of the case of
bad boundary conditions:

Lemma 5.3. For every β > 0 such that λ(β) <∞, there exists h0 such that

EÊu
[
log
(
Z
β,ω,φ̂
N,h

)
1Ecu

]
≥ −Cλ(β)Nd−1Eu [δ0] for every h ∈ (0, h0), (5.4)

where C > 0 is a constant that depends only on the dimension.

The second lemma gives a lower bound on (a suitable expectation of) logZβ,ω,φ̂N,h for
good boundary conditions and it is obtained by considering only the contribution of the
realizations of φ which have at most one contact in the box 3̃N :

Lemma 5.4. For every β ∈ (0, β), there exists h0 such that

EÊu
[
log
(
Z
β,ω,φ̂
N,h

)
1Eu
]
≥
h

2
NdEu[δ0] for every h ∈ (0, h0). (5.5)

Proof of Proposition 5.1. From Lemmas 5.3 and 5.4 and the choice N = h−2 we have,
for h small,

1
Nd

EÊu
[
logZβ,ω,φ̂N,h

]
≥

(
h

2
− C

λ(β)

N

)
Eu [δ0] ≥

h

4
Eu [δ0] . (5.6)

Since for u sufficiently large,

Eu[δ0] =
1√

2πσ 2
d

∫ u+1

u−1
exp

(
−
z2

2σ 2
d

)
dz ≥

1

2
√

2πσ 2
d

exp
(
−
(u− 1/2)2

2σ 2
d

)

≥ exp
(
−
u2

2σ 2
d

)
= N−32d

= h64d ,
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as a consequence of Proposition 4.2 and (5.6) we obtain

F(β, h) ≥
h

4
Eu [δ0] ≥ h65d/4,

provided h is small enough. ut

5.1. Proof of Lemma 5.3

By Jensen’s inequality one has

EÊu
[
log
(
Z
β,ω,φ̂
N,h

)
1Ecu

]
≥ (−λ(β)+ h)Eu

[ ∑
x∈3̃N

δx1Ecu
]
,

and therefore it suffices to show that

Eu
[ ∑
x∈3̃N

δx1Ecu
]
≤ CNd−1Eu [δ0] . (5.7)

For every constant c ≥ 1 we have

Eu
[ ∑
x∈3̃N

δx1Ecu
]
≤

∑
x∈3̃N
y∈∂3N

Eu[δx1{φy≤u/2}]

=

∑
x∈3̃N , y∈∂3N
|x−y|≤c

Eu[δx1{φy≤u/2}] +
∑

x∈3̃N , y∈∂3N
|x−y|>c

Eu[δx1{φy≤u/2}]

≤ 2dcNd−1Eu[δ0] +
∑

x∈3̃N , y∈∂3N
|x−y|>c

Eu[δx1{φy≤u/2}], (5.8)

where in the first step we have used the union bound and in the third we have replaced,
in the obvious way, the expectation in the first sum with an upper bound independent
of x and y, and we have then estimated the cardinality of the set over which the sum is
performed.

Now we claim that for c sufficiently large (depending only on the dimension d), we
have

Eu[δx1{φy≤u/2}] ≤ N
−2dEu[δ0] (5.9)

for every x, y ∈ Zd such that |x − y| > c. By putting (5.8) and (5.9) together we obtain

Eu
[ ∑
x∈3̃N

δx1Ecu
]
≤ (2dcNd−1

+ 2dN2d−1N−2d)Eu[δ0] ≤ 4dcNd−1Eu[δ0].

Therefore to complete the proof Lemma 5.3 it suffices to establish (5.9).
We set x = 0 for notational simplicity and we observe that

Pu(φy ≤ u/2 | δ0 = 1) ≤ max
z∈[u+1,u−1]

P0(φy ≥ u/2 | φ0 = z).
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Under P0(· | φ0 = z), φy is a Gaussian random variable of mean zG(0, y)/σ 2
d and

variance G(0, 0)−G(0, y) ≤ σ 2
d . If c is chosen appropriately we have

zG(0, y)/σ 2
d ≤ u/4 for every y such that |y| ≥ c.

More explicitly, for u ≥ 2, it suffices to have G(0, y) ≤ 1
6σ

2
d =

1
6G(0, 0). We can then

apply standard Gaussian bounds to obtain

P0(φy ≥ u/2 | φ0 = z) ≤ P(N ≥ u/(4σd)) ≤ e−u
2/(32σ 2

d ) = N−2d ,

and the proof of (5.9), and hence of Lemma 5.3, is complete. ut

5.2. Proof of Lemma 5.4

As a first step, we are going to prove

Lemma 5.5. For any φ̂ ∈ Eu and x, y ∈ 3̊N , x 6= y, and for every N larger than a
constant that depends only on d , we have

Eφ̂N [δx] ≤ N
−2d and Eφ̂N [δy | δx = 1] ≤ N−2d . (5.10)

Proof. From the maximum principle for the discrete harmonic equation (2.35) we have

Eφ̂N (φx) = H
φ̂
3N
(x) ≥ u/2.

The variance of φx is GN (x, x) ≤ σ 2
d . Hence

Eφ̂N [δx] ≤ Pφ̂N (φx ≤ 1) ≤ P
(
N ≥ (u/2− 1)/σd

)
≤ e−(u−2)2/(8σ 2

d ) ≤ N−2d .

The second inequality is proved in the same manner: conditioning on the value of φy
(which we set equal to some arbitrary z ∈ [−1, 1]), we want to estimate the variance and
expectation of φy . By monotonicity of the solution of (2.35), we may as well restrict to
the case φ̂ ≡ u/2. We notice here that, as the escape probability of the simple random
walk in Zd (d ≥ 3) is always larger than 3/5 [25, Section 5.9], for any N > 0 and any
y 6= x in 3̊N we have

GN (x, y)

GN (x, x)
= P y(τ3N < τx) ≤

2
5
.

As a consequence we can bound the mean of φy conditioned on φx = z by

Eu/2N [φy | φx = z] = z
GN (x, y)

GN (x, x)
+
u

2

(
1−

GN (x, y)

GN (x, x)

)
≥
u

4
+ 1.

Therefore

Eu/2N [δy | φx = z] ≤ Eu/2N [φy ≤ 1 | φx = z] ≤ P [N ≥ u/(4σd)] ≤ e−u
2/(32σ 2)

= N−2d ,

which is enough to conclude. ut
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We now go back to the proof of Lemma 5.4; till the end of the proof we will assume
φ̂ ∈ Eu. Set

ξ(x) := exp(βωx − λ(β)+ h)− 1.

Let A0 be the event that the field φ has no contact with the defect band, A1(x) the event
that it has only one contact at x, A1 the event that there is a unique contact, and A2 the
event that there are two contacts or more:

A0 := {φx /∈ [−1, 1] for every x ∈ 3̃N },

A1(x) := {φx ∈ [−1, 1]} ∩ {φy /∈ [−1, 1] for every y ∈ 3̃N \ {x}},

A1 :=
⋃
x∈3̃N

A1(x),

A2 := R3̃N \ (A0 ∪A1).

(5.11)

From Lemma 5.5 one has, for any x ∈ 3̊N ,

Pφ̂N (A1(x)) ≥ Eφ̂N [δx] −
∑

y∈3̊N\{x}

Eφ̂N [δxδy] ≥ (1−N
−d)Eφ̂N [δx], (5.12)

where the first inequality is obtained by applying the union bound to {δx = 1} = A1 ∪⋃
y 6=x{δx = δy = 1}. From (5.12) we directly have

Pφ̂N (A1) ≥ (1−N−d)
∑
x∈3̊N

Eφ̂N [δx]. (5.13)

Using again the union bound, Lemma 5.5 and (5.13), we also have

Pφ̂N (A2) ≤
1
2

∑
(x,y)∈(3̊N )

2

x 6=y

Eφ̂N [δxδy] ≤
N−d

2

∑
x∈3̊N

Eφ̂N [δx] ≤ N
−dPφ̂N (A1). (5.14)

Taking only into account the contribution of A1 and A0 to the partition function we obtain

Z
β,ω,φ̂
N,h ≥ Pφ̂N (A0 ∪A1)+

∑
x∈3̊N

ξ(x)Pφ̂N (A1(x))

= 1+
∑
x∈3̊N

ξ(x)Pφ̂N (A1(x))− Pφ̂N (A2) =: Z
′.

But by (5.10),
Z′ ≥ Pφ̂N (A0) ≥ 1− 1/Nd

≥ 1/2,

and hence
logZ′ ≥ (Z′ − 1)− (Z′ − 1)2.

Therefore from (5.14) one has

E[Z′ − 1] = (eh − 1)Pφ̂N (A1)− Pφ̂N (A2) ≥ (e
h
− 1−N−d)Pφ̂N (A1). (5.15)
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We also have (using (5.10))

VarP(Z′) = e2h(eλ(2β)−2λ(β)
− 1)

∑
x∈3̊N

Pφ̂N (A1(x))
2
≤ CN−2dPφ̂N (A1), (5.16)

which is much smaller than E[Z′] − 1 (recall N = h−2). Overall (combining (5.15),
(5.16) and (5.13)) one has, for all φ̂ in Eu,

E
[
logZβ,ω,φ̂N,h

]
≥ E[logZ′] ≥ Eφ̂N [Z

′
− 1] − (Eφ̂N [Z

′
− 1])2 − VarP(Z′)

≥ (eh − 1−N−d)Pφ̂N (A1)−
(
(eh − 1−N−d)Pφ̂N (A1)

)2
− CN−2dPφ̂N (A1).

By using again N = h−2, as well as (5.13), we deduce that for h sufficiently small,

E
[
logZβ,ω,φ̂N,h

]
≥

3h
4

( ∑
x∈3̊N

Eφ̂N [δx]
)
. (5.17)

Hence

EÊu
[
log
(
Z
β,ω,φ̂
N,h

)
1Eu

]
≥

3h
4

Eu
[ ∑
x∈3̊N

δx1Eu
]

=
3h
4

(
(N − 1)dEu[δ0] − Eu

[ ∑
x∈3̃N

δx1Ecu
])
≥
h

2
NdEu[δ0],

where in the last inequality we have used h small and (5.7). ut

5.3. Why is this not optimal?

The main idea of the proof above is to change the boundary conditions φ̂ so that there are
only a few contacts (the main contribution to the partition function is given by A0 ∪A1).
In that case the partition function (or at least Z′) has a very small variance, and for this
reason Jensen’s inequality for log is essentially sharp. The strategy could in principle (and
with a lot of effort) extend if one has typically a bounded number of contacts, or possibly
if one allows it to grow logarithmically, but the variance estimates would clearly blow up
beyond this point.

So for this strategy to work we need Eu[δ0] ≤ cN−d for some positive constant c
(possibly large or even growing very slowly with N , but this latter possibility does not
add much to the discussion). Now notice that since δx on the boundary is completely
determined by the boundary conditions, one can easily take away from the log partition
function the contribution of the boundary

EÊu
[
logZβ,ω,φ̂N,h

]
= (h− λ(β))

∑
x∈3̃N∩∂3N

Eu[δx]

+ EÊu log Eφ̂N
[
exp

( ∑
x∈3̊N

(βωx − λ(β)+ h)δx

)]
. (5.18)
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The first term which is the boundary effect is negative (h is small!) and of order
Nd−1Eu[δ0]. Our best hope for the second term is to get something positive which is
of order hNdEu[δ0] (this is what we get with an annealed bound). Hence for the second
term in (5.18) to be dominant, we need h to be larger than N−1. The best we can hope for
as a lower bound for the free energy density is then

hEu[δ0] ≤ chN
−d
= O(hd+1). (5.19)

To reduce the influence of boundary effects, one has to work with larger boxes, but in
this case the total number of contacts in the box will be large and one has to try to find
other means of controlling E[logZ] than only the variance. This is the aim of the coarse
graining and replica coupling approach of the next section.

6. The coarse graining procedure for the critical behavior (lower bound)

For σ = σd , a > 0 and h > 0 small we set

u = u(a, h) := σ
√

2 log(1/h)+ 1−
σ

2
log log(1/h)√

2 log(1/h)
− σ

log(2a
√
π)√

2 log(1/h)
. (6.1)

This choice has been made to guarantee that the contact probability is (essentially) ah
for h small. The choice (6.1) is clearly connected to the following lemma on a standard
Gaussian variable N :

Lemma 6.1. If v : (0,∞)→ R is such that limh↘0 v(h)
√

log(1/h) = 0, then

P(u(a, h)+ v(h)+ σN ∈ [−1, 1])
h↘0
∼ ah. (6.2)

Proof. The result follows, via a lengthy computation, from the well known asymptotic
(x ↗∞) estimate

P(N > x) =
1

x
√

2π
exp

(
−
x2

2

)(
1+O

(
1
x2

))
. (6.3)

ut

Remark 6.2. It is easy to see that the statement of Lemma 6.1 also holds if we replace
[−1, 1] with [c, 1] for any c < 1. More interestingly, it also holds for (−∞, 1] (and
thus also for (−∞, 0] provided that u(a, h) is replaced by u(a, h) − 1). This remark is
important because it ultimately means that the strategy of the proof below also works if
we replace δx with 1x (recall (2.22)), that is, if we pass from disordered pinning to the
co-membrane model. This is also true for the rougher proof of Section 5, and in a more
evident way since no estimate is sharp in that case.
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Let us introduce

ρh := exp
(
−
√

log(1/h)
)

and N0 := 1/ρh, (6.4)

and without true loss of generality we will assume N0 ∈ 2N. For h ↘ 0 and arbitrary
b > 0 we have

hb � ρh � |logh|−1/b.

We then choose N1 such that N1/N0 ∈ 2N, N1/N0 ≥ 4 and

N1 ∈
[ 1

2h
−3, h−3]. (6.5)

We aim at showing

Proposition 6.3. Choose β > 0. There exist a(β, d) > 0 and c(β, d) > 0 such that for
h > 0 sufficiently small we have

1
Nd

1
EÊu(a,h)[logZωN1,β,h

] ≥ c(β, d)h2. (6.6)

Moreover one find a constant C(d) such that

c(β, d) ≥ C(d)β−2 for all β ∈ (0, 1]. (6.7)

Proof. The proof is done in several steps; a number of lemmas will be stated and proved
after the main body of the proof.

Step 1: Smoothing φ̂. We start off by selecting a subset of the φ̂ configuration (of P̂u
probability very close to 1) that guarantees that harmonic averages of the boundary value
are extremely close to u, at least when we are not too close to the boundary. We do this
by introducing the event

Bu := {φ̂ ∈ RZd
: |H

φ̂
3N1

(x)− u| ≤ ρ
1/8
h /2 for every x ∈ 3N1

with dist(x, ∂3N1) ≥ N0/2}, (6.8)

where Hφ
3(x) is the solution to the harmonic equation (2.35) in 3N with φ boundary

conditions. We prove the following estimate at the end of the section.

Lemma 6.4. For h sufficiently small,

P̂u(B{u ) ≤ exp(−ρ−1/5
h ). (6.9)

In other terms, P̂u(B{u ) is smaller than any power of h. As it stands, Lemma 6.4 is stated
and will be used for the value of u given in (6.1), but it is easy to realize that P̂u(Bu) does
not depend on u and therefore Lemma 6.4 holds uniformly in u.
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Since by Jensen’s inequality, for h ≥ 0,

E
[
logZω,φ̂N1,β,h

]
≥

∑
x∈3̃N1

(
h−

β2

2

)
Eφ̂N1
[δx] ≥ −

β2

2
Nd

1 ,

we readily see that

1
Nd

1
EÊu

[
logZωN1,β,h

;B{u
]
≥ −

β2

2
P̂u(B{u ).

Therefore, in view of Lemma 6.4 and of the result (6.6) we are after, it suffices to show
that

1
Nd

1
EÊu[logZωN1,β,h

;Bu] ≥ 2ch2.

Step 2: Neglecting the energy contribution near ∂3N1 . We show now that we can neglect
the energy contribution coming from the sites on which we do not have control on the
harmonic average of the boundary. This is done by introducing

3−N1,N0
:= {N0 + 1, N0 + 2, . . . , N1 −N0}

d , (6.10)

by restricting the sum in the energy term to sites in 3−N1,N0
; as we are going to show

right away, this introduces an error in the free energy computation that is o(h2), hence
irrelevant. This space between the boundary of the box 3̃N1 and the sites that contribute
to the energy has been introduced to allow some averaging of the boundary conditions φ̂.
In fact φ̂ has fluctuations of order one and therefore the field φ close to the boundary
has a mean that inherits this incertitude, while, as shown in Lemma 6.4, sufficiently far
away—a distance N0 suffices—the mean will be u up to an error of O(ρ1/8

h ), which is
smaller than any negative power of log(1/h). The estimate for the error introduced by
restricting the energy contribution to sites in 3−N1,N0

goes as follows: Start by observing
that ∑

x∈3̃N1

(βωx − β
2/2+ h)δx ≥ −

∑
x∈3̃N1\3

−

N1,N0

|βωx − β
2/2+ h|

+

∑
x∈3−N1,N0

(βωx − β
2/2+ h)δx,

so that

1
Nd

1
EÊu

[
logZω,φ̂N1,β,h

;Bu
]
≥ −
|3̃N1 \3

−

N1,N0
|

Nd
1

E[|βω0 − β
2/2+ h|]

+
1
Nd

1
EÊu

[
log Eφ̂N1

[
exp

( ∑
x∈3−N1,N0

(βωx − β
2/2+ h)δx

)]
;Bu

]
.

Therefore the first term on the right-hand side is O(N0/N1) � h2 (this has determined
our choice of N1), so that we can effectively neglect the energy contribution of the sites
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outside 3−N1,N0
and Proposition 6.3 reduces to showing

1
Nd

1
EÊu

[
log Eφ̂N1

[
exp

( ∑
x∈3−N1,N0

(βωx − β
2/2+ h)δx

)]
;Bu

]
≥ 3ch2. (6.11)

This estimate will be obtained by restricting the Pφ̂N1
-expectation to an event Aκ , κ a

positive integer (given explicitly just below) that depends only on d; κ is a constraint that
we are going to introduce on the number of contacts in intermediate scale boxes.

Step 3: The coarse graining grid and the event Aκ . To define Aκ we first introduce a
decomposition of 3−N1,N0

(Figure 1 may be of help in following the construction). For
w ∈ {0, 1}d we set

3wN1,N0
:= {x ∈ 3−N1,N0

: dxi/N0e
mod 2
= wi for i = 1, . . . , d}. (6.12)

0

N1

N12N0

2N0

N0

N0

C(2,5)
C(6,7)

B(6,3)

Fig. 1. The set 3̃N1 is drawn for d = 2 (we need it only for d ≥ 3, but for illustration purposes
d = 2 is enough) and N1 = 8N0. The set 3−

N1,N2
is the (disjoint union) of the Bj boxes, j ∈

{2, 3, 4, 5, 6, 7}2 =
⋃
w∈{0,1}2 Jw . We have singled out 3(0,1)

N1,N0
by making it darker; observe that

3−
N1,N0

is the disjoint union of3w
N1,N0

, w ∈ {0, 1}2. We have also drawn, with dashed boundaries,
some of the Cj boxes.

Actually3wN1,N0
can be seen as a disjoint union of (N1/(2N0)−1)d (hyper)cubes of edge

length N0:
3wN1,N0

=

⋃
j∈Jw

Bj , where Bj := 3̃N0 +N0j (6.13)
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Even if it is probably not necessary, we can make Jw explicit:

Jw = {(dx1/N0e, . . . , dxd/N0e) : x ∈ 3
−

N1,N0
and dxi/N0e

mod 2
= wi for i = 1, . . . , d}.

Note that ⋃
w∈{0,1}d

3wN1,N0
= 3N1,N0 ,

and therefore

3N1,N0 =

⋃
j∈J

Bj where J =
⋃
w

Jw = {2, . . . , N1/N0 − 1}d .

Lastly, for j ∈ J we set

Cj := {x : dist(x,Bj ) ≤ N0/2}.

We are now ready to introduce Aκ := A(1) ∩ A
(2)
κ , where

A(1) :=
{
φ : max

j∈J
max
x∈Bj
|H

φ

Cj (x)− u| ≤ ρ
−1/8
h

}
, (6.14)

A(2)κ :=
{
φ : max

j∈J

∑
x∈Bj

δx ≤ κ
}
. (6.15)

Recall that u is chosen in (6.1) and Bu is given in (6.8). The argument that we are
going to present works for κ sufficiently large, just depending on the dimension. For
definiteness we make the choice of κ explicit:

κ := dd3312212(d+5)c12
d e,

where cd ≥ 1 is the constant in (2.28). Such a choice stems from several arbitrary and
lazy choices in the chain of rough bounds that constitutes the proof.

We now introduce an important technical estimate whose proof is postponed to the
end of the section.

Lemma 6.5. For h sufficiently small,

sup
φ̂∈Bu

Pφ̂N1
(A{κ ) ≤ h

k1/4
. (6.16)

Step 4: Replica coupling. Going back to (6.11), it is clear that it suffices to show that for
h sufficiently small,

1
Nd

1
EÊu

[
log Eφ̂N1

[
exp

( ∑
x∈3N1,N0

(βωx − β
2/2+ h)δx

)
;Aκ

]
;Bu

]
≥ 3ch2. (6.17)
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For this we will exploit a replica coupling argument bound. The following result, which
we prove in the Appendix, is inspired by and very close to the computations made in [40]
for renewal pinning. The proof exploits interpolation techniques similar to those found in
spin-glass literature [33].

Lemma 6.6.
1
Nd

1
E
[
log Eφ̂N1

[
exp

( ∑
x∈3N1,N0

(βωx − β
2/2+ h)δx

)
;Aκ

]]
≥ T1 − T2 (6.18)

with

T1 :=
1
Nd

1
log Eφ̂N1

[
exp

(
h

∑
x∈3N1,N0

δx

)
;Aκ

]
, (6.19)

T2 :=
1
Nd

1
log

〈
exp

(
2β2

∑
x∈3N1,N0

δ(1)x δ(2)x

)
;A2

κ

〉⊗2

N1,h,φ̂
, (6.20)

where

〈·〉N1,h,φ̂
:=

Eφ̂N1
[· exp(h

∑
x∈3N1,N0

δx)]

Eφ̂N1
[exp(h

∑
x∈3N1,N0

δx)]
. (6.21)

Remark 6.7. It is obvious from the proof that the above lemma remains valid without
restriction to the event Aκ (or with a restriction to another event). However, it is not
too difficult to check that without this restriction, the quantity T2 would be of order β2,
making the result completely useless (the right-hand side of (6.18) would be negative).
We have designed the event Aκ to be of small probability so that T1 is almost equal to the
value it would have with no conditioning, but such that T2 becomes much smaller with
the conditioning.

We now need a lower bound on Eu[T1;Bu] and an upper bound on Eu[T2;Bu].

Step 5: Lower bound on Eu[T1;Bu]. We apply Jensen’s inequality after a rearrangement

T1 =
1
Nd

1
log Eφ̂N1

[
exp

(
h

∑
x∈3N1,N0

δx

) ∣∣∣ Aκ]+ 1
Nd

1
log Pφ̂N1

(Aκ)

≥
h

Nd
1

Eφ̂N1

[ ∑
x∈3N1,N0

δx

∣∣∣ Aκ]+ 1
Nd

1
log Pφ̂N1

(Aκ) =: T1,1 + T1,2.

We have

Êu[T1,1;Bu] ≥
h

Nd
1

Êu
[
Eφ̂N1

[ ∑
x∈3N1,N0

δx;Aκ

]
;Bu

]
=

h

Nd
1

Eu
[ ∑
x∈3N1,N0

δx;Aκ ∩ Bu

]
≥

h

Nd
1

Eu
[ ∑
x∈3N1,N0

δx

]
− h(Pu((Aκ ∩ Bu){)),
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so that by using Lemmas 6.1, 6.4 and 6.5 (recall the choice of κ) we readily see that

Êu[T1,1;Bu] ≥
2
3ah

2

for h sufficiently small.
On the other hand, by Lemma 6.5 we see that Pφ̂(A{κ ) ≥ 1/2 for h small, uniformly

in φ̂ ∈ Bu, and this entails Êu[T1,2;Bu] ≥ −8(log 2)h3d , so

Êu[T1;Bu] ≥
1
2ah

2. (6.22)

Step 6: Upper bound on Eu[T2;Bu]. We start with the preliminary observation that
φ ∈ A

(2)
κ means that there are at most κ contacts in Bj for every j ∈ J ; this implies

that there are at most 3dκ contacts in Cj ∩ 3N1,N0 (and a fortiori in C̊j ∩ 3N1,N0 ) be-
cause if Cj ∩ 3N1,N0 = Cj then Cj is covered by 3d Bj ’s (this is the typical case in the
bulk). When Cj ∩3N1,N0 is (strictly) contained in Cj (the boundary case), fewer Bj boxes
suffice. Therefore for every j ∈ J we introduce the event

A(3)κ (j) :=
{ ∑
x∈C̊j∩3N1,N0

δx ≤ 3dκ and
∑
x∈Bj

δx ≤ κ
}
. (6.23)

One can check that

Aκ := A
(1)
∩ A(2)κ = A

(1)
∩

⋂
j∈J

A(3)κ (j). (6.24)

Now we apply the Hölder inequality |E
∏k
i=1Xi | ≤

∏k
i=1(E|Xi |

k)1/k to get

T2 =
1
Nd

1
log

〈 ∏
w∈{0,1}d

exp
(

2β2
∑

x∈3wN1,N0

δ(1)x δ(2)x

)
;A2

κ

〉⊗2

N1,h,φ̂

≤
1

(2N1)d

∑
w∈{0,1}d

log
〈
exp

(
21+dβ2

∑
x∈3wN1,N0

δ(1)x δ(2)x

)
;A2

κ

〉⊗2

N1,h,φ̂
. (6.25)

Let us focus on the argument of the logarithm and condition the measure 〈·〉N1,h,φ̂
on the

σ -algebra generated by {φx}x∈⋃j∈Jw ∂Cj . By the spatial Markov property we obtain

〈
exp

(
21+dβ2

∑
x∈3wN1,N0

δ(1)x δ(2)x

)
; (φ(1), φ(2)) ∈ A2

κ

〉⊗2

N1,h,φ̂

≤

〈 ∏
j∈Jw

E⊗2
Cj ,h,(φ(1),φ(2))

[
exp

(
21+dβ2

∑
x∈Bj

δ(1)x δ(2)x

)
; (A(3)κ (j))

2
]
;

(φ(1), φ(2)) ∈ (A(1)κ )
2
〉⊗2

N1,h,φ̂
, (6.26)
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where

E⊗2
Cj ,h,(φ(1),φ(2))

:= ECj ,h,φ(1)ECj ,h,φ(2) , (6.27)

ECj ,h,φ[·] := ECj ,φ
[
· exp

(
h
∑
x∈C̊j

δx

)] /
ECj ,φ

[
exp

(
h
∑
x∈C̊j

δx

)]
, (6.28)

and PCj ,φ is the law of the free field on the set Cj with boundary conditions φ (note
that this notation is a bit improper since φ is used for the boundary conditions and in the
definition of δ, but we believe this is more readable than introducing δ̃ and should not
generate confusion). Of course if F : RC̊j → [0,∞) is measurable then ECj ,h,φ[F ] is
measurable with respect to {φx}x∈∂Cj .

We now recall that we need to bound Êu[T2;Bu] from above, and we will do this by
taking the supremum over φ ∈ A(1) (and applying Êu[·;Bu] will be irrelevant), that is, by
(6.25) and (6.26) we have

Êu[T2;Bu]

≤
1
Nd

1

∑
j∈J

sup
φ(1),φ(2)∈A(1)

log E⊗2
Cj ,h,(φ(1),φ(2))

[
exp

(
21+dβ2

∑
x∈Bj

δ(1)x δ(2)x

)
; (A(3)κ (j))

2
]
,

and we are left with estimating the terms in the sum on the right-hand side. These terms
are actually identical, except for the boundary cases (but they can be bounded in the very
same way). Let us record the first part of the argument as a lemma, which we will also
use in the next sections.

Lemma 6.8. Let X be a positive random variable such that X ≤ γ with probability 1.
Then

logE[eX] ≤ (eγ − 1)E[X]. (6.29)

Proof. We simply use convexity to show that

eX ≤ 1+ (eγ − 1)X,

and the inequality log(1+ u) ≤ u. ut

Now applying the lemma to X := 21+dβ2∑
x∈Bj δ

(1)
x δ

(2)
x , and remarking that on A(3)κ (j),

we have X ≤ 21+dβ2κ , we obtain

E⊗2
Cj ,h,(φ(1),φ(2))

[
exp

(
21+dβ2

∑
x∈Bj

δ(1)x δ(2)x

)
; (A(3)κ (j))

2
]

≤ 1+ η(β, κ, d)
∑
x∈Bj

sup
φ∈A(1)

ECj ,h,φ[δx;A
(3)
κ (j)]

2

with

η(β, κ, d) :=
exp(21+dβ2κ)− 1

κ
.
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In the case β ∈ (0, 1] notice that

η(β, κ, d) ≤
exp(21+dκ)

κ
β2
=: η(κ, d)β2. (6.30)

But by using the definition of ECj ,h,φ[·], since ECj ,0,φ[exp(h
∑
x∈C̊j δx)] ≥ 1 and since∑

x∈C̊j δx is bounded by 3dκ on A(3)κ (j), we have

ECj ,h,φ[δx;A
(3)
κ (j)] ≤ exp(3dκh)ECj ,φ[δx] ≤

3
2 ECj ,φ[δx] ≤ 2ah,

where we have chosen h sufficiently small. The last inequality is due to Lemma 6.1 ap-
plied with v(h, x) := Hφ

Cj (x)− u (since φ ∈ A(1)κ , v(h, x) satisfies the assumption of the
lemma uniformly in x). Therefore

Êu[T2;Bu] ≤ 4a2η(β, κ, d)h2. (6.31)

Step 7: Conclusion. By putting (6.22) and (6.31) together and recalling Lemma 6.6 we
find that (a/2 − 4a2η(κ, d, β))h2 is a lower bound for the left-hand side of (6.17), and
once a is chosen smaller than 1/(8η(β, κ, d)), the proof of Proposition 6.3 is complete,
the case β ∈ [0, 1] following from (6.30). ut

6.1. Proof of Lemmas 6.4 and 6.5

We start off with an elementary (rough) estimate on the variance of the harmonic exten-
sion. Throughout this section we use the shorthand notation for x ∈ 3 and y ∈ ∂3,

p3(x, y) := P
x(Xτ∂3 = y), (6.32)

with which (2.36) becomes

H
φ
3(x) =

∑
y∈∂3

p3(x, y)φy .

Lemma 6.9. Let N and M be integers such that N > 2M > 0. As usual 3N =
{0, 1, . . . , N}d and we introduce 3N,M := {M, . . . , N −M}d . Let {φx}x∈3N , with law
PN , be a centered Gaussian field with covariance G3N (x, y) ≤ G(x, y) for every x, y ∈
∂3N (recall that P̂0 is the law of the infinite volume Gaussian lattice free field). Then
there exists Cd > 0 (depending only on the dimension) such that for every M we have

sup
N :N>2M

max
x∈3N,M

varPN (H
φ
3N
(x)) ≤ CdM

−(d−2)/2. (6.33)

Remark 6.10. More advanced computations could show that the left-hand side of (6.33)
is truly of order M2−d , but the bound presented above is much easier to obtain and suffi-
cient for our purposes.
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Proof of Lemma 6.9. By recalling (2.28), we observe thatGN (x, y) is bounded above by
cd/(1+ |x − y|)d−2 for every x and y. Hence, for x ∈ 3N,M ,

varPN (H
φ
3N
(x)) =

∑
y,y′∈∂3N

p3N (x, y)p3N (x, y
′)G3N (y, y

′)

≤
cd

M(d−2)/2

∑
y,y′∈∂3N
|y−y′|≥M1/2

p3N (x, y)p3N (x, y
′)+cd

∑
y,y′∈∂3N
|y−y′|<M1/2

p3N (x, y)p3N (x, y
′)

≤
cd

M(d−2)/2 +cd
(

max
y∈∂3N
x∈3N,M

p3N (x, y)
) ∑
y∈∂3N

p3N (x, y)|{y
′
∈ ∂3N : |y

′
−y| < M1/2

}|

≤
cd

M(d−2)/2 +d2d−1cdM
(d−1)/2

(
max
y∈∂3N
x∈3N,M

p3N (x, y)
)
.

We are now going to bound the term in parentheses in the last line by M−d+1 times a
constant that depends only on the dimension; once this is done, the proof of Lemma 6.9 is
complete. This can be achieved by using the explicit expression for p3N (x, y)—the exit
probability from a cube—that one finds in [38, Prop. 8.1.3], but this expression is rather
involved and we prefer to perform some steps to bound p3N (x, y) by an exit probability
from a half-space. For this we observe that without loss of generality we can assume that
y belongs to the hyperplane Hd := {z ∈ Zd : zd = 0} and, by elementary considerations,

p3N (x, y) ≤ pH+d
(x, y), where H+d := {z : zd ≥ 0}.

In order to simplify the expression further, let us point out that we are left with estimating
maxy pH+d (x, y) and we can therefore simply consider the case of x = (0, . . . , 0, L) with
L ≥ M . We have

pH+d

(
(0, . . . , 0, L), (y1, . . . , yd−1, 0)

)
= pH+d

(
(−y1, . . . ,−yd−1, L), (0, . . . , 0)

)
=

2L
6d |z|d

(
1+O

(
L

|z|2

))
+O

(
1
|z|d+1

)
,

where z = (−y1, . . . ,−yd−1, L) and in the second step we have used [38, Th. 8.1.2]
(6d is the measure of the (d−1)-surface of the unit ball in Rd ). This last estimate suffices
to conclude the proof of Lemma 6.9. ut

Proof of Lemma 6.4. As remarked right after the statement, we can assume u = 0. We use
Lemma 6.9 with N = N1 and M = N0/2. Therefore (using d ≥ 3)

max
x∈3N1

dist(x,3{N1
)≥N0/2

varP̂0(H
φ̂
3N1

(x)) ≤ CdN
−(d−2)/2
0 ≤ Cdρ

1/2
h .

Thus, by exponential Chebyshev bounds, for the x’s we are dealing with we have

P̂0
(
|H

φ̂
3N1

(x)| >
ρ

1/8
h

2

)
≤ 2 exp

(
−
ρ

1/4−1/2
h

8Cd

)
= 2 exp

(
−
ρ
−1/4
h

8Cd

)
.
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By a union bound we see that

P̂u(B{u ) ≤ 2h−3d exp
(
−
ρ
−1/4
h

8Cd

)
,

and the proof is complete. ut

In the proof of Lemma 6.5 we make use of the following estimate whose proof is post-
poned.

Lemma 6.11. For d ≥ 3 and for every κ = 1, 2, . . . we have

sup
B⊂Zd : |B|=κ

∑
(x,y)∈B2

G(x, y) ≤ c(d)κ1+2/d , (6.34)

where c(d) = 2d+4cd (cd is the constant appearing in (2.28)).

Proof of Lemma 6.5. Recall (6.14) and (6.15). We use

Pφ̂N1
(A{κ ) = Pφ̂N1

(A(1){)+ Pφ̂N1
(A(2){κ ∩ A(1)), (6.35)

and we estimate the two terms on the right-hand side, uniformly over φ̂ ∈ Bu.
For the first term we start by observing that since φ̂ ∈ Bu,

Pφ̂N1
(|H

φ

Cj (x)− u| > ρ
1/8
h ) ≤ Pφ̂N1

(
|H

φ

Cj (x)− Eφ̂N1
[H

φ

Cj (x)]| > ρ
1/8
h /2

)
,

and we apply Lemma 6.9 with N = 2N0 and M = N0/2 to find that for every x ∈ Cj ,

var
Pφ̂N1

(H
φ

Cj (x)) ≤ Cd(N0/2)−(d−2)/2
≤ 2(d−2)/2Cdρ

1/2
h =: C

′

dρ
1/2
h ,

and therefore for such x’s,

Pφ̂N1

(
|H

φ

Cj (x)− u| > ρ
1/8
h

)
≤ 2 exp

(
−
ρ
−1/4
h

8C′d

)
.

Therefore, by a union bound,

sup
φ̂∈Bu

Pφ̂N1
(A(1){) ≤ Nd

1 2 exp
(
−
ρ
−1/4
h

8C′d

)
,

where Nd
1 = h

−3d , and therefore this term is O(hα) for any α > 0. So, in view of (6.16),
we can safely focus on the second term on the right-hand side of (6.35).

For such a term, we first observe that

Pφ̂N1
(A(2){κ ∩ A(1)) = Pφ̂N1

(⋃
j∈J

{∑
x∈Bj

δx > κ
}
∩ A(1)

)
≤

∑
j∈J

Pφ̂N1

({∑
x∈Bj

δx > κ
}
∩

{
max
x∈Bj
|H

φ

Cj (x)− u| ≤ ρ
1/8
h

})
.
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We now condition on the σ -algebra generated by (φx)x∈⋃j∈Jw ∂Cj , and by the Markov
property we obtain

Pφ̂N1
(A(2){κ ∩ A(1)) ≤

∑
j∈J

sup′ Pφ̂Cj
(∑
x∈Bj

δx > κ
)
, (6.36)

where sup′ stands for the supremum over φ̂ such that maxx∈Bj |H
φ̂

Cj (x) − u| ≤ ρ
1/8
h . To

bound the sup′ term, we proceed as follows:

Pφ̂Cj
(∑
x∈Bj

δx > κ
)
≤

∑
x1,...,xκ∈Bj
xi 6=xi′ for i 6=i′

Pφ̂Cj

(
1
κ

κ∑
i=1

|φxi | ≤ 1
)
, (6.37)

and

Pφ̂Cj

(
1
κ

κ∑
i=1

|φxi | ≤ 1
)
≤ Pφ̂Cj

(
1
κ

κ∑
i=1

φxi ≤ 1
)
≤ P0

Cj

(
1
κ

κ∑
i=1

φxi ≤ 1−
1
κ

κ∑
i=1

H
φ̂

Cj (x)

)

≤ P0
Cj

(
1
κ

κ∑
i=1

φxi ≤ 1− u+ ρ1/8
h

)
≤ P0

Cj

(
1
κ

κ∑
i=1

φxi ≥ u− 2
)
,

where in the last step we have used the symmetry and the choice of subtracting 2 is
arbitrary (any number larger than 1 would do, and we have to choose h sufficiently small).
It is now a matter of estimating the variance of κ−1∑κ

i=1 φxi uniformly over the location
of x1, . . . , xκ . In fact, we apply Lemma 6.11 to obtain

varP0
Cj

(
1
κ

κ∑
i=1

φxi

)
≤ c(d)κ−1+2/d

≤ c(d)κ−1/3,

and therefore (6.3) yields

P0
Cj

(
1
κ

κ∑
i=1

φxi ≥ u− 2
)
= P

(
N ≥ κ1/6c(d)−1/2(u− 2)

)
≤ hκ

1/3/(2c(d)),

where N is a standard Gaussian random variable. With this estimate we now go back to
(6.37) and we obtain

Pφ̂Cj
(∑
x∈Bj

δx > κ
)
≤ Nκ

0 h
κ1/3/(2c(d))

≤ hκ
1/3/(3c(d))

for h sufficiently small. In turn, this estimate yields the control (see (6.36))

Pφ̂N1
(A(2){κ ∩ A(1)) ≤ h−3dhκ

1/3/(3c(d))
≤ hκ

1/4

for κ such that 9dc(d) ≤ κ1/3
− 3c(d)κ1/4. Let us choose κ1/3

≥ 6c(d)κ1/4, that is,
κ ≥ (6c(d))12, and, under this assumption, 9dc(d) ≤ κ1/3

− 3c(d)κ1/4 is satisfied if
κ1/3
≥ 18dc(d). Taking into account these two lower bounds on κ we see that it suffices

to choose κ ≥ d3612c(d)12. The proof of Proposition 6.3 is therefore complete. ut



238 Giambattista Giacomin, Hubert Lacoin

Proof of Lemma 6.11. First of all we introduce d�(x, y) := maxi=1,...,d |xi−yi | ≤ |x−y|

and we start from the direct consequence of (2.28): for every x, y ∈ Zd ,

G(x, y) ≤
cd

(1+ d�(x, y))d−2 =: g�(d�(x, y)). (6.38)

Thanks to (6.38), it suffices to prove the statement for
∑
(x,y)∈B2 g�(x − y). We then

observe that for any B ⊂ Zd with |B| = j and every z /∈ B we have

∑
(x,y)∈(B∪{z})2

g�(x − y)−
∑

(x,y)∈B2

g�(x − y) ≤ 2
j∑
i=1

g�(xi)+ g�(0),

where x1, x2, . . . yields a fully packed configuration of points around the origin. By this
we mean that if B(n) = {−n, . . . , n}d andA(n) = B(n)\B(n−1), then x1, . . . , x|B(1)| is
an arbitrary numbering of the points inA(1), x|B(1)|+1, . . . , x|B(2)| is an arbitrary number-
ing of the points in A(2), and so on. Of course z disappears because it has been translated
to the origin. We have

2
j∑
i=1

g�(xi) ≤ 2cd
∑

m=1,2,...
m≤j1/d/2+1/2

|A(m)|

(1+m)d−2 ≤ 2d+1cd
∑

m=1,2,...
m≤j1/d

(m+ 1)

≤ 2dcd(j1/d
+ 2)2 ≤ 2d+1cd(j

2/d
+ 4) ≤ 5 · 2d+1cdj

2/d ,

where in the first step we have simply made g�(·) explicit, used the fact that it is constant
on annuli and that with j points we cannot go beyond filling j1/d/2 + 1/2 (≤ j1/d)

annuli. In the second step instead we used A(n) ≤ 2d(2m + 1)d−1
≤ d2d(m + 1)d−1.

Therefore for any B with |B| = j and every z /∈ B we have∑
(x,y)∈(B∪{z})2

g�(x − y)−
∑

(x,y)∈B2

g�(x − y) ≤ 5 · 2d+1cdj
2/d
+ cd ,

so that for any B with |B| = κ ,

∑
(x,y)∈B2

g�(x − y) ≤ κg�(0)+ 5 · 2d+1cd

κ−1∑
j=1

j2/d

≤ κcd + 5 · 2d+1cdκ
1+2/d

≤ 2d+4cdκ
1+2/d ,

and the proof is complete. ut

7. The two-dimensional case

This section is dedicated to the proof of Theorem 2.3. The first step of the proof in Section
7.1 is to establish a finite volume criterion similar to (4.8). Then in Sections 7.2 and 7.3 we
will use replica coupling arguments in the spirit of Lemma 6.6 to bound the free energy
of a system with finite volume.
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7.1. A finite volume criterion and replica coupling in dimension two

We want to have a criterion similar to (4.8) in two dimensions but the problem we face is
that there is no infinite volume limit for the two-dimensional lattice free field. A way out
is to consider the massive free field (2.32) and then find a way to compare the free energy
with the original one.

We let Pu,m be the law of the infinite volume limit of the massive free field with
mean u and mass m (we write P̂u,m when the variable is denoted by φ̂). We also define
the measure in finite volume with boundary conditions:

Pφ̂,u,mN (dφ) =
1

Z φ̂,u,m
N

( ∏
x,y∈3N
x∼y

exp
(
−
(φx − φy)

2

4

))( ∏
x∈3N\∂3N

e−m
2(φx−u)

2/2dφx
)
,

where

Z φ̂
N :=

∫
R3N \∂3N

( ∏
x,y∈3N
x∼y

exp
(
−
(φx − φy)

2

4

))( ∏
x∈3N\∂3N

e−m
2(φx−u)

2/2dφx
)
. (7.1)

The particular case where φ̂ ≡ u is denoted by Pu,mN . We set

Z
β,ω,φ̂,u,m
N,h := Eφ̂,u,mN

[
exp

( ∑
x∈3̃N

(βωx − λ(β)+ h)δx

)]
, (7.2)

and denote by Zβ,ω,u,mN,h the partition function corresponding to constant boundary condi-
tions u. Similarly to Proposition 4.2, we can prove:

Proposition 7.1. For any m and u,

lim
N→∞

1
N2E

[
logZβ,ω,u,mN,h

]
= lim
N→∞

1
N2EÊu,m

[
logZβ,ω,φ̂,u,mN,h

]
= F(β, h,m, u), (7.3)

and furthermore for any value of N ,

1
Nd

EÊu,m
[
logZβ,ω,φ̂,u,mN,h

]
≤ F(β, h,m, u). (7.4)

Note that, unlike the massless (m = 0) case, there is now a dependence on u (and on m).
Now, for this criterion to be useful, we need to be able to compare F(β, h,m, u) with
F(β, h). The idea is the following: the derivative of the massive free field measure with
respect to the non-massive one has the expression

dPu,mN
dPuN

=
1
Wm
N

exp
( ∑
x∈3N\∂3N

−
m2

2
(φx − u)

2
)
, (7.5)

where

Wm
N := EuN

[
−
m2

2

∑
x∈3N\∂3N

(φx − u)
2
]
= EN

[
exp

(
−
m2

2

∑
x∈3N\∂3N

φ2
x

)]
. (7.6)



240 Giambattista Giacomin, Hubert Lacoin

Lemma 7.2. We have

lim
N→∞

1
N2 logWm

N =−
1
2

∫
[0,1]2

log
(

1+
m2

4[sin2(πx/2)+ sin2(πy/2)]

)
dx dy =−f (m).

(7.7)
Around zero we have the equivalence

f (m)
m↘0
∼ cWm

2
|logm| with cW :=

1
4π
. (7.8)

Furthermore,
F(β, h,m, u) ≤ F(β, h)+ f (m). (7.9)

Proof. Let us start by proving that (7.9) can be deduced from (7.7). Because the expo-
nential in (7.5) is always smaller than 1, we have

Z
β,ω,u,m
N,h ≤

1
Wm
N

Z
β,ω,u
N,h .

The result is obtained by taking log, dividing byNd and passing to the limit. The functions
ui , i = 1, . . . , N − 1, defined by

ui(k) :=
√

2/N sin(ikπ/N) (7.10)

form an orthogonal base of eigenfunctions of the one-dimensional Laplacian with Dirich-
let boundary conditions on [0, N] ∩ Z. Let 0 > −λ1 > · · · > −λ(N−1) denote the
associated eigenvalues where

λi := 2(1− cos(iπ/N)). (7.11)

We set

vi,j (x1, x2) := ui(x1)uj (x2), (7.12)

αi,j (φ) :=
∑

x∈3N\∂3N

vi,j (x)φx . (7.13)

From Parseval’s formula we have∑
x∈3N\∂3N

φ2
x =

N−1∑
i,j=1

αi,j (φ)
2.

Now note that when φ has law PN , the αi,j (φ) are independent Gaussian variables. Their
variance is equal to (λi + λj )−1. Hence

Wm
N :=

N−1∏
i,j=1

E
[

exp
(
−

m2

2(λi + λj )
N 2

)]
=

(N−1∏
i,j=1

√
1+

m2

(λi + λj )

)−1

, (7.14)

where N is a standard Gaussian. It is then standard (it is a Riemann sum) to check that

1
N2 logWm

N := −
1

2N2

N−1∑
i,j=1

log
(

1+
m2

(λi + λj )

)
(7.15)
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converges to

−
1
2

∫
[0,1]2

log
(

1+
m2

4[sin2(xπ/2)+ sin2(yπ/2)]

)
dx dy.

For the leading order asymptotic behavior one can restrict the domain of integration to
positive x and y such that x2

+ y2
≤ ε2 with ε arbitrarily small. After passing to polar

coordinates the estimate becomes rather straightforward. ut

As a consequence of Lemma 7.2 and Proposition 7.1 we obtain the following finite vol-
ume criterion:

Corollary 7.3. For every m, N and u,

F(β, h) ≥
1
N2EÊu,m

[
logZβ,ω,φ̂,u,mN,h

]
− f (m). (7.16)

To estimate the quantity EÊu,m[logZβ,ω,φ̂,u,mN,h ] we will use (as for Lemma 6.6) the fol-
lowing bound derived from replica coupling. For the proof see Appendix A where the
slightly more involved proof of Lemma 6.6 is given in detail.

Lemma 7.4. For all u ∈ R, all m > 0 and all boundary conditions φ̂,

logZβ,ω,φ̂,u,mN,h ≥ log Eφ̂,u,mN

[
e
h
∑
x∈3̃N

δx
]
− log

〈
exp

(
2β2

∑
x∈3̃N

δ(1)x δ(2)x

)〉⊗2
, (7.17)

where

〈·〉 = 〈·〉N,h,φ̂,u,m :=
Eφ̂,u,mN [· exp(h

∑
x∈3̃N

δx)]

Eφ̂,u,mN [exp(h
∑
x∈3̃N

δx)]
. (7.18)

7.2. A first, rough bound on the critical point (warm up argument)

In order to use (7.16) in the most efficient way, for a given β we must tune up the values
of m, u and N to obtain the best possible bound.

We start by stating and proving a weaker version of Theorem 2.3 obtained by choosing
u = 0. The proof uses some of the steps that will be used for Theorem 2.3, but not all,
and it is considerably simpler. So it can be viewed as a warm up.

Proposition 7.5. When d = 2 and ω is Gaussian, for every β0 > 0 there exists a constant
c > 0 such that

hc(β) ≤ cβ
2/
√
|logβ| for all β < β0. (7.19)

Proof. It suffices to prove the result for β small. So let us choose β > 0 and setN = 1/β;
with slight abuse we will assume N ∈ N. We introduce a mass m and exploit Corol-
lary 7.3, but with u = 0. We aim at showing that there exists c > 0 such that if
h > cβ2/

√
|logβ| then there exists m0 such that

1
N2EÊ0,m[logZβ,ω,φ̂,0,mN,h

]
− f (m) > 0 for m < m0. (7.20)

When applying Lemma 7.4 we then have to deal with two terms:
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• For the first one we obtain a lower bound just by computing and using Jensen’s in-
equality:

1
N2 Ê0,m[logEZβ,ω,φ̂,0,mN,h

]
=

1
N2 Ê0,m logZφ̂,0,mN,h

≥
1
N2 Ê0,mEφ̂,m,0

[
h
∑
x∈3̃N

δx

]
= hE0,m

[δ0]. (7.21)

• For the second term we need an upper bound and we observe that
1
N2 Ê0,m log

〈
exp

(
2β2

∑
x∈3̃N

δ(1)x δ(2)x

)〉⊗2

N,0,m,h;φ̂

≤
β2(e2

− 1)
N2 Ê0,m

〈 ∑
x∈3̃N

δ(1)x δ(2)x

〉⊗2

N,0,m,h;φ̂
=
β2(e2

− 1)
N2 Ê0,m

∑
x∈3̃N

〈δx〉
2
N,0,m,h;φ̂

≤
7β2

N2 Ê0,m
∑
x∈3̃N

〈δx〉
2
N,0,m,0;φ̂, (7.22)

where in the first inequality we have used the fact that β2∑
x∈3̃N

δ
(1)
x δ

(2)
x ≤ 1 and

Lemma 6.8, and in the second we have used the fact that h = o(β2), therefore the
Radon–Nikodym density (7.18) can be made arbitrarily close to 1 when β becomes
small.

By separating the contribution of the boundary in the second term (i.e. the rightmost term
in (7.22)), we realize that it suffices to show that

hE0,m
[δ0]−

7β2

N2 Ê0,m
∑
x∈3̊N

〈δx〉
2
N,0,m,0;φ̂−

7dβ2

N
E0,m
[δ0]−2cWm2

|logm| > 0, (7.23)

where the boundary term is irrelevant because 7dβ2/N = O(β3), hence it is dominated
by h for β small. We are playing on choosing β small, hence N large, but one should
think that we have chosen β, possibly small, and then we choose m as small as we wish
or need.

In particular

〈δx〉N,0,m,0;φ̂ ≤ 〈δx〉N,0,m,0;0 = P

(
|N | ≤

1
γx

)
≤

√
2
π

1
γx
,

where γ 2
x is the variance of φx under the massive field with Dirichlet boundary conditions.

Hence

Ê0,m
〈δx〉

2
N,0,m,0;φ̂ ≤

√
2
π

1
γx

Ê0,m
〈δx〉N,0,m,0;φ̂ =

√
2
π

1
γx

E0,m
[δ0]. (7.24)

By choosingm sufficiently small we can say that γ 2
x is bounded below by the variance

in the m = 0 case times a positive number smaller than 1, that is, by (2.30),

γ 2
x ≥

1
5π

log dN (x),
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at least if dN (x) := dist(x, ∂3N ) is larger than a fixed positive number d0. It is at this
stage more practical to lose track of the constants and choose a c′ > 0 such that γ 2

x ≥

c′ log(dN (x)+ 1) for every x ∈ 3̊N . Therefore√
2
π

7β2

N2 E0,m
[δ0]

∑
x∈3̊N

1
γx
≤ 7

√
2
c′π

(
1
N2

∑
x∈3̊N

1√
log(dN (x)+ 1)

)
β2E0,m

[δ0]

≤ c′′
β2√
|logβ|

E0,m
[δ0],

where c′′ is a positive constant that one can easily express in terms of c′.
Going back to (7.23) we therefore see that it suffices to prove that

(
c − c′′ − 7dβ

√
|logβ|

) β2√
|logβ|

E0,m
[δ0] − 2cWm2

|logm| > 0,

and it is clearly necessary to choose c > c′′, which we do, hence c−c′′−7dβ
√
|logβ| > 0

for β suitably small. It is now clear that if E0,m
[δ0] � m2

|logm| we are done. But

E0,m
[δ0] = P(|N | ≤ 1/σm)

where σ 2
m is the variance of the infinite volume massive field, which satisfies

σ 2
m =

∫
∞

0
e−m

2tP 0(X(t) = 0) dt
m↘0
∼

1
2π
|logm|, (7.25)

where the asymptotic equivalence is a direct consequence of the Local Central Limit
Theorem [38, Th. 2.5.6]: P 0(X(t) = 0) ∼ (4πt)−1 as t tends to infinity (recall the
speed factor 4 with respect to [38]). We therefore see that E0,m

[δ0] is bounded below by
1/
√
|logm| (times a positive constant) and the proof is complete. ut

7.3. Proof of Theorem 2.3

For the proof we choose an arbitrary (small) β > 0 andN = 1/β; again, with slight abuse
we will assume N ∈ N. We will then make estimates by introducing a massive field; the
mass m will be taken to go to zero and the height of the field u will be a function of m
(see (7.29) below) that tends to infinity as m ↘ 0. Our estimates correspond to taking
m ↘ 0 first and then β ↘ 0. Let us focus first on choosing the mean height u = um of
the massive field that we intend to exploit.

Setting the parameters of the massive field (mass and height). Let us start by recalling
the behavior of the the variance σ 2

= σ 2
m of the infinite volume massive field (7.25). We

now assume that um is such that limm→0 um/σ
2
m =
√

8π =: C. A precise choice of um
is made in (7.29) below but for now we need neither this expression nor the precise value
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of the positive constant C. To make formulas lighter we write σ = σm and u = um. We
then compute

Eu,m[δ0] =

∫ 0

−2

1
√

2πσ 2
exp

(
−
(x − u+ 1)2

2σ 2

)
dx

=
1

√
2πσ 2

exp
(
−
(u− 1)2

2σ 2

)∫ 0

−2
exp

(
x(u− 1)
σ 2 −

x2

2σ 2

)
dx, (7.26)

and since limm↓0(u−1)/σ 2
= C we readily see that the integral in the last line converges

to ∫ 0

−2
exp(xC) dx = (1− e−2C)/C.

On the other hand, we see that

exp
(
−
(u− 1)2

2σ 2

)
m↘0
∼ exp

(
−
u2

2σ 2

)
exp(C),

so that

Eu,m[δ0]
m↘0
∼ exp

(
−
u2

2σ 2

)
sinh(C)
√
π/2C

1
σ
∼ exp

(
−
u2

2σ 2

)
sinh(C)
C

2√
|logm|

. (7.27)

We now choose u = um such that

1√
|logm|

exp
(
−
u2

2σ 2

)
= C′m2

|logm|2 for C′ =
C

2 sinh(C)
. (7.28)

Let us point out that, because of (7.25), the choices (7.28) and u/σ 2
∼ C forceC =

√
8π .

Remark 7.6. The choice (7.28) is linked to the fact that in the replica argument this term
corresponds to the energy gain, and it needs to beat the loss due to the presence of the
term f (m) ∼ cWm

2
|logm| in the free energy lower bound (7.16).

Here is a slightly more explicit expression for u:

u2

2σ 2 = 2|logm| −
5
2

log |logm| − logC′. (7.29)

For the convenience of the reader we collect here the asymptotic behaviors (m↘ 0):

u ∼

√
2
√
π
|logm|, σ ∼

1
√

2π

√
|logm|,

u

σ 2 ∼
√

8π. (7.30)

Replica coupling estimates. Recall that N = 1/β. We aim at showing that if h = βb for
any b < 3, there exists a β0 such that for β < β0 there exists m0 such that

1
N2EÊu,m

[
logZβ,ω,φ̂,u,mN,h

]
− f (m) > 0 for m < m0.
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Using Lemma 7.4 we see that it suffices to show that

1
N2 Êu,m

[
logEZβ,ω,φ̂,u,mN,h

]
−

1
N2 Êu,m log

〈
exp

(
2β2

∑
x∈3̃N

δ(1)x δ(2)x

)〉⊗2
− f (m) > 0.

From the choice of u (cf. (7.27) and (7.28)), once the choice of β (hence of N and h) is
made, for m sufficiently small we have

1
N2 Êu,m

[
logEZβ,ω,φ̂,u,mN,h

]
− f (m) ≥ hEu,m[δ0] − f (m) ≥

h

2
m2
|logm|2, (7.31)

where the first inequality is Jensen’s. Therefore we are left with estimating

1
N2 Êu,m log

〈
exp

(
2β2

∑
x∈3̃N

δ(1)x δ(2)x

)〉⊗2

N,u,m,h;φ̂

(7.32)

from above. The first point to remark is that, thanks to the choice of N , the argument of
the exponential is bounded by 2. This way at the cost of loosing a multiplicative constant,
the exponential and log essentially cancel each other. More precisely, by Lemma 6.8, the
expression in (7.32) is bounded by e2

− 1 times

2β2

N2 Êu,m
〈 ∑
x∈3̃N

δ(1)x δ(2)x

〉⊗2

N,u,m,h;φ̂
=

2β2

N2

∑
x∈3̃N

Êu,m(〈δx〉2N,u,m,h;φ̂).

With our choice of h = o(β2) we see that the Radon–Nikodym derivative in (7.18) is
bounded above and below uniformly in β small, and we can even replace 〈·〉N,u,m,h;φ̂
with the original measure at the expense of a multiplicative constant that can be chosen
arbitrarily close to 1. Hence

1
N2 Êu,m log

〈
exp

(
2β2

∑
x∈3̃N

δ(1)x δ(2)x

)〉⊗2

N,u,m,h;φ̂
≥

2(e2
− 1)β2

N2

∑
x∈3̃N

Êu,m(Eu,m,φ̂N δx)
2,

(7.33)
where of course β2/N2

= β4.

Lemma 7.7. For any ε > 0, there exists a constant Cε > 0 such that for all N , all
m ≥ m0(N) and all x ∈ 3̃N ,

Êum,m(Eum,m,φ̂N δx)
2
≤ Cεm

2
|logm|2(dN (x)+ 1)−1+ε, (7.34)

where dN (x) is the distance from x to ∂3N .
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In view of (7.31) and (7.33), Lemma 7.7 directly implies the result we are after. In fact,
for b = 3− 2ε we have

1
N2 Êu,m

[
logEZβ,ω,φ̂,u,mN,h

]
−

1
N2 Êu,m log

〈
exp

(
2β2

∑
x∈3̃N

δ(1)x δ(2)x

)〉⊗2

N,u,m,h;φ̂
− f (m)

≥
h

2
m2
|logm|2 − 2(e2

− 1)
β2

N2

∑
x∈3̃N

Êu,m(Eu,m,φ̂N δx)
2

>
( 1

2β
3−2ε
− Cε,dβ

3−ε)m2
|logm|2, (7.35)

with Cε,d a positive constant, where in the last step we have used the bound

∑
x∈3̃N

1
(dN (x)+ 1)1−ε

≤ 4N
N∑
n=1

1
n1−ε ≤

4
ε
N1+ε

=
4
ε
β−1−ε.

Since for β sufficiently small the right-hand side in (7.35) is positive, we are done. ut

Proof of Lemma 7.7. First of all we remark that the result is trivial for dN (x) = O(1),
because by (7.27) and (7.28),

Êum,m(Eum,m,φ̂N δx)
2
≤ Êum,m(Eum,m,φ̂N δx) = Eum,mδx = O(m2

|logm|2).

Hence, it suffices to prove (7.34) for x such that dN (x) is larger than a constant that may
depend on ε. At this point we note that the variable φx can be written as the sum of two
independent Gaussian variables,

ϕx := Eu,m,φ̂N φx and ψx := φx − ϕx . (7.36)

The variance of ψx tends, as m↘ 0, to G3N (x, x). From (2.30) we have

G3N (x, x) ≥ (1− (ε/2))
1

2π
log dN (x)

for x far from the boundary (how far depends just on ε and not on N ). Hence for m
sufficiently small we have

η2
:= Var(ψx) ≥ (1− ε)

1
2π

log x.

Since we are performing the estimates by sending first m to zero, we are effectively per-
forming our estimates in the regime

σ 2
− η2

� η2
� 1.

Recall that gσ 2(·) is the density of a centered Gaussian variable with variance σ 2. One
has

Êu,m(Eu,m,φ̂N δx)
2
=

∫
∞

−∞

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds,

and to this expression we can directly apply the next lemma.
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Lemma 7.8. Recall that σ = σm. For every ε ∈ (0, 1) there exists η0 > 0 such that for
every η > η0 there exists m0 > 0 such that for every m ∈ (0, m0) we have σ > η and∫
∞

−∞

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds ≤ 2C′m2
|logm|2 exp(−2π(1−ε)η2). (7.37)

It is now just a matter of observing that

exp(−2π(1− ε)η2) ≤ dN (x)
−(1−ε)2 ,

and we are done. ut

7.4. Proof of Lemma 7.8

In (7.37) we consider separately the case of s larger or smaller than u − η: note that
u − η ∼ u in the limit that suffices to consider to establish the result, i.e. σ � η � 1,
even if, at this stage, we cannot replace u with u− η. The choice of u− η is arbitrary in
the sense that u− cη with c ≥ 1/

√
2 would do.

We start by considering s ≥ u− η and we have

∫
∞

u−η

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds

≤

∫
∞

u−η

gσ 2−η2(s) ds = P
(
N ≥

u− η√
σ 2 − η2

)
. (7.38)

Since P(Z ≥ t) ≤ 1
√

2πt
exp(−t2/2) for every t > 0, we can continue (7.38) by

P

(
N ≥

u− η√
σ 2 − η2

)
≤

√
2
π

σ

u
exp

(
−

(u− η)2

2(σ 2 − η2)

)
(7.39)

for m such that u ≥ 2η. By recalling that limm u/σ
2 is a positive constant we see that

(u− η)2

2(σ 2 − η2)
=

u2

2σ 2 −
ηu

2σ 2 +
u2η2

2σ 4 +O

(
η4

σ 4

)
. (7.40)

More precisely, since limm u/σ
2
=
√

8π , we see that for every q < 1 (but we choose
q ∈ (1/2, 1)), we have

−
ηu

2σ 2 +
u2η2

2σ 4 ≥ 4πqη2

for η sufficiently large and m sufficiently small. Therefore, by choosing if needed m even
smaller so that σ/u ∼ 1/(2

√
|logm|) is smaller than 1/

√
|logm| and theO[(η/σ)4] term
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in (7.40) can be absorbed by replacing q with a smaller value still larger than 1/2, we
have∫

∞

u−η

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds ≤
1√
|logm|

exp
(
−
u2

2σ 2

)
exp(−4πqη2)

= C′m2
|logm|2 exp(−4πqη2), (7.41)

where in the last step we have used (7.28). In view of what we need to establish, that is,
(7.37), we can move to look for an upper bound for the case s ≤ u− η.

For s ≤ u− η, we use instead∫ u+1−s

u−1−s
gη2(t) dt = P

(
N ∈

u− s − 1
η

+

[
0,

2
η

])
≤ P

(
N ≥

u− s − 1
η

)
≤

1
√

2π

η

u− s − 1
exp

(
−

1
2

(
u− s − 1

η

)2)
≤

η

u− s
exp

(
−

1
2

(
u− s

ηε

)2)
, (7.42)

where ηε := η/(1−ε)with ε ∈ (0, 1/20), and we have used the bounds on the distribution
of N recalled just after (7.38) (we are choosing m and 1/η sufficiently small). Hence

∫ u−η

−∞

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds ≤
1

(2π)3/2
η2

σ1

∫ u−η

−∞

exp
(
−

s2

2σ 2
1
−

(u−s)2

η2
ε

)
(u− s)2

ds,

(7.43)
where we have introduced

σ1 :=
√
σ 2 − η2.

Recall that we look for a result in a regime in which σ1 ∼ σ . We now reconstruct the
square in the term in the exponential to find that the right-hand side of (7.43) equals

1
(2π)3/2

η2

σ1
exp

(
−

u2

η2
ε + 2σ 2

1

)∫ u−η

−∞

1
(u− s)2

exp
(
−
η2
ε + 2σ 2

1

2η2
εσ

2
1

(
s −

2uσ 2
1

η2
ε + 2σ 2

1

)2)
ds.

(7.44)
Let us introduce

am,ηε := u−
2uσ 2

1

η2
ε + 2σ 2

1

m↘0
∼
√

2π η2
ε , (7.45)

so that the integral in (7.44) can be rewritten as∫ am,ηε−η

−∞

1
(am,ηε − s)

2 exp
(
−
η2
ε + 2σ 2

1

2η2
εσ

2
1
s2
)

ds. (7.46)

Since η2
ε+2σ 2

1
2η2
εσ

2
1
≥

1
η2
ε

we see that we can bound (7.46) by

1
ηε

∫ am,ηε /ηε−1+ε

−∞

1
(am,ηε/ηε − s)

2 exp(−s2) ds ∼
√
π

ηε

(am,ηε )
2 ∼

1
2
√
π η3

ε

, (7.47)
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where the asymptotic limit is as m ↘ 0 and then η → ∞. Therefore, by (7.45)–(7.47)
and the choice of ε < 1/20, the integral in (7.44) is smaller than 1/(4η3) for suitably
small m and 1/η. Hence, going back to (7.43) and (7.44) we see that∫ u−η

−∞

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds ≤
1

4(2π)3/2
1
ησ1

exp
(
−

u2

η2
ε + 2σ 2

1

)
, (7.48)

and in turn, with cε := 2− (1− ε−2
≥ 1− 3ε (ε < 1/20), we have

exp
(
−

u2

η2
ε + 2σ 2

1

)
= exp

(
−
u2

2σ 2

)
exp

(
−

cεη
2u2

2σ 2(2σ 2 − cεη2))

)
= C′m2

|logm|5/2 exp
(
−

cεη
2u2

2σ 2(2σ 2 − cεη2)

)
≤ C′m2

|logm|5/2e−(1−3ε)η2( u

2σ2 )
2
,

where we have used (7.28). Finally, since
(
u

2σ 2

)2
> 2π(1− ε) for m small and recalling

also (7.25), going back to (7.48) we obtain∫ u−η

−∞

gσ 2−η2(s)

(∫ u+1−s

u−1−s
gη2(t) dt

)2

ds ≤ C′m2
|logm|2

exp(−2π(1− 4ε)η2)

η
,

which, together with (7.41), yields (7.37), and the proof of Lemma 7.8 is complete. ut

Remark 7.9. The warm up argument of Section 7.2 does not yield interesting informa-
tion in the case of the co-membrane, simply because the probability of visiting the lower
half-plane is 1/2 for a centered field, and the quadratic term in the replica computation
is too large. But the arguments of Section 7.3 have a chance to be generalized because
we introduce a shift in the field that makes the probability of visiting the lower half-plane
small. And they do generalize, giving the analog of Theorem 2.3 for the co-membrane
model; let us quickly see why. The estimate (7.26) becomes

Eu,m[10] =

∫ 0

−∞

1
√

2πσ 2
e
−
(x−u)2

2σ2 dx = P(σN > u) ∼
1
√

2π

σ

u
e
−

u2

2σ2

with u/σ ∼ 2
√
|logm|, and apart from the value of C′ (in (7.28)), we have the analog

of (7.27). In the remainder of the proof, in reality we estimate the probabilities either
by replacing [−1, 1] with R (this is the case in (7.38)), or with (−∞, 1] (see (7.42)).
Therefore the proof can be adapted to the co-membrane set-up.

Remark 7.10. To complete the discussion of Section 2.3 we observe that a lower bound
on the non-disordered free energy F(h) for d = 2 can be obtained by first localizing the
φ field, by introducing a mass, so that we can apply the approach of Section 2.3, and
then optimizing the choice of m as a function of h. More precisely, by Corollary 7.3 (for
β = 0) and by applying the same argument as for the lower bound in Section 2.3 we
obtain

F(h) ≥ h

√
2
π

1
σm
− f (m).
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The two terms on the right-hand side are then estimated for m small by (7.25) and
Lemma 7.2 to conclude that for every positive c < 1 (which can be chosen arbitrarily
close to 1) we have

F(h) ≥
2
c

h√
|logm|

− 2πcm2
|logm|

form smaller than a constant that depends on the choice of c. It is now sufficient to choose
m equal to h to a power larger than 1/2, for example m = h3/4, to find that there exists
C2 > 0 such that

F(h) ≥ C2h/
√
|logh|,

which should be compared to (2.12).

Appendix A. Replica coupling: proof of Lemma 6.6

The argument follows closely the main argument in [40]. We do not detail the proof
of Lemma 7.4 which is extremely similar (and simpler). Let us fix φ̂. Given an event
A ⊂ RZd (in the specific application, A is measurable with respect to {φx : x ∈ 3̊N }, but
at this stage we just require Pφ̂N (A) > 0), we write

FN (β, h;A) :=
1
Nd

E
[
log Eφ̂N

[
exp

(∑
x∈3

(βωx − β
2/2+ h)δx

)
;A
]]

=
1
Nd

log Eφ̂N
[
exp

(
h
∑
x∈3

δx

)]
+ RN,h(β;A), (A.1)

where3 ⊂ 3N (for this proof it suffices to consider3 = 3N1,N0 , but this specific choice
is irrelevant at this stage) and

RN,h(β;A) :=
1
Nd

E
[
log

〈
exp

(∑
x∈3

(βωx − β
2/2)δx

)
;A
〉
N,h;φ̂

]
. (A.2)

Of course

〈·〉N,h;φ̂ :=
Eφ̂N [· exp(h

∑
x∈3 δx)]

Eφ̂N [exp(h
∑
x∈3 δx)]

. (A.3)

By (Gaussian) integration by parts—the basic formula being E[NF(N )] = E[F ′(N )],
which holds for F ∈ C1 with a suitable growth condition at ±∞—we obtain

d
dt

(
−RN,h

(√
t β;A

))
=

β2

2Nd

∑
x∈3

E
[(
〈δx exp(

∑
x∈3(
√
t βωx − tβ

2/2)δx);A〉N,h;φ̂
〈exp(

∑
x∈3(
√
t βωx − tβ2/2)δx);A〉N,h;φ̂

)2]
. (A.4)
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At this point we introduce

ψN,h(t, λ, β;A) :=
1

2Nd
E log 〈exp(HN );A2

〉
⊗2
N,h;φ̂

, (A.5)

where
HN :=

∑
x∈3

(
√
t βωx − tβ

2/2)(δ(1)x + δ
(2)
x )+ λβ2

∑
x∈3

δ(1)x δ(2)x . (A.6)

In particular

ψN,h(0, λ, β;A) =
1

2Nd
E log

〈
exp

(
λβ2

∑
x∈3

δ(1)x δ(2)x

)
;A2

〉⊗2

N,h;φ̂
, (A.7)

ψN,h(t, 0, β;A) = RN,h(
√
t β;A). (A.8)

Again by integration by parts we obtain

d
dt
ψN,h,u(t, λ, β;A) ≤

β2

2Nd
EÊu

[∑
x∈3 δ

(1)
x δ

(2)
x 〈exp(HN );A2

〉
⊗2
N,h;φ̂

〈exp(HN );A2〉⊗2
N,h;φ̂

]

=
d

dλ
ψN,h(t, λ, β;A),

where the inequality comes from neglecting the (negative) term coming from the deriva-
tive of the denominator. We therefore see that (d/ds)ψN,h(t − s, λ + s, β;A) ≥ 0 for
s ∈ [0, t], and so

ψN,h(t, λ, β;A) ≤ ψN,h(0, λ+ t, β;A). (A.9)

Now we go back to (A.4) and we remark that

d
dt

(
−RN,h

(√
t β;A

))
=

d
dλ
ψN,h(t, λ, β;A)

∣∣∣∣
λ=0

, (A.10)

and for t ∈ [0, 1],

d
dλ
ψN,h(t, λ, β;A)

∣∣∣∣
λ=0
≤
ψN,h(t, 2− t, β;A)− RN,h(

√
t β;A)

2− t

≤ ψN,h(0, 2, β;A)− RN,h(
√
t β;A), (A.11)

where the first bound follows by convexity of ψN,h(t, ·, β;A) and (A.8), while for the
second we use 2 − t ≥ 1, non-negativity of the numerator and (A.9). By (A.4) and
by integrating the differential inequality obtained by combining (A.10) and (A.11) one
obtains

1
Nd

log 〈1A〉N,h,φ̂ ≥ RN,h(β;A) ≥
1
Nd

log 〈1A〉N,h,φ̂−(e−1)ψN,h(0, 2, β;A). (A.12)

Therefore, since

〈1A〉N,h,φ̂ =
Eφ̂N [exp(h

∑
x∈3 δx);A]

Eφ̂N [exp(h
∑
x∈3 δx)]

,
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by putting (A.1) and (A.12) together we obtain

FN (β, h;A) ≥
1
Nd

log Eφ̂N
[
exp

(
h
∑
x∈3

δx

)
;A
]
− (e− 1)ψN,h(0, 2, β;A). (A.13)

The expressions in the statement of Lemma 6.6 are retrieved from (A.13) by setting 3 =
3N1,N0 , A = Aκ and by replacing e − 1 with the larger value 2. ut

Appendix B. Proof of Proposition 2.4

We give the proof in four steps.

Step 1: Upper bound on the contact density. The fractional moment method also yields
a quantitative upper bound on the contact fraction: if for c > 0 we introduce the event
BN,c = {

∑
x∈3̃N

δx ≥ cN
d
}, as in (3.5) and (3.7), but this time with α = 2h/β (compare

with (3.4) in the Gaussian case) then

(
E
[√
Z
β,ω
N,h(BN,ChNd )

])2
≤ Ẽ

[
Z
β,ω
N,h(BN,ChNd )

]
exp

(
4
h2

β2N
d

)
≤ ZN,−h(BN,ChNd ) exp

(
4
h2

β2N
d

)
≤ exp

(
−

(
C −

4
β2

)
h2Nd

)
,

so that if we choose C = 6/β2, by the Markov inequality we have

P
(
Z
β,ω
N,h(BN,ChNd ) ≥ exp

(
−2

h2

β2N
d

))
≤ exp

(
−
h2

β2N
d

)
. (B.1)

We now focus on Pβ,ωN,h(BN,ChNd ) = Z
β,ω
N,h(BN,ChNd )/Z

β,ω
N,h, which we are going to bound

from above simply by 1 for ω in the event whose probability is estimated in (B.1), and
otherwise we use, as in Section 2.2 the entropic repulsion estimate [39] infω Z

β,ω
N,h ≥

exp(−r(N)) with r(N) = o(Nd). This yields

EPβ,ωN,h(BN,6hNd/β2) ≤ exp
(
−
h2

β2N
d

)
+ exp

(
r(N)− 2

h2

β2N
d

)
.

The punchline of Step 1 is that

lim
N→∞

EPβ,ωN,h(BN,6hNd/β2) = 0 for every h > 0. (B.2)

Step 2: Neighbor averages below a threshold for too many sites implies high contact
fraction. Set φx = (2d)−1∑

y∼x φy and consider the event that on the even sites there



Disorder relevance for LGFF pinning model 253

is a density of at least ε/2 of the φ variables that in absolute value are smaller than√
(4d)−1 log(1/h):

FN,ε =

{
φ :

∑
x∈3̊N : x even

1
(−
√
(4d)−1 log(1/h),

√
(4d)−1 log(1/h))(φx) ≥

ε

4
Nd

}
.

We aim at showing that there exists h0 such that

lim
N

EPβ,ωN,h(FN,ε) = 0 for h ∈ (0, h0). (B.3)

By (B.2), relation (B.3) is implied by

lim
N→∞

EPβ,ωN,h(B
{
N,6hNd/β2 ∩ FN,ε) = 0,

and by writing once again the probability as ratio of partition functions, by using the lower
bound on the denominator given by the entropic repulsion estimate and by taking the P
expectation, we see that

EPβ,ωN,h(B
{
N,6hNd/β2 ∩ FN,ε) ≤ exp(−r(n)+ hNd)PN (B{N,6hNd/β2 ∩ FN,ε),

so that we are done if we show that for a c ∈ (0, 1) and an h0 > 0 we have

PN (B{N,6hNd/β2 ∩ FN,ε) ≤ exp(−hcNd) for h ∈ (0, h0). (B.4)

For this, use the fact that the event BN,6hNd/β2 contains the event that the 6hNd/β2 (or
more) contacts are all on the even sites. By conditioning on the odd sites and by using the
Markov property—note that FN,ε is measurable with respect to the σ -algebra of the odd
variables—one realizes that the random variables δx , x even, are independent Bernoulli
variables of parameter

px := P

(
1
√

2d
N + φx ∈ [−1, 1]

)
. (B.5)

If |φx | ≤
√
(4d)−1 log(1/h), by the standard Gaussian tail estimate—one can use (6.3)

even if what we claim here is substantially rougher—we see that for h sufficiently small,

px ≥ exp
(
−

1
2 log(1/h)

)
= h1/2

=: p = p(h).

So, once φ ∈ FN,ε is chosen and hence the set (of at least εNd/4 sites x) on which px ≥ p
is determined, we are simply left with a large deviation upper bound on a binomial random
variable B(n, p): it is a well known fact, a direct consequence of the exponential form of
the Markov inequality, that

P
(
B(n, p) ≤ p1n

)
≤ exp(−nf (p,1)) for 1 ∈ (0, 1)

where
f (p,1) := 1p log1+ (1−1p) log((1−1p)/(1− p)).
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If 1 = 1/2, then

f (p, 1/2)
p→0
∼

1
2 (1− log 2)p,

so that f (p, 1/2) ≥ p/10 for p sufficiently small. Therefore for p(h) = h1/2 this implies
in a rather direct way that

PN (B{N,(ε/8)h1/2Nd
∩ FN,ε) ≤ exp

(
−h1/2 ε

40
Nd

)
,

and this implies (B.4) for any c ∈ (1/2, 1) and h sufficiently small.

Step 3: The Gaussian Hamiltonian cannot be too large under the pinning model. We set

HN (φ) :=
∑

(x,y)∈32
\(∂3)2

x∼y

(φx − φy)
2/2 =: (φ,ANφ)N , (B.6)

where AN is a positive definite symmetric (N − 1)d × (N − 1)d matrix and (·, ·)N is
the scalar product on RN−1. In fact AN is just a discrete Laplacian operator with zero
Dirichlet boundary condition which is the generator of the simple random walk killed
upon hitting ∂3N . We have

EPβ,ωN,h(HN (φ) > CNd) ≤ erNEEN
[
e

∑
x∈3̃N

(βωx−β
2/2+h)δx

;HN (φ) > CNd
]

≤ erN+hN
d

PN (HN (φ) > CNd), (B.7)

where in the first step we have once again applied the entropic repulsion bound (rN =
o(Nd)) and in the second step we have taken the expectation with respect to the disorder
and then bounded the pinning part in the obvious way. We are left with estimating the
remaining probability, which is a Gaussian computation: for λ < 1/2,

EN [exp(λHN (φ))] =
∫
R3̊N

√
det(AN )

(2π)(N−1)d
exp

(
−
(1− 2λ)

2
(φ,ANφ)N

) ∏
x∈3̊N

dφx

= (1− 2λ)−(N−1)d/2,

where we have used det(cAN ) = c(N−1)ddet(AN ), c > 0. By applying the Markov
inequality with λ = 3/8 we obtain

PN (HN (φ) > CNd) ≤ 2(N−1)d exp(−(3/8)CNd).

Therefore, by recalling (B.7), we have

EPβ,ωN,h(HN (φ) > CNd) ≤ exp
(
−
C

4
Nd

)
(B.8)

for any C > 8 log 2 (for example C = 6), h small and N sufficiently large.
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Step 4: Conclusion. It now remains to put together (B.3) and (B.8). Let us first observe
that for h sufficiently small,

lim
N→∞

EPβ,ωN,h

(
F {N,1/2,ε ∩

{
φ :

∑
x∈3̊N
x even

1
{∃y, y∼x and |φy |≤

√
(8d)−1 log(1/h)} ≥

εNd

2

})
= 0.

(B.9)

This is because on the event whose probability is computed in (B.9) there will be at
least εNd/4 even sites x on which |φx | >

√
(4d)−1 log(1/h) and at least for one of

the neighboring sites y we have |φy | ≤
√
(8d)−1 log(1/h), while instead there is an-

other neighbor y′ of x for which |φy′ | >
√
(4d)−1 log(1/h). Therefore it is not difficult

to see that this implies (φy − φx)2 + (φy′ − φx)2 ≥ (100d)−1 log(1/h), and in turn
HN (φ) ≥ log(1/h)εNd/(400d). By choosing h sufficiently small we see that the event
under analysis becomes a subset of {HN (φ) > 6Nd

}, and by (B.8) we see that (B.9) tends
to zero. It then remains to repeat the argument (which is now even simpler) to show that
also

lim
N→∞

EPβ,ωN,h

(
F {N,1/2,ε ∩

{
φ :

∑
x∈3̊N
x even

1
{|φx |≤
√
(8d)−1 log(1/h)}} ≥

εNd

2

})
= 0. (B.10)

If we combine (B.9) and (B.10), by recalling (B.3) we conclude. ut
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