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Abstract. We prove that, given any finite link L in R3, there is a high-energy complex-valued
eigenfunction of the harmonic oscillator such that its nodal set contains a union of connected com-
ponents diffeomorphic to L. This solves a problem of Berry on the existence of knotted zeros in
bound states of a quantum system.
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1. Introduction

In [2], Berry conjectures that there should be complex-valued eigenfunctions of the har-
monic oscillator in R3 whose nodal set ψ−1(0) has knotted connected components, and
raises the question of whether there can be eigenfunctions of a quantum system whose
nodal set has components with higher order linking, as in the case of the Borromean rings
(see Fig. 1). Furthermore, Berry remarks that it should be possible to construct these sets
so that they are structurally stable in the sense that any small enough perturbation of the
corresponding eigenfunction (in the Ck norm with k ≥ 1) still has connected components
in the nodal set that are diffeomorphic to the knot or link under consideration.

As a side remark, let us recall [2, 9] that a physical motivation to study the nodal
set of a quantum system is that it is the locus of destructive interference of the wave
function. It is related to the existence of singularities (often called dislocations) of the
phase Im(log(ψ/|ψ |)) and of vortices in the current field Im(ψ∇ψ). The existence of
knotted structures of this type, especially in optics and in fluid mechanics, has recently
attracted considerable attention, both from the theoretical [4, 6] and experimental [3, 10]
viewpoints.

The main result of this paper solves these problems of Berry by showing that any
finite link can be realized as a collection of connected components of the nodal set of
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Fig. 1. The problem involves showing that there are high-energy eigenfunctions ψ of the harmonic
oscillator realizing links, e.g. the trefoil knot and the Borromean rings depicted above, in their nodal
set ψ−1(0).

a high-energy eigenfunction of the harmonic oscillator, and that the link is structurally
stable in the same sense as above. Specifically, we have the following

Theorem 1.1. Let L be any finite link in R3. Then one can deform it with a diffeomor-
phism 8 of R3 so that 8(L) is the union of connected components of the nodal set
ψ−1(0), where ψ is a complex-valued eigenfunction of the harmonic oscillator in R3.
Furthermore, the link 8(L) is structurally stable for the function ψ .

We recall that the eigenfunctions of the harmonic oscillator are the square-integrable func-
tions ψ satisfying the equation

−1ψ + |x|2ψ = λψ (1.1)

in R3. It is well-known that the eigenvalues are of the form

λ = 2N + 3

with N a nonnegative integer, and that the degeneracy of the corresponding eigenspace is
1
2 (N + 1)(N + 2).

The key idea of the proof of Theorem 1.1 is that, using techniques introduced in [4, 5,
6], one can prove that there are complex-valued solutions to the Helmholtz equation

1ϕ + ϕ = 0

in R3 such that the link L is a union of connected components of the nodal set ϕ−1(0),
up to a diffeomorphism. This is pertinent to the study of the eigenvalues of the harmonic
oscillator because, in balls of radius λ−1/2, the high-energy asymptotics of the eigenfunc-
tions are determined by the Helmholtz equation (see e.g. [7, 8]). Heuristically, one can
understand why this is true by introducing the rescaled variable x̃ := λ1/2 x, in terms of
which (1.1) reads

1x̃ψ + ψ = |x̃|
2 ψ/λ2.

The way to make this precise is by computing the high-order asymptotics of the Laguerre
polynomials, which govern the radial part of the eigenfunctions of the harmonic oscillator.
Going over the fine details we will see that the accidental degeneracy of the eigenvalues
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of the harmonic oscillator is an essential ingredient of the proof too, essentially because
it ensures the existence of families of isoenergetic eigenfunctions with a rich behavior in
the angular variables.

The proof of Theorem 1.1 is given in Section 2, although the proofs of two technical
lemmas are relegated to Sections 3 and 4. To conclude this paper, in Section 5 we will
state and discuss a higher-dimensional counterpart of the main theorem that can be proved
using the same argument.

2. Proof of Theorem 1.1

Let us begin by fixing an orthogonal basis of eigenfunctions associated with the harmonic
oscillator Hamiltonian. Specifically, we will take

ψklm := e
−r2/2r lL

l+1/2
k (r2)Ylm(θ, φ), (2.1)

where (r, θ, φ) are spherical coordinates and we are using the standard notation for the
Laguerre polynomials and the spherical harmonics. Here the indices of the eigenfunctions
range over the set

k ≥ 0, l ≥ 0, −l ≤ m ≤ l,

and the eigenvalue corresponding to ψklm is

λkl := 4k + 2l + 3.

Notice that the eigenvalue is independent of m.

In the following lemma we will describe the behavior of the eigenfunction ψklm and
its gradient for large values of k. To state this result, we will use the notation er := x/r
for the unit vector in the radial direction and denote by ∇S2Y (θ, φ) the gradient (in the
unit sphere) of a function Y (θ, φ) of the angular variables. The proof of the lemma is
given in Section 3.

Lemma 2.1. Let us fix some integers l and m as above. Uniformly for r ≤ R, the eigen-
function ψklm admits the asymptotic expansion

ψklm(x) = Akl
[
jl
(√
λkl r

)
+O(1/k)

]
Ylm(θ, φ),

∇ψklm(x) =
√
λkl Akl

[
j ′l
(√
λkl r

)
+O(1/k)

]
Ylm(θ, φ)er

+ Akl
[
jl
(√
λkl r

)
+O(1/k)

]∇S2Ylm(θ, φ)

r

as k → ∞. Here jl is the spherical Bessel function of order l, and Akl is a nonzero
constant.
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In the following lemma we construct an even complex-valued solution of the Helmholtz
equation

1ϕ + ϕ = 0

in R3 such that the link L is a union of connected components of its nodal set up to
a diffeomorphism. The function ϕ is smooth and is conveniently given by a finite sum
of spherical Bessel functions and spherical harmonics. We observe that ϕ is not square-
integrable but it has an optimal decay rate at infinity among all solutions to the Helmholtz
equation. The proof of this lemma is presented in Section 4, and exploits ideas introduced
in [4, 5, 6]:

Lemma 2.2. There are finitely many complex numbers clm, with 0 ≤ l ≤ l0 and −l ≤
m ≤ l, such that the complex-valued function

ϕ :=

l0∑
l=0

l∑
m=−l

clm jl(r) Ylm(θ, φ)

has the following properties:

(i) The function ϕ is even, so clm = 0 for all odd l.
(ii) There is a diffeomorphism 81 of R3 such that 81(L) is a union of connected com-

ponents of the zero set ϕ−1(0).
(iii) 81(L) is structurally stable. More precisely, let S be a compact set containing

81(L). Then there is some δ > 0 such that for any function ϕ′ with ‖ϕ−ϕ′‖C1(S) < δ

one can find a diffeomorphism82 of R3 such that82◦81(L) is a union of connected
components of ϕ′−1(0) that are contained in S.

Let us take a large integer k̂ that will be fixed later, and which we assume to be larger than
l0/2. For each even integer l smaller than 2̂k we set

k̂l := k̂ − l/2, (2.2)

so that the eigenvalue
λ := λk̂l l = 4̂k + 3 (2.3)

does not depend on the choice of l. The desired eigenfunctionψ of the harmonic oscillator
can then be derived from the function ϕ constructed in Lemma 2.2 by setting

ψ :=

l0∑
l=0

l∑
m=−l

clm

Ak̂l l
ψk̂l lm

for a large enough number k̂. Notice that, by construction, ψ is a smooth complex-valued
function in L2(R3) that satisfies (1.1) with λ as in (2.3). Here we have used the fact that
clm = 0 for odd l, since the number k̂l defined in (2.2) is an integer only for even l.
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Let us fix some R > 0 such that the ball centered at the origin and of radius R, which
we will denote by B, contains the link81(L). We claim that for any δ > 0 one can choose
k̂ large enough so that ∥∥ψ(·/√λ)− ϕ(·)∥∥

C1(B)
< δ. (2.4)

This is a rather straightforward consequence of Lemma 2.1. Indeed, using this lemma, an
elementary computation shows that

ψklm

(
x
√
λkl

)
= Akl

[
jl(r)Ylm(θ, φ)+O

(
1
k

)]
,

∇xψklm

(
x
√
λkl

)
= Akl

[
j ′l (r)Ylm(θ, φ)er +

jl(r)

r
∇S2Ylm(θ, φ)+O

(
1
k

)]
.

Hence, substituting these asymptotic expressions in the sum for ψ we find∣∣∣∣ψ( x
√
λ

)
− ϕ(x)

∣∣∣∣ ≤ l0∑
l=0

l∑
m=−l

|clm|

∣∣∣∣ 1
Ak̂l l

ψk̂l lm

(
x
√
λ

)
− jl(r)Ylm(θ, φ)

∣∣∣∣
=

l0∑
l=0

l∑
m=−l

|clm|O

(
1
k̂l

)
≤

C

k̂ − l0/2
≤
C

k̂

provided k̂ is much larger than l0/2 and |x| < R. An analogous argument shows∣∣∇xψ(x/√λ)−∇xϕ(x)∣∣ ≤ C/̂k,
so the estimate (2.4) follows provided k̂ is large enough.

Item (iii) in Lemma 2.2 ensures that, if δ is small enough, the function ψ(·/
√
λ) has

a collection of connected components in its nodal set {ψ(·/
√
λ) = 0} given by the link

82 ◦ 81(L), where 82 is a diffeomorphism of R3 and 82 ◦ 81(L) is contained in B.
Item (iii) also ensures that the link 82 ◦ 81(L) is structurally stable for the eigenfunc-
tion ψ . This implies that the rescaled link83◦82◦81(L) is a union of structurally stable
connected components of ψ−1(0), where 83 denotes the diffeomorphism of R3 given by
the rescaling

83(x) := x/
√
λ.

The theorem then follows by setting 8 := 83 ◦82 ◦81.

Remark 2.3. It is worth noting that the fact that the function ϕ is even was key to con-
structing the radial quantum number kl via (2.2). A straightforward modification of the
argument enables us to consider the case where ϕ is odd. Since the spherical harmonics
have parity (−1)l , we see that

ψklm(−x) = (−1)lψklm(x) = (−1)(λkl−3)/2−2kψklm(x) = (−1)(λkl−3)/2ψklm(x),

so the parity of the basis eigenfunctions only depends on their eigenvalue λkl , and hence
all eigenfunctions of the harmonic oscillator must have a definite parity. More precisely,
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since the eigenvalue λkl has the form 2N + 3 for some nonnegative integer N , the parity
of the eigenfunction ψklm is the same as the parity of N . In particular the nodal set of
the eigenfunction ψ contains (at least) two copies of the link 8(L), as the link 81(L)

constructed in the proof of Lemma 2.2 is contained in the positive octant of R3, which
implies that so is 8(L). Moreover, 8(L) is contained in a small ball of radius Rλ−1/2.

3. Proof of Lemma 2.1

The lemma essentially follows from Hilb’s asymptotic formula for the Laguerre polyno-
mials [12, Theorem 8.22.4]:

e−r
2/2r lL

l+1/2
k (r2) = Akljl

(√
λkl r

)
+O(k(l−1)/2),

d

dr
[e−r

2/2r lL
l+1/2
k (r2)] =

√
λkl

[
Aklj

′

l

(√
λkl r

)
+O(k(l−1)/2)

]
,

with

Akl :=
2
√
π

(√
λkl

2

)−l
0(k + l + 3/2)

k!
.

This formula holds uniformly for r ≤ R. (In fact, the formula for the derivative does not
appear in the above reference, but it is standard —and easy to prove— that this asymptotic
formula can be derived term by term).

The asymptotic expansion for ψklm written in the lemma follows from the iden-
tity (2.1) and the fact that the constant Akl can be estimated for large k as

Akl =
2
√
π
k(l+1)/2

+O(k(l−1)/2).

This is an elementary computation using Stirling’s formula for the factorial and the iden-
tity

0(k + l + 3/2) =
√
π (2k + 2l + 2)!

22k+2l+2(k + l + 1)!
.

4. Proof of Lemma 2.2

LetB be a ball centered at the origin that contains the linkL. There is no loss of generality
in assuming that L is contained in the positive octant of R3, that is,

L ⊂ B ∩ {x1 > 0, x2 > 0, x3 > 0}.

An easy application of Whitney’s approximation theorem ensures that, by perturbing the
link a little if necessary, we can assume that it is a real analytic submanifold of R3.

Let us denote by Lα the connected components of L, with the index α taking values in
a finite set A. Each component Lα is an analytic closed curve without self-intersections.
Our next goal is to write Lα as the transverse intersection of two surfaces 61

α and 62
α .
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Since any closed curve in R3 has trivial normal bundle [11], there exists an ana-
lytic submersion 2α : Wα → R2, where Wα is a tubular neighborhood of Lα and
2−1
α (0) = Lα . We can then take the analytic surfaces 61

α := 2
−1
α ((−1, 1)× {0}) ⊂ Wα

and 62
α := 2

−1
α ({0}× (−1, 1)) ⊂ Wα . Since2α is a submersion, these surfaces intersect

transversally in Lα = 61
α ∩6

2
α .

Now that we have expressed the component Lα as the intersection of two real analytic
surfaces 61

a and 62
α , we can consider the following Cauchy problems, with j = 1, 2:

1ujα + u
j
α = 0, ujα|6jα

= 0, ∂νu
j
α|6

j
α
= 1.

Here ∂ν denotes a normal derivative at the corresponding surface. The Cauchy–Kowa-
lewski theorem then grants the existence of solutions ujα to this Cauchy problem in the
closure of small neighborhoods U jα of each surface 6jα . We can safely assume that the
tubular neighborhoodsU1

α∩U
2
α are small enough so that the neighborhoods corresponding

to distinct components are disjoint. Now we take the union of these pairwise disjoint
tubular neighborhoods,

U :=
⋃
α∈A

(U1
α ∩ U

2
α),

and define a complex-valued function ϕ̂ on the set U as

ϕ̂|U1
α∩U

2
α
:= u1

α + iu
2
α.

The following properties of ϕ̂ are clear from the construction:

(i) ϕ̂ satisfies the equation
1ϕ̂ + ϕ̂ = 0

in the tubular neighborhood U of the link L. We can assume without loss of gener-
ality that U is contained in the positive octant B ∩ {x1 > 0, x2 > 0, x3 > 0}, as is
the link L.

(ii) U can be taken small enough so that the nodal set of ϕ̂ is precisely L, i.e., L =
ϕ̂−1(0).

(iii) The intersection of the zero sets of the real and imaginary parts of ϕ̂ on L is trans-
verse, i.e.,

rank(∇ Re ϕ̂(x),∇ Im ϕ̂(x)) = 2 for all x ∈ L. (4.1)

Let us agree to say that a subset of R3 is symmetric if it is invariant under the inversion
x 7→ −x, and denote by −U the image of the set U under this map. Since U is contained
in the positive octant, U ∩ −U = ∅.

Let us then define an even function ϕ′ in the symmetric set

U ′ := U ∪ −U

as

ϕ′(x) :=

{
ϕ̂(x) if x ∈ U,
ϕ̂(−x) if x ∈ −U.
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By construction, ϕ′ satisfies the Helmholtz equation

1ϕ′ + ϕ′ = 0 (4.2)

in U ′, and its nodal set consists of L and its mirror image under the inversion x 7→ −x.
Denote by S a symmetric closed subset of U ′ whose interior contains the link L. Our

next goal is to construct a solution of the Helmholtz equation in R3 that approximates the
local solution ϕ′ in the set S. To this end, let us take a smooth even function χ : R3

→ R
equal to 1 in a neighborhood of S and identically zero outside U ′, and define a smooth
extension ϕ0 of the function ϕ′ to R3 by setting ϕ0 := χϕ

′, which is an even function too.
Denote by

G(x) :=
cos |x|
4π |x|

the Green’s function of the operator1+1 in R3, which satisfies the distributional equation

1G+G = −δ0

with δ0 the Dirac measure supported at 0. Notice that

ϕ0 = ϕ
′

0 + ϕ
′′

0 , (4.3)

where ϕ′0 is the convolution integral

ϕ′0(x) := G ∗ ρ(x) =

∫
R3
G(x − x′)ρ(x′) dx′ with ρ := −1ϕ0 − ϕ0, (4.4)

and ϕ′′0 := ϕ0 − ϕ
′

0 satisfies the homogeneous Helmholtz equation in R3 by construction:

1ϕ′′0 + ϕ
′′

0 = 0.

The complex-valued function ρ is even and its support is contained in U ′ \S. Accord-
ingly, ϕ′0 is an even function because it is the convolution of G with the even function ρ,
and ϕ′′0 is an even function as well. Observe that an easy continuity argument ensures that
one can approximate the integral (4.4) uniformly in the compact set S by a finite Riemann
sum of the form

ϕ′1(x) :=

J∑
j=−J

ρjG(x − xj ). (4.5)

Specifically, for any δ > 0 there is a large integer J , complex numbers ρj and points
xj ∈ U

′
\S such that the finite sum (4.5) satisfies

‖ϕ′1 − ϕ
′

0‖C0(S) < δ. (4.6)

By the symmetry of the integrand, these quantities can be chosen such that ρ0 = 0,
ρ−j = ρj and x−j = −xj for j > 0, thus guaranteeing that ϕ′1 is an even function.

In the following lemma we show how to “sweep” the singularities of the function ϕ′1
in order to approximate it in the set S by another function ϕ′2 whose singularities are
contained in the complement of the ball B. The proof is based on a duality argument and
the Hahn–Banach theorem.



Knotted zeros in the eigenfunctions of the harmonic oscillator 309

Lemma 4.1. For any δ > 0, there is a finite set {zj }J
′

j=−J ′
of points in R3

\B and complex
numbers cj such that the finite linear combination

ϕ′2(x) :=

J ′∑
j=−J ′

cjG(x − zj ) (4.7)

approximates the function ϕ′1 uniformly in S:

‖ϕ′2 − ϕ
′

1‖C0(S) < δ. (4.8)

Moreover,
c0 = 0, z−j = −zj , c−j = cj ,

for all j > 0, so that ϕ′2 is an even function.

Proof. Consider the space U of all complex-valued functions that are linear combinations
of the form (4.7), not necessarily even, where zj can be any point in R3

\B and the con-
stants cj take arbitrary complex values. By restricting these functions to the set S, U can
be regarded as a subspace of the Banach spaceC0(S) of continuous complex-valued func-
tions on S.

By the Riesz–Markov theorem, the dual of C0(S) is the space M(S) of finite
complex-valued Borel measures on R3 whose support is contained in S. Let us take any
measure µ ∈M(S) such that

∫
R3 f dµ = 0 for all f ∈ U . Let us now define a complex-

valued function F ∈ L1
loc(R

3) as

F(x) :=

∫
R3
G(x̃ − x) dµ(x̃),

so that F satisfies the equation
1F + F = −µ.

In order to check that this is true, notice that the complex-valued measureµ can be viewed
as a compactly supported distribution on R3, so the convolution F := G ∗ µ is a well-
defined distribution and satisfies, in the sense of distributions,

(1+ 1)F = [(1+ 1)G] ∗ µ = −δ ∗ µ = −µ.

To check that F ∈ L1
loc(R

3), notice that if V is any bounded subset of R3, then∫
V

|F(x)| dx ≤

∫
V

∫
S

C

|x − x̃|
d|µ|(x̃) dx ≤ C|µ|(S) sup

x̃∈S

∫
V

dx

|x − x̃|

≤ C|µ|(S)

∫
V ∗

1
|z|
dz ≤ C|µ|(S)|V |2/3,

where we have used the rearrangement inequality to derive the third upper bound. Here
V ∗ denotes the ball centered at the origin and with the same volume |V | as the set V , and
|µ| is the positive measure associated with µ.
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Notice that F is identically zero on R3
\B by the definition of the measure µ and that

F satisfies the elliptic equation
1F + F = 0

in R3
\S, so F is analytic in this set. Hence, since R3

\S is connected and contains R3
\B,

by analyticity the function F must vanish on the complement of S. It then follows that
the measure µ also annihilates any complex-valued function of the form ρjG(x − xj )

because, as the points xj do not belong to S,

0 = ρjF(xj ) =
∫
R3
ρjG(x − xj ) dµ(x).

Therefore ∫
R3
ϕ′1 dµ = 0,

which implies that ϕ′1 can be uniformly approximated on S by elements of the sub-
space U , due to a consequence of the Hahn–Banach theorem. Accordingly, there is a
finite set {zj }J

′

j=1 of points in R3
\B and complex numbers cj such that the function

ϕ̂2(x) :=

J ′∑
j=1

2cjG(x − zj )

approximates the function ϕ′1 uniformly in S:

‖ϕ̂2 − ϕ
′

1‖C0(S) < δ.

The lemma then follows by setting

ϕ′2(x) :=

J ′∑
j=1

cjG(x − zj )+

J ′∑
j=1

cjG(x + zj ) =:

J ′∑
j=−J ′

cjG(x − zj )

where c0 = 0, c−j = cj and z−j = zj . Indeed, since S is a symmetric set, we have, for
all x ∈ S,

ϕ′2(x)− ϕ
′

1(x) = ϕ
′

2(x)−
ϕ′1(x)+ ϕ

′

1(−x)

2
=
ϕ̂2(x)− ϕ

′

1(x)

2
+
ϕ̂2(−x)− ϕ

′

1(−x)

2
,

which implies the desired estimate

‖ϕ′2 − ϕ
′

1‖C0(S) ≤
1
2‖ϕ̂2 − ϕ

′

1‖C0(S) +
1
2‖ϕ̂2 − ϕ

′

1‖C0(S) < δ.

Notice that we have used the identity ϕ′1(x) = ϕ
′

1(−x). ut

To complete the proof of the lemma, let us define the even complex-valued function

ϕ2 := ϕ
′

2 + ϕ
′′

0 ,
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where ϕ′2 is the function constructed in Lemma 4.1 and ϕ′′0 was introduced in (4.3). Then

1ϕ2 + ϕ2 = 0 (4.9)

in the ball B, whose interior contains S. Let us take spherical coordinates (r, θ, ϕ) in B.
Expanding the function ϕ2 (with respect to the angular variables) in a series of spherical
harmonics and using (4.9), we immediately see that ϕ2 can be written in the ball as a
Fourier–Bessel series of the form

ϕ2 =

∞∑
l=0

l∑
m=−l

clmjl(r)Ylm(θ, ϕ).

Since ϕ2 is even, we find that clm = 0 for all odd l. As before, jl denotes a spherical
Bessel function.

Since the above series converges in L2(B), for any δ > 0 there is an integer l0 such
that the finite sum

ϕ :=

l0∑
l=0

l∑
m=−l

clmjl(r)Ylm(θ, ϕ)

approximates the function ϕ2 in the L2 sense:

‖ϕ − ϕ2‖L2(B) < δ. (4.10)

By the properties of spherical Bessel functions, the complex-valued function ϕ is smooth
in R3 and satisfies the equation

1ϕ + ϕ = 0 (4.11)

in the whole space.
Given any smaller ball B ′, properly contained in B and in turn containing the set S,

standard elliptic estimates allow us to pass from theL2 bound (4.10) to a uniform estimate

‖ϕ − ϕ2‖C0(B ′) < Cδ.

From this inequality and the bounds (4.6) and (4.8) we infer

‖ϕ − ϕ′‖C0(S) < Cδ. (4.12)

Moreover, since ϕ′ also satisfies the Helmholtz equation in a neighborhood of the compact
set S (see (4.2)), standard elliptic estimates again imply that the uniform estimate (4.12)
can be promoted to the C1 bound

‖ϕ − ϕ′‖C1(S) < Cδ. (4.13)

Finally, since the link L is a union of components of the the nodal set of ϕ′ and
satisfies the transversality condition (4.1), the estimate (4.13) and a direct application
of Thom’s isotopy theorem [1, Theorem 20.2] imply that there is a diffeomorphism 81
of R3 such that 81(L) is a union of components of the zero set ϕ−1(0). Moreover, the
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diffeomorphism 81 is C1-close to the identity and different from the identity just in a
small neighborhood of L, so we can safely assume that 81(L) is contained in B. The
structural stability of the link 81(L) for the function ϕ also follows from Thom’s isotopy
theorem and the fact that ϕ satisfies the transversality condition

rank(∇ Reϕ(x),∇ Imϕ(x)) = 2

for all x ∈ 81(L). This last equation is a consequence of the C1 estimate (4.13), the
fact that the function ϕ′ satisfies the transversality estimate (4.1) by definition, and the
fact that transversality is an open property under C1-small perturbations. The lemma then
follows.

5. A remark about the higher-dimensional counterpart

Following Berry, we have considered the construction of a complex-valued eigenfunc-
tion (or two real-valued eigenfunctions) of the harmonic oscillator in three dimensions
with a prescribed nodal set of codimension 2 (that is, a link). It is worth mentioning that
essentially the same argument enables us to construct n eigenfunctions of the harmonic
oscillator in Rd with a prescribed nodal set of codimension n.

However, a technical condition makes the statement considerably more involved in
the general case. This condition is associated with the requirement that the level set be
structurally stable. In the situation covered by the main theorem, the structural stability
follows from the important equation (4.1), which plays a crucial role in the proof. The
higher-dimensional analog of that relation would then be the requirement that

rank(∇ψ1(x), . . . ,∇ψn(x)) = n (5.1)

for all x in the prescribed codimension-n nodal set in Rd , where ψ1, . . . , ψn would be
real-valued eigenfunctions of the harmonic oscillator. For this condition to hold, a topo-
logical obstruction is that the normal bundle of the set L that we want to prescribe in the
nodal set must be trivial. Geometrically, this is equivalent to the assertion that a small
tubular neighborhood of the submanifold L must be diffeomorphic to L× Rn.

Hence we are led to the following result. Since a link always has trivial normal
bundle [11], the main theorem corresponds exactly to the case d = 3 and n = 2.

Theorem 5.1. Let L be a finite disjoint union of codimension-n compact submanifolds
of Rd with trivial normal bundle, and d ≥ 3. If n = 1, we also assume thatL is connected.
Then for any large enough eigenvalue λ of the harmonic oscillator in Rd there are n real-
valued eigenfunctions ψ1, . . . , ψn with eigenvalue λ and a diffeomorphism8 of Rd such
that8(L) is a union of connected components of the joint nodal setψ−1

1 (0)∩· · ·∩ψ−1
n (0).

Furthermore, 8(L) is structurally stable.
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We note that when d ≥ 3 the eigenfunctions of the harmonic oscillator are given by

ψklm = e
−r2/2r lL

l+(d−2)/2
k (r2)Ylm(ω),

and the corresponding eigenvalues are λkl = 4k + 2l + d. Here ω := x/r is a point in
Sd−1 and Ylm are the spherical harmonics in Sd−1 with frequency l(l+d−2), with l ≥ 0,
m ≡ (m1, . . . , md−2) and

|m1| ≤ m2 ≤ · · · ≤ md−2 ≤ l.

Using again Hilb’s asymptotic formula for the Laguerre polynomials [12, Theorem
8.22.4], we get the asymptotic expressions of Lemma 2.1 generalized to any d ≥ 3:

ψklm(x) = A
d
kl

[
jdl
(√
λkl r

)
+O(k−min((d+1)/4,2))

]
Ylm(ω),

∇ψklm(x) =
√
λkl A

d
kl

[
(jdl )

′
(√
λkl r

)
+O(k−min((d+1)/4,2))

]
Ylm(θ, φ)er

+ Adkl
[
jdl
(√
λkl r

)
+O(k−min((d+1)/4,2))

]∇Sd−1Ylm(ω)

r
,

where jdl denote the hyperspherical Bessel functions, which satisfy the radial Helmholtz
equation in Rd , and the constants Adkl are given by

Adkl :=
1

0(d/2)

(√
λkl

2

)−l
0(k + l + d/2)

k!
.

The proof of Lemma 2.2 goes exactly as in Section 4 when the codimension is n ≥ 2.
In this case, we use the Cauchy–Kowalewski theorem with data on hypersurfaces 6jα
(1 ≤ j ≤ n), intersecting in a given component Lα transversally, to define functions ujα .
When n = 1, however, the construction of the real-valued function u (analogous to the
functions ujα considered in Section 4, where we are dropping the sub- and superscripts be-
causeL is now connected and n = 1) cannot be performed using the Cauchy–Kowalewski
theorem because otherwise u would be defined in a small neighborhood U of L. As the
complement of U would not be connected, the proof of Lemma 4.1 does not carry over to
this case. To circumvent this difficulty, we take U to be the precompact domain bounded
by L and define u in sU as the first Dirichlet eigenfunction of the Laplacian in this do-
main, where s is a scale factor chosen so that the first Dirichlet eigenvalue of sU is 1. The
details are as in [5, Appendix A]. The rest of the proof remains essentially unchanged.

In particular, in three dimensions the general result yields not only Theorem 1.1 but
also the following

Corollary 5.2. LetL be a compact surface in R3. Then for any large enough eigenvalue λ
of the harmonic oscillator in R3 there is a real-valued eigenfunction ψ of the harmonic
oscillator with energy λ and a diffeomorphism 8 of R3 such that 8(L) is a connected
component of the nodal set ψ−1(0). Furthermore, 8(L) is structurally stable.
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