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Abstract. We study semiclassical asymptotics for spectra of non-selfadjoint perturbations of self-
adjoint analytic h-pseudodifferential operators in dimension 2, assuming that the classical flow of
the unperturbed part is completely integrable. Complete asymptotic expansions are established for
all individual eigenvalues in suitable regions of the complex spectral plane, near the edges of the
spectral band, coming from rational flow-invariant Lagrangian tori.
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1. Introduction

Spectra for semiclassical non-selfadjoint operators often display fascinating fea-
tures, from lattices of low-lying eigenvalues for operators of Kramers–Fokker–Planck
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type [8], [10] to eigenvalues for operators with analytic coefficients in dimension one,
concentrated on unions of curves [26], [28], [6], [13]. The work [25] has established that
for wide and stable classes of non-selfadjoint analytic pseudodifferential operators in di-
mension two, the individual eigenvalues can be determined accurately in the semiclassical
limit, by means of a complex Bohr–Sommerfeld quantization condition, and form a dis-
torted two-dimensional lattice. Now in many natural situations [20], [32], [31], [34], one
encounters non-selfadjoint operators of the form

Pε = p(x, hDx)+ iεq(x, hDx), 0 ≤ ε � 1, (1.1)

considered on Rn or a compact real analytic manifold, with Pε=0 being selfadjoint. Here
0 < h � 1 is the semiclassical parameter and the second small parameter ε represents
the strength of the non-selfadjoint perturbation. The principal symbol of Pε in (1.1) is
of the form pε(x, ξ) = p(x, ξ) + iεq(x, ξ), where p is real, and let us also assume, to
fix ideas, that q is real. Both p and q are assumed to be analytic, with p elliptic near
infinity. The spectrum of Pε near the origin is confined to a band of width O(ε), and the
general problem is to understand the distribution of the eigenvalues of Pε near 0 in the
semiclassical limit h → 0+. To this end, let us assume that 0 is a regular value of p, so
that the energy surface p−1(0) is a smooth compact submanifold of the phase space. We
then know [22], [23] that the real parts of the eigenvalues of Pε near 0 are distributed
according to the same Weyl law as those for the unperturbed operator Pε=0. In order to
study the distribution of the imaginary parts of the eigenvalues, following the method of
averaging [38], [2], we let Hp be the Hamilton vector field of p and introduce the time
averages

〈q〉T =
1
T

∫ T/2

−T/2
q ◦ exp(tHp) dt, T > 0, (1.2)

of q along theHp-trajectories. It follows from [20], [32], [16] that if z ∈ Spec(Pε) is such
that |Re z| ≤ δ, then

lim
T→∞

inf
p−1(0)

〈q〉T − o(1) ≤
Im z

ε
≤ lim
T→∞

sup
p−1(0)

〈q〉T + o(1) as (ε, δ, h)→ 0+. (1.3)

The spectral analysis for non-selfadjoint operators of the form (1.1) has been pursued
by the authors in the series of papers [11]–[16], the latter work jointly with S. Vũ Ngo. c,
when n = 2 and the Hp-flow is either periodic or completely integrable. Let us focus,
from now on, on the completely integrable case. In this case, the energy surface p−1(0) is
foliated by invariant Lagrangian tori, along with possibly some other more complicated
flow-invariant sets. If 3 ⊂ p−1(0) is an invariant torus such that the rotation number
of Hp along 3 is Diophantine, i.e. poorly approximated by rational numbers, or more
generally, irrational, then the time averages 〈q〉T along 3 converge to the space average
〈q〉(3) of q over 3 as T → ∞. If 3 is a torus with a rational rotation number, or
a singular set in the foliation of p−1(0), then in analogy with (1.3), we introduce the
compact interval

Q∞(3) =
[

lim
T→∞

inf
3
〈q〉T , lim

T→∞
sup
3

〈q〉T

]
(1.4)
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of limits of the time averages above. The definition (1.4) will also be used when 3 is a
torus with an irrational rotation number, in which case we have Q∞(3) = {〈q〉(3)}.

Let F0 ∈ R be such that F0 = 〈q〉(3d) for a single Diophantine Lagrangian torus
3d ⊂ p

−1(0), and assume that

F0 /∈ Q∞(3) (1.5)

for any other invariant set 3 6= 3d in p−1(0). It was then shown in [16] that the spec-
trum of Pε can be determined completely, modulo O(h∞), in a rectangle of the form
[−hδ/C, hδ/C] + iε[F0 − h

δ/C, F0 + h
δ/C], where δ > 0 and ε satisfies hK < ε � 1,

for K � 1. Similarly to [25], the spectrum has a structure of a distorted two-dimensional
lattice, with the horizontal spacing∼ h and the vertical one∼ εh. A closely related result
was obtained in [15], giving a Weyl type asymptotic formula for the number of eigen-
values of Pε in an intermediate spectral band, bounded from above and from below by
Diophantine levels, such as F0 above. It turned out that the distribution of the imaginary
parts of the eigenvalues of Pε is governed by a Weyl law, expressed in terms of phase
space volumes associated to p and the long time averages of q.

Having elucidated the role played by flow-invariant Diophantine tori in the spectral
analysis of Pε, let us now turn to spectral contributions of tori that are rational, which
constitutes the subject of the present work. Let F0 ∈ R be such that F0 = 〈q〉(3d) for
a Diophantine torus 3d as above, and rather than demanding (1.5), let us assume that
there exists a rational torus 3r ⊂ p−1(0) such that F0 ∈ Q∞(3r), F0 6= 〈q〉(3r), while
F0 /∈ Q∞(3), for 3 6= 3d , 3r . An attempt to determine the individual eigenvalues
of Pε near iεF0 was made by the authors in [14], by means of the normal form tech-
niques. As a result, the normal forms near 3r that we obtained were given by a family of
one-dimensional “resonant” non-selfadjoint operators, and the possibility of quite serious
pseudospectral phenomena for this family [4] prevented us from computing the eigenval-
ues individually. Correspondingly, the main result of [14] was weaker, establishing that
the spectrum of Pε near iεF0 was of the formEd∪Er , where the “Diophantine” contribu-
tion Ed is a distorted lattice that can be described explicitly, as in [16], and the cardinality
of the “rational” contribution Er is� than that of Ed .

Subsequently, in the course of some numerical experiments, the authors have encoun-
tered peculiar pictures of the spectra of Pε, where the eigenvalues had the form of a
“centipede”, with the body agreeing with the range of torus averages of q — see Sec-
tion 8 for the illustrations and the details of the numerical computations. The legs of the
centipede were more mysterious at first, but things became clearer when we realized that
they represented the influence of suitable rational tori. It then became natural to hope that
the eigenvalues near the extremities of the legs could be determined asymptotically in
a rigorous way, since the pseudospectral effects should become more moderate near the
edges of the spectral band [4]. The main result of the present work, giving a complete
asymptotic description of the individual extremal eigenvalues of Pε, can be considered as
a justification of this hope.

Let us conclude the introduction by formulating, in a rough way, the main result of
the paper — see Theorem 2.1 below for the precise statement. Let 30 ⊂ p−1(0) be a
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rational Lagrangian torus such that

infQ∞(30) < inf
3⊂p−1(0),36=30

(infQ∞(3)) . (1.6)

The restriction of theHp-flow to30 is periodic with primitive period T0 > 0, and the time
average 〈q〉T0

in (1.2) can naturally be viewed as a function on the space 30/exp(RHp)
of closed orbits. Let us assume that 〈q〉T0

, viewed as a function on 30/exp(RHp), has a
unique minimum which is non-degenerate, and restrict ε to a suitable interval of the form
h1+η

≤ ε ≤ h1−η, η > 0. Then for any fixed C0 > 0 the eigenvalues of Pε in the region{
z ∈ C; |Re z| <

h

C0
√
ε
,

Im z

ε
≤ infQ∞(30)+ C0

h
√
ε

}
can be determined completely, modulo O(h∞), and are given by

λj,k = a(ξ2)+iεb(ξ2)+ε
1/2h3j,k, ξ2 = h

(
j−

k0

4

)
−
S

2π
, j ∈ Z, k ∈ N. (1.7)

Here the functions a and b do not depend on h, and we have a(0) = 0, a′(0) > 0, b(0) =
infQ∞(30). The quantities S and k0 in (1.7) are the classical action and the Maslov
index of a primitive closed Hp-trajectory in 30, respectively, and we have a complete
asymptotic expansion for 3j,k in integer powers of h̃ = h/

√
ε,

3j,k ∼

∞∑
ν=0

h̃νλνk(ξ2,
√
ε), (1.8)

where
λ0
k(0, 0) = deiπ/4(2k + 1), d > 0. (1.9)

Remark. Neglecting the corrections given by the classical quantities S and k0, let us
remark that the description of the eigenvalues of Pε given in (1.7)–(1.9), as well as in
Theorem 2.1 below, agrees, in a special case and to the leading order, with the spectrum
of the model operator

P̃ε(x1, hDx1 , hDx2) = hDx2 + (hDx1)
2
+ iεx2

1/2, (1.10)

acting on L2(Rx1 × Tx2), T = R/2πZ, which is given by

λj,k = hj + ε
1/2heiπ/42−1/2(2k + 1), j ∈ Z, k ∈ N

(see [3], [33]). Speaking heuristically, it is the occurrence of the complex harmonic os-
cillator (hDx1)

2
+ iεx2

1/2, as a part of some crucial normal form in our analysis, that
ultimately gives rise to the “centipede” structure of the eigenvalues close to the edges of
the spectral band.
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2. Statement of the main results

2.1. General assumptions

We shall start by describing the general assumptions on our operators, which will be the
same as in [14], [16], as well as in the earlier papers mentioned above. Let M denote
either the space R2 or a real analytic compact manifold of dimension 2. When M = R2,
let

Pε = P
w(x, hDx, ε;h), 0 < h ≤ 1, (2.1)

be the h-Weyl quantization on R2 of a symbol P(x, ξ, ε;h) (i.e. the Weyl quantization of
P(x, hξ, ε;h)), depending smoothly on ε ∈ neigh(0,R) and taking values in the space
of holomorphic functions of (x, ξ) in a tubular neighborhood of R4 in C4, with

|P(x, ξ, ε;h)| ≤ O(1)m(Re(x, ξ)) (2.2)

there. Here 1 ≤ m ∈ C∞(R4) is an order function, in the sense that

m(X) ≤ C0〈X − Y 〉
N0m(Y), X, Y ∈ R4, (2.3)

for some C0, N0 > 0, where we write 〈X − Y 〉 = (1 + |X − Y |2)1/2. We shall assume,
as we may, that m belongs to its own symbol class, so that ∂αm = Oα(m) for each
α ∈ N4. Then for h > 0 small enough and when equipped with the domain H(m) :=
(mw(x, hD))−1(L2(R2)), Pε becomes a closed densely defined operator on L2(R2).

Remark. The analyticity assumptions will allow us to treat the case when ε � hδ for
0 < δ < 1. When ε = O(h), standard C∞-microlocal analysis would have been suffi-
cient.

Assume furthermore that

P(x, ξ, ε;h) ∼

∞∑
j=0

hjpj,ε(x, ξ) (2.4)

in the space of holomorphic functions depending smoothly on ε ∈ neigh(0,R) and satis-
fying (2.2) in a fixed tubular neighborhood of R4. Explicitly, the assumption (2.4) states
that for each (N, k) ∈ N × N there exists CN,k such that for all (x, ξ) in the tubular
neighborhood, all ε ∈ neigh(0,R), and all h ∈ (0, 1], we have

∣∣∣∂kε (P(x, ξ, ε;h)− N−1∑
j=0

hjpj,ε(x, ξ)
)∣∣∣ ≤ CN,khNm(Re(x, ξ)). (2.5)

We assume that p0,ε is elliptic near infinity,

|p0,ε(x, ξ)| ≥
1
C
m(Re(x, ξ)), |(x, ξ)| ≥ C, (2.6)

for some C > 0.
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When M is a real analytic compact manifold, for simplicity we shall take Pε to be a
differential operator on M which for every choice of local coordinates centered at some
point of M takes the form

Pε =
∑
|α|≤m

aα,ε(x;h)(hDx)
α, (2.7)

where aα,ε(x;h) is a smooth function of ε ∈ neigh(0,R) with values in the space of
bounded holomorphic functions in a complex neighborhood of x = 0, independent of h
when |α| = m. We further assume that

aα,ε(x;h) ∼

∞∑
j=0

aα,ε,j (x)h
j , h→ 0, (2.8)

in the space of such functions, uniformly in ε, similarly to (2.5). The semiclassical prin-
cipal symbol p0,ε, defined on T ∗M , takes the form

p0,ε(x, ξ) =
∑
|α|≤m

aα,ε,0(x)ξ
α, (2.9)

if (x, ξ) are the canonical coordinates on T ∗M . We make the ellipticity assumption,

|p0,ε(x, ξ)| ≥
1
C
〈ξ〉m, (x, ξ) ∈ T ∗M, |ξ | ≥ C, (2.10)

for some large C > 0. Here we assume thatM has been equipped with some real analytic
Riemannian metric so that |ξ | and 〈ξ〉 = (1+ |ξ |2)1/2 are well-defined.

Remark. The restriction to differential operators with analytic coefficients in the com-
pact manifold case above is principally made in order to avoid developing a global dis-
cussion of semiclassical analytic pseudodifferential operators on a compact real analytic
manifold. See also [31].

Sometimes, we write pε for p0,ε and simply p for p0,0. We make the assumption that

Pε=0 is formally selfadjoint.

When M is compact, we let the underlying Hilbert space be L2(M,µ(dx)) where µ(dx)
is the Riemannian volume element.

The assumptions above imply that the spectrum of Pε in a fixed neighborhood of
0 ∈ C is discrete when 0 < h ≤ h0, 0 ≤ ε ≤ ε0, with h0 > 0, ε0 > 0 sufficiently small.
Moreover, if z ∈ neigh(0,C) is an eigenvalue of Pε then Im z = O(ε).

We furthermore assume that the real energy surface p−1(0) ∩ T ∗M is connected and
that

dp 6= 0 along p−1(0) ∩ T ∗M.
In what follows we shall write

pε = p + iεq +O(ε2) (2.11)

in a neighborhood of p−1(0) ∩ T ∗M , and for simplicity we shall assume throughout the
paper that q is real-valued on the real domain. (In the general case, we should simply
replace q below by Re q.) We letHp = p′ξ ·∂x−p

′
x ·∂ξ be the Hamilton vector field of p.
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2.2. Assumptions related to complete integrability

As in [16], [14], let us assume that there exists an analytic real-valued function f near
p−1(0) ∩ T ∗M such that Hpf = 0, with the differentials df and dp being linearly
independent on an open and dense set ⊂ neigh(p−1(0) ∩ T ∗M,T ∗M). For each E ∈
neigh(0,R), the level sets 3a,E = f−1(a)∩ p−1(E)∩ T ∗M are invariant under the Hp-
flow and form a singular foliation of the 3-dimensional hypersurface p−1(E) ∩ T ∗M . At
each regular point (i.e. non-critical point for the restriction of f to p−1(E)), the leaves
of this foliation are two-dimensional analytic Lagrangian submanifolds, and each regular
leaf is a finite union of tori. In what follows we shall use the word “leaf” and notation 3
for a connected component of some3a,E . Let J be the set of all leaves in p−1(0)∩T ∗M .
Then we have a disjoint union decomposition

p−1(0) ∩ T ∗M =
⊔
3∈J

3, (2.12)

where 3 are compact connected Hp-invariant sets. The set J has a natural structure of a
graph whose edges correspond to families of regular leaves and the set S of vertices is
composed of singular leaves. The union of edges J \ S possesses a natural real analytic
structure and the corresponding tori depend analytically on3 ∈ J \S with respect to that
structure. See [14, Section 7] for an explicit description of the Lagrangian foliation when
M is an analytic surface of revolution in R3.

In what follows, we shall assume that the graph J is finite. We shall identify each
edge of J analytically with a real bounded interval, and this determines a distance on J
in the natural way. Assume that the following continuity property holds:

For every 30 ∈ J and ε > 0, there exists δ > 0 such that if 3 ∈ J
and distJ (3,30) < δ, then3 ⊂ {ρ ∈ p−1(0) ∩ T ∗M; dist(ρ,30) < ε}. (2.13)

Remark. Let us assume that f is a Morse–Bott function when restricted to
p−1(0) ∩ T ∗M , in the sense that the set of critical points of the restriction of f to
p−1(0) ∩ T ∗M is a disjoint union of connected submanifolds, with the transversal Hes-
sian of f being non-degenerate along each of the submanifolds. In this case, the structure
of the singular leaves is known [37]. The set J is then a finite connected graph and the
property (2.13) holds.

Each torus 3 ∈ J \ S carries real analytic coordinates (x1, x2), identifying 3 with T2
=

R2/2πZ2, so that along 3, we have

Hp = a1∂x1 + a2∂x2 , (2.14)

where a1, a2 ∈ R. The rotation number is defined as the ratio

ω(3) = [a1 : a2] ∈ RP1,

and it depends analytically on 3 ∈ J \ S. We say that the torus 3 is rational/irrational
if a1/a2 has the corresponding property. While the rotation number of 3 depends on
the choice of the coordinates (x1, x2) on the torus, the fundamental property of being
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rational/irrational is independent of this choice [17]. Recall also that the leading pertur-
bation q has been introduced in (2.11). For each torus 3 ∈ J \ S, we define the torus
average 〈q〉(3) obtained by integrating q|3 with respect to the natural smooth measure
on 3.

We introduce the time averages

〈q〉T =
1
T

∫ T/2

−T/2
q ◦ exp(tHp) dt, T > 0, (2.15)

and consider the compact intervals Q∞(3) ⊂ R, 3 ∈ J , defined as in [16],

Q∞(3) =
[

lim
T→∞

inf
3
〈q〉T , lim

T→∞
sup
3

〈q〉T

]
. (2.16)

Notice that when 3 ∈ J \ S and ω(3) /∈ Q then Q∞(3) = {〈q〉(3)}. In the rational
case, we write ω(3) = m/n, where m ∈ Z and n ∈ N are relatively prime. When
k(ω(3)) := |m| + |n| is the height of ω(3), we recall from [16, Proposition 7.1] that

Q∞(3) ⊂ 〈q〉(3)+O
(

1
k(ω(3))∞

)
[−1, 1]. (2.17)

Remark. As J \ S 3 3 → 30 ∈ S, the set of all accumulation points of 〈q〉(3) is
contained in the interval Q∞(30). See the related remark in [14, Section 2].

From [16, Theorem 7.6] we recall that

1
ε

Im
(
Spec(Pε) ∩ {z; |Re z| ≤ δ}

)
⊂

[
inf

⋃
3∈J

Q∞(3)− o(1), sup
⋃
3∈J

Q∞(3)+ o(1)
]

(2.18)
as (ε, h, δ)→ 0.

2.3. The main result

Let30 ∈ J \S be a rational invariant Lagrangian torus, so that as above, ω0 := ω(30) =

m/n ∈ Q, and assume, as we may, that n 6= 0. Assume that the isoenergetic condition
holds:

(d3ω)(30) 6= 0. (2.19)

We recall from [14, Section 2] the behavior of the interval Q∞(3) when 3 6= 30 is a
rational torus in a neighborhood of 30. Writing ω(3) = p/q where p ∈ Z and q ∈ N
are relatively prime, p = O(q), we get, using the fact that ω(3) 6= ω0,

|ω(3)− ω0| ≥
1
nq
≥

1
nk(ω(3))

, (2.20)

and therefore, in view of (2.17),

Q∞(3) ⊂ 〈q〉(3)+O
(
dist(ω(3), ω0)

∞
)
[−1, 1]. (2.21)
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This estimate is uniform in ω0 provided that we have a uniform upper bound on the height
of the rotation number ω0 ∈ Q.

Let us assume that the chosen rational torus 30 is such that

infQ∞(30) < inf
3∈J\{30}

infQ∞(3). (2.22)

The result below remains valid, with the obvious modifications, if we replace (2.22) by
the assumption

supQ∞(30) > sup
3∈J\{30}

supQ∞(3). (2.23)

Applying a suitable linear transformation in GL(2,Z), we may choose action-angle
coordinates (x, ξ) near 30, so that 30 is given by {ξ = 0} in T2

x × R2
ξ , p = p(ξ), and

p(0) = 0, ∂ξ1p(0) = 0, ∂ξ2p(0) > 0, ∂2
ξ1
p(0) 6= 0. (2.24)

Here the last property follows from (2.19), and in order to fix ideas, we shall assume that
∂2
ξ1
p(0) > 0. By the implicit function theorem we have

∂ξ1p(ξ) = 0 ⇔ ξ1 = f (ξ2), (2.25)

where f is an analytic function with f (0) = 0, and we obtain an analytic family of
rational Lagrangian tori 3E ⊂ p−1(E), E ∈ neigh(0,R), given by

ξ2 = ξ2(E), ξ1 = f (ξ2(E)). (2.26)

Here ξ2 = ξ2(E) is the unique smooth solution of the equation p(f (ξ2), ξ2) = E, close
to 0, such that ξ2(0) = 0.

Writing q = q(x, ξ) in terms of the action-angle coordinates (x, ξ), let

〈q〉2(x1, ξ) =
1

2π

∫ 2π

0
q(x, ξ) dx2, ξ ∈ neigh(0,R2), (2.27)

be the average of q with respect to x2. We assume that

T 3 x1 7→ 〈q〉2(x1, 0) has a unique minimum which is non-degenerate. (2.28)

In order to give an invariant description of the assumption (2.28), notice that when re-
stricted to 30, the Hamilton flow of p is periodic of primitive period T0 > 0 and the av-
erage 〈q〉2(x1, 0) can naturally be viewed as the flow average 〈q〉T0

, defined as in (2.15),
considered as a function on the space of closed Hp-orbits in 30,

30/exp(RHp) ' T.

In its invariant formulation, the assumption (2.28) therefore states that the flow aver-
age 〈q〉T0

, viewed as a function on 30/exp(RHp), has a unique minimum which is non-
degenerate.

It follows from (2.28) that the function T 3 x1 7→ 〈q〉2(x1, ξ) has a unique minimum
x1 = x1(ξ)which is non-degenerate for ξ ∈ neigh(0,R2). The range of 〈q〉2(·, 0) is equal
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toQ∞(30), so the minimal value 〈q〉2(x1(0), 0) = infQ∞(30) is situated strictly below
inf3∈J\{30} infQ∞(3).

In this paper, we shall work under the assumption that the subprincipal symbol of the
unperturbed operator Pε=0 vanishes,

p1,0(x, ξ) = 0. (2.29)

Here in the compact manifold case, in order to have an invariant definition of the subprin-
cipal symbol of Pε=0, we choose the local coordinates in (2.7) so that the Riemannian
volume element agrees with the Lebesgue measure [35].

The following is the main result of this work.

Theorem 2.1. We adopt the assumptions above, in particular, (2.19), (2.22), (2.28), and
(2.29). Set x1(ξ2) = x1(f (ξ2), ξ2). Fix δ ∈ (1/18, 1/9) and assume that

h1/(1−δ)
� ε � h6/(5+12δ). (2.30)

Set
h̃ = h/

√
ε.

Then for every C0 > 0, we have the following description of the eigenvalues of Pε in the
region {

z ∈ C; |Re z| <
h

C0
√
ε
,

Im z

ε
≤ infQ∞(30)+ C0

h
√
ε

}
, (2.31)

valid for all h > 0 small enough: the eigenvalues are simple and given modulo O(h∞)
by

λj,k = p(f (h(j − θ2)), h(j − θ2))+ iε〈q〉2
(
x1(h(j − θ2)), f (h(j − θ2)), h(j − θ2)

)
+
√
ε h(λ0

j,k + λ
1
j,kh̃+ λ

2
j,kh̃

2
+ · · · ) (2.32)

with j ∈ Z, h(j − θ2) = O(h/
√
ε), N 3 k ≤ O(1), where λνj,k = λ

ν
k(h(j − θ2),

√
ε) is

a smooth function of ξ2 = h(j − θ2) ∈ neigh(0,R) and
√
ε ∈ neigh(0,R+), and

λ0
k(ξ2, 0) = eiπ/4(∂2

ξ1
p(f (ξ2), ξ2))

1/2(∂2
x1
〈q〉2(x1(ξ2), f (ξ2), ξ2)

)1/2
(k + 1/2). (2.33)

Here we have written θ2 = k0(α2)/4 + S2/(2π)h, where k0(α2) and S2 are the Maslov
index and the classical action, respectively, of the fundamental cycle in 30 given by a
closed Hp-trajectory of minimal period.

Remark. In this paper, in the spirit of the previous works [11]–[16] in this series, we
work under the analyticity assumptions, which seem essential when ε � h log(1/h) [4].
It may therefore be of some interest to verify that Theorem 2.1 allows us to reach some
such values. When doing so, let us choose δ ∈ (1/18, 1/9) in Theorem 2.1 to be close
to 1/9. We then see from (2.30) that the description of the eigenvalues in Theorem 2.1 in
the region (2.31) is valid in the range

h9/8−η
� ε � h18/19+η,

when η > 0 is small, thus including some cases when ε � h. See also the discussion
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at the end of Section 3 below, where the conjectural optimal range for the perturbation
parameter ε is given in (3.19).
Remark. The result of Theorem 2.1 admits a natural extension to the case when Re z ∈
neigh(0,R) varies in a sufficiently small but fixed neighborhood of 0 ∈ R. Indeed, let us
recall the family of rational Lagrangian tori 3E ⊂ p−1(E), E ∈ neigh(0,R), introduced
in (2.26). A natural analog of the assumption (2.22) is then valid for infQ∞(3E), rela-
tive to the Lagrangian foliation in p−1(E), provided that |E| is small enough. It follows
therefore from Theorem 2.1 that the description (2.32) of the spectrum of Pε remains
valid when

|Re z− E| ≤
h

C0
√
ε
,

Im z

ε
≤ infQ∞(3E)+ C0

h
√
ε
,

uniformly in E ∈ neigh(0,R). We conclude therefore that the result of Theorem 2.1
extends to the spectral region{

z ∈ C; |Re z| <
1
C
,

Im z

ε
≤ infQ∞(3Re z)+O

(
h
√
ε

)}
,

for C > 1 large enough.
The plan of the paper is as follows. Section 3 is devoted to a general outline of the
proof. In Section 4 we construct a global compactly supported weight function G such
that the leading symbol of Pε, acting on the weighted space associated to G, becomes
≈ p+ iε(q−HpG), with the imaginary part avoiding the value ε infQ∞(30) on p−1(0),
away from the rational torus 30. This effectively microlocalizes the spectral problem for
Pε to a small neighborhood of 30. The quantum normal form construction for Pε in
the rational region is carried out in Section 5, using the techniques of secular pertur-
bation theory, thereby reducing the analysis to the study of a one-parameter family of
non-selfadjoint operators in dimension one, having double characteristics with elliptic
quadratic approximations. In Section 6 we recall the computation of low-lying eigen-
values for such operators, following [8] and [10], and extend the results there to the
parameter-dependent case. The final step in the proof of Theorem 2.1 is taken in Section 7,
where we carry out a pseudospectral analysis for the family of the one-dimensional oper-
ators in question, controlling the resolvent norms and obtaining the spectral localization.
It then becomes possible to complete the proof by solving a suitable globally well-posed
Grushin problem for Pε in a weighted space, using the ideas and techniques of [11], [16].
In Section 8 we present the results of numerical computations illustrating Theorem 2.1.
The Appendix establishes some subelliptic resolvent bounds for non-selfadjoint operators
of Schrödinger type, playing a principal role in the pseudospectral analysis of Section 7
in the main text. These bounds seem to be of some independent interest, and their proofs
are very much based on the techniques developed in [8], [10].

3. Outline of the proof

In this section we shall give a general outline of the proof of Theorem 2.1. Some of the
techniques come from the previous works [16], [14], and the presentation below will nat-
urally focus on the new difficulties of pseudospectral nature, encountered in the analysis
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in the rational region. We shall then also describe heuristically some of the essential ideas
employed in overcoming those difficulties, referring to Section 7 and to the Appendix for
a detailed rigorous discussion.

The principal symbol of the operator Pε in (2.1), (2.7) is of the form

pε = p + iεq +O(ε2) (3.1)

in a neighborhood of p−1(0)∩T ∗M , and thanks to the ellipticity assumptions (2.6), (2.10)
it suffices to make a microlocal study in the region where p is small. Recalling the as-
sumption (2.22) and replacing q by q− infQ∞(30), in the following discussion we shall
assume, for notational simplicity only, that infQ∞(30) = 0. The first step in the argu-
ment is a construction of a global weight function G ∈ C∞0 (T

∗M) such that away from
a small neighborhood of the rational Lagrangian torus 30 in the region p−1([−E0, E0]),
0 < E0 � 1, we have

q −HpG ≥ c0 > 0. (3.2)

Away from 30, the weight G satisfies

HpG = q − 〈q〉T ,

where 〈q〉T has been introduced in (2.15), and when constructing G in a neighborhood
of 30, we introduce action-angle coordinates (x, ξ) ∈ T ∗T2 so that 30 = {ξ = 0} ⊂
T ∗T2 and

pε(x, ξ) = p(ξ)+ iεq(x, ξ)+O(ε2), (3.3)

where the frequencies ∂ξ1p(0) and ∂ξ2p(0) are commensurable. After a linear change
of variables, we get ∂ξ1p(0) = 0, and the isoenergetic condition (2.19) shows that
∂2
ξ1
p(0) 6= 0. In the following discussion, to fix ideas, we shall consider the model case

p(ξ) = ξ2 + ξ
2
1 , which suffices to illustrate the difficulties. The weight function G near

ξ = 0 satisfies the cohomological equation

HpG = q − q̃ (3.4)

modulo O(ξ∞), where q̃ = q̃(x1, ξ) is independent of x2 and is such that

q̃(x1, 0) =
1

2π

∫ 2π

0
q(x, 0) dx2 (3.5)

is the average of q(x, 0) in the x2-direction. From (2.28) we then know that q̃(x1, 0) ≥ 0
and that x1 7→ q̃(x1, 0) has a unique minimum which is non-degenerate. The partial
Birkhoff normal form construction utilized in solving (3.4) may be continued, first at the
principal symbol level, and then at the level of operators, leading to the conclusion that
microlocally in the rational region, when acting on an exponentially weighted space, the
operator Pε is unitarily equivalent to an operator of the form

P(x1, hDx, ε;h)+ R(x, hDx, ε;h) : L
2(T2)→ L2(T2). (3.6)
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We refer to Proposition 7.1 in Section 7 for the precise statement. Here the full symbol of
P(x1, hDx1 , ε;h) is independent of x2 and is given by

P(x1, ξ, ε;h) = p(ξ)+ iεq̃(x1, ξ)+O(ε2
+ h2). (3.7)

The contribution R(x, ξ, ε;h) = O((ε, ξ, h)∞) in (3.6) is a remainder, which becomes
O(h∞) when restricting attention to the region ξ = O(εδ) for a suitable small fixed
δ > 0 — as we shall see, understanding this region suffices for the description of the
eigenvalues in Theorem 2.1. In particular, since ξ becomes small, in the following heuris-
tic discussion we shall make the simplifying assumption that q̃ in (3.7) is independent
of ξ altogether, depending on x1 only. Let us also suppress the error term O(ε2

+ h2) in
(3.7), for simplicity. In Section 7, it will be treated entirely as a perturbation.

Taking a Fourier series decomposition in x2, we may view the operator P in (3.6) as a
one-parameter family of operators P(x1, hDx1 , ξ2, ε;h) = P(ξ2), acting on L2(T), such
that

P(ξ2) = ξ2 + Lε, ξ2 = hj, j ∈ Z, (3.8)

where
Lε = (hDx1)

2
+ iεq̃(x1), q̃ ≥ 0, (3.9)

is a one-dimensional non-selfadjoint Schrödinger operator with εq̃ as a potential. We
are interested in the spectrum of the family (3.8) in the region where Re z is small and
|Im z| ≤ O(h

√
ε), and the first observation is that the eigenvalues of the operator

1
ε
Lε = (̃hDx1)

2
+ iq̃(x1), h̃ =

h
√
ε
,

can be determined asymptotically in any disc |w| < Ch̃ by means of the harmonic ap-
proximation, provided that h̃ � 1. See [8], [10], and the discussion in Section 6 below.
The eigenvalues of ε−1Lε in this region are of the form

µk (̃h) ∼

∞∑
j=0

µk,j h̃
j+1, k ∈ N, (3.10)

where
µk,0 = (2∂2

x1
q̃(xmin

1 ))1/2eiπ/4(k + 1/2) (3.11)

are the eigenvalues of the globally elliptic quadratic operator

D2
y +

i

2
(∂2
x1
q̃(xmin

1 ))y2

acting on L2(R) [3], [33]. Here xmin
1 ∈ T is the unique point such that q̃(xmin

1 ) = 0. The
corresponding eigenvalues of P(ξ2) in (3.8) are given by ξ2 + εµk (̃h), and from [8], [10]
we also know that

‖(P (ξ2)− z)
−1
‖L(L2,L2) ≤ O

(
1
√
ε h

)
, (3.12)
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provided that |z− ξ2| ≤ Ch
√
ε and (z− ξ2)/(h

√
ε) avoids the quadratic eigenvalues µk,0

in (3.11).
Now the direct sum decomposition (3.8) is only a microlocal approximation of Pε,

and in order to be able to absorb the error terms, when constructing the resolvent of Pε
globally it is of crucial importance to control the resolvent norms of Lε also in the region
Re z ∈ [Ch

√
ε, 1/O(1)), |Im z| ≤ O(h

√
ε). To get such a control, since the spectral

parameter remains close to the boundary of the range of the symbol of Lε, we apply the
method of “bounded exponential weights”, which in effect consists in replacing Lε by a
new operator for which the infimum of the imaginary part is increased in the non-elliptic
region for Re(Lε − ω). This method has been carried out in closely related situations
in [4], [8], [10], and we apply some of those works in the actual proof in the Appendix.
Here we shall merely recall the essential ideas. See also [19], [27].

Let G(x1, ξ1) ∈ C
∞ be real-valued and odd in ξ1. Let us consider the formally con-

jugate operator
L̃ε = e

−εG(x1,hDx1 )/h ◦ Lε ◦ e
εG(x1,hDx1 )/h,

acting on L2, or equivalently the operator Lε acting on the weighted Hilbert space
eεG(x1,hDx1 )/hL2. We want this space to be equal to L2, with its norm

‖e−εG(x1,hDx1 )/hu‖L2

uniformly equivalent to the standard L2-norm. This is the case if the weight function G
satisfies suitable symbol estimates and has the fundamental property

εG(x1, ξ1)/h = O(1), (3.13)

uniformly with respect to the various parameters involved.
We view eεG(x1,hDx1 )/h as a Fourier integral operator with the associated canonical

transformation exp(iεHG), approximately equal to (x1, ξ1) 7→ (x1, ξ1) + iεHG(x1, ξ1),
since ε will be small. Here HG = G′ξ1

· ∂x1 −G
′
x1
· ∂ξ1 is the Hamilton vector field of G.

By Egorov’s theorem we expect L̃ε to be an h-pseudodifferential operator with symbol

L̃ε(x1, ξ1) ≈ Lε(exp(iεHG(x1, ξ1))) ≈ Lε
(
(x1, ξ1)+ iεHG(Lε)(x1, ξ1)

)
≈ Lε(x1, ξ1)− iεHLε (G).

Here Lε(x1, ξ1) = ξ
2
1 + iεq̃(x1) is the symbol of Lε in (3.9). With `(x1, ξ1) = ξ

2
1 , we get

L̃ε(x1, ξ1) ≈ ξ
2
1 + iε(̃q −H`(G))(x1, ξ1) =: ξ

2
1 + iεq̂(x1, ξ1).

When considering L̃ε − ω for Reω ≥ h
√
ε, the most critical region is the one where

ξ2
1 ≈ Reω, and it is here that we want to increase infx1 q̃ as much as possible. Naturally,

that will not be enough for the complete analysis, but in the following heuristic discussion
we shall restrict attention to the region where ξ2

1 = Reω. Here, we get

q̂(x1, ξ1) = q̃(x1)− 2ξ1∂x1G(x1, ξ1) = q̃(x1)− 2
√

Reω ∂x1G(x1, (Reω)1/2),
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where we recall that G is odd in ξ1, so that q̂ is even in the same variable. Then

∂x1G(x1) =
q̃(x1)− q̂(x1)

2
√

Reω
,

omitting ξ1 =
√

Reω in the argument of G. We want

inf
x1
q̂ − inf

x1
q̃ � γ 2 (3.14)

for a suitable small parameter γ , which we wish to be as large as possible, and to achieve
this, we clearly have to modify q̃ in a γ -neighborhood of xmin

1 . Since we also wish |G| to
be as small as possible, we require

suppG ⊂ [xmin
1 − γ, xmin

1 + γ ],

and it is not hard to see that we can find such a G with

∂x1G = O
(

γ 2
√

Reω

)
, G = O

(
γ 3
√

Reω

)
.

The condition (3.13) is fulfilled, provided that

εγ 3

h
√

Reω
= O(1) ⇔ γ = O(1)

h1/3(Reω)1/6

ε1/3 . (3.15)

Let C � 1 and choose

γ =
1
C

min
(

1,
h1/3(Reω)1/6

ε1/3

)
. (3.16)

It follows from the heuristic discussion above that in the region h
√
ε ≤ Reω ≤ 1/O(1)

we obtain the spectral gain

εγ 2/O(1) � min(ε, h2/3(Reω)1/3ε1/3) ≥ h
√
ε, (3.17)

in the sense that the resolvent (Lε − ω)−1 is well defined in the region

h
√
ε ≤ Reω ≤ 1/O(1), Imω ≤

1
C

min(h2/3(Reω)1/3ε1/3, ε),

and in that region,

‖(Lε − ω)
−1
‖L(L2,L2) ≤

O(1)
min(h2/3ε1/3(Reω)1/3, ε)

. (3.18)

The resolvent estimates such as (3.18) are established in the Appendix, using the ma-
chinery of bounded exponential weights and relying on the techniques of [8], [10] — see
Propositions A.2 and A.4 there, in particular. With the bounds (3.18) available, we get the
corresponding pseudospectral control over the family P(x1, hDx1 , ξ2, ε;h) of (3.8) in the
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region where |Re z−ξ2| ≥ Ch
√
ε, Im z ≤ O(h

√
ε), and this allows us, eventually, to con-

struct the resolvent of Pε globally in this region. We therefore obtain some crucial spectral
localization, making it possible to carry out the spectral analysis of Pε working with one
quantum number ξ2 = hj at a time, roughly speaking. A globally well-posed Grushin
problem for Pε is finally built from the corresponding one-dimensional Grushin problems
for the operator Lε in (3.9), and solving it along the same lines as in [11], [16], [8], we
complete the proof of Theorem 2.1.

Remark. Our heuristic arguments seem to indicate that the optimal range for the pertur-
bation parameter ε could be

h2
� ε � h2/3, (3.19)

as we need h̃ = h/
√
ε � 1 and ε � h̃. Due to many technicalities, we get a smaller

range of values around ε ≈ h, and leave the extension to the range (3.19) as an open
problem for future work.

4. Secular reduction and the global weight

The purpose of this section is to construct a globally defined compactly supported weight
function which will allow us to microlocalize the spectral problem for Pε to a small neigh-
borhood of the rational torus 30. In doing so, we shall proceed similarly to [16], with the
essential difference that when working near the torus, the basic cohomological equation
will have quite different properties, compared to the Diophantine analysis of [16], and
will be treated using the secular perturbation theory [21], [14]. The main result of this
section is Proposition 4.2 below.

Let us keep all the assumptions of Section 2 and consider the operator Pε with leading
symbol pε in (2.11) in a neighborhood of p−1(0) ∩ T ∗M . Let

κ0 : neigh(30, T
∗M)→ neigh(ξ = 0, T ∗T2) (4.1)

be a real analytic canonical transformation, given by the action-angle variables, such that
the properties (2.24) hold for p ◦ κ−1

0 , which we identify with p. By Taylor expansion
and (2.24), we have

p(ξ) = p(f (ξ2), ξ2)+ g(ξ)(ξ1 − f (ξ2))
2, g(0) > 0, (4.2)

where f is the analytic function introduced in (2.25).
Implementing κ0 in (4.1) by means of a microlocally unitary multi-valued h-Fourier

integral operator with a real phase, as explained in [11, Theorem 2.4], and conjugating Pε
by this operator, we obtain a new h-pseudodifferential operator, still denoted by Pε, de-
fined microlocally near ξ = 0 in T ∗T2. The full symbol of Pε is holomorphic in a fixed
complex neighborhood of ξ = 0, and the leading symbol is given by

pε(x, ξ) = p(ξ)+ iεq(x, ξ)+O(ε2) (4.3)
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with p(ξ) of the form (4.2). The function q in (4.3) is real on the real domain. At the
operator level, Pε acts on the space of microlocally defined Floquet periodic functions
on T2, L2

θ (T
2) ⊂ L2

loc(R
2), elements u of which satisfy

u(x − ν) = eiθ ·νu(x), θ =
S

2πh
+
k0

4
, ν ∈ 2πZ2. (4.4)

Here S = (S1, S2) is given by the classical actions,

Sj =

∫
αj

η dy, j = 1, 2,

with αj forming a system of fundamental cycles in 30 such that

κ0(αj ) = βj , j = 1, 2, βj = {x ∈ T2
; x3−j = 0}.

The couple k0 = (k0(α1), k0(α2)) ∈ Z2 stands for the Maslov indices of the cycles αj ,
j = 1, 2.

Remark. Using (4.2), we see, using the implicit function theorem, that the energy surface
p(ξ) = E, for E ∈ neigh(0,R), is given by

ξ2 + `(ξ1, E) = 0, (4.5)

where ` is analytic with `(ξ1, 0) ∼ ξ2
1 and `′E(0, 0) < 0.

Working near the zero section ξ = 0 in T ∗T2 and following the method of normal
forms [16], [14], we shall now discuss the cohomological equation

HpG = q − q̃, (4.6)

where we want the remainder q̃ to be simpler than q. Here we have

Hp = p
′
ξ · ∂x,

and thus (4.6) can be written more explicitly as follows:

∂ξ2p(ξ)∂x2G+ ∂ξ1p(ξ)∂x1G = q − q̃.

To simplify, we divide this equation by ∂ξ2p. Writing u = G, v = (∂ξ2p)
−1q, ṽ =

(∂ξ2p)
−1q̃, we get

(∂x2 + a(ξ)∂x1)u = v − ṽ, (4.7)

where a(ξ) = ∂ξ1p(ξ)/∂ξ2p(ξ). To simplify further, we replace the variables ξ by

η = (η1, η2) = (ξ1 − f (ξ2), ξ2), (4.8)

and write, abusing the notation slightly, u = u(x, η), v = v(x, η), ṽ = ṽ(x, η). It follows
from (4.2) that the Taylor expansion of a has the form

a(η) = a1(η2)η1 + a2(η2)η
2
1 + · · · , a1(0) 6= 0, (4.9)
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and let us Taylor expand u, v and ṽ similarly,

u(x, η) =

∞∑
k=0

uk(x, η2)η
k
1,

v(x, η) =

∞∑
k=0

vk(x, η2)η
k
1,

ṽ(x, η) =

∞∑
k=0

ṽk(x, η2)η
k
1.

(4.10)

Inserting these equations into (4.7) and identifying the powers of η1, we get

∂x2u0 = v0 − ṽ0, (4.11)
∂x2u1 + a1∂x1u0 = v1 − ṽ1, (4.12)
∂x2u2 + a1∂x1u1 + a2∂x1u0 = v2 − ṽ2, (4.13)

and so on. The general equation is of the form

∂x2uk + a1∂x1uk−1 + a2∂x1uk−2 + · · · + ak∂x1u0 = vk − ṽk. (4.14)

The parameter η2 plays no essential role here and we sometimes suppress it from the
notation. For a function u on the torus T2, we introduce its averages in xk , k = 1, 2, and
its total average by

〈u〉k(x3−k)=
1

2π

∫ 2π

0
u(x1, x2) dxk, 〈〈u〉〉 = 〈〈u〉1〉2 =

1
(2π)2

∫∫
T2
u(x1, x2) dx1 dx2.

Proposition 4.1. Let v0, v1, . . . ∈ C
∞(T2) be smooth functions on T2. A necessary and

sufficient condition on ṽ0, ṽ1, . . . ∈ C
∞(T2) for the existence of u0, u1, . . . ∈ C

∞(T2)

solving (4.11) and (4.14) for k ≥ 1 is

〈̃v0〉2 = 〈v0〉2, 〈〈̃vk〉〉 = 〈〈vk〉〉, k ≥ 1. (4.15)

Proof. The necessity of (4.15) follows from taking the x2-mean of (4.11) and the total
mean of (4.14).

Assume that the first equation in (4.15) holds, so that 〈v0− ṽ0〉2 = 0. Then (4.11) has
a solution u0 = u

0
0 ∈ C

∞(T2) given by

u0
0(x) =

∫ x2

0
(v0 − ṽ0)(x1, t) dt. (4.16)

The general solution of (4.11) is of the form u0
0(x)+ f0(x1), where f0(x1) is any smooth

periodic function.
We next consider (4.12) (i.e. (4.14) with k = 1), which we write as

∂x2u1 = v1 − ṽ1 − a1∂x1u
0
0 − a1∂x1f0(x1). (4.17)
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Here the total average of v1 − ṽ1 − a1∂x1u
0
0 vanishes,

〈〈v1 − ṽ1 − a1∂x1u
0
0〉2〉1 = 0,

and hence we can find a periodic smooth function f0(x1), unique up to a constant, such
that

〈v1 − ṽ1 − a1∂x1u
0
0〉2 − a1∂x1f0(x1) = 0.

Equivalently,
〈v1 − ṽ1 − a1∂x1u

0
0 − a1∂x1f0(x1)〉2 = 0,

and we can therefore find a solution u0
1 ∈ C

∞(T2) to (4.17), and hence to (4.12).
Assume by induction that we have found u0, u1, . . . , uk−1 solving (4.11) and (4.14)

with k there replaced by j = 1, . . . , k − 1. We notice that the general solution of (4.14)
with k replaced by k− 1 is of the form uk−1 = u

0
k−1 + fk−1(x1) for any smooth periodic

function fk−1. We rewrite (4.14) as

∂x2uk = wk − a1∂x1fk−1(x1), (4.18)

where
wk = vk − ṽk − a1∂x1u

0
k−1 − a2∂x1uk−2 − · · · − ak∂x1u0,

and we notice that 〈〈wk〉2〉1 = 〈〈wk〉〉 = 0. Choose fk−1 such that 〈wk〉2 = a1∂x1fk−1(x1),
or equivalently 〈wk−a1∂x1fk−1〉2 = 0. Then there is a smooth periodic solution uk = u0

k

to (4.18) and hence to (4.14). ut

Remark. Observe that Proposition 4.1 has a natural extension to the real analytic cate-
gory.

An application of Proposition 4.1 together with the remark above allows us to conclude
that for any fixed N ∈ N, there exists an analytic function G0, defined in a fixed neigh-
borhood of ξ = 0, such that

HpG0 = q − q̃ +O((ξ1 − f (ξ2))
N ) (4.19)

for any analytic periodic function q̃ which satisfies

〈̃q(·, ξ)〉2 = 〈q(·, ξ)〉2 when ξ1 = f (ξ2) (4.20)

and
〈〈̃q(·, ξ)〉〉 = 〈〈q(·, ξ)〉〉, ξ ∈ neigh(0,R2). (4.21)

The following choice is convenient and will be made in what follows: Let χ : R→ R be
real analytic such that χ(0) = 0. We can then take

q̃(x1, ξ) =
(
1− χ(ξ1 − f (ξ2))

)
〈q〉2(x1, ξ)+ χ(ξ1 − f (ξ2))〈〈q(·, ξ)〉〉, (4.22)

which is independent of x2. Here 〈q〉2(x1, ξ) has been introduced in (2.27).
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Let us now restrict attention to the energy surface p−1(0). According to (4.5), we have
p(ξ) = 0⇔ ξ2+ `(ξ1, 0) = 0, `(ξ1, 0) ∼ ξ2

1 . It follows from (4.22) that when p(ξ) = 0,
we may write

inf
x1
q̃(x1, ξ) = (1− ψ(ξ1))k(ξ1)+ ψ(ξ1)g(ξ1),

where

k(ξ1) = inf
x1
〈q〉2(x1, ξ1,−`(ξ1, 0)) = 〈q〉2

(
x1(ξ1,−`(ξ1, 0)), ξ1,−`(ξ1, 0)

)
,

g(ξ1) = 〈〈q〉〉(ξ1,−`(ξ1, 0)), and ψ is an analytic function such that ψ(0) = 0, ψ ′(0) =
χ ′(0). We next compute

∂ξ1 inf
x1
q̃(x1, ξ) = k

′(ξ1)+ ψ
′(ξ1)(g(ξ1)− k(ξ1))+ ψ(ξ1)(g

′(ξ1)− k
′(ξ1)),

∂2
ξ1

inf
x1
q̃(x1, ξ) = k

′′(ξ1)+ ψ
′′(ξ1)(g(ξ1)− k(ξ1))+ 2ψ ′(ξ1)(g

′(ξ1)− k
′(ξ1))

+ ψ(ξ1)(g
′′(ξ1)− k

′′(ξ1)).

Using the fact that

k(0) = inf
x1∈T
〈q〉2(x1, 0) = infQ∞(30) < 〈q〉(30) = 〈〈q〉〉(0) = g(0),

we see that the derivatives χ ′(0) and χ ′′(0) of the analytic function χ in (4.22) can be
chosen so that when p(ξ) = 0, we have

inf
x1∈T

q̃(x1, ξ) ≥ inf
x1∈T
〈q〉2(x1, 0)+ Cξ2, (4.23)

where the constant C > 0 is large. In other words, for 3 ∈ neigh(30, J ), we get

inf
3
q̃ ≥ infQ∞(30)+

1
O(1)

dist(3,30)
2. (4.24)

Remark. In the preceding discussion, we do not have to restrict ourselves to the energy
surface p−1(0). Indeed, introducing the variables

η = (η1, η2) = (ξ1 − f (ξ2), ξ2)

as in (4.8), and repeating the computations above, we get

inf
x1∈T

q̃(x1, ξ) ≥ inf
x1∈T
〈q〉2(x1, f (ξ2), ξ2)+ C(ξ1 − f (ξ2))

2

when p(ξ) = E, for E ∈ neigh(0,R). Introducing the rational Lagrangian tori 3E ⊂
p−1(E) defined in (2.26), we therefore obtain, on p−1(E),

inf
x1∈T

q̃(x1, ξ) ≥ infQ∞(3E)+ C1dist(3,3E)2. (4.25)
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We shall now construct a suitable global weight function. In doing so, let GT be an
analytic function defined in a neighborhood of p−1(0) ∩ T ∗M such that

HpGT = q − 〈q〉T , (4.26)

where

〈q〉T =
1
T

∫ T/2

−T/2
q ◦ exp(tHp) dt, T > 0,

has been introduced in (2.15). We refer to [16, Section 1] for the construction of an an-
alytic solution of (4.26). An application of [16, Lemma 2.4] together with the assump-
tion (2.22) allows us to conclude that outside an arbitrarily small neighborhood of 30 in
p−1(0) ∩ T ∗M , we have

inf(q −HpGT ) ≥ infQ∞(30)+ 1/C0, (4.27)

provided that T is taken large enough. Here C0 > 0 is independent of the neighborhood
taken. In these considerations, we are allowed to vary the real energy a little, and we
conclude that for any fixed neighborhood W of⋃

|E|≤E0

3E, 0 < E0 � 1, (4.28)

in p−1([−E0, E0]) there exists T large enough such that

inf
p−1([−E0,E0])\W

(q −HpGT ) ≥ inf
|E|≤E0

infQ∞(3E)+ 1/C0. (4.29)

Here C0 > 0 is independent of the neighborhood chosen.
The global weight function will be obtained by gluing together the functions GT :=

GT ◦ κ
−1
0 and G0, both viewed as analytic functions defined in a neighborhood of the

zero section ξ = 0 in T ∗T2. Let ψ = ψ(ξ) ∈ C∞(neigh(0,R2); [0, 1]) depend on ξ
only, and assume that ψ = 1 near the rational region (4.28), and with support in a small
neighborhood of that set. Set

G = (1− ψ)GT + ψG0. (4.30)

It follows that
q −HpG = ψ(q −HpG0)+ (1− ψ)〈q〉T . (4.31)

In a neighborhood of the rational region (4.28), we have

q −HpG = q̃ +O((ξ1 − f (ξ2))
N )

with q̃ given in (4.22), while further away from this set we have q − HpG = 〈q〉T . In
order to understand the behavior of 〈q〉T near ξ = 0 for T large, we write

〈q〉T (x, ξ) =
1
T

∫ T/2

−T/2
q(x + tp′(ξ), ξ) dt,
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and expanding q(·, ξ) in a Fourier series, we obtain

〈q〉T (x, ξ) =
∑

k=(k1,k2)∈Z2

eik·x q̂(k, ξ)K̂(T k · p′(ξ)). (4.32)

Here K̂ is the Fourier transform of the characteristic function K of [−1/2, 1/2]. Let us
decompose

〈q〉T (x, ξ) =
∑
k2 6=0

K̂(Tp′(ξ) · k)q̂(k, ξ)eix·k +
∑
k2=0

K̂(Tp′(ξ) · k)̂q(k, ξ)eix·k = I+ II,

(4.33)

with the natural definitions of I and II. When estimating I, we use (4.2) and notice that
when k2 6= 0, we have

|p′(ξ) · k| ≥ |p′ξ2
k2| −O(1)|ξ1 − f (ξ2)| |k1| ≥ 1− C|ξ1 − f (ξ2)| |k|, C > 0.

Here for notational simplicity we assume that the derivative of ξ2 7→ p(f (ξ2), ξ2) is ≥ 1
near 0. It follows that

|p′(ξ) · k| ≥ 1/2,

provided that 2C|ξ1 − f (ξ2)| |k| ≤ 1. Let now 0 ≤ χ ∈ C∞0 ((−1, 1)) be such that χ = 1
on [−1/2, 1/2] and write

I =
∑
k2 6=0

χ(2C|ξ1 − f (ξ2)| |k|)K̂(Tp
′(ξ) · k)̂q(k, ξ)eix·k

+

∑
k2 6=0

(
1− χ(2C|ξ1 − f (ξ2)| |k|)

)
K̂(Tp′(ξ) · k)q̂(k, ξ)eix·k

=

∑
k2 6=0

χ(2C|ξ1 − f (ξ2)| |k|)O
(

1
T |p′(ξ) · k|

)
q̂(k, ξ)eix·k

+

∑
k2 6=0

(
1− χ(2C|ξ1 − f (ξ2)| |k|)

)
K̂(Tp′(ξ) · k)q̂(k, ξ)eix·k. (4.34)

It is now easy to see, using the smoothness of q, that

I = O(1/T + |ξ1 − f (ξ2)|
∞), T ≥ 1. (4.35)

When considering the contribution coming from II, we notice that

II = 〈q〉2(x1, ξ)+
∑

k2=0, k1 6=0

(K̂(Tp′ξ1
k1)− 1)eix1k1 q̂(k, ξ). (4.36)

Here |p′ξ1
| ∼ |ξ1 − f (ξ2)|, in view of (4.2), and we conclude that in the rational region

where ξ1 = f (ξ2), ξ2 ∈ neigh(0,R), we get

〈q〉T (x, ξ) = 〈q〉2(x1, ξ)+O(1/T ).

Away from the rational region ξ1 = f (ξ2), we see directly from (4.33) that II converges
to the torus average 〈〈q〉〉(ξ) as T →∞.

Combining the equations and estimates (4.19), (4.24), (4.26), (4.29), and (4.30), we
may summarize the discussion above in the following proposition.
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Proposition 4.2. Let us make the assumption (2.22). LetG0 be an analytic solution near
ξ = 0 of the equation (4.6) with q̃ being of the form (4.22) modulo O((ξ1− f (ξ2))

N ) for
some fixed N large enough. There exists a real-valued functionG ∈ C∞0 (T

∗M) such that
G = G0 ◦ κ0 in a neighborhood of30, and away from a small neighborhood of30 in the
region p−1([−E0, E0]), 0 < E0 � 1, we have

q −HpG ≥ infQ∞(30)+ 1/C0, C0 > 0. (4.37)

When 3 ⊂ p−1(0), 3 ∈ neigh(30, J ), we have furthermore

inf
3
(q −HpG) ≥ infQ∞(30)+

1
C

dist(3,30)
2.

Associated to the weight function G defined in Proposition 4.2, we shall now introduce a
suitable small but globally defined deformation of the real phase space T ∗M into the com-
plex domain. When doing so, let M̃ be a complexification of M , and let G̃ ∈ C∞0 (T

∗M̃)

be an almost holomorphic extension of G. Set

3εG = exp(εH Im σ

Re G̃)(T
∗M) ⊂ T ∗M̃. (4.38)

Here σ is the complex symplectic (2, 0)-form on T ∗M̃ , and H Im σ

Re G̃
is the Hamilton vector

field of Re G̃ computed with respect to the real symplectic form Im σ on T ∗M̃ . It follows
that the manifold 3εG is I-Lagrangian, and being a small deformation of T ∗M , it is also
R-symplectic, i.e. an IR-manifold. From [24] and [29], we recall the general relation

îεHG̃ = εH
Im σ

Re G̃,

valid to infinite order along the real domain T ∗M . Here îεHG̃ stands for the real vector
field in T ∗M̃ , naturally associated to the complex (1, 0) vector field

iεHG̃ = iε

2∑
j=1

(
∂G̃

∂ξj

∂

∂xj
−
∂G̃

∂xj

∂

∂ξj

)
.

It follows that in the region where G is analytic, including a sufficiently small but fixed
neighborhood of 30, we have

3εG = exp(iεHG)(T ∗M),

where we write G also for the holomorphic extension and recall that exp(iεHG) is a
holomorphic canonical transformation.

Associated to the IR-manifold3εG is the microlocally exponentially weighted Hilbert
spaceH(3εG), defined using the FBI-Bargmann approach, by modifying the exponential
weight on the FBI transform side. We refer to [25], [15] for the detailed definition of
H(3εG) for M = R2, and to [31] and the Appendix of [11] for the case when M is
compact. Following [24], [25], [31], let us introduce a microlocally unitary h-Fourier
integral operator

UG : L
2(M)→ H(3εG), (4.39)
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defined microlocally near p−1(0) ∩ T ∗M and associated to a suitable canonical transfor-
mation

κG : neigh(p−1(0), T ∗M)→ neigh(p−1(0),3εG)

such that κG = exp(iεHG) near 30. It follows that the operator

Pε : H(3εG)→ H(3εG) (4.40)

is microlocally near p−1(0) unitarily equivalent to the conjugate operator

U−1
G PεUG : L

2
→ L2

with leading symbol

pε|3εG ' p + iε(q −HpG)+O(ε2).

Letting
U0 : L

2(M)→ L2
θ (T

2)

be the semiclassical microlocally unitary Fourier integral operator with a real phase asso-
ciated to the canonical transformation κ0 in (4.1), and using the operator U0U

−1
G associ-

ated to the canonical transformation

κ0 ◦ κ
−1
G : neigh(exp(iεHG)(30),3εG)→ neigh(ξ = 0, T ∗T2),

we find that microlocally near the Lagrangian torus exp(iεHG)(30) ⊂ 3εG, the operator
in (4.40) is unitarily equivalent to an operator P̃ε, acting on L2

θ (T
2), defined microlocally

near ξ = 0 in T ∗T2 by

P̃ε ∼

∞∑
ν=0

hν p̃ν(x, ξ, ε). (4.41)

Here p̃ν are holomorphic functions in a fixed complex neighborhood of ξ = 0, smooth in
ε ∈ neigh(0,R), and

p̃0 = p(ξ)+ iεq̃(x1, ξ)+O(ε2)+ εO((ξ1 − f (ξ2))
N ) (4.42)

with q̃(x1, ξ) independent of x2 and of the form (4.22). Furthermore, the assumption
(2.29) implies that

p̃1(x, ξ, ε) = O(ε).

We may illustrate the microlocal unitary equivalence above by the commutative diagram

H(3εG) H(3εG)

L2
θ (T

2) L2
θ (T

2)

Pε

U0U
−1
G U0U

−1
G

P̃ε

(4.43)

In what follows, we shall drop the tildes from the notation in (4.41) and write sim-
ply Pε and pν , ν ≥ 0.
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5. Quantum normal forms near rational tori

In this section, we shall be concerned with a classical h-pseudodifferential operator
Pε(x, hDx;h), defined microlocally near ξ = 0 in T ∗T2, given by the expansion (4.41),
with leading symbol of the form (4.42). Our purpose here is to obtain a normal secular
reduction of Pε, also at the level of lower order symbols, and this will be accomplished in
a way very similar to [16], [14]. The main result of this section is stated in Proposition 5.2
below.

Let us first discuss the normal form construction at the level of principal symbols. In
doing so, we let q̃0 := q̃ in (4.42), and write

p0(x, ξ, ε) = p(ξ)+ iεq̃0(x1, ξ)+ iε
2q1(x, ξ)+O

(
ε3
+ ε(ξ1 − f (ξ2))

N
)
. (5.1)

Arguing as in Section 3, we can construct an analytic function G1, defined near ξ = 0,
such that modulo O((ξ1 − f (ξ2))

N ), we have

HpG1 = q1 − q̃1,

where q̃1 is any analytic function satisfying (4.20), (4.21) with q there replaced by q1. It
follows that

p0(exp(iε2HG1)(x, ξ)) = p(ξ)+ iεq̃0(x1, ξ)+ iε
2q̃1(x1, ξ)+O

(
ε3
+ ε(ξ1− f (ξ2))

N
)
.

Continuing this procedure, we get the following result.

Proposition 5.1. Let p0(x, ξ, ε) = p(ξ) + iεq̃0(x1, ξ) + O(ε2) + εO((ξ1 − f (ξ2))
N )

be analytic defined near ξ = 0, depending smoothly on ε ∈ neigh(0,R). Here N ≥ 2 is
arbitrarily large but fixed. Assume that

p(ξ) = p(f (ξ2), ξ2)+ g(ξ)(ξ1 − f (ξ2))
2, g(0) > 0, f (0) = 0,

where p(f (ξ2), ξ2) = αξ2 +O(ξ2
2 ), α > 0. There exists a holomorphic canonical trans-

formation κ(N)ε of the form

κ(N)ε = exp(iε2HG1) ◦ · · · ◦ exp(iεNHGN−1) (5.2)

with Gj analytic near ξ = 0, 1 ≤ j ≤ N − 1, such that modulo an error term of the form
O(εN+1

+ ε(ξ1 − f (ξ2))
N ), the function

p0(κ
(N)
ε (x, ξ)) ≡ p(ξ)+ iεq̃0(x1, ξ)+ iε

2(̃q1(x1, ξ)+ · · · + ε
N−2q̃N−1)

is independent of x2. Here, as discussed before, q̃0 is any analytic function satisfy-
ing (4.20), (4.21), and inductively q̃k is any analytic function satisfying (4.20), (4.21)
with q there replaced by a certain function qk that depends on the previously chosen
q̃0, . . . , q̃k−1.
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As will be discussed in Section 7, the complex canonical transformation κ(N)ε in (5.2) can
be quantized by means of an elliptic classical h-Fourier integral operator Uε in the com-
plex domain, depending smoothly on ε ∈ neigh(0,R), introduced rigorously on the FBI
transform side. In this section, we shall proceed formally, and an application of Egorov’s
theorem allows us to conclude that the operator

P̃ε(x, hDx;h) = U
−1
ε Pε(x, hDx;h)Uε

is an h-pseudodifferential operator, defined microlocally near ξ = 0, whose symbol has a
complete asymptotic expansion

P̃ε(x, ξ ;h) ∼ p̃0 + hp̃1 + · · · (5.3)

with all p̃j = p̃j (x, ξ, ε) being smooth functions of ε ∈ neigh(0,R) with values in the
space of holomorphic functions in a fixed complex neighborhood of ξ = 0 such that

p̃0(x, ξ, ε) = p(ξ)+ iεq̃0(x1, ξ)+O(ε2)+O
(
εN+1

+ ε(ξ1 − f (ξ2))
N
)
. (5.4)

Here the O(ε2)-term is independent of x2 and has the properties described in Proposition
5.1. Furthermore, we still have p̃1(x, ξ, ε) = O(ε).

We shall now simplify the lower order terms p̃j , j ≥ 1, in (5.3). To that end, let
Aε(x, hD;h) be a classical analytic elliptic h-pseudodifferential operator of order 0, with
symbol

Aε(x, ξ ;h) ∼ a0(x, ξ, ε)+ ha1(x, ξ, ε)+ · · · , (5.5)

depending smoothly on ε ∈ neigh(0,R). Then

A−1
ε U−1

ε PεUεAε = A
−1
ε P̃εAε =: P̂ε(x, hDx;h),

where
P̂ε(x, ξ ;h) ∼ p̃0(x, ξ, ε)+ hp̂1(x, ξ, ε)+ h

2p̂2(x, ξ, ε)+ · · · (5.6)

with

p̂1 = p̃1 +
1
i
a−1

0 Hp̃0a0 = p̃1 +
1
i
Hp̃0b0 (5.7)

if b0 = ln a0, well-defined up to a constant. Thus, looking for b0 in terms of a formal
power series in ε and choosing the terms there suitably, we can arrange that

p̂1(x, ξ, ε) = p̂1,0(x1, ξ)+ εp̂1,1(x1, ξ)+ · · · +O
(
εN+1

+ (ξ1 − f (ξ2))
N
)
,

where p̂1,0 is any analytic function satisfying (4.20), (4.21) with q replaced by p̃1,ε=0,
and inductively, p̂1,k is any analytic function satisfying (4.20), (4.21) with q replaced by
a function depending on the previously chosen p̂1,0, . . . , p̂1,k−1.

Iterating this procedure, by choosing also the lower order terms in the expansion
of Aε, we get the following result, giving a quantum secular normal form construction.
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Proposition 5.2. Let

Pε ∼ p0 + hp1 + · · · , (x, ξ) ∈ neigh(ξ = 0, T ∗T2),

be such that p0(x, ξ, ε) has the properties stated in Proposition 5.1. Let Uε be an ellip-
tic classical analytic h-Fourier integral operator of order 0, associated to the canonical
transformation κ(N)ε in Proposition 5.1. Then we can construct an elliptic classical ana-
lytic h-pseudodifferential operator of order 0 with symbol as in (5.5) such that microlo-
cally near ξ = 0, we have

A−1
ε U−1

ε Pε(x, hD;h)UεAε = P̂ε(x, hDx;h), (5.8)

where P̂ε(x, hDx;h) is of the form

P̂ε(x, ξ ;h) ∼ p̃0(x, ξ, ε)+ hp̂1(x, ξ, ε)+ h
2p̂2(x, ξ, ε)+ · · · . (5.9)

Here the leading term p̃0 is as in (5.4),

p̃0(x, ξ, ε) = p(ξ)+ iεq̃0(x1, ξ)+O(ε2)+O
(
εN+1

+ ε(ξ1 − f (ξ2))
N
)

with the O(ε2)-term being independent of x2. For 1 ≤ k ≤ N , we have

p̂k(x, ξ, ε) = p̂k,0(x1, ξ)+ εp̂k,1(x1, ξ)+ · · · +O
(
εN+1

+ (ξ1 − f (ξ2))
N
)
, (5.10)

where p̂k,` is any function satisfying (4.20), (4.21) q replaced by p̃k,`,a function that
depends on p̂k̃,˜̀ for all (̃k, ˜̀) such that either k̃ < k, or k̃ = k and ˜̀< `. In particular,
we can choose p̂k independent of x2 modulo O(εN+1

+ (ξ1 − f (ξ2))
N ). We also have

p̂1(x, ξ, ε) = O(ε).

6. Harmonic approximation for non-selfadjoint operators

In the previous section, we have seen how to eliminate the x2-dependence in the complete
symbol of our operator, by means of successive averaging procedures, when working in
a small neighborhood of the rational torus 30 = {ξ = 0} ⊂ T ∗T2. Following Proposi-
tion 5.2 and neglecting the remainder terms there, we shall now consider an operator of
the form

Pε = Pε(x1, hDx;h), (6.1)

defined microlocally near ξ = 0 in T ∗T2 and acting on L2
θ (T

2), with a complete symbol
independent of x2. We assume that the leading symbol of Pε is of the form

p0(x1, ξ, ε) = p(ξ)+ iεq̃(x1, ξ)+O(ε2), p(ξ) = p(f (ξ2), ξ2)+g(ξ)(ξ1−f (ξ2))
2,

(6.2)
with q̃ given in (4.22), and let us recall the assumption (2.28) implying that the func-
tion T 3 x1 7→ q̃(x1, f (ξ2), ξ2) has a unique minimum which is non-degenerate for
ξ2 ∈ neigh(0,R). When discussing the spectral analysis of Pε, it is natural, in view of
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its independence of x2, to take a Fourier series expansion in x2, thereby reducing the
problem, at least formally, to a direct sum of one-dimensional operators

Pε(x1, hDx1 , h(j − θ2);h), j ∈ Z, θ2 =
k0(α2)

4
+

S2

2πh
,

considered for those j for which h(j − θ2) ∈ neigh(0,R).
In what follows, we shall write ξ2 = h(j − θ2) ∈ neigh(0,R), and concentrate our

attention on the one-dimensional operator

Pε(x1, hDx1 , ξ2;h), (6.3)

acting on L2
θ1
(T). Modifying the Floquet conditions on T, we may replace (6.3) by the

conjugate operator

e−if (ξ2)x1/hPε(x1, hDx1 , ξ2;h)e
if (ξ2)x1/h = Pε(x1, f (ξ2)+ hDx1 , ξ2;h).

The full symbol of Pε(x1, hDx1 + f (ξ2), ξ2;h) is of the form

Pε(x1, ξ1 + f (ξ2), ξ2;h) =

∞∑
j=0

hjpj,ε(x1, ξ). (6.4)

Here

p0,ε(x1, ξ) = p(ξ1 + f (ξ2), ξ2)+ iεq̃(x1, ξ1 + f (ξ2), ξ2)+O(ε2), (6.5)

and from Proposition 5.2 we recall that

p1,ε(x1, ξ) = O(ε). (6.6)

We can then write p1,ε = εq1,ε with q1,ε = O(1).
Let us set

h̃ = h/
√
ε, (6.7)

and assume that
h̃� 1. (6.8)

We have

Pε(x1, ξ1 + f (ξ2), ξ2;h)

= p(ξ1+f (ξ2), ξ2)+ iεq̃(x1, ξ1+f (ξ2), ξ2)+O(ε2)+hεq1,ε(x1, ξ)+

∞∑
j=2

hjpj,ε

= p(ξ1+f (ξ2), ξ2)+ε
(
iq̃(x1, ξ1+f (ξ2), ξ2)+O(ε)+ h̃ε1/2q1,ε+

∞∑
j=2

h̃jεj/2−1pj,ε

)
.

Here, according to (6.2),

p(ξ1 + f (ξ2), ξ2) = p(f (ξ2), ξ2)+ g(ξ1 + f (ξ2), ξ2)ξ
2
1 , g(0) > 0.



Rational invariant tori and band edge spectra for non-selfadjoint operators 419

It follows that at the operator level, we have

Pε(x1, f (ξ2)+ hDx1 , ξ2;h) = p(f (ξ2), ξ2)+ g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2

+ iε
(
q̃(x1, f (ξ2)+ hDx1 , ξ2)+O(ε + h̃ε1/2

+ h̃2)
)
. (6.9)

We shall be interested in computing eigenvalues of the one-dimensional operator
Pε(x1, f (ξ2)+ hDx1 , ξ2;h) in the region

|Re z− p(f (ξ2), ξ2)| ≤ O(εh̃),

and directly from (6.9), using cut-offs of the form χ(ξ1/
√
ε), we see that the correspond-

ing eigenfunctions are microlocally concentrated to the region where ξ1 = O(
√
ε), pro-

vided that the smallness condition (6.8) is strengthened to

h/
√
ε ≤ hη, η > 0. (6.10)

It will then be convenient to perform a rescaling of the cotangent variable, corresponding
to a suitable change of the semiclassical parameter. Let us write

hDx1 =
√
ε h̃Dx1 ,

and if ξ1, ξ̃1 denote the cotangent variables corresponding to hDx1 and h̃Dx1 , respectively,
we have

ξ1 =
√
ε ξ̃1.

It follows that
1
ε
Pε(x1, f (ξ2)+ hDx1 , ξ2;h) (6.11)

can be viewed as an h̃-pseudodifferential operator of the form

1
ε
Pε(x1, f (ξ2)+ hDx1 , ξ2;h) =

p(f (ξ2), ξ2)

ε

+ g(f (ξ2)+
√
ε h̃Dx1 , ξ2)(̃hDx1)

2
+ iq̃(x1, f (ξ2)+

√
ε h̃Dx1 , ξ2)+O(ε)

+ h̃O(
√
ε)+O(̃h2). (6.12)

Ignoring the constant term p(f (ξ2), ξ2)/ε on the right hand side, we recognize here es-
sentially a one-dimensional Schrödinger operator with a purely imaginary potential, and
to be precise, we can write

1
ε
Pε(x1, f (ξ2)+ hDx1 , ξ2;h) =

p(f (ξ2), ξ2)

ε
+ A(x1, h̃Dx1 , ξ2,

√
ε; h̃),

whereA(x1, h̃Dx1 , ξ2,
√
ε; h̃) is a well-behaved h̃-pseudodifferential operator, depending

smoothly on ξ2 ∈ neigh(0,R) and
√
ε ≥ 0, with leading symbol

g(f (ξ2)+
√
ε ξ1, ξ2)ξ

2
1 + iq̃(x1, f (ξ2)+

√
ε ξ1, ξ2)+O(ε), (6.13)
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and with subprincipal symbol which is O(
√
ε). Here we have dropped the tilde from the

notation for the cotangent variable corresponding to h̃Dx1 ; also recall that the operator
(6.12) is to be considered microlocally in the region where ξ1 = O(1). The function g in
(6.13) satisfies g > 0.

Remark. If (6.6) is no longer assumed, we can write, assuming that h/ε � 1,

Pε(x1, ξ1 + f (ξ2), ξ2;h) = p(ξ1 + f (ξ2), ξ2)+ iεq̃(x1, ξ1 + f (ξ2), ξ2)

+O(ε2)+ hp1,ε(x1, ξ)+

∞∑
j=2

hjpj,ε(x1, ξ)

= p(ξ1 + f (ξ2), ξ2)+ iε

(
q̃(x1, ξ1 + f (ξ2), ξ2)+O

(
ε +

h

ε

)
+

∞∑
j=2

h̃jεj/2−1pj,ε

)
,

and we can then view h/ε as an additional small parameter. As will be seen in Section 6,
some pseudospectral considerations will force us to assume that ε/h should not be too
large, and for that reason, in this work we make the assumption (2.29), leading to (6.6).

The discussion pursued in this section so far indicates that the spectral analysis of the
original operator Pε should reduce to that for a family of h̃-pseudodifferential operators
on T, with leading symbols of the form (6.13). Letting ε = 0 in (6.13) for a while and
suppressing the parameter ξ2 altogether, we shall now pause to make a digression, in or-
der to recall semiclassical asymptotics for the low-lying eigenvalues of non-selfadjoint
h-pseudodifferential operators with double characteristics. In doing so, we shall follow
the analysis of [10], which in turn follows [8] closely. Let us also remark that in the
present one-dimensional case, the quadratic approximations along the double character-
istics are elliptic, and consequently our discussion is considerably simplified compared
with [10], [8].

Let P0(x, hDx;h) : C
∞(T)→ C∞(T) be such that P0(x, hDx;h) ∈ Opwh (S(〈ξ〉

2)),
and assume that the semiclassical leading symbol of P0 is of the form

p0(x, ξ) = ξ
2
+ iV (x), (6.14)

where V ∈ C∞(T;R). Assume also, for simplicity, that the subprincipal symbol of P0
vanishes. Assume that if a = minV then V −1(a) = {x0} with V ′′(x0) > 0. We are
interested in the eigenvalues of P0 in an open disc {z ∈ C; |z − ia| < Ch} for some
C > 0 fixed and all h > 0 small enough, and to that end we consider the operator

P(x, hDx;h) = (1− i)(P0(x, hDx;h)− ia), (6.15)

whose leading symbol p(x, ξ) = (1− i)(p0(x, ξ)− ia) is such that

Rep(x, ξ) = ξ2
+ V (x)− a ≥ 0

is elliptic for large ξ and vanishes precisely at the point (x0, 0) ∈ T ∗T. In a neighborhood
of (x0, 0) we have

p(x + x0, ξ) = q(x, ξ)+O((x, ξ)3), (x, ξ)→ (0, 0), (6.16)
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where q is a quadratic form such that Re q > 0. When determining the eigenvalues of
P(x, hDx;h) in an O(h)-neighborhood of 0, naturally only the behavior of the operator
in a small neighborhood of (x0, 0) matters, and by composing p with the inverse of the
translation

κ : neigh((x0, 0), T ∗T)→ neigh((0, 0), T ∗R), κ((x0, 0)) = (0, 0), (6.17)

we obtain an h-pseudodifferential operator

P(x, ξ ;h) ∼

∞∑
j=0

hjpj (x, ξ), p1 = 0, (6.18)

defined microlocally near (0, 0) ∈ T ∗R, such that the leading symbol p0 = p satisfies

p(x, ξ) = q(x, ξ)+O((x, ξ)3), (6.19)

where q is quadratic with
Re q > 0. (6.20)

We extend P(x, ξ ;h) to be globally defined on R2 as an element of the symbol class S(1),
such that

Rep(x, ξ) ≥ 0, (Rep)−1(0) = {(0, 0)}, (6.21)
Rep(x, ξ) ≥ 1/C, |(x, ξ)| ≥ C > 0. (6.22)

An application of [10, Theorem 1.1] allows us to conclude that the following result holds,
which we state directly for the operator P0(x, hDx;h). See also [9] for related results in
the analytic case.

Theorem 6.1. Let the operator P0(x, hDx;h) : C
∞(T)→ C∞(T) have principal sym-

bol of the form (6.14) and a vanishing subprincipal symbol, and assume that if a = minV
then V −1(a) = {x0} with b := V ′′(x0) > 0. Let C > 0. Then there exists h0 > 0 such
that for all 0 < h ≤ h0, the spectrum of P0(x, hDx;h) in the open disc D(ia, Ch) in the
complex plane is given by the simple eigenvalues of the form

zk ∼ ia + h(λk,0 + hλk,1 + h
2λk,2 + · · ·). (6.23)

Here λk,0 are the eigenvalues in D(0, C) of the elliptic quadratic operator

qw(x,Dx) = D
2
x + i

b

2
x2

acting on L2(R), which are given by

λk,0 = (b/2)1/2eiπ/4(2k + 1), k ∈ N, k = O(1).
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Remark. Theorem 6.1 continues to be valid when the operator P0(x, hDx;h) acts on an
L2-space of Floquet periodic functions on T, and indeed the eigenvalues described in this
result do not depend on the Floquet conditions modulo O(h∞).

Coming back to the operator in (6.12), with the leading symbol (6.13), we shall next
have to extend the result of Theorem 6.1 to the parameter-dependent case, and to this
end it will be convenient to recall briefly the main steps in the proof of Theorem 6.1. Let
P = P(x, hDx;h) be an h-pseudodifferential operator on R satisfying (6.18)–(6.22).
Following [10], let us recall that the proof of Theorem 6.1 proceeds by constructing a
well-posed Grushin problem for the operator P , of the form

(P − hz)u+ R−u− = v, R+u = v, z ∈ neigh(λ0,C), (6.24)

in the space L2(R)× C. Here λ0 is an eigenvalue of qw(x,Dx) such that |λ0| < C. The
operators R− : C→ L2 and R+ : L2

→ C are defined as follows:

R−u− = u−e, R+u = (u, f )L2 , (6.25)

where e is an eigenfunction of qw(x, hDx) corresponding to the eigenvalue hλ0, and f is
an eigenfunction of the adjoint operator qw(x, hDx) corresponding to the eigenvalue hλ0.

The verification of the well-posedness of (6.24) consists of two steps, both carried out
after a metaplectic FBI transform

T : L2(R)→ H80(C). (6.26)

Here

H80(C) = Hol(C) ∩ L2(C; e−280/hL(dx)),

and 80 is a suitable strictly subharmonic quadratic form. In the first step, we concentrate
on the region |x| ≤ hρ , x ∈ C, for some 1/3 < ρ < 1/2. Arguing as in [10], we obtain the
following a priori estimate for the problem (6.24), based on the quadratic approximation
of P near the origin (see [10, (3.25)])

‖(h+ |x|2)1/2χ0(x/h
ρ)u‖ + h−1/2

|u−|

≤ C‖(h+ |x|2)−1/2χ0(x/h
ρ)v‖ + C‖(h+ |x|2)−1/2χ0(x/h

ρ)(P −Q)u‖

+O(h1/2)|v+| + C
√
h/h2ρ‖(h+ |x|2)1/21K(x/hρ)u‖. (6.27)

Here u, v ∈ H80(C), the norms are taken in the space L2(C; e−280/hL(dx)), and we
have also written P for the conjugate operator T PT −1. The function χ0 ∈ C

∞

0 (C) is
fixed, with χ0 = 1 near 0, and K is a fixed compact neighborhood of supp(∇χ0), 0 /∈ K .
Furthermore, Q = T qw(x, hDx)T −1, and therefore, as explained in [10], we have

‖(h+ |x|2)−1/2χ0(x/h
ρ)(P −Q)u‖ = O(h3ρ/h1/2)‖u‖. (6.28)
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Using (6.27) and (6.28), we obtain

h‖χ0(x/h
ρ)u‖2 + h−1

|u−|
2

≤
O(1)
h
‖v‖2 +O(h6ρ−1)‖u‖2 +O(h)|v+|2 +O(h)‖1K(x/hρ)u‖2. (6.29)

Notice that the lower bound ρ > 1/3 implies that here h6ρ−1
� h.

In the second step of the proof, we consider the exterior region |x| ≥ hρ , and here we
use

Rep
(
x,

2
i

∂80

∂x
(x)

)
≥
h2ρ

C
, C > 0.

Exploiting the sharp Gårding inequality in the form of a quantization-multiplication for-
mula, as explained in [10] (see also [36]), we obtain the following exterior a priori esti-
mate for the problem (6.24):

h2ρ
∫
χ(x/hρ)|u(x)|2e−280(x)/h L(dx) ≤ O(1)‖v‖ ‖u‖

+O(h∞)|u−| ‖u‖ +O(h)‖u‖2. (6.30)

Here χ ∈ C∞b (C; [0, 1]) vanishes near x = 0 and χ = 1 for large x. Assuming that
1/3 < ρ < 1/2, the bounds (6.29) and (6.30) can be glued together, and we get the
a priori estimate

h‖u‖ + |u−| ≤ O(1)(‖v‖ + h|v+|), (6.31)

and the consequent well-posedness of the Grushin problem (6.24). Asymptotic expan-
sions for the eigenvalues of P follow exactly as explained in [8], [10]. In the present
one-dimensional situation, the eigenvalues are simple and only integer powers of h occur
in the expansions (6.23).

Turning to the parameter-dependent case, let Pε = Pε(x, hDx;h) ∈ Opwh (S(1)),
ε ≥ 0, be an h-pseudodifferential operator depending smoothly on

√
ε such that Pε=0 =

P satisfies (6.18)–(6.22). In particular, the leading symbol pε of Pε satisfies

pε(x, ξ) = p(x, ξ)+O(
√
ε) (6.32)

in the sense of symbols in S(1), and the subprincipal symbol of Pε is O(
√
ε). Assume

also that near (0, 0), (6.32) improves to

pε(x, ξ) = p(x, ξ)+O(
√
ε |ξ | + ε) (6.33)

(see also (6.13)). We would like to conclude that the Grushin problem (6.24) with P
replaced by Pε remains well-posed, provided that ε > 0 is not too large, and to that end,
we shall simply inspect the two steps above.

In the region |x| ≤ hρ , we argue as above with P replaced by Pε, and using (6.33)
together with the fact that the subprincipal symbol of Pε is O(

√
ε), we see that we get an
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additional term on the right hand side of (6.27) of the form

‖(h+ |x|2)−1/2χ0(x/h
ρ)(Pε − P)u‖ = O

(√
ε hρ + ε

h1/2

)
‖u‖. (6.34)

Here we also assume that we have chosen the FBI transform in (6.26) so that (6.33) holds
on the transform side. As for the exterior region |x| ≥ hρ , replacing P by Pε we get an
additional term on the right hand side of (6.30), given by

O(1)
√
ε ‖u‖2. (6.35)

It follows that to absorb the two extra terms (6.34), (6.35), we need to meet the following
conditions:

ε1/2hρ + ε

h1/2 � h1/2 and
√
ε � h2ρ .

The first condition is satisfied provided that ε � h2−2ρ, since ρ < 1/2, and the second
one holds when ε � h4ρ . We conclude that the Grushin problem (6.24) remains well-
posed when P is replaced by Pε provided that

ε � h4ρ, (6.36)

since 1/3 < ρ < 1/2. Combining this observation with the standard perturbation theory
for eigenvalues of multiplicity one [18], we obtain the following result.

Proposition 6.2. Let Pε(x, hDx;h), ε ≥ 0, be a smooth function of
√
ε with values in

Opwh (S(1)) such that when ε = 0, we have the properties (6.18)–(6.22). Assume that
(6.33) holds. Then for ε ≤ h4/3+η, η > 0, the eigenvalues of Pε(x, hDx;h) in the region
{z ∈ C; |z| < Ch} are simple eigenvalues of the form

zk ∼ h(λk,0(
√
ε)+ hλk,1(

√
ε)+ · · · ), k ∈ N, k = O(1),

where λk,j (
√
ε) are smooth functions of

√
ε ≥ 0, j ≥ 0, with λk,0(0) being the eigen-

values of the quadratic operator qw(x,Dx) described explicitly in Theorem 6.1. When
z ∈ C is such that |z| < Ch and dist(z,Spec(Pε)) ≥ h/O(1), we have

(z− Pε)
−1
= O(1)/h : L2

→ L2. (6.37)

In our considerations (see (6.13)), when applying Proposition 6.2, we should replace the
semiclassical parameter h by h̃ = h/

√
ε, which in view of (6.36) leads to the condition

ε � h̃4ρ, 1/3 < ρ < 1/2, (6.38)

so that
ε � h4ρ/(2ρ+1).

When ρ = 1/3, the power on the right hand side is 4/5, and it follows that we have the
well-posedness of the Grushin problem provided that

ε ≤ O(h4/5+η), η > 0. (6.39)
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Remark. In the proof of Proposition 6.2 above, the presence of the parameter
√
ε was

treated by a direct perturbation argument, leading to the upper bound (6.36). The purpose
of this remark is to outline an alternative approach to the parameter-dependent case, lead-
ing to sharper bounds on ε. While sharpening the result of Proposition 6.2 below would
not lead to an improvement in Theorem 2.1, which is the main result of this work, we
believe that the alternative approach sketched below may be of some independent inter-
est. Since its precise realization is likely to demand a greater technical investment, the
argument developed in this remark will be quite brief and we hope to be able to develop
it further in future work.

Let Pε(x, ξ ;h) be a real analytic function of ε ∈ neigh(0,R) with values in the space
of bounded holomorphic functions in a tubular neighborhood of R2, such that as h→ 0+,

Pε(ρ;h) ∼ pε(ρ)+ hp1,ε(ρ)+ · · · , ρ = (x, ξ).

For ε = 0, assume that the leading symbol p := p0 is such that Rep ≥ 0 is elliptic at
infinity, vanishing precisely at ρ = 0. Assume furthermore that

p(ρ) = q(ρ)+O(ρ3), ρ → 0,

where q is quadratic with Re q positive definite. In particular, ρ = 0 is a non-degenerate
critical point for p, and an application of the implicit function theorem shows that for ε
small, pε has a non-degenerate critical point ρ(ε) in the complex domain, depending an-
alytically on ε, with ρ(ε) = O(ε). Passing to the FBI transform side by means of a meta-
plectic FBI transform T , as in (6.26), let us continue to write ρ(ε) = (x(ε), ξ(ε)) = O(ε)
for the image of the critical point ρ(ε) under the complex linear canonical transforma-
tion κT associated to T .

We know from [29] that κT (R2) = 380 = {(x, (2/i)∂x80(x)); x ∈ C}, where 80
is the strictly subharmonic quadratic form introduced in (6.26). We shall now discuss the
problem of constructing a weight function 8ε ∈ C∞(C) such that

8ε = 80 +O(h), |∇
2(8ε −80)| � 1, (6.40)

and with ρ(ε) ∈ 38ε = {(x, (2/i)∂x8ε(x)); x ∈ C}. The function 8ε is then strictly
subharmonic and if we setH8ε (C) = Hol(C)∩L2(C; e−28ε/hL(dx)), thenH8ε = H80 ,
with uniformly equivalent norms. To get the complete asymptotic expansions of the eigen-
values of Pε in D(pε(ρε), Ch), as in Proposition 6.2, one should then work with the
operator Pε acting on the space H8ε . We need

ξ(ε) =
2
i

∂8ε

∂x
(x(ε)),

and notice that

ξ(ε)−
2
i

∂80

∂x
(x(ε)) = O(ε).
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With ∂x8ε(x(ε)) already determined, we try

8ε(x) = 80(x)+ 2 Re
(
(∂x8ε(x(ε))− ∂x80(x(ε))) · (x − x(ε))

)
χ

(
x − x(ε)

hα

)
= 80(x)+ h

α(`εχ)

(
x − x(ε)

hα

)
.

Here χ ∈ C∞0 (C) is a standard cut-off near 0 and

`ε(y) = 2 Re
(
(∂x8ε(x(ε))− ∂x80(x(ε))) · y

)
is linear such that `ε = O(ε) as a linear form. Then

∇
k(8ε −80) = O(ε)hα−kα, k ≥ 0,

and in view of (6.40), we need εhα ≤ O(h), ε/hα � 1. We get the conditions ε ≤
O(h1−α), ε � O(hα), and it follows that the optimal choice of α is α = 1/2. This leads
to the condition ε � O(

√
h). In our applications, we should replace ε by

√
ε and h by

h̃ = h/
√
ε, leading to the condition ε � h̃ = h/

√
ε, so that we get

0 ≤ ε � O(h2/3), (6.41)

which is sharper than (6.39). One conjectures therefore that the result of Proposition 6.2
extends to this range of ε, and we hope to return to this observation in a future paper.

We shall finish this section by a formal application of Proposition 6.2 to the microlocally
defined operator Pε(x1, hDx1 , ξ2;h) in (6.3), acting on L2

θ1
(T). Assume that ε > 0 is

such that
h̃ = h/

√
ε ≤ hη, η > 0,

and that (6.39) holds. It follows that the eigenvalues of Pε(x1, hDx1 , ξ2;h) in the region

|z− p(f (ξ2), ξ2)− iε〈q〉2(x1(ξ2), f (ξ2), ξ2)| ≤ O(
√
ε h)

are given by

zk = p(f (ξ2), ξ2)+ iε〈q〉2(x1(ξ2), f (ξ2), ξ2)

+
√
ε h(λk,0 + λk,1h̃+ λk,2h̃

2
+ · · · ), N 3 k ≤ O(1), (6.42)

where λk,j = λk,j (ξ2,
√
ε), j ≥ 0, is a smooth function of ξ2 ∈ neigh(0,R),

√
ε ≥ 0,

with

λk,0(ξ2, 0)=eiπ/4(∂2
ξ1
p(f (ξ2), ξ2))

1/2(∂2
x1
〈q〉2(x1(ξ2), f (ξ2), ξ2))

1/2(k+1/2). (6.43)

Here we recall from (2.28) that x1(ξ2) ∈ T is the unique minimum point of the function
x1 7→ 〈q〉2(x1, f (ξ2), ξ2).
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7. Pseudospectral bounds and the global Grushin problem

The discussion pursued in the previous section shows that we are able to determine the
low-lying eigenvalues of suitable localized one-dimensional operators

Pε(x1, hDx1 , ξ2;h)

in (6.3), occurring in the normal form reduction, provided that the perturbative parame-
ter ε satisfies

h2−η
≤ ε ≤ h4/5+η, η > 0. (7.1)

The purpose of this section is to complete the proof of Theorem 2.1 by constructing a
global well-posed Grushin problem for Pε − z, leading to the description of the eigenval-
ues in the region described in Theorem 2.1. In doing so, we shall have to strengthen the
bounds in (7.1), as a consequence of some precise pseudospectral analysis for the family
of the one-dimensional non-selfadjoint operators Pε(x1, hDx1 , ξ2;h), with ξ2 playing the
role of parameters.

Our first task is to give a global definition of the h-dependent weighted Hilbert space,
where the Grushin problem will be studied. Similarly to [16], the weighted space in ques-
tion will be associated to a globally defined IR-manifold3 ⊂ T ∗M̃ , which is O(ε)-close
to T ∗M and agrees with it outside a compact set. Specifically, the manifold 3 will be
obtained as an O(ε2)-perturbation of the IR-manifold 3εG, introduced in (4.38), where
the perturbative modification will only take place in a sufficiently small but fixed neigh-
borhood of the rational torus 30.

Let us recall therefore that in Section 4, we have shown that microlocally near the
Lagrangian torus exp(iεHG)(30) ⊂ 3εG, the operator in (4.40) is unitarily equivalent to
an analytic h-pseudodifferential operator Pε, defined microlocally near ξ = 0 in T ∗T2

and acting on L2
θ (T

2), such that the leading symbol of Pε is of the form

p0(x, ξ, ε) = p(ξ)+ iεq̃(x1, ξ)+O(ε2)+ εO((ξ1 − f (ξ2))
N ), (7.2)

where p(ξ) is given in (4.2) and N ≥ 2 is arbitrarily large but fixed. See also (4.43) for
an illustration of the unitary equivalence by means of a commutative diagram.

Let

κ(N)ε : neigh(ξ = 0, T ∗T̃2)→ neigh(ξ = 0, T ∗T̃2), T̃2
= C2/2πZ2, (7.3)

be the holomorphic canonical transformation introduced in Proposition 5.1. Considering
the IR-manifold κ(N)ε (T ∗T2) ⊂ T ∗T̃2, defined in a complex neighborhood of ξ = 0, we
conclude, arguing as in [16, Section 5], that there exists a C∞ strictly plurisubharmonic
function 8ε(x), defined for x ∈ C2/2πZ2, |Im x| ≤ 1/O(1), such that in the C∞-sense,

8ε(x) = 80(x)+O(ε2), 80(x) =
1
2 (Im x)2,

and the operator

Pε = O(1) : T −1H8ε (|Im x| < 1/C)→ T −1H8ε (|Im x| < 1/C) (7.4)
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is, microlocally near κ(N)ε (T2
× {ξ = 0}), unitarily equivalent to an operator P̃ε, given in

(5.3), (5.4), acting on L2
θ (T

2). Here

T : L2(T2)→ H80(C
2/2πZ2)

is the standard unitary FBI-Bargmann transform on the 2-torus associated to the quadratic
phase function i(x − y)2/2, as discussed in [14], and we have written

H8ε (�) = Hol(�) ∩ L2(�, e−28ε/hL(dx))

for� ⊂ C2/2πZ2 open, including the Floquet periodic versions of the spaces. Let us also
point out that the unitary equivalence between the operators Pε in (7.4) and P̃ε is realized
by means of a microlocally unitary h-Fourier integral operator Uε in the complex domain,
quantizing the canonical transformation in (7.3). Similarly to (4.43), we may illustrate it
in a commutative diagram

T −1H8ε (|Im x| < 1/C) T −1H8ε (|Im x| < 1/C)

L2
θ (T

2) L2
θ (T

2)

Pε

P̃ε

Uε Uε (7.5)

In particular, according to Proposition 5.1, the leading symbol of P̃ε is independent
of x2 modulo O(εN+1

+ ε(ξ1 − f (ξ2))
N ). The subprincipal symbol of P̃ε is O(ε).

Remark. From [16], we may recall that writing

38ε : ξ =
2
i

∂8ε

∂x
(x), |Im x| ≤

1
O(1)

,

we have38ε = κT ◦κ
(N)
ε (T ∗T2), where the canonical transformation κT associated to T

is given by
T ∗T̃2

3 (y, η) 7→ (y − iη, η) = (x, ξ) ∈ T ∗T̃2.

Let us also remark that the writing (7.4) is somewhat informal, and a precise statement
is obtained by considering the action of the conjugate operator T PεT −1 on the space
H8ε (|Im x| < 1/C) (see also [16]).

We obtain a globally defined closed IR-manifold 3 ⊂ T ∗M̃ , which is diffeomor-
phic to T ∗M , ε-close to T ∗M everywhere in the C∞-sense, agrees with that set away
from p−1(0), and in a complex neighborhood of 30 it is obtained by replacing

exp(iεHG) ◦ κ−1
0 (T ∗T2)

by
exp(iεHG) ◦ κ−1

0 ◦ κ
(N)
ε (T ∗T2), (7.6)

which amounts to an O(ε2)-deformation 3εG in a neighborhood of 30. Here we recall
the holomorphic canonical transformation exp(iεHG), identifying 3εG and T ∗M in a
neighborhood of 30, and the real analytic canonical transformation κ0 in (4.1), given by
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the action-angle coordinates near 30. The spectral analysis required in order to compute
the extremal eigenvalues of Pε in Theorem 2.1 will be carried out in the globally defined
h-dependent Hilbert space H(3), associated to the IR-manifold 3 by the FBI-Bargmann
approach.

Recalling Proposition 4.2 and taking into account also Proposition 5.2, eliminating
the x2-dependence in the normal form by means of a pseudodifferential conjugation, we
may summarize the discussion so far in the following result.

Proposition 7.1. There exists a globally defined smooth IR-manifold 3 ⊂ T ∗M̃ and a
C∞-Lagrangian torus 3̂0 ⊂ 3, which is an O(ε)-perturbation of the rational torus 30
in the C∞-sense, such that when ρ ∈ 3 is away from an εδ-neighborhood of 3̂0 in 3
and

|RePε(ρ;h)| ≤ ε2δ/C (7.7)

for C > 0 large enough, then

ImPε(ρ;h) ≥ ε infQ∞(30)+ ε
2δ+1/O(1). (7.8)

Here 0 < δ < 1/2 is so small that εδ � max(h1/2, ε1/2). The manifold 3 is O(ε)-close
to T ∗M and agrees with it away from a neighborhood of p−1(0) ∩ T ∗M . We have

Pε = O(1) : H(3,m)→ H(3).

Furthermore, there exists an elliptic h-Fourier integral operator with a complex phase

U = O(1) : H(3)→ L2
θ (T

2)

such that microlocally near 3̂0, we have

UPε = (P (x1, hDx, ε;h)+ R(x, hDx, ε;h))U.

Here P(x1, hDx, ε;h) + R(x, hDx, ε;h) is defined microlocally near ξ = 0 in T ∗T2,
the full symbol of P(x1, hDx, ε;h) is independent of x2, and

R(x, ξ, ε;h) = O
(
εN+1

+ (ξ1 − f (ξ2))
N
+ hN+1), f (0) = 0. (7.9)

Here N is arbitrarily large but fixed. The leading symbol of P(x1, hDx, ε;h) is of the
form

p(ξ)+ iεq̃(x1, ξ)+O(ε2),

where

p(ξ) = p(f (ξ2), ξ2)+ g(ξ)(ξ1 − f (ξ2))
2, g(0) > 0, f (0) = 0, (7.10)

and T 3 x1 7→ q̃(x1, f (ξ2), ξ2) has a unique minimum when ξ2 ∈ neigh(0,R), which is
also non-degenerate. The subprincipal symbol of P(x1, hDx, ε;h) is O(ε).
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Using Proposition 7.1, we shall now discuss a priori estimates for the equation

(Pε − z)u = v (7.11)

when u ∈ H(3,m), v ∈ H(3), and the spectral parameter z ∈ C is confined to the
region

|Re z| ≤ ε2δ/O(1), Im z ≤ ε infQ∞(30)+O(
√
ε h). (7.12)

When doing so, following [16], [15], we shall make use of a suitable partition of unity
on the manifold 3, defined using Proposition 7.1 and consisting of smooth functions
satisfying slightly degenerate symbolic estimates. Indeed, the presence of such slightly
exotic symbols is natural here, as we are dealing with methods based on the techniques
of normal forms, introducing error terms vanishing to a high order along the invariant
tori. See also [30]. When quantizing the corresponding symbols defined on3, in the case
when M = R2 we follow [15] and reduce the quantization procedure to that of Weyl on
the standard phase space T ∗R2 by means of a C∞-canonical transformation

κ : neigh(p−1(0), T ∗R2)→ neigh(p−1(0),3)

such that
κ(X) = X + iεHG(X)+O(ε2),

and the corresponding unitary Fourier integral operator with a complex phase mapping
L2(R2) to H(3). When M is compact, we use the Toeplitz quantization, following [31].

Let us consider a smooth partition of unity on the manifold 3,

1 = χ + ψ1 + ψ2. (7.13)

Here χ ∈ C∞0 (3), ∇
mχ = O(ε−2δm), m ≥ 0, is a cut-off function supported in an

εδ-neighborhood of 3̂0 intersected with the region where |RePε| ≤ ε2δ/C. Specifically,
we shall obtain χ by choosing a suitable function χ0 ∈ C

∞

0 (T
∗T2), ∂αχ0 = O(ε−2δ|α|),

|α| ≥ 0, depending on ξ only, χ0 = χ0(ξ), and conjugating the operator χ0(hDx) by the
microlocal inverse of the operator U in Proposition 7.1. In particular, using the fact that
the subprincipal symbol of Pε=0 vanishes, we get

[Pε, χ] = O(h3/ε6δ)+O(εh/ε2δ) : H(3)→ H(3). (7.14)

Here and in what follows, we use the same notation for the functions occurring in (7.13)
and the corresponding h-Weyl quantizations.

The function 0 ≤ ψ1 ∈ C
∞(3) in (7.13) satisfies

∇
mψ1 = Om(ε

−2δm), m ≥ 0,

and is such that
|RePε(ρ;h)| ≥ ε2δ/C (7.15)

near the support of ψ1. Finally, 0 ≤ ψ2 ∈ C
∞

0 (3) in (7.13) is such that

∇
mψ2 = Om(ε

−2δm), m ≥ 0, (7.16)
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and furthermore ψ2 is supported in a region invariant under the Hp-flow, where

ImPε(ρ;h) ≥ ε infQ∞(30)+ ε
1+2δ/O(1). (7.17)

We also arrange, as we may, that ψ2 Poisson commutes with p, the leading symbol
of Pε=0 acting on H(3), so that {ψ,p} = 0. We refer to [16], [15], [14], where par-
titions of unity similar to (7.13) are constructed and utilized.

Let us now return to the equation (7.11). Assume that δ ∈ (0, 1/2) is so small that

ε2δ
≥ h1/2−η (7.18)

for some fixed η > 0. We can then follow the slightly degenerate parametrix construction
for Pε − z near the support of ψ1, described in detail in [15, Section 4], and obtain

‖ψ1u‖ ≤
O(1)
ε2δ ‖v‖ +O(h∞)‖u‖. (7.19)

Here and in what follows, the norms are taken in the space H(3).
When discussing estimates for ψ2u, let us notice that ImPε(ρ;h) = O(ε) on 3, and

near suppψ2 we have, in view of (7.17) and (7.12),

Im(Pε(ρ;h)− z) ≥ ε1+2δ/O(1)−O(
√
ε h). (7.20)

Therefore, with a new implicit constant, near the support of ψ2, we get

1
ε

Im(Pε(ρ;h)− z) ≥ ε2δ/O(1), (7.21)

provided that
h2/(1+4δ)

� ε. (7.22)

The lower bound (7.22) is of the same form as (7.1). Using h/ε4δ as the natural semiclas-
sical parameter and applying the sharp Gårding inequality, as in [16, Section 5], we get,
in view of (7.21),

1
ε

Im ((Pε − z)ψ2u,ψ2u) ≥

(
ε2δ

O(1)
−O(1)

h

ε4δ

)
‖ψ2u‖

2
−O(h∞)‖u‖2

≥
ε2δ

O(1)
‖ψ2u‖

2
−O(h∞)‖u‖2, (7.23)

provided that we strengthen (7.18) by assuming that

h/ε6δ
≤ hη, η > 0. (7.24)

It follows from (7.23) that

ε2δ+1

O(1)
‖ψ2u‖

2
≤ O(1)‖v‖ ‖ψ2u‖ + Im ([Pε, ψ2]ψ̃2u,ψ2u)+O(h∞)‖u‖2. (7.25)
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Here ψ̃2 ∈ C
∞

0 (3) has the same properties as ψ2 and is such that ψ̃2 = 1 near supp(ψ2).
When estimating the commutator [Pε, ψ2] in (7.25), by using the Weyl calculus and (7.16)
together with the fact that the subprincipal symbol of Pε=0 vanishes, and p and ψ2 Pois-
son commute, we get

[Pε, ψ2] = [Pε=0, ψ2] +O
(
εh

ε2δ

)
= O

(
h3

ε6δ

)
+O

(
εh

ε2δ

)
= O

(
εh

ε2δ

)
. (7.26)

Here we have also used the fact that h2
� ε1+4δ , in view of (7.22). Combining (7.25)

and (7.26), we get

ε2δ+1

O(1)
‖ψ2u‖

2
≤ O(1)‖v‖ ‖ψ2u‖ +O

(
εh

ε2δ

)
‖ψ̃2u‖

2
+O(h∞)‖u‖2, (7.27)

and therefore

‖ψ2u‖
2
≤

O(1)
ε4δ+2 ‖v‖

2
+O

(
h

ε4δ

)
‖ψ̃2u‖

2
+O(h∞)‖u‖2. (7.28)

Combining (7.24), (7.28), and a standard iteration argument, we conclude that

‖ψ2u‖ ≤
O(1)
ε1+2δ ‖v‖ +O(h∞)‖u‖. (7.29)

Using (7.13), (7.19), and (7.29), we obtain the following a priori estimate for the
problem (7.11), (7.12):

‖(1− χ)u‖ ≤
O(1)
ε1+2δ ‖v‖ +O(h∞)‖u‖, (7.30)

which holds provided that δ ∈ (0, 1/2) and the conditions (7.22), (7.24) are fulfilled.
In the subsequent analysis, we may therefore concentrate on the region supp(χ) for the
cut-off function χ in (7.13).

Let us recall that the function χ ∈ C∞0 (3), ∇
mχ = O(ε−2δm), m ≥ 0, in (7.13)

is supported in an εδ-neighborhood of 3̂0 intersected with the region where |RePε| ≤
ε2δ/C. Writing

(Pε − z)χu = χv + [Pε, χ]u,

and applying the Fourier integral operator U of Proposition 7.1, we get

(P (x1, hDx, ε;h)− z)Uχu = Uχv + U [Pε, χ]u+ T u. (7.31)

Here, using (7.9), we see that

T = O(hM) : H(3)→ L2
θ (T

2), (7.32)

where M can be taken as large as we wish, provided that the integer N in Proposition 7.1
is taken large enough. Furthermore, as discussed above, we may arrange that

Uχ = χ0U +O(h∞) : H(3)→ H(3),
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where χ0 = χ0(hDx, ε) is of the form

χ0(ξ, ε) = χ1(ξ1/ε
δ)χ1(ξ2/ε

2δ),

where χ1 ∈ C
∞

0 (R) is a standard cut-off to a neighborhood of 0. In particular, using
(7.10) we see that the support of χ0 is contained in the region where

|ξ | = O(εδ), |p(ξ)| ≤ O(ε2δ).

Modifying the operator T in (7.31) slightly, we get

(P (x1, hDx, ε;h)− z)χ1

(
hDx1

εδ

)
χ2

(
hDx2

ε2δ

)
Uu = Uχv+U [Pε, χ]u+ T u. (7.33)

In the subsequent analysis we shall therefore be working on the cotangent space T ∗T2 in
the region where

ξ1 = O(εδ), (7.34)

while
ξ2 = O(ε2δ). (7.35)

Taking a Fourier series expansion in x2, we get a direct sum decomposition

P(x1, hDx, ε;h) =
⊕
j∈Z

P(x1, hDx1 , ξ2, ε;h), ξ2 = h(j − θ2), (7.36)

where, according to (7.35), the summation is restricted only to those j ∈ Z for which
ξ2 = O(ε2δ). We shall consider the question of inverting the operator

P(x1, hDx, ε;h)− z =
⊕
j

(P (x1, hDx1 , ξ2, ε;h)− z), (7.37)

where, compared to (7.12), as stated in Theorem 2.1, the real part of z will be localized
further to the region

|Re z| ≤
h

C
√
ε
, (7.38)

whereC > 0 is large enough but fixed. Since in Proposition 7.1 we have introduced errors
that are O(hM),M � 1 (see (7.32)), we would first like to show that the one-dimensional
non-selfadjoint operator

P(x1, hDx1 , ξ2, ε;h)− z : L
2
θ1
(T)→ L2

θ1
(T) (7.39)

is invertible, microlocally in the region where ξ1 = O(εδ), with an inverse of temperate
growth in 1/h, when ξ2 = O(ε2δ) is such that |ξ2| ≥ h/(C1

√
ε) for a suitable fixed C1

satisfying 0 < C1 < C. In doing so, it will be convenient to distinguish two cases,
depending on the sign of ξ2.

Case 1. Let us assume first that ξ2 = O(ε2δ) is such that

ξ2 ≥
h

C1
√
ε
. (7.40)
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Then, after a unitary conjugation, we can write, at the level of operators,

e−if (ξ2)x1/hP(x1, hDx1 , ξ2, ε;h)e
if (ξ2)x1/h − z

= p(f (ξ2), ξ2)+ g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
+ iεq̃(x1, f (ξ2)+ hDx1 , ξ2)

+O(ε2)+ hO(ε)+O(h2)− z. (7.41)

Here the conjugate operator, acting on the space L2
θ1+f (ξ2)

(T) of Floquet periodic func-
tions, is still considered microlocally in the region where ξ1 = O(εδ), since f (ξ2) =

O(ξ2) = O(ε2δ). Recalling that the derivative of the function ξ2 7→ p(f (ξ2), ξ2) is
strictly positive near ξ2 = 0, we conclude, using (7.38), (7.40), and the positivity of
g(f (ξ2) + hDx1 , ξ2)(hDx1)

2, that the real part of the operator in (7.41), which is of the
form

p(f (ξ2), ξ2)+ g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
− Re z+O(ε2

+ h2)+ hO(ε),

is ≥ h/(C̃
√
ε) for some C̃ > 0, and is therefore invertible, microlocally in the region

ξ1 = O(εδ), with the norm of the inverse being O(
√
ε/h). Here we also use the fact

that ε2
� h/

√
ε, in view of (7.1). It is therefore clear that the full operator in (7.41)

is invertible, microlocally in the region ξ1 = O(εδ), with a microlocal inverse of norm
O(
√
ε/h).

Case 2. We assume now that ξ2 = O(ε2δ) is such that

ξ2 ≤ −
h

C1
√
ε
. (7.42)

Similarly to (7.41), we write

e−if (ξ2)x1/hP(x1, hDx1 , ξ2, ε;h)e
if (ξ2)x1/h − z

= g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
+ iεq̃(x1, f (ξ2)+ hDx1 , ξ2)

+O(ε2)+ hO(ε)+O(h2)− w, (7.43)

where
w = z− p(f (ξ2), ξ2) (7.44)

satisfies
Rew ≥

h

C2
√
ε
, Imw ≤ ε infQ∞(30)+O(

√
ε h) (7.45)

for a suitable C2 > 0. In view of (7.35), we have

q̃(x1, f (ξ2)+ ξ1, ξ2) = q̃(x1, ξ1, 0)+O(ε2δ), (7.46)

and therefore at the operator level we obtain

e−if (ξ2)x1/hP(x1, hDx1 , ξ2, ε;h)e
if (ξ2)x1/h − z

= g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
+ iεq̃(x1, hDx1 , 0)+ R − w, (7.47)
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where
R = O(ε1+2δ

+ εh+ ε2
+ h2) : L2

θ1+f (ξ2)
(T)→ L2

θ1+f (ξ2)
(T). (7.48)

We may also assume that in (7.47), the operator q̃(x1, hDx1 , 0) is given by the classical h-
quantization. It follows from (7.33) that thanks to the presence of the cut-off χ1(hDx/ε

δ),
to invert the operator in (7.39) microlocally in the region where ξ1 = O(εδ), we should
consider the equation

(
g(f (ξ2)+hDx1 , ξ2)(hDx1)

2
+ iεq̂(x1, hDx1)+R−w1

)
χ1

(
hDx1

εδ

)
u = v (7.49)

for u, v ∈ L2
θ1+f (ξ2)

(T). Here w1 = w − iε infQ∞(30) and

q̂(x1, ξ1) = q̂(x1, 0)+ k(x1, ξ1)ϕ(ξ1/ε
δ),

where

q̂(x1, 0) = 〈q〉2(x1, 0)− infQ∞(30) ≥ 0, k(x1, ξ1) = ξ1

∫ 1

0
(∂ξ1 q̃)(x1, tξ1) dt

and ϕ ∈ C∞0 (R) is such that ϕ = 1 near supp(χ1). In particular, the function q̂(x1, ξ1)

satisfies the assumptions for the function Ṽ in Proposition A.4 of the Appendix.
Let us set

A(x1, hDx1) = g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
+ iεq̂(x1, hDx1).

We would like to invert the operator A(x1, hDx1) + R − w1 occurring on the left hand
side of (7.49) by an application of Proposition A.4; to that end, we shall assume that

ε1+δ/2
� h. (7.50)

Write

A(x1, hDx1)−w1 = ε

(
A(x1, hDx1)

ε
−w2

)
, w2 =

w1

ε
=
w

ε
−i infQ∞(30). (7.51)

It follows from (7.45) that the spectral parameter w2 satisfies

Rew2 ≥
h

C2ε3/2 , Imw2 ≤ O(̃h). (7.52)

Here we recall that h̃ = h/
√
ε. In order to be able to apply Proposition A.4 to (7.51) we

finally have to impose the smallness condition

h̃|w2|
1/2
� 1, (7.53)

and using (7.35), (7.38), (7.44), and (7.51), we see that (7.53) holds provided that

h

ε
εδ � 1.
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We shall therefore require that
h� ε1−δ. (7.54)

Once (7.50) and (7.54) both hold, we are in a position to apply Proposition A.4 to (7.51),
obtaining

(A(x1, hDx1)− w1)
−1
= ε−1O(̃h−2/3

|w2|
−1/3) : L2

θ1+f (ξ2)
(T)→ L2

θ1+f (ξ2)
(T).

(7.55)
Using |w2| ≥ h/(C2ε

3/2), we get

(A(x1, hDx1)− w1)
−1

= ε−1O(̃h−1ε1/3) = O(h−1ε−1/6) : L2
θ1+f (ξ2)

(T)→ L2
θ1+f (ξ2)

(T). (7.56)

Returning to the equation (7.49), we would like to use a standard Neumann series
argument to invert the operator A(x1, hDx1)+R−w1 on the left hand side of (7.49), and
according to (7.56) and (7.48), we know that this is possible provided that

h−1ε−1/6(ε2δ+1
+ εh+ ε2

+ h2)� 1, (7.57)

which, in view of (7.1) and (7.22), is equivalent to the condition

h−1ε5/6+2δ
� 1. (7.58)

Comparing the upper bounds (7.58) and (7.50), we see that the latter is implied by the
former provided that

0 < δ < 1/9. (7.59)

In what follows, we shall adopt the smallness condition (7.59). We arrive therefore at the
following upper bound on ε:

ε � h6/(5+12δ), (7.60)

which is a strengthening of the upper bound in (7.1).
We shall now also examine the lower bounds on ε that we have imposed in the course

of our argument in this section. Recall that the lower bounds have been introduced in
(7.22), (7.24), and (7.54). Comparing first (7.22) and (7.54), we see that

h2/(1+4δ)
� h1/(1−δ)

when (7.59) holds, and our lower bound on ε becomes

h1/(1−δ)
� ε. (7.61)

We should then check the validity of (7.24) when (7.61) holds, and to that end we observe
that indeed,

h

ε6δ ≤
h

h6δ/1−δ ≤ h
η, η > 0,

thanks to (7.59).
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Combining the bounds (7.60) and (7.61), we get the permissible range

h1/(1−δ)
� ε � h6/(5+12δ), (7.62)

where δ ∈ (0, 1/9). The range in (7.62) is non-empty for δ ∈ (0, 1/9) precisely when

1
1− δ

>
6

5+ 12δ
⇔ δ >

1
18
.

Let us summarize the discussion above in the following result.

Proposition 7.2. Consider the operator

P(x1, hDx, ε;h) =
⊕
j∈Z

P(x1, hDx1 , ξ2, ε;h), ξ2 = h(j − θ2) = O(ε2δ),

microlocally in the region ξ1 = O(εδ), ξ2 = O(ε2δ), where 1/18 < δ < 1/9. Assume
that the spectral parameter z ∈ C is such that

|Re z| ≤
h

C
√
ε
, Im z ≤ ε infQ∞(30)+O(

√
ε h), (7.63)

for some constant C > 0. Assume furthermore that

h1/(1−δ)
� ε � h6/(5+12δ), (7.64)

and the quantum numbers ξ2 = O(ε2δ) satisfy

|ξ2| ≥
h

O(1)
√
ε
.

Then there exists a family of operators E(ξ2, ε;h) = O(ε−1/6h−1) : L2
θ1
→ L2

θ1
such

that(
E(ξ2, ε;h)(P (x1, hDx1 , ξ2, ε;h)− z)− 1

)
χ(hDx1/ε

δ) = O(h∞) : L2
θ1
→ L2

θ1

for every χ ∈ C∞0 (R) with support in a sufficiently small but fixed neighborhood of 0.

Remark. Notice that to reach powers of h that are < 1 in (7.64), it suffices to take
δ > 1/12. To obtain the range in (7.64) that is as large as possible, we should choose
δ ∈ (1/18, 1/9) to be close to 1/9.

In what follows, we continue to assume that the spectral parameter z ∈ C is confined
to the region (7.63), and we shall assume that (7.64) holds for some δ ∈ (1/18, 1/9). It
follows therefore from Proposition 7.2 that in the orthogonal sum decomposition (7.37),
we can restrict the attention to the quantum numbers ξ2 = h(j − θ2) such that

|ξ2| ≤
h

C1
√
ε
=

h̃

C1
, C1 > 0. (7.65)
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Using this refined localization in the parameter ξ2, we shall now proceed to show that the
spectrum of the operator Pε in the region (7.63) is contained in the union of the pairwise
disjoint bands of the form

|p(f (ξ2), ξ2)− Re z| ≤ C0
√
ε h, ξ2 = h(j − θ2) = O(̃h), (7.66)

where C0 > 1 is large enough but fixed. When doing so, we shall proceed similarly to
the arguments above, relying upon Proposition A.4 and treating the parameter ξ2 in a
perturbative way.

Let us assume that z ∈ C satisfies (7.63) and is such that for some sufficiently large
fixed C0 > 1, we have

|p(f (ξ2), ξ2)− Re z| ≥ C0
√
ε h (7.67)

for all ξ2 = h(j − θ2) = O(̃h). Similarly to (7.43), we write

e−if (ξ2)x1/hP(x1, hDx1 , ξ2, ε;h)e
if (ξ2)x1/h − z

= g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
+ iεq̃(x1, f (ξ2)+ hDx1 , ξ2)+O(ε2)

+ hO(ε)+O(h2)− w, (7.68)

where w = z− p(f (ξ2), ξ2) satisfies

|Rew| ≥ C0
√
ε h, Imw ≤ ε inf Q∞(30)+O(

√
ε h). (7.69)

Now, in view of (7.65), we have

q̃(x1, f (ξ2)+ hDx1 , ξ2) = q̃(x1, hDx1 , 0)+O(̃h),

and arguing as in the discussion of Case 2 above, we see that we have to invert the prob-
lem(

g(f (ξ2) + hDx1 , ξ2)(hDx1)
2
+ iεq̂(x1, hDx1) + R − w1

)
χ1(hDx1/ε

δ)u = v,

(7.70)

where q̂(x1, hDx1) satisfies the assumptions in Proposition A.4 and

R = O(εh̃+ ε2
+ εh+ h2) : L2

θ1+f (ξ2)
(T)→ L2

θ1+f (ξ2)
(T). (7.71)

The spectral parameter w1 in (7.70) satisfies, in view of (7.69),

1
ε
|Rew1| ≥ C0h̃,

1
ε

Imw1 ≤ O(̃h). (7.72)

An application of Proposition A.4 gives, as before,(
g(f (ξ2)+ hDx1 , ξ2)(hDx1)

2
+ iεq̂(x1, hDx1)− w1

)−1

= ε−1O(̃h−2/3
|w1|

−1/3ε1/3) : L2
θ1+f (ξ2)

(T)→ L2
θ1+f (ξ2)

(T), (7.73)
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and using (7.72), we see that the bound on the operator norm in (7.73) does not exceed

ε−1O(C−1/3
0 h̃−1). (7.74)

To invert the full operator

g(f (ξ2)+ hDx1 , ξ2)(hDx1)
2
+ iεq̂(x1, hDx1)+ R − w1 (7.75)

on the left hand side of (7.70), in view of (7.71) and (7.74) we have to check that

ε−1h̃−1C
−1/3
0 (εh̃+ ε2

+ h2)� 1, (7.76)

which is satisfied for C0 > 1 large enough, since clearly ε � h̃ in view of (7.64). The
bound on the norm of the inverse of the operator in (7.75) is therefore also given by (7.74).

Combining Proposition 7.2 with the discussion above, including the estimates (7.73),
(7.74), we conclude that if z ∈ C satisfies (7.63) and is such that (7.67) holds, then the
operator P(x1, hDx, ε;h)− z is invertible, microlocally in the region where ξ1 = O(εδ),
ξ2 = O(ε2δ), with a microlocal inverse

(P (x1, hDx, ε;h)− z)
−1
= O(ε−1/2h−1) : L2

θ → L2
θ . (7.77)

Coming back to (7.33), we therefore obtain for such z’s,

‖Uχu‖ ≤ O(ε−1/2h−1)‖v‖ +O(ε−1/2h−1)O(εh/ε2δ)‖u‖ +O(hM
′

)‖u‖, (7.78)

where M ′ � 1. Here we have also used (7.14). Combining (7.78) and (7.30), we obtain
the following result.

Proposition 7.3. Assume that

h1/(1−δ)
� ε � h6/(5+12δ) (7.79)

for some δ ∈ (1/18, 1/9). Then the spectrum of the operator Pε : H(3,m)→ H(3) in
the region

|Re z| ≤
h

C
√
ε
, Im z ≤ ε inf Q∞(30)+O(

√
ε h) (7.80)

is contained in the disjoint union of the bands of the form

|p(f (ξ2), ξ2)− Re z| ≤ C0
√
ε h, ξ2 = h(j − θ2) = O(̃h), (7.81)

where C0 > 1 is large enough but fixed.

We shall finally obtain a precise description of the spectrum of Pε in the region (7.81) for
a given value of j ∈ Z such that ξ2 = h(j − θ2) = O(̃h). In doing so, in view of the
localization for Im z, we may assume that

|z− p(f (ξ2), ξ2)− iε〈q〉2(x1(ξ2), f (ξ2), ξ2)| ≤ C0
√
ε h, (7.82)
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where ξ2 = h(j − θ2) = O(̃h), and we then know that only the operator

P(x1, hDx1 , ξ2, ε;h) : L
2
θ1
→ L2

θ1
(7.83)

in (7.36) contributes to the spectrum in this region. Let us introduce the quadratic elliptic
operator

Q(t,Dt ; ξ2) = g(f (ξ2), ξ2)D
2
t +

i

2

(
∂2
x1
〈q〉2(x1(ξ2), f (ξ2), ξ2)

)
t2, (7.84)

and let ek,ξ2 ∈ L2(R), k ∈ N, be eigenfunctions of Q(t,Dt ; ξ2) corresponding to
the eigenvalues λk(ξ2) given in (6.43). Let also fk,ξ2 be eigenfunctions of the adjoint
Q∗(t,Dt ; ξ2) corresponding to the eigenvalues λk(ξ2). An application of Proposition 6.2
allows us to conclude that if (7.82) holds and the rescaled spectral parameter

1
√
ε h

(
z− p(f (ξ2), ξ2)− iε〈q〉2(x1(ξ2), f (ξ2), ξ2)

)
avoids a small but fixed neighborhood of the eigenvalues λk(ξ2) in the disc |z| < C0, then
z is not in the spectrum of the operator in (7.83), with

(P (x1, hDx1 , ε;h)− z)
−1
= O

(
1

ε1/2h

)
: L2

θ1
→ L2

θ1
.

In view of the analysis above, we conclude that then z /∈ Spec(Pε). It remains therefore for
us to discuss the setup of the global Grushin problem for Pε when the spectral parameter
z ∈ C is such that

1
√
ε h

(
z− p(f (ξ2), ξ2)− iε〈q〉2(x1(ξ2), f (ξ2), ξ2)

)
∈ neigh(λk(ξ2),C) (7.85)

for some k ∈ N with k = O(1). Using the notation of Proposition 7.1, let us set

R+ : H(3)→ C, R+u = R+(ξ2, k)(Uχu, eξ2)L2
θ2
, (7.86)

where eξ2(x2) = eiξ2x2/h and R+(ξ2, k) has been introduced in (6.25), using the eigen-
functions fk,ξ2 . Define also

R− : C→ H(3), R−u− = U
−1(R−(ξ2, k)u− ⊗ eξ2). (7.87)

Here R−(ξ2, k) has been introduced in (6.25), and U−1 is a microlocal inverse of U .
Arguing as in [11, Section 6], we find that when (7.85) holds, the Grushin operator

P(z) =
(
(Pε − z)/ε R−

R+ 0

)
: H(3,m)× C→ H(3)× C

is invertible, and the corresponding effective Hamiltonian E−+(z) : C → C vanishes
precisely when z is of the form (6.42), (6.43). This completes the proof of Theorem 2.1.
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8. Numerical illustrations of spectra

The purpose of this section is to present the results of numerical computations of the
spectra of Pε in the following situation, which is easily implemented: Let us consider

Pε = −h
21x,y + iεq(x, y;hDx, hDy),

q(x, y;hDx, hDy) = q0(x, y)+ q1(x, y)hDx + q2(x, y)hDy,
(8.1)

on the torus M = T2
x,y = (R/2πZ)2. Here q0, q1, q2 are real trigonometric polynomials

of degree ≤ F ∈ {1, 2, . . . }. We shall consider the spectrum of this operator near the
energy E0 = 1.

The general assumptions (2.7), (2.8), (2.10) are fulfilled, the operator Pε=0 is self-
adjoint, and the leading semiclassical symbol is of the form (2.11) with

p = ξ2
+ η2, q(x, y; ξ, η) = q0(x, y)+ q1(x, y)ξ + q2(x, y)η. (8.2)

We also have dp 6= 0 along p−1(1) ∩ T ∗M .
The Hamilton flow of p is completely integrable and we have the decomposition

(2.12), for p−1(1) rather than p−1(0), where

J =
⋃

(ξ,η)∈T
3ξ,η, 3ξ,η = T2

x,y × {(ξ, η)}.

We have
q`(x, y) =

∑
|j |, |k|≤F

q̂`(j, k)e
i(jx+ky),

where the reality of q` is equivalent to the property

q̂`(−j,−k) = q̂`(j, k).

Rather than taking some particular explicit choice of q, we generate q̂` at random by
choosing

q̂`(j, k) =
1
2 (A`(j, k)+ A`(−j,−k)), A`(j, k) = e

−κ(|j |+|k|)α`j,k,

where α`j,k ∼ N (0, 1) are independent Gaussian random variables. The parameter
κ > 0 induces an off-diagonal exponential decay, corresponding to the assumption that
q(x, y; ξ, η) is analytic in (x, y). Then

q(x, y; ξ, η) =
∑

(j,k)∈[−F,F ]2

q̂(j, k; ξ, η)ei(jx+ky),

where
q̂(j, k; ξ, η) = q̂0(j, k)+ q̂1(j, k)ξ + q̂2(j, k)η.

Here and below it is understood that [−F,F ] is an interval in Z.
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Let 3ξ,η ∈ J be a rational torus, so that (ξ, η) ∈ T and ξ/η ∈ Q ∪ {∞}. The Hp-
trajectories in 3ξ,η are of the form

γ : R 3 s 7→ ((x0, y0)+ 2s(ξ, η), (ξ, η)).

The restriction of q to such a trajectory is

q(γ (s); ξ, η) =
∑

(j,k)∈[−F,F ]2

q̂(j, k; ξ, η)ei((x0,y0)+2s(ξ,η))·(j,k). (8.3)

For the corresponding limit of the trajectory average,

〈q〉γ = lim
T→∞

1
T

∫ T/2

−T/2
q(γ (s); ξ, η) ds,

the terms in (8.3) with (ξ, η) · (j, k) 6= 0 give a zero contribution, and we get

〈q〉γ =
∑

(j,k)∈[−F,F ]2∩(ξ,η)⊥

q̂(j, k; ξ, η)ei(x0,y0)·(j,k).

If we write (ξ, η) = (−n,m)/|(m, n)| with (n,m) ∈ Z2 and gcd(n,m) = 1, then
Z2
∩ (ξ, η)⊥ = Z(m, n) and the intersection of this set with [−F,F ]2 (viewed as a

subset of Z2) is equal to

{µ(m, n); µ ∈ Z, |µ| ≤ F/max(|m|, |n|)} .

This gives

〈q〉γ =

[F/max(|m|,|n|)]∑
µ=−[F/max(|m|,|n|)]

q̂(µ(m, n); ξ, η)eiµt (γ ), (8.4)

where t (γ ) = (x0, y0) · (m, n) varies in [0, 2π) and can take any value in that interval
and [·] denotes the integer part. It follows that

Q∞(3ξ,η) =
{ [F/max(|m|,|n|)]∑
µ=−[F/max(|m|,|n|)]

q̂(µ(m, n); ξ, η)eiµt ; 0 ≤ t ≤ 2π
}
.

When max(|m|, |n|) > F this interval reduces to the torus average q̂(0, 0; ξ, η)= 〈q〉3ξ,η ,
so we get non-trivial intervals only for the finitely many values (m, n) ∈ [−F,F ]2 with
gcd(m, n) = 1.

We have written MatLab programs for the production of q and for the calculation of
〈q〉3, Q∞(3), as well as the supremum and infimum of q over each torus in J . For the
graphics, we parametrize J by arg(ξ + iη) and the figure below shows:

• the torus average 〈q〉3,
• the torus max and min of q,
• Q∞(3) for each relevant rational torus.
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By running the simulation several times we get a series of figures where quite a few
exhibit the features above. In order to have a numerical illustration of the main result of
this work it is important that some of the vertical segments (corresponding to Q∞(3)
for rational tori) reach above the supremum or below the infimum of the curve of torus
averages. A larger F will produce a richer picture with more vertical segments, but it will
also complicate the numerical calculations of the eigenvalues, so we settled for F = 2 as
a reasonable choice. We also found that κ = 2 produces some — not too many — visible
vertical segments.

Once an interesting q has been selected, we compute the spectrum numerically by
working at the level of Fourier coefficients. Thus, if we are interested in the eigenvalues
with real parts in [E1, E2], where E1 < E2 are close to 1, we work with Fourier modes
ei(jx+ky) for (j, k) in the set E of (j, k) ∈ Z2 satisfying (hj)2 + (hk)2 ∈ [E1, E2], i.e.

|(j, k)| ∈
[√
E1/h,

√
E2/h

]
.

The number #E of such modes is ≈ π(E2 − E1)/h
2 and we ask MatLab to compute the

spectrum of the E × E-matrix Aε = (aε(j, k; j̃ , k̃))(j,k), (j̃ ,̃k)∈E given by

aε(j, k; j̃ , k̃) = h
2(j2
+ k2)δ(j,k),(j̃ ,̃k)

+ iε
(
q̂0(j − j̃ , k − k̃)+ q̂1(j − j̃ , k − k̃)hj̃ + q̂2(j − j̃ , k − k̃)h̃k

)
.

We cannot let #E be larger than a few thousand and still we would like h to be small and
the energy shell [E1, E2] thick enough so that the eigenvalues with real part inside are not
influenced by boundary effects. In the simulations below we have chosen the same q as
the one in the figure above and we settled for E1 = 0.85, E2 = 1, h = 1/100, leading to
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#E ≈ 5000. Since the spectra are of width ε, we rescale the imaginary axis and represent
graphically the set of (Re z, Im z/ε) for z in the spectrum of Pε. We let ε take the values
h/2, h, 2h, 4h, 8h, 16h, in agreement with Theorem 2.1.
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These eigenvalues form a kind of a centipede with legs sticking out from the main
body. The majority of the eigenvalues are in the body whose position corresponds nicely
to the range of the curve of torus averages on the first picture. The legs reach out to the
supremum of the highest and the infimum of the lowest vertical segments corresponding
to Q∞(3) for rational tori 3.
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After undoing the scaling of Im z, the inclination of the legs should theoretically be
close to 45 degrees, and by measuring this for one of the legs on one of the figures we
found some (but not excellent) agreement.

The main result of this work, Theorem 2.1, describes the individual eigenvalues near
the extremities of the legs in terms of rational tori. A mathematical treatment of the eigen-
values further inside seems more difficult because of the pseudospectral effects that are
likely to get stronger there.

By staring at the pictures directly from the pdf file and creating a movie by switching
the pages, we see that most of the (rescaled) eigenvalues remain fixed, while those in the
legs and some others move. The fixed ones probably correspond to irrational tori, and the
moving ones to tori that are rational.

Appendix. Subelliptic estimates for Schrödinger type operators

The purpose of this appendix is to establish suitable resolvent estimates for some non-
selfadjoint operators of Schrödinger type, instrumental in the pseudospectral analysis of
Section 7. While in the considerations of Section 7, we are concerned with operators on
the one-dimensional torus, it will be convenient to analyze the case of R first. See also [19]
and [1].

Let
P0 = g(hDx)(hDx)

2
+ iV (x), V ∈ C∞(R;R). (A.1)

Assume that the function g ∈ C∞(R;R) is such that

g − 1 ∈ C∞0 (R) (A.2)

with
g ≥ 1, |ξg′(ξ)| � 1. (A.3)

We may notice that the conditions (A.3) are invariant under the scaling g(ξ) → g(λξ),
λ > 0. We also assume that the potential V is such that

V ≥ 0, ∂
j
xV ∈ L

∞(R), j ≥ 2, (A.4)

and let us make the ellipticity assumption,

V (x) ≥ x2/C, |x| ≥ C, (A.5)

for some constant C > 0. The semiclassical symbol of P0, p0(x, ξ) = g(ξ)ξ
2
+ iV (x),

satisfies p0 ∈ S(m), where m(x, ξ) = 1 + x2
+ ξ2, and it follows from (A.5) that

when equipped with the domain H(m), the natural Sobolev space associated to the order
function m, the operator P0 becomes closed densely defined on L2(R). The injection
of H(m) in L2(R) is compact, and therefore the spectrum of P0 is discrete. Let us also
notice that ReP0 ≥ 0, Re(−iP0) ≥ 0, and therefore

Spec(P0) ⊂ p0(R2) = {z ∈ C; arg z ∈ [0, π/2]}. (A.6)
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Let us make the basic assumption that

V −1(0) = {0} ⊂ R (A.7)

and
V ′′(0) > 0. (A.8)

We are interested in estimates for the resolvent of P0,

(P0 − z)
−1
: L2(R)→ L2(R),

when the spectral parameter z ∈ C is such that 0 ≤ Im z ≤ O(h) and |z| � h. When
establishing those, we shall combine some of the results and techniques of [8] and [10].

In what follows, rather than working with P0, it will be convenient to consider the
operator

P = −iP0 = V (x)− ig(hDx)(hDx)
2 (A.9)

with symbol p = p1 + ip2, where

p1(x, ξ) = V (x) = V0(x)+O(x3), V0(x) =
1
2V
′′(0)x2 > 0,

p2(x, ξ) = −g(ξ)ξ
2.

It follows from (A.3) that |∂ξp2| ∼ |ξ |, and therefore we obtain the fundamental property

V0(x)+H
2
p2
V0(x, ξ) ∼ |(x, ξ)|

2, (x, ξ) ∈ R2. (A.10)

Following [8], let us set, writing X = (x, ξ) ∈ R2,

G0(X;h) = h
2/3Hp2V0

|X|4/3
ψ

(
M

V0(x)

(h|X|)2/3

)
, |X| ≥ h1/2. (A.11)

Here M ≥ 1 is a constant to be taken large enough, and ψ ∈ C∞0 (R; [0, 1]) is such that
supp(ψ) ⊂ (−2, 2) and ψ = 1 on [−1, 1]. It is then straightforward to verify that in the
region |X| ≥ h1/2, we have

G0 = O(h), HG0 = O(1)
h2/3

|X|1/3
= O(h1/2), (A.12)

∂2G0 = O(1)
(
h2/3

|X|4/3
+

h1/3

|X|2/3
+

h2/3

|X|1/3

)
= O(1). (A.13)

Indeed, the validity of (A.12) and (A.13) follows easily once we observe that in the region
where 0 ≤ MV0(x) ≤ 2(h|X|)2/3 and |X| ≥ h1/2, we have

Hp2V0 = O(|X|h1/3
|X|1/3), ∇(Hp2V0) = O(|X|), ∇

2(Hp2V0) = O(1+ |X|),

and

∇
j

(
ψ

(
M

V0(x)

(h|X|)2/3

))
= O(1)

1
hj/3|X|j/3

, j = 1, 2.
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Still working in the region |X| ≥ h1/2 and following [8] closely, let us obtain a lower
bound for the function V0+ ε0Hp2G0, where ε0 > 0 is a constant to be chosen. We have,
in view of (A.12),

Hp2G0 = O(h2/3
|X|2/3),

and therefore in the region MV0 ≥ h
2/3
|X|2/3 we get

V0 + ε0Hp2G0 ≥

(
1
M
−O(ε0)

)
h2/3
|X|2/3 ≥

1
O(1)M

h2/3
|X|2/3,

if we choose ε0 > 0 small enough. In the region MV0 < h2/3
|X|2/3, we have

G0 = h
2/3Hp2V0

|X|4/3
,

and therefore
V0 + ε0Hp2G0 = V0 + ε0h

2/3
|X|−4/3H 2

p2
V0 + R,

where

R = ε0h
2/3(Hp2V0)Hp2 |X|

−4/3
= O

(
ε0h

M1/2

)
= O

(
ε0

M1/2

)
h2/3
|X|2/3.

Using (A.10), we see therefore that

V0 + ε0Hp2G0 ≥ ε0
h2/3
|X|2/3

O(1)
−O

(
ε0

M1/2

)
h2/3
|X|2/3 ≥ ε0

h2/3
|X|2/3

O(1)
,

provided that we take M sufficiently large but fixed. It follows that in the entire region
|X| ≥ h1/2, we get

V0 + ε0Hp2G0 ≥
h2/3
|X|2/3

O(1)
. (A.14)

We shall now extend the definition of G0 to all of R2, and following [8], let us set

G(X;h) =

(
1− χ

(
X

h1/2

))
G0(X;h). (A.15)

Here χ ∈ C∞0 (R
2
; [0, 1]) is such that χ = 1 when |X| ≤ 1. It follows from (A.12) and

(A.13) that
G = O(h), HG = O(h1/2), ∂2G = O(1).

Furthermore, using (A.14) we immediately check that on all of R2, we have

V0 + ε0Hp2G ≥ h
2/3
|X|2/3/O(1)−O(h).

We may therefore summarize the discussion above by stating that there exist constants
ε0, c0 > 0 such that for all h > 0 sufficiently small,

V0(x)+ ε0Hp2G(X)+ c0h ≥ h
2/3
|X|2/3/O(1), X = (x, ξ) ∈ R2. (A.16)
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Here the real-valued weight function G = G(X, h) ∈ C∞(R2) has been defined in
(A.11), (A.15).

It follows from (A.5), (A.7), (A.8) that p1(X) = V (x) ≥ (1/C)V0(x) for some
constant C > 1, and therefore using (A.16) we get, with some ε1, c1 > 0,

Rep(X)+ ε1HImpG(X)+ c1h ≥
1

O(1)
(h|X|)2/3, X ∈ R2. (A.17)

The estimate (A.17) is analogous to [10, (4.26)], if we take k0 = 1 there. See also [7].
Taking (A.17) as the starting point and arguing exactly as in that work, we find that
everything works without any change, provided that the spectral parameter z ∈ C is
such that for some fixed C0 > 1,

Re z ≤ O(1)h2/3
|z|1/3, Ch ≤ |z| ≤ C0. (A.18)

Here C � 1 is a constant large enough and the implicit constant in (A.18) does not
depend on C. We therefore obtain the a priori estimate

h2/3
|z|1/3‖u‖L2 ≤ O(1)‖(P − z)u‖L2 , u ∈ S(R), (A.19)

for z satisfying (A.18).
It therefore remains to discuss the case when z ∈ C is such that

Re z ≤ O(1)h2/3
|z|1/3, |z| ≥ C0. (A.20)

Continuing to follow the arguments of [10, Section 4], we deduce from [10, (4.34)] that
there exist positive constants c1, c2 such that for z ∈ C satisfying (A.20), we have

‖(P − z)u‖L2‖u‖L2 + c1h
2/3
|z|1/3(ϕ(|X|2/|z|)wu, u)L2 ≥ c2h

2/3
|z|1/3‖u‖2

L2 . (A.21)

Here ϕ ∈ C∞0 (R
2
; [0, 1]) is a cut-off near 0 such that

|p(X)− z| ≥ |z|/2, (A.22)

on the support of ϕ(|X|2/|z|). The spectral parameter z in (A.20) can be arbitrarily large
and when estimating the scalar product in the left hand side of (A.21), we can apply [8,
Lemma 8.2], exactly as it stands, to conclude that

(ϕ(|X|2/|z|)wu, u)L2 ≤
O(1)
|z|2
‖(P − z)u‖2

L2 +O(1)h‖u‖2
L2 . (A.23)

Indeed, it is easily seen that the proof of [8, Lemma 8.2] applies in the present situation,
in view of the ellipticity property (A.22) and the fact that the symbol p satisfies

|p(X)| ≤ O(1)|X|2, X ∈ R2, ∂αp ∈ L∞(R2), |α| ≥ 2. (A.24)

Combining (A.21) and (A.23), we get

Z‖u‖2
L2 ≤ O(1)

Z

|z|2
‖(P − z)u‖2

L2 +O(1)‖(P − z)u‖L2‖u‖L2 . (A.25)
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Here we have written Z = h2/3
|z|1/3 for brevity. It follows that

Z‖u‖2 ≤ O(1)
(

1
Z
+

Z

|z|2

)
‖(P − z)u‖2

L2 , (A.26)

and using also Z ≤ |z|, we get

h2/3
|z|1/3‖u‖L2 ≤ O(1)‖(P − z)u‖L2 . (A.27)

We summarize the discussion above in the following result.

Theorem A.1. Let P0 = g(hDx)(hDx)
2
+ iV (x) be such that (A.2)–(A.5) and (A.7)–

(A.8) hold. There exist constants c0, c1 > 0 such that for every C > 1 large enough, and
for

Im z ≤ c1h
2/3
|z|1/3, |z| ≥ Ch, (A.28)

we have
h2/3
|z|1/3‖u‖L2 ≤ c1‖(P0 − z)u‖L2 , u ∈ H(m). (A.29)

It follows that if z satisfies (A.28) then it is in the resolvent set of P0 and we get the
resolvent estimate

(P0 − z)
−1
= O(h−2/3

|z|−1/3) : L2(R)→ L2(R). (A.30)

Remark. The discussion above and the result of Theorem A.1 extend to the case of
operators on Rn.

In what follows, the result of Theorem A.1 will only be applied when Im z = O(h).
Furthermore, in the considerations in Section 7, we are concerned with operators on the
one-dimensional torus T = R/2πZ, and our next task is therefore to adapt Theorem A.1
to this setting. Let us therefore consider

P = g(hDx)(hDx)
2
+ iV (x), (A.31)

where g ∈ C∞(R;R) satisfies (A.2)–(A.3), and let 0 ≤ V ∈ C∞(T) be such that
V −1(0) = {x0} with V ′′(x0) > 0. We may write

P = (hDx)
2
+ ϕ(hDx)+ iV (x), ϕ ∈ C∞0 (R;R). (A.32)

Let χ ∈ C∞(Tn; [0, 1]) be supported in a small neighborhood of x0, and such that χ = 1
near x0. On the support of χ , the result of Theorem A.1 can be applied, and we conclude,
using the pseudolocality of P , that

h2/3
|z|1/3‖χu‖L2 ≤ O(1)‖(P − z)χu‖L2 +O(h∞)‖u‖L2 , u ∈ C∞(T), (A.33)

provided that
|z| ≥ Ch, Im z ≤ O(h). (A.34)
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Since on the support of 1−χ , the potential V is bounded from below and Im z=O(h),
we see that for all h > 0 small enough,

Im ((P − z)(1− χ)u, (1− χ)u)L2 ≥
1

O(1)
‖(1− χ)u‖2

L2 , (A.35)

and therefore
‖(1− χ)u‖L2 ≤ C‖(P − z)(1− χ)u‖L2 . (A.36)

Combining the estimates (A.33) and (A.36), we see that for all h > 0 small enough,

Z‖χu‖L2 + ‖(1− χ)u‖L2 ≤ O(1)‖(P − z)u‖L2 +O(1)‖[P, χ]u‖L2 . (A.37)

Here we continue to write Z = h2/3
|z|1/3 and we notice that h � Z. We would like to

estimate the commutator term on the right hand side of (A.37); to that end we write, using
(A.32),

O(1)‖[P, χ]u‖L2 ≤ O(h)‖u‖L2 +O(h)‖hu′‖L2 . (A.38)

The first term on the right hand side of (A.38) can be absorbed into the left hand side of
(A.37), and we only have to estimate O(h)‖hu′‖L2 . Now

(ϕ(hDx)u, u)L2 + ‖hu
′
‖

2
L2 = Re ((P − z)u, u)L2 + Re z‖u‖2

L2 ,

and therefore

‖hu′‖L2 ≤ ‖(P − z)u‖
1/2
L2 ‖u‖

1/2
L2 + |z|

1/2
‖u‖L2 +O(1)‖u‖L2 . (A.39)

Combining (A.37)–(A.39), we obtain

Z‖χu‖L2 + ‖(1− χ)u‖L2

≤ O(1)‖(P − z)u‖ +O(h)|z|1/2‖u‖L2 +O(h)‖(P − z)u‖1/2
L2 ‖u‖

1/2
L2 , (A.40)

so that

Z‖χu‖L2 + ‖(1− χ)u‖L2 ≤ O(1)‖(P − z)u‖L2 +O(Z3/2)‖u‖L2 . (A.41)

Assuming that Z = h2/3
|z|1/3 � 1, we may absorb the second term on the right hand

side of (A.41) into the left hand side, obtaining

h2/3
|z|1/3‖u‖L2 ≤ O(1)‖(P − z)u‖L2 .

We may summarize the discussion above in the following proposition.

Proposition A.2. Let P = g(hDx)(hDx)
2
+ iV (x) be such that g − 1 ∈ C∞0 (R;R)

satisfies g ≥ 1 and |ξg′(ξ)| � 1. Assume furthermore that 0 ≤ V ∈ C∞(T) with
V −1(0) = {x0} and V ′′(x0) > 0. Then for every C > 1 large enough, and for

Im z = O(h), |z| ≥ Ch,

satisfying
h|z|1/2 � 1, (A.42)

we have
h2/3
|z|1/3‖u‖L2 ≤ O(1)‖(P − z)u‖L2 . (A.43)
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The a priori estimate (A.43) is equivalent to the corresponding estimate for the resolvent
of P , which provides a resolvent bound in the model case, fundamental for the analysis in
Section 7. Now the operators that one encounters there are somewhat more general than
the Schrödinger type operator in (A.31), in that the potential V (x) should be replaced by
a more general h-pseudodifferential operator, which furthermore is multiplied by a small
coupling constant. We shall now proceed to analyze this more general case, essentially by
reducing it to the model situation treated above.

Let us first consider the following operator on R:

Pε(x, hDx) = g(hDx)(hDx)
2
+ iεṼ w(x, hDx), (A.44)

where g satisfies (A.2)–(A.3), and following (7.1) we assume that

h2
� ε � h4/5. (A.45)

The function Ṽ ∈ C∞(R2) in (A.44) is of the form

Ṽ (x, ξ) = V (x)+ k(x, ξ)ϕ(ξ/εδ), δ ∈ (0, 1/2), (A.46)

where V is assumed to satisfy (A.4), (A.5), (A.7), and (A.8), and ϕ ∈ C∞0 (R
n) is a

standard cut-off function near ξ = 0. The function k is such that

∂αk ∈ L∞(R2), α ∈ N2, k(x, 0) = 0. (A.47)

We would like to extend Theorem A.1 to the operator Pε(x, hDx); to that end we shall
simply inspect the arguments above. Writing

1
iε
Pε(x, hDx) = −ig(

√
ε h̃Dx)(̃hDx)

2
+ Ṽ w(x,

√
ε h̃Dx), h̃ =

h
√
ε
� 1, (A.48)

we shall view (1/(iε))Pε as an h̃-pseudodifferential operator with symbol

p(x, ξ) = p1 + ip2, (A.49)

where
p1(x, ξ) = Ṽ (x,

√
ε ξ), p2(x, ξ) = −g(

√
ε ξ)ξ2. (A.50)

Writing
p1(x, 0) = V (x) = V0(x)+O(x3), V0(x) =

1
2V
′′(0)x2,

we see that uniformly in ε,

V0 +H
2
p2
V0 ∼ |X|

2, X ∈ R2. (A.51)

Here we also notice that ∂αp ∈ L∞(R2) for all α ∈ N2 with |α| ≥ 2, uniformly in ε.
Arguing as in (A.11), (A.16), (A.17), we conclude that there exists a real-valued weight
function G ∈ C∞(R2) with

G(X) = O(̃h)
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such that for some constants δ1, c1 > 0 and h̃ > 0 small enough, we have

Rep(x, 0)+ δ1HImpG(X)+ c1h̃ ≥
1
C
h̃2/3
|X|2/3, X = (x, ξ) ∈ R2. (A.52)

Using (A.46) and (A.52), we obtain

Rep(X)+ δ1HImpG(X)+ c1h̃ ≥
1
C
h̃2/3
|X|2/3 − 1√ε |ξ |≤O(εδ)O(

√
ε |ξ |). (A.53)

Here we have used the fact that

k(x, ξ) = O(|ξ |). (A.54)

When estimating the right hand side in (A.53), we notice that

1
2C
h̃2/3
|X|2/3 − 1√ε |ξ |≤O(εδ)O(

√
ε |ξ |) ≥

1
2C
|ξ |2/3

(̃
h2/3
− 1√ε |ξ |≤O(εδ)O(

√
ε |ξ |1/3)

)
≥

1
2C
|ξ |2/3(̃h2/3

−O(
√
εεδ/3−1/6)) ≥ 0, (A.55)

provided that
εδ/3+1/2−1/6

� h̃2/3
= h2/3/ε1/3. (A.56)

The latter condition is equivalent to

ε1+δ/2
� h. (A.57)

Assuming that (A.57) holds, we conclude that

Rep(X)+ δ1HImpG(X)+ c1h̃ ≥
1

O(1)
h̃2/3
|X|2/3, X ∈ R2. (A.58)

In order to be able to apply the general arguments of [10] and [8] to the operator Pε/(iε),
similarly to the discussion leading to Theorem A.1 above, we should also observe that for
|z| � h̃, in the region |X|2 ≤ |z|/C we have the ellipticity condition

|p(X)− z| ≥ |z|/C1,

uniformly in ε. Indeed, this follows from (A.46), (A.49), (A.50), (A.54), as well as the fact
that ε � h̃ � |z|. It is then straightforward to check that the arguments at the beginning
of the Appendix apply, and we obtain the following result.

Theorem A.3. Let Pε = g(hDx)(hDx)
2
+ iεṼ w(x, hDx), where h2

� ε � h4/5.
Assume that g ∈ C∞(R;R) satisfies (A.2)–(A.3), Ṽ is of the form (A.46), (A.47), and
suppose that (A.4), (A.5), (A.7), (A.8) hold. Assume that

ε1+δ/2
� h.

Then, writing h̃ = h/
√
ε, we have

(Pε/ε − z)
−1
= O(̃h−2/3

|z|−1/3) : L2(R)→ L2(R), (A.59)

provided that |z| ≥ Ch̃ for C > 1 sufficiently large, and Im z ≤ O(̃h).
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Repeating the arguments leading to Proposition A.2, with Theorem A.1 replaced by The-
orem A.3 and with an estimate of the form (A.35) obtained by an application of Gårding’s
inequality, we next obtain an adaptation of Theorem A.3 to the setting of the torus.

Proposition A.4. Let Pε = g(hDx)(hDx)2+ iεṼ w(x, hDx), where h2
� ε � h4/5 and

g ∈ C∞(R;R) is such that g − 1 ∈ C∞0 (R) with

g ≥ 1, |ξg′(ξ)| � 1.

Assume that
Ṽ (x, ξ) = V (x)+ k(x, ξ)ϕ(ξ/εδ), δ ∈ (0, 1/2).

Here 0 ≤ V ∈ C∞(T), V −1(0) = {x0}, V ′′(x0) > 0, k ∈ S(T ∗T, 1), k(x, 0) = 0, and
ϕ ∈ C∞0 (R). Assume that ε1+δ/2

� h and set

h̃ = h/
√
ε � 1.

Let z ∈ C be such that Im z = O(̃h), |z| ≥ Ch̃, for C > 1 sufficiently large, and

h̃|z|1/2 � 1.

Then
(Pε/ε − z)

−1
= O(̃h−2/3

|z|−1/3) : L2(T)→ L2(T). (A.60)
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[15] Hitrik, M., Sjöstrand, J.: Diophantine tori and Weyl laws for non-selfadjoint operators in di-
mension two. Comm. Math. Phys. 314, 373-417 (2012) Zbl 1256.35039 MR 2489633

[16] Hitrik, M., Sjöstrand, J., Vũ Ngo. c, S.: Diophantine tori and spectral asymptotics for non-
selfadjoint operators. Amer. J. Math. 129, 105–182 (2007) Zbl 1172.35085 MR 2288739

[17] Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel
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