
DOI 10.4171/JEMS/772

J. Eur. Math. Soc. 20, 489–527 c© European Mathematical Society 2018

John Rognes · Steffen Sagave · Christian Schlichtkrull

Logarithmic topological Hochschild homology of
topological K-theory spectra

Received April 9, 2015

Abstract. In this paper we continue our study of logarithmic topological Hochschild homology.
We show that the inclusion of the connective Adams summand ` into the p-local complex connec-
tive K-theory spectrum ku(p), equipped with suitable log structures, is a formally log THH-étale
map, and compute the V (1)-homotopy of their logarithmic topological Hochschild homology spec-
tra. As an application, we recover Ausoni’s computation of the V (1)-homotopy of the ordinary
THH of ku.
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1. Introduction

Logarithmic topological Hochschild homology (log THH) is an extension of the usual
topological Hochschild homology, which is defined on more general objects than ordinary
rings or ordinary structured ring spectra. Its input is a pre-log ring spectrum (A,M),
consisting of a commutative symmetric ring spectrum A together with certain extra data.
We recall the precise definition below. One reason for considering this theory is that
the log THH of appropriate pre-log ring spectra participates in interesting localization
homotopy cofiber sequences that do not exist for ordinary THH. In the first part [RSS15]
of this series of papers, we have shown that there is a localization homotopy cofiber
sequence

THH(e)→ THH(e, j∗GLJ
1 (E))→ 6 THH(e[0, d〉) (1.1)

associated with the connective cover map j : e → E of a d-periodic commutative sym-
metric ring spectrum E. Here (e, j∗GLJ

1 (E)) is a pre-log ring spectrum with underlying
ring spectrum e, and e[0, d〉 is the (d − 1)-st Postnikov section of e. Real and complex
topological K-theory spectra give rise to examples of this homotopy cofiber sequence.
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In the present paper, we compute log THH in some important examples. One reason
this is interesting is that the homotopy groups of THH(A,M) sometimes have a simpler
structure than those of THH(A). By means of the homotopy cofiber sequence (1.1), one
can then use knowledge about THH(A,M) to determine THH(A). Specifically, we imple-
ment this strategy in the case of the p-local complex K-theory spectrum ku(p) for an odd
prime p. Let V (1) denote the Smith–Toda complex of type 2 (see Notation 7.1 below).
We shall first determine the V (1)-homotopy of THH(ku(p), j∗GLJ

1 (KU(p))) and based
on this compute V (1)∗ THH(ku(p)). This realizes the approach to V (1)∗ THH(ku) ∼=
V (1)∗ THH(ku(p)) outlined by Ausoni [Aus05, §10] and gives an independent proof of
the main result of [Aus05]. One key ingredient for this is that the tame ramification of
the inclusion of the Adams summand ` → ku(p) is detected by log THH. This strategy
is motivated by related results for discrete rings obtained by Hesselholt–Madsen [HM03,
§2]. The idea of extending it to the topological K-theory example was first promoted by
Hesselholt.

1.1. Definition of log THH

We briefly recall the definition of log THH and refer the reader to [RSS15] or Sections 2
to 4 of the present paper for more details, and to [RSS15] and [Rog09] for background
and motivation. Let A be a commutative symmetric ring spectrum. It has an underlying
graded multiplicative E∞ space �J (A). This object �J (A) is a commutative J -space
monoid in the sense of [SS12, Section 4], i.e., a symmetric monoidal functor from a cer-
tain indexing category J to spaces. A pre-log ring spectrum (A,M) is a commutative
symmetric ring spectrum A together with a commutative J -space monoid M and a map
α : M → �J (A) of commutative J -space monoids. The following direct image con-
struction is a source of non-trivial pre-log ring spectra: If j : e → E is the connective
cover map of a periodic commutative symmetric ring spectrum E, then one can form a
diagram of commutative J -space monoids

GLJ
1 (E)→ �J (E)← �J (e), (1.2)

where GLJ
1 (E) is the commutative J -space monoid of graded units associated with the

ring spectrum E. The pullback j∗GLJ
1 (E) of (1.2) comes with a canonical map to�J (e)

and defines a pre-log ring spectrum (e, j∗GLJ
1 (E)).

Let (A,M) be a pre-log ring spectrum. By definition, its logarithmic topological
Hochschild homology THH(A,M) is the homotopy pushout of the following diagram
of cyclic commutative symmetric ring spectra:

SJ [Brep(M)] ← SJ [Bcy(M)] → THH(A). (1.3)

The right hand term is the ordinary THH of A, given by the cyclic bar construction on A.
The middle term is the graded suspension spectrum associated with the cyclic bar con-
struction Bcy(M) on the commutative J -space monoidM . The right hand map is induced
by the adjoint SJ [M] → A of the structure map α : M → �J (A) of (A,M). The left
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hand map is induced by the map Bcy(M) → Brep(M) to the replete bar construction
Brep(M) of M . The latter can be viewed as a variant of Bcy(M) that is formed relative to
the group completion of M .

1.2. Log THH of the Adams summand

Let p be an odd prime and let ` be the Adams summand of the p-local complex connective
K-theory spectrum ku(p). It is known that the map j : ` → L to the periodic version L
of ` can be represented by a map of commutative symmetric ring spectra. Hence we
can form the pre-log ring spectrum (`, j∗GLJ

1 (L)). In this case, the homotopy cofiber
sequence (1.1) relates THH(`, j∗GLJ

1 (L)) to the ordinary THH of ` and HZ(p).
Writing E and P for exterior and polynomial algebras over Fp, respectively, we can

formulate our first main result.

Theorem 1.3. There is an algebra isomorphism

V (1)∗ THH(`, j∗GLJ
1 (L))

∼= E(λ1, d log v)⊗ P(κ1)

with |λ1| = 2p− 1, |d log v| = 1 and |κ1| = 2p. The suspension operator σ arising from
the circle action on THH(`, j∗GLJ

1 (L)) satisfies σ(κ1) = κ1 · d log v, and is zero on λ1
and d log v.

The strategy for the proof of Theorem 1.3 is as follows. In a first step, we use the in-
variance of log THH under logification established in [RSS15, Theorem 4.24] to re-
place (`, j∗GLJ

1 (L)) by a pre-log ring spectrum (`,D(v)) with equivalent log THH.
This (`,D(v)) was also considered in [Sag14]. Its advantage is that the E∞ space
hocolimJ D(v) associated with D(v) is equivalent to Q≥0S

0, the non-negative compo-
nents of QS0

= �∞6∞S0. So the homology of hocolimJ D(v) is well understood and
independent of `. Using the graded Thom isomorphism established by the last two authors
in [SS14], this allows us to determine the homology of SJ [D(v)], SJ [Bcy(D(v))], and
SJ [Brep(D(v))]. By combining this with the computation of V (1)∗ THH(`) by McClure
and Staffeldt [MS93], an application of the Künneth spectral sequence associated with
the homotopy pushout (1.3) leads to our computation of V (1)∗ THH(`, j∗GLJ

1 (L)).

1.4. The inclusion of the Adams summand

In analogy with the notion of formally THH-étale maps in [Rog08, §9.2], we say that
(A,M) → (B,N) is a formally log THH-étale map of pre-log ring spectra if the map
B ∧A THH(A,M) → THH(B,N) is a stable equivalence. Our second main theorem
verifies this property in an example:

Theorem 1.5. The inclusion ` → ku(p) of the Adams summand induces a formally log
THH-étale map (`, j∗GLJ

1 (L))→ (ku(p), j∗GLJ
1 (KU(p))).
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Here KU(p) is the periodic version of ku(p), and j∗GLJ
1 (KU(p)) denotes the di-

rect image pre-log structure on ku(p), constructed as above. We stress that the
proof of this theorem does not depend on computations of THH(`, j∗GLJ

1 (L)) and
THH(ku(p), j∗GLJ

1 (KU(p))). Instead, it is based on a certain decomposition of the re-
plete bar construction, and on the graded Thom isomorphism and the invariance of log
THH under logification mentioned above.

It is shown in [Sag14, Theorem 1.6] that (`, j∗GLJ
1 (L))→ (ku(p), j∗GLJ

1 (KU(p)))

is also formally étale with respect to logarithmic topological André–Quillen homology.
Since the logarithmic Kähler differentials of algebraic geometry can be used to measure
ramification beyond tame ramification of discrete valuation rings, these results show that
`→ ku(p) behaves as a tamely ramified extension of ring spectra. By analogy with Emmy
Noether’s correspondence between tame ramification and the existence of normal bases,
these results are compatible with the fact that ku(p) is a retract of a finite cell `[1]-module
spectrum, where 1 = (Z/p)× is the Galois group of L→ KU(p).

1.6. THH of the connective complex K-theory spectrum

Combining the last two theorems leads to the following result. Here Pp−1 denotes a height
p − 1 truncated polynomial algebra.

Theorem 1.7. There is an algebra isomorphism

V (1)∗ THH(ku(p), j∗GLJ
1 (KU(p)))

∼= Pp−1(u)⊗ E(λ1, d log u)⊗ P(κ1)

with |u| = 2, |λ1| = 2p − 1, |d log u| = 1 and |κ1| = 2p. The suspension operator σ
arising from the circle action on THH(ku(p), j∗GLJ

1 (KU(p))) satisfies σ(u) = u · d log u
and σ(κ1) = −κ1 · d log u, and is zero on λ1 and d log u.

In logarithmic algebraic geometry, the passage from Kähler differentials to logarithmic
Kähler differentials allows one to have differentials with logarithmic poles, i.e., it in-
troduces elements d log x satisfying x · d log x = dx. By analogy with the Hochschild–
Kostant–Rosenberg correspondence between (HH, σ ) and (�, d), one may expect similar
phenomena for logarithmic THH. In view of this, the above relation σ(u) = u · d log u is
a justification for denoting the relevant homotopy class by d log u.

By using the homotopy cofiber sequence (1.1), the previous theorem allows us to
recover Ausoni’s computation of the rather complicated finitely presented Fp-algebra
V (1)∗ THH(ku(p)) [Aus05]. For this application of Theorem 1.7 it is important that al-
ready in the case of the Adams summand, the explicit definition of logarithmic THH al-
lows us to determine the homomorphisms in the long exact sequence of V (1)-homotopy
groups induced by (1.1). It is not clear if the construction of a localization homotopy
cofiber sequence for THH by Blumberg–Mandell [BM11] provides such an explicit un-
derstanding of the resulting long exact sequence. Nonetheless, we expect our sequence
to be equivalent to theirs, in the special cases they consider. If true, this would be one
way to relate our homotopy cofiber sequence (1.1) to the corresponding K-theoretical
localization sequence.
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1.8. Organization

In Section 2 we briefly review commutative J -space monoids and their cyclic bar con-
struction and prove a decomposition result for the cyclic bar construction of grouplike
commutative J -space monoids. In Section 3 we review the replete bar construction
and prove a similar decomposition formula. In Section 4 we briefly recall the defini-
tion of log THH. In Section 5 we explain how the graded Thom isomorphism estab-
lished in [SS14] can be used to compute the homology of SJ [M] for certain commutative
J -space monoids M . Section 6 contains the proof of Theorem 1.5. In Section 7 we com-
pute the V (1)-homotopy of the log THH of the Adams summand and prove Theorem 1.3.
In the final Section 8 we prove Theorem 1.7 about the log THH of ku(p) and explain how
to use this to compute the V (1)-homotopy of THH(ku(p)).

2. The cyclic bar construction for commutative J -space monoids

We briefly recall some terminology that is needed to state the definition of logarithmic
THH in Section 4. More details on these foundations can be found in [SS12, Section 4].

2.1. J -spaces

Let J be the category given by Quillen’s localization construction on the permutative
category 6 of finite sets and bijections. It is a symmetric monoidal category whose clas-
sifying space BJ is weakly equivalent to QS0. The objects of J are pairs (m1,m2) of
finite sets of the form mi = {1, . . . , mi}, where m1, m2 ≥ 0. A J -space is a functor
from J to simplicial sets. For each object (m1,m2) of J there is a functor from the
category S of simplicial sets to J -spaces

FJ
(m1,m2)

: S → SJ , K 7→ J ((m1,m2),−)×K,

which is left adjoint to the evaluation of a J -space at (m1,m2).
The category of J -spaces admits a Day type convolution product � induced by the or-

dered concatenation of finite sets and the cartesian product of simplicial sets. The unitUJ

of this symmetric monoidal product is the functor J ((0, 0),−), corepresented by the
monoidal unit (0, 0) of J . A commutative J -space monoid is a commutative monoid
object in (SJ ,�, UJ ), and we write CSJ for the category of commutative J -space
monoids.

The category CSJ admits a proper simplicial positive projective model structure
where M → N is a weak equivalence if it induces a weak equivalence of spaces
MhJ → NhJ [SS12, Proposition 4.10]. Here MhJ = hocolimJ M denotes the
Bousfield–Kan homotopy colimit of M over J , which is an associative (but not com-
mutative) simplicial monoid. In the following we will refer to this model structure as
the positive J -model structure and call its weak equivalences J -equivalences. Unless
otherwise stated, the notions of cofibrations or fibrations in CSJ will refer to this model
structure. Equipped with the positive J -model structure, CSJ is Quillen equivalent to the
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category of E∞ spaces over BJ . We therefore think of commutative J -space monoids
as (QS0-)graded E∞ spaces. The category J is closely related to symmetric spectra. In
particular, there is a Quillen adjunction

SJ : CSJ � CSp6 : �J

relating CSJ to the category CSp6 of commutative symmetric ring spectra with the posi-
tive projective stable model structure. If A is a commutative symmetric ring spectrum, we
view �J (A) as a model for the underlying graded multiplicative E∞ space of A. We say
that a commutative J -space monoid M is grouplike if the monoid π0(MhJ ) is a group.
If A is positive fibrant, then �J (A) has a subobject GLJ

1 (A) of graded units such that
the inclusion GLJ

1 (A)→ �J (A) corresponds to the inclusion π∗(A)× → π∗(A) of the
units of the graded ring of stable homotopy groups of A.

2.2. The cyclic bar construction

Let M be a commutative J -space monoid. The cyclic bar construction Bcy(M) of M
is the realization of a simplicial object [q] 7→ M�(q+1). Its structure maps are defined
using the unit and the multiplication of M and the twist isomorphism for the symmetric
monoidal product � (see [RSS15, Section 3] for details). The object Bcy(M) will be one
of the three building blocks of log THH. We note that sinceM is commutative, the iterated
multiplication maps induce a natural augmentation ε : Bcy(M)→ M .

Our first goal is to decompose Bcy(M) as a coproduct of commutative J -space
monoids in the case when M is grouplike. For this we fix a factorization of the unit of M
into an acyclic cofibration followed by a positive J -fibration as indicated in the bottom
row of the diagram

V (M) // //

��

Bcy(M)

ε
��

UJ // ∼ // U(M) // // M.

We define V (M) to be the pullback of the augmentation ε : Bcy(M) → M and
U(M)→ M . It is a model for the homotopy fiber of the augmentation over the unit. Using
the multiplicative structure of Bcy(M) we get a map of commutative J -space monoids

M � V (M)→ Bcy(M) � Bcy(M)→ Bcy(M).

Proposition 2.3. The map M � V (M)→ Bcy(M) is a J -equivalence provided that M
is grouplike and cofibrant.

Proof. Consider the commutative diagram of homotopy colimits

V (M)hJ // MhJ × V (M)hJ //

∼
��

MhJ × U(M)hJ
∼
��

V (M)hJ // (M � V (M))hJ //

��

(M � U(M))hJ
∼
��

V (M)hJ // Bcy(M)hJ // MhJ
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in which the map in the lemma induces the middle lower vertical arrow. The bottom
part is obtained by passing to homotopy colimits from the corresponding diagram of
commutative J -space monoids, and the vertical equivalences in the upper part of the
diagram arise from the monoidal structure map of the homotopy colimit.

We must show that the vertical compositionMhJ ×V (M)hJ → Bcy(M)hJ is a weak
homotopy equivalence. Notice that the latter is equivariant as a map of spaces with left
MhJ -action. Furthermore, the assumption that M is commutative and grouplike implies
that V (M)hJ is path connected and that MhJ → Bcy(M)hJ induces an isomorphism of
path components. SinceMhJ is assumed to be grouplike, it suffices to show that the map
in question restricts to a weak homotopy equivalence on the path components containing
the unit elements. For this we observe that the corresponding restriction of the above
diagram is a diagram of horizontal homotopy fiber sequences, which gives the result. ut

The next proposition identifies the homotopy type of V (M) for grouplike M .

Proposition 2.4. Suppose that M is a grouplike and cofibrant commutative J -space
monoid. Then there is a chain of natural J -equivalences of J -spaces augmented overM
relating V (M) and UJ

× B(MhJ ).

The proof of this proposition needs some preparation and will be given at the end of this
section.

2.5. The bar resolution of J -spaces

Let X be a J -space. We define the bar resolution X of X to be the J -space given by the
bar construction

X(n1,n2) = B(J (−, (n1,n2)),J , X),

where we view J (−, (n1,n2)) as a J op-space in the obvious way. (See e.g. [HV92] for
a discussion of the bar construction in the context of diagram spaces.) By definition, this
is the same as the homotopy left Kan extension of X along the identity functor on J .
Equivalently, we may describe X(n1,n2) as the homotopy colimit

X(n1,n2) = hocolimJ ↓(n1,n2)X ◦ π(n1,n2)

over the comma category J ↓ (n1,n2) of objects in J over (n1,n2). Here π(n1,n2) de-
notes the forgetful functor from J ↓ (n1,n2) to J . Each of the categories J ↓ (n1,n2)

has a terminal object, and hence the projection of the homotopy colimit onto the colimit
defines an evaluation map X→ X of J -spaces that is a level equivalence.

Lemma 2.6. There is a natural isomorphism colimJ X ∼= XhJ . ut

As a consequence of the lemma there is a natural map X → XhJ of J -spaces when we
viewXhJ as a constant J -space. (Notice that this is not a J -equivalence since BJ is not
contractible.) The lemma suggests that X is a kind of cofibrant replacement of X. More
precisely, we have the following result, which can be deduced from the skeletal filtration
of the bar construction.
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Lemma 2.7. Let X be a J -space. As a J -space, the bar resolution X is cofibrant in the
absolute projective model structure of [SS12, Proposition 4.8]. ut

Clearly the bar resolution X 7→ X is functorial in X and we claim that it canonically has
the structure of a lax monoidal functor. Indeed, the monoidal product X � Y → X � Y is
induced by the natural map of J × J -spaces

B(J (−, (m1,m2)),J , X)× B(J (−, (n1,n2)),J , Y )
∼= B

(
J (−, (m1,m2))× J (−, (n1,n2)),J × J , X × Y

)
→ B

(
J (−, (m1,m2) t (n1,n2)),J , X � Y

)
.

Here we use the fact that the bar construction preserves products. The second map is
induced by the monoidal structure map t: J × J → J , the canonical map of J × J -
spaces X × Y → t∗(X � Y ), and the map of (J × J )op-spaces in the first variable
determined by t. The monoidal unit is the unique map of J -spaces from the unit UJ

for the �-product to its bar resolution. Furthermore, it is easy to check that the evaluation
X → X is a monoidal natural transformation. This implies that the bar resolution of a
J -space monoid M is again a J -space monoid and that M → M is a map of J -space
monoids. By Lemma 2.6 there is also a natural map M → MhJ of J -space monoids.

Remark 2.8. The bar resolution functor is not lax symmetric monoidal, and con-
sequently it does not take commutative J -space monoids to commutative J -space
monoids.

Lemma 2.9. Let M be a cofibrant commutative J -space monoid. Then evaluation
M → M induces a level equivalence Bcy(M)→ Bcy(M).

Proof. By Lemma 2.7 above and [SS12, Proposition 4.28], the underlying J -spaces ofM
andM are flat in the sense of [SS12, Section 4.27]. SinceM → M is a level equivalence,
[SS12, Proposition 8.2] implies that Bcy

q (M) → B
cy
q (M) is a level equivalence in every

simplicial degree q. The claim follows by the realization lemma for bisimplicial sets. ut

We now use the bar resolution to analyze the homotopy colimit of Bcy(M) under suitable
assumptions on M . For this we note that one can also define the cyclic bar construc-
tion Bcy in (S,×, ∗) and apply it to associative simplicial monoids.

Lemma 2.10. There is a natural weak equivalence Bcy(M)hJ → Bcy(MhJ ).

Proof. Notice first that Bcy(M)hJ is isomorphic to the realization of the cyclic space
B

cy
• (M)hJ obtained by evaluating the homotopy colimit in each simplicial degree. Now

we use the fact that the colimit functor from SJ to S is strong symmetric monoidal, with
respect to the �-product on SJ and the usual categorical product on S, to get a natural
map of cyclic spaces

hocolimJ B
cy
• (M)→ colimJ B

cy
• (M) ∼= B

cy
• (colimJ M) ∼= B

cy
• (MhJ ). (2.1)

By the realization lemma for bisimplicial sets it is enough to show that the first map is a
weak homotopy equivalence in each simplicial degree. Since M and hence Bcy

q (M) are
cofibrant J -spaces, this follows from [SS12, Lemma 6.22]. ut
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Corollary 2.11. For a cofibrant commutative J -space monoid M there is a chain of
natural weak homotopy equivalences

Bcy(M)hJ
∼
←− Bcy(M)hJ

∼
−→ Bcy(MhJ ). ut

In the next lemma we consider the classifying space B(MhJ ) and the levelwise cartesian
product M × B(MhJ ). The latter may be interpreted as either the tensor of M with the
space B(MhJ ), the �-product of M with FJ

(0,0)(B(MhJ )), or the cartesian product of M
with the constant J -space defined by B(MhJ ).

Lemma 2.12. Let M be a commutative J -space monoid. There is a natural map of J -
spaces (ε, π) : Bcy(M)→ M × B(MhJ ), which is a J -equivalence if M is grouplike.

Proof. Consider the map of J -spaces Bcy(M) → Bcy(M) → M induced by the eval-
uation M → M and the augmentation of Bcy(M), using the fact that M is commuta-
tive. This gives the first factor ε of the map in the lemma. The second factor π is de-
fined by the composition Bcy(M) → constJBcy(MhJ ) → constJB(MhJ ) where the
first map is the adjoint of the isomorphism colimJ Bcy(M) → Bcy(MhJ ) used in the
definition of the map (2.1) and the second map is given by the projection away from
the zeroth coordinate in each simplicial degree. The induced map of homotopy colimits
Bcy(M)hJ → (M × B(MhJ ))hJ ∼= MhJ × B(MhJ ) fits into a commutative diagram

MhJ // Bcy(MhJ ) // B(MhJ )

MhJ //

∼

OO

∼
��

Bcy(M)hJ //

∼

OO

��

B(MhJ )

MhJ // MhJ × B(MhJ ) // B(MhJ )

as the middle lower vertical arrow. The equivalences MhJ → MhJ are defined as
follows: In the lower part of the diagram it is induced by the evaluationM → M , whereas
in the upper part of the diagram it is given by the projection from the homotopy colimit to
the colimit using the identification in Lemma 2.6 (see also [HV92, Theorem 5.5]). (These
two equivalences are canonically homotopic but that is not relevant for the argument.) The
assumption that M is grouplike implies that the top row is a homotopy fiber sequence in
the sense that the map from MhJ to the homotopy fiber of the second map is a weak
homotopy equivalence. This follows from standard results on geometric realization of
simplicial quasifibrations as in the proof of [Goo85, Lemma V.I.3]. Hence the middle row
is also a homotopy fiber sequence by Lemma 2.10, which gives the result. ut

Proof of Proposition 2.4. Let M be a grouplike and cofibrant commutative J -space
monoid and let V (M) be defined as the pullback of the diagram

U(M)� M
ε
←− Bcy(M),

where the map on the right is defined as in Lemma 2.12. We claim that there is a chain of
natural J -equivalences of J -spaces over M

V (M)
∼
←− V (M)

∼
−→ U(M)× B(MhJ )

∼
←− UJ

× B(MhJ ). (2.2)
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To obtain the maps in (2.2), we note that the evaluation map M → M induces a J -
equivalence Bcy(M) → Bcy(M) by Lemma 2.9. There is an induced J -equivalence
V (M) → V (M) since the positive J -model structure is right proper. For the second
equivalence we use the given map to U(M) in the first factor, and the second factor is the
composition

V (M)→ Bcy(M)
π
−→ constJB(MhJ )

of the given map to Bcy(M)with the map from Lemma 2.12. Now consider the homotopy
cartesian square of J -spaces

U(M)× B(MhJ ) // //

��

M × B(MhJ )

��

U(M) // // M.

Together with the J -equivalence from Lemma 2.12, the map just described defines a map
from the square defining V (M) to the latter square. Hence the result again follows from
right properness of the positive J -model structure. ut

3. The replete bar construction for commutative J -space monoids

Let M be a commutative J -space monoid. As the second building block of the loga-
rithmic THH to be defined in Section 4, we now recall the definition of the replete bar
construction Brep(M) from [RSS15, Section 3.3]. Let M → Mgp be a chosen functorial
group completion of M and let

M
∼� M ′ � Mgp (3.1)

be a (functorial) factorization of M → Mgp into an acyclic cofibration followed by a
fibration. The replete bar construction Brep(M) is defined as the pullback of the diagram
of commutative J -space monoids

M ′ � Mgp ε
←− Bcy(Mgp)

provided by the above map M ′ → Mgp and the augmentation ε : Bcy(Mgp)→ Mgp. By
construction, there is a natural repletion map ρ : Bcy(M)→ Brep(M).

Proposition 3.1. Let M be a cofibrant commutative J -space monoid and view Mgp as
a left M-module via M → Mgp. There is a chain of natural J -equivalences of left M-
modules over Mgp relating Brep(M) and M × B(MhJ ).

Proof. Given a factorization M → M ′ → Mgp as in (3.1), we factor the unit
map UJ

→ M ′ as an acyclic cofibration UJ
→ U(Mgp) followed by a fibration
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U(Mgp)→ M ′. This provides the lower part of the following commutative diagram:

V (Mgp) //

��

Brep(M) //

��

Bcy(Mgp)

��

U(Mgp) // // M ′ // // Mgp.

UJ //

OO∼
OO

M

OO ∼

OO

Using the resulting factorization of the unit of Mgp into an acyclic cofibration UJ
→

U(Mgp) followed by a fibration U(Mgp) → Mgp for the definition of the commuta-
tive J -space monoid V (Mgp) studied in the last section, we obtain V (Mgp) as an iterated
pullback as indicated in the previous diagram. The above maps induce the following com-
mutative cube:

Brep(M) //

��

Bcy(Mgp)

��

M � V (Mgp) //

��

55

Mgp � V (Mgp)

��

44

M ′ // Mgp.

M � U(Mgp) //

55

Mgp � U(Mgp)

44

The back face is homotopy cartesian by definition, and the front face is homotopy carte-
sian by [Sag14, Lemma 2.11] and [SS12, Corollary 11.4]. The map in the upper right
corner is a J -equivalence by Proposition 2.3 (applied to Mgp), and the maps in the lower
corners are J -equivalences by construction. It follows that M � V (Mgp)→ Brep(M) is
also a J -equivalence.

Extending the J -space maps in the chain of J -equivalences of Proposition 2.4 (ap-
plied to Mgp) to M-module maps shows that there is a chain of J -equivalences of M-
modules over Mgp relating M � V (Mgp) and M × B((Mgp)hJ ). Since B(MhJ ) →
B((Mgp)hJ ) is a weak equivalence, the claim follows. ut

Let f : M → N be a map of commutative J -space monoids. In Section 6 we shall be
interested in the diagram of commutative symmetric ring spectra

SJ [M] //

��

SJ [Brep(M)]

��

SJ [N ] // SJ [Brep(N)]

(3.2)

induced by f . In order to measure to what extent this square is homotopy cocartesian in
CSp6 , we use the following terminology: Given a symmetric spectrum E, a commutative
diagram of commutative symmetric ring spectra

A //

��

B

��

C // D
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is E∗-homotopy cocartesian if whenever we factor A → C as a cofibration A → C′

followed by a stable equivalence C′ → C of commutative symmetric ring spectra, the
induced map C′ ∧A B → D is an E∗-equivalence.

Proposition 3.2. For a symmetric spectrum E and a map of cofibrant commutative
J -space monoids f : M → N , the diagram (3.2) is E∗-homotopy cocartesian if and
only if f gives rise to an E∗-equivalence

SJ [N ] ∧ B(MhJ )+→ SJ [N ] ∧ B(NhJ )+.

Proof. Without loss of generality, we may assume that f is a cofibration. Then the dia-
gram (3.2) is E∗-homotopy cocartesian if and only if the map

SJ [N ] ∧SJ [M] S
J
[Brep(M)] → SJ [Brep(N)] (3.3)

is an E∗-equivalence. By the argument given in the proof of [RSS15, Lemma 4.8], the
extension of scalars functor SJ [N ] ∧SJ [M] (−) preserves stable equivalences. Since the
J -equivalences of M-modules in Proposition 3.1 are augmented over the cofibrant com-
mutative J -space monoid Mgp, it follows from [RSS15, Corollary 8.8] that SJ maps
these J -equivalences to stable equivalences. Hence the map (3.3) is stably equivalent to
the map

SJ [N ] ∧SJ [M] (S
J
[M] ∧ B(MhJ )+)→ SJ [N ] ∧ B(NhJ )+,

and the domain of this map is isomorphic to SJ [N ] ∧ B(MhJ )+. ut

Notation 3.3. For each integer n, let Jn ⊂ J be the full subcategory generated by the
objects (m1,m2) with m2 − m1 = n. Then BJ =

∐
n BJn and we refer to the part

of a J -space X that maps to BJn as the J -degree n part of X. If M is a commuta-
tive J -space monoid, we let M{0} and Brep

{0} (M) denote the J -degree 0 parts of M and
Brep(M), respectively. We also use the notations M≥0 and M>0 for the non-negative and
positive J -degree parts of M , respectively (cf. [RSS15, Definition 6.1]).

Remark 3.4. Let M be a commutative J -space monoid that is repetitive in the sense
of [RSS15, Definition 6.4]. By definition, this means that M 6= M{0} and that the group
completion map M → Mgp induces a J -equivalence M → (Mgp)≥0. Propositions 2.3
and 3.1 can be used to identify the homotopy cofiber of the map of SJ [Bcy(M{0})]-
module spectra

SJ [Bcy(M{0})]
SJ [σ ]
−−−→ SJ [Brep

{0} (M)] (3.4)

with 6 SJ [Bcy(M{0})]. The idea is to use the fact that the homotopy cofiber in question
is equivalent to the homotopy cofiber of the map

SJ [M{0}] ∧ B((M{0})hJ )+→ SJ [M{0}] ∧ B(MhJ )+.

An application of the Bousfield–Friedlander theorem shows that there is a homotopy fiber
sequence

B((M{0})hJ )→ B(MhJ )→ B(dN0),
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where d is the period of M , as in [RSS15, Definition 6.5]. Hence we can recognize the
homotopy cofiber of (3.4), as claimed.

Using this argument in place of [RSS15, Proposition 6.11] leads to a slightly different
proof for the localization homotopy cofiber sequences established in [RSS15]. However,
the disadvantage of the alternative approach outlined here is that it does not identify the
homotopy cofiber as a cyclic object.

4. Logarithmic topological Hochschild homology

Let A be a commutative symmetric ring spectrum. A pre-log structure (M, α) on A is a
commutative J -space monoid M together with a map α : M → �J (A) [RSS15, Def-
inition 4.1]. The ring spectrum A together with a chosen pre-log structure is called a
pre-log ring spectrum and will be denoted by (A,M, α) or just (A,M). (As explained
in [RSS15, Remark 4.2], this terminology differs from the one used in [Rog09] in that we
use J -spaces, and from [SS12, §4.30] and [Sag14] in that we skip the additional word
graded used there.)

A basic example of a pre-log structure is the free pre-log structure generated by a
0-simplex x ∈ �J (A)(d1,d2). It is given by the map

C〈d1,d2〉 =
∐
k≥0

(FJ
(d1,d2)

(∗)�k/6k)→ �J (A)

from the free commutative J -space monoid C〈d1,d2〉 on a generator in bidegree (d1,d2)

determined by x. We often write C〈x〉 for C〈d1,d2〉 when discussing this map.
A more interesting kind of pre-log structure arises as follows: If j : e → E is the

connective cover map of a positive fibrant commutative symmetric ring spectrum, then
the pullback j∗GLJ

1 (E) of GLJ
1 (E) → �J (E) ← �J (e) defines a pre-log structure

j∗GLJ
1 (E) → �J (e) on e. We call this the direct image pre-log structure on e induced

by the trivial pre-log structure on E.

Definition 4.1 ([RSS15, Definition 4.6]). Let (A,M) be a pre-log ring spectrum. Its log-
arithmic topological Hochschild homology THH(A,M) is the commutative symmetric
ring spectrum given by the pushout of the diagram

THH(A)← SJ [Bcy(Mcof)] → SJ [Brep(Mcof)]

of commutative symmetric ring spectra. Here (Acof,Mcof) → (A,M) is a cofibrant re-
placement and THH(A) = Bcy(Acof) is the topological Hochschild homology of A, de-
fined as the cyclic bar construction of Acof with respect to the smash product ∧. The left

hand map is induced by the identification SJ [Bcy(Mcof)]
∼=
−→ THH(SJ [Mcof

]) and the
adjoint structure map SJ [Mcof

] → Acof of (Acof,Mcof). The right hand map is induced
by the repletion map ρ : Bcy(Mcof)→ Brep(Mcof).
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When computing THH(A,M) in examples, it will be convenient to work with pre-log
structures (M, α) such that the homology of the space MhJ associated with M is well
understood. To obtain interesting examples of such pre-log structures, we review [Sag14,
Construction 4.2]:

Construction 4.2. Let E be a positive fibrant commutative symmetric ring spectrum that
is d-periodic, i.e., π∗(E) has a unit of positive degree and the natural number d is the
minimal positive degree of a unit in π∗(E). We also assume we are not in the degenerate
case where π∗(E) is the zero ring. Let j : e→ E be the connective cover map and assume
that e is also positive fibrant. Then there exists an object (d1,d2) of J with d1 > 0 and a
map x : Sd2 → ed1 such that d = d2−d1 and the homotopy class [x] ∈ πd(e) represented
by x is mapped to a periodicity element in π∗(E).

In this general situation we will build a pre-log structure D(x) → �J (e). The next
diagram outlines its construction:

C〈x〉
$$

$$

((

$$

D(x)
∼

%% %%

D′(x) //

��

�J (e)

��

C〈x〉gp // GLJ
1 (E)

// �J (E).

(4.1)

We start with the free pre-log structure C〈x〉 on e generated by x. The compos-
ite of its structure map C〈x〉 → �J (e) with �J (e) → �J (E) factors through
GLJ

1 (E) → �J (E) because x becomes a unit in π∗(E). We then factor the resulting
map C〈x〉 → GLJ

1 (E) in the group completion model structure of [Sag16] as an acyclic
cofibration C〈x〉 → C〈x〉gp followed by a fibration C〈x〉gp

→ GLJ
1 (E). The intermedi-

ate object C〈x〉gp is fibrant in the group completion model structure because, by construc-
tion, it comes with a fibration to the fibrant object GLJ

1 (E). Hence the acyclic cofibration
C〈x〉 → C〈x〉gp is indeed a model for the group completion of C〈x〉. The commutative
J -space monoid D′(x) is defined to be the pullback of

C〈x〉gp
→ �J (E)← �J (e).

In a final step, we defineD(x) by the indicated factorization of C〈x〉 → D′(x), now in the
positive J -model structure. We call D(x) → �J (e) the direct image pre-log structure
generated by x. We note that D(x) is cofibrant since C〈x〉 is cofibrant. Moreover, D(x)
is repetitive in the sense of Remark 3.4 since �J (e)≥0 → �J (E)≥0 is a J -equivalence.

It follows that there is a sequence of maps of pre-log ring spectra

(e,C〈x〉)→ (e,D(x))→ (e, j∗GLJ
1 (E))→ (E,GLJ

1 (E)). (4.2)

The significance of Construction 4.2 for log THH stems from the following results.
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Proposition 4.3. The map (e,D(x)) → (e, j∗GLJ
1 (E)) in (4.2) induces a stable equiv-

alence THH(e,D(x))
∼
−→ THH(e, j∗GLJ

1 (E)).

Proof. By [Sag14, Lemma 4.7], the map (e,D(x)) → (e, j∗GLJ
1 (E)) is stably equiva-

lent to the logification map. So [RSS15, Theorem 4.24] implies that it induces a stable
equivalence when applying log THH. ut

Theorem 4.4. In the situation of Construction 4.2, there is a natural homotopy cofiber
sequence

THH(e)
ρ
→ THH(e,D(x))

∂
→ 6 THH(e[0, d〉) (4.3)

of THH(e)-modules with circle action, where ρ is a map of commutative symmetric ring
spectra and e[0, d〉 is the (d − 1)-st Postnikov section of e.

Proof. This follows by combining [RSS15, Theorem 6.10 and Lemma 6.16] or by com-
bining [RSS15, Theorem 6.18] with Proposition 4.3. ut

For later use we record a more explicit description of the homotopy type ofD(x). Since e
and E are assumed to be positive fibrant and j : e→ E is the connective cover map, the
induced map �J (e → E)(m1,m2) is a weak equivalence if m2 − m1 ≥ 0 and m1 > 0.
Moreover, D(x)(m1,m2) is empty if m2 − m1 < 0 because the negative-dimensional
units of π∗(E) are not in the image of the map from π∗(e). This argument implies [Sag14,
Lemma 4.6], which we reproduce here for the reader’s convenience:

Lemma 4.5. The chain of maps C〈x〉hJ → D(x)hJ → (C〈x〉gp)hJ is weakly equiva-
lent to

∐
k≥0 B6k → Q≥0S

0
→ QS0. The latter chain is the canonical factorization of

the group completion map through the inclusion of the non-negative components of QS0.
In particular, D(x)→ C〈x〉gp induces a J -equivalence D(x)→ (C〈x〉gp)≥0. ut

Hence the homotopy type of D(x)hJ ' Q≥0S
0 does not depend on the map of spectra

e→ E used to construct D(x). The structure map

Q≥0S
0 ∼
−→ D(x)hJ → (constJ ∗)hJ

∼=
−→ BJ ∼

−→ QS0

is multiplication by the degree d = d2 − d1 of x : Sd2 → ed1 .

5. The graded Thom isomorphism

As another preparatory step for computing THH(A,M), we explain how to compute the
homology of the spectrum SJ [M] for M = D(x) and related examples. The key idea
for this, worked out by the last two authors in [SS14], is to express SJ [M] as the Thom
spectrum of the virtual vector bundle classified by the composite

MhJ → BJ ∼
−→ QS0

→ Z× BO

of the structure map MhJ → BJ induced by applying (−)hJ to the map from M to the
terminal J -space, the weak equivalence BJ → QS0, and the map of infinite loop spaces
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QS0
→ Z× BO induced by the unit S→ ko. In the case where M = C〈d1,d2〉

gp with
d2−d1 even it is proved in [SS14] thatM is orientable in the strong sense that there exists
a map SJ [M] → HZP of commutative symmetric ring spectra. Here HZP denotes a
cofibrant and even periodic version of the integral Eilenberg–Mac Lane spectrum, i.e., the
underlying symmetric spectrum of HZP decomposes as HZP =

∨
n∈2ZHZP{n} where

HZP{0} = HZ and HZP{n} = 6nHZ. If M is a commutative J -space monoid that is
concentrated in even J -degrees, then the monoid structure ofMhJ and the multiplication
ofHZP equip

∨
n∈2Z(MhJn)+∧HZP{n} with the structure of a symmetric ring spectrum.

In [SS14], the following statement is derived from a more general graded Thom iso-
morphism theorem (in [SS14], also E∞ structures are addressed):

Proposition 5.1 ([SS14, Proposition 8.4]). Let (d1,d2) be an object of J with d1 ≥ 1
and even J -degree d2−d1, and letM → C〈d1,d2〉

gp be a map of commutative J -space
monoids. Then there is a chain of stable equivalences of symmetric ring spectra that
relates SJ [M] ∧HZ and

∨
n∈2Z(MhJn)+ ∧HZP{n}. The chain of maps is natural with

respect to maps of commutative J -space monoids over C〈d1,d2〉
gp. ut

In the proposition we do not need to assume that M is cofibrant since the existence of an
augmentation to the cofibrant object C〈d1,d2〉

gp ensures that SJ [M] captures the correct
homotopy type (see [RSS15, Section 8]).

When working with the isomorphism of homology algebras resulting from Proposi-
tion 5.1, it will be convenient to view the homology of MhJ as a Z-graded algebra in a
way that takes the J -grading into account. We use ~ as a subscript to denote this new
grading and set

H~(MhJ ;Z) =
⊕
n∈Z

6nH∗(MhJn;Z), (5.1)

and similarly for other coefficient rings. In this notation, Proposition 5.1 implies the fol-
lowing statement.

Proposition 5.2. Let (d1,d2) be an object of J of even J -degree d2−d1, and letM be a
commutative J -space monoid over C〈d1,d2〉

gp. Then H∗(SJ [M];Z) and H~(MhJ ;Z)
are naturally isomorphic as Z-graded algebras. ut

If x : Sd2 → ed1 has even degree d = d2 − d1, then the previous two propositions
apply for example to the commutative J -space monoids D(x), D(x)gp, Bcy(D(x)),
Brep(D(x)), Bcy(D(x){0}), and Bcy

{0}(D(x)
gp). Here Bcy(D(x){0}) and Bcy

{0}(D(x)
gp) de-

note the J -degree zero parts (see Notation 3.3). In view of later applications, we formu-
late the following results for homology with Fp-coefficients.

Corollary 5.3. Let x have even degree d. There are algebra isomorphisms

H∗(SJ [D(x)];Fp) ∼=H~(D(x)hJ ;Fp) ∼= P(x)⊗H∗(D(x)hJ0;Fp),

H∗(SJ [D(x)gp
];Fp) ∼=H~(D(x)

gp
hJ ;Fp) ∼= P(x

±1)⊗H∗(D(x)hJ0;Fp)

with H∗(D(x)hJ0;Fp) ∼= H∗(Q0S
0
;Fp) in J -degree 0.
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Proof. The first isomorphisms follow from the above observations. For a general sim-
plicial monoid A that is grouplike and homotopy commutative, A and π0(A) × A0 are
weakly equivalent as H -spaces. Here A0 denotes the connected component of the unit
element in A. This provides the second isomorphisms. The last statement follows from
Lemma 4.5. ut

5.4. Homology of the cyclic and replete bar constructions

To describe the homology of SJ [Bcy(D(x))] and SJ [Brep(D(x))], we write

C∗ = H∗(B
cy(D(x){0})hJ ;Fp) (5.2)

for the homology algebra of the E∞ space Bcy(D(x){0})hJ . If k is a positive integer, we
say that a Z-graded Fp-algebra A is k-connected if Fp ∼= A0 and Ai = 0 if i < 0 or
0 < i ≤ k. In view of Corollary 2.11, the underlying Z-graded Fp-vector space of C∗ can
be identified with H∗(Bcy(D(x)hJ0);Fp) when x has non-zero degree. Since we have
not defined a multiplicative structure on Bcy(D(x)hJ0), we cannot view this vector space
isomorphism as an algebra isomorphism. Nonetheless, the isomorphism implies thatC∗ is
(2p−4)-connected, since Bcy(D(x)hJ0) is weakly equivalent toD(x)hJ0×B(D(x)hJ0)

by the argument given in the proof of Lemma 2.12, and H∗(D(x)hJ0;Fp) is (2p − 4)-
connected since D(x)hJ0 ' Q0S

0 by Lemma 4.5.

Proposition 5.5. Let p ≥ 3 be an odd prime and assume that x has positive even degree.
There are algebra isomorphisms

H∗(SJ [Bcy(D(x))];Fp) ∼=H~(Bcy(D(x))hJ ;Fp) ∼= P(x)⊗ E(dx)⊗ C∗,

H∗(SJ [Brep(D(x))];Fp) ∼=H~(Brep(D(x))hJ ;Fp) ∼= P(x)⊗ E(d log x)⊗ C∗,

H∗(SJ [B
cy
{0}(D(x)

gp)];Fp) ∼=H~(Bcy(D(x)gp)hJ0;Fp) ∼= E(d log x)⊗ C∗

with |dx| = |x| + 1, |d log x| = 1, and dx mapping to x · d log x under the repletion
map. The suspension operator satisfies σ(x) = dx, σ(dx) = 0 in the first case, and
σ(x) = x · d log x, σ(d log x) = 0 in the second case.

We need some preparation to prove the proposition. First we recall from [RSS15, Sec-
tion 7] that for a commutative J -space monoid M concentrated in J -degrees divisible
by d , there is a natural augmentation map Bcy(M)hJ → Bcy(dZ) which is defined as the
realization of the map

B
cy
s (M)hJ =

( ∐
(d0,...,ds )∈B

cy
s (dZ)

M{d0} � · · · �M{ds }

)
hJ
→ B

cy
s (dZ)

that collapses the summand indexed by (d0, . . . , ds) to the point (d0, . . . , ds).
The category of simplicial monoids has a model structure in which a map is a fibration

or weak equivalence if and only if the underlying map of simplicial sets is. Specializing
to the case M = D(x)gp, we choose a factorization

Bcy(D(x)gp)hJ
∼� Bcy(D(x)gp)fib

hJ
q
� Bcy(dZ)

of the augmentation in this model structure.
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Lemma 5.6. There is a basepoint preserving space level section to q.

Proof. Let d be the degree of x. Since D(x)gp
hJ ' QS0, the canonical augmentation

D(x)
gp
hJ × B(D(x)

gp
hJ ) → dZ × B(dZ) admits a section in Ho(S∗), the homotopy cat-

egory of based simplicial sets. The chain of weak equivalences between Bcy(D(x)gp)hJ
andD(x)gp

hJ ×B(D(x)
gp
hJ ) resulting from Corollary 2.11 and the proof of Lemma 2.12 is

basepoint preserving and compatible with the augmentation to Bcy(dZ) ' dZ× B(dZ).
Hence the augmentation Bcy(D(x)gp)hJ → Bcy(dZ) also admits a section in Ho(S∗).

It follows that the map q is a fibration of cofibrant and fibrant based simplicial sets,
which admits a section in the homotopy category. By the homotopy lifting property it
therefore admits a section in the category S∗ of based simplicial sets. ut

Proof of Proposition 5.5. The graded Thom isomorphism provides the first isomorphism
in each line of the statement. For the second, we recall from [Rog09, Propositions 3.20
and 3.21] or [RSS15, Section 5.2] that there are algebra isomorphisms

H∗(B
cy(N0);Fp) ∼= H∗

(
∗ t

∐
k≥1

S1(k);Fp
)
∼= P(x)⊗ E(dx),

H∗(B
rep(N0);Fp) ∼= H∗

(∐
k≥0

S1(k);Fp
)
∼= P(x)⊗ E(d log x),

H∗(B
cy
{0}(Z);Fp) ∼= H∗(S

1(0);Fp) ∼= E(d log x).

Here each S1(k) is a 1-sphere, and we have x ∈ H0(S
1(1);Fp), dx ∈ H1(S

1(1);Fp), and
d log x ∈ H1(S

1(0);Fp).
We first treat the case of H∗(Bcy(D(x))hJ ;Fp). Writing d for the degree of x, we

observe that the augmentations induce a commutative diagram

Bcy(D(x){0})hJ

��

// Bcy(D(x))hJ

��

// Bcy(D(x)gp)hJ

��

∗ // Bcy(dN0) // Bcy(dZ).
(5.3)

Using the weak equivalences from Corollary 2.11 and applying the Bousfield–Friedlander
theorem as in the proof [RSS15, Proposition 7.1] shows that the outer rectangle and the
right hand square in this diagram are homotopy cartesian. Hence so is the left hand square.

Let π : Bcy(D(x))fib
hJ � Bcy(dN0) be the fibration of simplicial monoids obtained by

forming the base change of the fibration q considered in Lemma 5.6 along Bcy(dN0)→

Bcy(dZ). Then the canonical map ι : Bcy(D(x))hJ → Bcy(D(x))fib
hJ is a weak equiv-

alence since the right hand square in (5.3) is homotopy cartesian, and it follows from
Lemma 5.6 that π admits a basepoint preserving space level section τ .

For a 0-simplex c ∈ Bcy(dN0), we now consider the diagram

Bcy(D(x){0})hJ
inclc // Bcy(D(x){0})hJ × Bcy(dN0)

proj
//

µ
��

Bcy(dN0)

Bcy(D(x){0})hJ
νc // Bcy(D(x))fib

hJ
π // Bcy(dN0)

(5.4)
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where inclc(a) = (a, c), µ(a, b) = ι(a) · τ(b), and νc(a) = ι(a) · τ(c). By construction,
both squares commute. We want to show that µ is a weak equivalence. Since the left
hand square in (5.3) is homotopy cartesian, the bottom sequence in (5.4) is a homotopy
fiber sequence if c is the basepoint. A five-lemma argument with the long exact sequences
and a consideration of path components shows that µ induces an isomorphism on homo-
topy groups with basepoints in the zero component. In (5.3), both squares are homotopy
cartesian, the rightmost map is a homomorphism of grouplike simplicial monoids, and
B

cy
>0(dN0) → B

cy
>0(dZ) is a weak equivalence. Hence the bottom sequence in (5.4) is

also a homotopy fiber sequence if c lies in a positive path component. Arguing again with
the long exact sequence completes the proof of µ being a weak equivalence.

With the notation C∗ = H∗(B
cy(D(x){0})hJ ;Fp) from (5.2), the Künneth isomor-

phism and the weak equivalence µ induce an isomorphism

C∗ ⊗H∗(B
cy(dN0);Fp) ∼= H∗(Bcy(D(x))hJ ;Fp).

It is an isomorphism of C∗-modules under C∗ since µ is a map of Bcy(D(x){0})hJ -
modules under Bcy(D(x){0})hJ . We need to verify that this isomorphism is multiplica-
tive, and it suffices to check this on each tensor factor on the left. For C∗, this holds by
construction. The homomorphism

τ∗ : H∗(B
cy(dN0);Fp)→ H∗(B

cy(D(x))hJ ;Fp)

is induced by the space level section τ . Hence it is an additive section to the algebra
homomorphism π∗ : H∗(B

cy(D(x))hJ ;Fp) → H∗(B
cy(dN0);Fp). The algebra C∗ is

(2p− 4)-connected and therefore at least 2-connected for p ≥ 3. Hence π∗ is an isomor-
phism in degrees ∗ ≤ 2. Since H∗(Bcy(dN0);Fp) is concentrated in degrees ∗ ≤ 1, this
implies, as an algebraic fact, that the additive section τ∗ is multiplicative. It also implies
that the suspension operator satisfies σ(x) = dx and σ(dx) = 0, since these relations
hold in H∗(Bcy(dN0);Fp) and are preserved by π∗.

The claims about H∗(Brep(D(x))hJ ;Fp) and H∗(B
cy
{0}(D(x)

gp)hJ ;Fp) follow by a
similar argument with Bcy

≥0(dZ) (respectively Bcy
{0}(dZ)) replacing Bcy(dN0). ut

We do not know if the statement of Proposition 5.5 holds for p = 2. Since we are inter-
ested in V (1)-homotopy calculations later on, we shall not pursue this question further.

5.7. Homology of the group completion of free commutative J -space monoids

We give another application of the graded Thom isomorphism that will become relevant
for the proof of Theorem 6.2 below. Let (e1, e2) be an object with e2 − e1 > 0 and let
(d1,d2) = (e1, e2)

tk for a positive integer k. We have a map C〈d1,d2〉 → C〈e1, e2〉

of commutative J -space monoids defined by mapping the generator id(d1,d2) to id�k(e1,e2)
.

Consider the commutative diagram of commutative J -space monoids

C〈d1,d2〉 //

��

C〈d1,d2〉
gp
≥0

//

��

C〈d1,d2〉
gp

��

C〈e1, e2〉 // C〈e1, e2〉
gp
≥0

// C〈e1, e2〉
gp
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in which C〈d1,d2〉
gp and C〈e1, e2〉

gp are cofibrant, the horizontal composites are group
completions and the right hand horizontal maps are the canonical inclusions.

Lemma 5.8. With notation as above set e = e2 − e1, assume that e is even, and let
p be a prime not dividing k. Then H∗(SJ [C〈e1, e2〉

gp
≥0];Z(p)) is a free module over

H∗(SJ [C〈d1,d2〉
gp
≥0];Z(p)) generated by the images of the canonical generators of

6ieZ(p) under the homomorphisms

6ieZ(p) ∼= H∗(SJ [FJ
(e1,e2)ti

(∗)];Z(p))→ H∗(SJ [C〈e1, e2〉
gp
≥0];Z(p))

for i = 0, . . . , k − 1.

Here the last map is induced by the canonical map FJ
(e1,e2)ti

(∗) ∼= FJ
(e1,e2)

(∗)�i →

C〈e1, e2〉.

Proof. Consider the map of J -spaces

FJ
(e1,e2)ti

(∗) � C〈d1,d2〉
gp
≥0 → C〈e1, e2〉

gp
≥0 � C〈e1, e2〉

gp
≥0 → C〈e1, e2〉

gp
≥0

for i = 0, . . . , k − 1. The statement in the theorem is equivalent to the induced map of
symmetric spectra

SJ
[k−1∐
i=0

FJ
(e1,e2)ti

(∗) � C〈d1,d2〉
gp
≥0

]
→ SJ [C〈e1, e2〉

gp
≥0]

inducing an isomorphism in homology with Z(p)-coefficients. By Proposition 5.2 this is
equivalent to the map of spaces

k−1∐
i=0

(
FJ
(e1,e2)ti

(∗) � C〈d1,d2〉
gp
≥0
)
hJn → (C〈e1, e2〉

gp
≥0)hJn

inducing an isomorphism in homology with Z(p)-coefficients for all n. We can further
reduce this to the case n = 0 by considering the commutative diagram(

FJ
(e1,e2)ti

(∗) � C〈d1,d2〉
gp)

hJie+jd
// C〈e1, e2〉

gp
hJie+jd

FJ
(e1,e2)ti

(∗)hJie × C〈d1,d2〉
gp
hJjd

//

∼

OO

FJ
(e1,e2)ti

(∗)hJie × C〈e1, e2〉
gp
hJjd

∼

OO

FJ
(e1,e2)ti

(∗)hJie × C〈d1,d2〉
gp
hJ0

//

∼
id×id

(d1,d2)
tj

OO

FJ
(e1,e2)ti

(∗)hJie × C〈e1, e2〉
gp
hJ0

∼
id×id

(e1,e2)
tjk

OO

where d = d2 − d1 = ke, and the arrows labeled id(d1,d2)tj
and id(e1,e2)tjk

are given
by left translation by the images of these elements in the group completions. Since the
vertical maps are weak homotopy equivalences as indicated, it remains to show that the
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map C〈d1,d2〉
gp
hJ0
→ C〈e1, e2〉

gp
hJ0

induces an isomorphism in homology with Z(p)-
coefficients.

By using the fact that C〈n1,n2〉
gp
hJ → �B(C〈n1,n2〉

gp
hJ ) is a weak equivalence, the

next lemma shows that C〈d1,d2〉
gp
hJ0
→ C〈e1, e2〉

gp
hJ0

induces multiplication by k on the
homotopy groups. Hence the map of homotopy groups becomes an isomorphism after
tensoring with Z(p). This in turn implies that it induces an isomorphism in homology
with Z(p)-coefficients (see e.g. [BK72, Proposition V.3.2]). ut

Lemma 5.9. Let k be a positive integer, let (e1, e2) be an object of J , let (d1,d2) =

(e1, e2)
tk and let C〈d1,d2〉 → C〈e1, e2〉 be the map determined by id(d1,d2) 7→ id�k(e1,e2)

.
Then the induced map B(C〈d1,d2〉

gp
hJ )→ B(C〈e1, e2〉

gp
hJ ) acts as multiplication by k on

the homotopy groups.

Proof. Let k be the finite set k = {1, . . . , k} and let kt : 6 → 6 be the functor taking n
to the n-fold concatenation ktn with its canonical left6n-action. This is a strict symmetric
monoidal functor and we use the same notation for the induced functor kt : J → J . It
is easy to see that kt : J → J is naturally isomorphic to the k-fold monoidal product
(n1,n2) 7→ (n1,n2)

tk . Hence the induced map B(BJ )→ B(BJ ) acts as multiplication
by k on the homotopy groups.

Let 6̃n be the translation category of 6n. Its objects are the elements in 6n and its
morphisms a : b→ c are elements in6n such that ab = c. We consider the functor 6̃n→
((d1,d2)

tn
↓ J ) that maps an object a in 6̃n to the isomorphism a∗ : (d1,d2)

tn
→

(d1,d2)
tn induced by a and the symmetry isomorphism. This defines a weak homotopy

equivalence of 6n-orbit spaces

B6n ∼= (B6̃n)/6n
∼
−→ B((d1,d2)

tn
↓ J )/6n ∼= (FJ

(d1,d2)
(∗)�n/6n)hJ .

Assembling these maps for varying n and forming the corresponding map for C〈e1, e2〉hJ
defines the horizontal weak equivalences in the following commutative diagram of E∞
monoids:

C〈d1,d2〉hJ

��

B6

kt
��

(d1,d2)
t

∼
oo

C〈e1, e2〉hJ B6.
(e1,e2)

t

∼
oo

Since the maps B(B6) → B(BJ ) and B(C〈d1,d2〉hJ ) → B(C〈d1,d2〉
gp
hJ ) are weak

equivalences, the claim follows by the above observation about the map B(BJ ) →
B(BJ ) induced by kt : J → J . ut

6. The inclusion of the Adams summand

Let p be an odd prime. It is well known that there are positive fibrant commutative sym-
metric ring spectra ku(p) and ` modeling respectively the p-local connective complex
K-theory spectrum and the corresponding Adams summand. Furthermore, we may as-
sume that the inclusion f : ` → ku(p) of the Adams summand is realized as a positive
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fibration of commutative symmetric ring spectra, that the corresponding periodic theo-
ries are also represented by positive fibrant commutative symmetric ring spectra KU(p)
and L, and that there is a commutative square

`

f
��

// L

��

ku(p) // KU(p)

(6.1)

in CSp6 . This is explained in [Sag14, Section 4.12] and is based on work by Baker and
Richter [BR05].

The graded rings of homotopy groups are given by π∗(ku(p)) = Z(p)[u] with |u| = 2
and π∗(`) = Z(p)[v] with |v| = 2(p − 1), and under these isomorphisms, f corresponds
to the ring homomorphism Z(p)[v] → Z(p)[u] taking v to up−1. It is proved in [Sag14,
Proposition 4.13] that one may choose representatives v in �J (`)(p− 1, 3(p− 1)) and
u in �J (ku(p))(1, 3) as well as a map f [ : D(v) → D(u) relating the commutative
J -space monoidsD(v) andD(u) from Construction 4.2 such that there is a commutative
diagram of pre-log ring spectra

(`,D(v))

��

// (`, j∗GLJ
1 (L))

��

(ku(p),D(u)) // (ku(p), j∗GLJ
1 (KU(p))).

(6.2)

In the diagram, the horizontal maps are induced by the maps D(v) → j∗GLJ
1 (L) and

D(u)→ j∗GLJ
1 (KU(p)) from (4.2).

6.1. Formally log THH-étale maps

In analogy with the notion of formally THH-étale maps defined in [Rog08, §9.2], we say
that a map (A,M) → (B,N) of pre-log ring spectra is formally log THH-étale if the
induced square

A //

��

THH(A,M)

��

B // THH(B,N)

is a homotopy cocartesian diagram of commutative symmetric ring spectra.

Theorem 6.2. The map (`, j∗GLJ
1 (L)) → (ku(p), j∗GLJ

1 (KU(p))) of log ring spectra
is formally log THH-étale.

By Proposition 4.3, the horizontal maps in (6.2) induce stable equivalences when applying
THH. This reduces Theorem 6.2 to the next statement.

Theorem 6.3. The map (`,D(v)) → (ku(p),D(u)) of pre-log ring spectra is formally
log THH-étale.
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Proof. We need to show that the square given by the back face of the following commu-
tative diagram in CSp6 is homotopy cocartesian:

`

��

// ku(p)

��

SJ [D(v)]

44

��

// SJ [D(u)]

��

33

THH(`)

��

// THH(ku(p))

��

SJ [Bcy(D(v))]

��

44

// SJ [Bcy(D(u))]

33

��

THH(`,D(v)) // THH(ku(p),D(u)).

SJ [Brep(D(v))]

44

// SJ [Brep(D(u))]

33

The lower left face and the lower right face are homotopy cocartesian squares by defini-
tion. The inner square is homotopy cocartesian since it results from applying THH to the
homotopy cocartesian square of Proposition 6.4 below. Hence the bottom face of the dia-
gram is homotopy cocartesian. The top face is homotopy cocartesian by Proposition 6.4.
Since the back face is already p-local, it is enough to show that the front face becomes a
homotopy cocartesian square after p-localization.

Using Proposition 3.2 it suffices to show that B(D(v)hJ ) → B(D(u)hJ ) induces
an isomorphism in homology with Z(p)-coefficients. By Lemma 4.5, this is equivalent to
showing thatB(C〈v〉gp

hJ )→ B(C〈u〉gp
hJ ) induces an isomorphism in homology with Z(p)-

coefficients. Lemma 5.9 shows that the latter map acts as multiplication by p − 1 on the
homotopy groups. Hence it induces an isomorphism on homotopy groups after tensoring
with Z(p), which in turn implies that the map in homology with Z(p)-coefficients is an
isomorphism. ut

The next proposition was used in the proof of Theorem 6.3. The proposition is identical
to [Sag14, Proposition 4.15], but we provide a more conceptual argument that is based on
the graded Thom isomorphism of Proposition 5.1:

Proposition 6.4. The commutative square of commutative symmetric ring spectra

SJ [D(v)] //

��

`

��

SJ [D(u)] // ku(p)

is homotopy cocartesian.

Proof. If we factor SJ [D(v)] → ` as a cofibration SJ [D(v)] → `′ followed by an
acyclic fibration `′→ `, then we have to show that the induced map

SJ [D(u)] ∧SJ [D(v)] `
′
→ ku(p)
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is a stable equivalence. These are p-local connective spectra, so it suffices to show that the
latter map induces an isomorphism in spectrum homology with Z(p)-coefficients. Con-
sider for each i = 0, . . . , p − 2 the map of symmetric spectra

SJ [FJ
(1,3)ti (∗)] → SJ [C〈u〉] → ku(p).

The symmetric spectrum SJ [FJ
(1,3)ti (∗)] represents the suspension 62iS as an object in

the stable homotopy category and the map represents the i-fold product ui in π2i(ku(p)).
Hence it follows that the composite map

p−2∨
i=0

SJ [FJ
(1,3)ti (∗)] ∧ `

′
→ ku(p) ∧ ku(p)→ ku(p) (6.3)

is a stable equivalence of `′-module spectra.
Using the J -equivalences D(v) → C〈v〉gp

≥0 and D(u) → C〈u〉gp
≥0 from Lemma 4.5,

and Lemma 5.8, it follows that H∗(SJ [D(u)];Z(p)) is a free H∗(SJ [D(v)];Z(p))-mod-
ule. Inspecting Lemma 5.8, we see that it is generated by the images of the canonical
generators of 62iZ(p) under the homomorphisms

62iZ(p) ∼= H∗(SJ [FJ
(1,3)ti (∗)];Z(p))→ H∗(SJ [C〈u〉];Z(p))→ H∗(SJ [D(u)];Z(p))

for i = 0, . . . , p − 2. Hence the Tor spectral sequence [EKMM97, Theorem IV.4.1]

TorE∗(S
J
[D(v)])

s,t

(
E∗(SJ [D(u)]), E∗(`′)

)
−→ Es+t (SJ [D(u)] ∧SJ [D(v)] `

′)

with E = HZ(p) collapses. The result follows from this since the specified generators are
compatible with the stable equivalence in (6.3). ut

7. Logarithmic THH of the Adams summand

We will now demonstrate that the current definition of logarithmic topological Hochschild
homology, THH(A,M), in terms of THH(A) and the cyclic and replete bar constructions,
lends itself to non-trivial explicit computations, going beyond the cases of discrete rings
previously studied by Hesselholt–Madsen [HM03, §2]. In particular, we will realize the
program to compute V (1)∗ THH(ku) ∼= V (1)∗ THH(ku(p)) outlined by Ausoni [Aus05,
§10], using THH(`,D(v)) and THH(ku(p),D(u)) in place of the then-hypothetical con-
structions THH(`|L) and THH(ku(p)|KU(p)). In Theorem 8.5 we use this to recover
the full algebra structure on V (1)∗ THH(ku) for p ≥ 5. The subsequent construction
of THH(`|L) and THH(ku(p)|KU(p)) by Blumberg–Mandell [BM11], using simplicially
enriched Waldhausen categories, is not known to lend itself to such explicit calculations.
On the other hand, their models are known to admit good trace maps from algebraic
K-theory, so one may hope to prove that the two constructions are equivalent, in the
cases where both are defined.
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Notation 7.1. For any prime p, let H = HFp be the mod p Eilenberg–Mac Lane spec-
trum and write H∗X = π∗(H ∧ X) for the mod p homology groups of X. For p ≥ 3
let

V (1) = cone(v1 : 6
2p−2S/p→ S/p) ' S ∪p e

1
∪α1 e

2p−1
∪p e

2p

be the Smith–Toda complex of type 2. When p ≥ 5 it admits the structure of a homotopy
commutative ring spectrum [Oka79], and V (1)→ H is a map of homotopy commutative
ring spectra. Write V (1)∗X = π∗(V (1) ∧X) for the V (1)-homotopy groups of X.

When X is a ring spectrum and p ≥ 5, V (1)∗X becomes a graded Fp-algebra, and
V (1)∗X→ H∗X is an algebra homomorphism. WhenX has a circle action S1

+∧X→ X,
V (1)∗X inherits a suspension operator

σ : V (1)∗X→ V (1)∗+1(S
1
+ ∧X)→ V (1)∗+1X,

compatible with the operator σ : H∗X → H∗+1(S
1
+ ∧ X) → H∗+1X. When the adjoint

circle action X → F(S1
+, X) is a ring spectrum map, both suspension operators are

derivations [AR05, Proposition 5.10].
There is an equivalence V (1) ∧ ` ' H of homotopy commutative `-algebras. When

X is an `-module or a commutative `-algebra, there is an equivalence V (1)∧X ' H∧`X
of spectra or homotopy commutative ring spectra, respectively, and a corresponding iso-
morphism V (1)∗X ∼= π∗(H ∧`X). (Smash products are understood as left derived smash
products here.) In particular, the natural map V (1)∗X → H∗X is split injective. When
p = 3 and X is a commutative `-algebra, we give V (1)∗X the algebra structure from
π∗(H ∧` X).

Let (A,M) be a pre-log ring spectrum with M = M≥0 concentrated in non-negative
degrees. Suppose, without loss of generality, that (A,M) is cofibrant, so that the maps
SJ [M] → A and SJ [Bcy(M)] → THH(A) are cofibrations of commutative symmetric
ring spectra. This ensures that the smash product

THH(A,M) = THH(A) ∧SJ [Bcy(M)] S
J
[Brep(M)]

captures the correct homotopy type.
In order to determine the structure of a Künneth spectral sequence associated to this

smash product, we shall use a natural chain of SJ [Bcy(M)]-module maps

SJ [Brep(M)] → SJ [Bcy
{0}(M

gp)] ← SJ [Bcy(M{0})].

The left hand map is defined by first projecting onto SJ [Brep
{0} (M)] as in [RSS15, Defini-

tion 6.9] and then composing with the canonical map to SJ [Bcy
{0}(M

gp)], while the right
hand map uses the identification Bcy(M{0}) = B

cy
{0}(M) and the group completion map

M → Mgp. Hence there is a chain of THH(A)-module maps

THH(A,M)→ THH(A) ∧SJ [Bcy(M)] S
J
[B

cy
{0}(M

gp)] ← THH(A/(M>0)), (7.1)

where A/(M>0) = A ∧SJ [M] SJ [M{0}].
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We shall use a corresponding chain of Künneth spectral sequences to transport in-
formation about the spectral sequence for THH(A/(M>0)) to the spectral sequence for
THH(A,M). This chain has the following E2-terms:

TorH∗S
J
[Bcy(M)]

∗∗

(
V (1)∗ THH(A),H∗SJ [Brep(M)]

)
→ TorH∗S

J
[Bcy(M)]

∗∗

(
V (1)∗ THH(A),H∗SJ [B

cy
{0}(M

gp)]
)

← TorH∗S
J
[Bcy(M)]

∗∗

(
V (1)∗ THH(A),H∗SJ [Bcy(M{0})]

)
,

and converges to the V (1)-homotopy of the chain of THH(A)-modules displayed above.
It will be constructed in the proof of Theorem 7.3. The reader may want to compare the
following calculations with those in [RSS15, Section 5], where we handled the case of a
discrete pre-log structure.

Our assumption that (A,M) is cofibrant implies that A is a cofibrant commutative
symmetric ring spectrum. Now suppose in addition that A is augmented over HFp, and
let H → HFp be a cofibrant replacement in commutative A-algebras. If X is an A-
module, we write HA

∗ (X) = π∗(H ∧A X). Using the isomorphism

THH(A) ∧SJ [Bcy(M)] S
J
[Bcy(M{0})] ∼= THH(A/(M>0))

and the maps S→ A→ H we get a pushout square of commutative H -algebras

H ∧ SJ [Bcy(M)] //

��

H ∧ SJ [Bcy(M{0})]

��

H ∧A THH(A) // H ∧A THH(A/(M>0))

which is homotopy cocartesian by our cofibrancy assumptions. We first study the associ-
ated Tor spectral sequence

E2
∗∗ = TorH∗S

J
[Bcy(M)]

∗∗

(
HA
∗ THH(A),H∗SJ [Bcy(M{0})]

)
=⇒ HA

∗ THH(A/(M>0)). (7.2)

We shall use the notation dr(x) .= y to indicate that dr(x) equals a unit in Fp times y.

Proposition 7.2. Consider the case A = `, M = D(v) and A/(M>0) ' HZ(p) of the
spectral sequence (7.2) above. It is an algebra spectral sequence

E2
∗∗ = TorH~(B

cy(D(v))hJ )
∗∗

(
V (1)∗ THH(`),H~(Bcy(D(v))hJ0)

)
=⇒ V (1)∗ THH(Z(p)).

With C∗ = H∗(Bcy(D(v))hJ0) as in (5.2) we have

H~(B
cy(D(v))hJ ) ∼= P(v)⊗ E(dv)⊗ C∗,

V (1)∗ THH(`) ∼= E(λ1, λ2)⊗ P(µ2),

V (1)∗ THH(Z(p)) ∼= E(ε1, λ1)⊗ P(µ1)
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with |v| = 2p − 2, |dv| = 2p − 1, |λ1| = 2p − 1, |λ2| = 2p2
− 1, |µ2| = 2p2,

|ε1| = 2p − 1 and |µ1| = 2p. Here

E2
∗∗
∼= E(λ1, λ2)⊗ P(µ2)⊗ E([v])⊗ 0([dv]),

where [v] has bidegree (1, 2p−2) and [dv] has bidegree (1, 2p−1). There are non-trivial
dp-differentials

dp(γk[dv])
.
= λ2 · γk−p[dv]

for all k ≥ p, leaving

E∞∗∗
∼= E(λ1)⊗ P(µ2)⊗ E([v])⊗ Pp([dv]).

Hence [v] represents ε1 (modulo λ1), [dv] represents µ1, and µ2 represents µp1 (up to
units in Fp) in the abutment, and there is a multiplicative extension [dv]p .

= µ2.

Proof. Building on the graded Thom isomorphism, Proposition 5.5 provides isomor-
phisms H∗SJ [B

cy
{0}(D(v))]

∼= H∗B
cy(D(v){0})hJ = C∗ and H∗SJ [Bcy(D(v))] ∼=

H~(B
cy(D(v))hJ ) ∼= P(v)⊗ E(dv)⊗ C∗.

Bökstedt computed π∗(S/p∧THH(Z)) ∼= π∗(S/p∧THH(Z(p))) = E(λ1)⊗P(µ1),
so we have V (1)∗ THH(Z(p)) = E(ε1, λ1) ⊗ P(µ1), where ε1 is a mod v1 Bockstein
element in degree 2p−1. McClure and Staffeldt [MS93] computed that V (1)∗ THH(`) =
E(λ1, λ2)⊗ P(µ2). See [AR12, §3, §4] for further details.

This leads to the E2-term

E2
∗∗ = TorP(v)⊗E(dv)⊗C∗∗∗ (E(λ1, λ2)⊗ P(µ2), C∗)

∼= TorP(v)⊗E(dv)∗∗ (E(λ1, λ2)⊗ P(µ2),Fp)
∼= E(λ1, λ2)⊗ P(µ2)⊗ E([v])⊗ 0([dv]),

where we have used change-of-rings and the fact that P(v) ⊗ E(dv) acts trivially on
E(λ1, λ2)⊗ P(µ2). To verify the last assertion, we use the factorization

H∗SJ [Bcy(D(v))] → H∗ THH(`)→ H `
∗ (THH(`)) ∼= V (1)∗ THH(`).

The first homomorphism extends H∗SJ [D(v)] → H∗`, hence takes v to 0 since v ∈
π2p−2(`) has Adams filtration 1, and takes dv to 0 by compatibility with the suspension
operator coming from the circle action.

The algebra generators λ1, λ2, µ2, [v] and [dv] must be infinite cycles for filtration
reasons. To determine the differentials on the remaining algebra generators, namely the
divided powers γpi [dv] for i ≥ 1, we note that the abutment E(ε1, λ1) ⊗ P(µ1) has at
most two generators in each degree. In total degree 2p2

− 1 the E2-term is generated
by the three classes λ2, λ1 · γp−1[dv] and [v] · γp−1[dv]. Hence one of these must be a
boundary, and for filtration reasons the only possibility is dp(γp[dv])

.
= λ2.

This implies that λ1, [v], [dv] and µ2 survive to the E∞-term, where they must repre-
sent λ1, ε1 (modulo λ1), µ1 and µp1 , respectively (up to units in Fp). It follows that each
generating monomial in E(λ1) ⊗ P(µ2) ⊗ E([v]) ⊗ Pp([dv]) is an infinite cycle that
represents a non-zero product in the abutment, so these classes cannot be boundaries.
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Now consider total degree 2p3
− 1. After the differential on γp[dv], only the three

generators

λ1 · µ
p−1
2 · γp−1[dv] , µ

p−1
2 · [v] · γp−1[dv] and λ2 · γp2−p[dv]

remain. As we have just noticed, the first two monomials cannot be hit by differentials.
Since only two generators can survive in this degree, and the only possible source (or
target) of a differential is γp2 [dv], we must have dp(γp2 [dv])

.
= λ2 · γp2−p[dv]. By

induction, the corresponding argument in degree 2pi+1
− 1 establishes the non-trivial

differential on γpi [dv], for each i ≥ 2. ut

Analogously to the homotopy cocartesian square leading to (7.2), the smash product
defining THH(A,M) gives rise to a homotopy cocartesian square

H ∧ SJ [Bcy(M)] //

��

H ∧ SJ [Brep(M)]

��

H ∧A THH(A) // H ∧A THH(A,M)

of commutative H -algebras, and an associated Tor spectral sequence

E2
∗∗ = TorH∗S

J
[Bcy(M)]

∗∗

(
HA
∗ THH(A),H∗SJ [Brep(M)]

)
=⇒ HA

∗ THH(A,M). (7.3)

Theorem 7.3. Consider the case A = ` and M = D(v) of the spectral sequence (7.3)
above. It is an algebra spectral sequence

E2
∗∗ = TorH~(B

cy(D(v))hJ )
∗∗

(
V (1)∗ THH(`),H~(Brep(D(v))hJ )

)
=⇒ V (1)∗ THH(`,D(v)),

where

H~(B
cy(D(v))hJ ) = P(v)⊗ E(dv)⊗ C∗,

H~(B
rep(D(v))hJ ) = P(v)⊗ E(d log v)⊗ C∗,
V (1)∗ THH(`) = E(λ1, λ2)⊗ P(µ2),

with |d log v| = 1 and the remaining degrees as above. Here

E2
∗∗ = E(λ1, λ2)⊗ P(µ2)⊗ E(d log v)⊗ 0([dv]),

where [dv] has bidegree (1, 2p − 1). There are non-trivial differentials

dp(γk[dv])
.
= λ2 · γk−p[dv]

for all k ≥ p, leaving

E∞∗∗ = E(λ1)⊗ P(µ2)⊗ E(d log v)⊗ Pp([dv]).

There is a multiplicative extension [dv]p .
= µ2, so the abutment is

V (1)∗ THH(`,D(v)) = E(λ1, d log v)⊗ P(κ1),

where κ1 is represented by [dv] in degree 2p.
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Together with the stable equivalence THH(`,D(v))→ THH(`, j∗GLJ
1 (L)) from Propo-

sition 4.3, and Proposition 8.9 below, the previous theorem implies Theorem 1.3 from the
introduction. Note that κ1 ∈ V (1)2p THH(`,D(v)) is only defined modulo λ1 · d log v.

Proof of Theorem 7.3. Recall the chain (7.1). We apply the same cobase changes as be-
fore, and get a chain of three Tor spectral sequences with E2-terms

TorP(v)⊗E(dv)⊗C∗∗∗

(
E(λ1, λ2)⊗ P(µ2), P (v)⊗ E(d log v)⊗ C∗

)
→ TorP(v)⊗E(dv)⊗C∗∗∗

(
E(λ1, λ2)⊗ P(µ2), E(d log v)⊗ C∗

)
← TorP(v)⊗E(dv)⊗C∗∗∗ (E(λ1, λ2)⊗ P(µ2), C∗),

which by change-of-rings is isomorphic to the chain

TorE(dv)∗∗ (E(λ1, λ2)⊗ P(µ2), E(d log v))

→ TorP(v)⊗E(dv)∗∗ (E(λ1, λ2)⊗ P(µ2), E(d log v))

← TorP(v)⊗E(dv)∗∗ (E(λ1, λ2)⊗ P(µ2),Fp),

hence takes the form

E(λ1, λ2)⊗ P(µ2)⊗ E(d log v)⊗ 0([dv])
→ E(λ1, λ2)⊗ P(µ2)⊗ E(d log v)⊗ E([v])⊗ 0([dv])

← E(λ1, λ2)⊗ P(µ2)⊗ E([v])⊗ 0([dv]),

and converges to the chain

V (1)∗ THH(`,D(v))

→ V (1)∗
(
THH(`) ∧SJ [Bcy(D(v))] S

J
[B

cy
{0}(D(v)

gp)]
)

← V (1)∗ THH(Z(p)).

The known differentials dp(γk[dv])
.
= λ2 · γk−p[dv] in the right hand spectral se-

quence (which is that of Proposition 7.2) remain non-zero in the middle spectral sequence,
since the right hand arrow of E2-terms is injective and d log v is an infinite cycle for fil-
tration reasons. Likewise the multiplicative extension [dv]p .

= µ2 carries over to the
middle. Furthermore, since the left hand arrow of E2-terms is also injective, it follows
that the differentials and multiplicative extensions lift to the left hand spectral sequence.

This implies that the asserted dp-differentials are the first nonzero differentials in
the left hand spectral sequence, which is the spectral sequence in the statement of the
theorem. This leaves the Ep+1-term

E
p+1
∗∗ = E(λ1)⊗ P(µ2)⊗ E(d log v)⊗ Pp([dv]),

which must be equal to the E∞-term for filtration reasons. Letting κ1 in degree 2p be a
class in the abutment represented by [dv] in bidegree (1, 2p − 1), we find that κp1

.
= µ2,

leading to the asserted algebraic structure of the abutment. ut
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By Theorem 4.4 we have a homotopy cofiber sequence

THH(`)
ρ
→ THH(`,D(v))

∂
→ 6 THH(Z(p))

of THH(`)-modules, where ρ is a map of commutative symmetric ring spectra. Let
τ : THH(Z(p)) → THH(`) denote the homotopy fiber map of ρ, which we like to think
of as a kind of transfer map.

Lemma 7.4. There is a long exact sequence

· · · → V (1)∗ THH(Z(p))
τ∗
→ V (1)∗ THH(`)
ρ∗
→ V (1)∗ THH(`,D(v))

∂∗
→ V (1)∗−1 THH(Z(p))→ · · ·

of V (1)∗ THH(`)-modules, where ρ∗ is an algebra homomorphism, and

(1) τ∗(ε1µ
p−1
1 )

.
= λ2,

(2) ρ∗(λ1) = λ1,
(3) ρ∗(µ2)

.
= κ

p

1 ,
(4) ∂∗(d log v · κk1 )

.
= µk1 for k ≥ 0 and

(5) ∂∗(κk1 )
.
= ε1µ

k−1
1 (mod λ1µ

k−1
1 ) for p - k ≥ 1.

Proof. The repletion homomorphism

ρ∗ : E(λ1, λ2)⊗ P(µ2)→ E(λ1, d log v)⊗ P(κ1)

is induced by the canonical H -algebra map

H ∧` THH(`)→ H ∧` THH(`,D(v)),

and therefore factors through the edge homomorphism of the spectral sequence in Theo-
rem 7.3. Hence it is an algebra homomorphism satisfying ρ∗(λ1) = λ1, ρ∗(λ2) = 0 and
ρ∗(µ2)

.
= κ

p

1 .
It follows that

ker(ρ∗) = im(τ∗) = E(λ1)⊗ P(µ2){λ2}

is the free E(λ1)⊗ P(µ2)-submodule of V (1)∗ THH(`) generated by λ2. Only (a unit in
Fp times) ε1λ1µ

p−1
1 can map under τ∗ to λ1λ2, so τ∗(ε1µ

p−1
1 )

.
= λ2. Likewise

im(ρ∗) = ker(∂∗) = E(λ1)⊗ P(κ
p

1 )

is the free E(λ1) ⊗ P(µ2)-submodule of V (1)∗ THH(`,D(v)) generated by 1. The
classes d log v · κk1 can only map non-trivially under ∂∗ to (units in Fp times) µk1, so
that ∂∗(d log v · κk1 )

.
= µk1 for k ≥ 0. The classes κk1 with p - k ≥ 1 must map to classes

in the span of ε1µ
k−1
1 and λ1µ

k−1
1 that are linearly independent of

∂∗(λ1 · d log v · κk−1
1 )

.
= λ1µ

k−1
1 ,

hence must map to (a unit in Fp times) ε1µ
k−1
1 modulo a multiple of λ1µ

k−1
1 . ut
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Lemma 7.5. The adjoint pre-log structure map

ᾱ : SJ [BrepD(v)] → THH(`,D(v))

induces an algebra homomorphism

ᾱ∗ : H~(B
rep(D(v))hJ )→ V (1)∗ THH(`,D(v))

satisfying ᾱ∗(v) = 0 and ᾱ∗(d log v) = d log v.

Proof. The adjoint pre-log structure homomorphism

ᾱ∗ : P(v)⊗ E(d log v)⊗ C∗→ E(λ1, d log v)⊗ P(κ1)

is induced by the canonical H -algebra map

H ∧ SJ [BrepD(v)] → H ∧` THH(`,D(v)),

and therefore factors through the edge homomorphism of the spectral sequence in Theo-
rem 7.3. Hence it is an algebra homomorphism satisfying ᾱ∗(v) = 0 and ᾱ∗(d log v) =
d log v. ut

8. Logarithmic THH of the connective complex K-theory spectrum

We now return to the setup of Section 6 and consider the tamely ramified map f : ` →
ku(p), inducing f∗ : Z(p)[v] → Z(p)[u] with f∗(v) = up−1 in homotopy, and its log
THH-étale extension

(f, f [) : (`,D(v), α)→ (ku(p),D(u), β),

where α : D(v)→ �J (`) and β : D(u)→ �J (ku(p)) denote the Adams and Bott pre-
log structures on ` and ku(p), respectively, and f [(v) = up−1. We note that the induced
map of residue ring spectra

f/(f
[
>0) : `/(D(v)>0)

∼
→ ku(p)/(D(u)>0)

is a stable equivalence, with both sides equivalent to HZ(p). Therefore Theorem 4.4 pro-
vides a diagram of homotopy cofiber sequences

THH(`)
ρ
//

f
��

THH(`,D(v)) ∂ //

(f,f [)
��

6 THH(Z(p))

THH(ku(p))
ρ′
// THH(ku(p),D(u))

∂ ′ // 6 THH(Z(p))
(8.1)

where the left hand square is strictly commutative and the right hand square is homotopy
commutative. We have proved in Theorem 6.3 that the induced map

ku(p) ∧` THH(`,D(v))
∼
→ THH(ku(p),D(u)) (8.2)
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is a stable equivalence, where the smash product over ` should be understood as a left
derived smash product.

The stable equivalence THH(ku(p),D(u)) → THH(ku(p), j∗GLJ
1 (KU(p))) from

Proposition 4.3, Proposition 8.9 below, and the following theorem imply Theorem 1.7
from the introduction.

Theorem 8.1. There is an algebra isomorphism

V (1)∗ THH(ku(p),D(u)) ∼= Pp−1(u)⊗ E(λ1, d log u)⊗ P(κ1)

with |u| = 2, |λ1| = 2p − 1, |d log u| = 1 and |κ1| = 2p. The cobase change equiva-
lence (8.2) induces an isomorphism

Pp−1(u)⊗ E(λ1, d log v)⊗ P(κ1)
∼=
→ Pp−1(u)⊗ E(λ1, d log u)⊗ P(κ1)

that maps d log v to−d log u and preserves the other terms. The adjoint pre-log structure
map

β̄ : SJ [Brep(D(u))] → THH(ku(p),D(u))

induces an algebra homomorphism

β̄∗ : H~(B
rep(D(u))hJ )→ V (1)∗ THH(ku(p),D(u))

satisfying β̄∗(u) = u and β̄∗(d log u) = d log u. The suspension operator satisfies σ(u) =
u · d log u and σ(d log u) = 0.

Proof. The Tor spectral sequence

E2
∗∗ = Torπ∗`∗∗

(
π∗ku(p), V (1)∗ THH(`,D(v))

)
=⇒ V (1)∗ THH(ku(p),D(u))

collapses at the E2-term in filtration 0, since π∗ku(p) is a free π∗`-module and
V (1)∗ THH(`,D(v)) is a trivial π∗`-module. The term Pp−1(u) arises as

π∗ku(p) ⊗π∗` Fp ∼= P(u)⊗P(v) Fp.

Chasing the class u in J -degree 2 around the commutative square

H~(D(u)hJ ) //

��

V (1)∗ku(p)

��

H~(B
rep(D(u)hJ ))

β̄∗ // V (1)∗ THH(ku(p),D(u))

we see that β̄∗(u) = u.
Chasing the class d log v in J -degree 0 around the commutative square

H~(B
rep(D(v))hJ )

ᾱ∗ //

f
[
~ ��

V (1)∗ THH(`,D(v))
f∗
��

H~(B
rep(D(u))hJ )

β̄∗ // V (1)∗ THH(ku(p),D(u))
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we find that f [~(d log v) = (p − 1)d log u = −d log u maps under β̄∗ to the image of
ᾱ∗(d log v) = d log v under f∗. Hence we can trade d log u for d log v as a generator in
V (1)∗ THH(ku(p),D(u)), giving the asserted formulas.

The (2p − 3)-connected map V (1)→ H induces a commutative diagram

H~(B
cy(D(u))hJ )
ρ~
��

V (1)∗SJ [Bcy(D(u))]

ρ∗ ��

oo
β̄∗ // V (1)∗ THH(ku(p))

ρ′∗
��

H~(B
rep(D(u))hJ ) V (1)∗SJ [Brep(D(u))]oo

β̄∗ // V (1)∗ THH(ku(p),D(u)),

where the left hand horizontal arrows are (2p−3)-connected. By Proposition 5.5 we have
ρ~(du) = u · d log u = σ(u) on the left hand side. By the connectivity estimate we have
ρ∗(du) = u · d log u = σ(u) in the middle (modulo α1 ∈ π3V (1) for p = 3), which
implies that ρ′∗(du) = u · d log u = σ(u) on the right hand side. By Proposition 5.5 we
also have σ(d log u) = 0 on the left hand side, so by the same connectivity estimate we
have σ(d log u) = 0 in the middle and on the right hand side. ut

In the next lemma we consider the square obtained by applying the left derived cobase
change along `→ ku(p) to the right hand square in (8.1). We write

χ : ku(p) ∧` 6 THH(Z(p))→ 6 THH(Z(p))

for the induced map of ku(p)-modules.

Lemma 8.2. The homotopy commutative square

ku(p) ∧` THH(`,D(v)) 1∧∂ //

∼
��

ku(p) ∧` 6 THH(Z(p))
χ
��

THH(ku(p),D(u))
∂ ′ // 6 THH(Z(p))

induces a commutative square

Pp−1(u)⊗ V (1)∗ THH(`,D(v))
1⊗∂∗ //

∼= ·��

Pp−1(u)⊗ V (1)∗−1 THH(Z(p))
χ∗
��

V (1)∗ THH(ku(p),D(u))
∂ ′∗ // V (1)∗−1 THH(Z(p))

of Pp−1(u)⊗ V (1)∗ THH(`)-modules, where χ∗(1⊗ x) = x and χ∗(uk ⊗ x) = 0 for all
x ∈ V (1)∗−1 THH(Z(p)) and k ≥ 1. Hence ∂ ′∗(1 · y) = ∂∗(y) and ∂ ′∗(u

k
· y) = 0 for all

y ∈ V (1)∗ THH(`,D(v)) and k ≥ 1.

Proof. It follows from Proposition 6.4 and [RSS15, Proposition 6.11] that the map χ may
be obtained from the analogous map

SJ [D(u)] ∧SJ [D(v)] 6SJ [Bcy
{0}(D(v))] → 6SJ [Bcy

{0}(D(u))]



522 John Rognes et al.

by cobase change along

SJ [Bcy(D(v))] → THH(`) and SJ [Bcy(D(u))] → THH(ku(p))

(compare to the proof of Theorem 6.3). Clearly the SJ [D(u)]-module structure on
6SJ [Bcy

{0}(D(u))] factors through the projection SJ [D(u)] → SJ [D(u){0}] to the J -de-
gree 0 part, which implies that χ∗(uk⊗x) = 0 for all k ≥ 1. The remaining claims follow
by naturality. ut

Let τ ′ : THH(Z(p)) → THH(ku(p)) denote the homotopy fiber map of the map ρ′

in (8.1). As usual, we write (u) = Fp{uk | 1 ≤ k ≤ p − 2} for the ideal in Pp−1(u)

generated by u.

Lemma 8.3. There is a long exact sequence

· · · → V (1)∗ THH(Z(p))
τ ′∗
→ V (1)∗ THH(ku(p))

ρ′∗
→ V (1)∗ THH(ku(p),D(u))

∂ ′∗
→ V (1)∗−1 THH(Z(p))→ · · ·

of V (1)∗ THH(ku(p))-modules, where ρ′∗ is an algebra homomorphism. The resulting
short exact sequence

0→ ker(ρ′∗)→ V (1)∗ THH(ku(p))→ im(ρ′∗)→ 0

is a square-zero extension of Pp−1(u)⊗ V (1)∗ THH(`)-algebras, where

ker(ρ′∗) ∼= E(λ1)⊗ P(µ2){λ2},

im(ρ′∗) = E(λ1)⊗ P(κ
p

1 ) ⊕ (u)⊗ E(λ1, d log u)⊗ P(κ1).

Proof. By exactness im(ρ′∗) = ker(∂ ′∗), which by Lemmas 7.4 and 8.2 is the direct sum
of ker(∂∗) = E(λ1)⊗ P(κ

p

1 ) and (u)⊗ E(λ1, d log u)⊗ P(κ1), inside

V (1)∗ THH(ku(p),D(u)) = Pp−1(u)⊗ E(λ1, d log u)⊗ P(κ1).

Similarly ker(ρ′∗) ∼= cok(∂ ′∗) = cok(∂∗) ∼= ker(ρ∗) equals E(λ1)⊗ P(µ2){λ2}. This
is a square-zero ideal inside V (1)∗ THH(`) = E(λ1, λ2)⊗P(µ2), hence is also a square-
zero ideal inside V (1)∗ THH(ku(p)). ut

The following is essentially copied from [Aus05, Definition 9.13].

Definition 8.4. Assume p ≥ 3, and let 2∗ be the graded-commutative unital Pp−1(u)⊗

P(µ2)-algebra with generators {
ai, 0 ≤ i ≤ p − 1,
bj , 1 ≤ j ≤ p − 1,
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and relations 

up−2ai = 0, 0 ≤ i ≤ p − 2,
up−2bj = 0, 1 ≤ j ≤ p − 1,
bibj = ubi+j , i + j ≤ p − 1,
aibj = uai+j , i + j ≤ p − 1,
bibj = ubi+j−pµ2, i + j ≥ p,

aibj = uai+j−pµ2, i + j ≥ p,

aiaj = 0, 0 ≤ i, j ≤ p − 1.

By convention b0 = u. The degrees of the generators are |ai | = 2pi + 3 and |bj | =
2pj + 2.

Theorem 8.5 ([Aus05, Theorem 9.15]). Let p ≥ 3. There is an isomorphism

V (1)∗ THH(ku(p)) ∼= E(λ1)⊗2∗

of Pp−1(u)⊗E(λ1)⊗P(µ2)-algebras. Under this identification, ρ′∗(ai) = u ·d log u ·κ i1
for 0 ≤ i ≤ p− 1, ρ′∗(bj ) = uκ

j

1 for 1 ≤ j ≤ p− 1 and ρ′∗(µ2) = κ
p

1 , all in im(ρ′∗), and
λ2 in ker(ρ′∗) maps to a unit in Fp times up−2ap−1.

Definition 8.6. The assignments

λ1 7→ λ1, ai 7→ u · d log u · κ i1, bj 7→ uκ
j

1 , µ2 7→ κ
p

1

define a surjective algebra homomorphism θ̄ : E(λ1) ⊗ 2∗ → im(ρ′∗), with kernel
E(λ1)⊗ P(µ2){u

p−2ap−1}. For p ≥ 5 it lifts uniquely to an algebra homomorphism

θ : E(λ1)⊗2∗→ V (1)∗ THH(ku(p)),

because ker(ρ′∗) = 0 in the degrees of the algebra generators and relations of2∗. (This is
not true for p = 3.) For brevity, let z = up−2κ

p−1
1 .

In the remainder of this section we will give a new proof of Ausoni’s theorem in the cases
p ≥ 5. The only obstruction to carrying out the same proof for p = 3 is the need to check
that θ̄ admits a multiplicative lift θ , i.e., that the relations in degree |λ2| = 2p2

− 1 = 17
and |λ1λ2| = 2p2

+ 2p− 2 = 22 in 2∗ also hold in V (1)∗ THH(ku(p)). We do not carry
out this check. A similar complication occurs in Ausoni’s original calculation for p = 3
[Aus05, p. 1305].

Lemma 8.7. For p ≥ 5, the homomorphism θ is an isomorphism in degrees ∗ < |λ2| =

2p2
−1, and maps ker(θ̄) = E(λ1)⊗P(µ2){u

p−2ap−1} to ker(ρ′∗) ∼= E(λ1)⊗P(µ2){λ2}.
In degree 2p2

− 1 it maps up−2ap−1 to the product du · z, which is a multiple of λ2. It is
an isomorphism in all degrees if and only if this multiple is non-zero.
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Proof. The lift θ is an isomorphism if and only if it maps ker(θ̄) isomorphically to
ker(ρ′∗), which happens if and only if θ maps up−2ap−1 = a0 · u

p−3bp−1 to a non-
zero multiple of λ2. Since a0 maps to u · d log u = ρ′∗(du) and up−3bp−1 maps to
z = up−2κ

p−1
1 , this happens if and only if du · z .

= λ2 in V (1)∗ THH(ku(p)). The only
alternative is that du · z = 0. ut

Proposition 8.8. Consider the case A = ku(p) and M = D(u) of the spectral se-
quence (7.3). It is an algebra spectral sequence

E2
∗∗ = TorH~(B

cy(D(u))hJ )
∗∗

(
V (1)∗ THH(ku(p)),H~(Brep(D(u))hJ )

)
=⇒ V (1)∗ THH(ku(p),D(u)),

where

H~(B
cy(D(u))hJ ) = P(u)⊗ E(du)⊗ C∗,

H~(B
rep(D(u))hJ ) = P(u)⊗ E(d log u)⊗ C∗,

V (1)∗ THH(ku(p)) ∼= E(λ1)⊗2∗,

V (1)∗ THH(ku(p),D(u)) = Pp−1(u)⊗ E(λ1, d log u)⊗ P(κ1).

Here
E2
∗∗ = TorE(du)∗∗ (E(λ1)⊗2∗, E(d log u))

is the tensor product of E(λ1, d log u)⊗ P(µ2) with

Fp{1, up−3bp−1, u
ibj | 0 ≤ i ≤ p − 4, 0 ≤ j ≤ p − 1}

⊕ 0([du]){up−3bj−1, aj | 1 ≤ j ≤ p − 1},

where b0 = u. There are non-trivial differentials

d2(γk[du] · u
p−3bj−1)

.
= γk−2[du] · aj

modulo (λ1, d log u), for all k ≥ 2 and 1 ≤ j ≤ p − 1, leaving E3
∗∗ = E

∞
∗∗ equal to the

tensor product of E(λ1, d log u)⊗ P(µ2) with

Fp{1, up−3bp−1, u
ibj | 0 ≤ i ≤ p − 4, 0 ≤ j ≤ p − 1}

⊕ E([du]){up−3bj−1 | 1 ≤ j ≤ p − 1}.

Here u represents u, [du]up−3bj−1 represents κj1 up to a unit in Fp for 1 ≤ j ≤ p − 1,
and there are multiplicative extensions u · [du]up−3bj−1

.
= bj and [du]up−3bj−1 ·

[du]up−3bk−1
.
= µ2 for 1 ≤ j, k ≤ p − 1 with j + k = p.

Proof. We first rewrite theE2-term to clarify its dependence on V (1)∗ THH(ku(p)), using
change-of-rings:

E2
∗∗ = TorP(u)⊗E(du)⊗C∗∗∗

(
V (1)∗ THH(ku(p)), P (u)⊗ E(d log u)⊗ C∗

)
∼= TorE(du)∗∗

(
V (1)∗ THH(ku(p)), E(d log u)

)
.
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Here E(du) acts trivially on E(d log u), so that only the E(du)-module structure on
V (1)∗ THH(ku(p)) is relevant. We know that θ is an isomorphism in degrees ∗ < |λ2| =

2p2
− 1 < |µ2| = 2p2, so in this range of degrees V (1)∗ THH(ku(p)) is additively

isomorphic to the tensor product of E(λ1) and the E(du)-module

E(du){1, up−3bp−1, u
ibj | 0 ≤ i ≤ p − 4, 0 ≤ j ≤ p − 1}

⊕ Fp{up−3bj−1, aj | 1 ≤ j ≤ p − 1}

with up−3bp−1 corresponding to z in degree 2p2
− 4.

It follows that the E2-term is as stated in the proposition in bidegrees (s, t) with
t < 2p2

− 1. In particular, it is isomorphic to a free module over E(λ1, d log u) in this
range of degrees. Since the abutment is a free module over E(λ1, d log u) on the mono-
mial generators of Pp−1(u) ⊗ P(κ1), which are concentrated in even degrees, it follows
that the E2-classes γi[du] · aj in (odd) total degrees less than 2p2

− 1 cannot survive
to the E∞-term. By induction over increasing total degrees s + t , and over decreas-
ing filtration degrees s within each total degree, it follows that there must be non-zero
d2-differentials as stated in the proposition, cancelling the E(λ1, d log u)-module gener-
ators γk[du] · up−3bj−1 and γk−2[du] · aj for k ≥ 2 and 1 ≤ j ≤ p − 1, in total degrees
s + t < 2p2

− 1.
If du · z .= λ2, so that θ is an isomorphism, the same inductive argument continues to

cover all total degrees, extending linearly over P(µ2). The E∞-term is then concentrated
in filtration degrees 0 ≤ s ≤ 1, and the final claims of the proposition follow directly
from a comparison with the known abutment.

It remains to exclude the alternative, namely that du · z = 0. In that hypothetical case,
V (1)∗ THH(ku(p)) would be isomorphic in degrees ∗ ≤ 2p2

− 1 to the E(du)-module

E(du){1, uibj | 0 ≤ i ≤ p − 4, 0 ≤ j ≤ p − 1}

⊕ Fp{z, λ2, u
p−3bj−1, aj | 1 ≤ j ≤ p − 1}.

This would lead to a modified E2-term, where the summand Fp{up−3bp−1} is replaced
by 0([du]){z, λ2}, at least in internal degrees t ≤ 2p2

− 1.
By our initial analysis for t < 2p2

−1, allE2-generators in total degree s+t = 2p2
−2

support linearly independent d2-differentials. Hence all generators in total degree 2p2
−1

must be d2-cycles.
Under this assumption, the E2-generators in total degree s + t = 2p2

− 1 would be
λ2 in filtration s = 0, the m = (p − 1)/2 classes

{γpi−1[du] · ap−2i | 1 ≤ i ≤ m},

and some λ1- or d log u-multiples of classes in lower total degrees.
The E2-generators in total degree s + t = 2p2 and filtration degree s ≥ 2 would be

the m classes
{γpi+1[du] · u

p−3bp−2i−1 | 1 ≤ i ≤ m},

and some λ1- or d log u-multiples of classes in lower total degrees.
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By our previous analysis, the λ1- or d log u-multiples in total degree 2p2 and filtration
degree ≥ 2 support d2-differentials that kill all but one of the λ1- or d log u-multiples in
total degree 2p2

− 1, leaving only λ1[du]u
p−3bp−2 in filtration degree s = 1. This is λ1

times the permanent cycle [du]up−3bp−2 representing κp−1
1 .

The only remaining dr -differentials affecting total degree 2p2
−1, for r ≥ 2, are those

mapping from them classes γpi+1[du]·u
p−3bp−2i−1 to them+2 classes γpi−1[du]·ap−2i ,

λ2 and λ1[du]u
p−3bp−2. It follows that at least (m + 2) − m = 2 linearly independent

classes are left at the E∞-term in total degree 2p2
− 1. This contradicts the fact that the

abutment in degree 2p2
− 1 is generated by the single class λ1κ

p−1
1 .

This contradiction eliminates the possibility that du · z = 0. Hence θ is an isomor-
phism in all degrees, and the structure of the spectral sequence is as asserted. ut

Proof of Theorem 8.5 for p ≥ 5. In view of Lemma 8.7, and the conclusion from the
proof of the previous proposition that du · z .

= λ2, the claims of the theorem have now
been verified for p ≥ 5. ut

Proposition 8.9. (i) In V (1)∗ THH(`) ∼= E(λ1, λ2)⊗ P(µ2) the suspension operator
satisfies σ(λ1) = 0, σ(λ2) = 0 and σ(µ2) = 0.

(ii) In V (1)∗ THH(`,D(v)) ∼= E(λ1, d log v)⊗P(κ1) the suspension operator satisfies
σ(λ1) = 0, σ(d log v) = 0 and σ(κ1) = κ1 · d log v.

(iii) In V (1)∗ THH(ku(p)) ∼= E(λ1)⊗2∗ the suspension operator satisfies σ(λ1) = 0,
σ(ai) = 0, σ(bj ) = (1− j)aj and σ(µ2) = 0.

(iv) In V (1)∗ THH(ku(p),D(u)) ∼= Pp−1(u) ⊗ E(λ1, d log u) ⊗ P(κ1) the suspension
operator satisfies σ(u) = u · d log u, σ(λ1) = 0, σ(d log u) = 0 and σ(κ1) =

−κ1 · d log u.

Proof. (i) The Hurewicz image of λ2 in H∗(V (1) ∧ THH(`)) is σ ξ̄2, hence σ(λ2) = 0.
The classes σ(λ1) and σ(µ2) are zero because they lie in trivial groups.

(iv) We saw that σ(u) = u · d log u and σ(d log u) = 0 in Theorem 8.1. The class
σ(λ1) is zero by case (i), via naturality with respect to THH(`) → THH(ku(p),D(u)).
Under the trace map, Ausoni’s class b ∈ V (1)2p+2K(ku) is mapped to the class b1 ∈

V (1)2p+2 THH(ku(p)). Hence σ(b1) = 0. This can also be deduced from the formula
for Connes’ B-operator; compare [Aus05, Remark 3.4] and [Aus10, Lemma 6.3]. Since
ρ′∗(b1) = uκ1 it follows that 0 = u · d log u · κ1 + u · σ(κ1) and σ(κ1) = −κ1 · d log u.

(ii) This follows from case (iv) by naturality with respect to the morphism
(f, f [) : (`,D(v))→ (ku(p),D(u)).

(iii) This follows from case (iv) by naturality with respect to the morphism
ρ′ : THH(ku(p))→ THH(ku(p),D(u)). ut
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