
DOI 10.4171/JEMS/774

J. Eur. Math. Soc. 20, 597–656 c© European Mathematical Society 2018

Stanislav Hencl · Aldo Pratelli

Diffeomorphic approximation of
W 1,1 planar Sobolev homeomorphisms

Received February 24, 2015

Abstract. Let � ⊆ R2 be a domain and let f ∈ W1,1(�,R2) be a homeomorphism (between
� and f (�)). Then there exists a sequence of smooth diffeomorphisms fk converging to f in
W1,1(�,R2) and uniformly.
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1. Introduction

The general problem of finding suitable approximations of homeomorphisms f : Rn ⊇
� → f (�) ⊆ Rn by piecewise affine homeomorphisms has a long history. As far as
we know, in the simplest non-trivial setting (i.e. n = 2, approximations in L∞ norm) the
problem was solved by Radó [35]. Due to its fundamental importance in geometric topol-
ogy, the problem of finding piecewise affine homeomorphic approximations in L∞ norm
and dimensions n > 2 was deeply investigated in the ’50s and ’60s. In particular, it was
solved by Moise [25] and Bing [7] in the case n = 3 (see also the survey book [26]),
while for contractible spaces of dimension n ≥ 5 the result follows from theorems of
Connell [10], Bing [8], Kirby [22] and Kirby, Siebenmann and Wall [23] (for a proof
see, e.g., Rushing [36] or Luukkainen [24]). Finally, twenty years later, while studying
the class of quasi-conformal manifolds, Donaldson and Sullivan proved that the result is
false in dimension 4: more precisely, they established the existence of a homeomorphism
from the unit ball of R4 to R4 which cannot be approximated by bi-Lipschitz homeomor-
phisms [13, Corollary, p. 183]. Actually, their homeomorphism cannot be approximated
even in the quite broader class of quasiconformal homeomorphisms (see their discussion
in [13, after Definition, p. 181]).

Once completely solved in the uniform sense, the approximation problem suddenly
became of interest again in a completely different context, namely, for variational models
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in non-linear elasticity. Let us briefly explain why. In the setting of non-linear elastic-
ity (see for instance the pioneering work by Ball [3]), one is led to study existence and
regularity properties of minimizers of energy functionals of the form

I (f ) =

∫
�

W(Df ) dx, (1.1)

where f : Rn ⊇ � → 1 ⊆ Rn (n = 2, 3) models the deformation of a homoge-
neous elastic material with respect to a reference configuration � and prescribed bound-
ary values, while W : Rn×n → R is the stored-energy functional. In order for the model
to be physically relevant, as pointed out by Ball [4, 5], one has to require that f is a
homeomorphism—this corresponds to the non-impenetrability of the material—and that

W(A)→∞ as detA→ 0, W(A) = ∞ if detA ≤ 0. (1.2)

The former condition in (1.2) prevents too high compressions of the elastic body, while
the latter guarantees that the orientation is preserved.

Another property of W that appears naturally in many problems of non-linear elastic-
ity is quasiconvexity (see for instance [2]). Unfortunately, no general existence result is
known under condition (1.2), not even if the quasiconvexity assumption is added: one has
either to drop condition (1.2) and impose p-growth conditions onW [29, 1], or to require
that W is polyconvex and that some coercivity conditions are satisfied [2, 30]. Moreover,
also in the cases in which the existence ofW 1,p minimizers is known, very little is known
about their regularity.

As pointed out by Ball [4, 5] (who ascribes the question to Evans [14]), an important
issue toward the understanding of the regularity of the minimizers in this setting (i.e.,
W quasiconvex and satisfying (1.2)) would be to show the existence of minimizing se-
quences given by piecewise affine homeomorphisms or by diffeomorphisms. In particular,
a first step would be to prove that any homeomorphism u ∈ W 1,p(�,Rn), p ∈ [1,∞),
can be approximated in W 1,p by piecewise affine ones or smooth ones. One of the main
reasons why one should want to do that is that the usual approach for proving regularity
is to test the weak equation or the variation formulation by the solution itself; but unfor-
tunately, in general this makes no sense unless some a priori regularity of the solution is
known. Therefore, it would be convenient to test the equation with a smooth test map-
ping in the given class which is close to the given homeomorphism. More generally, a
result saying that one can approximate a given homeomorphism by a sequence of smooth
(or piecewise affine) homeomorphisms would be extremely useful, because it would sig-
nificantly simplify many other known proofs, and it would easily lead to stronger new
results. It is important to mention here that the choice of dimension n = 2, 3 is motivated
not only by the physical model, but also by the fact that the approximation is false in
dimension n ≥ 4, as shown in the recent paper [18].

However, the finding of diffeomorphisms near a given homeomorphism is not an easy
task, as the usual approximation techniques like mollification or Lipschitz extension using
the maximal operator in general destroy injectivity. And on the other hand, we need of
course to approximate our homeomorphism not just by smooth maps, but by smooth
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homeomorphisms (otherwise the approximating sequence would not even be admissible
for the original problem).

A few words have to be said about the choice of the required property for the ap-
proximating sequence, namely, either smooth or piecewise affine. Actually, both results
would be interesting in different contexts. Luckily, the two approaches are equivalent:
more precisely, it is clear that an approximation by diffeomorphisms easily generates an-
other approximation by piecewise affine homeomorphisms; the converse is not immediate
but, at least in the plane, it is anyway known [28]. Therefore, one can approximate in ei-
ther of the two ways, and the other one automatically follows (for instance, in this paper
we will look only for piecewise affine approximations). It is important to clarify a point:
whenever we say that a map is piecewise affine, we mean that there is a locally finite tri-
angulation of� such that the map is affine on every triangle. It is actually possible to find
finite triangulations whenever this makes sense; but for instance, if � is not a polygon,
then the triangles must obviously become smaller and smaller near the boundary, so a
finite triangulation clearly does not exist.

Let us now describe the results which are known in this direction. The first ones were
obtained in 2009 by Mora-Corral [27] (for planar bi-Lipschitz mappings that are smooth
outside a finite set) and by Bellido and Mora-Corral [6], who proved that if u, u−1

∈ C0,α

for some α ∈ (0, 1], then one can find piecewise affine approximations v of u in C0,β ,
where β ∈ (0, α) depends only on α.

More recently, Iwaniec, Kovalev and Onninen [19] solved the approximation problem
of planar Sobolev homeomorphisms in the case 1 < p < ∞, proving that any homeo-
morphism f ∈ W 1,p(�,R2) can be approximated by diffeomorphisms fε in W 1,p norm
(improving the previous result of the same authors [20] for p = 2). This was a fundamen-
tal breakthrough in the area and enhanced interest in this topic.

Later on, it was shown by Daneri and Pratelli [11, 12] that any planar bi-Lipschitz
mapping f can be approximated by diffeomorphisms fk such that fk converges to f
in W 1,p norm and simultaneously f−1

k converges to f−1 in W 1,p, giving the first result
in which also the distance of the inverse mappings is controlled.

The goal of the present paper is to prove the approximation of planar W 1,1 homeo-
morphism in theW 1,1 sense, so dealing with the important case p = 1 which was left out
in [19]. In particular, our main result is the following.

Theorem 1.1. Let � ⊆ R2 be an open set and f ∈ W 1,1(�,R2) be a homeomorphism.
For every ε > 0 there is a smooth diffeomorphism (as well as a countably—but locally
finitely—piecewise affine homeomorphism) fε ∈ W 1,1(�,R2) such that ‖fε − f ‖W 1,1 +

‖fε−f ‖L∞ < ε. Moreover, fε(�) = f (�), fε−f ∈ W
1,1
0 (�,R2), and in particular, if

f is continuous up to the boundary of �, then the same holds for fε, and fε = f on ∂�.

Actually, our piecewise affine functions fε will be globally finitely piecewise affine, thus
also bi-Lipschitz, as soon as � is a polygon and f is piecewise affine on ∂� (Theo-
rem 4.20). If even just one of these two conditions does not hold, then this is clearly
impossible (see Remark 4.21). For the applications, it is quite important that every fε
satisfies fε(�) = f (�), in order to be an admissible competitor for the energy. In fact,
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all the mappings fε satisfy also fε − f ∈ W
1,1
0 (�), so whenever f has a boundary value

in ∂�, the same is true for every fε, and fε = f in ∂�: this is of course essential in
all the situations where the boundary value plays a role. These properties of the approx-
imating maps hold true in all the cases treated in the earlier papers discussed above, for
instance [19, 11].

We conclude the introduction with a short comparison of our techniques and those of
the other papers discussed above. The proofs in [27, 6] are based on a clever refinement
of the supremum norm approximation of Moise [25], while the approach of [19] and of
the other contributions of the same authors makes use of the identification R2

' C and
involves coordinatewise p-harmonic functions. The techniques of the present paper are
completely different; basically, our proof is constructive, and it is based on an explicit
subdivision of the domain f which depends on the Lebesgue points of Df .

Our techniques somehow resemble the basic ideas of [11, 12], and we will also use
some of the tools introduced there, but there are important differences. More precisely, on
the one hand, in [11, 12] one had to approximate Df and Df−1 at the same time, while
here we only need to approximate Df , and this is a deep simplification. But on the other
hand, in this paper we look for a sharp estimate, that is, f is only in W 1,1 and we want
an approximation exactly in W 1,1, thus we have not so regular maps and we cannot lose
sharpness of the power anywhere, while in [11, 12] the maps were much better, namely
bi-Lipschitz, and in several steps the sharpness of the power was lost. Roughly speaking,
we can say that the most difficult steps of [11, 12] correspond to much simpler steps here,
and vice versa.

1.1. Consequences of our construction

In this section (added during the revision of the paper) we briefly comment on the con-
sequences of our result. In fact, the novelty of the present paper is not only to prove
Theorem 1.1, but also—and maybe even more—to describe an approximation technique
that appears extremely flexible, somehow following the lines of [11, 12], but in a more
precise and well-developed way. And in fact, in the few months since the preprint of this
paper appeared, there are already four works which use it in a substantial way, three of
which already appeared as preprints, while the last one is still being written.

First of all, in this paper we restrict ourselves to theW 1,p case with p = 1 because the
case p > 1 was already known. But the same strategy can also be used to get any p > 1,
as proved in two distinct papers by Campbell [9] and by Radici [34]. Actually, Campbell
also proves that the approximation holds in any Orlicz space W 1,8, a completely new
result which could not be obtained with other techniques.

Moreover, as said in the introduction, the main problem now remaining open is the
bi-W 1,p case, that is, to approximate a W 1,p homeomorphism with W 1,p inverse simul-
taneously in theW 1,p sense for the map and for the inverse. And actually two works (one
by the second author, and the other by the second author and Radici) show that this can
be done for the bi-W 1,1 case [31] and for the bi-BV case [32, 33]. It is worth pointing out
that these are the first general approximation results which also treat the inverse.
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1.2. Brief description of the proof

In this section we outline the basic plan of our proof, to underline the main steps and
facilitate the reading. We remind the reader that our aim is to find an approximation by
piecewise affine homeomorphisms, and then the existence of an approximation by smooth
diffeomorphisms will follow by applying the result of [28].

First of all, we will divide our domain into some locally finite grid of small squares,
the squares becoming maybe smaller and smaller close to ∂�. We will then consider sepa-
rately the “good” squares, and the “bad” ones. More precisely, a square S(c, r) in the grid
will be called good if f can be well approximated by a linear mapping f (c)+M(x − c)
there, where M coincides with Df at some Lebesgue point close to c; in particular, we
will need that

∫
S(c,r) |Df − Df (c)| is small enough. Since almost every point of � is a

Lebesgue point for Df , we will be able to deduce that, up to considering a sufficiently
fine grid, the area covered by the good squares is as close as we wish to the total area
of �.

Moreover, up to a slight modification of the value of f on the boundary of the squares,
we will reduce ourselves to the case that∫

∂S
|Df | ≤ K

∫
S
|Df |, (1.3)

where K is a large but fixed constant.
We will then define an approximation of f (which will eventually become fε) on

the grid: on the boundary of each square, we will find a piecewise linear approximation
of f , very close to f , in such a way that these approximations on the whole grid remain
one-to-one (we do not just have to take care of the approximation on a single square, but
also check that the different approximations coincide on the common sides, and that they
do not overlap). Of course, this will be much easier for good squares, since on a whole
good square, f is already almost affine, and more complicated for bad squares. We will
construct our approximation g in such a way that, for any bad square S,∫

∂S
|Dg| ≤ K

∫
∂S
|Df |. (1.4)

The next step is to extend the piecewise linear maps to the interior of each square; a good
thing is that, g being already defined on the grid in a one-to-one way, the extension inside
each square is completely independent of what happens on the other squares. The rough
idea is that on good squares we can obtain very good estimates, while on bad squares we
can only get bad estimates; but since the total area of the bad squares is arbitrarily small,
in the end everything will work.

The first tool we will need, presented in Section 2, says that any piecewise linear
map g defined on the boundary of a square S can be extended to a piecewise affine
homeomorphism h in the interior of S in such a way that∫

S
|Dh| ≤ K

∫
∂S
|Dg|. (1.5)
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This construction is done by first choosing many points on the boundary of the square;
then, for any two of them, say x and y, we select the shortest path joining g(x) to g(y)
inside the portion of R2 having ϕ(S) as boundary. Using these shortest paths in a careful
way, we eventually obtain the definition of h such that (1.5) holds true. This estimate,
together with (1.3) and (1.4), readily implies that for every bad square S one has∫

S
|Dh| ≤ K

∫
S
|Df |; (1.6)

we then just have to take a very fine grid, so that a very small portion �B of � is covered
with bad squares, and hence∫

�B

|Df −Dh| ≤

∫
�B

|Df | + |Dh| ≤ (K + 1)
∫
�B

|Df | ≤ ε.

It remains to consider good squares, and here we will have to be extremely precise. As
already said, around every good square S the map f is very close to being affine, hence
the image of S is very close to a parallelogram; therefore, there is no problem unless this
parallelogram degenerates. Let us be more precise: for all squares corresponding to a ma-
trix M with strictly positive determinant (hence, the parallelogram does not degenerate),
extension inside S is trivial; it is enough to divide the square into two triangles and con-
sider on each triangle the affine map which equals f at the three vertices. By construction,
we will easily see that this works perfectly.

The good squares corresponding to M = 0 are a problem only in principle: indeed,
we can treat them as bad squares. The estimate (1.6) says that this gives a cost of a large
constant K times the total integral of Df on those squares; however, since they are good
squares and the corresponding matrix is M = 0, by definition the integral of Df will be
extremely small, and everything will work.

The hard problem, instead, is for those good squares for whichM 6= 0 but detM = 0;
these correspond to degenerate parallelograms, and we have to treat them carefully be-
cause these squares can cover a large portion of �: in fact, recall that the set {x :
|Df (x)| 6= 0 and Jf (x) = 0} can have positive or even full measure for a Sobolev
homeomorphism [16]. Section 3 is devoted to building the extension for this specific
case, which is somehow similar to the one with the shortest paths described above. The
major difference is, on the one hand, that this time we are in a good square, hence very
close to a Lebesgue point for Df , and this helps even in the degenerate case. But on the
other hand, this time we are not satisfied with an estimate like (1.5), where a large con-
stant K appears, but we need an approximation h which is very close to the original f .
This extension procedure will be the most delicate step of the construction.

The construction of the proof, divided into several steps, is done in Section 4. Ba-
sically, putting together all the ingredients described above, the proof will then be con-
cluded for what concerns the existence of a piecewise affine approximation; the existence
of a smooth approximation will then follow thanks to the result of [28], while the claim
about the boundary values will be easily deduced from the whole construction.
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1.3. Preliminaries and notation

In this section we briefly list the basic notation that will be used throughout. We denote by
S(c, r) the square centered at c, of side length 2r and with sides parallel to the coordinate
axes, while S0 = {(x, y) ∈ R2

: |x|+ |y| < 1} is the “rotated square”, which we use only
in Section 2. Similarly, B(c, r) is the ball centered at c with radius r .

The points in the domain� will usually be denoted by capital letters, A, B etc., while
points in the image f (�) will always be denoted by bold capital letters, A, B etc. To
shorten the notation and help the reader, whenever we use the same letter A for a point
in the domain and A (in bold) for a point in the target, this always means that A is the
image of A under the mapping we are considering. We denote by AB (resp. AB) the
segment between the points A and B (resp. A and B). Its length is denoted as H1(AB)

or AB, while H1(γ ) is the length of a curve γ . We will write ÃB (or ÃB) for a particular
path between A and B (or A and B), whose length will then be H1(ÃB), or H1(ÃB);
we will use this notation only when it is clear what path we are referring to (often this
will be a shortest path between the two points). Given three non-collinear points A, B, C
(or A, B, C), we will denote by ’ABC (or ’ABC) the angle in (0, π) between them, and
by ABC (or ABC) the triangle having them as vertices.

We will denote the (modulus of the) horizontal and vertical derivatives of any mapping
f = (f1, f2) : R2

→ R2 as

|D1f | =

√(
∂f1

∂x

)2

+

(
∂f2

∂x

)2

, |D2f | =

√(
∂f1

∂y

)2

+

(
∂f2

∂y

)2

.

Analogously, the derivatives of the components f1 and f2 are written as

D1f1 =
∂f1

∂x
, D2f1 =

∂f1

∂y
, D1f2 =

∂f2

∂x
, D2f2 =

∂f2

∂y
.

Whenever a continuous function g is defined on some curve γ (usually, γ will simply be
the boundary of a square), we will denote by τ(t) the tangent vector to γ at t ∈ γ , and
by Dg(t) the derivative of g at t in the direction of τ(t). With a small abuse of notation,
even if the derivative is not necessarily defined, we will write

∫
γ
|Dg(t)| dH1(t) for the

length of the curve g(γ ); notice that the latter length is always well-defined, possibly∞,
and it actually coincides with

∫
γ
|Dg(t)| as soon as this is defined. Finally, notice that if

a function f is affine on a square S, with Df ≡ M for some matrix M , and we let g be
the restriction of f to ∂S, then Dg(t) = M · τ(t) for any t ∈ ∂S.

The letter K will always be used to denote a large purely geometrical constant, not
depending on anything; we will not modify the letter, even if the constant may increase
from line to line. For simplicity (and since the precise value of K does not play any role)
we do not explicitly calculate the value of this constant.

2. Extension from the boundary of the square

This section is entirely devoted to showing the result below about the extension of a map
from the boundary of the square to the whole interior.
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Theorem 2.1. Let g : ∂S0 → R2 be a piecewise linear and one-to-one function. There
is a finitely piecewise affine homeomorphism h : S0 → R2 such that h = g on ∂S0 and∫

S0

|Dh(x)| dx ≤ K

∫
∂S0

|Dg(t)| dH1(t). (2.1)

Proof. The construction of the map h is quite long and technical, and hence we subdivide
it into several steps.

Step 1. Choice of good corners, so that (2.2) holds. For our construction, we will need to
assume that

∫
∂S0
|Dg| does not concentrate too much around the corners; more precisely,

we will need∫
B(Vi ,r)∩∂S0

|Dg| dH1
≤ Kr

∫
∂S0

|Dg| dH1 for all r ∈ (0, 1), i ∈ {1, 2}, (2.2)

where V1 ≡ (0,−1) and V2 ≡ (0, 1). It is quite easy to achieve that: in fact, it is enough
to find two opposite points P1, P2 ∈ ∂S0 such that∫

B(Pi ,r)∩∂S0

|Dg| ≤ 6r
∫
∂S0

|Dg| for all r ∈ (0,
√

2), i ∈ {1, 2}, (2.3)

because then we can apply a bi-Lipschitz transformation (with bi-Lipschitz constant in-
dependent of P1 and P2) which moves the points P1 and P2 to the vertices V1 and V2,
and get (2.2). And in turn, to obtain (2.3), we notice that every point of ∂S0 is a possible
choice for P1 or P2 unless it is, or its opposite point is, in the set

A :=
{
P ∈ ∂S0 : ∃r ∈ (0, 1) :

∫
B(P,r)∩∂S0

|Dg| > 6r
∫
∂S0

|Dg|

}
.

By a Vitali covering argument, we can cover A with countably many balls B(Pi, 3ri) such
that every Pi is in A, and the corresponding sets B(Pi, ri) ∩ ∂S0 are as in the definition
of A and are pairwise disjoint. Therefore, we can calculate

H1(A) ≤
∑
i

6ri ≤
∑
i

∫
B(Pi ,r)∩∂S0

|Dg|∫
∂S0
|Dg|

≤ 1,

and since H1(∂S0) = 4
√

2, it clearly follows that two opposite points both in ∂S0 \ A
exist and then satisfy (2.3), as required.

Step 2. Definition of the grid on ∂S0, and of the paths γ i . To define our map h, we will
make use of a fine grid made by horizontal segments in S0. More precisely, we will take
several (but finitely many) distinct points A0

≡ (0,−1), A1, A2, . . . , Ak ≡ (0, 1) in
∂S0, all with non-positive first coordinate Ai1 and with second coordinate Ai2 increasing,
with respect to i, from−1 to 1; on the opposite side, we will take the corresponding points
Bi ≡ (−Ai1, A

i
2), so that the segments AiBi are horizontal.

The way to choose our points is simple: since g is piecewise linear, we can take
the points in such a way that g is linear on every segment AiAi+1, as well as on every
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BiBi+1 (in particular, the points (−1, 0) and (1, 0) must be taken). Since this property is
of course not destroyed if we add more points Ai (as long as we also add the correspond-
ing points Bi , of course), we are allowed to add more points during the construction, of
course taking care to add only finitely many; we will do this a first time in a few lines,
and then also later.

From now on, we will denote by S0 the bounded component of R2
\g(∂S0), which is

a polygon because g is piecewise linear; notice that the map h we want to construct must
be a homeomorphism between S0 and S0. Then, for any 0 < i < k, we define γ i to be
the shortest path which connects Ai and Bi inside the closure of S0 (this path is unique,
as we will show in Step 3). Notice that since S0 is a polygon, every γ i is piecewise linear,
and any junction between two consecutive linear pieces is in ∂S0.

Up to adding one more point between A0 and A1 (plus the corresponding one on the
right edge), we can suppose that either γ 1 is a segment between A1 and B1, and this
happens if and only if the angle between A1, A0 and B1 which is inside S0 is smaller
than π , or it is the union of the two segments A1A0 and A0B1, thus it entirely lies on ∂S0.
We do the same between Ak−1 and Ak .

Step 3. Uniqueness of the shortest paths. Let Q be a simply connected closed planar
domain with polygonal boundary. We briefly recall the proof of the well-known fact that,
for any two points in Q—not necessarily on the boundary—there is a unique shortest path
inside Q. Since the existence is obvious, we just have to check the uniqueness.

If the claim were not true, there would be two points A,B ∈ Q and two shortest
paths τ1 and τ2 between A and B inside Q such that τ1 and τ2 meet only at A and B. The
union of the two paths is then a polygon, say with n sides. The sum of the internal angles
of this polygon is π(n − 2), and thus there must be a vertex of the polygon, different
from A and B and thus inside one of the shortest paths, corresponding to an angle strictly
less than π . Since the interior of the polygon is entirely in the interior of Q, this is of
course impossible, because cutting around that vertex would shorten the path.

Step 4. The path γ i+1 is above γ i; the definition of γ i1 , γ
i
2 , γ

i
3 . For two curves γ and

γ̃ inside S0 and with endpoints in ∂S0, we say that γ is above γ̃ if γ does not intersect
the interior of the (possibly disconnected) subset of S0 whose boundary is the union of γ̃
and the path on ∂S0 connecting the endpoints of γ̃ and containing A0

= g(A0). We want
to show that, for any 0 < i < k − 1, the path γ i+1 is above γ i .

To show that, assume that two points P and Q belong to both γ i and γ i+1. Then
the restrictions of γ i and γ i+1 from P to Q are two shortest paths, and by Step 3 they
coincide. As an immediate consequence, γ i+1 is above γ i as claimed.

Another immediate consequence is the following: the intersection of γ i and γ i+1 is
always a connected subpath, possibly empty. If it is not empty, and then it is a path P̄Q,
we will subdivide γ i and γ i+1 into three parts each, writing

γ i = γ i1 ∪ γ
i
2 ∪ γ

i
3 , γ i+1

= γ i+1
1 ∪ γ i+1

2 ∪ γ i+1
3 ,

where γ i1 (resp. γ i+1
i ) is the first part, from Ai to P (resp. from Ai+1 to P ); γ i2 (resp. γ i+1

2 )
is the second part, from P to Q (thus the common part, and γ i2 = γ i+1

2 ); and γ i3
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(resp. γ i+1
3 ) is the third and last part, from Q to Bi (resp. from Q to Bi+1). If γ i and

γ i+1 have empty intersection, then we simply set γ i1 = γ
i and γ i+1

1 = γ i+1, letting γ i2 ,
γ i3 , γ i+1

2 and γ i+1
3 be empty paths. The situation is depicted in Figure 1, where the com-

mon part γ i2 = γ
i+1
2 is formed by two segments, one on ∂S0 and the other in the interior

of S0.

Ai+1 S0

γ i

Bi

γ i+1

Bi+1

Ai

Fig. 1. The paths γ i and γ i+1 in Step 4.

Notice that this subdivision of a path depends not only on the path itself, but also on
the other path that we are considering; in other words, the subdivision of the path γ j done
when i = j , and then considering the possible common part of γ j and γ j+1, need not
coincide with the subdivision of the same path done when i = j−1, and then considering
the possible common part of γ j and γ j−1.

Step 5. Convexity of the polygon having boundary γ i+1
1 ∪ Ai+1P . Let P be the last

point of γ i+1
1 ; hence P is the first common point with γ i if γ i and γ i+1 intersect, and

P = Bi+1 otherwise. We claim that the polygon having γ i+1
1 ∪ Ai+1P as boundary is

convex (notice that in principle the curve γ i+1
1 and the segment Ai+1P could have other

intersection points besides Ai+1 and P ). We start by assuming that γ i+1
2 6= ∅; the other

case will be considered at the end of this step.
If γ i+1

1 is a single point or just a segment, then the claim is vacuously true, and the
convex polygon is degenerate. Assume that γ i+1

1 is formed by at least two affine pieces,
and also, just to fix ideas, that the direction of the oriented segment AiAi+1 is π/2, as in
Figure 2 (left). Let then D ⊆ S0 be the polygon having the Jordan curve γ i1 ∪ γ

i+1
1 ∪

Ai+1Ai as boundary. The same argument as in Step 3 immediately shows that, for any
vertex of γ i+1

1 (i.e., any junction point between two consecutive linear pieces of γ i+1
1 ), the

angle lying inside D (hence in particular inside S0) is greater than π . By construction,
and recalling Step 4, we also see that none of these points can belong to the curve in
∂S0 connecting Ai and Bi and containing A0, since such a point would necessarily also
belong to γ i , contrary to the definition of P . Of course, this already suggests that our
convexity claim is true, but the proof is not complete yet, since in principle γ i+1

1 could
be some spiral-like curve connecting Ai+1 and P . To conclude the proof, for any vertex
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Q+ Ai+1

Ai

γ i+1
1

Q

Q−

Q+

Bi

Bi+1

Ai

Q−

Ai+1

γ i+1
1

Q

Fig. 2. Construction in Step 5.

of γ i+1
1 (except P ) consider the range of directions pointing toward the interior of D: for

instance, the range associated to Ai+1 in the situation of Figure 2 (left) is formed by the
angles between −π/2 and −π/3. We claim that, for each vertex of the curve γ i+1

1 , this
range cannot contain the angle π/2; observe that this will immediately imply the required
convexity.

Assume this is false, and let Q be the first vertex of γ i+1
1 having π/2 in its range of di-

rections; by a trivial perturbation argument we can assume that π/2 is in the interior of this
range, and then the vertical line passing through Q is in the interior of D for a while, both
above and below Q itself. As in Figure 2 (left), denote by Q− and Q+ the first points of
this line, respectively below and above Q, which are on ∂D. Since the segment Q−Q+ is
parallel to AiAi+1, each of these points must belong either to γ i1 or to γ i+1

1 . Observe now
that if γ is a shortest path in S0 between its extremes, it is also a shortest path in S0 be-
tween any pair of its points. In particular, if the line connecting two points of γ is entirely
in the closure of S0, then the part of γ joining them must be a segment. This immediately
implies that neither Q− nor Q+ can belong to γ i+1

1 , because otherwise γ i+1
1 would be

a segment between that point and Q; as a consequence, both Q− and Q+ must belong
to γ i1 , but this is also impossible because then γ i1 would be a segment. This contradic-
tion proves the claim, yielding the required convexity. Of course, the very same argument
works for the polygon having boundary γ i+1

3 ∪PBi+1, where this time P is the first point
of γ i+1

3 , and everything also works for the polygons around the path γ i instead of γ i+1.
Now consider the case when γ i+1

2 = ∅, that is, γ i and γ i+1 are disjoint; this situation
is depicted in Figure 2 (right). This time, we let D be the polygon having the Jordan curve
γ i ∪BiBi+1

∪γ i+1
∪Ai+1Ai as boundary. The same argument as in the first case shows

again that every vertex of γ i+1 has angle greater than π in the direction inside D; as a
consequence, the required convexity follows as before if the range of no vertex of γ i+1

contains the direction π/2.
However, this time a vertex Q of γ i+1 cannot have π/2 in its range. Indeed, suppose,

as before, that Q is the first vertex that does, and let Q± ∈ ∂D be as before. As already
noticed, none of Q± can be in γ i+1, and at most one in γ i . Hence, the only possibility is
that one point is in γ i , and the other in BiBi+1. A simple topological argument shows that
Q− must be in γ i and Q+ in BiBi+1. Indeed, consider the path, contained in ∂D and not
containing AiAi+1, which connects Q and Q−; together with the segment Q−Q, this is
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a Jordan curve, and so it cannot intersect the other path in ∂D which contains AiAi+1;
in particular, it must contain Q+, and it readily follows, as claimed, that Q− ∈ γ i and
Q+ ∈ BiBi+1. The same topological argument also shows that Bi+1 is the “left” vertex
(that is, the one in the direction AiAi+1) of the segment BiBi+1, and Bi is the “right”
one, as in Figure 2 (right).

Now we restrict our attention to the subset D0 of D formed by the polygon whose
boundary is the part of γ i+1 connecting Q to Bi+1, plus the two segments Bi+1Q+ and
Q+Q. The same argument of the first half of this step shows that the range of directions,
toward the interior of D0, corresponding to any vertex of γ i+1 in ∂D0, can never contain
the direction of the segment BiBi+1, since otherwise a segment parallel to BiBi+1 and
contained in D0 would have both endpoints in QQ+, which is impossible.

Finally, it is immediate that this property of the directions, just as before, is enough to
ensure the required convexity of the polygon having γ i+1

∪Ai+1P as boundary.

Step 6. Definition of “vertical segments” and their length. In this step, we associate to
any vertex P of the curve γ i+1 a point (or many points) Q of the curve γ i , and vice versa.
Every such segment PQ, which we will call “vertical”, will be contained in the closure
of the polygon D ⊆ S0 having boundary AiAi+1

∪γ i+1
∪Bi+1Bi

∪γ i , any two vertical
segments will have empty intersection, except possibly for a common endpoint, and the
following estimate for the length of the vertical segments will hold:

H1(PQ) ≤ max
{
H1(AiAi+1), H1(BiBi+1)

}
. (2.4)

Let us give our definition distinguishing the possible cases, as in Step 5.
First of all, consider the situation, depicted in Figure 3 (left), when γ i and γ i+1 in-

tersect. In the common part γ i ∩ γ i+1
= γ i2 = γ

i+1
2 , we will associate to any vertex P

of γ i+1 the same point Q ≡ P , which is also in γ i by definition. The segment PQ is just
a point, which is of course in the closure of D, and the length is 0, so that (2.4) of course
holds. In the “left” part of the paths, instead, we make the following simple definition.
To any vertex P ∈ γ i+1

1 , we associate the point Q ∈ γ i1 such that the segment PQ is
parallel to Ai+1Ai ; the existence and uniqueness of such a point, the validity of (2.4), and
the fact that PQ is contained in the closure of D, all come immediately from the con-
vexity obtained in Step 5. We do the same for the vertices of γ i1 , and we argue similarly
for the “right” part of the paths, of course taking segments parallel to Bi+1Bi instead
of Ai+1Ai . This completes our definition of the vertical segments, and obviously no two
such segments intersect.

Consider now the situation when γ i ∩ γ i+1
= ∅—see Figure 3 (right). Without loss

of generality we can think that, as in the figure, the direction of AiAi+1 is vertical, while
the segment BiBi+1 goes “leftwards”. Let S ∈ γ i+1 and T ∈ γ i be the two closest
points such that the segment T S is vertical; notice that it is possible that S = Ai+1 or
S = Bi+1 but this makes no difference to our proof, even if the picture shows S in the
interior of γ i+1.

Now consider the subset D0 ⊆ D whose boundary is given by the segments AiAi+1

and ST , together with the parts of γ i (resp. γ i+1) connecting Ai and T (resp. Ai+1

and S). Again by the convexity result of Step 5, any point of γ i+1 between Ai+1 and S
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T+

Ai

γ i+1

γ i

Bi+1

Bi

Bi+1

γ i

γ i+1
1

Ai

Ai+1Ai+1

S

T
Bi

Fig. 3. Construction in Step 6: the polygon S0 (resp. D) is light (resp. dark), and the “vertical
segments” are dotted.

starts a vertical segment whose interior is contained in D0 and which ends in a point of γ i

between Ai and T . We then define in the obvious way the “vertical segments” inside D0,
which are in fact vertical. The validity of (2.4) is obvious from the convexity as usual.

Consider now the half-line starting at S and parallel to Bi+1Bi . The choice of the
points S and T , together with the convexity proved in Step 5, ensures that this half-line
remains inside D for a while, after the point S; therefore, the intersection of this half-
line with D is a segment ST +, and the point T + is on γ i by construction. Observe that
T + coincides with T when Bi+1Bi is parallel to Ai+1Ai , but otherwise it stays outside
of D0, as in the figure. The construction implies that all the half-lines parallel to Bi+1Bi

and starting at points of γ i+1 after S remain in D for a while and then intersect γ i at some
point after T +. We use this observation to associate to any vertex of γ i+1 after S a point
of γ i after T +, and we then call all the corresponding segments “vertical”, although they
are not actually vertical but parallel to Bi+1Bi . Finally, to every vertex of γ i between T

and T +, if any, we always associate the point S. The validity of (2.4) for all the vertical
segments is then again clear by the construction and by Step 5, and any two vertical
segments have empty intersection, unless they meet at S. This concludes the step.

From now on, we will always consider the points S, T and T + as “vertices”, even if they
are not vertices in the sense of piecewise linear curves. Moreover, for every vertex of γ i

or γ i+1, we will also consider as “vertex” the corresponding point in the other curve,
which again may or may not be a vertex in the classical sense. Notice that in this way
we are adding a finite number of new vertices, and as pointed out before, it is always
admissible to regard as “vertices” finitely many new points in our curves. Summarizing,
on the piecewise linear curve γ i we are considering as “vertices” all the actual vertices,
plus some new points. However, these new points have been selected by working on the
region between γ i and γ i+1, and they need not coincide with the new points selected by
working on the region between γ i−1 and γ i .

Step 7. Definition of h̃ on S0. We are now ready to define a function on S0 which ex-
tends g; for simplicity, we start with the definition of a “tentative” function h̃, without
taking care of injectivity. The definitive h will be obtained later.
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Recall that we have selected several horizontal segments AiBi , 1 ≤ i ≤ k − 1, in
the square S0; the square is thus divided into k − 2 horizontal strips, lying between two
consecutive horizontal segments, plus two triangles, the top one Ak−1AkBk−1 and the
bottom one A1A0B1.

We start by defining h̃ on the 1-dimensional skeleton, that is, the union of ∂S0 and
all the horizontal segments AiBi ; more precisely, we set h̃ = g on ∂S0, while for every
1 ≤ i ≤ k − 1 we define h̃ on AiBi as the piecewise linear function, parametrized at
constant speed, whose image is γ i . With this definition, h̃ is continuous on the 1-skeleton.

To extend h̃ to the whole S0, we can then argue separately on each of the horizontal
strips of S0, as well as on the top and bottom triangles. First, consider the bottom triangle
A1A0B1; thanks to the construction of Step 2, we know that the path γ 1 is either the
segment A1B1, or the union of the two segments A1A0 and A0B1. In the first case, we
define h̃ on the bottom triangle as the affine function extending the values on the bound-
ary; in the second case, let P be the point of the segment A1B1 such that h̃(P ) = A0, ex-
tend h̃ as constantly A0 on the segment PA0, and let h̃ be the (degenerate) affine function
extending the values on the boundary on each of the two triangles A1PA0 and A0PB1.
In the top triangle, we give of course the very same definition of h̃.

Now consider the horizontal strip Di between AiBi and Ai+1Bi+1, and let Di be
the bounded region in S0 having the closed curve γ i+1

∪ Bi+1Bi
∪ γ i ∪ AiAi+1 as

boundary. In Step 6, we have selected a finite number of points on γ i and on γ i+1, and we
have called the corresponding segments “vertical”. More precisely, denote the points in
Ai+1Bi+1 as P0 = A

i+1, P1, . . . , PM−1, PM = Bi+1, and the points inAiBi asQ0 = A
i ,

Q1, . . . ,QM−1,QM = B
i ; as always, write Pj = h̃(Pj ) and Qj = h̃(Qj ). Keep in mind

that each segment PjQj whose interior is contained in Di has been called a “vertical
segment”, and the points Pj and Qj are not necessarily all different: for instance, the
point S of Figure 3 (right) is Pj for three consecutive indices 0 < j < M .

We are finally in a position to define h̃ on the interior of each strip Di (and since h̃
has already been defined on the 1-skeleton and on the top and bottom triangles, this will
conclude the present step). The strip Di is the essentially disjoint union of the triangles
PjPj+1Qj and Pj+1QjQj+1 for all 0 ≤ j < M , and Di is the essentially disjoint union
of the corresponding triangles PjPj+1Qj and Pj+1QjQj+1, where the triangles in Di

(but not those in Di) can be degenerate, in particular they are degenerate for the points in
γ i+1

2 = γ i2 . We then define h̃ on Di to be affine on each of the above-mentioned triangles.
By construction, h̃ is linear on each side PjPj+1 andQjQj+1, hence this definition on Di
is a continuous extension of the definition on the 1-skeleton.

Step 8. Estimate for
∫
A0A1B1 |Dh̃|. In this and in the following step, we aim to estimate

the integral of |Dh̃| on S0; in particular, in this step we will consider the bottom triangle
A0A1B1 (by symmetry, we will get an estimate valid also for the top triangle, of course),
while in the next step we will consider the horizontal strips Di . The aim of this step is to
prove the bound ∫

A0A1B1
|Dh̃| ≤ K

∫
∂S0

|Dg| dH1, (2.5)
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where as usual K denotes a purely geometric constant. For simplicity, write

r̄ := H1(A0A1) = H1(A0B1).

Recall that, on the bottom triangle, h̃ has been defined as an affine function, if the angleÿ�
A1A0B1, lying inside S0, is smaller than π—or, equivalently, if the curve γ 1 coincides
with the segment A1B1—and as two degenerate affine functions on the two triangles
A1PA0 and A0PB1 (with P as in Step 7) otherwise. Let us now estimate the L1 norm of
Dh̃ on the bottom triangle in both cases.

First of all, consider the non-degenerate case when h̃ is a single affine function on the
bottom triangle. In particular, the image of the segment A0A1 is A0A1, while the image
of A0B1 is A0B1; this implies that, on the bottom triangle,

√
2

2
|Db1 h̃+D

b
2 h̃| =

H1(A0B1)

H1(A0B1)
,

√
2

2
|−Db1 h̃+D

b
2 h̃| =

H1(A0A1)

H1(A0A1)
,

where Db1 h̃ and Db2 h̃ denote the constant values of D1h̃ and D2h̃ on the bottom triangle.
This readily implies

|Dbh̃| ≤
H1(A0B1)

H1(A0B1)
+

H1(A0A1)

H1(A0A1)
=

H1(A0B1)+H1(A0A1)

r̄
. (2.6)

On the other hand,

H1(A0B1) =

∫ B1

A0
|Dg| dH1, H1(A0A1) =

∫ A1

A0
|Dg| dH1

;

inserting this in (2.6), and using (2.2) from Step 1, gives

|Dbh̃| ≤
1
r̄

∫
B(V1,r̄)∩∂S0

|Dg| dH1
≤ K

∫
∂S0

|Dg| dH1.

Hence, we deduce that∫
A0A1B1

|Dh̃| =
r̄2

2
|Dbh̃| ≤

Kr̄2

2

∫
∂S0

|Dg| dH1
≤ K

∫
∂S0

|Dg| dH1,

proving (2.5).
Now consider the degenerate case, where in the bottom triangle the function h̃ is made

up of two degenerate affine pieces, one on the left triangle A1PA0 and the other on the
right triangle A0PB1; we denote by Dl h̃ and Dr h̃ the respective constant values of Dh̃
on the triangles. Since the image of the segment A1B1 through the map h̃ is the path γ 1

(that is, the union of the two segments A1A0 and A0B1), parametrized at constant speed,
we get |Dl1h̃| = |D

r
1h̃| (while in general Dl1h̃ 6= D

r
1h̃); more precisely,

|Dl1h̃| = |D
r
1h̃| =

H1(A1A0)+H1(A0B1)

H1(A1B1)
. (2.7)
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Moreover, the affine map on the right triangle transforms the segment A0B1 into A0B1,
while the affine map on the left triangle moves A0A1 onto A0A1; this implies

√
2

2
|Dr1h̃+D

r
2h̃| =

H1(A0B1)

H1(A0B1)
,

√
2

2
|−Dl1h̃+D

l
2h̃| =

H1(A0A1)

H1(A0A1)
,

which together with (2.7) gives

|Dl h̃| ≤
3
r̄

∫
B(V1,r̄)∩∂S0

|Dg| dH1, |Dr h̃| ≤
3
r̄

∫
B(V1,r̄)∩∂S0

|Dg| dH1.

Arguing exactly as before, again thanks to (2.2) of Step 1, we again obtain (2.5), possibly
with a slightly larger, but still purely geometric constant K .

Step 9. Estimate for
∫
Di
|Dh̃|. In this step, we want again to find an estimate for the

integral of |Dh̃|, but this time on the generic horizontal strip Di , 1 ≤ i ≤ k− 2. Our goal
is to obtain the estimate∫

Di

|Dh̃| ≤ K|Di |
∫
∂S0

|Dg| dH1
+K

∫
AiAi+1∪BiBi+1

|Dg| dH1, (2.8)

where |Di | denotes the area of Di . Consider the horizontal segment Ai+1Bi+1; by sym-
metry, it is not restrictive to assume that it lies below the x-axis, precisely at a distance
0 < r ≤ 1 from the “south pole” V1 ≡ (0,−1); in other words, Ai+1

≡ (−r, r − 1) and
Bi+1

≡ (r, r − 1). Moreover, let σ be the distance between the segments Ai+1Bi+1 and
AiBi , and set

` := max
{
H1(AiAi+1), H1(BiBi+1)

}
≤

∫
AiAi+1∪BiBi+1

|Dg| dH1. (2.9)

Recall now that in Step 7 we defined h̃ to be affine on each of the triangles PjPj+1Qj
and Pj+1QjQj+1, sending each of the points Pm (resp. Qm) in S0 to Pm (resp. Qm)
in S0. Let us concentrate on the generic triangle T = PjPj+1Qj (for triangles of the
form Pj+1QjQj+1 the same argument will work); since h̃ is affine on T , denote by Dτ h̃
the constant value of Dh̃ on T .

First of all recall that, on Ai+1Bi+1, h̃ has been defined as the piecewise linear func-
tion whose image is γ i+1, parametrized at constant speed; this ensures that

|Dτ1 h̃| =
H1(γ i+1)

H1(Ai+1Bi+1)
. (2.10)

By definition, γ i+1 is the shortest path in the closure of S0 connecting Ai+1 and Bi+1;
in particular, γ i+1 is shorter than the image, through g, of the curve connecting Ai+1

and Bi+1 on ∂S0 passing through the south pole. This implies in particular that

H1(γ i+1) ≤

∫
B(V1,

√
2 r)∩∂S0

|Dg| dH1
;
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d

Fig. 4. Position of points and lengths in Step 9.

inserting this in (2.10) and recalling (2.2) gives

|Dτ1 h̃| ≤
1
2r

∫
B(V1,

√
2 r)∩∂S0

|Dg| dH1
≤ K

∫
∂S0

|Dg| dH1. (2.11)

Now we use the fact that the affine map h̃ on T sends the segment PjQj onto PjQj .
Denoting, as in Figure 4, by d and d ′ the distances between Ai+1 and Pj , and between Ai

and Qj , we derive that

|(d ′ − d + σ)Dτ1 h̃+ σD
τ
2 h̃| = H1(PjQj ) ≤ `, (2.12)

where in the last equality we have used (2.4), which is valid since PjQj is a vertical
segment in the sense of Step 6.

Since γ i+1 is the shortest path between Ai+1 and Bi+1 on the closure of S0, it is in
particular shorter than the path obtained as the union of Ai+1Ai , the part of γ i between Ai

and Qj , the segment QjPj , and the part of γ i+1 between Pj and Bi+1; hence,

H1(γ i+1) ≤ H1(Ai+1Ai)+
d ′H1(γ i)

H1(AiBi)
+H1(QjPj )+H1(γ i+1)

(
1−

d

H1(Ai+1Bi+1)

)
≤ 2`+

d ′H1(γ i)

H1(AiBi)
+H1(γ i+1)

(
1−

d

H1(Ai+1Bi+1)

)
,

which implies

d
H1(γ i+1)

H1(Ai+1Bi+1)
− d ′

H1(γ i)

H1(AiBi)
≤ 2`.

A symmetric argument, using the fact that γ i is the shortest path between Ai and Bi , thus
shorter than the union of AiAi+1, the part of γ i+1 between Ai+1 and Pj , the segment
PjQj , and the part of γ i between Qj and Bi , gives the opposite inequality, hence∣∣∣∣d H1(γ i+1)

H1(Ai+1Bi+1)
− d ′

H1(γ i)

H1(AiBi)

∣∣∣∣ ≤ 2`,

which further implies

|d − d ′|
H1(γ i+1)

H1(Ai+1Bi+1)
≤ 2`+ d ′

∣∣∣∣ H1(γ i+1)

H1(Ai+1Bi+1)
−

H1(γ i)

H1(AiBi)

∣∣∣∣
≤ 2`+

∣∣∣∣ H1(AiBi)

H1(Ai+1Bi+1)
H1(γ i+1)−H1(γ i)

∣∣∣∣
≤ 2`+

∣∣∣H1(γ i+1)−H1(γ i)

∣∣∣+ 2σ
H1(γ i+1)

H1(Ai+1Bi+1)
≤ 4`+ 2σ

H1(γ i+1)

H1(Ai+1Bi+1)
.
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Using now (2.10), we can rewrite the above estimate as

|d − d ′| |Dτ1 h̃| ≤ 4`+ 2σ |Dτ1 h̃|,

which on recalling also (2.12) finally gives

σ |Dτ2 h̃| ≤ 5`+ 3σ |Dτ1 h̃|.

We can then easily evaluate the integral of |Dh̃| on T , also by (2.11), as∫
T
|Dh̃| =

∫
T
|Dτ h̃| ≤

∫
T
(|Dτ1 h̃| + |D

τ
2 h̃|) ≤ |T |

(
4K

∫
∂S0

|Dg| dH1
+ 5

`

σ

)
.

Summing now the above estimates over all the triangles T forming Di , and recalling (2.9)
and the fact that |Di | ≤ σ , we directly obtain (2.8).

Step 10. Definition of the modified function h and conclusion of the proof. We start
by observing that summing the estimates (2.5) for the top and bottom triangles and the
estimates (2.8) for all the horizontal strips, we directly obtain (2.1) for the function h̃.
However, the proof is not complete yet, because h̃ satisfies (2.1), coincides with g on
∂S0, and it is finitely piecewise affine, but it is not a homeomorphism (unless all the paths
γ i lie in the interior of S0). However, we can easily obtain this with a simple modification
of h̃: more precisely, let us slightly modify all the paths γ i so that they remain piecewise
linear but they live in the interior of S0 and do not intersect each other. The idea, depicted

Ai+1

Bi+1

Ai

Bi Bi

Ai+1

Bi+1

Ai

Fig. 5. Modification of the paths γ i in Step 10.

in Figure 5, is obvious. Notice that since there are only finitely many paths γ i , and each
has only finitely many vertices, it is clear that we can “separate” all the paths as desired,
and we can also move each of them a distance which is arbitrarily smaller than all the
other distances between extreme points. Then, we define h exactly as h̃, except that we
use the modified paths; hence h is now not only finitely piecewise affine and coinciding
with g on ∂S0, but also a homeomorphism. Moreover, the estimate (2.1) is still valid, with
a geometric constant K which is as close as we wish to the one found above. ut
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Remark 2.2. A trivial rotation and dilation argument proves the following generalization
of Theorem 2.1. If S is a square of side 2r and g : ∂S → R2 is a piecewise linear and
one-to-one function, then there exists a piecewise affine extension h : S → R2 of g such
that ∫

S
|Dh(x)| dx ≤ Kr

∫
∂S
|Dg(t)| dH1(t). (2.13)

3. Extension in the degenerate case Jf (c) = 0 but |Df (c)| 6= 0

As already explained in Section 1.2, a crucial difficulty in our proof will be the case when
a square S is “good” (Df is almost constantly equal to some matrix M within S), but
detM = 0, while M 6= 0. It will be important to handle this case with care, because the
map f on S is then very close to an affine map, but this affine map is degenerate. The
goal of this section is to prove a single result which will solve this difficulty. Recall that
whenever a map g is defined on ∂S, for any t ∈ ∂S we denote by τ(t) the tangent vector
to ∂S at t , by Dg(t) the derivative of g in the direction τ(t) (whenever it exists), and by∫
∂S |Dg| dH

1 the length of the curve g(∂S).

Theorem 3.1. Let S be a square of unit side and g : ∂S → R2 a piecewise linear and
one-to-one function such that∫

∂S

∣∣∣∣Dg(t)− (1 0
0 0

)
· τ(t)

∣∣∣∣ dH1(t) < δ (3.1)

for δ ≤ δMAX, where δMAX � 1 is a geometric quantity. Then there is a finitely piecewise
affine homeomorphism h : S → R2 such that h = g on ∂S and∫

S

∣∣∣∣Dh(x)− (1 0
0 0

)∣∣∣∣ dx ≤ Kδ. (3.2)

Proof. We divide this proof into several steps, to make it as clear as possible.

Step 1. Definition of good and bad intervals. First of all we notice that since g is a one-
to-one piecewise linear function, its image g(∂S) is the boundary of a non-degenerate
polygon, which we call S. Moreover, thanks to (3.1), we know that S is very close to a
horizontal segment in R2. Up to a translation, we can assume that the first coordinates of
all points in S are between 0 and L.

Fix now any 0 < σ < L; it is reasonable to expect that there are exactly two points
in g(∂S) having first coordinate σ , and that the two counterimages in ∂S are more or
less one above the other (so with the same first coordinate). In the situation of Figure 6,
this happens for σ , but not for σ ′, since there are four points in ∂S with first coordi-
nate σ ′. We then define any σ ∈ (0, L) to be “good” if exactly two points in ∂S have
first coordinate σ , and additionally σ > 2δ and σ < L − 2δ. For any such σ , we de-
note by P σ and Qσ the above-mentioned two points, with P σ above Qσ , and we write
Pσ = g−1(P σ ) and Qσ = g−1(Qσ ); up to reversing the orientation of the map g, we
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Fig. 6. A good σ and a bad σ ′ in Step 1.

can assume that every point Pσ is above the corresponding Qσ , as in our figures. We can
immediately show that a large percentage of the points are good, more precisely

H1({σ ∈ (0, L) : σ is not good}) ≤ 5δ. (3.3)

Indeed, take any segment RS in ∂S on which g is linear, and write as usual R = g(R)

and S = g(S); by definition, we have∫
RS

∣∣∣∣Dg(t)− (1 0
0 0

)
· τ(t)

∣∣∣∣ dH1(t) ≥

∣∣∣∣ ∫
RS

Dg(t) dH1(t)−

∫
RS

(
τ1(t)

0

)
dH1(t)

∣∣∣∣
≥ |(S1 −R1)− (S1 − R1)|. (3.4)

As a consequence, if the segment RS is going backward (that is, S1 − R1 and S1 − R1
have opposite signs), then its horizontal spread is bounded by the above integral on the
interval RS. Recalling (3.1), this means that all the backward segments have a projection
on (0, L) with total length less than δ. Since of course any σ ∈ (2δ, L− 2δ) which is not
good must belong to this projection, (3.3) follows.

By summing the inequality (3.4) over all segments of ∂S, we also find that L equals
the horizontal width of S up to an error δ/2, so in particular

1− δ/2 ≤ L ≤
√

2+ δ/2.

Moreover, take any good σ and consider all the segments on ∂S connecting Pσ and Qσ ;
again summing (3.4) over all these segments, and recalling that P σ and Qσ have the same
first projection, we derive that

|(Pσ )1 − (Qσ )1| ≤ δ/2, (3.5)

that is, the points Pσ and Qσ are always exactly one above the other up to an error δ/2;
the factor 1/2 comes from the possibility of choosing either of the two paths in S from Pσ
to Qσ .

Finally, assume that Pσ and Qσ lie on the same side of S for some good σ . Adding
once again (3.4) over all the segments where g is linear connecting Pσ andQσ , we derive
that, up to an error δ, the sum of all the horizontal spreads of these segments coincides
with the corresponding sum of the horizontal spreads in ∂S; however, the first sum is
smaller than δ/2 by (3.5), while the second is at least the minimum between 2σ and
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2(L − σ), which is impossible by the definition of good σ . In other words, we have
proved that Pσ and Qσ never lie on the same side of S if σ is good.

Observe now that since g is piecewise linear, by definition (0, L) is a finite union
of intervals, alternately consisting of only bad σ ’s and of only good ones. However, the
endpoints of all these intervals are always bad. Therefore, we slightly shrink the inter-
vals formed by good points and we call these shrinked intervals good intervals. Thanks
to (3.3), we can do this in such a way that the union of the good intervals covers the whole
(0, L) up to a length of 6δ; notice that all points of any good interval are good points, in-
cluding the endpoints, while bad intervals may also contain good points. Finally, it is
convenient to make the following further slight modification: up to replacing a good in-
terval with a finite union of good intervals, we can also assume that whenever (σ, σ ′) is a
good interval, the map g is linear on the segments PσPσ ′ and QσQσ ′ .

Step 2. Extension onto the segments PσQσ ; definition of good and bad quadrilat-
erals. In this step, we extend g—defined on ∂S—to a union of segments in S. More pre-
cisely, recall that (0, L) has been divided into intervals, which can be either bad or good.
Moreover, the extremes of these intervals are all good points except 0 and L. Take then
any other of these extremes, say σ , and consider the points Pσ and Qσ in ∂S . We define
g on the segment PσQσ as the linear function such that g(Pσ ) = P σ and g(Qσ ) = Qσ ;
notice that all the different open segments PσQσ are contained in the interior of S by
Step 1, and they do not intersect by construction. We then have many segments PσQσ

inside S, almost vertical by (3.5), on each of which a linear function g is defined. As a
consequence, S has been divided into several quadrilaterals (actually, the first and the last
one are generally triangles), and g is defined on the whole corresponding 1-dimensional
grid; also S has then been subdivided by the images of g into a union of several poly-
gons. A positive consequence of this fact is that we can now define the extension h of g
in an independent way from each quadrilateral in S to the corresponding polygon in S—
respecting of course the boundary data, and with the extension being a piecewise affine
homeomorphism; then the resulting function h will automatically be a piecewise affine
homeomorphism.

Let us conclude this short step with another piece of terminology: any quadrilateral
in S will be called a good quadrilateral if it corresponds to a good interval in (0, L), and
a bad quadrilateral otherwise. In the remainder of the proof, we will first give an estimate
for good quadrilaterals; then, we will give one for the first and the last quadrilateral, that
is, the one starting at 0 and the one ending at L: notice that these quadrilaterals are always
bad by definition, and actually they are usually triangles. Finally, we will give an estimate
for “internal” bad quadrilaterals, which we obtain by considering two subcases.

Step 3. Extension in good quadrilaterals. First, consider a good quadrilateral, corre-
sponding to a good interval (σ, σ ′) in (0, L); for brevity, we will write P, P ′, P , P ′ in
place of Pσ , Pσ ′ , P σ , P σ ′ . Recall that the map g is linear between P and P ′, as well
as between Q and Q′, thanks to the construction in Step 1. As a consequence, the image
under g of the boundary of the quadrilateral PP ′Q′Q is the boundary of the quadrilateral
PP ′Q′Q, and we have to define the extension h by sending the interior of PP ′Q′Q onto
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Fig. 7. Approximation in a good quadrilateral, Step 3.

the interior of PP ′Q′Q. Let h simply be the piecewise affine map sending PP ′Q onto
PP ′Q and QP ′Q′ onto QP ′Q′.

We need to estimate ∫
PP ′Q

∣∣∣∣Dh− (1 0
0 0

)∣∣∣∣ dx, (3.6)

the estimate in the triangle QP ′Q′ being then of course identical. For brevity, define

` = P2 −Q2, b = P ′1 − P1, ξ = P ′2 − P2, θ = arctan(ξ/b),
δ1 = P1 −Q1, α = P 2 −Q2, η = P ′1 − P 1, β = P ′2 − P 2

(see Figure 7). By definition, the constant value of Dh in PP ′Q satisfies

bD1h1 + ξD2h1 = η, bD1h2 + ξD2h2 = β,

δ1D1h1 + `D2h1 = 0, δ1D1h2 + `D2h2 = α.
(3.7)

Let

ε =

∫
PP ′

∣∣∣∣Dg(t)− (1 0
0 0

)
· τ(t)

∣∣∣∣ dH1(t), (3.8)

so that summing the values of ε on the different segments we will get less than δ by (3.1).
We have the following estimates, all obtained by arguing as in (3.4):

|η − b| ≤ ε, |β| ≤ ε, α ≤ δ, |δ1| ≤ δ/2, ` > δmax{|tan θ |, 1}. (3.9)

The first two estimates can be found by just integrating on the segment PP ′, so they are
valid with the small constant ε; instead, to get the third estimate we have to integrate on
all the segments connecting P and Q on ∂S, so we can only estimate with δ; the fourth
estimate is given by (3.5). Finally, the evaluation of ` follows by a simple geometric
argument, just recalling that σ > 2δ, (3.5) and that we have defined θ as the direction
of the side containing PP ′. Notice that b > 0 by construction, while ξ could be either
positive or negative.

Let us now evaluate D1h1. Inserting the third equation of (3.7) into the first one, we
get

D1h1(b − ξδ1/`) = η,
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from which we readily obtain, by using the estimates (3.9) and recalling that ξ/b = tan θ ,

|D1h1 − 1| ≤ 2
(
ε

b
+
|ξ |δ

b`

)
. (3.10)

Substituting the value of D1h1 again in the third equation of (3.7), we get

|D2h1| =
δ1

`
|D1h1| ≤

δ

2`
+
ε

b
+
|ξ |δ

b`
. (3.11)

We now control the derivatives of h2. Inserting the second equation of (3.7) into the
fourth, we get

D2h2(`− δ1ξ/b) = α − δ1β/b,

so that, again using (3.9) and recalling that ξ/b = tan θ , we deduce

|D2h2| ≤ 2
δ

`
+
δε

b`
, |D1h2| ≤ 2

ε

b
+ 2
|ξ |δ

b`
. (3.12)

Estimating the integral in (3.6) is then straightforward. Notice that δ is a fixed constant,
not depending on the subdivision into intervals; as a consequence, we can assume without
loss of generality that ξ ≤ δ < `, otherwise it is enough to subdivide a good interval into
a finite union of good intervals; the area of the triangle PP ′Q is then less than b`, and so
from (3.10)–(3.12) we obtain∫

PP ′Q

∣∣∣∣Dh− (1 0
0 0

)∣∣∣∣ dx ≤ (5
ε

b
+ 5
|ξ |δ

b`
+ 3

δ

`
+
δε

b`

)
· b` ≤ 8ε + δ(5|ξ | + 3b),

where we have also used the inequalities δ ≤ 1/2 and ` ≤ 3/2 (the latter follows by
straightforward geometrical arguments). Of course, an analogous estimate holds for the
integral on the triangle QP ′Q′, up to suitably modifying the definitions of ε, ξ and b.

To conclude, we need to evaluate the total integral on the union of the good quadri-
laterals; this is simply achieved by summing the above estimates over all the different
quadrilaterals. Notice that the constant δ is fixed and does not depend on the quadrilat-
eral, while the constants ε, b and ξ are specific to each quadrilateral. By definition (3.8)
of ε, it is clear that the sum of all the different ε’s is less than δ, while by definition of the
lengths in the square it is clear that the sum of the different ξ , as well as of the different b,
is bounded by 4. As a consequence,∫

G

∣∣∣∣Dh(x)− (1 0
0 0

)∣∣∣∣ dx ≤ Kδ, (3.13)

whereG denotes the union of all the good quadrilaterals in S, whileK is as usual a purely
geometric constant.

Step 4. Extension in the first and last bad quadrilaterals. In this and in the next step
we are going to consider bad quadrilaterals. Notice that since almost the whole square
is covered by good quadrilaterals thanks to (3.3), we can even be satisfied with a rough
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Fig. 8. Approximation in the first bad quadrilateral, Step 4.

estimate here, while we needed a precise one in the preceding step; what is important is
that we can define a piecewise affine homeomorphism h on each of the bad quadrilaterals.

Here we begin with the “first” and the “last” quadrilaterals, that is, those which corre-
spond to the two intervals having 0 or L as an endpoint. Notice that these “quadrilaterals”
are actually triangles, unless some side of the square is very close to being vertical. More
precisely, consider just the first bad quadrilateral C, by symmetry; as Figure 8 depicts, it
can be either a triangle VPQ, where V is the left vertex of the square, or a quadrilateral
VV ′PQ, if V and V ′ are the two left vertices of the square, with the side VV ′ almost ver-
tical, and the sides V ′P and VQ almost horizontal. Notice that all the sides of C belong
to ∂S except PQ. We need to map C onto the polygon C inside S made up by the points
which have first coordinate less than σ = P 1 = Q1, shaded in the right of the figure.
Keep in mind that by construction (recall Step 1) the coordinate σ is good, and the bad
intervals cover only a portion less than 2δ of (2δ, L− 2δ); this means that 2δ ≤ σ ≤ 4δ.
As a consequence, again by using (3.4) and (3.5) several times, we know that

V 1 ≤ δ/2, δ/2 ≤ P1 − V1 ≤ 5δ, δ/2 ≤ Q1 − V1 ≤ 5δ, |Q1 − P1| ≤ δ/2,

and the estimates on V are also valid for V ′ if the bad quadrilateral C is actually a quadri-
lateral. We would like to infer that C is the bi-Lipschitz image of a square with side δ,
with uniformly bounded bi-Lipschitz constant; however, this is true only if ` is compa-
rable to δ, while we only know by Step 3 that ` ≥ δ—this was established in (3.9). Let
us then consider the affine map 8(x1, x2) = (x1, x2δ/`), and let C̃ = 8(C); define also
g̃ = g ◦8−1 on ∂ C̃, which is admissible since g is defined on the whole ∂C. By construc-
tion, C̃ is the bi-Lipschitz image of a square of side δ, with bi-Lipschitz constant less than
a geometrical constant K . By Theorem 2.1, we find an extension h̃ of g̃ inside C̃ such
that (2.1) holds, that is, ∫

C̃
|Dh̃(y)| dy ≤ Kδ

∫
∂C̃
|Dg̃(t)| dH1(t)

(multiplication by δ comes from the argument of Remark 2.2). Observe now that the
integral on the right side is simply the perimeter of C, which is less than Kδ by (3.1)
and (3.4). Thus, we infer that ∫

C̃
|Dh̃(y)| dy ≤ Kδ2. (3.14)
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Finally, we define h = h̃◦8 on C; this is a piecewise affine homeomorphism from C to C,
and by definition it extends the map h already defined on ∂C. We then have to show that
Dh is not too large on C, and to do so it is enough to observe that

|Dh(8−1(y))| ≤ |Dh̃(y)|,

which by (3.14) finally implies∫
C
|Dh(x)| dx ≤

∫
C̃
|Dh(8−1(y))|

`

δ
dy ≤

2
δ

∫
C̃
|Dh̃(y)| dy ≤ Kδ. (3.15)

We have thus found the estimate we were looking for on the first bad quadrilateral, and
by symmetry the same holds in the last bad quadrilateral.

Step 5. Extension in internal bad quadrilaterals. To conclude our analysis, we need to
concentrate on internal bad quadrilaterals. Let C be a bad quadrilateral, and let us call
its vertices, as usual, P, Q, P ′ and Q′; the image of ∂C under g is then the boundary
of a polygon C. Notice that C need not be a quadrilateral, since it has two vertical sides,
PQ and P ′Q′, but P̄ P ′ and Q̄Q′ are piecewise linear paths, not necessarily segments.
Keeping the notation similar to that of Step 3, we set

` = P2 −Q2, b = P ′1 − P1, α = max{P 2,P
′

2} −min{Q2,Q
′

2},

ξ = P ′2 − P2, θ = arctan(ξ/b), η = H1(P̄ P ′)+H1(Q̄Q′)

(see Figures 9 and 10). By a simple symmetry argument, we can assume without loss of
generality that

θ ≥ 0, and either PP ′ and QQ′ are parallel, or θ ≥ π/4. (3.16)

Observe that this is possible because if PP ′ and QQ′ are not parallel, then they belong
to two consecutive sides of the square, hence if θ ≤ π/4 we just have to exchange P
with Q. Notice that, by definition,

η =

∫
PP ′∪QQ′

|Dg(t)| dH1(t). (3.17)

We now need to further subdivide our analysis into two subcases, depending on whether
α is greater or smaller than 10η. Notice that α is bounded by δ, while η could be even
much smaller than δ, since the sum of all the different η’s corresponding to bad intervals
is smaller than 3δ: indeed, the total length of the internal bad intervals is less than 2δ, so
we do not even need to subtract the matrix

(
1 0
0 0

)
as in (3.8). As a consequence, either of

the two cases may actually hold.

Step 5a. The case α ≤ 10η. In this case we let H be the point in the segment P ′Q′

satisfying P2 = H2 (such a point exists by (3.16)), and H = g(H), which is well-defined
since g has been defined on the good segment P ′Q′. We subdivide the quadrilateral C into
the union of the triangle PP ′H and the quadrilateral PHQ′Q, and we aim to define h
separately on these two pieces. First of all, as in the proof of Theorem 2.1, we consider
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Fig. 9. Approximation in an internal bad quadrilateral: case 1, Step 5a.

the shortest path between P and H in C, which is a piecewise affine path, possibly inter-
secting ∂C in other points than P and H , and we take a slight modification γ of this path,
which is still piecewise affine, but which is entirely in the interior of C except for the two
extremes P and H . By minimality, we can of course take γ satisfying

H1(γ ) < H1(P̄ P ′)+H1(P ′H ). (3.18)

We then extend g to the segment PH as the piecewise affine function sending the segment
PH onto the path γ at constant speed.

Let us now focus on the triangle PP ′H . The segment PH is horizontal by definition,
while P ′H is “quite vertical”; more precisely, it is contained in P ′Q′ and by definition
we have

|P ′1 −Q
′

1| ≤ δ/2, P ′2 −Q
′

2 ≥ ` ≥ δ.

The triangle would then be a bi-Lipschitz image of a square with side b, with uniformly
bounded constant, if ξ is not too much greater than b, or, in other words, if θ is not too
large. Since we cannot be sure that this is the case, exactly as in Step 4 we define 8
to be the affine map which does not modify the horizontal segments, and which shrinks
the segments parallel to P ′H by a factor of ξ/b. Then 8(PP ′H) is a triangle which is
uniformly bi-Lipschitz to a square of side b, so exactly as in Step 4 we apply Theorem 2.1
to the map g̃ = g ◦ 8−1 finding an extension h̃ on 8(PP ′H), and we finally obtain an
extension of g in PP ′H as h = h̃ ◦8. Estimating the derivatives of h, h̃, g and g̃ exactly
as in Step 4, we get∫

PP ′H

|Dh(x)| dx ≤ K
ξ

b

∫
8(PP ′H)

|Dh̃(y)| dy ≤ Kξ

∫
∂(8(PP ′H))

|Dg̃(t)| dt

= KξH1(∂(g(PP ′H))) = Kξ(H1(P̄ P ′)+H1(γ )+H1(P ′H )
)

≤ K
(
H1(P̄ P ′)+H1(P ′H )

)
≤ K(η + α) ≤ Kη,

where we have also used (3.18) and the assumption α ≤ 10η.
Now consider the quadrilateral PHQ′Q. Since we have already seen that PQ and

HQ′ are “quite vertical”, while PH is exactly horizontal and QQ′ is “quite horizontal”
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since it makes an angle of π/2−θ ≤ π/4 with the horizontal direction, this quadrilateral is
uniformly bi-Lipschitz to a rectangle. Up to shrinking vertically with a ratio b/` as before,
it becomes uniformly bi-Lipschitz to a square of side b, hence by arguing as before by
shrinking, applying Theorem 2.1 and then stretching back, we define an extension h of g
inside the quadrilateral PHQ′Q which satisfies∫

PHQ′Q

|Dh(x)| dx ≤ K`
(
H1(PQ)+H1(HQ′)+H1(γ )+H1(Q̄Q′)

)
≤ Kη,

which put together with the estimate above for the triangle PP ′H gives∫
C
|Dh(x)| dx ≤ Kη. (3.19)

Step 5b. The case α > 10η. In this case, if we argued as in Step 5a, we would find
the same estimates as in (3.19), but with Kδ in place of Kη; and in turn, this would not
be acceptable, because summing all the different η’s for the bad quadrilaterals we get
something smaller than δ, while adding a term δ in each of the bad quadrilaterals we
could get any large constant in the end, since bad intervals could be many more than 1/δ.
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Fig. 10. Approximation in an internal bad quadrilateral: case 2, Step 5b.

As a consequence, in this substep we make a different definition of the extension h
for α > 10η. More precisely, as in Figure 10, we take four points H1, H2, H3, H4 in
the segments PQ and P ′Q′, and the corresponding points H 1, H 2, H 3, H 4 so that
H i = g(Hi) for i = 1, 2, 3, 4; the points are chosen in such a way that the segments
PH 1 and Q′H 4 have length η, while H1H2 and H3H4 are parallel to PP ′ and QQ′

respectively. By definition of η, and keeping in mind that the length of P ′Q′ is at most
α, and at least α − η, we find that the open segments H 1H 2 and H 3H 4 are contained in
the interior of C, and by construction the same holds for the segments H1H2 and H3H4
in C. We then regard both C and C as the union of three pieces: the internal quadrilaterals
H1H2H4H3 and H 1H 2H 4H 3, and the “top” and “bottom” remaining parts, shaded in
Figure 10. We aim to define the piecewise affine function h so as to send each part of C
onto the corresponding one in C.

For the “top” and “bottom” parts, we can argue more or less as in the last steps: each
of the quadrilaterals PP ′H2H1 andH3H4Q

′Q can be transformed into a square, then one
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applies Theorem 2.1 and then goes back to the quadrilateral; since the perimeter of each
of the shaded regions in C is now at most 4η, the same estimates as in Step 5a can be
repeated, so that similarly to (3.19) we now get∫

PP ′H2H1∪H3H4Q′Q
|Dh(x)| dx ≤ Kη. (3.20)

To conclude, we have to define the extension h so as to map the internal quadrilateral
of C onto the internal quadrilateral of C, and we will do that again by mapping in an
affine way the triangle H1H2H3 (resp. H3H2H4) onto H 1H 2H 3 (resp. H 3H 2H 4). We
thus only need to check the value of |Dh| on H1H2H3, the estimate for H3H2H4 being
completely similar. To get the estimate, as in Figure 10 we set

H1 −H3 = (δ̃1, ˜̀), H2 −H1 = (b̃, ξ̃ );

notice that
|P −H1|

|P −Q|
=
|P −H 1|

|P −Q|
=
η

α
<

1
10
,

which implies that b̃ ≥ 9
10b and ξ̃ ≥ 9

10ξ . Hence, the constant matrix Dh in H1H2H3
satisfies

|Dh(δ̃1, ˜̀)| ≤ α ≤ δ,

|Dh(b̃, b̃ tan θ)| = |Dh(b̃, ξ̃ )| = |H 2 −H 1| ≤ 4η,
(3.21)

since by construction we readily get |P ′ −H 2| ≤ 2η. As a consequence, we get first

|Dh(δ̃1, δ̃1 tan θ)| ≤ 4
δ̃1

b̃
η ≤ 3δ

η

b
,

and then
|Dh(0, ˜̀ − δ̃1 tan θ)| ≤ δ(1+ 3η/b). (3.22)

Recall now that the estimates (3.9) ensure ` > 2|δ1 tan θ |, hence

˜̀ > 2|δ̃1 tan θ |;

indeed, the estimates (3.9) were obtained in a good quadrilateral, so they are not valid
now, but since the segment PQ corresponds to a good σ , and in particular it is in the
boundary of the good quadrilateral immediately preceding C, the estimates on ` and δ1
are still valid. As a consequence, by (3.22) we get

|D2h| ≤ 2
δ

˜̀

(
1+ 3

η

b

)
≤ 4

δ

`

(
1+ 3

η

b

)
≤ 4+ 12

η

b
, (3.23)

and substituting this in (3.21) we also have

|Dh(b̃, 0)| ≤ 4η + b̃|tan θ | |D2h| ≤ 4η + b̃
`

δ
|D2h| ≤ 4η + 4b̃ + 12b̃

η

b
,
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from which we derive

|D1h| ≤ 4η/b̃ + 4+ 12η/b ≤ 17η/b + 4. (3.24)

Since the area of the triangle H1H2H3 is bounded by b, from (3.23) and (3.24) we get∫
H1H2H3

|Dh(x)| dx ≤ b(8+ 29η/b) ≤ K(b + η),

so that repeating the same estimate in the triangle H3H2H4, and adding (3.20), we con-
clude that in a bad quadrilateral C where α > 10η we have∫

C
|Dh(x)| dx ≤ Kb +Kη. (3.25)

Step 6. Conclusion. We can now put together all the estimates of the last steps to con-
clude the proof. Consider first the bad quadrilaterals, whose union is S \G, since in Step 3
we have defined G as the union of the good quadrilaterals. Thanks to (3.19) and (3.25),
the integral of |Dh| on any internal bad quadrilateral can always be estimated by b + η.
If we add the different b’s corresponding to the bad quadrilaterals, up to an error δ we
find the sum of the lengths of the internal bad intervals, which is at most 2δ by construc-
tion. On the other hand, summing the different η’s, as already noticed after (3.17), we get
something smaller than 3δ. As a consequence, putting together the estimates for all the
internal bad quadrilaterals, and also adding the estimate (3.15) for the first and the last
bad quadrilaterals, we obtain ∫

S\G
|Dh(x)| dx ≤ Kδ.

Since the total area of the bad quadrilaterals can be estimated by (twice) the total length
of their horizontal projections, which in turn corresponds to the total length of the bad
intervals up to an error δ, and so it is less than 7δ, we can now insert (3.13) to get∫
S

∣∣∣∣Dh(x)− (1 0
0 0

)∣∣∣∣ dx = ∫
G

∣∣∣∣Dh(x)− (1 0
0 0

)∣∣∣∣ dx + ∫
S\G

∣∣∣∣Dh(x)− (1 0
0 0

)∣∣∣∣ dx
≤ Kδ +

∫
S\G
|Dh(x)| dx + |S \G| ≤ Kδ,

which is (3.2), and the proof of Theorem 3.1 is complete. ut

Remark 3.2. A trivial rotation and dilation argument proves the following generalization
of Theorem 3.1: whenever S is a square of side 2r , g : ∂S → R2 is a piecewise linear
and one-to-one function, and M is a matrix with detM = 0, there is a finitely piecewise
affine extension h : S → R2 of g such that∫

S
|Dh(x)−M| dx ≤ Kr

∫
∂S
|Dg(t)−M · τ(t)| dH1(t),

as soon as ∫
∂S
|Dg(t)−M · τ(t)| dH1(t) < rδMAX‖M‖.
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4. Proof of Theorem 1.1

The proof is still quite involved, but as already explained, the overall idea is simple: to
divide the whole � into squares, and then treat them in three different ways: roughly
speaking, the “good” squares, where the function is very close to an affine map (and this
group will be further divided into two subgroups), and the “bad” ones, where this is not
true. Moreover, we will have to slightly change the value of f on the boundaries of all
these squares, in order for f to become piecewise linear. Then, in bad squares we will
simply use Theorem 2.1 to get an extension, and the constant K in (2.1) will not be a
problem because the bad squares will cover only a small portion of �. Instead, we have
to perform a very precise approximation of f in good squares; to do so, we will treat
differently the squares where the affine map close to f has zero determinant, and those
where the determinant is strictly positive. For the former, we will use Theorem 3.1, while
for the latter it will be enough to interpolate the values of f on the boundary, as we show
in Section 4.1.

Before starting with the proof, let us give a couple of definitions.

Definition 4.1. We say that S(c, r) is a Lebesgue square with matrix M ∈ R2×2 and
constant δ > 0 if S(c, 3r) ⊆ � and∫

S(c,3r)
|Df (z)−M| dz ≤ δ.

Definition 4.2. Let S(x, r) ⊆ � be a square, and denote by T1 and T2 the two triangles
into which S is subdivided by the diagonal connecting (x1−r, x2+r) and (x1+r, x2−r).
We let ϕS(x,r) be the piecewise affine function which is affine on T1 and on T2, and which
coincides with f at the four vertices of S(x, r).

4.1. The Lebesgue squares

In this first subsection, we consider the situation in the best possible case, namely, of a
Lebesgue square. It is rather easy to show the following uniform estimate.

Lemma 4.3. For every ε > 0 and every matrix M , there exists δ̄ = δ̄(M, ε) � ε such
that if S(c, r) is a Lebesgue square with matrix M and constant δ ≤ δ̄, then

‖f−ϕ‖L∞(S(c,r)) ≤ rε, ‖Df−Dϕ‖L1(S(c,r)) ≤ r
2ε, ‖f−ψ‖L∞(S(c,2r)) ≤ rε/10,

(4.1)

where ϕ = ϕS(c,r) is the piecewise affine map of Definition 4.2 and ψ : R2
→ R2 is an

affine function satisfyiny Dψ = M . If in addition detM > 0, then ϕ is injective and

f
(
S(c, (1− ε)r)

)
⊆ ϕ(S(c, r)) ⊆ f

(
S(c, (1+ ε)r)

)
. (4.2)

Proof. We assume for simplicity of notation that c is the origin, and we write S(r) instead
of S(0, r). Let R be a large constant, depending only on M and ε, to be specified later,
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and define

A =

{
x ∈ (−3r, 3r) :

∫ 3r

−3r
|Df (x, t)−M| dt ≥ Rδ

}
,

B =

{
y ∈ (−3r, 3r) :

∫ 3r

−3r
|Df (t, y)−M| dt ≥ Rδ

}
.

By definition of Lebesgue square, we immediately get

|A| ≤ 6r/R, |B| ≤ 6r/R. (4.3)

Now fix z = (x̄, ȳ) ∈ S(r) with x̄ /∈ A, ȳ /∈ B, and define ψ : S(c, 3r) → R2 as
ψ(w) = f (z)+M(w − z); it is clear that ψ is an affine map with Dψ ≡ M , and setting
g = f − ψ we have by definition g(z) = 0. We claim that

|g(w)| ≤ 12rRδ ∀w = (x, y) ∈ S(3r) \ (A× B). (4.4)

Indeed, assume that x /∈ A (if y /∈ B the obvious modification of the argument works).
Recalling that g(x̄, ȳ) = 0 and that x /∈ A and ȳ /∈ B, we can evaluate

|g(w)| = |g(x, y)− g(x̄, ȳ)| ≤ |g(x, y)− g(x, ȳ)| + |g(x, ȳ)− g(x̄, ȳ)|

≤

∫ y

ȳ

|Df (x, t)−M| dt +

∫ x

x̄

|Df (t, ȳ)−M| dt ≤ 12rRδ,

and (4.4) is proved.
Let now w = (x, y) ∈ S(2r) be a generic point. By (4.3), we can find x1 < x < x2

and y1 < y < y2 such that for i = 1, 2 we have (xi, yi) ∈ S(3r), xi /∈ A, yi /∈ B and
x2 − x1 ≤ 7r/R, y2 − y1 ≤ 7r/R. Hence, w is inside the small rectangle R having sides
with coordinates xi and yi , and by (4.4) we know that

|g(P )| ≤ 12rRδ ∀P ∈ ∂R. (4.5)

By definition ψ(∂R) is a small parallelogram around ψ(w), with

ψ(∂R) ⊆ B
(
ψ(w),

7r
√

2
R
‖M‖

)
,

where ‖M‖ := max |M(v)|/|v|. This estimate, together with (4.5), ensures that the whole
curve f (∂R) consists of points less than 12rRδ+ 7r

√
2 ‖M‖/R away from ψ(w). Since

f is a homeomorphism, the point f (w) is inside this curve, hence we finally deduce

|f (w)− ψ(w)| = |g(w)| ≤ 12rRδ +
7r
√

2
R
‖M‖ < r

ε

10
, (4.6)

where the last inequality holds as soon as R has been chosen large enough, depending
on M and on ε, and then δ̄ has been chosen small enough, depending on R and ε, and
thus ultimately only on M and ε. Hence, we have obtained the third estimate in (4.1).
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Now consider the function ϕ = ϕS(r), and let

V1 = (c1−r, c2+r), V2 = (c1+r, c2+r), V3 = (c1+r, c2−r), V4 = (c1−r, c2−r)

be the four vertices of the square S(r). By definition, ϕ = f at every vertex Vi ; then,
in the triangle T1 (and the same holds true in T2) the affine functions ϕ and ψ satisfy
|ϕ − ψ | = |f − ψ | at every vertex, thus (4.6) gives

‖ϕ−ψ‖L∞(S(r)) ≤ ‖f−ψ‖L∞(S(r)) ≤ ‖f−ψ‖L∞(S(2r)) ≤ 12rRδ+
7r
√

2
R
‖M‖ < r

ε

10
,

(4.7)
and this, together with (4.6), implies the first estimate in (4.1).

Concerning the second estimate, let M1 be the constant value of Dϕ in T1, and notice
that by (4.7) we get

|(M1 −M)(e1)| =

∣∣∣∣ (ϕ(V2)− ϕ(V1))− (ψ(V2)− ψ(V1))

2r

∣∣∣∣ < ε

10
,

and the same holds for |(M1 −M)(e2)| simply by checking the vertices V1 and V4. As a
consequence, the constant value of |Dϕ−Dψ | in T1 is less than ε/5, and the same holds
in T2. In other words, ‖Dϕ − Dψ‖L∞(S(r)) ≤ ε/5. Since Dψ is constantly M in S(r),
by the definition of Lebesgue square we get

‖Df −Dϕ‖L1(S(r)) =
∫
S(r)
|Df (z)−Dϕ(z)| dz ≤

∫
S(r)
|Df −M| +

∫
S(r)
|M −Dϕ|

≤ 36r2δ + 4
5 r

2ε < r2ε,

where the last inequality is true after possibly decreasing δ̄; this gives the second estimate
in (4.1).

Now suppose that detM > 0. As a consequence, the image of S(r) under ψ is a
non-degenerate parallelogram, and then the image of S(r) under ϕ is the disjoint union of
two non-degenerate triangles, as soon as ‖ψ − ϕ‖L∞(S(r))/r is small enough, depending
on M; moreover, also (4.2) is obvious for ‖ψ − f ‖L∞(S(2r))/r small enough, depending
onM and ε. Since (4.6) is valid for everyw ∈ S(2r), we get (4.2) up to further increasing
R and decreasing δ̄, again depending only on M and ε. ut

Remark 4.4. In the last estimate of the above proof, the final values of 1/R and δ behave
more or less like ε multiplied by min |M(v)|/|v|, and the latter number is strictly positive
exactly when detM > 0. This clarifies the need of the assumption detM > 0 in order
to get (4.2). We can come to the same conclusion also directly by considering the claim
of (4.2): we cannot hope it to be valid for detM = 0; indeed, it is true that f is as close as
we wish to an affine function, but this affine function is degenerate, hence the image of a
small square around c is close to a degenerate parallelogram, which is a segment (or even
a point if M = 0). And of course, knowing that the four vertices of a small square are
sent very close to the vertices of a parallelogram does not even imply that the piecewise
affine function ϕS(x,r) is injective, if this parallelogram is degenerate!
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Remark 4.5. A quick look at the proof of the above lemma shows that the constant
δ̄(M, ε) actually depends only on ε, ‖M‖, and detM: more precisely, δ̄(M, ε) is the
minimum between a constant which continuously depends on ε, ‖M‖, and detM for
detM ≥ 0 (found in the first part of the proof), and another constant which also depends
continuously on ε, ‖M‖, and detM , but in the range detM > 0 (found at the end of the
proof): this second constant explodes when detM → 0. As a consequence, δ̄ is bounded
if ε is bounded from below and ‖M‖ from above, and if detM is either 0 or bounded both
from above and below (with a strictly positive constant).

The crucial importance of the above general lemma comes from the fact that we can
always apply it for small squares “almost centered” at Lebesgue points x̄.

Lemma 4.6. Let δ > 0 and let x̄ be a Lebesgue point for Df . Then there exists r̄ =
r̄(x̄, δ) such that, for any r < r̄ and any x ∈ S(x̄, r/2), the square S(x, r) is a Lebesgue
square with matrix M = Df (x̄) and constant δ.

Proof. Let x̄ ∈ �, M ∈ R2×2 and δ > 0 be as in the claim. Since x̄ is a Lebesgue point,
there exists r̄ = r̄(x̄, δ) such that, for any r < r̄ , one has B(x̄, 5r) ⊆ � and∫

B(x̄,5r)
|Df (z)−M| dz ≤

δ

3
. (4.8)

Let now x ∈ S(x̄, r/2). We have S(x, 3r) ⊆ B(x̄, 5r) ⊆ �, and moreover (4.8) gives∫
S(x,3r)

|Df (z)−M| dz =
1

36r2

∫
S(x,3r)

|Df −M| ≤
1

36r2

∫
B(x̄,5r)

|Df −M|

=
25π
36

∫
B(x̄,5r)

|Df −M| ≤ δ,

and by Definition 4.1 this means that S(x, r) is a Lebesgue square with matrix M and
constant δ. ut

4.2. How to “move the vertices” of a grid

In this section we describe how to “move the vertices” of a grid in order to be able to
control the average of |Df | inside a square by the average of |Df | on the boundary of the
square. To do so, we first introduce the following notion.

Definition 4.7. We say that the domain � is an r-set if it is a finite union of essentially
disjoint squares, all having side 2r and sides parallel to the coordinate axes. Any side of
one of these squares will be called a side of type A if both the endpoints are in the interior
of �, of type B if at least one endpoint is in ∂�, but the interior of the side is inside �,
and of type C if the whole side is in ∂�. Any vertex of one of the squares will then be
called of type A if it belongs to the interior of �, of type B if it belongs to ∂� but it is an
endpoint of at least one side of type B, and of type C otherwise.

For any small constant ε > 0, we will define a short segment or curve around each vertex
of type A or B. We start with vertices of type A.
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Definition 4.8. Let � be an r-set, ε � 1 and let V = (V1, V2) be a vertex of type A. We
let Iε(V ) be the segment of length 2

√
2 εr centered at V and with direction π/4, that is,

Iε(V ) = {(V1 + t, V2 + t) : |t | ≤ εr}. (4.9)

Notice that all the segments Iε(V ) lie inside � and they do not intersect each other.

The main result that we prove ensures that the average of |Df | in a side of a square
can always be estimated by the average of |Df | in the whole square, up to moving the
two vertices in the corresponding segments Iε. Actually, in order to be able to also treat
Lebesgue squares with detM = 0, we will in fact estimate |Df − M| instead of |Df |
for some matrix M; then, we will apply this result with M = 0 for all non-Lebesgue
squares, and with M = Df (x̄) for Lebesgue squares “almost centered” at a Lebesgue
point x̄. Unfortunately (but the reason is quite evident) the estimate must explode as 1/ε;
however, this will not be a problem for our construction.

Lemma 4.9. Let� be an r-set, letAB be a side of type A, and letM ∈ R2×2 be a matrix.
Denote by R ⊆ � the union of the six squares of the grid having either A or B (or both)
as a vertex, and set

0(A,B,M) =

{
(x, y) ∈ Iε(A)×Iε(B) :

∫
xy

|Df −M| dH1 >
25
εr

∫
R
|Df −M| dH2

}
.

Then

H1({x ∈ Iε(A) : H1({y ∈ Iε(B) : (x, y) ∈ 0}) > H1(Iε(B))/5
})
< H1(Iε(A))/5.

(4.10)

Proof. Suppose, just to fix ideas, that AB is horizontal, as in Figure 11; suppose also, for
the moment, that M = 0. Let then R0 ⊆ R be the small parallelogram—dark shaded
in the figure, while R is light shaded—whose four vertices are the endpoints of the seg-
ments Iε(A) and Iε(B). A simple change of variable argument, together with the fact that

B
A

R0

Fig. 11. The rectangle R, the side AB, and the two segments Iε(A) and Iε(B).

R0 ⊆ R, yields∫
x∈Iε(A)

∫
y∈Iε(B)

∫
xy

|Df | dH1 dy dx ≤ 8εr
∫
R0

|Df (z)| dH2(z)

≤ 8εr
∫
R
|Df (z)| dH2(z).
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On the other hand, writing 0 = 0(A,B, 0) for brevity, we also have∫
x∈Iε(A)

∫
y∈Iε(B)

∫
xy

|Df | dH1 dy dx ≥

∫
(x,y)∈0

∫
xy

|Df | dH1 dy dx

≥ H2(0)
25
εr

∫
R
|Df | dH2,

hence
H2(0) ≤

8
25
ε2r2
=

1
25

H1(Iε(A)) ·H1(Iε(B)),

from which (4.10) immediately follows.
To handle the general case with M 6= 0, it is enough to apply the above argument

to the function f̃ (x) = f (x) − Mx; of course 0(A,B,M) coincides with 0(A,B, 0)
corresponding to f̃ , hence (4.10) follows also in the general case. ut

The above result will be useful in treating internal squares, but we also have to take care
of boundary squares. We now extend the definition of the segment Iε(V ) to vertices of
type B.

Definition 4.10. Let � be an r-set and let V ∈ ∂� be a vertex of type B. If V is a vertex
of exactly two squares of the decomposition, and these two squares are adjacent (as for
V1 in Figure 12, left), then let Iε(V ) be the segment of length 2εr on ∂� centered at V . If
V is a vertex of three squares of the decomposition (as for V2 in the figure), then let Iε(V )
be the union of the two segments contained in ∂�, of length εr , having V as an endpoint.

V4

V3

V2

V1

S2

V

S1

S3

Fig. 12. Left: some squares and vertices Vi near the boundary of an r-set�, and the corresponding
Iε(Vi). Right: definition of TV and 9V .

Notice that we have defined Iε(V ) only for vertices of type A and B, thus for instance
not for points like V3 or V4 in Figure 12. We now want to extend Lemma 4.9 to sides of
type B. To do so near points like V2 in Figure 12 (left), we need a last simple definition.

Definition 4.11. Let � be an r-set and let V ∈ ∂� be a vertex of three squares of the
decomposition, say S1, S2, S3. We denote by TV the right triangle having right angle
at V , two sides of length r/2, one horizontal and one vertical, and not contained in �,
and for i = 1, 2, 3 we let S−i be the square contained in Si , having one vertex at V ,
and side r/2. Then, we let 9V be the obvious piecewise affine homeomorphism between
S−1 ∪S

−

2 ∪S
−

3 and S−1 ∪S
−

2 ∪S
−

3 ∪TV , which is bi-Lipschitz with constant 2. Finally, we
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write �+ for the union of � with all the triangles TV for vertices V as above, and we let
9 : �→ �+ be the piecewise affine homeomorphism which coincides with 9V around
every vertex V , and which is the identity outside (see Figure 12, right). Notice that 9 is
the identity in the r-neighborhood of all the internal squares of the decomposition, and it
is globally 2-bi-Lipschitz. Finally, for every x, y ∈ � such that the segment 9(x)9(y) is
contained in �+, we denote by x̃y the counterimage, under 9, of this segment (which is
of course a piecewise linear path).

We can finally generalize Lemma 4.9 to all sides of type B; it will be enough to limit
ourselves to the simpler case M = 0.

Lemma 4.12. Let � be an r-set and let AB ⊆ � be a side of type B. Denote by R ⊆ �
the union of the squares of the grid having either A or B (or both) as one vertex and
define

0(A,B) =

{
(x, y) ∈ Iε(A)× Iε(B) :

∫‹xy |Df | dH1 >
100
εr

∫
R
|Df | dH2

}
.

Then

H1({x ∈ Iε(A) : H1({y ∈ Iε(B) : (x, y) ∈ 0}) > H1(Iε(B))/5
})
< H1(Iε(A))/5.

(4.11)

Proof. This is a very simple generalization of Lemma 4.9; we just have to consider a
few possible cases, all depicted in Figure 13. Without loss of generality, we can assume
that B ∈ ∂� and the segment AB is horizontal. If B belongs to three squares of the
decomposition, then there are three possible subcases. First of all, A can be inside �
(this is the first case depicted in the figure); second, A can also belong to three squares
of the decomposition (depending on what these squares are like, this is the second or
third case in the figure); last, A can belong to two squares, which are then necessarily
the two squares having AB as a side (the fourth case in the figure). Otherwise, B can
belong to exactly two adjacent squares of the decomposition, and then again A can either
be inside � (the fifth case in the figure) or in the boundary of �: in this latter case (the
sixth and last in the figure), A must also belong only to the same two squares to which B
belongs, since otherwise we fall into a case already considered. To clarify the situation,
Figure 13 does not show the situation in �, but directly in �+.

The proof is now almost identical to that of Lemma 4.10. Let again R0 be the quadri-
lateral having as vertices the endpoints of 9(Iε(A)) and 9(Iε(B)); this quadrilateral,
depicted in the figure for all the possible cases, lies in �+. Notice that, depending on the
case, R can be made up by 2, 3, 4, or 5 squares, and the figure always shows only (the
image under 9 of) these squares. To conclude the proof we have to keep in mind that we
are interested in what happens in the real domain �, not in the simplified domain �+.
However, we can use the map9 to move the situation from� to�+; then, we notice that
the very simple calculation done for Lemma 4.10 works perfectly in the new situation;
and finally, we use9−1 to get back to the case of�. The only detail which changes, since
9 is 2-bi-Lipschitz, is that the constant 25 in the old definition of 0 for internal sides
becomes 100 for the new definition of 0 for sides touching the boundary. ut
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A B ′ B ′

A′

B ′

R0 R0

A′

R0

R0

B ′

A A B

R0B ′

R0

A

Fig. 13. The six possibilities in Lemma 4.12.

Now fix a matrix M = M(A,B) for any side AB of type A, and write for brevity
0(A,B) = 0(A,B,M(A,B)). Thanks to the above results, we have defined a set of “bad
pairs” (x, y) ∈ 0(A,B), where “bad” means that in the segment xy (or in the curve x̃y)
too much derivative is concentrated. We can now find a selection of points xV ∈ Iε(V )
for any vertex V such that for any side AB the pair (xA, xB) does not belong to 0(A,B).

Lemma 4.13. Let � be an r-set, and fix a matrix M(A,B) for any side of type A. It is
possible to select a point xV ∈ Iε(V ) for any vertex V of type A or B in such a way that,
for every side AB of type A or B, one has (xA, xB) /∈ 0(A,B).

Proof. We will argue recursively. First of all, we enumerate all the vertices of type A or
B as V1, . . . , VN , for some N ∈ N. Then, we aim to show that it is possible to select by
recursion points xi = xVi in every Iε(Vi) in such a way that whenever ViVm is a side of
type A or B, the point xi satisfies{

H1({y ∈ Iε(Vm) : (xi, y) ∈ 0(Vi, Vm)}) ≤ H1(Iε(Vm))/5 if m > i,

(xi, xm) /∈ 0(Vi, Vm) if m < i.
(4.12)

Notice that since we will define the points recursively, the above requirements make
sense: in particular, if m < i then the point xm has already been chosen when we have
to choose xi . Of course, if we can select all the points xi according to (4.12), then we are
done: the conclusion will be simply given by the second property in (4.12), but the first
one is essential to let the recursion work.

Let then 1 ≤ i ≤ N , and suppose that the points xj for j < i have been chosen
according to (4.12); let n− (resp. n+) be the number of indices j < i (resp. j > i) such
that ViVj is a side of type A or B. By (4.12) applied to the indices j < i, we know that
the points x ∈ Iε(Vi) such that (x, xj ) ∈ 0(Vi, Vj ) for some j < i corresponding to a
side ViVj cover a portion at most n−/5 of Iε(Vi). On the other hand, by Lemma 4.12, the
points x ∈ Iε(Vi) such that

H1({y ∈ Iε(Vj ) : (xi, y) ∈ 0(Vi, Vj )}) > H1(Iε(Vj ))/5



634 Stanislav Hencl, Aldo Pratelli

for some j > i for which ViVj is a side of type A or B cover a portion at most n+/5
of Iε(Vi). Since of course n− + n+ ≤ 4, we can pick a point xi ∈ Iε(Vi) for which none
of the above conditions holds, hence by definition this choice fulfills (4.12). The recursion
argument is then complete. ut

The last goal of this section is to define an approximating function f̃ of f on the grid
given by the boundaries of the squares. First of all, let us give the definition of “grid” and
“modified grid”.

Definition 4.14. Let� be an r-set, and for any vertex V of type B let V ′ be a given point
xV in Iε(V ); moreover, let V ′ = V for any vertex V of type A or C. We define the grid to
be the union G of all the sides AB of the squares of the decomposition, while the modified
grid is the union G̃ of all the “modified sides”, that is, the piecewise linear curves fiA′B ′.
Notice that if AB ⊆ ∂�, it might happen that the curve fiA′B ′ has not been defined in Def-
inition 4.11; we then simply denote by fiA′B ′ the shortest curve in� connectingA′ and B ′.
Notice that this shortest curve lies entirely inside ∂�, and actually this minimizing prop-
erty of fiA′B ′ is also true for the sides AB ⊆ ∂� where fiA′B ′ was already defined in Defi-
nition 4.11. For every square S of the grid, we write S̃ for the union of its modified sides.

Observe that the grid G̃ coincides with the grid G except near the boundary of �; anal-
ogously, the piecewise linear curve fiA′B ′ is nothing other than the segment AB if it is a
side of type A. Notice that both the grid and the modified grid contain the boundary of�.
We now give our last definition of a map f̃ on G̃.

Definition 4.15. Let � be an r-set, and for any side AB of type A fix a matrix M =
M(A,B). Let xV ∈ Iε(V ) for vertices V of type A or B be as in Lemma 4.13. We define
g : G̃ → R2 as follows. For any side AB of type A or B, we define g on fiA′B ′ as the
reparametrization, at constant speed, of the function f on flxAxB ; moreover, we let g = f
on ∂� ⊆ G̃.

In the above definition, it is important not to confuse the points xV with the points V ′:
according to Definition 4.14, V ′ = xV if V is a vertex of type B, while V ′ = V if V is
a vertex of type A or C. In particular, if AB is a side of type A, then fiA′B ′ is simply the
segment AB, hence g on AB is the reparametrized copy of f on the segment xAxB =flxAxB .

We conclude this section with an estimate for the function g.

Lemma 4.16. Let � be an r-set, and let the matrices M = M(A,B), the points xV and
the function g : G̃ → R2 be as in Definition 4.15. Then, for any side AB of type A, letting
ν be the unit vector with direction AB and R again the union of the squares of the grid
having either A or B as a vertex, we have∫

AB

|Dg(t)−M · ν| dt ≤
25
εr

∫
R
|Df −M| dH2

+ 11‖M‖εr. (4.13)

On the other hand, for any side AB of type B, we have∫
Ã′B ′
|Dg(t)| dt ≤

100
εr

∫
R
|Df | dH2. (4.14)
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Proof. For a side AB of type A, set for brevity x = xA and y = xB . By Lemma 4.9, we
already know that ∫

xy

|Df (s)−M| ds ≤
25
εr

∫
R
|Df −M| dH2. (4.15)

Recall now that, by definition, the function g on the segment AB is simply the
reparametrization of f on xy. Define then λ = AB/xy, and let ν̃ be the unit vector
with direction xy; notice that by construction

1− 2ε ≤ λ ≤ 1+ 3ε, |ν̃ − ν| ≤ 2ε.

As a consequence, by a change of variable we obtain∫
AB

|Dg(t)−M · ν| dt = λ

∫
xy

∣∣∣∣Df (s) · ν̃λ
−M · ν

∣∣∣∣ ds = ∫
xy

|Df (s) · ν̃ −M · λν| ds

≤

∫
xy

|(Df (s)−M) · ν̃| ds +

∫
xy

‖M‖ |λν − ν̃| ds

≤

∫
xy

|Df (s)−M| ds + 5‖M‖εxy,

thus recalling (4.15) we get (4.13).
Let now AB be a side of type B, and set again x = xA and y = yB . In this case, by

Lemma 4.12 we already know that∫‹xy |Df | dH1
≤

100
εr

∫
R
|Df | dH2. (4.16)

Now, by definition of g the image of fiA′B ′ under g coincides with the image of x̃y under f ,
hence the lengths of the two curves coincide, which means∫‹xy |Df | dH1

=

∫
Ã′B ′
|Dg(t)| dt.

Hence, (4.14) directly follows from (4.16). ut

4.3. How to modify f on a grid

In this section, we show how to modify a function on a one-dimensional grid; more pre-
cisely, we take a generic function defined on a grid, and we modify it in order to make it
piecewise linear. We have to do so because both our major results, Theorems 2.1 and 3.1,
need a function which is piecewise linear on the boundary of a square. We start with
a rather simple modification, which we will eventually apply to “bad” squares and to
“good” squares corresponding to a matrix with detM = 0; this construction is reminis-
cent of the one in [11], where the situation was more complicated because also the inverse
had to be approximated.
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Proposition 4.17. Let� be an r-set, let G and G̃ be a grid and a modified grid according
to Definition 4.14, and let g : G̃ → R2 be a continuous, injective function which is
piecewise linear on ∂�. Then there exists a piecewise linear and injective function ĝ :
G̃ → R2 such that ĝ = g on ∂�, ĝ(V ′) = g(V ′) for every vertex V of the grid, and for
every side AB of type A and every matrix M one has∫

AB

|Dĝ(t)−M · ν| dt ≤

∫
AB

|Dg(t)−M · ν| dt, (4.17)

while for every side AB of type B one has∫
Ã′B ′
|Dĝ(t)| dt ≤

∫
Ã′B ′
|Dg(t)| dt. (4.18)

Moreover, on each curve fiA′B ′ the function ĝ is an interpolation of finitely many points of
the curve g(fiA′B ′).
Proof. We define the map ĝ in two steps: first around the vertices, and then in the interior
of the sides. Figure 14 depicts how the construction works.

Step I. Definition of ĝ around the vertices. Select a vertex V of type A, that is, V be-
longs to the interior of�. There are then four sides of the grid for which V is an endpoint,
and we denote by Vi , 1 ≤ i ≤ 4, the other four endpoints of these sides. Since g is con-
tinuous and injective, the quantity

inf
{
g(x)g(V ) : x ∈ G̃ \

4⋃
i=1

VVi

}
is strictly positive; select a small radius ρ = ρ(V ) > 0, much smaller than this quantity.
Hence, by definition, the ball B(g(V ), ρ) intersects the image of the grid G̃ under g only
in points of the form g(x) for x belonging to one of the four sides VVi . On the other
hand, for each i = 1, . . . , 4 there is a point x ∈ VVi such that g(x) ∈ ∂B(g(V ), ρ).
Let V +i be the last such point, where “last” means “farthest from V ”. We then define the
function ĝ, on each of the four segments VV +i , simply as the linear function connecting
g(V ) and g(V +i ).

Now consider a vertex V of type B, that is, V belongs to ∂� but there is some side of
the grid, contained in the interior of �, of which V is an endpoint; let j be the number of
such sides, and notice that by construction, j is either 1 or 2 (keep in mind Figure 13). We
then argue much as before: we denote by Vi for 1 ≤ i ≤ j the other endpoints of these
internal sides, and we consider the strictly positive quantity

inf
{
g(x)g(V ) : x ∈ G̃ \

( j⋃
i=1

fiV ′V ′i ∪ ∂�)}.
This time, we take ρ = ρ(V ) not only much smaller than the above quantity, but also so
small that g(∂�) ∩ B(g(V ′), ρ) is the union of two segments (this is surely true as soon
as ρ is small enough, since g is piecewise linear on ∂�). Exactly as before, for 1 ≤ i ≤ j
we write V +i for the last point x ∈ fiV ′V ′i such that g(x) ∈ ∂B(g(V ′), ρ); up to further
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Fig. 14. The construction in Proposition 4.17: the points A, B and C are in ∂�, while D, E, F
and G are inside �; the image of ĝ inside � is thicker.

decreasing ρ(V ), we can also assume that the portion of the piecewise linear curve fiV ′V ′i
connecting V ′ and V +i is simply a segment. Then, as before we define ĝ on each of the j
segments V ′V +i as the linear function connecting g(V ′) and g(V +i ).

Step II. Definition of ĝ inside the sides. Up to now, we have defined ĝ on a neighborhood
of each vertex of type A or B; moreover, ĝ is already automatically defined on ∂�, since
we must have ĝ = g on ∂�. Therefore, to conclude we have to define ĝ on the remaining
part of G̃. By construction, this part is a finite and disjoint union of internal parts of
sides of type A or B; more precisely, for every side AB of type A there is a segment
A+B− ⊂⊂ AB where ĝ has to be defined, while for every side AB of type B, ĝ has still
to be defined on some piecewise linear curve ‡A+B− ⊂⊂fiA′B ′.

First consider a sideAB of type A. The function ĝ has already been defined on the seg-
ment AA+ (resp. B−B) as the linear function connecting g(A) and g(A+) (resp. g(B−)
and g(B)), and moreover the points ĝ(A+) = g(A+) and ĝ(B−) = g(B−) are in the
boundary of the disks B(g(A), ρ(A)) and B(g(B), ρ(B)) respectively. We have to define
ĝ on the segmentA+B−, and this must be a piecewise linear curve connecting g(A+) and
g(B−). Observe that g, on the segment A+B−, is already a curve connecting g(A+) and
g(B−), the only problem being that it is not necessarily piecewise linear. We can then se-
lect many points P0 = A

+, P1, P2, . . . , PN = B
− in the segment A+B−, and define ĝ

on A+B− as the piecewise affine interpolation of these values (that is, ĝ(Pi) = g(Pi) and
ĝ is linear on each PiPi+1). A simple geometric argument (similar to [11, Lemma 5.5],
but much easier) shows that, by carefully choosing many points, the map ĝ in A+B− is
injective, it never crosses the two disks B(g(A), ρ(A)) and B(g(B), ρ(B)), and its L∞

distance to g is much smaller than

inf
{
g(x)g(y) : x ∈ A+B−, y ∈ G̃ \ AB

}
.
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Now consider a side AB of type B. In this case, ĝ is piecewise linear on the two seg-
ments A′A+ and B−B ′, and we have to extend the definition to the piecewise linear curve‡A+B−. This can be done exactly as we just did for a side of type A, the only difference
being that, by doing the interpolation, the points Pi must include all the extremes of the
segments forming the curve ‡A+B−. Apart from that, nothing else changes, and thus the
definition of ĝ is complete.

Step III. The properties of ĝ. To conclude the proof, we just need to check that ĝ has
all the required properties. The fact that ĝ = g on ∂� and at every vertex is true by
construction, as is the fact that ĝ is an interpolation of finitely many points of the curve
g(fiA′B ′) on every side fiA′B ′ of G̃. To check (4.17) and (4.18), we just have to keep in
mind that

∫
AB
|Dg| is the length of the curve g on the segment AB, while

∫
AB
|Dĝ| is the

length of the (piecewise affine) curve ĝ on AB. But any interpolation of points of a curve
is shorter than the curve itself, so (4.17) follows immediately for M = 0, and the same
argument with fiA′B ′ in place of AB also yields (4.18).

To show (4.17) when M 6= 0, let CD ⊆ AB be a segment where ĝ is linear and
satisfies ĝ(C) = g(C), ĝ(D) = g(D); then∫ D

C

|Dĝ(t)−M · ν| dt =

∣∣∣∣ ∫ D

C

(Dĝ(t)−M · ν) dt

∣∣∣∣ = ∣∣∣∣ ∫ D

C

(Dg(t)−M · ν) dt

∣∣∣∣
≤

∫ D

C

|Dg(t)−M · ν| dt,

thus summing over the segments where ĝ is linear we get (4.17). ut

We conclude this section with the following generalization of the above result, rather
technical but very useful to obtain Theorem 1.1, and whose proof is actually nothing but
a straightforward modification of the previous one.

Proposition 4.18. Let C =
⋃N
i=1AiBi be a finite union of closed segments in R2, and

let C0 =
⋃N0
i=1AiBi , with N0 ≤ N , be a selection of some of them. Let g : C → R2 be

a continuous one-to-one function, and let η > 0. Then there exists another continuous
one-to-one function ĝ : C → R2 such that ĝ = g at every endpoint of each segment,
{ĝ 6= g} is contained in the η-neighborhood of C0, ĝ is piecewise linear on C0, and for
every side of C the estimates (4.17) and (4.18) hold.

Proof. The proof goes almost exactly as that of Proposition 4.17. First of all, up to a
subdivision of some of the segments, we can assume that any two segments are either
disjoint, or meet in a common endpoint. Then, we start by defining ĝ = g on all the sides
both of whose endpoints are off C0. Further, we consider any of the remaining vertices,
say V . We can select a small ρ such that the ball B(g(V ), ρ) contains only points of the
form g(x) for x belonging to one of the (finitely many) segments VVi having V as an
endpoint; by decreasing ρ, we can also ensure that |x − V | < η for any such x. We then
define the points V +i exactly as in Step I of the proof of Proposition 4.17, and we let ĝ be
linear on each segment VV +i ; the continuity and injectivity of ĝ up to now is then clear.
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In the portions of the segments where ĝ has not been defined yet, we can then define it
in two different ways: inside the segments which form C0, we define a piecewise linear ĝ
exactly as in Step II of Proposition 4.17; inside the other segments, we simply let ĝ = g.

By construction and arguing as in Step III of the proof of Proposition 4.17, we can
then immediately observe that the function ĝ is as required. ut

4.4. The proof of Theorem 1.1

We are finally in a position to prove Theorem 1.1, which will be done by putting together
all the results that we got up to now. For the reader’s convenience, we divide the proof
into several parts. The first one is a very peculiar case, when� is an r-set and f is already
piecewise linear on the boundary; nevertheless, most of the difficulties are contained in
this part.

Proposition 4.19. Under the assumption of Theorem 1.1, assume in addition that � is
an r-set, and that f is continuous up to ∂� and piecewise linear there. Then for every
ε > 0 there exists a finitely piecewise affine homeomorphism fε : �→ R2 such that

‖fε − f ‖W 1,1 + ‖fε − f ‖L∞ < ε, fε = f on ∂�. (4.19)

Proof. The idea of the construction is rather simple: we divide the squares into four
groups: the Lebesgue squares with positive determinant, the Lebesgue squares withM 6=
0 but zero determinant, the Lebesgue squares with M = 0, and the other ones. Inside the
first squares we can replace f with ϕS(c,r) and rely on Lemma 4.3, for the second ones
we will use Theorem 3.1, and for the third and fourth ones Theorem 2.1. However, to
treat each square separately, we need to take care of the values on the boundaries of the
squares: on the one hand, they must be piecewise linear, in order to allow us to apply The-
orems 3.1 and 2.1, and this will be obtained thanks to Proposition 4.17; but on the other
hand, any two adjacent squares must have the same boundary values on the common side,
and this will require some care.

Step I. Definition of the constants εi and of the sets A1, A2 and A3. First of all, we take
five small constants εi for 1 ≤ i ≤ 5. More precisely, ε1 is a small geometric constant
(for instance, ε1 = 1/10 is enough); instead, the constants ε5 � ε4 � ε3 � ε2 � ε

will depend on the data, that is, �, f and ε. More precisely, since f ∈ W 1,1(�), we can
select ε2 � 1 so small that∫

A

|Df | ≤
ε1ε

54K
∀A ⊆ �, |A| ≤ ε2, (4.20)

where K is a purely geometric constant, which we will make explicit during the proof.
Then we define ε3 � ε2 in such a way that

|{x ∈ � : 0 < |Df (x)| < ε3 or |Df (x)| > 1/ε3 or 0 < det(Df (x)) < ε3}| < ε2/45.
(4.21)
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This estimate is surely true as soon as ε3 is small enough, depending on ε2, � and f .
Now, we define the following two sets of matrices M ∈ R2×2:

M+
= {ε3 < ‖M‖ < 1/ε3, detM > ε3}, M0

= {ε3 < ‖M‖ < 1/ε3, detM = 0},

which of course depend only on ε3. Finally, we let ε5 � ε4 � ε3 be such that

ε5

ε4
+
ε4

ε3
+
ε5

ε1
≤

ε

6K|�|
, ε5 � ε4ε3, ε4 � ε2

3, (4.22)

and we define δ̂ = δ̂(ε3, ε5) as

δ̂ = min{δ̄(M, ε5) : M ∈M+
∪M0

}, (4.23)

where δ̄ are the constants of Lemma 4.3. Observe that δ̂ really depends only on ε3 and ε5
by construction, as observed in Remark 4.5. The last constant to select is r: indeed, � is
an r-set, but then we can regard it as an r/H -set for every H ∈ N; as a consequence, we
can now change the value of r , making it as small as we need: in particular, we let r be so
small that

rP (�)+ |{x ∈ � : r̄(x, δ̂) ≤ r}| <
ε2

180
, rP (f (�)) ≤

ε

66K
, (4.24)

where the constants r̄(x, δ̂) have been defined in Lemma 4.6 for every x ∈ � which is a
Lebesgue point for Df (so, for almost every point of �), and where P(A) is as usual the
perimeter of A, that is, H1(∂A).

Having fixed all the constants εi , and having also chosen the final value of r , we can
now enumerate the squares of the grid as Si, 1 ≤ i ≤ N , and we subdivide these squares
into four groups:

A1 = {Si ⊂⊂ � : Si is a Lebesgue square with matrix Mi ∈M+ and constant δ̂},

A2 = {Si ⊂⊂ � : Si is a Lebesgue square with matrix Mi ∈M0 and constant δ̂},

A3 = {Si ⊂⊂ � : Si is a Lebesgue square with matrix Mi = 0 and constant δ̂},
A4 = {Si : Si /∈ A1 ∪A2 ∪A3}.

We now aim to show that most of the squares belong to the first three groups. In fact,
consider the total area of the squares in A4. The union of those which touch the boundary
of� has of course an area smaller than rP (�). Let S(c, r) ∈ A4 be compactly contained
in �; this means that, for every x ∈ S(c, r/2), either we cannot apply Lemma 4.6 with
constant δ̂ to x (thus, r̄(x, δ̂) ≤ r), or x belongs to the set in (4.21). Since the area of
S(c, r) is four times that of S(c, r/2), by (4.21) and (4.24) we deduce∣∣∣⋃{Si ∈ A4}

∣∣∣ ≤ rP (�)+ 4
(
|{x ∈ � : r̄(x, δ̂) ≤ r}| + ε2/45

)
< ε2/9. (4.25)

Step II. Squares in A1 and A2 never meet. Let us now show that squares in A1 and A2
never meet, that is, no vertex of a square in A1 can also be a vertex of a square in A2;
this will come as a simple consequence of the L∞ estimate (4.1) in Lemma 4.3. Indeed,
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assume for simplicity of notation that S1 = S(c1, r) and S2 = S(c2, r) have a com-
mon vertex, and S1 ∈ A1, S2 ∈ A2. Then Lemma 4.3 provides affine functions ψ1, ψ2
satisfying Dψ1 = M1, Dψ2 = M2, each Si being a Lebesgue square with matrix Mi .
Set

S3/2 := S
(
c1 + c2

2
, r

)
⊆ S(c1, 2r) ∩ S(c2, 2r)

so that by (4.1) and recalling (4.23), we have

‖ψ1 − ψ2‖L∞(S3/2) ≤ ‖ψ1 − f ‖L∞(S(c1,2r)) + ‖ψ2 − f ‖L∞(S(c2,2r)) < rε5/5.

Since detM2 = 0, by construction we can find two points x, y ∈ S3/2 such that |y−x| = r
and ψ2(y − x) = 0. The last inequality, keeping in mind the definition of A1, then yields

rε5/5 > |ψ1(y − x)| ≥
detM1

‖M1‖
|y − x| > ε2

3r.

Since this is in contradiction with (4.22), we have concluded the proof of this step. For
later use we underline that, more generally, we have proved that

∀Sa, Sb ∈ A1 ∪A2 adjacent, ‖Ma −Mb‖ < ε5/5. (4.26)

Step III. A tentative modified grid G̃1 and a tentative function g1 : G̃1 → R2. In this
step, we define a modified grid G̃1 and a function g1 on it. To do so, we simply have to
choose a matrix M(A,B) for every side AB of type A of the grid G; once this is done
we get first the points xV ∈ Iε4(V ) from Lemma 4.13 applied with ε4 in place of ε, then
the modified grid G̃1 from Definition 4.14, and finally the function g1 : G̃1 → R2 from
Definition 4.15.

The matrices M(A,B) will be defined as follows. For any side AB of type A, let
for the moment Sa and Sb be the two squares of the grid having AB as a side; then, if
neither Sa nor Sb belongs to A2, we let M(A,B) = 0; if Sa ∈ A2 but Sb /∈ A2,, we
let M(A,B) = Ma , and analogously if Sa /∈ A2 and Sb ∈ A2 we let M(A,B) = Mb;
finally, if both Sa and Sb belong to A2, then we let M(A,B) be Ma or Mb—it makes no
difference which one we choose, since Ma ≈ Mb by (4.26).

We now want to evaluate
∫
∂S̃ |Dg1| for some of the modified squares S̃ (recall Defini-

tion 4.14). Take a square S = S(c, r) ∈ A3∪A4, and let S+ = S(c, 3r)∩� be the union
of the nine squares around it (more precisely, of those which are inside �). Take any side
AB ⊆ ∂S of type A or B, and observe that the union RAB of the squares touching A or
B is contained in S+. If AB is of type A but M(A,B) = 0, or if AB is of type B, we can
apply Lemma 4.16 (using (4.13) or (4.14) if AB is of type A or B respectively) to get∫

Ã′B ′
|Dg1| dH1

≤
100
ε4r

∫
RAB

|Df | dH2
≤

100
ε4r

∫
S+
|Df | dH2.

If instead AB ⊆ ∂S ∩ ∂�, then of course∫
Ã′B ′
|Dg1| dH1

=

∫fixAxB |Df | dH1
=

∫fixAxB∩∂� |Df | dH1.
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Since the boundary of S̃ is just the union of its four modified sides fiA′B ′, adding the last
two estimates for the four sides of ∂S we get∫

∂S̃
|Dg1| dH1

≤
400
ε4r

∫
S+
|Df | dH2

+

∫
∂S+∩∂�

|Df | dH1
∀S ∈ A−3,4, (4.27)

where
A−3,4 = {S ∈ A3 ∪A4 : M(A,B) = 0 for each side AB of S}.

Now consider a square S = S(c, r) ∈ A2, and notice that by definition it is compactly
contained in �, so S̃ = S and fiA′B ′ = AB for any of its sides. Let AB be one of
those sides, and notice that ‖M(A,B) −M‖ ≤ ε5/5, since S is a Lebesgue square with
matrix M and constant δ̂: indeed, if the other square having AB as a side is not in A2,
then M(A,B) = M , and otherwise the inequality is given by (4.26). As a consequence,
again (4.13) and the definition of M0 give∫

AB

|Dg1 −M · ν| dH1
≤

∫
AB

|Dg1 −M(A,B) · ν| dH1
+

2
5
rε5

≤
25
ε4r

∫
R
|Df −M(A,B)| dH2

+ 11‖M‖ε4r +
2
5
rε5

≤
25
ε4r

∫
R
|Df −M| dH2

+ 120r
ε5

ε4
+ 11r

ε4

ε3
+

2
5
rε5

≤
25
ε4r

∫
S+
|Df −M| dH2

+ 120r
ε5

ε4
+ 11r

ε4

ε3
+

2
5
rε5

≤ 1020r
ε5

ε4
+ 11r

ε4

ε3
+

2
5
rε5, (4.28)

where in the last inequality we have used Definition 4.1 together with the fact that δ̂ ≤
δ̄(M, ε5) ≤ ε5.

Step IV. The “correct” modified grid G̃ and a second tentative function g2 : G̃ → R2. In
this step, we define a second modified grid and a second tentative function; the idea is
to repeat almost exactly the procedure of Step III, but using the neighborhoods Iε1(V )

instead of Iε4(V ). In fact, the presence of ε4 is perfect for the squares in A2, since in (4.28)
we only have small terms like ε4/ε3 or ε5/ε4; instead, for the squares in A3 ∪ A4, the
constant ε4 in (4.27) is too small, and we would need something much larger than ε2.
Since there is no constant which is at the same time much larger than ε2 and much smaller
than ε3, we are forced to repeat the procedure.

This time, we define the matrices M ′(A,B) = 0 for all the sides AB of type A,
and consider a slightly modified version of the intervals Iε1(V ). More precisely, we let
I ′ε1
(V ) = Iε1(V ) for all the vertices V which are not in the boundary of some square

of A1 or A2. Instead, if a vertex V = (V1, V2) belongs to the boundary of a square in A1
or A2 (these two things cannot happen simultaneously, thanks to Step II), define I ′ε1

(V )

as a translation of Iε1(V ) by (±2ε1r,±2ε1r), where the two choices of the sign ± are
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done in such a way that the whole interval is inside a square of A1 or A2; for instance, if
V is the lower-left corner of a square in A1 (or A2), we can set

I ′ε1
(V ) = {(V1 + t, V2 + t) : ε1r ≤ t ≤ 3ε1r}

(compare with (4.9)). If V is a corner of more than one square in A1 or A2, then we
let I ′ε1

(V ) be inside one of them arbitrarily; this will not make any difference. Figure 15
shows an example of a portion of an r-set�, where eight intervals I ′ε1

(V ) are depicted and
the shaded squares are those in A1 (or A2). Notice that the intervals I ′ε1

(B) and I ′ε1
(C)

could be inside each of the two shaded squares; in this example we have put the first
interval inside the upper square and the second interval in the lower one.

B

E F G H

C D

I ′ε1
(A)

Fig. 15. The intervals I ′ε1
(V ) in Step IV.

After a quick look at the proof of Lemma 4.9, it is evident that it works perfectly even
with the intervals I ′ε1

(V ) in place of Iε1(V ): indeed, in that simple proof we have just used
the fact that the internal intervals are all of length 2

√
2 εr , with direction 45◦, and placed

very close to the vertices. As a consequence, we obtain the points x′V ∈ I
′
ε1
(V ) from

Lemma 4.13, the modified grid G̃ from Definition 4.14, and the function g2 : G̃ → R2

from Definition 4.15. The modified grid that we get now is the “correct” one, and we
will use the function g1 (resp. g2) around squares in A2 (resp. A3 and A4). The same
calculations of the last step work also for this new case, just by replacing the constant ε4
with ε1. In particular, since this time M ′(A,B) = 0 for all the sides, the estimate (4.27)
is true for every square in A3 ∪A4, so we can rewrite it (with ε1 in place of ε4) as∫
∂S̃
|Dg2| dH1

≤
400
ε1r

∫
S+
|Df | dH2

+

∫
∂S+∩∂�

|Df | dH1
∀S ∈ A3∪A4. (4.29)

Step V. Definition of g3 : G̃ → R2. We are now in a position to define a function g3
on the grid G̃ introduced in Step IV. This function will behave almost correctly on the
whole grid, its only fault (which will be solved in the next step) being not to be piecewise
linear. As already observed, we would like to set g3 = ϕS on the boundary of any square
S ∈ A1, g3 = g1 on the boundary of the squares in A2, and g3 = g2 on the boundary of
squares in A3 or A4; of course, this is impossible because g3 would not then be continuous
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and injective. As a consequence, we use the above overall strategy to define g3, but with
some ad hoc modification where squares of different types meet, so as to get continuity
and injectivity.

Let us start with the easy part of this definition. For every side AB which is in the
boundary of some square of A1, we define g3 on AB as the linear interpolation which
satisfies g3(A) = f (A) and g3(B) = f (B); as a consequence, g3 = ϕS on ∂S for every
S ∈ A1, where ϕS is given by Definition 4.2. Second, for every side AB which is in the
boundary of some square in A2, we let g3 = g1 on AB; recall that vertices of squares
in A1 and vertices of squares in A2 are distinct by Step II. Finally, for every side AB
such that neither A nor B are vertices of squares of A1 or of A2, we let g3 = g2 on fiA′B ′,
where the points A′ and B ′ are given by Step IV. Notice that, up to now, the function g3 is
continuous and injective: this is a straightforward consequence of the L∞ estimate around
squares in A1, and of the fact that g3 is a reparametrization of f on different segments
around squares in A2 or A3 ∪A4. However, g3 has not yet been defined in the whole G̃.

Consider a side AB such that g3 has not been defined on fiA′B ′ yet; by construction,
this means that A or B is a vertex of a square in A1 or A2, thus in particular AB is not
in the boundary of �, and both the squares of the grid having AB in the boundary belong
to A3 ∪ A4. We aim now to define g3 on fiA′B ′. To do so, let us keep in mind that we
would like to set g3 = g2, and observe also that g2 on fiA′B ′ is just the reparametrization,
at constant speed, of the image γ0 of some piecewise linear curve flx′Ax′B under f . Our
idea is to define g3 on fiA′B ′ again as the reparametrization at constant speed of some
modification γ of γ0. In particular, γ and γ0 will coincide in their big “internal” parts, the
difference being only near the endpoints of these curves.

B = f (xB )x′
A

x′
B

xB

SxC

P f (x′
B
)

Fig. 16. The definition of g3 in Step V if B is in some square of A2.

For simplicity, assume first that A is not a vertex of squares in A1 or A2, and B is a
vertex of at least a square in A2 (by construction and recalling Step II, B is then a vertex
of either one or two squares in A2, and of no square in A1). By Step IV, we know that the
interval I ′ε1

(B) is entirely inside a square S of A2 which has B as a vertex. As in Figure 16
(left), let C 6= B be the vertex of S such that there is a square having both A and C as
vertices. The function g3 has already been defined on BC as the reparametrization of
the image of a segment xBxC under f ; by definition and by construction, the segment
xBxC and the curve flx′Ax′B meet in some point P near B; notice that B ∈ �, and then

the curve flx′Ax′B is actually a segment, except possibly in a small neighborhood of x′A.
We are now ready to define the curve γ : first, we define γ̃ as the image, under f , of
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the union of the part of flx′Ax′B from xA to P and the segment PxB . Then, since γ̃ and
g3(xBxC) have of course a part in common, we let γ be a slight modification of γ̃ which
intersects g3(xBxC) only at B = f (xB). Of course, we need to modify γ̃ only between
f (P ) and B; this modification can be done as the enlargement of Figure 16 (right) shows,
and it works exactly as in Step 10 of the proof of Theorem 2.1; in particular, the length of
γ is as close as we wish to the length of γ̃ . By definition, we have

H1(γ̃ ) ≤

∫fix′Ax′B |Df | + ∫xBxC |Df | = ∫Ã′B ′ |Dg2| +

∫
BC

|Dg1|. (4.30)

Thanks to (4.28), letting M be the matrix associated to S, we know that∫
BC

|Dg1| ≤

∫
BC

|Dg1−M ·ν| dH1
+2r|M| ≤

(
1020

ε5

ε4
+11

ε4

ε3
+

2
5
ε5

)
r+

2
r

∫
S
|Df |,

and then (4.30) becomes

H1(γ̃ ) ≤

∫
Ã′B ′
|Dg2| +

(
1020

ε5

ε4
+ 11

ε4

ε3
+

2
5
ε5

)
r +

2
r

∫
S
|Df |. (4.31)

Now assume that, instead, A is still not a vertex of squares in A1 or A2, and B is a
vertex of some square in A1. We can then define S and C as before; this time, g3 in the
segmentBC is not defined as the reparametrization of the image under f of some segment
xBxC , but as the affine interpolation satisfying g3(B) = f (B) and g3(C) = f (C). How-
ever, the L∞ estimate (4.1) and the property (4.2) immediately imply that, exactly as be-
fore, the curve γ0 intersects the image of BC under g3 (which is the segment f (B)f (C)).
If P is the first intersection point (starting from f (x′A)), we can argue exactly as before:
we define γ as a slight modification of γ̃ , which is this time the union of the curve γ0
from f (x′A) to P and the segment PB = Pf (B). In this case, instead of (4.30) we get
the estimate

H1(γ̃ ) ≤

∫fix′Ax′B |Df | + f (B)f (C) = ∫Ã′B ′ |Dg2| + f (B)f (C),

and since by the L∞ estimate of Lemma 4.3 we have of course

f (B)f (C) ≤
2
r

∫
S
|Df |,

also in this case we get (4.31); of course even the better estimate without the big term in
parentheses is true, but it is simpler to consider the same estimate (4.31) in both cases.

Let us finally consider the general segment AB: both A and B can be vertices of some
square in A1 or in A2. Nevertheless, as noticed above, in the cases already considered
the path γ̃ coincides with γ0 from the starting point x′A to almost the final point x′B , and
only a small part near the end has been modified. As a consequence, it is obvious how to
deal with the case when both A and B are vertices of squares in A1 or in A2: we let γ̃ be
the path which coincides with γ0 in a large central part, and we apply one of the above
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described modifications both near the starting point and near the endpoint. Of course, for
a side AB where we have made two modifications, instead of (4.31) we will have

H1(γ̃ ) ≤

∫
Ã′B ′
|Dg2| +

(
2040

ε5

ε4
+ 22

ε4

ε3
+

4
5
ε5

)
r +

2
r

∫
RAB

|Df |, (4.32)

where as usual RAB is the union of the squares having either A or B as a vertex, which
contains both S and the corresponding square around A. In this way, we have finally
defined g3 on the whole grid G̃, and by construction it is clear that g3 is injective and
coincides with f on ∂�. We conclude this step by evaluating the integral of |Dg3| on the
boundary of the different squares. For any square S of the grid, we write again S+ for the
intersection with � of the nine squares around S.

If S ∈ A1 we do not need any particular estimate; in the next steps we will only need
to use the fact that g3 coincides with ϕS on ∂S. If S ∈ A2 instead, we know that g3
coincides with g1 on ∂S, hence we only need to keep in mind the estimate (4.28) already
found in Step III, which (by summing over the four sides of S) gives∫
∂S
|Dg3 −M · ν| dH1

≤

(
4080

ε5

ε4
+ 44

ε4

ε3
+

8
5
ε5

)
r ≤ K

(
ε5

ε4
+
ε4

ε3

)
r ∀S ∈ A2,

(4.33)

Finally, if S ∈ A3 ∪A4, then
∫
∂S̃ |Dg3| is the sum of the integrals on the four sides; for

each side fiA′B ′, either g3 = g2, and then of course∫
Ã′B ′
|Dg3| dH1

=

∫
Ã′B ′
|Dg2| dH1, (4.34)

or
∫
Ã′B ′
|Dg3| = H1(γ ) for some curve γ = γ (A,B) defined as above. Since the length

of γ can be taken as close as we wish to the length of γ̃ , from (4.32) we derive∫
Ã′B ′
|Dg3| ≤

∫
Ã′B ′
|Dg2| +

(
2050

ε5

ε4
+ 23

ε4

ε3
+ ε5

)
r +

3
r

∫
S+
|Df |. (4.35)

Since (4.34) is stronger than (4.35), we get (4.35) for any side AB of any square S ∈
A3∪A4. As a consequence, summing (4.35) for the four sides and keeping in mind (4.29)
and the fact that ε1 � 1, we get∫
∂S̃
|Dg3| dH1

≤

∫
∂S̃
|Dg2| dH1

+

(
8200

ε5

ε4
+ 92

ε4

ε3
+ 4ε5

)
r +

12
r

∫
S+
|Df | dH2

≤
412
ε1r

∫
S+
|Df | +

∫
∂S+∩∂�

|Df | + 8200
(
ε5

ε4
+
ε4

ε3
+ ε5

)
r ∀S ∈ A3 ∪A4.

(4.36)

Step VI. The piecewise linear function g4 : G̃ → R2. In this step, we want to define a
piecewise linear function g4 : G̃ → R2; this will finally be the correct map on the grid G̃,
in the sense that our approximating function fε will coincide with g4 on G̃. To do so, it is
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enough to apply Proposition 4.17 to the map g3 and denote by g4 = ĝ the resulting map.
As a consequence, g4 is a piecewise linear map on G̃, which coincides with f on ∂�.
Moreover, since for every side AB of the grid the map g4 on fiA′B ′ is an interpolation of
values of g3 on fiA′B ′, of course we still have g4 = ϕS on the boundary of every square
S ∈ A1. Moreover, (4.17) and (4.18) imply that the estimates (4.33) and (4.36) are also
valid with g4 in place of g3.

Step VII. Definition of the approximating function fε : �→ R2. We are almost at the
end of the proof, since we can finally define the required function fε. We set fε = g4
on the grid G̃, hence in particular fε = f on ∂�; by construction, fε is injective and
piecewise linear on G̃. To keep the injectivity, it is then enough to extend fε in the interior
of any square S̃ in such a way that fε remains continuous and injective on it. We will
argue differently on the different squares.

If S ∈ A1, then we know that fε = ϕS on ∂S, so we extend fε = ϕS on the whole
square S; this map is continuous and injective by construction, and by (4.1) we know that∫

S
|Dfε −Df | ≤ r

2ε5 ∀S ∈ A1. (4.37)

Now consider S ∈ A2; in this case, we want to apply Theorem 3.1 to the function ϕ = g4
on ∂S. Keeping in mind the generalization of Theorem 3.1 observed in Remark 3.2, and
letting fε be the resulting extension on S , we get∫

S
|Dfε(x)−M| dx ≤ Kr

∫
∂S
|Dg4(t)−M · τ(t)| dH1(t) (4.38)

as soon as ∫
∂S
|Dg4(t)−M · τ(t)| dH1(t) < rδMAX‖M‖.

Thanks to (4.33), which also holds with g4 in place of g3 as noticed in Step VI, and
recalling that ‖M‖ > ε3 by definition of A2, and that δMAX is a small purely geometric
constant, the latter estimate is true thanks to (4.22). As a consequence, recalling that S is
a Lebesgue square with matrixM and constant δ̂, that δ̂ � ε5 by (4.23) and the definition
of δ̄, and also that ε4 ≤ 1, from (4.38) and (4.33) we get∫

S
|Dfε−Df | ≤

∫
S
|Dfε−M|+

∫
S
|Df −M| ≤ Kr2

(
ε5

ε4
+
ε4

ε3

)
∀S ∈ A2, (4.39)

where K is as always a purely geometric constant.
Finally, let S ∈ A3 ∪ A4. This time, since g4 is piecewise linear on ∂S̃ and S̃ is (a

2-bi-Lipschitz copy of) a square of side 2r , we let fε on S̃ be the extension of g4 given by
Theorem 2.1, keeping in mind also the generalization of Remark 2.2. The estimate (2.13),
together with (4.36), which is also valid with g4 in place of g3 by Step VI, gives∫

S̃
|Dfε| ≤ Kr

∫
∂S̃
|Dg4| dH1

≤
K

ε1

∫
S+
|Df | +Kr

∫
∂S+∩∂�

|Df | dH1
+K

(
ε5

ε4
+
ε4

ε3
+ ε5

)
r2.
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Since ∫
S̃
|Dfε −Df | ≤

∫
S̃
|Dfε| +

∫
S̃
|Df | ≤

∫
S̃
|Dfε| +

∫
S+
|Df |

and ε4 ≤ 1, and since K is a purely geometric constant while ε1 ≤ 1, we deduce∫
S̃
|Dfε −Df | ≤

K

ε1

∫
S+
|Df | +Kr

∫
∂S+∩∂�

|Df | dH1
+K

(
ε5

ε4
+
ε4

ε3

)
r2
∀S ∈ A4.

(4.40)
The same estimate also holds for S ∈ A3; however, in this case we can say something
more. Indeed, since S is a Lebesgue square with matrix M = 0, by Definition 4.1 we
know ∫

S+
|Df | =

∫
S+
|Df −M| ≤ 36r2δ̂ ≤ 36r2ε5.

As a consequence, for squares in A3 we can deduce from (4.40) that∫
S̃
|Dfε−Df | ≤ Kr

∫
∂S+∩∂�

|Df | dH1
+K

(
ε5

ε4
+
ε4

ε3
+
ε5

ε1

)
r2
∀S ∈ A3. (4.41)

Step VIII. Conclusion. By construction, fε is a finitely piecewise affine homeomor-
phism which coincides with f on ∂�. Moreover, it is immediate that ‖fε − f ‖L∞ and
‖fε − f ‖L1 are as small as we wish (it is enough to choose r small enough at the begin-
ning); as a consequence, we can assume that they are smaller than ε/4 each. Hence, to
get (4.19) and conclude, we only have to check that

‖Dfε −Df ‖L1 < ε/2. (4.42)

Thanks to (4.37), (4.39), (4.40) and (4.41), and setting, for j = 1, 2, 3, 4,

�j =
⋃
{S̃i : Si ∈ Aj },

we have∫
�

|Dfε −Df |

=

∫
�1

|Dfε −Df | +

∫
�2

|Dfε −Df | +

∫
�3

|Dfε −Df | +

∫
�4

|Dfε −Df |

≤ K

(
ε5

ε4
+
ε4

ε3
+
ε5

ε1

)
|�| +

∑
i:Si∈A4

K

ε1

∫
S+i
|Df | +

∑
i:Si∈A3∪A4

Kr

∫
∂S+i ∩∂�

|Df |.

(4.43)

Now recall that, for each square Si of the grid, the set S+i is the union of the nine squares
around it (to be precise, those which lie in �). As a consequence, setting for brevity
A+4 =

⋃
i:Si∈A4

S+i , also recalling (4.25), we have |A+4 | ≤ 9|
⋃
i:Si∈A4

Si | < ε2. Thus,
by (4.20) we can write∑

i:Si∈A4

K

ε1

∫
S+i
|Df | ≤ 9

K

ε1

∫
A+4
|Df | ≤ 9

K

ε1

ε1ε

54K
=
ε

6
.
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Analogously, each side in ∂� can lie in ∂S+i for at most eleven different indices i with
Si ∈ A3 ∪A4, hence by (4.24) we get∑

i:Si∈A3∪A4

Kr

∫
∂S+i ∩∂�

|Df | ≤ 11Kr
∫
∂�

|Df | = 11KrP (f (�)) ≤
ε

6
.

Finally, by (4.22) we have

K

(
ε5

ε4
+
ε4

ε3
+
ε5

ε1

)
|�| ≤

ε

6
.

Inserting the last three estimates into (4.43) we get (4.42). ut

The above proposition shows that, under stronger assumptions than in Theorem 1.1, we
can obtain something better than what is claimed in Theorem 1.1. Indeed, if � is an r-set
and f is piecewise linear on ∂�, then we get not just a countably piecewise affine approx-
imation, but a much better finitely piecewise affine one. We can now give the sharpest
possible result of this approximation, that is, we can prove the existence of a finitely
piecewise affine approximation under the weakest possible assumptions.

Theorem 4.20. Let � ⊆ R2 be a polygon and let f ∈ W 1,1(�,R2) be a homeomor-
phism, continuous up to the boundary and such that f is piecewise linear on ∂�. Then
for every ε > 0 there exists a finitely piecewise affine homeomorphism fε : �→ R2 such
that ‖fε − f ‖W 1,1 + ‖fε − f ‖L∞ < ε, and fε = f on ∂�.

Proof. Since � is a polygon, there exists an r-set “� and a finitely piecewise affine hom-
eomorphism 8 : �→ “�. There exists then some constant H = H(�) such that

|D8(x)| ≤ H, detD8(x) ≥ 1/H,

for almost every x ∈ �. Define f̂ : “� → R2 as f̂ = f ◦ 8−1; by construction, f̂
belongs to W 1,1(“�,R2), and it is continuous up to ∂“� and piecewise linear there. As a
consequence, we can apply Proposition 4.19 to f̂ in“�, finding a finitely piecewise affine
homeomorphism f̂ε : “�→ R2 which coincides with f̂ on ∂“� and satisfies

‖f̂ε − f̂ ‖W 1,1(�̂)
+ ‖f̂ε − f̂ ‖L∞(�̂) ≤ ε/H

2. (4.44)

We can then define fε = f̂ε ◦ 8; this is a finitely piecewise affine homeomorphism, of
course it coincides with g on ∂f , and

‖fε − f ‖L∞(�) = ‖f̂ε − f̂ ‖L∞(�̂).

By a simple change of variable argument, we obtain

‖fε − f ‖L1(�) =

∫
�

|fε(x)− f (x)| dx =

∫
�

|f̂ε(8(x))− f̂ (8(x))| dx

=

∫
�̂

|f̂ε(y)− f̂ (y)|

|detD8(8−1(y))|
dy ≤ H‖f̂ε − f̂ ‖L1(�̂)

,
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and similarly

‖Dfε −Df ‖L1(�) =

∫
�

|D(f̂ε ◦8)(x)−D(f̂ ◦8)(x)| dx

=

∫
�

∣∣(Df̂ε(8(x))−Df̂ (8(x))) ·D8(x)∣∣ dx
≤ H 2

‖Df̂ε −Df̂ ‖L1(�̂)
.

Inserting the last three estimates in (4.44), we conclude that fε is the desired approxima-
tion. ut

Remark 4.21. The assumptions of Theorem 4.20 are sharp. Indeed, assume that a hom-
eomorphism f ∈ W 1,1(�,R2) admits a finitely piecewise affine approximation fε. Since
fε is finitely piecewise affine, it is defined on a polygon, hence�must be a polygon. Sim-
ilarly, fε is piecewise linear on ∂� by definition, and since fε = f on ∂�, the same must
be true of f .

Proof of Theorem 1.1. We will argue in a way quite similar to Proposition 4.19; we only
need to take some additional care to reach the boundary of �. First of all, we look for a
piecewise affine approximation; a smooth one will be found at the end.

We again start by selecting the small constants εi . First of all, we let ε1 be a small
geometric constant, say ε1 = 1/10. Then, since f ∈ W 1,1(�), we can select a constant ε2
such that ∫

A

|Df | ≤
εε1

72K
∀A ⊆ �, |A| ≤ ε2. (4.45)

The next step is to write � as a countable union of rn-sets. More precisely, we can take a
sequence of constants rn → 0 and a sequence of disjoint open sets �n ⊂⊂ � in such a
way that each �n is an rn-set, the union of the closures �n is the whole �, and for each
n ∈ N we can divide the boundary of �n into two disjoint parts, ∂�n = ∂−�n ∪ ∂+�n,
with

∂−�1 = ∅, ∂+�n = ∂
−�n+1 ∀n ∈ N.

Since f ∈ W 1,1(�), we can select these sequences in such a way that∫
∂�n

|Df | = P(f (�n)) <∞ ∀n ∈ N, (4.46)

and we can also take �1 large enough that∫
�\�1

|Df | ≤
εε1

72K
. (4.47)

Naively speaking, the idea is to try to work on each �n separately. However, since f is
not necessarily piecewise linear on the boundary of the sets �n, we cannot simply rely
on Proposition 4.19 for each �n; moreover, since � may not have finite area, estimates
like (4.37) or (4.39), where the area of a square appears, are not acceptable because they
could give an infinite contribution after summing.
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Let us now concentrate on �1 in order to select the constants ε3, ε4 and ε5; indeed,
we will use these constants only inside �1. Arguing as in the proof of Proposition 4.19,
we first let ε3 be a constant such that

|{x ∈ �1 : 0 < |Df (x)| < ε3 or |Df (x)| > 1/ε3 or 0 < det(Df (x)) < ε3}| < ε2/45;
(4.48)

then we let again

M+
= {ε3 < ‖M‖ < 1/ε3, detM > ε3}, M0

= {ε3 < ‖M‖ < 1/ε3, detM = 0};

then we let ε5 � ε4 � ε3 be such that

ε5

ε4
+
ε4

ε3
+
ε5

ε1
≤

ε

8K|�1|
, ε5 � ε4ε3, ε4 � ε2

3; (4.49)

and finally we define δ̂ = δ̂(ε3, ε5) by

δ̂ = min{δ̄(M, ε5) : M ∈M+
∪M0

},

where δ̄ are the constants of Lemma 4.3. The last thing we have to fix is the final value of
the constants rn: indeed, each �n is an rn-set, but then it can be regarded as an rn/Hn-set
for any constant Hn ∈ N. As a consequence, we can now decrease rn (without chang-
ing �n, of course); in particular, also thanks to (4.46), we can assume that r1 is so small
that

r1P(�1)+ |{x ∈ �1 : r̄(x, δ̂) ≤ r1}| <
ε2

180
, r1P(f (�1)) ≤

ε

66K
, (4.50)

with r̄(x, δ) the constants of Lemma 4.6, while any other rn is so small that

rn ≤ rn−1, rn

∫
∂�n

|Df | ≤
ε

88K · 2n
, rn � dist(∂−�n, ∂+�n), ∀n ≥ 2;

(4.51)

notice that the last requirement basically means that the “thickness” of any�n is of several
squares.

Having fixed the sets �n and the corresponding rn, we see that any �n is divided into
a finite union of squares, all of side 2rn. We enumerate them by saying that the squares of
the grid of �n are Sni with 1 ≤ i ≤ N(n); then, we subdivide the squares of �1 into four
groups:

A1
1 = {S

1
i ⊂⊂ �1 : S1

i is a Lebesgue square with matrix M1
i ∈M+ and constant δ̂},

A1
2 = {S

1
i ⊂⊂ �1 : S1

i is a Lebesgue square with matrix M1
i ∈M0 and constant δ̂},

A1
3 = {S

1
i ⊂⊂ �1 : S1

i is a Lebesgue square with matrix M1
i = 0 and constant δ̂},

A1
4 = {S

1
i : S

1
i /∈ A1

1 ∪A
1
2 ∪A

1
3}.
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We immediately record that exactly as in Step I of the proof of Proposition 4.19,
from (4.48) and (4.50) it follows that∣∣∣⋃{Si ∈ A1

4}

∣∣∣ ≤ r1P(�1)+ 4
(
|{x ∈ �1 : r̄(x, δ̂) ≤ r1}| + ε2/45

)
< ε2/9. (4.52)

For any n ≥ 2, instead, we simply let An
4 be the collection of all the squares Sni of the

grid of �n, while An
1 , An

2 and An
3 are empty.

Notice that the only assumption which is true for � in Proposition 4.19 and may
now fail for the generic �n is the following: f is assumed to be piecewise linear on ∂�
in Proposition 4.19, while f need not be piecewise linear on ∂�n; on the other hand,
this assumption has been used only in Step VI of the proof of Proposition 4.19. As a
consequence, we can repeat verbatim all the arguments of Steps II–V of that proof for�1;
so, we discover first that squares in A1

1 and A1
2 can never touch, then we define a tentative

modified grid G̃1
1 with a function g1

1 : G̃
n
1 → R2, then the correct modified grid G̃1 with

the function g1
2 : G̃

1
→ R2, and finally the function g1

3 : G̃
1
→ R2. By definition, g1

3
is injective and coincides with f on ∂�1 (this was explicitly decided in Definition 4.15),
and moreover we have

g1
3 = ϕS on ∂S ∀S ∈ A1

1,∫
∂S
|Dg1

3 −M · ν| dH
1
≤ K

(
ε5

ε4
+
ε4

ε3

)
r1 ∀S ∈ A1

2,∫
∂S̃
|Dg1

3 | dH
1
≤

∫
∂S+∩∂�1

|Df | +K

(
ε5

ε4
+
ε4

ε3
+
ε5

ε1

)
r1 ∀S ∈ A1

3,∫
∂S̃
|Dg1

3 | dH
1
≤

K

ε1r1

∫
S+
|Df | +

∫
∂S+∩∂�1

|Df | +K

(
ε5

ε4
+
ε4

ε3

)
r1 ∀S ∈ A1

4,

(4.53)
where K is a purely geometric constant (it suffices to take K = 9000 here).

Now consider �n for any n ≥ 2. In this case, the situation is much simpler than in
Proposition 4.19: indeed, by definition we only have squares in An

4 , so we do not need
the arguments of Steps II and III and we can directly start with the analogue of Step IV,
which immediately gives us a function gn2 : G̃n→ R2 satisfying the analogue of (4.29):∫

∂S̃
|Dgn2 | dH

1
≤

400
ε1rn

∫
S+
|Df | dH2

+

∫
∂S+∩∂�n

|Df | dH1
∀S ∈ An

4 . (4.54)

Again since there are no squares in An
1 , An

2 and An
3 , we do not even need the argument of

Step V, and we can simply set gn3 = g
n
2 .

Now observe that every function gn3 coincides with f on ∂�n, by construction and
by Definition 4.15. As a consequence, if G̃ is the union of all the grids G̃n and we define
g3 : G̃ → R2 as g3 = g

n
3 on each G̃n, then g3 is also injective.

The last thing we have to do, before having the right of treating each�n separately, is
to modify g3 so as to make it piecewise linear on each ∂�n; we will do that by applying
Proposition 4.18. More precisely, for every j ≥ 2 we define Cj as the union of all the
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segments of G̃j−1 and G̃j , and Cj0 = ∂
−�j . We then apply Proposition 4.18 with C = Cj ,

C0 = Cj0 , η � rj ≤ rj−1, and g = g3; thus, we get a function ĝj , piecewise linear on
∂−�j , which coincides with g (hence with g3) off the η-neighborhood of ∂−�j . As a con-
sequence, ĝj is different from g3 only on the boundaries of squares which meet ∂−�j .
Then, define ĝ3 : G̃ → R2 as ĝ3 = ĝj on the boundaries of squares touching ∂−�j ,
and ĝ3 = g3 on the boundaries of all the other squares. By construction and by Propo-
sition 4.18, ĝ3 is injective, piecewise linear on each ∂�j , and (4.53) and (4.54) are valid
with ĝ3 in place of g3.

Now, for every n ∈ N we apply Proposition 4.17 to the set �n with the function ĝ3
on G̃n, and we get a new function gn4 , piecewise linear on G̃n and coinciding with ĝ3 on
∂�n. Finally, we define g4 : G̃ → R2 as g4 = g

n
4 on every G̃n; also this function satis-

fies (4.53) and (4.54), and it is piecewise linear on the boundary of each square of any grid.
We are now ready to define the piecewise affine approximation fε. Indeed, for every

n ∈ N, the function g4 on G̃n is injective and piecewise linear on the boundary. Exactly
as in Step VII of the proof of Proposition 4.19, we can define f nε on �n, which is a
finitely piecewise affine function coinciding with g4 on ∂�n, and then set fε : � →
R2 to coincide with f nε on every �n. Now fε is by construction a countably piecewise
affine homeomorphism, and also locally finitely piecewise affine; moreover, it is clear that
‖f − fε‖L∞(�n) and ‖f − fε‖L1(�n)

are as small as we wish as soon as the constants rn
have been chosen small enough: in particular, we can think that both are smaller than ε/4.
In addition, by construction we have

f
( n−1⋃
j=1

�j

)
⊆ fε

( n⋃
j=1

�j

)
⊆ f

( n+1⋃
j=1

�j

)
,

and then we immediately see that fε(�) = f (�), fε − f ∈ W
1,1
0 (�), and fε = f on

∂� whenever f is continuous up to ∂�. Hence, to conclude the proof of Theorem 1.1 for
what concerns piecewise affine approximation, we just have to check that

‖Dfε −Df ‖L1(�) ≤ ε/2. (4.55)

This will be obtained by arguing almost exactly as in Steps VII and VIII of the proof
of Proposition 4.19. More precisely, we start with �1; repeating verbatim the arguments
leading to (4.37), (4.39), (4.40) and (4.41), this time from (4.53) we get∫

S
|Dfε−Df | ≤ r

2
1ε5 ∀S ∈A1

1,∫
S
|Dfε−Df | ≤Kr

2
1

(
ε5

ε4
+
ε4

ε3

)
∀S ∈A1

2,∫
S̃
|Dfε−Df | ≤Kr1

∫
∂S+∩∂�1

|Df | dH1
+K

(
ε5

ε4
+
ε4

ε3
+
ε5

ε1

)
r2

1 ∀S ∈A1
3,∫

S̃
|Dfε−Df | ≤

K

ε1

∫
S+
|Df |+Kr1

∫
∂S+∩∂�1

|Df | dH1
+K

(
ε5

ε4
+
ε4

ε3

)
r2

1 ∀S ∈A1
4.

(4.56)
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For every n ≥ 2, we instead apply Theorem 2.1—recalling also Remark 2.2—to the
generic S̃, which is a 2-bi-Lipschitz copy of a square of side 2r; then, also from (4.54),
we get∫

S̃
|Dfε −Df | ≤

∫
S̃
|Df | +

∫
S̃
|Dfε| ≤

∫
S+
|Df | +Krn

∫
∂S̃
|Dg4|

≤
K

ε1

∫
S+
|Df | +Krn

∫
∂S+∩∂�n

|Df | ∀S ∈ An
4 . (4.57)

Notice that this estimate is better than the corresponding one for Proposition 4.19, namely,
(4.40): indeed, there we also had the additional term K(ε5/ε4 + ε4/ε3)r

2, which now
would be quite a problem since in principle � may have infinite area. The reason why
we do not have this term now is that it came from the interaction between squares in A4
touching squares in A1 or A2, while now in �n we only have squares in An

4 .
The same argument as for Proposition 4.19 implies again that every square can lie in

S+ for at most nine different squares S, and every side of some ∂�n can lie in ∂S+∩∂�n
for at most 11 different squares of the grid of �n; as a consequence, summing (4.56)
and (4.57) for all the squares of the different grids, we find∫

�

|Dfε −Df | ≤ K

(
ε5

ε4
+
ε4

ε3
+
ε5

ε1

)
|�1| + 9

K

ε1

∫
A1,+

4

|Df |

+ 9
K

ε1

∫
�\�1

|Df | + 11K
∑
n∈N

rn

∫
∂�n

|Df |

≤
ε

8
+
ε

8
+
ε

8
+ 11K

∑
n∈N

ε

88K · 2n
≤
ε

2
,

where A1,+
4 is the union of the sets S+ for all the squares S ∈ A1

4, so that by (4.52)
we have |A1,+

4 | ≤ 9|
⋃
{Si ∈ A1

4}| < ε2, and where we have used (4.49), (4.45), (4.47)
and (4.51). As a consequence, we have established (4.55), so the proof of the existence of
the required piecewise affine approximation is concluded.

As already remarked, once the piecewise affine approximation is found, the existence
of the required approximating diffeomorphisms is exactly the content of [28, Theorem A],
so we have finished our proof. ut
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MR 3208455

[12] Daneri, S., Pratelli, A.: A planar bi-Lipschitz extension theorem. Adv. Calc. Var. 8, 221–266
(2015) Zbl 1331.26020 MR 3365742

[13] Donaldson, S. K., Sullivan, D. P.: Quasiconformal 4-manifolds. Acta Math. 163, 181–252
(1989) Zbl 0704.57008 MR 1032074

[14] Evans, L. C.: Quasiconvexity and partial regularity in the calculus of variations. Ann. of Math.
95, 227–252 (1986) Zbl 0627.49006 MR 0853966

[15] Gehring, F. W., Lehto, O.: On the total differentiability of functions of a complex variable.
Ann. Acad. Sci. Fenn. Ser. A I 272, 1–9 (1959) Zbl 0090.05302 MR 0124487

[16] Hencl, S.: Sobolev homeomorphism with zero Jacobian almost everywhere. J. Math. Pures
Appl. 95, 444–458 (2011) Zbl 1222.26018 MR 2776377

[17] Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. Lecture Notes in Math.
2096, Springer (2014) Zbl 1293.30051 MR 3184742

[18] Hencl, S., Vejnar, B.: Sobolev homeomorphism that cannot be approximated by diffeo-
morphisms in W1,1. Arch. Ration. Mech. Anal. 219, 183–202 (2016) Zbl 06545482
MR 3437850

[19] Iwaniec, T., Kovalev, L. V., Onninen, J.: Diffeomorphic approximation of Sobolev homeomor-
phisms. Arch. Ration. Mech. Anal. 201, 1047–1067 (2011) Zbl 1260.46023 MR 2824471

[20] Iwaniec, T., Kovalev, L. V., Onninen, J.: Hopf differentials and smoothing Sobolev homeo-
morphisms. Int. Math. Res. Notices 2012, 3256–3277 Zbl 1248.49052 MR 2946225

[21] Iwaniec, T., Martin, G.: Geometric Function Theory and Nonlinear Analysis. Oxford Math.
Monogr., Clarendon Press, Oxford (2001) Zbl 1045.30011 MR 1859913

[22] Kirby, R. C.: Stable homeomorphisms and the annulus conjecture. Ann. of Math. 89, 575–582
(1969) Zbl 0176.22004 MR 0242165

[23] Kirby, R. C., Siebenmann, L. C., Wall, C. T. C.: The annulus conjecture and triangulation.
Notices Amer. Math. Soc. 16, abstract 69T-G27, p. 432 (1969)

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0368.73040&format=complete
http://www.ams.org/mathscinet-getitem?mr=0475169
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0513.73020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0703623
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0978.65053&format=complete
http://www.ams.org/mathscinet-getitem?mr=1836612
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.57009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2794559
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0055.16802&format=complete
http://www.ams.org/mathscinet-getitem?mr=0061377
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06715578&format=complete
http://www.ams.org/mathscinet-getitem?mr=3646299
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0116.14802&format=complete
http://www.ams.org/mathscinet-getitem?mr=0154289
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1348.37071&format=complete
http://www.ams.org/mathscinet-getitem?mr=3208455
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1331.26020&format=complete
http://www.ams.org/mathscinet-getitem?mr=3365742
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.57008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1032074
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0627.49006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0853966
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0090.05302&format=complete
http://www.ams.org/mathscinet-getitem?mr=0124487
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1222.26018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2776377
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1293.30051&format=complete
http://www.ams.org/mathscinet-getitem?mr=3184742
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06545482&format=complete
http://www.ams.org/mathscinet-getitem?mr=3437850
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1260.46023&format=complete
http://www.ams.org/mathscinet-getitem?mr=2824471
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1248.49052&format=complete
http://www.ams.org/mathscinet-getitem?mr=2946225
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1045.30011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1859913
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0176.22004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0242165


656 Stanislav Hencl, Aldo Pratelli

[24] Luukkainen, J.: Lipschitz and quasiconformal approximation of homeomorphism pairs.
Topology Appl. 109, 1–40 (2001) Zbl 0964.57023 MR 1804561

[25] Moise, E. E.: Affine structures in 3-manifolds. IV. Piecewise linear approximations of hom-
eomorphisms. Ann. of Math. 55, 215–222 (1952) Zbl 0047.16804 MR 0046644

[26] Moise, E. E.: Geometric Topology in Dimensions 2 and 3. Grad. Texts in Math. 47, Springer,
New York (1977) Zbl 0349.57001 MR 0488059

[27] Mora-Corral, C.: Approximation by piecewise affine homeomorphisms of Sobolev hom-
eomorphisms that are smooth outside a point. Houston J. Math. 35, 515–539 (2009)
Zbl 1182.57019 MR 2519545

[28] Mora-Corral, C., Pratelli, A.: Approximation of piecewise affine homeomorphisms by diffeo-
morphisms. J. Geom. Anal. 24, 1398–1424 (2014) Zbl 1300.41014 MR 3223559

[29] Morrey, C. B.: Quasi-convexity and the semicontinuity of multiple integrals. Pacific J. Math.
2, 5–53 (1952) Zbl 0046.10803 MR 0054865

[30] Müller, S., Tang, Q., Yan, B. S.: On a new class of elastic deformations not allowing for
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