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Abstract. We prove local exact controllability in arbitrarily short time of the two-dimensional
incompressible Euler equation with free surface, in the case with surface tension. This proves that
one can generate arbitrarily small amplitude periodic gravity-capillary water waves by blowing on
a localized portion of the free surface of a liquid.
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1. Introduction

Water waves are disturbances of the free surface of a liquid. They are, in general, produced
by the immersion of a solid body, the oscillation of a solid portion of the boundary or
impulsive pressures applied on the free surface. The question we address in this paper is
the following: which waves can be generated from the rest position by a localized pressure
distribution applied on the free surface? This question is strictly related to the generation
of waves in a pneumatic wave maker (see [47, §21], [16]). Our main result asserts that, in
arbitrarily small time, one can generate any small amplitude, two-dimensional, gravity-
capillary water waves. This is a result from control theory. More precisely, this article is
devoted to the study of the local exact controllability of the incompressible Euler equation
with free surface.

There are many known control results for linear or nonlinear equations (see the book
of Coron [17]), including equations describing water waves in some asymptotic regimes,
like Benjamin—Ono [36, 33], KdV [44, 34] or nonlinear Schrédinger equation [20]. In
this paper, instead, we consider the full model, that is, the incompressible Euler equation
with free surface. Two key properties of this equation are that it is quasi-linear (instead of
semilinear as Benjamin—Ono, KdV or NLS) and it is not a partial differential equation but
instead a pseudo-differential equation, involving the Dirichlet—-Neumann operator which
is nonlocal and also depends nonlinearly on the unknown. As we explain later in this
introduction, this requires introducing new tools to prove the controllability.

To our knowledge, this is the first control result for a quasi-linear wave equation rely-
ing on propagation of energy. In particular, using dispersive properties of gravity-capillary
water waves (namely the infinite speed of propagation), we prove that, for any control do-
main, one can control the equation in arbitrarily small time intervals.

1.1. Main result

We consider the dynamics of an incompressible fluid moving under the force of gravita-
tion and surface tension. At time 7, the fluid domain €2(¢) has a rigid bottom and a free
surface described by the equation y = n(¢, x), so that

Q) = {(x,y) eR*; —b < y < n(t, x)},

for some positive constant b (our result also holds in infinite depth, for b = 00). The
Eulerian velocity field v is assumed to be irrotational. It follows that v = V, , ¢ for some
time-dependent potential ¢ satisfying

Aeyp =0, &p+3IViypl?+gy=P,  3y¢ly=p =0, (1.1)

where g > 0 is the gravity acceleration, — P is the pressure (we prefer to change the
sign for notational convenience), Vy , = (dy, d,) and Ay, = 82 + 33. The water waves
equations are given by two boundary conditions on the free surface: firstly,

on=+1+ (8x77)2 3n¢|y:n
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where 9, is the outward normal derivative, so v/1 + (9,7)2 9,¢ = 0y — (0x1)0x@. Sec-
ondly, the balance of forces across the free surface reads

P|y:7] =Kk H(M) + Pex(t, x)
where « is a positive constant, Pey; is an external source term and H (n) is the curvature:
dx1 ) _ o
V14 (8,n)2 (I + @:mH3/2

Following Zakharov [50] and Craig and Sulem [19], it is equivalent to work with the
trace of ¢ at the free boundary

vt x) =, x,n(t, x)),

and introduce the Dirichlet-Neumann operator G(n) that relates ¥ to the normal deriva-
tive 9, ¢ of the potential by

(GMY)(t, %) = 1+ (3:m)? Inly=n(r,x)-

Hereafter the surface tension coefficient « is taken to be 1. Then (5, ¥) solves (see [19])
the system

H(n) = 8x<

an =Gy,
2
1 1 (G + @:m @) (1.2)
d — (@) — = =H Pext.
Wt gn+ 5@y - 3 TF o2 (1) + Pext
This system is augmented with initial data
Ni=0 = Nin, V=0 = Vin. (1.3)

We consider the case when 1 and i are 27 -periodic in the space variable x and we set
T := R/(27Z). Recall that the mean value of 1 is conserved in time and can be taken to
be 0 without loss of generality. We thus introduce the Sobolev spaces H (T) of functions
with mean value 0. Our main result asserts that, given any control domain w and an
arbitrary control time 7' > 0, equation (1.2) is controllable in time 7 for small enough
data.

Theorem 1.1. There exists o > 0 such that the following holds. Let T > 0 and consider
a nonempty open subset w C T. There exists a positive constant My small enough such

that, for any (Min, ¥in), (Mfinal, Veinal) € Hy 2Ty x HO (T) satisfying
IMinll go+12 + 1¥inll e < Mo, |nfinatll go+1/2 + | Wtinal llHe < Mo,
there exists Poxt in CO([O, T1; H° (T)), supported in [0, T] X w, that is,
supp Pexi(t,:) Cw, Vte[0,T],
such that the Cauchy problem (1.2)—(1.3) has a unique solution
(n, ¥) € C°(10, T); Hy ™/2(T) x Ho(T)),

and the solution (1), V) satisfies (|;=7, ¥ |i=r) = (Mfinal, Yfina)-
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Remark 1.2. (i) This result holds for any 7 > 0 and not only for T large enough. Com-
pared to the Cauchy problem, for the control problem it is more difficult to work on short
time intervals than on large time intervals.

(i1) This result also holds in the infinite depth case (it suffices to replace tanh(b|&|)
by 1 in the proof). In finite depth, the noncavitation assumption (¢, x) > —b holds
automatically for small enough solutions.

1.2. Strategy of the proof

We conclude this introduction by explaining the strategy of the proof and the difficulties
one has to cope with.

Remarks about the linearized equation. We use in an essential way the fact that the
water waves equation is a dispersive equation. This is used to obtain a control result which
holds on arbitrarily small time intervals. To explain this, as well as to introduce the control
problem, we begin with the analysis of the linearized equation around the null solution.
Recall that G(0) is the Fourier multiplier | D, | tanh(b|D,|). After removing quadratic and
higher order terms in the equation, system (1.2) becomes

n =GO,
0y +gn — 971 = Pext.
Introduce the Fourier multiplier (of order 3/2)
L:=((g—a)GO)'">

The operator G(0)~! is well-defined on periodic functions with mean value zero. Then
u = ¥ —iLG(0)~ 'y satisfies the dispersive equation

0iu +iLu = Pey.

To our knowledge, the first control result for this linear equation is due to Reid [45] who
proved a result with a distributed control. He proved that one can steer any initial data
to zero in finite time using a control of the form Pex(?, x) = g(x)U(¢) (g is given and
U is unknown). His proof is based on the characterization of Riesz basis and a variant
of Ingham’s inequality (see (1.12)). In this paper we are interested in localized control,
satisfying Pexi(f, x) = 1, Pext (¢, x) where w C T is a given open subset. However, using
the same Ingham inequality (1.12) and the HUM method, one obtains a variant of Reid’s
control result where the control is localized. We also refer the reader to the articles by
Miller [41] and Lissy [37] for other control results about dispersive equations involving a
fractional Laplacian.

Step 1: Reduction to a dispersive equation. The proof of Theorem 1.1 relies on var-
ious tools and various previous results. Firstly, Theorem 1.1 is related to the study of
the Cauchy problem. The literature on the subject goes back to the pioneering works of
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Nalimov [43], Yosihara [49] and Craig [18]. There are many results and we quote only
some of them starting with the well-posedness of the Cauchy problem without small-
ness assumption, which was first proved by Wu [48] and Beyer—Giinther [12] for the
case with surface tension. For some recent results about gravity-capillary waves, we re-
fer to Christianson—Hur—Staffilani [15], Germain—Masmoudi—Shatah [21], Iguchi [24],
Ifrim—Tataru [23], Ionescu—Pusateri [25, 26], Mésognon-Gireau [38] and Ming—Rousset—
Tzvetkov [42].

Our study is based on the analysis of the Eulerian formulation of the water waves
equations by means of microlocal analysis. In this respect it is influenced by Lannes [30]
as well as [5, 2]. More precisely, we use a paradifferential approach in order to paralin-
earize the water waves equations and then to symmetrize the resulting equations. We refer
the reader to the appendix for the definition of paradifferential operators 7.

It is proved in [2] that one can reduce the water waves equations to a single dispersive
wave equation that is similar to the linearized equation. Namely, it is proved there that
there are symbols p = p(t,x,&) and g = q(¢, x, &), with p of order O in £ and g of
order 1/2, such that u = T,y + iT,n satisfies an equation of the form

Puu = Py With  P(u) := 8, + Ty (uydx + iLY*(ToyLY? ),

where L1/2 = (g— 8?)0(0))1/4, and Ty, and T¢(y) are paraproducts. Here V, ¢ depend
on the unknown u with V(0) = 0 and ¢(0) = 1, and hence P (0) = 9;+i L is the linearized
operator around the null solution. We have oversimplified the result (neglecting remainder
terms and simplifying the dependence of V, ¢ on u) and we refer to Proposition 2.5 for
the full statement.

We complement the analysis of [2] in two directions. Firstly, using elementary argu-
ments (Neumann series and the implicit function theorem), we prove that one can invert
the mapping (1, ¥) — u. Secondly, we prove that, up to modifying the subprincipal
symbols of p and g, one can further require that

/Imu(t,x)dt —0. (1.4)
T

Step 2: Quasi-linear scheme. Since the water waves system (1.2) is quasi-linear, one
cannot deduce the controllability of the nonlinear equation from the one of P (0). Instead
of using a fixed point argument, we use a quasi-linear scheme and seek Pey; as the limit
of real-valued functions P, determined by means of approximate control problems. To
guarantee that Pey will be real-valued we seek P, as the real part of some function. To
ensure that supp P, C w we seek P, of the form

P, = xoRe fp.

Hereafter, we fix @, a nonempty open subset of T, and a C* cut-off function x,, sup-
ported on w, such that x,(x) = 1 for all x in some open interval w; C w.

The approximate control problems are defined by induction as follows: we choose
Jfn+1 by requiring that the unique solution u, 41 of the Cauchy problem

Puy)upnt1 = o Re fuyr, Upt1lr=0 = Uin,
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satisfies u(T) = ufinal. Our goal is to prove that

o this scheme is well-defined (that is, one has to prove a controllability result for P (u;));
e the sequences ( f;,) and (u,,) are bounded in C°([0, T']; H° (T));
o the series Y (fuir1 — fn) and 3 (unt1 — up) converge in CO([0, T1; HO—3/2(T)).

It follows that (f,) and (u,) are Cauchy sequences in %[0, T1; H°3/%(T)) (and in
fact, by interpolation, in CO([O, T1; H”’(’]I‘)) for any ¢’ < o).

To use the quasi-linear scheme, we need to study a sequence of linear approximate
control problems. The key point is to study the control problem for the linear opera-
tor P (u) for some given function u. Our goal is to prove the following result.

Proposition 1.3. Let T > 0. There exists sy such that if ||u|l co o, 7). g0y is small enough,
depending on T, then the following properties hold.

(i) (Controllability) For all o > so and all
Uin, Ufinal € H® (T) := {w e H°(T); Im/ w(x)dx = 0},
T

there exists f satisfying || f || coo, 1: oy < K (0, T)([tinll o + ufinat | o) such that
the unique solution u to

P(E)M = Xw Re fv u|t:0 = Uin,

satisfies u(T) = Ufinal-
(ii) (Stability) Consider another state u' with ||u’ l co (0, 71: He0y small enough and denote
by f’ the control associated to u'. Then

If— f/||c0([o,T];H<7—3/2) < K'(o, T)(luinl o + Il ttfinat | o) |l — Z/”co([oj];HSoy

Remark 1.4. (i) We oversimplified the assumptions and refer the reader to Section 9 for
the full statement.

(i1) Notice that the smallness assumption on u involves only some H®0-norm, while
the result holds for all initial data in H® with o > sp. This is possible because we consider
a paradifferential equation. This plays a key role in the analysis to overcome losses of
derivatives with respect to the coefficients.

Step 3: Reduction to a regularized problem. We next reduce the analysis by proving
that it is sufficient

e to consider a classical equation instead of a paradifferential equation;
e to prove an L? result instead of a Sobolev result.

This is obtained by conjugating P(u) with some well-chosen elliptic operator Aj g of
order s with
s=o—3/2

and depending on a small parameter & (the reason to introduce 4 is explained below). In
particular A, 5 is chosen so that the operator

Pw) = ApsPWA}
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satisfies ~
P(u) = P(u) + R(u) (1.5)

where R(u) is a remainder term of order 0. For instance, if s = 3m with m € N, set
Aps=1+hL>3 where L:=LY>(T.LY%.).

With this choice one has [Ap s, £] = 0, so (1.5) holds with R(i) = [Ap_s, TV@]A;}S. It
follows from symbolic calculus that | R(w) [l £p.2) S IV .o uniformly in A.

Moreover, since V(1) and c(u) are continuous in time with values in H%(T) with
so large, one can replace paraproducts by usual products, up to remainder terms in
CO([0, T1; £(L?)). We have

Pw) = o + Vs +iL">c@L"? ) + Ro(w)
where
Ry(w) := Rw) + (Ty(uy — VW)dy +iL"*((Towy — cw)L'?).
The remainder R, (u) belongs to CO([0, T1; £(L?)) uniformly in 4. On the other hand,

I As: xolAj Ll 22y = O, (1.6)

which is the reason to introduce the parameter /. The key point is that one can reduce the
proof of Proposition 1.3 to the proof of the following result.

Proposition 1.5. Let T > 0. There exists sy such that if ||u|l co o, 7). g0y is small enough,
then the following properties hold.
(i) (Controllability) For all vy, € L%(T) there exists f with I fllcoqo, 2y <

K(T)||vinllz2 such that the unique solution v to F(g)v = xoRe f, v|t=0 = Vin,
is such that v(T) is an imaginary constant:

beRVxeT, v(T,x)=ib.

(i) (Regularity) | fllcoqo.ry: 32y < K(T)|[vinll g3/2-
(iii) (Stability) Consider another state u’ with ||Z/||C0([O,T];HS()) small enough and denote
by f’ the control associated to u'. Then

If— f/||c0([0,T];L2) = K/(T)||Uin||H3/2||E - Z/HCU([O,T];HSoy
Let us explain how to deduce Proposition 1.3 from the latter proposition. Consider
Uin, Ufinal in H (T) and seek f € C°([0, T]; H° (T)) such that
[Pwu = xwRe f, u(0) = uin] = u(T) = ufinal.

Since the equation is reversible in time, one can exchange initial and final states, and
hence it is sufficient to consider the case where ugy, = 0. Now, to deduce this result from
Proposition 1.5, the main difficulty is that conjugation with Aj_ s introduces a nonlocal
term: indeed, A;}S( Xof) 1s not compactly supported in general. This is a possible source
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of difficulty since we seek a localized control term. We overcome this by considering the
control problem for P (u) associated to some well-chosen initial data viy. Proposition 1.5
asserts that for all vi, € H3/2(T) there is f € C°([0, T']; H3/%(T)) such that

[P(wvi = xoRe f, vili—o = vin] = vi(T,x) =ib, beR
Define Kvin = v2(0) where v, is the solution to
Pwvy = [Ans. xolAjiRe f. vali=r = 0.

Using (1.6) one can prove that the £(H>/?)-norm of K is O(h) and hence I + K is
invertible for 4 small. So, vi, can be so chosen that vi, + Kvin = Ajp_suin. Then, setting
f = A,zlsf and u := A,;ls(vl + v7), one checks that

Pwu = x,Re f, u©) =ujpn, u(T,x)=1ib, bekR.

It remains to prove that u(7) is not only an imaginary constant, but it is 0. This fol-
lows from the property (1.4). Indeed, P can be so defined that if P(u)u is a real-valued
function, then % JpImu(r, x)dx = 0. Since [ Imu(0, x)dx = 0 by assumption, one
deduces that fT Imu(T, x) dx = 0 and hence u(T) = 0.

Step 4: Reduction to a constant coefficient equation. The controllability of P (u) will
be deduced from the classical HUM method. A key step consists in proving that some
bilinear mapping is coercive. To determine the bilinear mapping, we follow an idea intro-
duced in [1] and conjugate P (u) to a constant coefficient operator modulo a remainder
term of order O.

To do so, we use a change of variables and a pseudo-differential change of unknowns
to find an operator M (u) such that

M@WPWMw ™" =8 +iL +Rw),

where Rl zr2) < |lull g (and hence R (u) is a small perturbation of order 0).
To find M (u), we begin by considering three changes of variables of the form

(A + 8k (2, xNYV2h(t, x + k@, %),  h(a@®),x), h(t,x — b(1)), 1.7

to replace P (u) with
Q) =0+ Way, +iL + R3, (1.8)

where W = W (¢, x) satisfies fT W(t,x)dx =0, “W”Co([O)T];HsO—d) S lullcoqo. 7y o)
where d > 0 is a universal constant, and R3 is of order zero. This is not trivial since the
equation is nonlocal and also because this exhibits a cancellation of a term of order 1/2.
Indeed, in general the conjugation of L'/?(c(u)L'/? -) and a change of variables generates
also a term of order 3/2 — 1. This term disappears here since we consider transformations
which preserve the L?(dx) scalar product. Then we use the Egorov theorem to estimate
the remainder terms (see Remark 5.2 and also [8], [9]).
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We next seek an operator A such that i[A, | Dy |3/ 2]+ W, A is a zero order operator.
This leads us to consider a pseudo-differential operator A = Op(a) for some symbol a =
a(x, &) in the Hormander class Sg’p with p = 1/2, namely a = exp(i|§|1/2,8(t, x)) for
some function 8 depending on W (see Proposition 5.8 for a complete statement that also
includes a zero order amplitude). Here we follow [1]. To keep the paper self-contained
(and since some modifications are needed), we recall the strategy of the proof in Section 5.

Concerning the latter transformation, let us compare the equation P (#)u = 0 with the
Benjamin—Ono equation

dw 4+ wdyw + Ho*w =0, (1.9)

where H is the Hilbert transform. The control problem for this equation has been studied
through elaborate techniques (see for instance the recent paper [33]) that are specific to
this equation and cannot be applied to the water waves equations.! On the other hand, let
us discuss one difference which appears when applying to (1.9) the strategy previously
described. Given a function W = W (¢, x) with zero mean in x, let us seek an operator B
such that the leading order term in [B, 7—[83] + W, B vanishes. This requires (see [7])
introducing a classical pseudo-differential operator B = Op(b) with b € S?’O. Then the
key difference between the two cases could be explained as follows: For r large enough,

e the mapping W — B is Lipschitz from H” into £(L?);
e the mapping W — A is only continuous from H" into L(L?) (indeed, if |W| g =
O (8) then we merely have [|A — I z2. y-1/2) = O(5)).

This is another reason why one cannot use a fixed point argument based on a contraction
estimate to deduce the existence of the control.

Step 5: Observability. Next, we establish an observability inequality. That is, we prove
in Proposition 7.1 that there exists ¢ > 0 such that for any initial data vyp whose mean
value (vo) = (27) ! J vo(x) dx satisfies

IRe (vo)] = 5(vo)| — ellvoll 2 (1.10)
the solution v of
dv+iLv=0, v(0) =y,

satisfies ’
/ /|Re(Av)(t,x)|2dxdtzK/ lvo(x)|% dx. (1.11)
0 w T

This inequality with the real part on the left-hand side allows one to prove the existence of
a real-valued control function; a similar property is proved for systems of wave equations
by Burq and Lebeau [14].

The observability inequality is deduced using a variant of Ingham’s inequality (see
Section 6). Recall that Ingham’s inequality is an inequality for the L?-norm of a sum of os-
cillatory functions which generalizes Parseval’s inequality (it applies to pseudo-periodic

1 This can be seen at the level of the Cauchy problem: for the Euler equation with free surface,
the well-posedness of the Cauchy problem in the energy space is entirely open.
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functions and not only to periodic functions; see for instance [29]). For example, one
such result asserts that for any 7 > 0 there exist positive constants C; = C1(T) and
Cy = C»(T) such that

T . 2
Yt = [ [ e < €2 Y P (112)
0

nez nez nez

for all sequences (w,,) in £2(C). That this holds for any T > 0 (and not only for T large
enough) is a consequence of a general result due to Kahane [28] on lacunary series.

Note that since the original problem is quasi-linear, we are forced to prove an Ingham
type inequality for sums of oscillatory functions whose phases differ from the phase of
the linearized equation. For our purposes, we need to consider phases that do not depend
linearly on ¢, of the form

sign(m[£()*t + B, v)[nV1, o) = ((g + In|?)|n| tanh(bn))) '/,

where x plays the role of a parameter. Though it is a subprincipal term, taking into account
the perturbation g(¢, x)|n| 1/2 requires some care since B0 1 s not small. Tn par-
ticular we need to prove upper bounds for expressions in which we allow some amplitude
depending on time (and whose derivatives in time of order k can grow as [n|k/%).

Step 6: HUM method. Inverting A, we deduce from (1.11) an observability result for
the adjoint operator Q(u)* (Q(u) is as in (1.8)). Then the controllability will be de-
duced from the classical HUM method (we refer to Section 8 for a version that makes
it possible to consider a real-valued control). The idea is that the observability property
implies that some bilinear form is coercive, and hence the existence of the control fol-
lows from the Riesz theorem and a duality argument. A possible difficulty is that the
control Pey; acts only on the equation for ¢. To explain this, consider the case where
(Nfinal> Yeinal) = (0, 0). Since the HUM method is based on orthogonality arguments, the
control not acting on both equations means for our problem that the final state is orthog-
onal to a codimension 1 space. That this final state can be chosen to be 0 will be shown
by choosing this codimension 1 space in an appropriate way, introducing an auxiliary
function M = M (x) to be specified later on.
Consider any real function M = M (x) with M — 1 small enough, and introduce

Lﬁ,, = {q) e LX(T; C); Im/ MxX)p(x)dx = O}.
T

Notice that L%M is an R-Hilbert space. Also, for any vg € L2 . the condition (1.10) holds.

Then, using a variant of the HUM method in this space, one deduces that for all vj, € L?
(not necessarily in L%,[) there is f € C([0, T1; L?) such that if

OQww=0ow+ Woyw+iLw+ R3w = x,Re f, w(0) = wjp,
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then w(T, x) = ibM (x) for some constant b € R. Now
Q) = oW ™ P ® ),

where @ (u) is the composition of the transformations in (1.6). SiNnce ®(u) and @(g)_l are
local operators, one easily deduces a controllability result for P (u) from the one proved
for Q(u). Now, choosing M = ®(u(T, -))(1) where 1 is the constant function 1, we de-
duce from w(T, x) = ibM (x) thatu(T, x) is an imaginary constant, as asserted in Propo-
sition 1.3(i). Concerning M, notice that M # 1 because of the factor (1 + 9.« (¢, x))1/2
multiplying h (¢, x + k (¢, x)) in (1.7).

Step 7: Convergence of the scheme. Let us discuss the proof of the convergence of the
sequence ( f;;) of approximate controls to the desired control Pe;. This part requires new
stability estimates in order to prove that (f,) and (u,) are Cauchy sequences. This is
where we need Proposition 1.3(ii), to estimate the difference of two controls associated
with different coefficients. To prove this stability estimate we shall introduce an auxiliary
control problem which, loosely speaking, interpolates the two control problems. Since
the original nonlinear problem is quasi-linear, there is a loss of derivative (this reflects the
fact that the flow map is expected to be merely continuous and not Lipschitz on Sobolev
spaces). We overcome this loss by proving and using a regularity property of the control
Proposition 1.5(iii). This regularity result is proved by adapting an argument used by
Dehman-Lebeau [20] and Laurent [32]. We also need to study how the control depends
on T or on the function M.

1.3. Outline of the paper

In Section 2 we recall how to use paradifferential analysis to symmetrize the water waves
equations. As mentioned above, the control problem for the water waves equations is
studied by means of a nonlinear scheme. This requires solving a linear control problem
at each step. We introduce this linear equation in Section 3 and state the main result
about it. In Section 4, we conjugate the equations with a well-chosen elliptic operator to
obtain a regularized problem. Once this step is achieved, in Section 5 we further transform
the equations by means of a change of variables and by conjugating the equation with
some pseudo-differential operator. Ingham’s type inequalities are proved in Section 6
and then used in Section 7 to deduce an observability result which in turn is used in
Section 8 to obtain a controllability result. In Section 8 we also study the way in which the
control depends on the coefficients, which requires introducing several auxiliary control
problems. Eventually, in Sections 9 and 10 we use the previous control results for linear
equations to deduce our main result, Theorem 1.1, by means of a quasi-linear scheme.

To keep the paper self-contained, we add an appendix which contains two sections
about paradifferential calculus and Sobolev energy estimates for classical or paradiffer-
ential evolution equations. The appendix also contains the analysis of various changes of
variables which are used to conjugate the equations to a simpler form.
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2. Symmetrization of the water waves equations

Consider the system

on =Gy,

L (GY + @ @x¥)) 2.1
2 1+ (3,n)? = H(®) + Pex(t, x).

In this section, following [2, 5] we recall how to use paradifferential analysis to rewrite
the above system as a wave type equation for some new unknown u. This analysis is
performed in §2.2. In §2.1 and §2.3, we complement the analysis of [2, 5] by proving that
all the coefficients can be expressed in terms of u only.

We refer the reader to the appendix for the definitions and the main results of paradif-
ferential calculus.

1
Wy +gn+ 5<axw>2 -

2.1. Properties of the Dirichlet—-Neumann operator

We begin by recalling that if 7 is in W1-°°(T) and v is in H'/2(T), then G () is well-
defined and belongs to H —1/2(T). Moreover, if (n, ¥) belongs to H5(T) x H*(T) for
some s > 3/2, then G(n)y¥ belongs to H5~1(T) together with the estimate (see [31,
Thm. 3.15])

IG Yl gs—1 < CUInlla) 1Y | s 2.2

Following [5, 2], the analysis is based on the so-called good unknown of Alinhac
defined in the next lemma and denoted by w (the same letter is applied for the control
domain, but the two notations will not be used simultaneously). For comments and expla-
nations why this unknown plays a crucial role, we refer to [5, §3] and [4, pp. 8-91.

Lemma 2.1. Let s > 3/2 and (n, ¥) in H3(T) x H®*(T). Then the functions

_ Gy + @) (0x¥) o _
By = I+ (012 . VY = 0xy — (B)Y)dxn, 23)

oMy =¥ — Tpupyn
belong, respectively, to HS~1(T), HS~(T), H5(T) and satisfy
1BV lgs—1 + IV ¥l gs—1 + llom¥llas < CAnllas) ¥ llas. (2.4)

Proof. The estimates for B(n)y¥ and V(n)y follow from (2.2), by applying the usual
nonlinear estimates in Sobolev spaces (see (A.18) and (A.16)). The Sobolev embedding
then implies that B(n)y € L°°(T). As a paraproduct with an L*°-function acts on any
Sobolev space (see (A.10)), we deduce that

1Ty nllas S IBYzelnllas < CAnlas) ¥l aslnl#s. 2.5

This immediately implies the estimate for w (1) in (2.4). O

Consider a Banach space X and an operator A whose operator norm is strictly smaller
than 1. Then it is well-known that I — A is invertible. Now write w(n)yr as (I — A)y with
Avyr = T,y n- By applying the previous argument, (2.5) yields the following result.
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Lemma 2.2. Let s > 3/2. There exists ey > 0 such that the following holds. If ||n|lgs <
&0, then there exists a linear operator W (n) such that:

() forany ¥ in H/?(T),
Y(memy =y,
(i) if w € H5(T) then ¥ (n)w € H*(T) and
IWmollas < Cnllas) ol #gs. (2.6)

Notation 2.3. Hereafter, we often simply write B, V, w instead of B(n)y, V(n)¢,
w(n)y. It follows from the above lemma that if # is small enough in H5(T), then B
and V can be expressed in terms of n and w:

B=BmYMo, V=Vm¥no.
We also record the following corollary of the analysis in [5, 2].

Proposition 2.4. Let s > sy with sg large enough. Then there exists 6 € (0, 1] such that

Gy =GO)w — 0 (Tvn) + Fy, 2.7
where
IE @Yl gz < Cmllas) Il s 19 1L as. (2.8)
Proof. We prove that
IFMYllgs+r < Cnllas) 1Yl s, (2.9)
IEMYllgs— < Cnlizs)nllaslvllias. (2.10)

The estimate (2.8) then follows by interpolation in Sobolev spaces.

Let us prove (2.9). In [5, 2] it is proved that, for any N, when s is large enough,
Gy = |Dxlw— 0 (Tvn) + F(ny where |Fm Y |l gs+v < CUInllas) 1Y || as. Notice
that (2.7) holds with F (n)y¥ = (|Dx|—G (0))w—+ F (). Since G(0) = | Dy | tanh(b|Dy|),
the difference | D, | — G(0) is a smoothing operator. So using the estimate (2.4) for w, we
find that || F(n)¥ || ys+~ is bounded by the right-hand side of (2.9). Taking N = 1 gives
the desired result.

We now prove (2.10). As for (2.5), by the paraproduct rule (A.10) and (2.4),

lo —Vlas + 10 (Tvmll gs—1 < UIBllzee + 1V i) Inllas < CAnllas)inllas 1yl as,

hence it is sufficient to prove that |G (n)y — G (0)¥ || ys—2 is bounded by the rhs of (2.10).
This in turn will be deduced from an estimate of ||¢’(t)|| ys—2 where () = G(Tn)y. Set
B; = B(tn)y and V; = V (zn)y. It follows from the computation of the shape derivative
of the Dirichlet-Neumann operator [30] that ¢'(t) = —G(tn)(B:n) — 9;(Vrn). Now
(2.4) implies ||’ (t) | gs—2 < CUInll ) Il gs | || s Integrating over T we complete the
proof. O
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2.2. Symmetrization

As already mentioned, the linearized equations are

an = GOy,
qW +8n— 3N = Pext,

where G(0) = |D,| tanh(b|D,|). Introducing the Fourier multiplier (of order 3/2)
L:=((g =8GO/
with symbol
&) = (g +1EMAENY?  where  A(§) := [§] tanh(b|§]) @2.11)
(so that L = £(Dy)), and considering u = y — i LG(0) "', one obtains the equation
ot + i Lu = Peyy.
The following proposition contains a similar diagonalization of system (2.1).

Proposition 2.5. Let o, o¢ be such that ¢ > o( with oq large enough. Consider a solution
(n, ¥) of (2.1) on the time interval [0, T] with0 < T < oo such that

(n, ¥) € C°(10, T); Hy ™/2(T) x H7(T)).
Introduce a function ¢ = c(x) and two symbols p = p(x, &), g = q(x, &) such that

ci= 1+ @4,

_ 5 x()oglE) _ £(§) £(§)
1/3 = ANSTTERAS T —4/3 _ 2/3%37 2/3
BT R X@)(C we) T )isx<s>>’
(2.12)
where €, A are as in (2.11), x € C* satisfies x (&) = 1 for |€] > 2/3 and x(§) = O for
|&] < 1/2. Then

pi=c

u:=Tow—iTyn

satisfies
it + Ty dguu + i L' (T.L'?u) + R(n, ) = Tp Pext (2.13)

for some remainder R(n, ) = Ry (n)¥ + Ra(n)n with

IRI DY e < CUmll e Il 19 e

(2.14)
IR2Gro)mallre < Cmill o) Ml o122l sz,

for 6 € (0, 1] as in Proposition 2.4.
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Remark 2.6. Compared to a similar result proved in [2], there are two differences. We
here obtain a superlinear remainder term (see (2.14)), and secondly ¢ can be so chosen
that T, = 9, Ty for some symbol Q; namely,

23 L&)
r(&)ig
This will be used to deduce that f Tyndx = 0. Since it is not a trivial task to obtain these

additional properties, we shall recall the strategy of the proof from [2] and give a detailed
analysis of the required modifications.

T, =0:Tg with Q:=x(&)c (2.15)

Proof of Proposition 2.5. The first step consists in paralinearizing the equation. We use in
particular the paralinearization of the Dirichlet—-Neumann operator (see (2.7)). Then, by
using the paralinearization formula for products (replacing ab by T,b + Tpa + R(a, b)),
it follows from direct computations [2] that

an+ 0«(Tyn) — GO)w = F',
tN x(Lyn ) (2.16)
0w+ Tydyw + Tyn — H() = F~ + Pext,
where a denotes the Taylor coefficient, which is
a=g+ 0B+ VB,
and F! and F? are given by (see (A.12) for the definition of R(a, b))
F' = Fy,
F? = (Ty Ty, — Tvan) B+ (Tva, — Tv Ty, )1
+ %R(B, B) — %R(V, V) 4+ Ty R(B, 0xn) — R(B, Vo).

On the other hand, the paralinearization estimate (A.14) applied with o = o — 1/2
implies that

Ox7

V1+ (@xm)?

where f € L>®(0, T; H**~3/2) is such that

=Tom+ f,  ri=1+ @),

11l g2o-32 < CUmll gosr2) 101130412
for some nondecreasing function C. Hence, directly from (2.16), we obtain
o + Ty oxn — GO = [,
0y + Ty dxw + g1 — 85 (T0x1) = f2 + Pext,

where
fl=F'—Tyyn, 2= F 40, f 4 Teun.
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Set ¢ :=Tyn and 0 := Tpw. Then

¢+ Tydt — T,GO)w = f, 01
30 + Ty d,0 + Tp(gn — 3 (T,0:m) = f2 4 T Pext,

where
fl = qul + TB,q'? + [TV8X7 Tq]ﬁ,
2= T, f2 + Ty po + [Ty dy, Tplo.

Assuming that ¢ and p are as in the statement of the proposition, it easily follows
from (2.8) and the paradifferential rules (A.4), (A.10) and (A.7) (applied with p = 1 to
bound the operator norm of the commutators [Ty dx, T;] and [Ty 0y, T,]) that

I £ ae < CAnll g I o2 W e + [l o).

It remains to compute 7, G(0)w and T),(gn — 0x (7,0, n)). More precisely, it remains
to establish that
1/2 1/2 0
TG0 — L “T.L " “Tpollge < CUInllgor12) 10l o1 lloll He, 2.18)
1T, (gn — dx (Tr0,m) — L' 2T.LY*Tyn|| yo
< CUnl o1 101 012 101 o172

(We prove these estimates below with & = 1.) Then the estimates (2.14) follow from (2.4)
which gives a bound for ||w| go in terms of ||| go.

To prove (2.18), it is convenient to introduce the following notation: Given two oper-
ators, the notation A ~ B means that, for any © € R there is a constant C(||n|| go+1/2)
such that

(A = Bullar < CUInll go+i2) Inll go+12 lull g
In words, A ~ B means that A equals B modulo a remainder which is of order 0 and
quadratic.

For instance consider real numbers m, m’ with m + m’ = 2 and two operators A =

Ta(m)_;,_a(m—l) and B = Tb(”’,)-‘rb(m,*l) where

a™ e ry, a™ b ¢ FT‘I, b ¢ Fg”,, p' =D ¢ Fq"/_l
(see Definition A.2) with (see (A.1))
M B + M7 D) < Clinll o),
M3 @™y + M7 @Dy < Cinll o) Il gosa-
By applying (A.6) with p = 2 and (A.7) with p = 1, we obtain
Ty Tymry ~ ampm") 4 Lge qm g, "> Tyom Tyn' -1y~ Tymy o’ -1y »

Ta(mfl) Tb(m/) ~ am=1pm") s Ta(m—l) Tb(m/—]) ~ 07
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S0
AB ~ Ty pon'y 4 L ) g ') 4 0 o0’ =1) 4 gm =Dt - (2.19)
Using the previous notation, to prove (2.18) we have to prove that
T,G(0) ~ L'?’T.L'>x (D) T,,
K ¢ * (2.20)

Ty (gl — 35 (1,05 ) x(Dx) ~ LV T, L2 x (D) T,.

Notice that x (Dy)n = n and Ll/zx(Dx)u = LY2y for any periodic function u. This
is why we can introduce the cut-off function x in the calculations. It is used to handle
symbols which are not smooth at £ = 0.

We remark that, by definition of paradifferential operators, we have

T,G0) =T, 81 — 0x(Tr0x ) = Typpe2 (o, i8)-

Study of the first relation in (2.20). It follows from symbolic calculus (see (A.6)) that
LT, L% (D) ~ T, with y = xct+2@vOVlowe.  (221)
l

Now we seek ¢ of the form ¢ = ¢1/? + ¢=1/2 where ¢(1/? is of order 1/2 in &
(more precisely, g € Fé/z) and ¢~/ is of order —1/2 (in Ffl/z). Similarly, we seek
p=pQ+p withp e and p=" e

Also, it follows from (2.19) that L'2T, L2y (D,)T, ~ T, T, ~ T, with

-~ 1
o1 =yp @ + xetp™V + 7xc(a§£)axp(°>

(the contribution of (9 x )0y p(o) is in the remainder term). The first identity in (2.20) will
be satisfied if

g0/ = ye

¢ 9l ¢
wep@ L8 iy _ X L) -1 L&)

rE)’ i M8) rE)

Study of the second relation in (2.20). As above, it follows from symbolic calculus that
L'2T.L'2x (DT, ~ T, T, ~ Ty, with (see (2.19))

[30x0)p© + o p @] + xcp

1 _
92 = 7q"? + —xc@:00:q"P + xotg T
With ¢(1/2 and ¢(~1/?) as given above, we compute that

2 2

_ ap . X % o 20 (0) 2 -nt®)
2 = xyclq + = ==(epoc+c0up)+ xcTpT ——1.

{ i () ! ! A(E)

Moreover, by definition of £(£) one has

€2 2(8)?
%t _3 7
G IR

= 52 +ry, 1y, rpof order O.
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Notice that the contribution of the term rq (cp(o) dcc + 29, p(o)) to Tj,, and the one of
ra¢? p=D can be handled as remainder terms and hence

L'?T.LV?x (DT, ~ T,
with
$2 = x {cﬂq“/z) + 3TXE(cp(O)3xc + 23 p ) + xczp(l)fz}-
On the other hand,
Tp(81 = 0x(Tr9x N X (Dx) ~ Typ(gire—(o,r i)
By definition of ¢, ¢, q(]/z), recall that r = ¢ and ¢2 = (g + Sz)k(é) and hence
p(g + &> — (3,1)(i§)) = pc*€” + gp — p(:r)(iE)

2
Czﬁ(é)

2 .
"G —gpc” + gp — p(9x7)(i).

=D

Since q(1/2) = ch(o)%, we deduce that

plg+r&* — () (8)x = clqgV? + x{pT V(g + &) + gp(1 — ) — ip(d:r)E).

Since 1 — ¢2 and 9, r depend at least linearly on 7, and since p and p(~V& are symbols
of order 0, it follows from the estimate (A.4) for the operator norm of a paradifferential
operator that

1Tyl < CAInll o) 10012 el e,

ITy0 @, meullae < CUnll gori2) Il gosiz2 lull me.
Similarly, assuming that p(~1 is a symbol of order —1 depending linearly on 7 (this will
be true, see (2.12)), we have

ITpve2guullan < CUMI gori2) 01l goirz ull ge-

Therefore,

Tp (81 — 0x(Tr0x ) X (Dx) ~ Tipg(1/2) 45 p(=D 282 pO (3, 1) (iE) -

2 1/3

Now since r = ¢~, with p(o) = ¢~ '/, we have

. 3
—p Q@) i8) = +;é<cp<°>axc + 20, p ),

as can be verified by a direct calculation, so the second identity in (2.20) holds.
It remains to compute g. We have

0L LI 0y, 0] 4o D]

qZX{Cp e i A )
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Observe that
L@ p© + ¢, p@ = L7 e

We now seek p(~1 such that
(— 1)6(5) 061 Bgﬂ(é) _1/3ax
A (&) i A)
for some constant « to be determined. We thus set

p(fl) = a& _agz(s) 74/38)(0.

i LE)

Then (replacing x2 by x, at the cost of adding a smoothing operator in the remainder),

we have
(E) 100 N
_ 2/32057 - _ /3
_X{C »© 7T [(‘”6)6 axc”‘

Since x (§)§0s¢ = %XE + t(§) with 7(§) a smooth symbol of order 1/2, we have

—X(f;') (E)—+

?»(%‘) s 9"
where r’ is of order —3/2. Then, choosing « such that « 4+ 1/6 = 4/9, we find that
£@) e
— 238 g 23 L7
e T e

where 7 is such that

I Trull gussrz < Cnll gor2) 10l o2 wll e

In particular, the contribution of 7 can be handled as a remainder term and the same results
hold when g is replaced by the same expression without 7, yielding (2.12). This completes
the proof of (2.20) and hence the proof of the proposition. O

2.3. Invertibility of the change of unknowns

We have thus obtained an equation of the form
Opu + Ty + i LV (TL' 1) + R(p. ) = T Pext,

where the coefficients V and ¢ depend on the original unknowns (7, ). We conclude this
section by proving that V and c can be expressed in terms of # only. We have already seen
in Lemma 2.2 that these coefficients can be expressed in terms of n and w. So it remains
to express (17, ®) in terms of u.

In this subsection, time is seen as a parameter and we skip it.
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Notation 2.7. Let H° (T; C) be the space of complex-valued functions u satisfying

/ Imu(x)dx = 0.
T

Recall (see (A.4)) that a paradifferential operator with symbol in Fg is bounded from
any Sobolev space H*(T) to H*~"(T). Recall also that w € H? (T) whenever (1, ) €

Hg +/ 2("JI") x H?(T). Since, as already mentioned, T,n = T,,n where x is as defined
after (2.12) and since gx € Fé/ 2, we deduce that u € H? (T). Moreover, it follows from
(2.15) that Tyw — iTyn € H (T; C).
We now define a mapping U : Hg+1/2(T) x H°(T) — H° (T; C) by
U, ¥) =To—iTyn.
The following result shows that this nonlinear mapping can be inverted.
Lemma 2.8. Let 09 > 5/2. There exist g > 0 and K such that the following holds. If
Inllgoo < €o, then there exists
Y: H(T; C) - H"'/*(T) x HO(T)
such that Y (u) = (n, ¥) withu = U (n, ¥). Moreover, for any o > 5/2,
Inll o1z < 2Mullae, 1Y llae < 2lullge. (2.22)
Proof. Setu =U(n, V) := Thow —iTyn. Then Tyn = —Imu and T, = Re u, where g
and p depend on 5. The only difficulty is to express 7 in terms of Im . Once this is done,
to invert the equation T, = Re u we use the fact that T, is a small bounded perturbation
of the identity so that T}, is invertible; indeed (recalling that M ’p" (a) is defined by (A.1)),
1Ty = Iz S MJ(p — 1) < CUnlgori2) [l go2.

Now to solve the equation 7,7 = —Imu, we use the Banach fixed point the-
orem. Denote by Q the Fourier multiplier with symbol Q(§) = x(§)¢(&)/r (&) =

x &)/ g + E2/+/A(E). The reason to introduce this symbol is that, with g given by (2.12),
2
Mé/ (q(x,8) — Q1)) = CUInll g+l go+1r2, (2.23)

which is obtained by considering separately the principal and subprincipal terms in the
definition of ¢. Then seek 7 in HgH/Z(T) such that ® (1) = n with

() = —(g — 3D 2GO)' 2T, — Q)n + Imu).

It is easily verified that if ®(n) = n then T;n = — Imu and also that ® maps Hg +1/2 (T)
into itself. To see that @ is a contraction, we use (2.23) to obtain

[P M) — Pl gor12 S 1(Tgy — Q) — n2D)llae + 1Ty — Tyy)m2ll e

1/2 1/2
< My (q1 = Ollm = mll oz + My (@1 — g2) Il o2
< CWMM|In — n2ll go+1s2,

where M := ||n1|| go+12 + [In2]l go+12. If M is small enough, then & is a contraction. O
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3. The linear equation

As mentioned in the introduction, we shall study the control problem for the water waves
equations by means of a nonlinear scheme. This requires solving a linear control problem
at each step. In this section we introduce the linear equation we are going to study until
Section 10, emphasize one key property of this equation and state the main result we want
to prove.

We have seen in the previous section that one can express V = V() in terms of u
only. To simplify notation, we write V = V (u), and similarly we write ¢ = c(u). Also,
one can write the remainder R(n, ¥) in the form R(u)u where, for any u, the mapping
u +— R(u)u is linear.

We have proved that, for o large enough and a solution (1, ) of (2.1) on the time
interval [0, T'] satisfying

(n, ¥) € C°(10, T); Hy ™/2(T) x Ho(T)),
the new unknown u satisfies u € C°([0, T]; H° (T; C)) (where H° (T; C) is defined in
Notation 2.7) and
dut + Ty wydxtt + i LY (Toy LY 1) + R(u)t = Ty Pext-
We now fix u € CO([0, T1; H° (T; C)), set

V=VwW, c¢=cw, R=RWw, p=pw, (3.1

and consider the linear operator
P =30 +Tyd +iL">*(T.L'* )+ R.

Except for the second condition in Assumption 3.1 below, we shall not use the way in
which the coefficients depend on u, and hence we shall state all the assumptions on
V, ¢, p, R forgetting their dependence on u through (3.1).

Assumption 3.1. (i) Consider two real-valued functions V, c in C°([0, T1; H%(T)) for
some sy large enough, with ¢ bounded from below by 1/2. The symbol p is given by

pi= 1By %%&ff@c—‘waﬁ with x as in (2.12). It is always assumed that the
W3/2:2°_norm of ¢ — 1 is small enough.

(i) If Pu is a real-valued function then

d
—fImu(t,x)dx:O.
dt Jr

Fix an open domain @ C T and denote by x, a C* cut-off function such that x,(x) =1
for x € w. We want to study the following control problem: given an initial data v;, find
f such that the unique solution to

Pv=TyxoRef,  v|i=0 = vin, (3.2

satisfies v|;—=r = 0. The fact that the Cauchy problem (3.2) admits a unique solution is
proved in the appendix (Proposition B.1).
Our main goal until Section 10 will be to prove the following control result.
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Proposition 3.2. There exists sy large enough such that, for all T € (0, 1] and all s > s,
if Assumption 3.1 holds then there exist positive constants § = (T, s) and K = K(T, s)
such that if
IV llcoqo.r1: %) + e = Ulcogo, 1. %) < 3
10F V llcoqo, rszny + 19F ellcoqo,ryy <8 (1 <k <3), (3.3)
IRllcoqo, 7y, casy) = -
then for any initial data vy, € HS(T; C) there exists f e (0, T1; H5(T)) such that:
(1) the unique solution v to Pv = Ty x, Re f, vl;=0 = vin, satisfies v(T) = 0;
@) W flleoqo.r:ms) < Kllvinll as.

Remark 3.3. Notice that the smallness assumption on V and ¢ involves only some H -
norm, while the result holds for initial data in H*® with s > sy. We shall use this property
with s) = s — 2 in the analysis of the quasi-linear scheme. This is possible only because
we consider a paradifferential equation.

We conclude this section by proving that the second condition in Assumption 3.1 holds
when V, ¢, p, R are given by (3.1).

Lemma 3.4. Consideru € Cco(0, T1: H*0 (T; C)) with sg large enough and assume that
V,c, p, R are given by (3.1). If Pu is a real-valued function, then

%/Tlmu(t,x)dx =0.
Proof. Set { = — Imu. It follows from (2.17) that
0,8 + Tydxt — T,GO)w = f,
F' = Ty(F) = Tovm) + Togn + [Ty, Tyl
where F ()Y is given by (2.7). One can write this equation in the form
¢ + Ty (0x(Tyn) — T,GO0)w = Ty F( Y + Ty gn. G4

Notice that 7, G(0)w and T, F (n)y are well-defined since G/((W)(O) =0= ﬁn)\wm)
(this follows from the definition (2.7) and the fact that the mean values of G(n)¥, G(0)w
and 9, (Ty ) are all 0). Using (2.15), one finds that [ T,vdx = 0 = [} Tj,4v dx for any
function v. So integrating (3.4) we obtain the desired result. O

4. Reduction to a regularized equation

In this section, we reduce the proof of Proposition 3.2 to that of a simpler result. We shall
prove that:

e it is enough to consider a classical equation instead of a paradifferential equation (this
observation will be used below to simplify the computation of a change of variable);

e it is enough to prove an L>-result instead of a result in higher order Sobolev spaces
(this plays a crucial role).



Control of water waves 679

As explained in the introduction, the idea is to conjugate the equation with an elliptic
semiclassical operator Aj ¢ of order s. The key point is to prove that Ay s can be so
chosen that it satisfies the following commutator estimates:

IlAns: PIA; L2y = O, Ak X0l Ay Ll 212y = O,

which is the reason to introduce the small parameter .. Some care is required to do so,
and we introduce

Aps =1+ h°Tass L¥/3. 4.1)

Lemma 4.1. (i) Assume that the L;”ox—norm of ¢ — 1 is small enough. Then Aj s is
invertible from H® to L.

(ii) Moreover, for any s' € [0, s], hs/A;’L is uniformly bounded from L* to H? : there is
K > 0 such that for any h € (0, 1] and any u € LX),

14 Ay Lull o < Kllul 2. (4.2)

Proof. Set r = 2s/3. Statement (i) is obtained by writing Ap s as (I + B)({ + h°L")
where B is a bounded operator from L? into itself. To do so, write

Aps=1+hToL" =1+ h°L" +hTer_ L,

to obtain the desired result with B := hT.-_1L" (I + hSL")~!. We now claim that B is
a bounded operator on L2, with operator norm O (||c — 1||z). This follows easily from
(A.10) (which implies that T.r_; is of order O with operator norm O(||c — 1||z~)) and,
on the other hand, from the fact that A5L" (I + hSL")~! is bounded on L2 uniformly in A
(as can be verified using the Fourier transform).

Now for [|c — 1] e small enough, one has || Bl z(,2) < 1/2 and one can invert / + B
to obtain

Apy=U+hrLH) U +B)7", 4.3)

and statement (ii) follows from the fact that hsl(l +h5L)Lis uniformly bounded in
L(L?, H%) for0 < <s. O

The key property is that one has good estimates for the commutators of Aj s and the
various operators appearing in the equation.

Lemma 4.2. Assume that the W3/>®-norm of c—1 is small enough. Then there is K > 0
such that for any h € (0, 1] and any u € L*(T),

I[Ans Tvac I A, sull 2 < KNIV [y lull 2. 4.4)
ITARs: Xl Ajy sttll 2 < KRl Xoll s llull 2 4.5)
I[Ans: LY (TLY2IA; el 2 < K flull 2. (4.6)
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Proof. Write
[Ah,s» TVax]A;ZIS = [T(C()Zsﬂ, Tvax]hSA}:}g

to obtain
I[ARs. Tv A, Sull 2 < KN ooy Tvasdll pas 12105 A Sl iz, msy llul 2

It follows from (4.2) that ||hSA}zls | £(L2, =) 1s uniformly bounded in /2. On the other hand,
the commutator estimate (A.9) implies that

||[T(c£)25/35 Tvax]”ﬁ([-[S,LZ) < K|Viyte,

where K depends on ||c||y3/2.00 (Which by assumption can be bounded by 2).
To estimate the second commutator, we begin by establishing that

-1
IlARs, Ty 1, sull2 = KRl )l asllull 2. .7
To see this, write
[Ahs: Ty, JA, & = Al T ooy, Ty, 5 AL
Then we notice that, as above,
T cey2s3s Ty Wl goms—1,12) < Kl Xollwioo,

and we use the fact that, thanks to (4.2), h5~! A;ls is uniformly bounded from L2 to A5~
Now it remains to estimate [Ay, 5, X — Ty, 1. It follows from Proposition A.8 (applied
with (r, u, y) = (s + 1, 0, s)) that

-1 -1
”hST(CZ)ZS/3 (X — wa)Ah’su”LZ S hS”(Xw - wa)Ah,sM”HS
-1
S holxoll s 1A, gull 2 S hPlxoll s llull 2,
and similarly
-1
(X — Ty )0 Tigpsin Ay, gutll 2 < KWl xoll s llull 2
By combining these two estimates, we find that
-1
ITARs, (Xo — Ty )N gttll 2 < KB xoll s llull 2. (4.8)

From (4.7) and (4.8) we deduce (4.5).

We now prove the last property (4.6). Write L'/2(T.L'?.) = T., + T, + R where
R is of order 0 and gp = i’h/f(&g V) (d,c). Since Aps=1+ hsT(ce)zs/s, by definition,
[Ap.s, LVX(T.L'? .)]A,;‘S can be written as (1) + (II) + (III) with

(1) = [Tepp TP AL D) o= [Tiegpon. Tplh®Ap L
() = [T py2e. RINCA L.
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Since hSA}ZIS belongs to £(L?, H®) uniformly in 4, we need only estimate

||[T(cg)2s/3, Tcﬁ]”ﬁ([{s,LZ), ||[T(Cz)2s/37 Tgo]”ﬁ(HS,LZ)-

The second term is estimated by means of (A.6) applied with p = 1/2. To estimate the
first term we notice that the Poisson bracket of the symbols vanishes:

1
{0, et} = —((3:(c0)*)d,(ct) — (0x(c)**) (c0)) = 0.
i
Since ||c|ly3/2.00 < 2 by assumption, it follows from (A.6) applied with p = 3/2 that
T cey2sr3s Teelll s 2y S 1- o
Next we conjugate P with Ay, s: set
Py = ApsPA; L
Then
Py=08+Tyde +iL"*(T.L'* )+ R, where
RY = ApsRAL L+ [Ans, 00A, & + [Ans, Tva A, L +ilAns, L' (TLV2 1A, L
Lemma 4.3. Assume that the W3/>®-norm of ¢ — 1 is small enough. Then
IR ull 2 < K(IV oo + N8clioe +h IRl sy lull 2 (4.9)
for some constant K independent of h.

Remark 4.4. The constant #~5 is harmless, since at the end of this section, # will be
fixed depending only on T'.

Proof of Lemma 4.3. We have
1AnsRAG U 2y < UAnsll2carss 2y | R 2 mo | A S 2. msy < KBTS IR 2as, sy

since | Apslloes.z2y) S 1and [ Ay Ll gz ms) S h7°.
On the other hand, [A s, L1/2(TCL1/2 -)]A;}S and [Ap s, TVBX]A,ZIS are estimated by
means of Lemma 4.2, and [Ap s, 8,]Ales is estimated by similar arguments. ]

We further transform the equation by replacing Ty d, and LYX(T.LY? . by Va, and
L'/? (cLY 2 -) modulo remainder terms. Namely, write

Py =04V, +iL"*cL"?.) + Rl (4.10)
where ¢ stands for the operator of multiplication by ¢ and

Riu = R+ Tyo,u — Vo +i(LV2T.LY?u — LV (cL'u)).
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Lemma 4.5. Let 59 > 2 and assume that the W3/>*-norm of ¢ — 1 is small enough.
Then

IRSull 2 < K(IVIaso + lle = Ulaso + 19rcll g+ B IR sy llull 2 (4.11)

for some constant K independent of h.

Proof. We have already estimated R, and the right-hand side of (4.9) is less than the one
of (4.11) provided that sp > 3/2. To estimate Ty d,u — V d,u, we apply Proposition A.8
with (r, u, y) = (sp, —1, 0) (and sy > 3/2) to obtain

1Ty 0xu — Voxullz2 SNV Il l0xull g—1 < IV Iz llull 2.

The estimate for £ — L1/2(6L1/2 ) = L1/2((TC — cI)Ll/2 -) follows in the same way,
assuming that sy > 2. O

We are now ready to give the main reduction. Our goal in this section is to prove that one
can deduce Proposition 3.2 from the following proposition.

Proposition 4.6. Consider an operator of the form
Pi=8 + Vo, +iL"?*(cL'?) + Ra. (4.12)

Let T € (0, 1] and consider an open subset w C T. There exist an integer sy large enough
and positive constants § = §(T) and K = K (T) such that if

IV llcoqo.73: 0y + llc = oo, 79: a0y < 6,

19f Vllcogo,73, 11y + I0F ellcoorypmmy <8 (1 <k <3), (4.13)

IR Moo, ry; L2y = 9
then for any initial data vi, € L%(T) there exists fe CO([0, T1; L3(T)) such that:

(1) the unique solution v to Pv = x, Re f, v|;=0 = Vin, is such that v(T) is an imaginary
constant:

b eRVxeT, (T, x)=1ib;
@) N flcoqo,ry:22) = Kllvinllz2-
Remark 4.7. Notice that the final state v(7') is not O but an imaginary constant.

This result will be proved later. Granting it, we now prove Proposition 3.2.

Proof of Proposition 3.2 given Proposition 4.6. Proposition 4.6 holds for any P of the
form (4.12). In particular, in view of (4.10), it holds for P replaced by Pj, := Ay, SPA;}S.
Let us mention that # will be fixed at the end of the proof by asking that K'(T)h < 1/4
where K'(T) depends only on 7. ~

The idea is to apply the control property for P, associated with an unknown initial
data to be determined.
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We shall prove that Proposition 4.6 implies that Proposition 3.2 holds with conclu-
sion (1) replaced by v(T) € iR. Then one deduces that v(7T) = 0 by using Assump-
tion 3.1(ii) and the fact that [ vip(x) dx = 0.

Assume that § < h5§ where § appears in the statement of Proposition 3.2 and § is
given by Proposition 4.6. Then h~5§ < §. Therefore, if the smallness condition (3.3)
holds, then Lemma 4.5 implies that ||R£‘ oo, 71: £(L2)) is small, and hence (4.13) holds.
This explains why one may apply the conclusion of Proposition 4.6 under the assumption
of Proposition 3.2.

By Proposition 4.6, for any y € L%(T) there is f e C9([0, T1; L3(T)) satisfying

171l cogo.r1:22) < K (DIl 4.14)
and such that the unique solution u; to
Py = xoRe f.  uili=o =y,
is such that u (T, x) = ib forsome b € Rand all x € T.
Now let uy be the unique solution of the Cauchy problem (with data at time 7')
Puuty = (AnsTpxoAj s — Xo)Re f. ua(T) = 0.

Again, this Cauchy problem has a unique solution by Proposition B.1. One can then define
a linear operator /C by
Ky = u3(0). (4.15)

The reason to introduce u; and KC is that the function u := u + u, satisfies
Pou = Ans(TyxoAjsRe ). u(T) =ib, ulmo=y+Ky.

Now, assume that I + KC is invertible with (I + KC)~! € £(L?). Then y can be so chosen
that y + Ky = Aj svin- Since Aj sb = b and hence A,;Lb = b for any constant b, it

follows that, with f := A;lsf and v = A}zlsu,
Pv=Ty,x,Re f, v(T)=ib, v(0)=uvjp,

where P is the original operator, so that Fh = Ah,sPA,zls. Moreover, it follows from
Proposition 4.6(2) that || fllcogo.r1.22) < Kllyllz2, which yields || fllcoqo a5 =
K () ||y|lgs. The fact that the last constant depends on £ is not a problem since % is
fixed, depending on 7. Now to see that Proposition 3.2 holds, it remains to check that
v(T) = 0. As already mentioned, this follows from the fact that v(7") = ib together with
Assumption 3.1(ii) and the fact that [} vip(x) dx = 0.

Thus it remains to prove that 7 4 K is a bijection from L? into itself. To see this, it is
sufficient to show that K is a bounded operator whose operator norm in L(L*»)is < 1.In
this direction, we first use the energy estimate (B.3) for the operator Pj:

T
luz (2 = eCT(Iqu(T)IILz +/ | Pruzllp2 dt/)
0
for some constant C depending only on

Msy == sup {[IV()llgso + lc@’) = Uaso + IRl £22))-
t'e[0,T]
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Since u»(T) = 0, this implies that
T | _
luallcogo,ryszz) < e fo I(AnsTp Xy s = o) F(O)l 2 dt"
To estimate the term (Ap,s7) XwA;zls — Xw) f we write it as
[Ans. Xol Ay o f + Ans(Tp — DxoAy L f-
It follows from (4.5) that

ITARs: X0l Ajy s Fll2 < KhllXoll s Il £l 2-

It remains to estimate A, s(T), — I)XwAglsf. To do so, we write Ay, s = [ +h5T,253 L2573
to split this term as

(Ty — DxwAj s f + Tasn LT, = Dxo(W°AL )
For the first term we have (using (A.4) and (4.2) with s = 0)
1Ty = Dxo Ay s fllz2 S MJ(p = DlixollLell fli 2.

For the second term write (using (A.4), (A.17) and (4.2) with s’ = s)
17265 L (T — D)o AL D Fll 2 S 1Ty = Dxwh® Ay Y fllas

S Tp-i e xolas 1B5AL L Fllas S MY(p = Dllxollas I £ 2.
We find that

1ARs(Tpy — DxwAy s flli2 S Ule = Uiz + 10xcll o) lxollasll fll 2 S 8112

This yields

luzllcoqo, 7122y S Cr + 8)eC” /0T||f||L2 dr’.
In view of (4.14), we conclude that

luzllcoqo.ry.22) < K'(T)(h + 81yl 12

for some constant K'(T). Then choose h, § such that K'(T)h, K’(T)S < 1/4. We con-
clude that

Viel0, T, llua@llzz < 5lylge- (4.16)

By applying this inequality with # = 0, one obtains ||[y|/;2 < %||y|| 12 which proves that
I + K is invertible in £(L?). This completes the proof of Proposition 3.2. O
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5. Further reductions

Recall that until now we have reduced the study of the control problem in Sobolev spaces
fgr P := & + Tyd, + iLY?*T,L'? + R to the one of the control problem in L? for
P =20+ Vo, +iLY?(cLY?.) + R,.

5.1. Change of variables

The goal of this subsection is to reduce the analysis to an equation where L'/2(cL1/%.)
is replaced by an operator with constant coefficients. To do so, we use three changes of
variable which preserve the L?(dx) scalar product. This allows us to conjugate P to an
operator of the form

o+ Wo, +iL+R
where R is of order 0 and W = W (¢, x) satisfies fT W(t,x)dx = 0.

Proposition 5.1. There exist universal constants 8o € (0, 1), r > 2, C > 0 such that the
following holds. Assume that c, V, Ry satisfy

lle = oo, 17:0¢) < 05 No =1, (5.1
where
No = lle = Heoqo.rary + 1V llcoqo.rr:aty + 10elicogo. ity + 1R2lcoqo. 2y
Then there exist a constant Ty > 0 and a bounded, invertible linear map
@: C%([0, T}; L*(T) — C°((0, TyJ; LA(T))
with bounded inverse ®~' such that
Pu=m®~ (P;(du)),
where m = m(t) is a function of time only, defined fort € [0, T], and
Py =8 + Wos +iL + Rs.
The function W = W (¢, x) is defined for t € [0, T1], it satisfies fT Wi(t,x)dx =0, and
IWlleoqo. iy = C(Ie =1 Vlicoqory.a2) + Ndclcoqo,rimm)- (52)
The operator Rz maps CO([O, T1]; LZ(T)) into itself with
IRzl coo.1y1: 2022y < CNo. (5.3)
The constant Ty and the function m satisfy
Ty/T — 1]+ |lm — 1||C°([0,T]) <Cllc— 1||c0([o,T];LO<>)-
The map ® is the composition ¢, ! Ve Y| of three local transformations, where
(W1h)(, ) = (L4 31 (1, x) 2t x + B (2, ),
Wy ') = h T 0.0, (@ (@, x) = kit x = p@),

with ,51, ¥, p given by (C.2), (C.33), (C.34) and (C.36) in Appendix C.
Proof. This is proved in Appendix C. O

(5.4)
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Remark 5.2. (i) The proof is based on computations similar to the ones in [1]. However,
the analysis in [1] used some special properties of the Hilbert transform which cannot be
applied in the present setting. Instead, we shall rely on the Egorov theorem. Moreover,
adapting an argument used in [8] and, with Egorov analysis, in [9], it is convenient to
introduce a change of variables which preserves the skew-symmetric structure of the op-
erator i L'/?(cL'/?.). This allows us to prove that some operator of order 1/2 vanishes,
which plays an essential role below. This in turn forces us to revisit the analysis of changes
of variables, which explains why the proof is done in detail in Appendix C.

(i1) In sharp contrast with other transformations to be performed below, a change
of variable is a local transformation, hence transforms a localized control into another
localized control (this is used below to prove Lemma 9.2).

In addition to Proposition 5.1, higher regularity and stability estimates are given in Propo-
sition C.2.

5.2. Conjugation

To study the control problem for the new equation
0 +Wo, +iL + R3

we will use the HUM method. A key point is then to prove an observability inequality for
solutions of the dual equation, which reads

(=3 — (W) —iL+ R))w =0.
This equation can be written as Pw = 0 with
Pw = ow + Wo,w +iLw + Rqw,

where
Ryw := —Rw + (0, W)w. (5.5)

The observability inequality will be proved later. As a preparation, in this section we
prove that P is conjugate to a simpler operator where d,w + W, w is replaced by o, w.
To do so, we use the analysis in [1]. For the sake of completeness, we recall the strategy
and the main steps of the proof.

Below we often use the following notation: given a function f with zero mean, 9, Lf
is the zero-mean primitive of f, defined by

awlf=>y" L, fe) = > e,
70t J#0
We seek an operator A such that
(0 + Woy +iL + R4)A = A(0; +iL + Rs),

where Rs is a remainder term of order 0. By definition

Rs = A~Y([8,, Al + RuA + W3, A +i[L,A]). (5.6)
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Seeking A as a pseudo-differential operator, and trying to cancel the leading order terms
(thatis, Woy A + i[L, A]), it is natural to introduce A as follows. Let

¢t x, &) 1= Ex + B, x)|E|'/?

for some function § to be determined. Consider also an amplitude ¢ (¢, x, &) to be deter-
mined. Then define the operator A(¢) by setting

Au(t,x) =) g () qt, x, £)e 055, (5.7)
Eel

for periodic functions u, where g (1) = (27{)’1 f e 8y (¢, x) dx are the Fourier coeffi-
cients of u, so that u(z, x) = dez g (1)e™s.
Below ¢ is seen as a parameter and we omit it in most expressions. Given a symbol
a = a(x, &) periodic in x, we denote by Op(a) the pseudo-differential operator defined
by
Op(a)u(x) = Y a(x,&)iige™.

EET
Assumption 5.3. Set
N = IVllcoqo,r1;m%) + e = Hicoo, 7y ooy + 19ccllcogo, 7. 1y + 1R2ll coggo, 7. 222

where s is some fixed large enough integer. In this section, we always assume that N is
small enough without recalling this assumption in all statements.

Hereafter, sy always refers to an index large enough whose value may vary from one
statement to another.

Lemma 5.4 ([1, Lemma 12.9]). There exists a universal constant § > 0 with the follow-
ing properties.

(i) Consider the case when the amplitude q is a perturbation of 1,
g(x, &) =1+b(x,8).
Denote [bls == supge, I1b(-. &) | ascoy. If
18115 + Ibls <6,
then A and A* are invertible from L*(T) onto itself, with
1Al g2 + 1A ull 2 + IA* ull 2 + 1Al 2 < Cllull 2,

where C > 0 is a universal constant.
(ii) Consider the case when the amplitude q is small, namely

1Bl +1gl3 < 8.

Then
lAull;2 < Céllull;2,

where C > 0 is a universal constant.
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Proposition 5.5 ([1, Lemma 12.10]). Assume that ||Bllyi.c < 1/4 and ||Bllg2 < 1/2.
Let

rnm,sp e R, m=>0, sy>1/2, MeN, M=>2m+r+1)+s.

Then

M—1

1 er1/2

|D.|" Au =) 0p<iaa,<a§‘|s|’>a§(q(x,s>e"5' ﬁ@‘)))umw,
a=0 :

where, for every s > s, the remainder satisfies
IRy |Dx|"ull s < CI2m4r+so+ )1l s + Kspnmrym2llull o} (5.8)
with K := g — U, + 1qill Bll gt and g1 := sup, supgez, (2, -, E) | Hn.

We now deduce the following result (which is a variant of a result proved in [1], more
precisely in the proof of Lemma 9.3 there, with a slightly different estimate for the re-
mainder).

Corollary 5.6. There exists a universal constant 5 > 0 with the following property. As-
sume that

lg — 114 + 1Bl g1a <6,
and let A := Op(gq(x, é)ei|§|l/25(x)). For any u in L?,

i[|Dy¥?, Alu
3 &

= %(axﬂ)axmu) + Op((z e - %(axﬁ)zq)|s|‘/2e"'f"”ﬂ>u + Rau,  (5.9)

where
[Raullp2 < Collull2.

Proof. Denote p = q(x, S)ei|§|1/2ﬁ(x). Set M = 8 and write

2 .
. 1
i|Dy>%A =Op(z Wagqsﬁ/z a;;‘p) + Ro + Ru, (5.10)
a=0 '
where
M-1 .
1
Ry = Op(Z o O IEP? a;z‘p).
a=3 '

Forany 3 <o < M — 1, the symbol 9¢|§ 13/2.3% p is a linear combination of terms of the
form m (x, §)b(x)e'€!"*# where m is of order 0 (that is, 3}m(x, &) < [£]7!) and b(x) is
of the form (35°¢) (37" B) - - - (5™ B). It follows from Lemma 5.4(ii) that Ry is of order 0
with

[ Roull2 = C(E)Slullz2.



Control of water waves 689

We now estimate the operator norm of Ry;. If s = sp = 1, m = 1 and M = 8§, then
the inequality (5.8) implies that

Vu € L*(T),  ||Rm |Dxlullr < C(DK12llull 1.

Now we estimate the L2-norm of Ry v for v in L?. We can assume without loss of gen-
erality that v has zero mean (since Ry;C = 0 for any constant C) and set u = | Dy |_1 v.
The previous inequality yields

[Rmvll2 < IRMvll gt = |Rm | Dxlullgr < C(8)8]|vll 2.

Therefore
I(Ro + Rap)ullp2 < C(8)S|ull 2.

It remains to study the sum for 0 < || < 2 on the right-hand side of (5.10). One can
split this sum into two symbols such that the contribution of the first symbol is the two
terms on the right-hand side of (5.9), while the other symbol is of the form Q (x, &)e'l¢ 2p
with Q of order 0. Therefore the contribution of the second symbol can be estimated by
means of Lemma 5.4, so it can be added to Ry + Ry, to obtain an operator R4 satisfying
the estimate in the statement of the lemma. O

Notation 5.7. Set
N = Wl coqo,13; o) + 1IR3l coqo, 71, £c2.2))-

where s is the large enough integer which appears in the definition of A (see Assump-
tion 5.3) and d is an absolute number independent of sy (as in the statement of Proposi-
tion 5.1).

We now choose g of the form Sy (¢) + B (¢, x) for some function coefficient By(¢) to be
determined later and with B; = 23 'W. Then

30xB =308 =W.
Recall from (5.6) that
Rs = A~ ([9,, A1+ RsA + W A +i[L, A]). (5.11)

Now we split i[L, A] as i[|D,|>/?, Al +i[L — |Dy|*/?, A]. Then it follows from Corol-
lary 5.6 that

oAl _ 3&., 9% o0 12 ié'”ﬁ)
Rs=A ([a,,A] Op((2 Iélaxq o (0B) q)|s| e
+ RyA+i[L — |Dy %, A] - RA), (5.12)

where R4 is as given by Corollary 5.6. Recall that R4 is an operator of order 0. On the
other hand,

[0;, A] = Op((atq + i|$|1/2(atﬂ)q)ei|é‘l/2ﬁ).
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So one can write R5 = R;l/z) + RgO) where R;l/z) (resp. Rgo)) is of order 1/2 (resp. 0),

R{P = a7 0p(i|§|1/2(a,ﬁ n §<axﬁ)2>p -2 %(axq)@ﬂﬂe"'é'”ﬂ),

_ . e1)2
RY = A7 (ReA — Ry +ilL — D2, A1+ Op((3rg)e!"*#)).
We claim that
0
IR Il cogo. 1oz SN (5.13)

Indeed, R4 has already been estimated, and directly from (5.5), the Sobolev embed-
ding [[8x WL < W] g2 and (5.3), one has || Rallcoqo.7):222)) < N’. The last term
is estimated by means of Lemma 5.4, and to estimate [A, L — |Dx|3/ 27 we notice that
L — | D, |*/? is a smoothing operator.

Now, from (5.2) and (5.3) one has N < A/, and hence ||R§0) lcoqo.r:c2y SN-

It remains to prove that 8 and ¢ can be so chosen that Rgl/ ? — 0. To do so, we first

fix Bo(z) such that
270 fo = — /E(atﬂl + g(axlgl)z) (t,x)dx, (5.14)

where recall that 81 = —%8;1 W, so that

/ <8,ﬂ + 2(8xﬂ)2) (t, x)dx = 0.
T 8

Now define g as ¢ = ¢” where y is such that

_2. 8 25 g2
y=3i Iéla" (a,,3+ S (0:P) > (5.15)

(Notice that the previous cancellation for the mean implies that y is periodic in x.) With
this choice one has R;l/ 2 =o.
By combining the previous results, we end up with the following proposition.

Proposition 5.8. Assume that sy is large enough. Consider the operator
A :=0p(q(, x, S)ei‘g(l”‘)‘s‘l/z) with B = Bo(t) + %8;1W,
where By is determined by (5.14), and g = eV where y is given by (5.15). Then
(8 + Wy +iL + Ry)A = A +iL + Rs) with ||Rsllcoqo, 12y SN

where N is as in Assumption 5.3.
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6. Ingham type inequalities

As already mentioned, the controllability of the linearized equation around the null so-
lution is based on (a modification of) Ingham’s inequality: for every T > 0 there exist
positive constants C; = C1(T) and C, = C»(T) such that, for all (wy),ecz € 02(7; ©),

T 2
: 172
Ytk = [ [ e ar < 23 P
0

nez nez nez

Hereafter, (w,) ez always refers to an arbitrary complex-valued sequence in £2(Z).
For our purposes, we need to consider more general phases that do not depend linearly
on ¢. For a given real-valued function § € C 3(R), set

pa (1) = sign(m)[€(n)t + B@D) |1, €(n) = (g +n*)'/?|n]'/? tanh!/? (b|n]),

with o = 0 and sign(n) = n/|n| for n # 0. We recall that £ is the symbol of the linear
operator L = (g — 3)%) 172G (0)!/? obtained by linearizing the water waves system around
the null solution (see Section 2.2). We begin by proving a lower bound which holds for
any T > 0 provided that the functions contain only large enough frequencies.

Proposition 6.1 (High frequencies). Let T > 0. Then there exists No > 0 such that, for
all N > Ny, the following holds. If

98] < Stanh'/2(b) and |37l <1 forallt €[0,T],
then
2
dt. 6.1

T T .
E Z |wn|2 ff ‘ Z wnelﬂn(t)
0

nez
[n|=N [n|>=N

Remark 6.2. (i) For T small, one can take No = CT~27¢ for some ¢ > 0. See (6.8) for
more details on this estimate.
(ii) For ||83,8 ||z~ small enough and T large enough, the result holds with Ny = 0.

Proof of Proposition 6.1. Splitting the sum into n = m and n # m, we write

r . 2 r
/ ’Z wee™ O dr =T 3 w2+ Y wnw—m/ =1 ) gy
0 nez 0

nez n#m
[n|=N [n|=N Im|,|n|>N

We have to estimate .
K(n,m) = / ei(ﬂn(t)_ﬂm(t)) dt.
0

Integrating by parts yields
K(n.m) — [ ot (n (O —=pm (1)) :|I=T . /T G0 0) W — i
iy (1) =, (D) Ji—9  Jo i(1y, = )
and therefore
2

//l

T " o_
K1, m)| < e, m) = H +/ = | g,
ooty Jo o Iy — iyl
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Since x(n, m) = x(m, n), we have

1
|2 wam K m)| = 5 37 Qual? + fwon Pt m) < 3w Pactn, m).
n#m n#Em n#m

Hence

T . 2
/0 ‘Z wyetn®|” gr > Z (T— Z K(n,m)>|wn|2.

nez nez meZ\{n}
[n|=N [n|=N |m|>=N

We have to prove that N can be so chosen that
T — Z k(n,m) >

meZ\{n}
[m|=N

(6.2)

To do so, we use the following lemma.
Lemma 6.3. Assume that |3;8(t)| < 1/2tanh'/?(b) for all t. Let ¢ € (0, 1/2).

(i) There exists a positive constant K such that, for all integers N > 0 and all n € 7

with [n| = N,
1 - K. 63
meZ\{n} M;‘l - /’L;n Lo°([0,T]) - (1 + N)]/Q_s' .
lm|=N
(ii) For all integers n, m withn # m, and all t,
"o
Lt < 2 20102 (6.4)
[), — W, t

Proof. Let us prove (i). Since «(—n, m) = k(n, —m), we can assume that n > 0. Let
3;B] <  tanh!'/2(b), and note that tanh(b) < 1 < 1+ g. Then for all n > 0,

tanh'/2(b)n? < t(n) < (1+)'2n32, Ltanh'2(b)n? < w, (1) < 3(1+¢)"*n*2.
For m < 0, m # n, one has
|ty = b = 1ty + 1Ly = 5 tanh20) 032 + ImP?) = § tanh20) (1 + [m*),

and therefore

1 C c
Z 7 ; = Z 32 =
me B = W oo,y — 5y 1+ Iml V1I+N

for some constant C’ > 0. We now consider the case m > 0 and split the sum into two
pieces. For m > An with A := (36(1 + g)/tanh(b))'/3 one has ), > 2/, and

1 1 1/2 3/2
[y = M| = o 11 = ),/ 140, | > iy, > 5 tanh'/2(B)ym™/2,

which again leads to a convergent series

1 C
- P —
,,,Z;) My = B |l Lo,y ~ V1+N

m>An,m>N
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It remains to consider the sum over all m > 0 such that N < m < An. Denote o (n) :=
(g +n?)n. Then

o(m) —o(n) _ a(m)z—a(n)2 m2+n2+nm+g

m—n  (m—n)om)+om)  o(m)+on)

Using the elementary inequality ab < %(a2 + b?), one has

(o(n) +om)/n=/n2+gn+/m?2+gJ/nm <m*+n>+nm+g

for all m, n > 0. Therefore

lo(m) —o(n)| = /max{n, m} |m — n| (6.5)

for all m, n > 0. Now suppose that m < n withm > 0,n > 1. Then
wh, — = (o (n) — o (m)) tanh/?(bn) + o (m)(tanh'/?(bn) — tanh'/?(bm))
+ @2 —m')5,p
> (o (n) — o (m)) tanh'2(bn) — (n'/* — m'/%)|3,B|

o r - 19 B )
> n'/?(n — m) tanh (b)(l (Y1 + J/m)+/tanh(b)

> 1tanh'/2(b)/n(n —m)
if |0 8] < %«/tanh(b). We deduce that

Iy, — | = Cy/max{n, m} |n —m| (6.6)

forall m, n > 0, with C = § tanh'/2(b). Now, for n > 1, we obtain

1 1 1 1
> | < > < clostem )
sl n = o Lo o,y — CN/m G I —ml NG
N<m<An N<m<An

for some ¢ > 0. Forn > 1andn > N, one has n > %(1 + N), and
Clog(cn)n71/2 S C8n71/2+8 E C821/27€(1 +N)71/2+€

for ¢ € (0, 1/2), with some C; > 0. On the other hand, for n = 0 the first sum in (6.7)
is zero because it has no terms. Thus the first sum in (6.7) is < Co(1 + N)~ /2% for any
n > 0. This completes the proof of (i). Statement (ii) is proved by using (6.6). ]

The previous lemma and the definition of « (n, m) imply that
Y Klnm) £ (14 T(02B]1)
= Ny PP

meZ\{n}
|m|=N
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Hence (6.2) is satisfied provided that

4K,
T

(L+T(97BlIL<) < (1 + N)V/2¢, (6.8)

and Proposition 6.1 is proved. O

From (6.6) applied with 8 = 0, we deduce that

[€(n) — £(m)| > Cy/max{n, m}|n —m (6.9)

forall m,n > 0, with C = 1 tanh!/2(b).

We now prove upper bounds. By contrast with the previous proposition, we shall see
that these estimates hold for any function (not only for high frequencies). Also, a key
point for our later purpose is that one can add some amplitudes ¢, depending on time
(and whose k-th order time derivatives can grow with n as |n|*/?).

Proposition 6.4. There exists C > 0 with the following property. Let T > 0. Let |0;8]| <
1 tanh!2(b), and |9*B| < 1, k = 2,3, on [0, T. Then, for all (wy) € €*(Z; C),

T ) 2
f ]ancnme’“"(’) dt < CME@*(1+T) ) |wal?, (6.10)
0 nez nez
where ,
118; &l .00 192l Lo
M(&) :=sup ||gyllpe + sup —— + sup ——— (6.11)
et nez NI+l wez 14 |nl

Proof. Splitting the sum into n = m and n # m, we write

T T
/ > wagaeitn® Cai = Z(/ Ifn(r)ﬁd’)mnﬁ + 3wy EG,m)
0 0

nez nez n#m

with
T
E(n,m):= / () (1) € PO =1m ) gy
0

The first sum on the right-hand side is easily estimated. It remains to bound the sum for
n # m. Integrating by parts twice, one has

T
Eam) = [ pelar =" ifp+ £ = 10
T .
+f elh(f//pz _ 3f//’l//p3 + 3fh//2p4 _ fh///p3)dl
0
with

f= é-né-_ms h = pn — tm, pP=—F—"7F
Ky — K
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Thus |E (n, m)| < e(n, m), where

e(n,m) == 2| fpliLe + 211 ' p2liree 4 201 fB” p3| oo
+ T P liree + 30 B PPl + 31 R pHllrse + 1 fR" pPlr).  (6.12)

We have to estimate the sum ZmeZ\ n) e(n, m), uniformly in n. First, we note that

10X (CnCm)llzoe = 105 fllee < {1+ 102+ (1 + 1mDY2¥M (@), k=0,1,2.

We have already seen in (6.4) that [” p| < 2[328|. Similarly, |2”'p| < 2|3 B|. Also,
applying (6.3) with N = 0, ¢ = 1/4, we deduce that Zmez\{n} Ipllre < C for some
absolute constant C. Therefore the sum of the first, the third and the last two terms in
(6.12) (i.e. those with f) is bounded by CM(;)Z(I + T'). The remaining three terms are
also bounded by CM (¢ )2(1 + T) provided that

2

meZ\{n}

In| + |m|

—_— <C 6.13
bty = 1) | 1~ ©19

LOO

for all n € Z, for some C independent of n. The bound (6.13) is proved by using the same
splitting and estimates as in the proof of Lemma 6.3. O

By combining the last two propositions with an induction argument (following [10, 22,
40]), we now deduce the following result.

Proposition 6.5 (Sharp Ingham type inequality). Let T > 0. Then there exist positive
constants C(T) and §(T) such that if

IBllx := sup [(3B, 378,38 B) < 8(T), (6.14)
tel0,T]

then, for all (w,,) € €*(Z; C),

T
)Yt < [ [ e

nez nez

2
dt.

Proof. This proposition will be deduced from Proposition 6.1, the following claim and
an immediate induction argument (with a finite number of steps).

Claim 6.6. Consider two subsets A, A’ of Z with A" = AU {N} for some N € Z, and
with |n| > |N| for all n in A. Assume that for every T > 0 there exist positive constants
8(T) and K (T) such that

T
1Blx <8(T) = KT [wnl 5/ 3 wpen®
neA 0 neA

2
dr. (6.15)

Then for every T > 0 there exist positive constants 8'(T) and K'(T) such that

T
Bl <5T) =5 K0 3wl = [ | Y wpen®
neA 0 LA

2
dt. (6.16)
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To prove the claim, we introduce

F@y = wpe O f@) =Y we O fi(6) =) wyel PO,
neA ne A’ ne A’

sothat f' = f 4+ wye'*N, fi = e N f/ = feTIMN 4wy, and

T T T ‘
/ |f1(t)|2dt=/ |f’(t)|2dt=/ ‘Z wyetn®
0 0 0

ne A’

2
dt.

We prove that there exist constants C1, C» (both depending on 7') such that

T T
G Y lwl> < | 1fOPdt,  ClwyP < | If®Fd. (617
neA 0 0

Then (6.17) implies the second inequality of (6.16) with K'(T) := % min{Cy, C,}. Let us
begin with the first inequality of (6.17). Let t := % min{1, 7'}, and remark that

/ il m — fi)dy = e > wae 1 06,(1) (6.18)
0 neA

(notice that the sum is over A and not 4") with
0,(1) = / " (el 0 =4 O - G +n D) _ 1) g
0

Assume that n, N are positive. We split 6, = ¢, + ¢,, where ¢, is a constant, independent
of time (such that ¢, = 6, for 8 = 0), and ¢, is defined to be the difference, namely

ei[Z(n)—Z(N)]r -1
iltn) —E(N)]

T ilem—eN i VN
0 ::/ LD =N i+ —BOIT—VN) _ 1y g
0

T
o :/ (e m—EI _ 1y g —
0

bl

Now we use the following elementary inequality: there exists an absolute constant ¢y > 0
such that, for all ¢ € R,

le’? — 1 —i®]? > co min{®?, 04}

This holds because |¢/? — 1 —i®|> = (1 —cos )+ (¢ —sin ©)? is positive for all & # 0
and it has asymptotic expansion 92 + 0(9?) for || — o0, and %194 + o(¥*) for ¥ — 0.
We apply this inequality with ¢ = [£(n) — £(N)]t, and, using (6.9), we get

leal® = Tt

for some ¢ > 0 (note that min{r?, v*} = 7* because, by assumption, T < 1).
It remains to estimate ¢, and its derivatives. From the definition,

120l <27, 19:Cul < 209 Bllet/m, 18220l < 48 BlI3 0 + 118281 Lo ) Tn.
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However, we need a sharper bound on ¢, which shows that £, is small when g is small.
Such a bound could be easily obtained by estimating |’/ — 1| < |f], but this would
produce an extra factor /n. Instead, we integrate by parts to obtain

P =N

_ i[Bt+T)—BO(/n—V/N) _
SO = ey — e b

([L(n)—L(N
_ / TN eI _ gy
o ilem) — e ’

and it is easily checked, using (6.9) and the bound |B(t + t) — B(t)| < t|/9;8] L, that
[Zn| < Ct]|0;B]l L. By combining the previous estimates, we have M(¢) < Crt||B]x
where M (¢) is given by (6.11), and C is independent of T', 7.

Set F(t) := Y, ca Wne'™ D0, (1) and split F = Fy + F> with

Fi(t) =Y wpe™ e, Fyt) =) wue™ O, ().
neA neA

Since |c,|> > ct?, the assumption (6.15) implies that if ||8]x < 8(T — ), then

T—t
KT —1) ) |waP < KT —1) Y |weul < f |Fi(1)[*dt.
neA neA 0

On the other hand, Proposition 6.4 applied with M (¢) < Ct||B||x implies thatif ||8]|x <
% tanh'/2(b), then

T—1
/ |Fa)*dt < Cor?|IBIX(1+T =) Y |wal?,
0 neA

where Cy is independent of 7', t. Therefore, if

ACoT?IBIX 1+ T — 1) < ct*K(T — 1), (6.19)

then [/ " |F2dr < L [T77|F2dt, wh TTFRde = LT R Pde B

0 2] _Zfo | F1] ,Wencefo |F| Z 7)o | F1] - by
(6.18), this implies that

2

1 T—-t T—7 T
Jer' k=0 Y wb < [ roras [ [ een - oy a

neA

The condition (6.19) holds if

T/c K(T — 1)

1Bllx £ —F————,
2/ Co(1+T)

(6.20)



698 Thomas Alazard et al.

and we set §'(T') to be the minimum of % tanh!/ 2(b), 8(T), and the constant on the right
in (6.20). Moreover,

/T—r
0

T 2 T—1 T
fo At +m) = fi©)dn| dr < /0 . /0 (it +m) = fia)Pdndi
T—t pt T'-t pt
52r/ /Ifl(t+n)|2dndt+2r/ /|f1(t)|2dndt
0 0 0 0

T T
<27t / 10O di = 2T / P OPdr,
0 0

and we infer that the first inequality in (6.17) holds with C; = %cr3K(T —r~L
Now we prove the second inequality in (6.17). We have lwy |2 = | f/(t) — f(t)|* for
any ¢, and so

1 T 2 T T
|wN|2:?/ If/(t)—f(t)l2dt§?</ If/(t)lzdt+/ If(t)lzdt)-
0 0 0

It follows from Proposition 6.4 (applied with ¢, = 1) that

T
/ IfOPdt <A+ T)C Y w,l.
0 neA

Using the first inequality of (6.17), we deduce that

T 1+7)C (T
[ irwrar < S0 [Ciporar
0 1 0

where C is the constant of Proposition 6.4 and C; has been found above. Consequently,
the second inequality in (6.17) holds with C; = lTC[ [Cy —i—(l—i—T)C]’] .Weset K'(T) =
% min{C1, C} and obtain (6.16). This completes the proof of the claim for n, N positive.
The other cases are analogous. O

7. Observability

We now use the previous inequalities for sums of oscillatory functions to prove an ob-
servability property. In particular, we prove that it is sufficient to control the real part of
the solution to bound the initial data.

Proposition 7.1 (Observability). Let T > 0. Consider an open subset o C T and a
constant 0 < ¢ < 1. Then there exist positive constants K, &1 such that the following
holds. Consider a pseudo-differential operator Ag with symbol exp(iB(t, x)|€|'/?) for
some function B satisfying

sup sup |3 B(t, x), 2B(t, x), B, x))| < 8(T),
tel0,T] x€[0,27]
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where 8(T) is the constant in Proposition 6.5. Then for every initial data vo € L*(T)
whose mean value (vy) = Qmn)~! fT vo(x) dx satisfies

IRe (vo}| = cl(vo)| — e1llvoll 2, (7.1)
the solution v of
oov+iLv=0, v(0) = v, (7.2)
satisfies
T 2
/ / [Re (Agv) (¢, x)|* dx dt > K/ lvo(x)|% dx. (7.3)
0 w 0

Remark 7.2. The condition (7.1) cannot be eliminated. To see this, consider the simplest
case B =0, so Ag = I, and consider a constant solution v (¢, x) = C of (7.2). Then (7.3)
holds for some K if and only if the real part of C is nonzero. This suggests assuming that

IRe (vo)| = ¢[(vo)l- (1.4)

In fact, it is sufficient to consider the weaker assumption (7.1). The advantage of assuming
(7.1) instead of (7.4) is used below (see (7.14)).

Proof of Proposition 7.1. Write

L 1 [ .
vt x) =) ae™ et a, = E/ ey (x) dx,
0

nez
where £(n) = (g +n)"/2(|n| tanh(b|n|))"/? is the symbol of L. Then set w = Agv, given
by

. . 172
w(n x) — Zaneznxel(f(n)t—i-ﬁ(t,x)\ﬂ .
nez

Forn € Z, set

An = L)+ B, D) e = Sign(M)hn,  cp(x) = ape™.

Since u, = sign(n)A, and u_, = —u,, we write
2Rew =2Reaqy + Z cne”‘" + Zae_“‘” + Z cne“‘” + Zae_"k”
n>0 n>0 n<0 n<0
=2Recp+ Z cpeltn 4 Zaei“” + Zc,ne"“” + Zaei“”
n>0 n<0 n>0 n<0
to obtain

cn+c—p, forn >0,
2Rew = Z yae'*  with y, = {2Recy forn =0,
nez n +c¢c-, forn <O.
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Consider an interval wg = [a, b] C w. By Proposition 6.5,

T T
/ /|Re(w(t,x))|2dxdtz/ / IRe(w(z, x))|* dt dx
0 w wo

2 ¢ ( )
Dy dx, (7.5)
@0 neZ
where C(T) is the constant given in Proposition 6.5. For n # 0 we write
|2 +@a—n€_2mx,

/ eme dx| + / e—2mx dx
w( wQ

sm(n(b —a)) )

2inx

[Yn (O1? = lan|* + |a—p|* + ana—y

so that

)

lyn ()2 dx > |wol{lan|* + la—n|*} — lan |a,,|(

/ e2mxdx — / 721nxd ‘
w0 wQ

Moreover there is a small universal constant 5o > O such that, for all § € (0, &),
- sin(d) .
-4

wQ

Now

Vx| = 6. sin(x)

X
We can assume that 0 < b — a < §g, so that

VnelZ*, (b-—a)— —sin(n(b —a)
n

> (b —a) —sin(b — a).
As a consequence, for all n # 0,
Y 12 dx > ¢ (|an* + la_n|?).
®0

where ¢’ := (b — a) — sin(b — a) > 0. Then, recalling that 3y = 2 Re ay, it follows from
(7.5) that

T /
fo /wlRe(w(t,x))|2dxdtZC(T)|:(b—a)|Rea0|2+% Z |a,,|2].

nez\{0}

Now, using (x + y)? > 1x2 — y% and (7.1), one has [Re (vo)|?> > %c?|(vo)[? —af||v0||§2,
namely

2
2. ¢ 2 2
Reapl” > Elaol 27181 E lan]”,

nez

T
/ f|Re(w(t X)) dxdt>KZ|a,,|
0

nez
with K = C(T) min{(b — a)(zc — 2me?), §c’ — (b — a)27e?}. If &) is small enough,
then K > 0, which completes the proof. O

and therefore
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Corollary 7.3. Let T > 0, let o C T be an open subset and let 0 < ¢ < 1. Then there

exist positive constants €y, €1, r, K such that the following holds. Assume that (W (t)) = 0
forallt € [0, T] and

sup S WOl + sup WOl < e,
t€[0,T] 1<k<3 tel0,T]

and consider the pseudo-differential operator A, given by Proposition 5.8, with symbol
q(t,x,&)exp(ip(t, x)|€1Y/2). Then for every initial data vy € L*(T) whose mean value
satisfies

IRe (vo}| = c[(vo)| — e1llvoll 2, (7.6)
the solution v of
v+ iLv=0, v(0) =, @.7
satisfies
T 2
/ / IRe(Av)(z, x)|> dx dt > K/ [vo(x)|? dx. (7.8)
0 w 0

(The constants €y, €1, K depend on T, ¢, while r is a universal constant.)
Proof. Split A as Ag + A with
A = Op(exp(iB(t, ¥)[E]'?)), Ay :=O0p((q(t, x. ) — 1) exp(iB(t, x)[€|'/?)).

The contribution due to Ag is estimated by Proposition 7.1. Notice that, for &g small
enough, the smallness assumption on § in Proposition 7.1 is satisfied because

sup sup (3B, x), 07 B(t,x), 9, B, NI S sup Y IFW (D)l S eo.
1€[0,T] x€[0,27] 1€[0,T] | k=<3

On the other hand, it follows from the definition of ¢ and B and the estimate given
by Lemma 5.4(ii) that A; is bounded from L? onto itself, with operator norm of size
O(IWllHr) = O(go). Then

T T T
/ /|Re<A1v><z,x>|2dxdrs/ ||A1v<r>||izdr5f egllv@)7, dr.
0 w 0 0

Since ||[v(f)]l ;2 = lv(0)|l;2, by taking &9 small enough the desired estimate follows from
the triangle inequality. O

We now want to deduce an observability result for equations of the form
orw + Woyw+iLw + Rw =0,

where R is an operator of order 0. In the appendix we prove that the Cauchy problem for
this equation is well-posed (see Lemma B.3).
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Corollary 7.4. Let T > 0, let o C T be a nonempty open domain and let 0 < ¢ < 1.
Then there exist positive constants €3, €3, r, K such that the following holds. Assume that
(W) =0forallt € [0, T] and

sup > WOl + sup [WOlar + sup ROl gz <e2. (79)
1el0.711 5523 1€[0,T] 1€[0,T]

Then for every initial data wo € L*(T) whose mean value satisfies

IRe (wo)| = cl{wo)| — e3llwoll 2, (7.10)
the solution w of
orw + Woyw+iLw+Rw=0, w() = woy, (7.11)
satisfies
T 2
f / |Re w|>dx dt > K/ lwo(x)|% dx. (7.12)
0 w 0

Remark 7.5. Corollary 7.4 also holds for data at time T, that is: If wg € L%(T) satisfies
(7.10), then the solution w of

oow—+ Wo,w—+iLw+Rw=0, w(T)=wp, (7.13)

also satisfies (7.12). Note that the data in (7.13) is at time 7 instead of 0. To prove it,
notice that the function w(t, x) := w(T — t, x) satisfies

— 3,1 4+ Wi + i Ll + Rib =0,
where W(t), ﬁ(l) stand for W(T — t), R(T — t). Since W and R satisfy the same as-
sumptions as W, R, one can apply (7.12) with w replaced by w, noticing that

T T
/ f|Rew|2dxdt:/ /|Rew|2dxdt.
0 w 0 w

Proof of Corollary 7.4. 1t follows from Proposition 5.8 that there is a change of unknown
w = Av such that v satisfies an equation of the form

v +iLv+Rv =0

for some operator R of order O satisfying || (¢)v]|;2 < Cez||v| ;2 forallt € [0, T]. By a
perturbation argument, we shall deduce observability for this equation from observability
for the equation without 2R. To do so, split v as v; + vy where v; and v, are given by the
Cauchy problems

o;v; +iLv; =0, 0;v2 +iLvy + Rvy = —Rvy,
v1(0) = vo, v2(0) =0,

and vy := v(0) = (A~ Yw)(0). We begin by estimating vy, claiming that its initial data vg
satisfies the hypothesis (7.6) of Corollary 7.3, which is

IRe (vo)| = cl(vo)| — erllvollz2 (7.14)
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(where ¢ is given in Corollary 7.3). To prove (7.14), we write v = w + (I — A)v to
obtain, at time r = 0,

IRe (vo}| = [Re (wo) + Re ((I — A)vo)| = [Re (wo)| — (I — A)vo)l.
Thus, by the assumption (7.10),
IRe (vo)| = cl(wo)| — e3llwoll 2 — [{(I — A)vo)l.
Since w = v + (A — I)v, we have (wo) = (vo) + ((A — Iwp), and
IRe (vo)| = c[{vo)| — (¢ + DI((A — Dwo)| — e3]lwoll 2.

By (7.9), |{(A — Dvo)| < Cezl|lvoll;2 (see Lemma 7.6 below). Also, ||woll; 2 < Cllvoll 2
because A is bounded on L? (see Lemma 5.4). Thus

IRe (vo)| > c|{vo)| — ((c + DCer + Ce3)llvoll 2,

and the claim is satisfied if €7, £3 are small enough. As a consequence, from Corollary 7.3
we deduce that

T 2
/ / IRe(Av))|>dx dt > K/ lvo (x)|? dx. (7.15)
0 w 0
On the other hand, it follows from (B.11) (applied with V =0, ¢ = 1 and R = fR) that

lvallcogo.r1:22) < ClIRVII L1 0, 77:L2)-

Since [|PR(H)v]|;2 < Cez|lv|l;2, by using (7.9) we find that the last quantity is bounded by
CerT ||voll 2. Since A is bounded on L2, we deduce that

T T
/ / Re(Avy)|? dax di < / JAvs(0) 2, di < T sup | Ava(0)]
0 Jo 0 [0,T]
2 3.2 2
< CT I ago rpaz) < CT e N0012- (7.16)

Using the elementary inequality (x + y)* > %xz — y2, for &, small enough we get

T 2
2 K 2
Re(Av)|?dxdt > — [ |vo(x)? dx.
0 Jo 4 Jo

Since Av = w and ||wop||;2 = [|[Avo|l;2 < Cllvol| 2, we obtain

T K 2 2
/ / IRe w|? dx dt > —/ lvo(x)|> dx > K’/ lwo(x)|? dx,
0 Jo 4 Jo 0

which completes the proof. O

Now we prove a technical result used in the proof above.
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Lemma 7.6. Let A be a pseudo-differential operator with symbol q(x,é)eiﬂ(")|§|l/2.
There exist universal positive constants 8, C such that if ||Bllgs + |g — 1|3 < 6, then
(A — Du)| < C8|lull;2 for allu e L*(T).

Proof. As in the proof of Corollary 7.3, we split A = Ag + Ay, with
Ao := Op(exp(iB(x)IE]V?)), Ay :=Op((g(x, &) — 1) exp(iB(x)|E]'/?)).

Directly from Lemma 5.4(ii) we have || A ||£(L2) < Cé§, whence |[(Aju)| < Co||lul|;2. To
estimate Ag — I, letu(x) =), u, e and calculate

/(Ao — Dudx = Zuncm cy = / ei(nx+\n|1/2/3(x)) dx.
T 120 T

Integrating by parts gives

n =

By {ef (rxFinl B0y 9 Bx) el FInl B0
[ -
T i(n + |n|'/23:B(x)) T [n72(1 + |n|V2n 10, B (x))?

so that, for |0, 8| < 1/2,
leal < ClBlg2Inl = ¥n e Z)\ {0}.

Thus (3_ |cn )12 < Bl 2, and by Holder’s inequality the lemma follows. m]

8. Controllability

Consider an operator of the form
Q=0+ Wa, +iL+R,

where W is a real-valued function and R is an operator of order 0. In this section we study
the following control problem: given a time 7 > 0, a subset @ C T and an initial data
win € L*(T), find a (possibly) complex-valued function f € C ([0, T1; L?) such that the
unique solution w € CO([O, TI; L2) of

Quw = xoRe f,  w(0) = win, 8.1)

satisfies w(7T) = 0. We study this control problem by means of an adaptation of the
classical HUM method. We need to adapt the standard argument since we want to prove
the existence of a real-valued control, while the unknown is complex-valued. In particular,
for this reason, one cannot obtain w(7") = 0. We prove instead that, for any real-valued
function M such that the L°°-norm of M — 1 is small enough, one can find a control such
that w(T, x) = ibM (x) for some constant b € R. We remark that, given f and wjy, the
existence of a unique solution w to (8.1) is proved in the appendix (Lemma B.3).

We prove not only a control result but also a contraction estimate, which is the main
technical result of this section. This means that we estimate the difference of two controls
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f and f’ associated with different functions W, W’ or remainders R, R’. This is the key
estimate to prove later that the nonlinear scheme converges (using a Cauchy sequence
argument). To prove this contraction estimate we introduce an auxiliary control problem
which, loosely speaking, interpolates the two control problems. Since the original nonlin-
ear problem is quasi-linear, a loss of derivative appears. This means that to estimate the
C9([0, T1; L*)-norm of f — f’ we need to have a bound for the CcY([0, T1; H")-norms
of f and f’. That is why we prove and use a regularity property of the control: the control
is in C°([0, T']; H*(T)) whenever wi, € H*(T). This is proved by adapting an argument
used by Dehman-Lebeau [20] and Laurent [32]. Before stating the result, we recall the
definition of the adjoint operator Q*:

0"=-0, Q:=0+Wo, +iL+R, R:=—-R*+3W. (8.2)

Proposition 8.1. Consider an open domain w C T. There exist r and six increasing
functions Fj: R} — R% (0 < j <5), satisfying limg .o F;(T) = 0, such that for any
T > 0 and any real-valued function M € H3*(T) with |M — gz < Fo(T), the
following results hold.

(i) (Existence) Consider R € C°([0, T1; £(L?)) and a function W satisfying
/ W(t,x)dx =0 foranyt € [0, T].
T

Assume that the norm

NW, Bz =D 19 Wlleoqo,rpmm + 1 W llcogo. 71 1y + IR co o, 7120220
1<k<3

satisfies

W, Rl r < Fi(T). (8.3)

Then there exists an operator ®p 1 L? — CO([O, Tl; L2) such that for any
win € L2, setting f = Oum,1(Win), the unique solution w € CO([O, Tl; L2) of

Qw = yoRe f,  w(0) = win, (8.4)

satisfies
w(T,x) =ibM(x) (8.5)

for some constant b € R, and
||f||cO([0,T|;L2) =< ||win||L2/~7'—2(T)- (8-6)

(i1) (Uniqueness) For any wip € L*(T) and any T > 0, ©® m. 7 (Win) is the unique func-
tion f € CO([0, T); L*(T)) satisfying the following two conditions:

(1) QO*f =0andIm [ M(x)f(T,x)dx = 0.
(2) The solution w of (8.4) satisfies (8.5) for some constant b € R.
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(iii) (Regularity) Let u € [0, 3/2] and wi, € H*(T). If

W, B)llr,r + IRl coqo, 71; ccrmyy < F1(T), (8.7)
then © y1.7(win) € CO([0, T]; H*(T)) and
1©m. 7 (Win) | coqo. 71 iy < IWinll e/ F3(T). (8.8)

(iv) (Stability) Suppose (W, R) is defined fort € [0, T'] and satisfies (8.7) with u = 3/2,
and (W', R') is defined for t € [0, T'] and satisfies (8.7) with u = 3/2 and T’
instead of T. Denote by Oy 1 and @’M’T, the operators associated to these two
pairs. Consider the time-rescaling operator T defined by

(Th)@) :=h(\t), r:=T/T, 8.9
andlet W :=TW, R := TR, so R(t) = R(At). Then, given any wi, € L2(T),

19,77 (Win) =T O, 7 (win)llcogo, 77122

lwinll 372

< 11— Al + W = Wlleoro 12 + IR = Rllcoqo 7 2120 )-
Fu(T) ( C°([0,T'}; H=) CO([0,T']; L(L )))

(8.10)
(v) (Dependence on M) Let M, M’ € H3/>(T) with |M — 1|1~ + [[M' — 1||p= <
Fo(T). If (W, R)ll.r < Fi(T), then, for all wi, € H'(T),

1
® — Oy i . < ——|M — M'|| L~ || w; . 8.11
II( M, T M ,T)(wm)”cO([(),T],LZ) = F(T) I Iz ||wm||H1 ( )

In this section we often use the notation A < B to say that A < C B for some constant C
depending only on T'. The key result is the following lemma.

Lemma 8.2. Introduce the space
L3 = {go e LX(T; C); Im/TM(x)(p(x)dx = 0}.

For any wi, € L2(T), there exists a unique f| € Lﬁ,[ such that

T
Vér e Ly, Re /0 (o Re £(1), $(0) dt = —Re(win, $ (0)),

where [ and ¢ are the unique functions in CO([0, T1; L3(T)) satisfying

Qf =0, Q¢ =0, ®.12)
() = fi, ¢(T) = ¢1,
with Q given by (8.2) (the existence of f and ¢ follows from Lemma B.3). Set
Op, 7 (Win) == f.

Moreover, (8.6) holds.
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Proof. The space Lizw is an R-vector space. Introduce the R-bilinear symmetric map
a(-, -) defined by

T
a(fi. 1) = Re /0 /JT Yo () Re(f (1, ) $ 1) dx di

T
=/ /xw(x)Re(f(t,x)) Re¢(t, x)dx dt. (8.13)
0 T

This map is well-defined and continuous. Indeed, it follows from the L>-energy estimate
(see (B.11)) that

T
la(f1, D)l < [0 /T'f' ol dx s
= Tl flicogo,ry:e2)lPllicoqo. .2y = COIfill2l1@1lz2- (8.14)

Since x4 (x) = 1 for x in an open subset w; C w, one has

T
a(fi, f1) = f / (Re f)* dx dt.
0 w]
If fi € L%, thenIm [ Mf dx = 0 and

‘Im/;rfl(X)dx < IM = 1LV 2 | fill L2+

Im/(l — M) fi(x)dx
T

from which (using |Re z| > |z| — |Im z|) we deduce that

IRe (1) = [{fi)] — IM — lzoov/277 || fill 2

For ||M — 1|/~ small enough, one can apply the observability inequality proved in the
previous section (see Corollary 7.4 and Remark 7.5) to conclude that

CiDIfill72 < alfi. f1) (8.15)

On the other hand, (8.14) implies that a(f1, f1) < C(T)| f1 ||iz. Hence a(-, -) is a real
scalar product on L3, which induces the norm N(fi) = /a(fi, f1), equivalent to the
norm || - [l 2(p,c) on L%,I. Now, Lemma B.3 implies that the mapping ¢1 +— ¢ (0) is
R-linear and bounded from L%w into L2, and hence ¢ — A(¢1) := — Re (win, ¢(0))
is a bounded R-linear form on Lﬁ,l. Therefore, the Riesz theorem implies that, for any
R-linear form A on L%M, there is a unique f; € Lﬁ,[ such that a( f1, ¢1) = A(¢y) for all
o1 € Lzzw together with

I fill2 < AN/ Ci(T). (8.16)
Moreover (8.6) follows from (8.16) and the bound || fllcoo.7}:12) < N fill,2 already
used. O
Proof of Proposition 8.1. (i) We begin by proving that if M € H3?(T) then
H¥?%(T) N L2, is dense in (L3,, || - ||;2). To see this, let Ty be the Fourier trunca-

tion operator defined by TTyh(x) = ZI/ISN hjei-/" where h(x) = )

oliX G
jeZhJe . Given



708 Thomas Alazard et al.

ue Lﬁ,l, define uy := M_ll'IN(Mu). Since Iy preserves the mean, one has uy € L%,I.
Moreover, since u € L2, one finds that Mu € L*(T), [y(Mu) € C*(T), and hence
M~ Ty (Mu) € H3/?(T) since M~ € H3*(T). Since (uy) converges to u, this proves
that H3/2(T) N L%\/[ is dense in L%,I.

Now let f be as given by the previous lemma. It is proved in the appendix that there
is a unique solution w in C9([0, T1; L3(T)) of (8.4). Our goal is to prove that w(T)
satisfies (8.5). To do so we first check that (8.5) will be proved if Re (w(T), ¢1) = 0 for
all ¢y in L2, Indeed,

Re (w(T), ¢1) = /(Re w(T, x)) Re ¢y (x) dx + /(Im w(T, x)) Im ¢y (x) dx = 0

for all ¢, € L%,,. Therefore f (Rew(T, x)) f(x)dx = 0 for any real-valued function f,
and [(Im M (x)~'w(T, x))g(x) dx =0 for any real-valued function g with [ g(x) dx =0.
This implies that (8.5) holds.

We now have to prove that Re (w(T), ¢1) = 0 for any ¢, in Lﬁ,l. By the density
argument proved above, it is enough to assume that ¢; € L%,[ N H3?(T). Given such
a gy, letg € CO([0, T1; H¥*(T)) be such that

Qp=0, ¢(T)=¢i. (8.17)
Since Q = —Q*, multiplying (8.4) by ¢ and integrating by parts, we find that

T T
<w<T>,¢1>:<w<0>,¢(0>)+/0 (waef,¢>dt+/0 (w, Qp)dr.  (8.18)

Notice that the integration by parts is justified since ¢ € C'([0, T]; L?(T)). By definition
of ¢ the last term on the right-hand side vanishes, and by definition of f the real part
of the sum of the first and second terms vanishes. This proves that Re (w(T), ¢1) = 0,
which concludes the proof of (i).

(i1) Recall that @ = —Q* is given by (8.2). Consider ¢; € L%,I and denote by ¢
the unique function in C([0, T']; L?(T)) satisfying (8.17). As in (8.18), multiplying the
equation Qw = x, Re f by ¢ and integrating by parts one obtains (8.18). Since ¢; € L12v1
and w(T, x) = ibM(x) for some constant b € R, one has Re (w(T), ¢1) = 0. Therefore,
since Q¢ = 0,

T
Re / (xoRe f. @) di = — Re (win, $(0)).
0

Since Qf =0and f(T) € L%V, by assumption, and since the function f; whose existence
is given by Lemma 8.2 is unique, one deduces that f(7) = fi. Hence f = Oy 7(win)
by uniqueness of the solution to the Cauchy problem (8.12).

(iii) We prove (8.8). Recall that ® s 7 (win) = f where f is given by

Qf =0,
f(T) = fi,
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for some function f] € Lﬁ,,. Then the unique solution w € Cco([0, T1; L?) of
Qw = Xw Re fv w(o) = wil’l’

satisfies w(T, x) = ibM (x) for some constant » € R. In view of the energy estimate
(B.3), to prove the desired result it is sufficient to show that || f1]| g« is controlled by
|Win || 7. We only prove an a priori estimate, assuming that f; € H*(T). To estimate
| f1ll g=, we adapt to our setting an argument used by Dehman-Lebeau [20, Theorem 4.1]
and Laurent [32, Lemma 3.1].

First, given any u € L?(T), consider the decomposition u = IT(u) + iA(u) where
L) == (Im [ M (x)u(x)dx)/(fr M(x) dx), which is a real number (recall that M — 1
is small by assumption, so one can divide by the mean of M, which is a positive number).
In this way u is the sum of the function IT(x) = u — iA(u), which is in L2,, and i1 (),
which is a purely imaginary constant.

Consider next the mapping

S: LX(T) > L*(T), S:y+ fr—> wt w()e L*(T),

where f and w are the unique functions in C 0([0, T1; L3(T)) successively determined by
the backward Cauchy problems with data at time 7':

Qf =0, Qw = xwRe f,
f(T) = I(y), w(T) = ir(y)M.

Notice that S is R-linear. It follows from (i) and (ii) that S is an isomorphism of L3(T)
onto L2(T) (it is onto by (i); to prove that it is one-to-one, we use the uniqueness prop-
erty). On the other hand, S is bounded (this follows from the L>-estimate (B.13) and the
fact that y +— (T1(y), A(y)) is obviously bounded). The open mapping theorem implies
that S~! is bounded. As a result, with A* = (I — 8)%)“/2,

Ifllae = IA* fillz S ISA® fill . (8.19)

Now we have to conjugate S with A*. To do so, we want to compare (A" f, A*w) with
(f', w’) defined by

Qf =0, {Qw/zwaef/,
F1(T) = TI(A* f), w'(T) = ir(A* f)M.
We have introduced this system because w’(0) = S(A f1).
Claim 8.3. We have
lw" — AMWHCO([(),T];LZ) S lwinllge + 1Al gmaxw-1.00 + all fill e, (8.20)

where

a = [Wllcoqo,r1;m3) + IRl coqo, 11 ccmne 2y
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Granting this claim, we conclude the proof of (iii). We use the following consequence of
(8.20): att =0,

w'(©0) — A w2 < llwinllme + L fill gmosw—1.00 + all fill o

Now, by definition, w’(0) = SA* f] while A*w(0) = A*wj,. Therefore, by the triangle
inequality,

ISA¥ fillp2 S Nwinllge + 1| fill gmaxw—1.00 + all fillze. (8.21)
For p € [0, 1], one has || fi || gmax-1.0 = | fillz2 < llwinll 2, and therefore
ISA¥ fillp2 S lwinllge + all fill e (8.22)

Plugging this bound into (8.19) yields || fillgr < ||[winllge + all fillgr. Notice that
a < [[(W,B)lr.r + IRllcoo.7: ccrny Where [[(W, R)|l,7 is defined above (8.3). So
the assumption (8.7) implies that, by taking /1(7) small enough, we obtain the desired
result

I fillee S llwinll o (8.23)

For p € (1, 3/2] we go back to (8.21) and deduce from (8.23) that || fi || gru—1 S [ Win [l gru-1
because u — 1 € [0, 1]. Hence (8.22) holds, and we reach the same conclusion as above.
This completes the proof of (iii).

It remains to prove Claim 8.3. To do so, we first estimate f’ — A* f and then deduce
an estimate for w’ — A*w. Write

OUf =AM f)y = [A", RIf + A", WIdy f,  (f = A Pli=r = TI(A" fi) — A" fi,
and use the energy estimate (B.13) to find that
||f/ - Aﬂf||c0([o,T];L2)
SATIA i) — A fill 2 + A%, RIS + A, Wak fll oz (824)
Similarly,

||u)/ _ AMw”CO([O,T];LZ) 5 ||w/(T) — AMU)(T)”LZ + ”‘F”LI([O,T];LZ) where (8 25)
F = Xo Re(f/ - Allf) +[AH", Rlw + [A*, W]o,w — [AH, XolRe f.
By (8.24) and the obvious embedding C°([0, T]; L?) c L'([0, T']; L?), we deduce that
lw' — A wll oo 2y S 1w/ (T) — Alw(T) |12 + ITIAF f1) — A* fill 2
+ A", xwlRe flicoqo.7):22)
+ A", RIS oo,y 2y + ITAY, RIwll oo, 7912
+ [ILA*, W1y fllcoo. 7722y + ILAY, W1dxwll coo.77: 12)-

To estimate the commutators [A*, x,] and [A*, W], we use the classical estimate

[s>3/2, 0 <p<s] = [A" Wlul 2 < KIWIlgsllull o -
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On the other hand, to estimate the commutator [A*, R] (or [A*, R]) we estimate A*R
and RA" separately. Recalling that R = —R* + 9, W, we conclude that

Jw" — Awllcoqoryr2) S lw'(T) = A*w(T)|| 2 + ITIAH f1) — A* fill 2
+ 1f lcoqo, 7y -1y + all(fs w)ll oo, 71 iy
where recall that, by definition,
a = Wllcogo,r1:m3) + IR coqo.73: ccmyncr2y) -

To complete the proof of (8.20), it remains to prove the five estimates

ITLA" f1) = A" fill 2 S llwinll e, (8.26)
lw'(T) — A w(D) ;2 < Nwinll e, (8.27)
I fllcogo,71: me-1y S N1l prmaxe=1,00 (8.28)
I fllcoqo, iy S W Sfillae, (8.29)
lwllcogo, 7y, ey S Nwinll e + 1 fill e (8.30)

Let us prove (8.26). By definition of I, one has TT(A* f1) — A" fi = —iA(A* f1) with

A(A“fl)_fTMd Im(/ MA* f]dx)_fTMd Im(/(A“M)fldx)

since A* is self-adjoint. This implies that

-1
(A" D)l = </1erx> IARMI 201 fill 2 < 21 fill 2, (8.31)

provided ||M — 1||ge < ||[M — 1| 3,2 is small enough. Since || fill;2 < |winllz2, this
proves (8.26). As regards (8.27), we will estimate w’(T) and A*w(T) separately. Firstly,
since w' (T) = iA(A* fi)M and since |M| ;2 < 1, (8.31) implies that |w'(T)|;2 <
lwinll;2. So to prove (8.27), it is enough to show that || A#w(T)||;2 satisfies the same
bound. Since w(T') = ibM and ||[M||gn < [[M| g3 S 1, we have |AFw(T)| 2 < |b].

So, we need only estimate |b|. In doing so, we use the fact that w solves
Quw = xoRe f,  w(0) = win, (8.32)
to deduce from the L?-energy estimate (B.10) that

lwllcogo,ry:22) S Mwinll g2 + 1F L1 0.73: £2)-

Using the bound (8.6) for f yields [|w(T)ll.2 < llwllcoqo,r1:22) < lwinll2- Now, since
w(T) = ibM and one can assume that | M||;2> > 1/2, this gives |b| < ||win|;2. Remem-
bering that [[A*w(T)| ;2 < |b|, we have proved that [|[A*w(T)||;2 < ||lwinllz2, which
completes the proof of (8.27). The estimates (8.28) and (8.29) follow from (B.12) (in fact
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we use an estimate analogous to (B.13) with data at time T'). Finally, (8.30) follows from
(B.12) applied to (8.32), using the bound (8.29) to estimate the source term.

(iv) Given wjy, let f1 and fl’ in L/2v1 be as given by Lemma 8.2, so that f :=® s 7 (Win)
and f':= ©), 1, (win) are determined by the Cauchy problems

Qf=0on[0,T], Q' f'=0on[0,T'],
[ = fi, 1T = f{,

where
Q = +iL+Wi+R, R =—RY"+oW.

Similarly, we denote Q' = —(Q')* = d; +iL + W'd, + R’. By definition of f, f’, the
unique solutions w € C°([0, T]; L(T)) and w’ € C°([0, T']; L*>(T)) of the two Cauchy
problems

Qw = x,Re fon[0, T], Q'w' = x,Re f/on [0, T, (833)
w(0) = Wi, w'(0) = win, '

satisfy w(T) = ibM and w'(T") = ib’ M for some b, b’ € R. The idea now is to introduce
an auxiliary control problem. Let f” € C 0([0, T1; L3(T)) be the unique solution of

Qf"=0 on[0,T], f'(T)=f] (8.34)

so that f” solves the same equation as f and it has the same Cauchy data as f’. Then
introduce w” as the unique solution to

Qu” = xoRe f” on[0,T], w'(T)=ib'M, (8.35)

and set w]| := w”(0). By uniqueness (see (ii)) we deduce that f” is the control for the
operator Q associated to w.’, that is,

n’
" =0p ).
Then, by continuity (see (1)),
If— f//||c0([(),r];L2) = |®m, 7 (Win — wi/r/l)HcO([o,T];LZ) S llwin — wi/;1||L2-
Let f := 7 f and f” := T f”. Then
||f - f””CO([o,T/];LZ) =|f- f”||c0([o,r];L2) (8.36)

because
Vh e C°0, T1; LY, | Thllcoqo.r:12) = Nl coqo.71:22)- (8.37)

It remains to estimate || f/ — f”“CO([O,T’];Lz) and |[win — wj; || ;2. Since f” solves (8.34),
f" satisfies L ;
Qf"=0 on[0,T'], f'(T')=f,
where ~ _ ~
Q=0 +ilL +AWa, + AR,
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and W := TW, R := TR (so R(r) :== R(Ar)). Subtracting yields
of =/ =Fo, (- FHT)=0,
where
Foi=(— DL+ W +R) f + (W —W)de f + (R—-R)f.

In order to apply the L?-energy bound (B.13), we estimate Fy. Using the regularity prop-
erty of the control operator ® s 7 (see (iii)) we have
||Lf/||c0([0,T'];L2) ,S ||f/||c0([0,T'];H3/2) ,S ”win||H3/2a (8.38)
||(W - W/)axf/”c()([o,T'];LZ) 5 ||W - W/HCO([(),T/];HI)||f/||co([0,T'];H1)
SIW = Wl oo,y lwinll g1 - (8.39)

Similarly

||(R — R/)f/”CO([O,T/];Lz) S ”R — R/”CO([O,T/];L(LQ)) “f/”CO([O’T/];LZ)
S IR = R'llcoqo.r1:2ct2y) + IW = Wl coggo. 71 2) | winll 12

where R := TR (so R(t) = R(\t)). Using (B.13) we conclude that

L= " leogo, 2y
S lwinll g2 (2 = 1AW = Wilcogo. ) + 1R = Rllcogorpeay)- 840

It remains to estimate ||wi, — w], [|;2. Let w” := Tw". Att = 0 one has w’(0) — " (0) =

win — w], hence we study the difference w’ — w”. Since w” solves (8.35), w"” satisfies

Q" = AxwRe f7 on[0, T, " (T")=ib'M, (8.41)

where
Q:=0 +iAL +2AW0d, + AR.

Subtracting yields
Qw' —w")=F, (' —a")(T")=0,

where
F:=yxoRe(f = Af")+ (= 1DGL + W + Rw + (W — W)Ha,w' + (R — R)w'.

To apply the L2-energy bound (B.13), we estimate F. First, f' — A f” = A(f' — f) +
(1 — 1) f’, and we have already estimated both f” — f” (see (8.40)) and f’. For the other
terms in F we proceed as above, recalling that |jw’ oo, 771:1.2) < ||winll 2. Also, since
w’ solves the Cauchy problem (8.33), we deduce from (B.12) and the second inequality
in (8.38) that |w'|lcoqo.71. #32) < llWinll g3/2. As a consequence, also || F [ cogo.77 2
is bounded by the right-hand side of (8.40). Then, applying (B.13), we deduce that
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lw" — @"||cogo,77); 12) satisfies the same bound. In particular, at time ¢ = 0, this yields
the desired bound for wi, — wj, = (w’ — @")(0).

(v) We begin by introducing some notation. As already mentioned, Lemma B.3 yields
an operator E7: L>(T) — C°([0, T]; L*>(T)) such that v = E7(v) is the unique solu-
tion to the Cauchy problem Qv = 0 with v(7T") = v;. Moreover

||ET(U1)||C0([0,T];L2(T)) < vl gz (8.42)

Now recall that by definition

T
ar(fi, 1) = Re fo /T Yo () Re(E7(f1)) E7 (@) dx d. (8.43)

Also introduce the mapping A : L*(T) — R defined by A(vy) = —Re (win, E7(v1)(0))
where E7(v1)(0) = E7(v1)|;=0. It follows from Lemma 8.2 that there exist functions
fi € L3, and f] € L3, such that

Vo1 € Ly, ar(fi.¢) = A1), Vé1 €Ly, ar(fl, 1) = Ag).

Then Oy 7(win) — Op 7(win) = E7(fi — f{). In view of (8.42), to prove (v) it is
sufficient to estimate fi — f;. To do so, we need to compare elements in LIZW and those
in L121/1" Observe that, by definition of L, if ¢ € L%VI, then (M'/M)gp € L%w. Therefore
1= fi— M /M)f] € L%,, and we can use (8.15) to deduce that

M/ /

‘fl——f’ <ar<f1—Mf’ fl—Mf’>=aT<f1—£f’ wl) (8.44)
M M’V M7 MU '

Now write the last term as (/) 4+ (/1) + (I/II), where

2

= , M

( )—aT(fl,tpl)—aT(fl,—M,%),
/ M /

(II) = aT(f]v M‘Pl) _aT(f]’ (pl)v

11l = / M
( )—aT(fla(pl)_aT(ﬁflv(pl>~

(Notice that both M/M’ and M’/M appear.) Since (M/M")p, € L%W, we can write
ar (f{, (M/M")g1) = A((M/M")¢1) to deduce that

M M - M
(1) = A1) — A @) =M )
so that [(1)| < [IM' — M|z |lwin|l ;2 ]l¢1 || 2. On the other hand, it follows from the easy
estimates (8.14) and (8.42) that

|UDI+ 1AID] S 1M = M|l fill 2 llgnll e S M = Ml [winll 2l @12

By combining (8.44) with the previous estimates we conclude that

SIM — M|z llwinll 2.

M/
/
fl Mfl 12
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Now write

M,
fl—ﬁﬂ

||f1—f{IILzSIIM—M’IILocllf{IILz+' .
L

and || f{ll;2 < llwinll 2 to complete the proof of (v). O

9. Controllability for the paradifferential equation

From the results of the previous sections we now deduce that the original equation of
Section 3 is controllable, together with Sobolev estimates for the control.
Consider a paradifferential operator of the form

P=20+Tyd +iLY*(T.L'? ) + R, 9.1)

where R is an operator of order 0. Assume that P satisfies Assumption 3.1, so that as
above V and c are real-valued, ¢ — 1 is small enough and P has the following structural

property:
d
Pu real-valued = 7 / Imu(t,x)dx =0. 9.2)
T

Introduce the norm

Ic = 1. V. B)llxsoscry = llc = 1, de, Vi coqo.rymoy + Y N8Fellcoqo.r mny
k=2,3,4

k
+ D 13 Vicogo. i + IRl coqo 7y ey + IR Icogo i caassny-— (93)
k=1,2,3

We recall that p := 1B 4+ %%c“w&c (see (2.12)).

Proposition 9.1. Consider an open domain « C T. There exists sy large enough and
for any s > so there exist increasing functions Fj: R} — R (1 < j < 3), with
limy_.o Fj(T) = 0, such that, for any T € (0, 1], the following holds.

o If
[(c = LV, R)llxsos(ry = F1(T), 0.4

then there exists a bounded operator
Os.rL(V. e, B)]: H¥A(T) — €°(10, T1; H¥2(TD))

such that, for any vy € H73/2(T) satisfying
Im/ Vin(x)dx =0,
T

setting f := Og r[(V, c, R)](vin) one has

||f||c0([0,T];Hs+3/2) < llvinll gs+3/2/F2(T), 9.5
and the unique solution v to Pv = T, x, Re f, v|;—0 = vin, satisfies

v(T) = 0.
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(i1) Assume that the triple (c, V, R) satisfies (9.4) and

”3;2C||C0([0,T];H50) + ||8IV”C0([07T];HSO) + ||3tR||c0([0,T];L(HS)) <L 9.6)

Let (', V', R') be another triple also satisfying the same (corresponding) bounds
(9.4) and (9.6). Then

1®s,7[(V, ¢, R)](vin) — ®s,T[(V/, c, R/)](Uin)”co([oj];HS)

lvin |l gs+3/2
= %{“(0—5, d(c—c), V- V/)”CO([O,T];HSO) +IR— R/||c0([0,T];£(HS))}-
9.7

Proof. Let P be given by (9.1), with V, ¢, R satisfying (9.4). We begin by recalling how
the various linear operators have been defined in the previous sections starting from P:

Pi=ApsPA; L =&+ Tyox+iLV*(T.L'Y2 )+ Ry = 9+ Vo, +iL'*(cL"*)+ Ry,
Py = om ' PO = 8,4+ W, +iL+Rs,
P = —(P3)* = 8+ Wdy+iL+Ru,
where @, m, W are given in Proposition 5.1,
Ry == ApsRA; L+ [Aps. A, L+ [Ans. TydclA; L +ilAps, L'YA(TLV )AL
Rou := Ryu+ Tydeu — Vocu+i(L\V2T.LY?u — LV (cL'?u)),
Ryw := —R3w + (0, W)w, (9.8)

and R3 has a more involved expression, obtained in Appendix C. Moreover P =
md~! P3®. As a first step in the proof of Proposition 9.1, we study the control prob-
lem for P.

Lemma 9.2. There exist sy large enough and increasing functions Fj: R} — R% (j =
1, 2, 3), satisfying limy .o F;(T) = 0, such that for any T > 0 the following holds.

W If

k
l(c =1, drc, V)||C0([0,T];H50) + Z 9, C||c0([o,T];H1)
k=2,3,4

+ > 185V lcogo .y + IR2llcogo, 71222y < Fi(T),  (9.9)
k=1,2,3

then there exiits an operator @T S L2 CO([O, Tl; L2) such that for any ui, € L2
setting f := O (uin), one has

||f||cO([o,T|;L2) =< ||Min||L2/~7:2(T)7 (9-10)
and the unique solution u of

Pu=x,Ref, u(0)=uin,
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satisfies u(T, x) = ib for some b € R and all x € T. If, in addition,

I R2llcoro,71: ccrzrzyy < Fi(T), .11
then
I fllcoqo,71: w32y < Wtinll 32/ F2(T). 9.12)
(i1) Assume that (V, ¢, R2) satisfies (9.9), (9.11) and

||8tV||C0([0,T];H2) + ”RZ”CO([O,T];L(HU) + ||8tR2||c0([0,T];L(L2)) <1, 9.13)

and consider another triple (V',c’, R}) also satisfying the same (corresponding)

bounds (9.9), (9.11) and (9.13). Then

(©r — ®/T)(Uin)||c0([o,r];L2)
lltinll g73/2 / /
< ———{lle=Cllco g+t +110r¢ = 3¢l co H!
F5(T) CY([0,TT;H™ 1) CY([0,TI;HY)
+ ||V - V/”CO([O,T];HZ) + ||R2 - Ré”CO([O,T];E(LZ))}' (914)

Proof. Recall that the cut-off function x,, (x) is supported on w and x,, = 1 on the open
interval w; C w. Consider another open interval w; and a cut-off function x;(x) such that

9.15)

(1) supp(x2) € wz;
(ii) supp(h) € wyr = supp(®~'h) Cw; Vr € [0, T], Vh € L*(T).

We want to apply Proposition 8.1 for Q = 53. The hypothesis (8.3) of Proposition 8.1,
ie. [[(W, R3)|l,r < F1(T), follows from (9.9), by using (5.3) and (C.43) with o = 3/2.
Hence, by Proposition 8.1(i) (applied with 77 instead of T and y; instead of x,,), given
win € L*(T), the unique solution w of the Cauchy problem

Pyw=yaRefo Vrel0,Ti], w(0)=wip, (9.16)

satisfies w(7T1) = ibM for some real constant b if we choose f, = ®py 7, (win), where
®um, 1, 1s the operator given by Proposition 8.1, and the function M will be fixed below
in this proof (with M — 1 small enough so that the assumption || M — 1]l 32 < Fo(T) in
Proposition 8.1 will be satisfied). Also, by (8.6),

||f2||c0([0,71];L2) = ||win||L2/-7:2(Tl)- 9.17)

Moreover, if (9.11) also holds, then, using (C.42) with o = 3/2, we deduce the bound
(8.7) for W, Rz with u = 3/2. Therefore, by Proposition 8.1(iii),

Il 21l cogo. 7,3 1372y = lWinll 32/ F3(T1). (9.18)

Now let uj, € Lz(T) and define w;, € LZ(T) by win := ®|;=ouin. The previous argument
gives aNfunction w satisfying (9.16) and w(T7) = ibM. Set u := &~ lw. Since Pu =
m®~! P3du, it follows from (9.16) that

Pu=md '(uRe fr) Vtre[0,T], u(0) = uin, (9.19)
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and u(T) = ®~'|,—7(ibM). Then we set f :=m®d ' (x2./2), so
f = Or@in) = m®~ (120,71, (Puin)), (9.20)

where ®uj, = P|,—ouin. By (9.15)(ii), f is supported in w;, and therefore f = x, f.
Then, since m®~ ' (x2 Re f>) = Re(m® ' (x2./2)) = Re f,

ﬁu:XwRefa U(O):”ma

and we have to choose M so that u(T") = ib. By definition of ®, recall that w = du
means that

w(t, x) = {1+ a1 @), x — pON 2 u(y =" @), x — p(t) + L@~ (1), x — p(1)))

fort € [0, T1] and x € T. Since 1//’1(T1) = T, we see that u(T) = ib provided that
w(Ty, x) = ibM(x) with

M(x) = {1+ 8, f1(T, x — p(T\)}'/?, (9.21)

and p(Tp) is given in (C.41). Now the estimates (9.10) and (9.12) follow from (9.17),
(9.18) and Proposition 5.1. This completes the proof of (i).

(i) In what follows, we add ’ to denote objects associated to (V’, ¢/, R)). Let f =
@)T(uin) be defined by (9.20), and let f' = @)/T (uin) be the corresponding function ob-
tained by taking (V', ¢/, R)) instead of (V, ¢, R). We have to estimate the difference
f — f/. If the constant F(T) in (9.9) is sufficiently small, then w;, x> can be chosen so
that (9.15) holds for both ® and ®’. Hence

f= 1 =mo7 (aOu 1, (Puin) —m' S (20, 1 (®uin).
We split this difference into Aj + - - - + Ag, where
Al = (m — m/)q)_l()&@M,Tl (Puin)),
Ay = m/CID_l[)Q@M,Tl(CDMin - q)/uin)],
Az = m/©_1[X2(®M,T1 — @M/,Tl)(dyuin)]’
Agi=m' (W = Y0 0O 1, (D uin)],

As = m' U Wapw — V0, T 2Ow, 1 (@' uin)],
Ag = m' " AT O 1, (®uin) = O 1 (®uin)}],

and 7 is the time-rescaling operator defined above, (7 h)(t, x) := h(it, x) with A =
T1/T/. Let us estimate each A;.

Estimate for A1: Apply (C.47). Estimate for A;: By construction (see Appendix C),
w’l(O) = 0, p(0) = 0, and therefore ®ui, = P|;—ouin = \Ill_lltzo(um). Hence the
estimate for A, follows from (C.44) and (8.6). Estimate for Az: Apply (C.48). Estimate
Jor As: Apply (C.44) and (8.8) with u = 1. Estimate for As: Apply (C.45). To estimate
d; f2, use the fact that f> solves P} fo = 0 (Proposition 8.1(ii)), and similarly for f;.
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Estimate for Ag: (9.9) and (9.11) imply that W, R3 and W', R} satisfy (8.7) with u = 3/2,
which is the hypothesis of Proposition 8.1(iv). Then (8.10) holds:
I7TOm, 1, (P uin) — ®;14’,T{(d)/”in)”CO([O,T{]:Lz)

SN uinll e (11— A+ |W — TWillcoqo, 71 m2) + IR; — T Rsllcoo. 71: (2))-
Now [|®uinll 32 S llutin|l 372, and the bounds for the last three differences are given in

(C.47), (C.50) (with o = 2) and (C.52). Note that assumptions (9.9), (9.11) and (9.13)
imply (C.49), (C.51), which imply (C.50) and (C.52). O

Remark 9.3. The function W contains the terms d;c and V (see Appendix C and the
bound (5.2)). For this reason we assume that 3;'c and 3}V are bounded in (9.9) in order
to get a bound for 8,3 W, as required by Proposition 8.1.

Lemma 9.4. If the W3/>%-norms of c — 1 and ¢ — 1 are small enough, then
IARs — A sllzs 2y + 1A, 5 = (A D7 gz s S lle =l
Proof. By definition (4.1) of A, s one has

Aps— A;l’s = hSTCZS/3_C/25/3LZS/3.

So the bound for Ay ¢ —A}l ¢ follows from the paradifferential rule (A.10) and the Sobolev
embedding H I(T) ¢ L>®(T). To prove the other bound, we use the identity (4.3) to obtain

AL =) =+ L)+ B =+ B)
Recall that || Bl z(z2) < 1/2 and ||B’||L(Lz) < 1/2, so the identity
I+B) ' —(U+B)'=U+B)""(B -—B)UI+B)"!

implies that

I+ B =+ B) gz <4IB = Bllei, 9.22)
and the bound follows from the definition of B, B’ and (A.10) as above. ]
End of the proof of Proposition 9.1. We recall that (:)T is the control operator given by

Lemma 9.2, and the operator K is introduced in (4.15), with ||(1 + K)~! ley < 2if
(¢, V, Ry) satisfy (9.9), (9.11) and [lc — 1|l co(0, 7). g2) 18 small enough. Set

Os.rl(V. e, R)] i= Ay LOr (I + K)™' Aps, (9.23)

and let f := Og r[(V, ¢, R)](vin). Then it follows from the previous construction (see
Section 4, in particular Proof of Proposition 3.2 given Proposition 4.6) that the unique
solution v to Pv = Ty xo f, V|i=0 = vin, satisfies v(T) = ib for some constant b € R.
Since Im fT vin(x) dx = 0 by assumption, from (9.2) we deduce that

Im/ v(T,x)dx = 0.
T



720 Thomas Alazard et al.

Therefore b = 0 and v(7T) = 0. Thus it remains to prove (9.5). Following the argument
used to prove (4.16), one shows that || K| £ g3/2) < 1/2, whence [|( +10)~! lzemsny < 2.
By combining this estimate with (9.12), we have

I £l coqo. 7y s+32) S NOTU + K™ Ansvinllcoqo.ry 532y S 1 An.svinll g2

S N vinll ggs+3r2,

which is (9.5). Finally, we observe that

IR2llcoqo, 71 222y + IR2llcoqro, 71 £.(113/2))
S e =1, 8¢, Vlicoqo, 7y, mo0y + IRl oo, 71, £y + IR I coqo, 71, £.hr5+3/2) -
(9.24)

This bound follows easily from the arguments used in the proofs of Lemmas 4.5 and 9.4.
Hence, if (¢, V, R) satisfies (9.4), then (c, V, Ry) satisfies (9.9), (9.11). This completes
the proof of (i).
(i) Given y € H3/?(T), we estimate @ 7[(V, ¢, R)](vin) — Os.7[(V', ¢/, R)(vin),
which is, by definition,
Ay iOr (I + 1K) Apsvin — (A}, 7O + KNI A, Jvin.

We write it as By + - - - + B4 with

By = (A § — (A} ) " YOr (I + K) ™" Ap,svin,

By = (A} )7 (Or — O + K) ' Apsvin,

By = (A}, ) O + )7 = (I + KN ) A svin,

By = (A, )10 (I + K7 (Aps — Ay )vin.

If (¢, V, R) satisfies (9.4), then (c, V, Ry) satisfies (9.9) and (9.11), and |||l zz2) < 1/2
(see (4.16)). Then, using Lemma 9.4 and (9.10), we bound the ([0, T1; H%)-norm of By
and B4 by ||c—¢'|| g1 || vin || 5. To estimate By, we want to use (9.14), which holds provided
that (c, V, Ry) and (¢, V', R}) satisty (9.13). One proves that if [[c — 1[lcoqo. 7}, m3) 18
small enough, then
IR> = R\l coqo, 7 £2.2))
S e = ' dc—c), V- V/)”CO([O,T];HSO) + IR - R/||c0([o,T];L(HS)), (9.25)
19 R2ll oo, 7y: £.22))
f, l(c — 1, 9c, atzC» v, 3tV)||c0([0,T];HSO) + [I(R, 8tR)||c0([(),T];£(Hs))- (9-26)
These bounds follow from the arguments used in the proofs of Lemmas 4.5 and 9.4. Hence
(9.3) and (9.6) imply (9.13), which implies (9.14). We have || (I + IC)_IAh,SvinHHs/z <
20| Ap,sVinll g3z S lvinl gs+3/2. Using (9.25) to estimate the last term in (9.14), we deduce
that
I B2llcoo,71; %)
S vinll gs+a2{ll(c — ¢ 9(c—c) V- V/)”CO([O,T];HSO) +IIR— R/HCO([o,T];c(HS))}-
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It remains to estimate B3. We have

(K — ’C/))’HL2 S vl gsedlie = V- V/)||c0([o,T];1-11) + IR — Ré||c0([o,T];£(L2))}~

To see this, recall that K is defined by solving an evolution equation, and then, as above,
use the energy estimates proved in the appendix to bound the difference of two solutions
satisfying two equations. Since ||( 4 K)~! lewzy <2, 11U + KH~! I 232y < 2, and

T+ —U+K) T =0+ K -KUT+K)7L,

we deduce that B3 satisfies the same bound as B;. The proof of Proposition 9.1 is com-
plete. O

10. Iterative scheme

In this section we conclude the proof of Theorem 1.1. It is sufficient to prove this result
with (9final, ¥inal) = (0, 0). Indeed, since the equation is reversible in time, one can
exchange initial and final states, and hence it is sufficient to consider the case where the
final state vanishes. Also, as explained in the introduction, we seek Pey as the real part of
the limit of solutions to approximate control problems with variable coefficients.

Consider the unknown u = T, — iTyn as introduced in Proposition 2.5. As proved
in §2.3 (see also Section 3), this new unknown u solves an equation of the form

dut 4 Ty dxtt + i LY (Tegy LY ?w)u 4 R(w)u = Ty Pexts (10.1)

where, with a little abuse of notation, we write V (1), c(u), ... as shorthand for V (n)y
(see (2.3)),c = (1 + (8x17)2)’3/4, ... where (1, ¥) is expressed in terms of u by means
of Lemma 2.8.

Fix T > 0. We claim that there is ¢ > 0 such that, for all initial data whose
H3(T)-norm (with s large enough) is smaller than ¢, and all source term Pey; whose
L'([0, T1; H%(T))-norm is smaller than ¢, the Cauchy problem for (10.1) has a unique
solution in CO([0, T']; H5(T)). The existence of a solution follows from the analysis given
below. The uniqueness is obtained by estimating the difference of two solutions (as in [2])
and we omit its proof.

Recall that H*(T; C) denotes the space of H"-functions whose imaginary part has
zero mean (see Notation 2.7).

Proposition 10.1. Let T > 0. For all ui, € H° (T; C) for some o large enough such that
\letin || o is small enough, there exists a real-valued function

Pexi € C°([0, T1; HO(T))  with  supp Pexi(f, ©) C w forallt € [0, T},

such that the unique solution u € CO([0, T1; H° (T)) to (10.1) with initial data uiy satis-
fiesu(T) = 0.



722 Thomas Alazard et al.

Before proving this proposition, let us explain how to deduce Theorem 1.1 from it. Recall
that it is sufficient to consider the case where (9fina1, Yfinal) = (0, 0). Once Pey, is defined
by means of Proposition 10.1 applied with ui, = T, @in — i Ty, nin, We solve the water
waves system (2.1) for (n, ¥) with data (nip, ¥in) with this pressure seen as a source
term. Then u = T,w — iTyn solves (10.1), so u(T) = 0, which in turn implies that
(n, ¥)(T) = 0 in view of Lemma 2.8.

Proof of Proposition 10.1. Sets = o —3/2. Given uj, € H573/2(T; C) and T > 0, intro-
duce the following scheme: define (uq, fo) := (0, 0), and then, for n > 0, (4,41, fu+1)
are defined by induction in this way: f; 41 is determined by asking that the unique solution
up+1 to the Cauchy problem

3tun+1+TV(un)3xun+1+iL1/2Tc(un)L1/2Mn+1+R(Mn)un+1 = Tp(u,) X RE frt1, (10.2)

Upi1lr=0 = Uin,

satisfies u,+1(T) = 0.

Our goal is to prove that this scheme converges. Then we define Pex as the limit of
Re f;, when n — oo. With the operator ®; 7 defined in Proposition 9.1, the scheme
corresponds to defining (u,) and (f;) as follows:

Jot1 = Os,7[Xn](uin)  where X, := (V(un), c(un), R(un)), (10.3)

and u, is defined as the unique solution to the Cauchy problem (10.2); by definition of
fa+1 we then have u,41(T) = 0. Our goal is to prove that, for any T > 0, if u;, is small
enough, then this scheme is well-defined and (u,, f,) converges to a solution (u, ) of
the desired nonlinear control problem. This will be a consequence of the following result.

Lemma 10.2. Consider T > 0. There exists s large enough and for any s > sg+ 6 there
exist &g > 0 and positive constants K1, . .., K7 such that, for any ¢ € (0, g9, if

ltinll gs+3r2¢my < €
then, for any n > 0,

||I/ln ||C0([0,T];H5+3/2) S K]S, (104)
10k unllco ooy < Kae  for1 <k < 4. (10.5)

Moreover, for any n > (),

luns1 — unllcoqo, 7y, ms) < K3627", (10.6)

10 (py1 — ”n)“cO([o,T];Hs%/Z) < K4e27"; (10.7)
and forany n > 1,

||fn||c0([0,T];Hs+3/2) < Ksg, (10.8)

19F full coqo, 7100y < Kes  for 1 <k <3, (10.9)

I fur1 = fallcoqo,ry sy < K627 (10.10)
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Proof. For this proof we denote by C various constants depending only on 7', s, sy or .
Also we denote by F various increasing functions F: Ry — R4 depending on parame-
ters that are considered fixed.

Step 1: proof of (10.4), (10.5), (10.8) and (10.9). We prove these estimates by induction.
They hold for n = 0 since (ug, fo) = (0, 0). We now assume that they hold at rank n and
prove that they hold at rank n + 1.

We begin by checking that the fact that the properties (10.4)—(10.5) hold at rank n
implies that one can apply Proposition 9.1 to prove that the scheme is well-defined. This
means that we have to prove that the smallness assumption (9.4) is satisfied. To do so,
we first recall that (see (2.4)) |V (un)llgso < FUInnll gso+)1¥nll gso+1. Then the esti-
mate (2.22) (applied with s replaced by so + 1) implies that ||V (un) g0 S Nl gso+1-
Similarly, the estimates (2.14) and (2.22) yield

IRl ges+32y < FUmall gsea) Inmnll gsse < FUlunll gsra) lun | gs+3/2,
and, directly from the definition ¢ = (1 + (8x1)?)3/4, one has
llc@n) = Uz < FUnall gsorO) Il gsort S Nl gso+172-
Gathering these estimates and recalling that sy + 1 < s, we conclude that
IV @)l + lle@n) — Ulgso + IR@n)ll sy S lnll gsvss. (10.11)

Consequently, the property (10.4) at rank n implies that the part of the smallness condition
(9.4) concerning V, ¢, R is satisfied. Concerning the estimates of the time derivatives 8," \%
and Btkc, we use the equations (2.1) and the rule (see [30])

FGMY = Gy — (B Y)dm} — dx((V (D))

(where B(n)y and V ()¢ are given by (2.3)) to express the time derivatives 8{‘ V and 8{‘ c
in terms of spatial derivatives and of the operators B(1), V(n) (see [4, Appendix A.3] or
[31, 38]). Then, as above, the desired estimates follow from (2.4) and the usual nonlinear
estimates in Sobolev spaces.

We now prove (10.4) and (10.8) at rank n + 1. By (B.2) we obtain

llun+1 ||c0([o,T];Hs+3/2) < Clluinll gs+32 + 1 Tp, X Re frt1 ||c0([o,T];HS+3/2))7 (10.12)

where the constant C depends on s, T (by (10.11) and (10.4) at rank n, the constant M
in Proposition B.1 is bounded by 1 if K; is large enough and gy is small enough).
Now observe that since T}, acts on any Sobolev space with operator norm bounded by
Mg (pn) < F(lunllz=) < F(1), one has

1 Tp, Xo Re futillcoqo.my: ms+32) < Cll fat1llcoqo,7y: s+3r2)-

Moreover, by (9.5), || fu+1llcoqo, 77; ms+3/2) < Kolltinll s+3/2 for some K¢ depending only
on T. We conclude that if we choose K| large enough and ¢p small enough, then (10.4)
holds at rank n + 1. Also (10.8) at rank n 4 1 follows by the same argument.
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It remains to prove (10.5) and (10.9). Directly from (10.2), expressing 0;u,1 in terms
of u,, u,4+1 and f, 41 and using the operator norm estimate (A.10) for paradifferential
operators, one deduces (10.5) for k = 1 from the bounds (10.4) and (10.8). We next prove
(10.9) for k = 1. To do so, the key point is to make explicit the equation satisfied by f;,+1.
We recall from (10.3), (9.23) and (9.20) that

fort = (A )T (" (@) 2 fus ), Fart = O, (@MU + Kp) T AG ttin),
where A} o, ®",m", My, IC,, T{" are given by replacing (V, ¢) with (V(u,), ¢(u,)) in
the definition of A s, ®, m, M, IC, T1. By definition of ® 7 r (Lemma 8.2) one has
O ftt + W @n)x furt +iL fust + Ralun) fus1 =0,

N N (10.13)
fn-i—l|t:T1" = f11+17

where R4(uy,) is given by (9.8) and the initial data fnl 41 1s given by Lemma 8.2. It follows
from (8.8) that

||fn+1 ||C0([0,T];H3/2) < K|®"(I + ]Cn)_lAZ,suin“Hm < Klluinll gs+3/2-

Using (10.13) we thus estimate the ([0, T1; L?)-norm of 9, fn+1, from which we esti-
mate 9; f,4+1 in ([0, T1; H). This gives (10.9) for k = 1 since s > syp. Now we obtain
(10.5) for k = 2, 3, 4 as well as (10.9) for k = 2, 3 by differentiating in time the equations
satisfied by u;, 11 and f,+1.

Step 2: proof of (10.6), (10.7), (10.10). The estimate (10.10) will be deduced from (10.6)
and (10.7). To prove (10.6) and (10.7) we proceed by induction. We assume that they hold
atrank n — 1 and prove that they hold at rank n.

The key point is to estimate §,, := u,4+1 — U,. Write

36n + Ty, dx8n + i LV T LV?8, + R(un)8, = Gy, (10.14)

with
Gni= (Tvu,_y) — Tv ) xttn +i LY (Tequ, ) = Tequy)) Lt + (R(n—1) — R ()t
+ Tp(un)Xw(fn+l - fn) + (Tp(un) - Tp(u,,,l))wam (1015)

As in the previous step, it follows from Proposition B.1 (noticing that §,,41(0) = 0) that
182l coo. 71 115y < CollGnllcoo,7); sy for some Co depending on s, T'.

Estimate for G,. We claim that

||Gn||CO([0,T];HS) < eK(T)I6n—1 ||c0([0,T];HS) + eK(T)10:8n—1 ||c0([o,T];Hsf3/2)~
(10.16)
Let us prove this claim. At each ¢ € [0, T'], using (A.10) one has

1Ty o) = Tv ) Octtnll s SNV n—1) =V @p) oo | xttn || 5.
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It follows from (10.4) that ||9,u,||gs < Kie. To estimate V (u,—1) — V (u,) we use the
following consequence of [3, Lemma 5.3]: Assume s > 3/2 and consider (11, n2) such
that |1 [lgs + In2llzs < 1. Then

IG(1) f1 — Gm2) f2ll gs-32 < KlInt — m2ll gs—12l fillgs + KN f1 — fall gs—172.

Then, directly from the definition of V (n)y one deduces that

Vv — V) vz llgr < Klint — mllgzllvill gse + Kllv — vzl g2.

Since HY(T) ¢ L>®(T), we then conclude that
IV @un—1) = V@wn)llee S — ta—1llas + 1¥n — Yn-1lles S g — up—1las.

The estimate of the H®-norm of Ll/z(TC(unfl) — Tc(un))Ll/zun is similar. To estimate
(R(up—1) — R(up))uy recall that R(u)u is given by Proposition 2.5. This operator is de-
fined by means of the remainder F () in (2.7) and also in terms of explicit expressions
involving symbolic calculus or the paralinearization of products. The only delicate point
is to estimate F (n,)¥,;, — F(1,—1)¥n—1. To do so one uses [2, Lemma 6.8].

It remains to estimate the last two terms on the right-hand side of (10.15). Directly
from (A.4) we find that

(o) — Tpn ) Xeo full s S MO(ptn) — pUn—t)) Xeo forll 15

Now [l 3w full s S llxellas | fall s < € by (10.8), and M{(p(un) — p(un—1)) is bounded
by K|ty —un—1| zs. Eventually, to estimate the H-norm of T (,) X (fut+1— fu) We use
again (A.4) to bound this expression in terms of || f,+1 — fu |l z#s. We use (9.7) to obtain

”fn-ﬁ-l_fn”CO([(),T];HS) S uinll gses2 {ll(cn—cn—1, 8t (cn—cn—1), Vn—Vn—l)”cO([o,T];HSO)
+ IRy — Ru—tllcoqo, 71; 25y}
S Mtinll gs+32{llun — un—1ll o + 110: n — un—Dllg},  (10.17)

and then we use (10.6) and (10.7) at rank n — 1.

Estimate for u,+1 — u,. Foreg K(T)Co < 1/2, it follows from (10.6) and (10.7) at rank
n — 1 and (10.16) that the desired result (10.6) at rank » holds.

Estimate for f,+1 — fu. The estimate (10.10) follows from (10.17) and the assumptions
(10.6)—(10.7) at rank n — 1.

Estimate for 0;(u,41 — uy). By (10.14),
380 = =Ty (u,)0x8n — iL"*Tou L8, — R(un)8y + G (10.18)
As above,

ITy o) 2 ars o1y + WL Toqun) LY £ ars, 1532y + IR W) | 2oas, 1y < Cllunll s
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Therefore one can use (10.6) and (10.4) to estimate the first three terms on the right-hand
side of (10.18). The last term G, is estimated by means of (10.16) and the induction
assumptions. Consequently, [|9;8, [l coo, 71 s-3/2) < Ce227", and for ¢ < &y with &g
small enough, we deduce (10.7). m]

We can now conclude the proof of Proposition 10.1. Recall that s = o — 3/2. By (10.6)
and (10.10), (u,)neN, and (f;)nen are Cauchy sequences in CY([0, T1; H) and therefore
converge to some limits # and f in c%([0, T1; HY). Using the uniform bounds (10.4)
and (10.8) and the interpolation inequality in Sobolev spaces, we infer that (u,),cN and
(fn)neN converge in coo, 71; HS/+3/2) for all s < s. Furthermore, u and f belong to
CO([0, T1; HS+3/2) N L°°([0, T1; H313/2) for all s < s. Passing to the limit in (10.2),
we conclude that # and f satisfy (10.1) and u(7T) = 0. Eventually, using Lemma B.1
(seeing (10.1) as a linear equation of the type (B.1) with unknown u and coefficients in
L°([0, T1; H%)), we deduce u € C°([0, T']; H5F3/2).

It remains to prove that f € CO([O, T1; Hs+3/2). We know that u, — u in
cO([0, T1; H%) c C°([0, T]; H®®). As a consequence, V(u,) — V(u), c(u,) —
c(u), orc(un) — oic(u), p(uy) — p(u) in CcO([0, T); H%), and R(u,) — R(u) in
CY([0, T1; L(HS)). Now consider foo = O 1[V(u), c(u), R(u)](uin), and recall the
definition (10.3). By (9.7), I fn — foollcoqo,71:m5) — 0 as n — oo. On the other
hand, f = lim f; in ([0, T1; H®), and therefore f = fs. By Proposition 9.1(),
foo € CO[0, T1; H513/%), with estimate (9.5).

This concludes the proof of Proposition 10.1 and hence the proof of Theorem 1.1. O

Appendix A. Paradifferential operators

Notation A.1. For p € N, we denote by W*->°(T) the Sobolev space of L functions
whose derivatives of order p are in L. For p € (0, 00) \ N, we denote by W*:*°(T)
the space of functions in Wwlel-20 (T whose derivatives of order [p] are uniformly Holder
continuous with exponent p — [p].

Definition A.2. Given p > 0 and m € R, F”? denotes the space of functions a(x, &) on
T x R which are C*° with respect to & and such that, for all « € N and all &, the function
X = 8§‘a(x, &) belongs to W*->°(T) and

13gaC, &)llweoom) < Co(1+ [EN™1.

Definition A.3. Form € R, p € [0, 1] and a € I'7 (RY), we set

Mp(a)=sup supll(1+[EN1"d¢a(, &)weoor). (A1)
le|<6+p E€R

Now consider a C* function x homogeneous of degree 0 and satisfying, for 0 < &1 < &
small enough,

x@,m) =1 if|0] <eilnl, x(@.n) =0 if|0]= e2ln].
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Given a symbol a, we define the paradifferential operator T, by

Tou(®) = @m) ™'Y x (€ — 0. maE — n, nyaa), (A2)

neZ

where a(6, &) = f e~ 0q(x, &) dx is the Fourier transform of a with respect to the first
variable.
In addition, we assume that x satisfies the following symmetry conditions:

x (&1, 82) = x(=&1, =&) = x(=§1, &). (A.3)

It follows from (A.3) that if @ and u are real-valued functions, so is T,u.

The main features of symbolic calculus for paradifferential operators are given by the
following theorem (see the original article by Bony [13] and the books by Taylor [46] and
Métivier [39]).

Definition A.4. Let m € R. An operator T is said of order m if, for any u € R, it is
bounded from H#(T) to H*~"(T).

Theorem A.5. Letm € R.

(1) Ifa € T, then T, is of order m. Moreover, for any i € R there exists K > 0 such
that
| Tall gcaan, n—my < KM (a). (A4)

(i) Let (m,m’) € R? and p € (0,00). If a € F:’f and b € Fp’"/, then T, Ty — Tysp is of

order m +m’' — p, where

1
ath = Z o 08 adh. (A.5)
jal<p b &

Furthermore, for any i € R there exists K > 0 such that

”TaTb - Taﬁb”ﬁ(H}l.yH/l.—m—m/-%—p) < KMZI (a)M/r)n (b) (A6)
In particular, if p € (0,1, a € T, b € le/ then

1TaTo = Tabl pigan snom-ss) < KMI @M (B). (A7)

(iii) Letm € R, p > 0anda € le (RY). Denote by (T,)* the adjoint operator of T, and
by a the complex-conjugate of a. Then (T,)* — T+ is of order m — p, where

1
* ana—
a* = Z Talg] 85 aya.
lor|<p
Moreover, for all u there exists a constant K such that

I(Ta)* — Taxll cctan, u-—mtey < KM (a). (A.8)
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Remark A.6. These properties are well-known when Sobolev spaces of periodic func-
tions are replaced by Sobolev spaces on the real line. To prove these results for periodic
functions, one can use the results of [3] about the general case of uniformly local Sobolev
spaces HJj(R). In particular it is proved that

I(TaTy — Tup)utll y—mmrp < KM (@)M})" (D) ||uel] .
Hul 14 4 ul
Since [|ull g S Nlull gs(T), it follows that

I(TaTp — Tap)ull < KMy (@)M} (B)l|ull (-

’
n—m—m'+p
Hy R)

Now, if u is a periodic function and a and b are periodic in x, then so is (T, T, — Typ)u,
and we deduce that

”(TaTb - Tllb)u”Hufmfm/er('H‘) 5 ”(TaTb - Tab)u”H;Tfmfm/+p(]R)-

By combining the previous estimates we obtain (A.7). The other estimates are proved in
a similar way.

It follows from (A.7) applied with p = 1 thatifa € I'* and b € F{”/ then
I Tolll g ggn ggnmnrsry < KM @MY (b). (A.9)

If a = a(x) is a function of x only, then 7}, is called a paraproduct. We often use the
following consequence of (A.4): if a € L°°(T) then T, is an operator of order 0, together
with the estimate

Vo e R, | Taullpe < llallzesllull o (A.10)

If a = a(x) and b = b(x) then (A.5) simplifies to ab = ab, and hence (A.6) implies
that, for any p > 0,

1ZaTs = Tabl gz grumontsny < Klallwoos [Blwocs, (A1)
provided that a, b € W*-°°(T).
Theorem A.7. (i) Given two functions a, b defined on R we define the remainder
R(a,u) =au — Tuu — Tya. (A.12)
Let o € Ry and B € R be such that o« + B > 0. Then
IR (@, )l gessvp < K llal e llull - (A.13)
(ii) Let o > 1/2. For all C* functions F with F(0) =0, ifa € H*(T) then

1F(a) = Traallgra-12 < C(llallge)llall me. (A.14)
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Proposition A.8. Lerr, u € R be such that r + u > 0. If y € R satisfies
y<r and y<r+pu—1/2,
then there exists a constant K such that, for alla € H" (T) and all u € H*(T),
lau — Taullgy < Kllallgr llull g (A.15)

We also recall two well-known nonlinear properties. Firstly, if uy, up € H5(T) N L°°(T)
and s > 0 then

luruzllgs < Kllugllpooluzllps + KlluallLoe llur || s, (A.16)
and hence, for s > 1/2,
luruzllgs < Klluy |l gslluzllgs. (A.17)

Similarly, for s > 0 and F € C*®(C") such that F(0) = 0, there exists a nondecreasing
function C: Ry — Ry such that

IF@)llas <= CUU L) NU || s (A.18)

forany U e (HS(T) N L>®(T)V.

Appendix B. Energy estimates and well-posedness of some linear equations

Recall the linearized equation d;u + i Lu = 0, where L := ((g — 8%)|Dx N1/2.
In this section we gather Sobolev energy estimates for linear equations of the form

3o+ Vorp+iLY?(cL'Y?p) + Rp = F,

where V = V (¢, x) is a real-valued coefficient, ¢ = c(¢, x) is a real-valued coefficient
bounded from below by 1/2, F = F (¢, x) is a given complex-valued source term, and R
is a time-dependent operator of order 0, which means that Ry is defined by (R¢)(t) =
R(1)¢(t) and R belongs to CO(R,; L(HM)) (for some 1) where L(H") denotes the set of
bounded operators on H*(T). Below we consider various equations of this form where,
for instance, R is either multiplication by some function or the commutator between V 9,
and a Fourier multiplier.
We also consider paradifferential equations of the form

o+ Tyorp +iLy+ Ry =F,

where £ = LY?(T.L'/?.) and V, ¢, R are as above.
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Proposition B.1. Let T > 0 and u € [0, 00). Consider R € C°([0, T1; L(H™)) and
real-valued coefficients V , c satisfying

V e C0, T1; Whe(T)), ¢ e CO(0, T1; W3/3%°(T)),

with the L7 -norm of ¢ — 1 small enough. For any ¢in € HM(T) and any F €

X

LY([0, T); H*(T)), there exists a unique ¢ € C°([0, T1; H*(T)) such that
dhp+Tvoxp + Rop+iLlop=F, ¢li=0 = ¢in- (B.1)
Moreover, for any t > 0,

lo e < e Uil e+ 1Fll L1011, sy (B.2)

for some constant C = C (i, M) depending only on u and

M = sup {[0xV(@)llL> + llc)llws2.00 + RO £cam}-
t€l0,T]

Remark B.2. We often use energy estimates for backward Cauchy problems, that is, for
Cauchy problems on time intervals [0, T'] with data prescribed at time 7'. Then the energy
estimates read

leOllae < e UMl + 1F L1 o173 1iey)- (B.3)

Proof of Proposition B.1. As already seen in (2.21), £L = L'?T,.L'/? = T, + R’ where
R’ is of order 0 and

1
y = cl+ - @V OVEbc

Up to replacing in (B.1) the remainder R by R + i R’, we prove the existence of the
solution as limits of approximate problems of the form

0o+ TvoxJep +iTyJep + Rop = F,  ¢|i=0 = Je®in, (B.4)

where J, are smoothing operators. Then (B.4) is an ODE in Banach spaces and admits a
global in time solution denoted by ¢,.

Set yG/2(r,x, &) = c(t, x)€(&), which is the principal symbol of y. As in [2],
consider the paradifferential operator A, with symbol 1 + (c(z, x)£(§ ))24/3, and given
e € [0, 1], define J as the paradifferential operator with symbol j. = j.(¢, x, §) given
by

(0)

Je = 1 6/2) -

(3/2)y,

_ [
e = exp(—ey 5 (Bxs) exp(—ey

Recall that the Poisson bracket of two symbols is {a, b} = (3xa)(9gb) — (dga)(dxb). Then
U P =0 0o Pr=0, (O 0*Py=0.  BS)

and

Im ;Y = 10,99
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Of course, for any ¢ > 0, jo € Cco([0, T1; F3/2(Rd)) for all m < 0, so that T),u €
CO([0, T1; H®(T)) for any u € C°([0, T]; H~°(T)). Also J, is uniformly bounded in
CO([O, Tl; Fg/2(Rd)) for all ¢ € [0, 1]. Hence, using (A.6) with p = 3/2 or (A.7) with
p = 1, we have the following estimates (uniformly in ¢):

e, Ty Jull gr < Cllull e, I(Je)*u — Jeul guvsp < Cllullan,
LA, LY (T2 )Tull 2 < Cllull e, 1A Jelull 32 < Cllullgn,
1A TvdeJelull 2 < ClIVIIwiso el e, 11Je, Ty dclullge < ClIV || yico el g,

(B.6)
for some constant C depending only on ||c||y3/2.« and uniform in ¢ € [0, 1].
Recall that ¢, is the unique solution to (B.4), and set ¢, := A, ¢¢. Using the fact that
Ay, is invertible (for ¢ — 1 small enough) and the preceding estimates, we deduce that

0ige + TvdcJege + AuRAL G +iTy Joge = Fe,  @eli—0 = ApJegin.  (B.7)

where

| Fe ”L'([O,T];LZ) = C(M){”(PEHLI([(),T];H/L) + ||F||L1([(),T];Hu)}- (B.8)

l\I’Vrite j—t l@e ||i2 = 2Re (0;¢s, ¢s), where (-, -) denotes the scalar product in L3(T), and
ence

d . o .
Jo@elze = —((P + P")¢e, ge)  with
P =TydJe + AyRA, +iT, J,.

To estimate the operator norm of P + P*, there are two ingredients. Firstly, we replace J*
by Js +(J; — J;) and conjugate J; with Ty 9, and T,,. This produces remainder terms that
are estimated by means of (B.6). The proof is then reduced to the case w1thout Je and it
suffices to estimate the operator norm of P+ P* where P= Tyox+AuRA ), T4 T, . Since

AuRA, u is bounded from L ([0, T]; L2(T)) into itself with operator norm estimated
by M, it remains to estimate Ty d, + iT, + (Tydx + iT),)*, which can be done directly
by means of the paradifferential rule (A.8). We conclude that

d . . .
JoIelize < CODIGeN, + 1(2F:, @)l (B.9)

We thus obtain a uniform estimate for the L°°([0, T']; Lz)-norm of ¢, (from Gron-
wall’s inequality and (B.8)), which gives a uniform estimate for the L*°([0, T']; H")-
norm of ¢,. From this uniform estimate and classical arguments (see [39]), one deduces
the existence of a solution in L*°([0, T']; H*(T)). The uniqueness is obtained by con-
sidering the equation satisfied by the difference of two solutions and performing an L>-
energy estimate (using similar arguments to those used above). The continuity in time of
the solution is proved as in [2, §6.4]. O
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Lemma B.3. Consider real-valued coefficients V, c satisfying
Ve (0, TI; Wh(T)), ¢ e CO([0, T1; W¥>%(T)),

with the LYS.-norm of ¢ — 1 small enough. Let also R € ([0, T1: L(L?)).

WX
(i) For any ¢in € L*(T) and any F € LY([0, T1; L%(T)), there exists a unique ¢ €
CcO([0, T1; L2(T)) such that
dhg + Vorp+ Ro+iL'*(cL'?p) = F.  ¢li—0 = ¢in- (B.10)

Moreover, for any t > (),

t
le@llp2 < eXP(/(; M(t') df/)(”@in”LZ + 1 Fll L1 0.07:22)) (B.11)

with M(t') = [18x V()L + IR £12)-

(i) Let u € [0,3/2]. Assume that V € C°([0, T1; H*(T)), ¢ € C°([0, T1; H3(T)) and
R € C°[0, T1; L(H™)). If ¢in € H*(T) and F € L'([0, T1; H*(T)), then, for any
t >0,

1
lo@llmn < eXp(/O M(t") dt/>(||(/’in||HM N EN 10,00 1)) (B.12)

with M(t") = IVl g2 + lle@) g + IRE) | £camy.-

Remark B.4. Consider a backward Cauchy problem, that is, a Cauchy problem with data
prescribed at time 7. Then (B.11) implies that

T
le®ll 2 < eXp(/O M(t) dt/)(llfﬂ(T)lle + Il L1 o.71:22) (B.13)

with M(#') = [0V ()l + IRl 12y

Proof of Lemma B.3. (i) The existence of the solution can be deduced from the previous
proposition, writing
3@+ Vo + Ro +iL'?(cL'?¢)
in the form
0+ Tvdep + R'o +iL'(T.L'g),
where
R'o = Rp + (Vdrp — Tydrp) +iL'*((c — THL'?p). (B.14)

Indeed, R’ € C°([0, T'1; £(L?)) in view of (A.13) and (A.15).
In order to see that the energy estimate does not depend on the norm of ¢, start from

%H(p”iz = 2Re (3;¢, ¢). Since Re (i L'/2(cL'/?¢), ¢) = 0, we obtain

d
Enwniz =2Re(—Vd,¢p — Rp — F. ).
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Hence, integrating by parts yields
d
Ellwlliz =Re (((8xV) —2R)p — 2F, ¢), (B.15)

and the result easily follows from Gronwall’s inequality.
(ii) This follows from (B.2) and the fact that the remainder R’ in (B.14) belongs to
CY([0, T1; L(H™)) in view of (A.13) and (A.15). O

Appendix C. Changes of variables
Recall the operator _
P:=08+Va +iLV*cL'?) + Ry, (C.1)

where L := (g — 8”)1/2G(0)1/2, the operator R; is of order zero, and c(t, x), V (¢, x)
are real-valued functions. Consider a time-dependent change of the space variable (a dif-
feomorphism of T) and its inverse,

x=y+hit,y) & y=x+pitx), (C2)

forx,y € T,t € R, with ||8y/§1 oo, 10xB1llLe < 1/2. Introduce a self-adjoint variant
of the pull-back operators, defined by

(Wih)(t, y) = (L4 3yBi (6, YN 2h(t, y + Bi(t, y)), (C3)
W), x) == (L4 3 Bi (e, )/ 2h(t, x + Bi(t, x)), (C4)

and note that Wy, ¥ Vare self-adjoint with respect to the standard L?(T) scalar product

in space, for any ¢. We want to compute W1 QoW ! when Qo is a Fourier multiplier (the
analysis below applies more generally assuming only that Qg is a pseudo-differential
operator), using the Egorov theorem (see also [9]).

C.1. Change of variable as a flow map

Introduce a parameter t € [0, 1] and consider a diffeomorphism of T (depending on
(t, t)) and its inverse,

x=y+B(t,t,y) & y=x+p(t,t,x),

forx,y € T, 7 € [0, 1], € R, where 8 and B are such that ||3y/§||Loo, 10xBllLee < 1/2
and

Blemo =0, PBle=o=0, Ble=i =pB1, Ble=1 = Bi1.
‘We denote
(W), y) = 1+ 3,B(x, t, ) 2h(t, y + Bz, 1, ), (C.5)
V() 'h)(, x) == (1 + 0. 8(t, 1, ) *h(t, x + B(z, 1, X)). (C.6)
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Then W = W(1). The reason for introducing the parameter t is that W(r) satisfies an
equation of the form
0¥ (r) = F(n)¥(r), WO =1, (C.7)

that is, 3; (W (t)h) = F(t)(¥(t)h), ¥ (0)h = h for all h, where
3B(z,1,y)
1+8,8(c,t,y)

Assume that Qg is a Fourier multiplier with symbol go(&) of order m < 3/2. We seek a
pseudo-differential operator Q(t) of order m such that the difference

R(7) := Q(m)¥(r) — ¥(1)Qo (€9

is an operator of order 0. Conjugating the equation d; ¥V (7) = F(t)W(7r) with Q(t) one
obtains

0:(Q(¥ (7)) = QO F()¥(7) + (0: O ()W (7)
= F(D) OOV + ([Q(), F(MI¥ (1) + (3: Q) ¥ (7).

On the other hand, d; (W (t)Qg) = F ()W (r)Qg. By combining both equations we find
that R satisfies

9:R(1) = F(OR(1) + Ri(m)¥(r), Ri(v) :=[Q(7), F(1)]+9:Q0(r). (C.10)

F(t) =bo(t,t,y)dy + %(8),b0)(r, t,y),  bo(r,t,y):= (C.8)

The analysis is then in two steps. The main step consists in proving that Q(t) can be so
chosen that Q(r = 0) = Qg (then R(0) = 0) and R () is of order 0. Then, by using
an L%-energy estimate for the hyperbolic equation d;u = bodyu + f, one deduces an
estimate for the operator norm of R(t) uniform in 7 (and hence the desired estimate for
T = 1). Here we describe in detail only the main step, as the L>-energy estimate is a
standard argument.

C.2. Expansion of the symbol

Let p(t, 1, x, &) be the symbol of Q(t). To obtain R of order zero amounts to seeking
p such that 9; p — o|F, o] has order zero (where or, ¢ is the symbol of [F, Q]), and
Plt=0 = qo. The asymptotic expansion of or, ¢ is

= 1 o o o o
or.01~ Y OF @ P) = (O PIGY ). (C.11)
a=1 .

where f(z,t,x,&) :=ibo(z,t,x)€E+ %(Bxbo)(r, t, x) is the symbol of F(t) (we rename
the space variable to be x). Since m < 3/2 < 2 by assumption, it is enough to determine
the principal and the subprincipal symbols of p. Thus we write p = pg + p1, where pg
has order m and pj has order m — 1. The equations for pg, p; are

0z po = bo0x po — &(0xbo) ¢ po, DPole=0 = qo, (C.12)
0z p1 = bodx p1 — &(0xb0)dep1 + 2,  pili=0 =0, (C.13)
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where )
l

7= E(axxbO)(as Po + &0 po)- (C.14)

If po, p1 satisfy (C.12) and (C.13), then it follows from standard symbolic calculus for

pseudo-differential operators (similar to (A.6)) that R(7), defined in (C.10), is an oper-
ator of order 0 satisfying

IRIO 212y + IR 2arny S (M7 (po) + M (pi)Ibo(@)lwree (C.15)

with r large enough (here the seminorms M}’ are as defined by (A.1); one has to consider
r large enough because we are here considering pseudo-differential operators instead of
paradifferential ones).

Equation (C.12) can be solved by the characteristics method: if x(t), £(7) solve

d d
T x(t) = —bo(z,t,x(1)), ——&(t) =&()(0xbo)(T, 1, x(T)), (C.16)
T dt

then
po(z,t,x(7),§(7)) = po(0,1,x(0),6(0)) V. (C.17)
Now, by (C.8), the first equation in (C.16) is

- ~ d -
0= {1+ @:B)(z, 1, x(D)}x"(x) + (3 B) (2,1, x(7)) = E{x(t) + B(z, 1, x(1)},

whence 5 ;

x(7) + B(z,t,x(7)) = x(0) + B(O, t, x(0)) = x(0). (C.18)
Applying the inverse diffeomorphism, we get x(7) = x(0) + B(z, t, x(0)). This is the
solution x (7) of the first equation in (C.16) with initial data x(0). Also, one verifies that

E(r) =£0)(1 + (%:B)(r. 1, x(1))) (C.19)
satisfies the second equation in (C.16), because x (7) satisfies the first equation in (C.16),
by is given by (C.8), and
dexP(r.t,x) 3P 1, 0Bz, 1, %)

14+ 8,8(t,t,x) (148, B(z, 1, x)]?

Hence we deduce a formula for the backward flow of (C.16): for any t; € [0, 1] and
any (xp, &1), the solution (x(7), £(t)) of (C.16) with initial data (x(0), £(0)) = (xo, &)
satisfies (x(71), £(11)) = (x1, &) if the initial data is

axbO(T’ t’ x) =

_ 3
1+8,8(t1, 1, x1)

As a consequence, using (C.17) and the initial data in (C.12), we get

xo=x1+ B(m,t,x1), & (C.20)

po(z1, t, x1,&1) = po(0, t, x0, &0) = qo(t, X0, o)

z &1
=qol t,x1 + B(r1,t,x1), ————— .
( 1+ 0yB(t1, 1, x1)
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We have a formula for the solution pg(t, t, x, &) of (C.12):

- §
_ 5 ) 21
po(z,1,x,§) qo<fax+ﬁ(f’t’x)’ 1+ 9, B(x, t,X)> 2

Now we study equation (C.13). By the definition of (x(7), (7)),

Pl(fsl,x(f)yf(f))=/0 2(s, 1, x(s), £(s)) ds, (C.22)

where z is given in (C.14). We examine z in detail. By (C.21), fork =1, 2,

¥ po(z,t, x, &) = (9F ( g ) ~1
e po(T,1,x,8) = (0:qo)( 1, x + B(T,1,x) PN TP PR TS

for all 7, ¢, x, £. Hence along the curves (x(s), £(s)), by (C.18) and (C.19),
(0§q0)(t, x0, £0)

[1 4 3:B(s, 1, ()

where (xg, §0) := (x(0), £(0)), and therefore, using (C.19) again, we get

9eqo(t, x0, &0) + &00z£q0(t, X0, §0)
1+ 0:B(s, t, x(s)) '

(0 po) (s, 1, x(s), &(5)) =

(9 po + &0s£ po) (s, t, x(5),&(8)) =

Now we note that

Baxb0) (5.1, %(5).6(s)) _ d. { (32 B) (5, 1, X(5)) }
1+ (8:B)(s, 1, x(s)) ds | [1+ (3:B) (s, t, x(s)I* )

as can be verified by a straightforward calculation, using also (C.16) and the definition
(C.8) of by. Hence, recalling the definition (C.14) of z, we obtain

(3xxB) (5, 1, x(5)) }

i d
s by 3 == 8 3 bl 8 3 ) i por
2(s, t,x(s), &(s)) 2{ £qo(t, X0, £0) +E00:£q0 (2, x0, §0)} {[1 )61 2P

ds
and, by (C.22),

(0xxB) (. 1, (1))
[14 @:B)(z, 1, x(0))]?
because B|,:0 = (0. We use the backward flow as above: given 1, x1, &1, the solution
(x(1), £(1)) of (C.16) with initial data (x(0), £(0)) = (xo, &o) satisfies (x (1), &(11)) =
(x1, &p) if the initial data is (C.20). Therefore, replacing (xg, &) by (C.20) in the last
equality, we get a formula for pj, with 7, x, & instead of 71, x1, &1:

pi1(T,t,x(1),8(v)) = %{351100, X0, &0) + §00s£q0(7, X0, §0)}

pL(, 1, %, €) = %{(3540) <t, x4 B 1, x), ﬁ)

£ ) } der BT, 1, %)

1+ 0. 8(t,t,x)/) ) (1 + 0. B(x,1,x))%
(C.23)

g -
- = 8 b 9 b 9
+ 1o, t,x)( ggqo)(t x + B(t,t,x)
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C.3. Conjugation of L
We fix go (&) to be the symbol of L (see (2.11)) with a cut-off around & = 0, namely

qo(&) := (g + EH'2®) 2 x (&) = (g + £H'21E1V? tanh 2 (b]E]) x (8),

where x (&) is the cut-off function of Proposition 2.5. Note that Op(qo) = L on the
periodic functions, as their symbols coincide at any £ € Z, and therefore no remainder is
produced by replacing L with Op(gp). In the previous section we have constructed po, pi,
and we have defined p := po + p1 and Q(7) := Op(p). Then R(r) defined in (C.10)
is an operator of order zero and it satisfies estimate (C.15). Now observe that, in view
of (C.10), for any ug € L2(’JI‘), R(t)ug solves a hyperbolic evolution equation. Using
the energy estimate (B.11), we deduce that the difference R(t) := Q(v)W¥(r) — V(7))L
(see (C.9)) is also of order zero, and it satisfies the same estimate (C.15) as R(t). As a
consequence, the conjugate of L is

Y(OLY (D) = Q1)+ Ra(r),  Ra(r) = —R@W ()™, (C.24)

and R, (1) satisfies the same estimate (C.15) as R(7). By (C.21), po = qo(€(1+8,8)~").
We expand .
po = (1+0:B)"?q0 +r, (C.25)

where the remainder r satisfies |Op(r) |l £ g gu+12) < 105 Bl guto for all u > 0, for
some absolute constant p large enough, because

g(1—h?)
h%(g +&2)

and then we use Taylor expansion for the square root of the last factor. The second com-
ponent pq is given by (C.23). By Taylor expansion,

lao@®) = 3117 ] S A+ 1D gl ©) = 31EI7 S+ gD,

so that we calculate

g+EM =g+ sz><1 e ) hi=(14+8,8)"",

p1 = ig@B)(L+ 3 p) 2 EI72E x (&) + 1, (C.26)

where the remainder r satisfies |Op(r)|l £gu, gu+3/2y < ||8x5”HM+,D for all u > 0, for

some p large enough. Assume that ||8T5|| e S ||/?5~ || g (this bound holds for the choice
of B we make below). By (C.24)—(C.26), we have

W)LY (D) = (1+8:8) L+ 2@ )1 +3,8) 2Dy |20+ R0, (C.27)

where Ry, is defined to be the difference and it satisfies || Ro, 1l ccar, gy S 110 Bl pruto
for all u > 0, for some p large enough. With similar calculations, one proves that for any
r e R,

V(D)D" W (D) = (14 3,8)7"|D:l” + Ro.2 (C.28)

where the difference Ro 2 satisfies [|Ro2ll g gu—ri1y S (EN e
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C.4. Conjugation of P
We conjugate the operator in (C.1) with ¥; := W (1) = W(7)|;=1. By symbolic calculus,

L'Y2cL'? = cL — 2(3:0)3:|Dx| ™% + Ro 3, (C.29)

where the difference Ro 3 satisfies [ Ro3ll z(gu gutizy S 10xcll gu+e for all u > 0, for
some p large enough. We recall that ¢ —1 is small, and therefore 9, c is small. By definition
(see (C.5), (C.6)), and recalling that B8|;,—; = B1, Blr=1 = B1, we directly calculate

VW =8 Faid Fr, WY = ad 1,
where
ai(t, x) == (3B, x + B1(t,x)),  ax(t,x) =1+ d:pi1(t, x) 7", (C.30)

and

Pt x) = 3 @B x + Br(1, ) (1 + 8xf1(1, x)),
rat, x) 1= 5(1+ 8xB1 (1, %)) BxxB1) (1, X + B2, ).
The conjugate of any multiplication operator & +— ah is the multiplication operator 4 —

(Ba)h,
Wia¥; ' = Ba, (Ba)(t,x) = a(t,x + fi(t, x)).

Thus
W PW =0 +a3dy +iasL + iasdy| D"V + Rs,
where
a3 :=aj + (EV)az, a = (1§c)(1 + Bx,é)%/z,
as = — 2{=3(Bc)(1 + 8:B)*(0:xB) + (B(@3:0)) (1 + 8, 8)7 "7},

5 5 s 307 w12 -2 (G3D
Ry :=r1 + (BV)ra +i(Bc)Ro,1 + —i7(BIxc)ra(1 + 9x )"/ 7| Dx|

+Ro2 +iW RV + W R
Ro,1 is defined in (C.27) with 7 =1, Rg 2 is deﬁ~ned in (C.28) witht = landr = —1/2,
and Ry 3 is defined in (C.29). The remainder R3 is of order zero and it is estimated in

Lemma C.1. Moreover, as is immediate to verify, a5 = —%8xa4. We choose 1, ,31 such
that the highest order coefficient a4 is independent of x. This means

as(t, x) = c(t, x + Bi(t, x)) (1 + 9. B1(t, x)>?> =m(r) Vx €T, (C.32)

for some function m(¢) independent of x. By applying the inverse diffeomorphism, this
is equivalent to
ct,x) (L + 0,811, ) =m@) VxeT.
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This implies 1 4+ 0,81 (¢, x) = m@)*3c(t, x)~%/3, which, after integration over x, gives

-3/2
m(t) = (%/Tc(t,x)_zﬂ dx) ) (C.33)

Hence m in (C.32) is determined. We fix f; as
Bi(t, x) = 0 m()*Pe(r, x)723 =1, (C.34)

and then we fix B(t, ¢, x) := tf1(¢, x). As a consequence, ﬁ(r, t,y) and Bl are also de-
termined. Since a4(f, x) = m(t) is independent of x, it follows that a5 = —%8,414 =0
(as was natural to expect, because the vector field in P is anti-selfadjoint and the trans-
formation W preserves this structure). We have conjugated P to

Pl =W PV =0 +im(t)L + a3d, + Rs. (C.35)
We underline that the coefficient m (¢) is a function of time, independent of space.
Lemma C.1. There exists a universal constant 89 € (0, 1) such that if
lle@®) — iz < do
then || B1 (1) | Lo + 10 B1 (1)L < 1/2 and
105 B1 (1) | wico + 1105 B1 (D) lwico < Cplle(®) = Ulwnso Y =0

for some positive constant C,, depending only on 1. As a consequence, V1 (t) and ¥y (™!
are bounded transformations of H*(T) with

19 Ol 2y + 191 e < Cul+ le@) = Himn) Y= 0.
Moreover |m(t) — 1| < Cllc(t) — 1| g1, and
laz@llpr < Cplllc(®) = Ulgr + 10;,cO ]l gu—1)  Yu > 1.
The remainder Iég (t) maps Lz(T) into itself with
IR ()l 22y < C(lle@ = Ulmr + 1V (@)l + 19:c@) L + Rl £12))
and, forall p > 1/2, R3 (t) also maps H*(T) into itself with
1IR3l £y < Cullle@) = Ulgusr + 1V @Ol + 19| e + Rl £y

where r > 0 is a universal constant.

Proof. The estimates follow from the explicit formulas above, the usual estimates for the
composition of functions (see, e.g., [7, Appendix B]) and Sobolev estimates for pseudo-
differential operators (see (C.15)). The estimate of the pseudo-differential remainder term
is the reason why r further space derivatives are required on c. The term 9;¢ appears only
in a; and r1. The term V appears only in a3 and R3 where it is explicitly written, and
nowhere else. The operator R, only appears in Rj3 in the term W, Rz\IJ_1 All the other
terms depend only on ¢ and its space derivatives. O
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C.5. Reparametrization of time

Now we want to replace the coefficient m(¢) in (C.35) with a constant coefficient. We
consider a diffeomorphism of the time interval

Y [0, T1—[0,T1], ¢ (O =0, (T =T, y'@)>0,

where 77 > 0 has to be determined. We consider the pull-back ¥, defined by (¥.h) (%, x)
:= h(y (1), x), and similarly for its inverse ¥ ~!. Then we calculate the conjugate

U @+ im@O L)Y = ' 0)d +im (Y (1)) L.

The two time-dependent coefficients are equal if m(z) = v'(¢) for all ¢ € [0, T].
We define

t T
0 :=/O m(s)ds, T :=/0 m(t)dt, p@) =m@ ' @). (C.36)

Since |m — 1| is small, the ratio T}/ T is close to 1, and also v (¢) is close to 1 for all z.
We have the conjugate

U Pive=p0) Py, Pyi=8+iL +asd + Ra, (C.37)

where

aW'o,x) 5 1

—r 777 Ry = —
p () p ()

(and, more explicitly, ("' R3¥,)(r) = R3(¥~'(1))). Now the coefficient of the highest

order term L is constant.

a(t, x) == v Ray, (C.38)

C.6. Translation of the space variable

The goal of this section is to eliminate the space average of the coefficient ag (¢, x) in
front of 9,. Consider a time-dependent change of the space variable which is simply a
translation,

y=et,x)=x+p@t) & x=¢ ' (t,y) =y — p),

and its pull-back (@.h)(t, x) = h(t, ¢(t, x)) = h(t, x4 p(t)), and similarly for ¢ ~!. Thus
0y 1 0;¢x = 0+ p’ ()3, and ¢, commutes with every Fourier multiplier like dy, | Dy|", L.
We calculate the conjugate

Py = ' Pyg, = 0, +iL +a70; + Rs,

where _ B
a7 :=p') + (¢;'as),  Rs:=¢; ' Rigy. (C39)

Since ¢, and ¢, ! preserve the space average, we fix

t
p(t) = —i/ fa6(s,x)dxds. (C.40)
2 Jo Jr
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It follows that fT a7(t,x)dx = 0 for all + € [0, T1]. Note that ¢, commutes with the
multiplication operator & — p(¢)h, because p(¢) is independent of x. Moreover, by the
change of time variable s = ¥ (), ds = m(t)dt in the integral, we get

1 (h I
p(Th) = ——/ /a6(s,x) dxds = ——/ /a3(t,x) dx dt. (C41)
27 Jo T 27 Jo Jr

Proof of Proposition 5.1 concluded. The composition @ := ¢, 11#; 1| of the previous
three transformations gives P = ®~!pP3®. Also note that ®~!(pu) = m®d 'u for
all u. The transformation W is estimated in Lemma C.1. The estimates for ¥, and ¢, are
straightforward. Finally, rename W := a7 and R3 := 155. ]

Notation. In the following proposition we use the shorter notation |ju|r,x for the
CO([0, T1; X) norm of any u, with X = L?(T), L°°(T), H*(T), L(L*(T)), etc.

Proposition C.2. Assume the hypotheses of Proposition 5.1.
(1) (Regularity) In addition, suppose that u > 1/2, |lc — 1|7, g < K < 00, and
Ny = lle = Uiz gutr + VI, He + 10l 10 + |1 R2 I 7, L1y < 00
Then Rz maps CY([0, T;1; H*(T)) into itself with
IR3ll 7y cemy < Cux Ny (C.42)
for some constant C,, g depending on p, K. For . > 1,
Wit e < Culllc = Uiz, me + 10l gu—1 + IV Iz, H10) (C.43)
and
1Pullzy me < Cullellr.aellulz.me, 1O ullzme < Cullellr,melullz, e

forallu = u(t, x), for some constant C,, depending only on [i.

(ii) (Stability) Consider another triple (¢', V', R}) such that ¢’ also satisfies (5.1), and
No < oo also for (¢', V', R}). Let @', W}, ¢, ¥, T{, W, R}, be the corresponding
objects for the triple (c’, V', R}). Then for all u € L>(T) andt € [0, T],

19y (0w — Wi Oull 2 + 1)~ ' = @) ull 2 < Clle@) — @ g2 lull -
(C.44)
Let & := T1/T/, and let T be the time-rescaling operator (Tv)(t, x) := v(At, x).
Then for all u > 0 and v = v(t, x),

10 = YL@, (TO) i < CT BNy n + [0l i) Ao, (C.4S)
o v v = T (o v W)y e < CTUB T e+ [0l ) Do, (C46)

where
AO = ”C — C/“T,Hl + ”(8[6' —_ 3,6/, V —_ V/)”T,LZ-
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Also,
[T — A+ lm —m'llcoqo.77) < Clle =l L%, (C.47)
and if
M) == {1+ 3BT, x — p(T)N'?, M'(x) := {1+ 3BT, x — p' (T2,
then
1M = M'llzo(ry < Clle = lig, g2 + 11@Brc = ', V = Vg 12). (C.48)
Foru > 1,if
le =z, gurt + 10z, e + 197l gt H 1V |7, gusr 18 Vli7,an < 1, (C.49)
and if (C.49) also holds for ¢’, V', then
”W/_TW”T]’,H/L < Culle=Cllr,me+18c=8:c' 17 gu—1 +IV=V'll7, ). (C.50)

Moreover, if

||C — 1||T,Hr+l + ||3;C||T’Hr+1 + ”atzC”T,Lz + ”V”T,Hl + ”atV”T,LZ
+ IRl 7 ccuvyngry 10 Rellp g2y <1, (C.S1)

and if (C.51) also holds for c’, V', R}, then

IRy — TR3||T1”£(L2) < Cle =iy, gr+1 + 18rc — atC/“T,Hl
1V =Vliz.m + IR = Ryllz £r2)-  (C52)

Proof. To prove (ii) we make repeated use of the triangular inequality and explicit for-
mulas. In particular, to E:stimate~ p(W (A1) — p'(¥' (1)), we use explicit formulas similar
to (C.41). To estimate Rg — T Rs we note that the rescaled operator 7 Rs is the compo-

sition TlésT’], and ~then we also use (C.45)—(C.46). Remember that we have renamed
W := a7 and R3 := Rs. ]
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