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Abstract. Precise asymptotics for Christoffel functions are established for power type weights on
unions of Jordan curves and arcs. The asymptotics involve the equilibrium measure of the support
of the measure. The result at the endpoints of arc components is obtained from the corresponding
asymptotics for internal points with respect to a different power weight. On curve components
the asymptotic formula is proved via a sharp form of Hilbert’s lemniscate theorem while taking
polynomial inverse images. The situation is completely different on arc components, where the
local asymptotics is obtained via a discretization of the equilibrium measure with respect to the
zeros of an associated Bessel function. The proofs are potential-theoretical, and fast decreasing
polynomials play an essential role in them.
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1. Introduction

Christoffel functions have been the subject of many papers (see e.g. [12], [13], [18],
and the extended reference lists there). They are intimately connected with orthogonal
polynomials, reproducing kernels, spectral properties of Jacobi matrices, convergence of
orthogonal expansion and even random matrices (see [5], [13] and [18] for their vari-
ous connections and applications). The possible applications are growing, for example
recently a new domain recovery technique has been devised that uses the asymptotic be-
havior of Christoffel functions [6]; and in the last years several important methods for
proving universality in random matrix theory were based on them [2], [8], [9], [10]. The
aim of the present paper is to complete, to a certain extent, the investigations concerning
their asymptotic behavior on Jordan curves and arcs.

Let µ be a finite Borel measure on the plane such that its support is compact and
consists of infinitely many points. The Christoffel functions associated with µ are defined
as

λn(µ, z0) = inf
Pn(z0)=1

∫
|Pn|

2 dµ, (1.1)

where the infimum is taken over all polynomials of degree at most n that take the value 1
at z. If pk(z) = pk(µ, z) denote orthonormal polynomials with respect to µ, i.e.∫

pnpm dµ = δn,m,

then λn can be expressed as

λ−1
n (µ, z) =

n∑
k=0

|pk(z)|
2.
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In other words, λ−1(µ, z) is the diagonal of the reproducing kernel

Kn(z, w) =

n∑
k=0

pk(z)pk(w),

which makes it an essential tool in many problems. It is easy to see that, with this repro-
ducing kernel, the infimum in (1.1) is attained (only) for

Pn(z) =
Kn(z, z0)

Kn(z0, z0)

(see e.g. [20, Theorem 3.1.3]).
The earliest asymptotics for Christoffel functions for measures on the unit circle or

on [−1, 1] go back to Szegő [21, Th. I′, p. 461]. He established their behavior outside
the support of the measure, and for some special cases he also found that behavior at
points of (−1, 1). The first result for a Jordan arc (a circular arc) was given in [4]. By
now the asymptotic behavior of Christoffel functions for measures defined on unions of
Jordan curves and arcs 0 is well understood: under certain assumptions we have, for
points z ∈ 0 that are different from the endpoints of the arc components of 0,

lim
n→∞

nλn(µ, z0) =
w(z0)

ω0(z0)
, (1.2)

where w is the density of µ with respect to the arc measure s0 on 0, and ω0 is the density
of the equilibrium measure (see below) with respect to s0 . For the most general results
see [22] and [24].

What is left is to decide the asymptotic behavior at the endpoints of the arc compo-
nents. It turns out that this problem is closely related to the asymptotic behavior away
from the endpoints, but for measures of the form dµ(x) = |z− z0|

αds0(z), α > −1, and
the aim of this paper is to find these asymptotic behaviors. When µ is of the latter form,
we shall show (for the exact formulation see the next section)

lim
n→∞

n1+αλn(µ, z0) =
1

(πω0(z0))α+1 2α+10

(
α + 1

2

)
0

(
α + 3

2

)
(1.3)

when z0 is not the endpoint of an arc component of 0, while at an endpoint

lim
n→∞

n2α+2λn(µ, z0) =
0(α + 1)0(α + 2)
(πM(0, z0))2α+2 ,

where M(0, z0) is the limit of
√
|z− z0|ω0(z) as z→ z0 along 0.

This paper uses some basic notions and results from potential theory. See [1], [3], [16]
or [19] for all the concepts we use and for the basic theory. In particular, ν0 will denote
the equilibrium measure of the compact set 0.

Since the asymptotics reflect the support of the measure, in all such questions a global
condition is needed, stating that the measure is not too small on any part of0 (for example,
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if µ is zero on any arc of 0, then (1.3) does not hold any more). This global condition is
the regularity condition from [19]: we say that µ, with support 0, belongs to Reg if

sup
Pn

(
‖Pn‖0

‖Pn‖L2(µ)

)1/n

→ 1

as n → ∞, where the supremum is taken over all polynomials of degree at most n, and
where ‖Pn‖0 denotes the supremum norm on 0. The condition says that in the n-th root
sense the L∞(µ) and L2(µ) norms are almost the same. The assumption µ ∈ Reg is very
weak—see [19] for several reformulations as well as conditions on the measure µ that
imply µ ∈ Reg. For example, if 0 consists of rectifiable Jordan curves and arcs with arc
measure s0 , then any measure dµ(z) = w(z)ds0(z)withw(z) > 0 s0-almost everywhere
is regular in this sense.

Actually, it is not even needed that the support 0 of the measure µ be a system of
Jordan curves or arcs: the main theorem below holds for any 0 that is a finite union of
continua (connected compact sets). However, it is needed that z0 lies on a smooth arc J
of the outer boundary of 0; the outer boundary of 0 is the boundary of the unbounded
connected component of C \ 0. It is known that the equilibrium measure ν0 lives on the
outer boundary, and if J is a smooth (say C1-smooth) arc on the outer boundary, then
on J the equilibrium measure is absolutely continuous with respect to the arc measure sJ
on J : dν0(z) = ω0(z)dsJ (z). We call this ω0 the equilibrium density of 0.

The following theorem describes the asymptotics of the Christoffel function at points
that are different from the endpoints of the arc components/parts of 0 (see Figure 1 for
illustration).

G

z
0z0

0

Fig. 1. A typical situation where Theorem 1.1 can be applied.

Theorem 1.1. Let the support 0 of a measure µ ∈ Reg consist of finitely many continua,
and let z0 lie on the outer boundary of 0. Assume that the intersection of 0 with a
neighborhood of z0 is a C2-smooth arc J which contains z0 in its (one-dimensional)
interior. Assume also that in this neighborhood dµ(z) = w(z)|z − z0|

αdsJ (z), where w
is a strictly positive continuous function and α > −1. Then

lim
n→∞

n1+αλn(µ, z0) =
w(z0)

(πω0(z0))α+1 2α+10

(
α + 1

2

)
0

(
α + 3

2

)
. (1.4)

The second main theorem of this work is about the behavior of the Christoffel function at
an endpoint (see Figure 2). If z0 is an endpoint of a smooth arc J on the outer boundary
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G

z0

0

Fig. 2. A typical situation where Theorem 1.2 can be applied.

of 0, then at z0 the equilibrium density has a 1/
√
|z− z0| behavior (see the proof of

Theorem 1.2), and we set

M(0, z0) := lim
z→z0, z∈0

√
|z− z0|ω0(z). (1.5)

Theorem 1.2. Let 0 and µ be as in Theorem 1.1, but now assume that the intersection
of 0 with a neighborhood of z0 is a C2-smooth Jordan arc J with one endpoint at z0.
Then

lim
n→∞

n2α+2λn(µ, z0) =
w(z0)

(πM(0, z0))2α+20(α + 1)0(α + 2). (1.6)

These results can be used, in particular, if the measure is supported on a finite union of
intervals on the real line, in which case the quantities ω0(x) and M(0, x) have a rather
explicit form. Let 0 =

⋃k0
j=0[a2j , a2j+1] with disjoint [a2j , a2j+1]. Then the equilibrium

density of 0 is (see e.g. [23, (40), (41)] or [19, Lemma 4.4.1])

ω0(x) =

∏k0−1
j=0 |x − λj |

π

√∏2k0+1
j=0 |x − aj |

, x ∈ Int(0), (1.7)

where λj are the solutions of the system of equations∫ a2k+2

a2k+1

∏k0−1
j=0 (t − λj )√∏2k0+1
j=0 |t − aj |

dt = 0, k = 0, . . . , k0 − 1. (1.8)

It can be easily shown that these λj ’s are uniquely determined and there is one λj on every
contiguous interval (a2j+1, a2j+2). Now if a is one of the endpoints of the intervals of 0,
say a = aj0 , then

M(0, a) =

∏k0−1
j=0 |a − λj |

π

√∏2k0
j=1, j 6=j0

|a − aj |

. (1.9)

This whole work is dedicated to proving Theorems 1.1 and 1.2. Actually, the latter will
be a relatively easy consequence of the former, so the main emphasis will be on proving
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Theorem 1.1. The main line of reasoning is the following. We start from some known
facts for simple measures like |x|αdx on the real line, and get some elementary results for
a model case on the unit circle via a transformation. Then we deduce from these simple
cases that Theorem 1.1 is true for lemniscate sets, i.e. level sets of polynomials. This
part will use the polynomial mapping in question to transform the already known result
to the given lemniscate. Then we prove the theorem for finite unions of Jordan curves.
Recall that a Jordan curve is a homeomorphic image of a circle, while a Jordan arc is a
homeomorphic image of a segment. From the point of view of finding the asymptotics of
Christoffel functions there is a big difference between arcs and curves: Jordan curves have
interior and can be exhausted by lemniscates, so the polynomial inverse image method of
[23] is applicable for them, while for Jordan arcs that method cannot be applied. Still, the
pure Jordan curve case is used when we go over to a 0 which may have arc components,
namely it is used in the lower estimate. The upper estimate is the most difficult part
of the proof; there Bessel functions enter the picture, and a discretization technique is
developed where the discretization of the equilibrium measure of0 is done using the zeros
of appropriate Bessel functions combined with another discretization based on uniform
distribution. Once the cases of Jordan curves and arcs have been settled, the proof of
Theorem 1.1 will easily follow by approximating a general 0 by a family of Jordan curves
and arcs.

2. Tools

In what follows, ‖ · ‖K denotes the supremum norm on a set K , and s0 the arc measure
on 0 (when 0 consists of smooth Jordan arcs or curves).

We shall rely on some basic notions and facts from logarithmic potential theory. See
the books [1], [3], [16] or [17] for detailed discussion.

We shall often use the trivial fact that if µ, ν are Borel measures, then µ ≤ ν im-
plies λn(µ, x) ≤ λn(ν, x) for all x. It is also trivial that λn(µ, z) ≤ µ(C) (just use the
identically 1 polynomial as a test function in the definition of λn(µ, z)).

Another frequently used fact is the following: if {nk} is a subsequence of the natural
numbers such that nk+1/nk → 1 as k→∞, then for any κ > 0,

lim inf
n→∞

nκλn(µ, x) = lim inf
k→∞

nκkλnk (µ, x), (2.1)

lim sup
n→∞

nκλn(µ, x) = lim sup
k→∞

nκkλnk (µ, x). (2.2)

In fact, since λn(µ, x) is a decreasing function of n, for nk ≤ n ≤ nk+1 we have

(n/nk+1)
κnκk+1λnk+1(µ, x) ≤ n

κλn(µ, x) ≤ (n/nk)
κnκkλnk (µ, x),

and both claims follow because n/nk and n/nk+1 tend to 1 as n (or nk) tends to infinity.

2.1. Fast decreasing polynomials

The following lemmas on the existence of fast decreasing polynomials will be a constant
tool in the proofs.
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Lemma 2.1. Let K be a compact subset of C, � the unbounded component of C \ K
and let z0 ∈ ∂�. Suppose that there is a disk in � that contains z0 on its boundary. Then,
for every γ > 1, there are constants cγ , Cγ > 0 and for every n ∈ N polynomials Sn,z0,K

of degree at most n such that Sn,z0,K(z0) = 1, |Sn,z0,K(z)| ≤ 1 for all z ∈ K , and

|Sn,z0,K(z)| ≤ Cγ e
−ncγ |z−z0|

γ

, z ∈ K. (2.3)

For details, see [22, Theorem 4.1]. This result will often be used in the following form.

Corollary 2.2. Under the assumptions of Lemma 2.1, for every 0 < τ < 1 there exist
constants cτ , Cτ , τ0 > 0 and for every n ∈ N a polynomial Sn,z0,K of degree o(n) such
that Sn,z0,K(z0) = 1, |Sn,z0,K(z)| ≤ 1 for all z ∈ K , and

|Sn,z0,K(z)| ≤ Cτ e
−cτn

τ0
, |z− z0| ≥ n

−τ . (2.4)

Proof. Let ε > 0 be sufficiently small and select γ > 1 so that 1− ε − τγ > 0. Lemma
2.1 tells us that there is a polynomial Pn with deg(Pn) ≤ n1−ε such that

|Pn(z)| ≤ Cγ e
−cγ n

1−(ε+τγ )
, |z− z0| ≥ n

−τ ,

and this proves the claim with Sn,z0,K = Pn. ut

There is a version of Lemma 2.1 where the decrease is not exponentially small, but starts
much earlier than in Lemma 2.1.

Lemma 2.3 ([25, Lemma 4]). Let K be as in Lemma 2.1. Then, for every β < 1, there
are constants cβ , Cβ > 0, and for every n = 1, 2, . . . polynomials Pn of degree at most n
such that Pn(z0) = 1, |Pn(z)| ≤ 1 for z ∈ K , and

|Pn(z)| ≤ Cβe
−cβ (n|z−z0|)

β

, z ∈ K. (2.5)

It will be convenient to use these results when n > 1 is not necessarily an integer (formally
one has to take the integer part of n, but the estimates will hold with possibly smaller
constants in the exponents).

2.2. Polynomial inequalities

We shall also need some inequalities for polynomials that are used several times in the
rest of the paper.

We start with a Bernstein-type inequality.

Lemma 2.4 ([22, Corollary 7.4]). Let J be a C2 closed Jordan arc and J1 a closed
subarc of J having no common endpoint with J . Then, for every D > 0, there is a
constant CD > 0 such that

|P ′n(z)| ≤ CDn‖Pn‖J , dist(z, J1) ≤ D/n,

for any polynomials Pn of degree n = 1, 2, . . . .

Next, we continue with a Markov-type inequality.
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Lemma 2.5. LetK be a continuum. IfQn is a polynomial of degree at most n = 1, 2, . . . ,
then

‖Q′n‖K ≤
e

2 cap(K)
n2
‖Qn‖K , (2.6)

where cap(K) denotes the logarithmic capacity of K . In particular, if K has diameter 1,
then

‖Q′n‖K ≤ 2en2
‖Qn‖K . (2.7)

For (2.6) see [15, Theorem 1], and for the last statement note that if K has diameter 1,
then its capacity is at least 1/4 [16, Theorem 5.3.2(a)].

Next, we prove a Remez-type inequality.

Lemma 2.6. Let 0 be a C1 Jordan curve or arc, and assume that for every n = 1, 2, . . . ,
Jn is a subarc of 0, and J ∗n is a subset of Jn such that

s0(Jn \ J
∗
n ) = o(n

−2)s0(Jn),

where s0 denotes the arc-length measure on 0. Then, for any sequence {Qn} of polyno-
mials of degree at most n = 1, 2, . . . , we have

‖Qn‖Jn = (1+ o(1))‖Qn‖J ∗n . (2.8)

Proof. It is clear from the C1 property that s0(Jn) ∼ diam(Jn) uniformly in Jn (meaning
that the ratio of the two sides lies between two positive constants).

Make a linear transformation z → Cz such that, after this transformation, the arc J̃n
that we obtain from Jn has diameter 1. Under this transformation J ∗n goes into a subset J̃ ∗n
of J̃n for which

s
J̃n
(J̃n \ J̃

∗
n ) = o(n

−2)s
J̃n
(J̃n), (2.9)

and Qn changes into a polynomial Q̃n of degree at most n. (2.8) is clearly equivalent to
its ˜-version.

Let M = ‖Q̃n‖J̃n
. By Lemma 2.5, the absolute value of Q̃′n is bounded on J̃n

by 2en2M , hence if z,w ∈ J̃n, then

|Q̃n(z)− Q̃n(w)| ≤ 2en2Ms
J̃n
(zw), (2.10)

where zw is the arc of J̃n between z and w. By the assumption (2.9) for every z ∈ J̃n
there is a w ∈ J̃ ∗n with

s
J̃n
(zw) = o(n−2)s

J̃n
(J̃n) = o(n

−2)

because s
J̃n
(J̃n) ∼ diam(J̃n) = 1. Choose here z ∈ J̃n such that |Q̃n(z)| = M . Since

|Q̃n(w)| ≤ ‖Q̃n‖J̃ ∗n
, from (2.10) we get

M = |Q̃n(z)| ≤ ‖Q̃n‖J̃ ∗n
+ o(1)M,

and the claim follows. ut
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We shall frequently use the following so called Nikolskii-type inequalities for power type
weights. Here, we say that a Jordan arc is C1+-smooth if it is C1+θ -smooth for some
θ > 0.

Lemma 2.7. Let J be a C1+-smooth Jordan arc and let J ∗ ⊂ J be a subarc of J which
has no common endpoint with J . Let z0 ∈ J be a fixed point, and for α > −1 define the
measure να on J by dνα(u) = |u − z0|

αdsJ (u). Then there is a constant C depending
only on α, J and J ∗ such that for any polynomials Pn of degree at most n = 1, 2, . . . we
have

‖Pn‖J ∗ ≤ Cn
(1+α)/2

‖Pn‖L2(να)
if α ≥ 0, (2.11)

‖Pn‖J ∗ ≤ Cn
1/2
‖Pn‖L2(να)

if −1 < α < 0. (2.12)

The same is true if dνα(u) = w(u)|u − z0|
αdsJ (u) with some strictly positive and con-

tinuous w.

Proof. In view of [26, Lemmas 3.8 and Corollary 3.9] (and the fact that να is a doubling
weight in the sense of [26]), uniformly in z ∈ J ∗ we have for large n the relation

λn(να, z) ∼ να(l1/n(z)),

where l1/n(z) is the arc of J consisting of those points of J that lie at distance ≤ 1/n
from z. Then

να(l1/n(z)) ≥ c/n
1+α if α ≥ 0,

να(l1/n(z)) ≥ c/n if −1 < α < 0,

with some positive constant c which depends only on α, J and J ∗. Therefore we have,
for all z ∈ J ∗,

λn(να, z) ≥ c/n
1+α if α ≥ 0, (2.13)

λn(να, z) ≥ c/n if −1 < α < 0. (2.14)

For example, (2.13) means that if α ≥ 0 and |Pn(z)| = 1 for some z ∈ J ∗, then
necessarily

n1+α

c

∫
J

|Pn|
2 dνα ≥ 1,

which is equivalent to saying that for any Pn and z ∈ J ∗,

n1+α

c

∫
J

|Pn|
2 dνα ≥ |Pn(z)|

2,

and this is (2.11). In a similar manner, (2.12) follows from (2.14).
It is clear that this proof does not change if να is as in the last sentence of the lemma.

ut
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Lemma 2.8. If α > −1, then there is a constant Cα such that for any polynomial Pn of
degree at most n,

‖Pn‖[−1,1] ≤ Cαn
(1+α∗)/2

(∫ 1

−1
|Pn(x)|

2
|x|α dx

)1/2

with α∗ = max(1, α). (2.15)

Proof. We follow the preceding proof, but now J = J ∗ = [−1, 1]. Let z0 = 0, 1n(z) =
1/n2 if z ∈ [−1,−1 + 1/n2

] or z ∈ [1 − 1/n2, 1], and 1n(z) =
√

1− z2/n if z ∈
[−1 + 1/n2, 1 − 1/n2

]. If now l1/n(z) = [z − 1n(z), z + 1n(z)] ∩ [−1, 1], then [26,
Lemmas 3.8 and Corollary 3.9] state that for dνα(x) = |x − z0|

αdx = |x|αdx on [−1, 1]
we have

λn(να, z) ∼ να(l1/n(z)).

Then

να(l1/n(z)) ≥ cmin(1/n2, 1/n1+α) if α ≥ 0,

να(l1/n(z)) ≥ c/n
2 if −1 < α < 0,

with some positive constant c. Hence,

λn(να, z) ≥ c/n
2 if −1 < α ≤ 1,

λn(να, z) ≥ c/n
1+α if α ≥ 1,

from which (2.15) follows exactly as before. ut

The Nikolskii inequalities can be combined with the following estimate to get an upper
bound for the extremal polynomials that produce λn(µ, z).

Lemma 2.9. Under the assumptions of Theorem 1.1 we have

λn(µ, z0) ≤ Cn
−(α+1)

with some constant C that is independent of n.

Proof. Just use the polynomials Pn from Lemma 2.3 with β = 1/2 and K = 0. Let
δ > 0 be so small that in the δ-neighborhood of z0 we have dµ(z) = w(z)|z−z0|

αds0(z).
Outside this δ-neighborhood, |Sn,z0,0| is smaller than Cβ exp(−cβ(nδ)1/2), so∫

|Sn,z0,0|
2 dµ ≤ C

∫
e−2cβ (n|t |)1/2 |t |α dt + Ce−2cβ (nδ)1/2 ≤ Cn−α−1,

which proves the claim. ut

We close this section with the classical Bernstein–Walsh lemma [27, p. 77].

Lemma 2.10. Let K ⊂ C be a compact subset of positive logarithmic capacity, let �
be the unbounded component of C \ K , and g� the Green’s function of this unbounded
component with pole at infinity. Then, for polynomials Pn of degree at most n = 1, 2, . . . ,
and for any z ∈ C,

|Pn(z)| ≤ e
ng�(z)‖Pn‖K .
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3. The model cases

3.1. Measures on the real line

Our first goal is to establish asymptotics for the Christoffel function at 0 with respect to
the measure dµ(x) = |x|αdx, x ∈ [−1, 1]. We do this by transforming some previously
known results.

In what follows, for simpler notation, if dµ(x) = w(x)dx, then we write λn(w(x), z)
for λn(µ, z).

Proposition 3.1. For α > −1 we have

lim
n→∞

n2α+2λn
(
|x|α

∣∣
[0,1], 0

)
= 0(α + 1)0(α + 2). (3.1)

Proof. It follows from [10, (1.10)] or [9, Theorem 4.1] that

lim
n→∞

n2α+2λn
(
(1− x)α

∣∣
[−1,1], 1

)
= 2α+10(α + 1)0(α + 2), (3.2)

from which the claim is an immediate consequence if we apply the linear transformation
x → (1− x)/2. ut

Proposition 3.2. For α > −1 we have

lim
n→∞

nα+1λn
(
|x|α

∣∣
[−1,1], 0

)
= Lα, (3.3)

where

Lα := 2α+10

(
α + 1

2

)
0

(
α + 3

2

)
. (3.4)

Proof. In this proof, whenever we write Pn, Rn etc. for polynomials, it is understood that
the degree is at most n.

We use the fact that (for continuous f )∫ 1

0
f (x)|x|α dx =

∫ 1

−1
f (x2)|x|2α+1 dx. (3.5)

Assume first that P2n is extremal for λ2n
(
|x|α

∣∣
[−1,1], 0

)
, i.e. P2n(0) = 1 and∫ 1

−1
|P2n(x)|

2
|x|α dx = λ2n

(
|x|α

∣∣
[−1,1], 0

)
.

Define
R2n(x) =

P2n(x)+ P2n(−x)

2
.

Then R2n(0) = 1, and R2n is a polynomial in x2, hence R2n(x) = R∗n(x
2) with some

polynomial R∗n for which R∗n(0) = 1 and deg(R∗n) ≤ n. Now we have∫ 1

−1
|R2n(x)|

2
|x|α dx =

∫ 1

−1
|R∗n(x

2)|2|x|α dx =

∫ 1

0
|R∗n(x)|

2
|x|(α−1)/2 dx

≥ λn
(
|x|(α−1)/2∣∣

[0,1], 0
)
.
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By the Cauchy–Schwarz inequality and the symmetry of the measure |x|α dx,∫ 1

−1
|R2n(x)|

2
|x|α dx ≤

1
4

∫ 1

−1
(|P2n(x)|

2
+ 2|P2n(x)| |P2n(−x)| + |P2n(−x)|

2)|x|α dx

≤
1
2

∫ 1

−1
|P2n(x)|

2
|x|α dx

+
1
2

(∫ 1

−1
|P2n(x)|

2
|x|α dx

)1/2(∫ 1

−1
|P2n(−x)|

2
|x|α dx

)1/2

=

∫ 1

−1
|P2n(x)|

2
|x|α dx = λ2n

(
|x|α

∣∣
[−1,1], 0

)
.

Combining these two estimates, we obtain

λn
(
|x|(α−1)/2∣∣

[0,1], 0
)
≤ λ2n

(
|x|α

∣∣
[−1,1], 0

)
.

On the other hand, if now Pn is extremal for λn
(
|x|(α−1)/2

∣∣
[0,1], 0

)
, then

λn
(
|x|(α−1)/2∣∣

[0,1], 0
)
=

∫ 1

0
|Pn(x)|

2
|x|(α−1)/2 dx =

∫ 1

−1
|Pn(x

2)|2|x|α dx

≥ λ2n
(
|x|α

∣∣
[−1,1], 0

)
,

therefore we actually have

λn
(
|x|(α−1)/2∣∣

[0,1], 0
)
= λ2n

(
|x|α

∣∣
[−1,1], 0

)
, (3.6)

from which the claim follows via Proposition 3.1 (see also (2.1) and (2.2) with nk = 2k).
Note also that this proves that if Pn(x) is the n-th degree extremal polynomial for the

measure |x|(α−1)/2
∣∣
[0,1]dx, then Pn(x2) is the 2n-th degree extremal polynomial for the

measure |x|α
∣∣
[−1,1]dx. ut

3.2. Measures on the unit circle

Let µT be the measure on the unit circle T defined by dµT(eit ) = wT(eit )dt , where

wT(e
it ) =

|e2it
+ 1|α

2α
|e2it
− 1|

2
, t ∈ [−π, π). (3.7)

We shall prove
lim
n→∞

nα+1λn(µT, e
iπ/2) = 2α+1Lα (3.8)

where Lα is from (3.4), by transforming the measure µT into a measure µ[−1,1] supported
on [−1, 1] and comparing the Christoffel functions for them. With the transformation
eit → cos t , we have∫ π

−π

f (cos t)wT(e
it ) dt = 2

∫ 1

−1
f (x)w[−1,1](x) dx, where w[−1,1](x) = |x|

α.

Set dµ[−1,1](x) = w[−1,1](x)dx.
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Let Pn be the extremal polynomial for λn(µ[−1,1], 0) and define

Sn(e
it ) = Pn(cos t)

(
1+ ei(t−π/2)

2

)bηnc
ein(t−π/2),

where η > 0 is arbitrary. This Sn is a polynomial of degree 2n+bηnc with Sn(eiπ/2) = 1.
For any fixed 0 < δ < 1,∫ π/2+δ

π/2−δ
|Sn(e

it )|2wT(e
it )dt ≤

∫ π/2+δ

π/2−δ
|Pn(cos t)|2wT(e

it ) dt

≤

∫ 1

−1
|Pn(x)|

2w[−1,1](x) dx = λn(µ[−1,1], 0). (3.9)

To estimate the integral over [−π, π/2− δ] ∪ [π/2+ δ, π], notice that

max
t∈[−π,π ]\[π/2−δ,π/2+δ]

∣∣∣∣1+ ei(t−π/2)2

∣∣∣∣bηnc = O(qn) (3.10)

for some q < 1. From Lemma 2.8 we obtain

‖Pn‖[−1,1] ≤ Cn
1+|α|/2

‖Pn‖L2(µ[−1,1])
≤ Cn1+|α|/2,

and so (∫ π/2−δ

−π

+

∫ π

π/2+δ

)
|Sn(e

it )|2wT(e
it ) dt = O(n1+|α|/2qn) = o(n−α−1).

Therefore, using this Sn as a test polynomial for λdeg(Sn)(µT, eiπ/2) we conclude that

λdeg(Sn)(µT, e
iπ/2) ≤ λn(µ[−1,1], 0)+ o(n−α−1),

and so

lim sup
n→∞

(2n+ bηnc)α+1λ2n+bηnc(µT, e
iπ/2)

≤ lim sup
n→∞

(2+ bηnc/n)α+1nα+1λn(µ[−1,1], 0) = (2+ η)α+1Lα,

where we have used Proposition 3.2 for the measure µ[−1,1].
Since η > 0 was arbitrary, we obtain

lim sup
n→∞

nα+1λn(µT, e
iπ/2) ≤ 2α+1Lα (3.11)

(see also (2.2)).
Now to prove the matching lower estimate, let S2n(e

it ) be the extremal polynomial
for λ2n(µT, eiπ/2). Define

P ∗n (e
it ) = S2n(e

it )

(
1+ ei(t−π/2)

2

)2bηnc

e−(n+bηnc)i(t−π/2)
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and Pn(cos t) = P ∗n (e
it ) + P ∗n (e

−it ). Note that Pn(cos t) is a polynomial in cos t with
deg(Pn) ≤ n+ bηnc and Pn(0) = 1. Hence

λdeg(Pn)(µ[−1,1], 0) ≤
∫ 1

−1
|Pn(x)|

2w[−1,1](x) dx =
1
2

∫ π

−π

|Pn(cos t)|2wT(e
it ) dt.

(3.12)
First, we claim that for every fixed 0 < δ < 1,

|Pn(cos t)|2 =


|P ∗n (e

it )|2 +O(qn), t ∈ [π/2− δ, π/2+ δ],
|P ∗n (e

−it )|2 +O(qn), t ∈ [−π/2− δ,−π/2+ δ],
O(qn), otherwise,

(3.13)

for some q < 1. Indeed,

|Pn(cos t)|2 = |P ∗n (e
it )+P ∗n (e

−it )|2 ≤ |P ∗n (e
it )|2+2|P ∗n (e

it )| |P ∗n (e
−it )|+|P ∗n (e

−it )|2.

If we apply Lemma 2.7 to two subarcs (say of length 5π/4) of T that contain the upper,
resp. the lower half of the unit circle, then we obtain

‖P ∗n ‖T ≤ ‖S2n‖T ≤ Cn
(1+|α|)/2

‖S2n‖L2(µT) ≤ Cn
(1+|α|)/2.

Therefore (use (3.10))

|P ∗n (e
it )| ≤ Cqnn(1+|α|)/2, t ∈ [−π, π] \ [π/2− δ, π/2+ δ].

These imply (3.13).
Now we have∫ π

−π

|Pn(cos t)|2wT(e
it ) dt =

(∫ π/2+δ

π/2−δ
+

∫
−π/2+δ

−π/2−δ

)
|Pn(cos t)|2wT(e

it ) dt

+

(∫
−π/2−δ

−π

+

∫ π/2−δ

−π/2+δ
+

∫ π

π/2+δ

)
|Pn(cos t)|2wT(e

it ) dt.

(3.13) tells us that the last three terms are O(qn). For the other two terms we have, again
by (3.13),∫ π/2+δ

π/2−δ
|Pn(cos t)|2wT(e

it ) dt =

∫ π/2+δ

π/2−δ
|P ∗n (e

it )|2wT(e
it ) dt +O(qn)

≤

∫ π/2+δ

π/2−δ
|S2n(e

it )|2wT(e
it ) dt +O(qn) ≤ λ2n(µT, e

iπ/2)+O(qn),

and similarly ∫
−π/2+δ

−π/2−δ
|Pn(cos t)|2wT(e

it ) dt ≤ λ2n(µT, e
iπ/2)+O(qn).

Combining these estimates with (3.12), we conclude that

λdeg(Pn)(µ[−1,1], 0) ≤ λ2n(µT, e
iπ/2)+O(qn),
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therefore

lim inf
n→∞

deg(Pn)α+1λdeg(Pn)(µ[−1,1], 0)

≤ lim inf
n→∞

(n+ bηnc)α+1(λ2n(µT, e
iπ/2)+O(qn)

)
≤ lim inf

n→∞
(1+ bηnc/n)α+1 1

2α+1 (2n)
α+1λ2n(µT, e

iπ/2).

From this, in view of Proposition 3.2 and (2.1), it follows that

(1+ η)−(α+1)2α+1Lα ≤ lim inf
n→∞

λn(µT, e
iπ/2),

and upon letting η→ 0 we obtain

2α+1Lα ≤ lim inf
n→∞

λn(µT, e
iπ/2). (3.14)

This and (3.11) yield (3.8).
Finally, let

dµα(e
it ) = |eit − i|α dt.

Let us write |eit − i|α in the form

|eit − i|α = w(eit )wT(e
it ).

Then w is continuous in a neighborhood of eiπ/2 and it has value 1 at eiπ/2. Let τ > 0 be
arbitrary, and choose 0 < δ < 1 in such a way that

1
1+ τ

≤ w(eit ) ≤ 1+ τ, t ∈ [π/2− δ, π/2+ δ].

If we now carry out the preceding arguments with δ and with µα replacing µT every-
where, then we find that in (3.11) the limsup is at most (1 + τ)2α+1Lα , while in (3.14)
the liminf is at least (1+ τ)−12α+1Lα . Since τ > 0 is arbitrary, this shows that

lim
n→∞

nα+1λn(µα, e
iπ/2) = 2α+1Lα. (3.15)

This result will serve as our model case in the proof of Theorem 1.1.

4. Lemniscates

In this section, we prove Theorem 1.1 for lemniscates.
Let σ = {z ∈ C : |TN (z)| = 1} be the level line of a polynomial TN , and assume that

σ has no self-intersections. Let deg(TN ) = N .
The normal derivative of the Green’s function with pole at infinity of the outer domain

to σ at a point z ∈ σ is |T ′N (z)|/N [22, (2.2)], and since this normal derivative is 2π -
times the equilibrium density of σ ([14, II.(4.1)] or [17, Theorem IV.2.3 and (I.4.8)]), the
equilibrium density on σ has the form

ωσ (z) =
|T ′N (z)|

2πN
. (4.1)
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If z ∈ σ , then there are n points z1, . . . , zn ∈ σ with TN (z) = Tn(zk), and for them
[22, (2.12)] ∫

σ

( N∑
i=1

f (zi)
)
|T ′N (z)| dsσ (z) = N

∫
σ

f (z)|T ′N (z)| dsσ (z). (4.2)

Furthermore, if g : T→ C is arbitrary, then [22, (2.14)]∫
σ

g(TN (z))|T
′

N (z)| dsσ (z) = N

∫ 2π

0
g(eit ) dt. (4.3)

Let z0 ∈ σ , and define

dµσ (z) = |z− z0|
αdsσ (z), α > −1, (4.4)

where sσ denotes the arc-length measure on σ . Without loss of generality we may assume
that TN (z0) = e

iπ/2. Our plan is to compare the Christoffel functions for the measure µσ
with those for the measure µα supported on the unit circle and defined via

dµα(e
it ) = |eit − eiπ/2|αdsT(e

it ), (4.5)

and for which the asymptotics of the Christoffel functions was calculated in (3.15).
We shall prove that

lim
n→∞

nα+1λn(µσ , z0) =
Lα

(πωσ (z0))α+1 (4.6)

where Lα is taken from (3.4).

4.1. The upper estimate

Let η > 0 be an arbitrarily small number, and select a δ > 0 such that for every z with
|z− z0| < δ, we have

1
1+ η

|T ′N (z0)| ≤ |T
′

N (z)| ≤ (1+ η)|T
′

N (z0)|,

1
1+ η

|T ′N (z0)| |z− z0| ≤ |TN (z)− TN (z0)| ≤ (1+ η)|T ′N (z0)| |z− z0|

(4.7)

(note that T ′N (z0) 6= 0 because σ has no self-intersections). Let Qn be the extremal
polynomial for λn(µα, eiπ/2), where µα is from (4.5). Define

Rn(z) = Qn(TN (z))Sn,z0,L(z),

where Sn,z0,L is the fast decreasing polynomial given by Corollary 2.2 for the lemniscate
set L enclosed by σ (and for any fixed 0 < τ < 1 in Corollary 2.2). Note that Rn is a
polynomial of degree nN + o(n) with Rn(z0) = 1. Since Sn,z0,L is fast decreasing, we
have

sup
z∈L\{t : |t−z0|<δ}

|Sn,z0,L(z)| = O(q
nτ0 )
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for some q < 1 and τ0 > 0. The Nikolskii-type inequality of Lemma 2.7, when applied
to two subarcs of T which contain the upper resp. lower part of the unit circle, yields

‖Qn‖T ≤ Cn
(1+|α|)/2

‖Qn‖L2(µα)
≤ Cn(1+|α|)/2.

Therefore,
sup

z∈L\{t : |t−z0|<δ}
|Rn(z)| = O(q

nτ0/2).

It follows that ∫
|z−z0|≥δ

|Rn(z)|
2
|z− z0|

α dsσ (z) = O(q
nτ0/2). (4.8)

Using (4.7), we have∫
|z−z0|<δ

|Rn(z)|
2
|z− z0|

α dsσ (z) ≤

∫
|z−z0|<δ

|Qn(TN (z))|
2
|z− z0|

α dsσ (z)

≤
(1+ η)|α|+1

|T ′N (z0)|α+1

∫
|z−z0|<δ

|Qn(TN (z))|
2
|TN (z)− TN (z0)|

α
|T ′N (z)| dsσ (z)

≤
(1+ η)|α|+1

|T ′N (z0)|α+1

∫ 2π

0
|Qn(e

it )|2|eit − eiπ/2|α dt = (1+ η)|α|+1 λn(µα, e
iπ/2)

|T ′N (z0)|α+1 .

This and (4.8) imply

λdeg(Rn)(µσ , z0) ≤ (1+ η)|α|+1 λn(µα, e
iπ/2)

|T ′N (e
iπ/2)|α+1 +O(q

nτ0/2),

from which

lim sup
n→∞

deg(Rn)α+1λdeg(Rn)(µσ , z0)

≤ lim sup
n→∞

(nN+o(n))α+1(1+η)|α|+1 λn(µα, e
iπ/2)

|T ′N (z0)|α+1 = (1+η)
|α|+1 Nα+1

|T ′N (z0)|α+1 2α+1Lα,

where we have used (3.15). Since η > 0 is arbitrary, from (4.1) (using also (2.2)) we
obtain

lim sup
n→∞

nα+1λn(µσ , z0) ≤
Nα+1

|T ′N (z0)|α+1 2α+1Lα =
Lα

(πωσ (z0))α+1 . (4.9)

4.2. The lower estimate

Let Pn be the extremal polynomial for λn(µσ , z0), and let Sn,z0,L be the fast decreasing
polynomial given by Corollary 2.2 for the closed lemniscate domain L enclosed by σ
(with some fixed τ < 1). As before, from Lemma 2.7 we obtain

‖Pn‖σ = O(n
(1+|α|)/2). (4.10)
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Define Rn(z) = Pn(z)Sn,z0,L(z); it is a polynomial of degree n + o(n) and Rn(z0) = 1.
Similarly to the previous section, we have

sup
z∈L\{t : |t−z0|<δ}

|Rn(z)| = O(q
nτ0/2) (4.11)

for some q < 1 and τ0 > 0. Since the expression
∑N
k=1 Rn(zk), where {z1, . . . , zN } =

T −1
N (TN (z)), is symmetric in the variables zk , it is a polynomial in their elementary sym-

metric polynomials. For more details on this idea, see [23]. Therefore, there is a polyno-
mial Qn of degree at most deg(Rn)/N = (n+ o(n))/N such that

Qn(TN (z)) =

N∑
k=1

Rn(zk), z ∈ σ.

We claim that for every z ∈ σ ,

|Qn(TN (z))|
2
≤

N∑
k=1

|Rn(zk)|
2
+O(qn

τ0/2
). (4.12)

Indeed, since σ has no self-intersection, |zk − zl | cannot be arbitrarily small for distinct k
and l. As a consequence, for every z, at most one zj belongs to the set {z : |z − z0| < δ}

if δ is sufficiently small, and hence, in the sum

|Qn(TN (z))|
2
≤

N∑
k=1

N∑
l=1

|Rn(zk)| |Rn(zl)|,

every term with k 6= l is O(qn
τ0/2
) (use (4.10) and (4.11)).

Now let δ > 0 be so small that for every z with |z − z0| < δ the inequalities in (4.7)
hold. Then (4.2) and (4.12) give (note that TN (z) = TN (zk) for all k)∫
σ

|Qn(TN (z))|
2
|T ′N (z)| |TN (z)− TN (z0)|

α dsσ (z)

≤ O(qn
τ0/2
)+

∫
σ

( N∑
k=1

|Rn(zk)|
2
)
|T ′N (z)| |TN (z)− TN (z0)|

α dsσ (z)

= O(qn
τ0/2
)+

∫
σ

( N∑
k=1

|Rn(zk)|
2
|TN (zk)− TN (z0)|

α
)
|T ′N (z)| dsσ (z)

= O(qn
τ0/2
)+N

∫
σ

|Rn(z)|
2
|TN (z)− TN (z0)|

α
|T ′N (z)| dsσ (z)

≤ O(qn
τ0/2
)+ (1+ η)|α|+1

|T ′N (z0)|
α+1N

∫
|z−z0|<δ

|Pn(z)|
2
|z− z0|

α dsσ

≤ O(qn
τ0/2
)+ (1+ η)|α|+1

|T ′N (z0)|
α+1Nλn(µσ , z0).
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Since Qn(TN (z0)) = 1+ o(1), from (4.3) we get∫
σ

|Qn(TN (z))|
2
|T ′N (z)| |TN (z)− TN (z0)|

α dsσ (z)

= N

∫ 2π

0
|Qn(e

it )|2|eit − eiπ/2|α dt ≥ (1+ o(1))Nλdeg(Qn)(µα, e
iπ/2).

Hence,

(1+ o(1))λdeg(Qn)(µα, e
iπ/2) ≤ O(qn

τ0/2
)+ (1+ η)|α|+1

|T ′N (z0)|
α+1λn(µσ , z0).

Using deg(Qn) ≤ (n+ o(n))/N , we conclude that

lim inf
n→∞

deg(Qn)
α+1λdeg(Qn)(µα, e

iπ/2)

≤ (1+ η)|α|+1
|T ′N (z0)|

α+1 lim inf
n→∞

(
n+ o(n)

N

)α+1

λn(µσ , z0)

≤ (1+ η)|α|+1 |T
′

N (z0)|
α+1

Nα+1 lim inf
n→∞

nα+1λn(µσ , z0).

Since η > 0 is arbitrary, we obtain again, from (3.15) and (4.1),

Lα

(πωσ (z0))α+1 ≤ lim inf
n→∞

nα+1λn(µσ , z0),

which, along with (4.9), proves (4.6).

5. Smooth Jordan curves

In this section, we verify Theorem 1.1 for a finite union 0 of smooth Jordan curves and
for a measure

dµ(z) = w(z)|z− z0|
αds0(z), (5.1)

where s0 is the arc measure on 0. Recall that a Jordan curve is a homeomorphic image
of a circle, while a Jordan arc is a homeomorphic image of a segment. From the point of
view of our technique there is a big difference between arcs and curves, and in the present
section we shall only work with Jordan curves.

Let 0 be a finite system of C2 Jordan curves exterior to each other and let µ be a
measure on 0 given in (5.1) with some z0 ∈ 0, where w is a continuous and strictly
positive function. Our goal is to prove that

lim
n→∞

nα+1λn(µ, z0) =
w(z0)

(πω0(z0))α+1Lα (5.2)

with Lα from (3.4). We shall deduce this from the result for lemniscates proved in the
preceding section.

We will approximate0 by lemniscates using the following theorem, which was proven
in [11].
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Proposition 5.1. Let 0 consist of finitely many Jordan curves exterior to each other, let
P ∈ 0, and assume that in a neighborhood of P the curve 0 is C2-smooth. Then, for
every ε > 0, there is a lemniscate σ = σP consisting of Jordan curves such that σ
touches 0 at P , σ contains 0 in its interior except for the point P , every component of σ
contains in its interior precisely one component of 0, and

ω0(P ) ≤ ωσ (P )+ ε. (5.3)

Also, for every ε > 0, there exists another lemniscate σ = σP consisting of Jordan curves
such that σ touches 0 at P , σ lies strictly inside 0 except for the point P , σ has exactly
one component inside every component of 0, and

ωσ (P ) ≤ ω0(P )+ ε. (5.4)

Of course, the phrase “σ lies inside 0” means that the components of σ lie inside (i.e. in
the interior of) the corresponding components of 0 (see Figure 3).

s

G

PP

σ

0

Fig. 3. The 0 and the lemniscate σ as in the second half of Proposition 5.1.

Note that in (5.3) the inequality ωσ (P ) ≤ ω0(P ) is automatic since 0 lies inside σ .
In a similar way, in (5.4) the inequality ω0(P ) ≤ ωσ (P ) holds.

Actually, in [11] the conditions (5.3) and (5.4) were formulated in terms of the normal
derivatives of the Green’s function of the outer domains to 0 and σ , but, in view of the
fact that the latter function is just 2π -times the equilibrium density (see [14, II.(4.1)] or
[17, Theorem IV.2.3] and [17, (I.4.8)]), the two formulations are equivalent.

5.1. The lower estimate

Let Pn be the extremal polynomial for λn(µ, z0), and for some τ > 0 let Sτn,z0,K be the
fast decreasing polynomial given by Lemma 2.1 with some γ > 1 to be chosen below,
where K is the set enclosed by 0. Let σ = σz0 be a lemniscate inside 0 given by the
second part of Proposition 5.1, and suppose that σ = {z : |TN (z)| = 1}, where TN is a
polynomial of degree N and TN (z0) = e

iπ/2. Define Rn = PnSτn,z0,K . Note that Rn is a
polynomial of degree at most (1+τ)n and Rn(z0) = 1. These will be the test polynomials
in estimating the Christoffel function for the measure

dµσ (z) := |z− z0|
αdsσ (z)

on σ , but first we need two nontrivial facts for these polynomials.
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Lemma 5.2. Let 1/2 < β < 1 be fixed. For z ∈ 0 such that |z − z0| ≤ 2n−β , let
z∗ ∈ σ be the point such that sσ ([z0, z

∗
]) = s0([z0, z]) (actually, there are two such

points; we choose as z∗ the one closer to z). Then the mapping q(z) = z∗ is one-to-
one, |q(z) − z| ≤ C|z − z0|

2, ds0(z) = dsσ (z
∗), |q ′(z0)| = 1, and with the notation

In := {z
∗
∈ σ : |z∗ − z0| ≤ n

−β
}, we have∣∣∣∣∫

z∗∈In

|Rn(z
∗)|2|z−z0|

α dsσ (z
∗)−

∫
z∗∈In

|Rn(z)|
2
|z−z0|

α ds0(z)

∣∣∣∣ = o(n−(1+α)). (5.5)

On the left-hand side z = q−1(z∗), so the integrand is a function of z∗.
Proof. First of all we mention that |q ′(z0)| = 1, i.e. for every ε > 0, if |z − z0| is small
enough, then

1− ε ≤
|q(z)− z0|

|z− z0|
≤ 1+ ε,

which is clear since q(z) = z+O(|z− z0|
2).

We proceed to prove (5.5):∣∣∣∣∫
z∗∈In

|Rn(z
∗)|2|z− z0|

α dsσ (z
∗)−

∫
z∗∈In

|Rn(z)|
2
|z− z0|

α ds0(z)

∣∣∣∣
≤

∣∣∣∣∫
z∗∈In

(
|Rn(z

∗)|2 − |Rn(z)|
2)
|z− z0|

α ds0(z)

∣∣∣∣
≤

∫
z∗∈In

∣∣|Rn(z∗)|2 − |Rn(z)|2∣∣|z− z0|
α ds0(z) =: A.

Using the Hölder and Minkowski inequalities we get

A ≤

(∫
z∗∈In

|Rn(z
∗)− Rn(z)|

2
|z− z0|

α ds0(z)

)1/2

×

{(∫
z∗∈In

|Rn(z
∗)|2|z− z0|

α ds0(z)

)1/2

+

(∫
z∗∈In

|Rn(z)|
2
|z− z0|

α ds0(z)

)1/2}
.

(5.6)

We estimate these integrals term by term.
Pn is extremal for λn(µ, z0) = O(n−(α+1)) (see Lemma 2.9), therefore (use also

|Rn(z)| ≤ |Pn(z)|)(∫
z∗∈In

|Rn(z)|
2
|z− z0|

α ds0(z)

)1/2

≤ Cn−(α+1)/2. (5.7)

This takes care of the third term in (5.6).
The estimates for the other two terms differ in the cases α ≥ 0 and α < 0.
Assume first that α ≥ 0. From Lemma 2.7 we get, for any closed subarc J1 ⊂ J ,

‖Rn‖J1 ≤ Cn
(α+1)/2

‖Rn‖L2(µ) ≤ C,

where we have used Lemma 2.9 and |Rn(z)| ≤ |Pn(z)|. Choose J1 so that it contains z0
in its interior. Next, note that if z∗ ∈ In, then |z∗ − z| ≤ Cn−2β , so dist(z∗, z) ≤ C/n.
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Therefore, an application of Lemma 2.4 yields, for such z,

|Rn(q(z))− Rn(z)|

|q(z)− z|
≤ Cn‖Rn‖J1 ,

and so
|Rn(q(z))− Rn(z)| ≤ Cn|q(z)− z| ≤ Cn

1−2β . (5.8)

Since also sσ (In) ≤ Cn−β , we have (recall that z∗ = q(z))(∫
z∗∈In

|Rn(z
∗)− Rn(z)|

2
|z− z0|

α ds0(z)

)1/2

≤ C(n−βn2−4βn−αβ)1/2

= Cn1−(5+α)β/2.

This is the required estimate for the first term in (5.6).
Finally, for the middle term in (5.6), we have(∫

z∗∈In

|Rn(z
∗)|2|z− z0|

α ds0(z)

)1/2

=

(∫
z∗∈In

∣∣|Rn(z∗)|2 − |Rn(z)|2 + |Rn(z)|2∣∣|z− z0|
α ds0(z)

)1/2

≤

(∫
z∗∈In

∣∣|Rn(z∗)|2 − |Rn(z)|2∣∣|z− z0|
α ds0(z)

)1/2

+

(∫
z∗∈In

|Rn(z)|
2
|z− z0|

α ds0(z)

)1/2

≤ A1/2
+ Cn−(α+1)/2,

where A is the left-hand side in (5.6), and where we have also used (5.7).
Combining these we get

A ≤ Cn1−(5+α)β/2(A1/2
+ Cn−(α+1)/2) ≤ CA1/2n1−(5+α)β/2

+ Cn1/2−α/2−(5+α)β/2

≤ Cmax{A1/2n1−(5+α)β/2, n1/2−α/2−(5+α)β/2
}.

Therefore A ≤ Cn2−(5+α)β or A ≤ Cn1/2−α/2−(5+α)β/2. If β < 1 is sufficiently close
to 1, then both imply A = o(n−(α+1)).

Now assume that α < 0. From Lemma 2.7 we get, for any closed subarc J1 ⊂ J ,

‖Rn‖J1 ≤ ‖Pn‖J1 ≤ Cn
1/2
‖Pn‖L2(µ) ≤ Cn

−α/2,

and we may assume that here J1 contains a neighborhood of z0. Therefore, in this case
(5.8) takes the form

|Rn(z
∗)− Rn(z)| ≤ Cn

1−α/2−2β .

Since ∫
z∗∈In

|z− z0|
α ds0(z) ≤ Cn

−αβ−β ,
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we obtain(∫
z∗∈In

|Rn(z
∗)− Rn(z)|

2
|z− z0|

α ds0(z)

)1/2

≤ Cn1−α/2−2β−(α+1)β/2,

which is the required estimate for the first term in (5.6). Finally, for the middle term in
(5.6) we get, as before,(∫

z∗∈In

|Rn(z
∗)|2|z− z0|

α ds0(z)

)1/2

≤ A1/2
+ Cn−(α+1)/2.

As previously, we deduce from these that

A ≤ Cn1−α/2−2β−(α+1)β/2(A1/2
+ n−(α+1)/2),

which implies

A ≤ Cmax{n2−α−4β−(α+1)β , n1/2−α−2β−(α+1)β/2
}.

If β is sufficiently close to 1, then this yields again A = o(n−(α+1)), as needed. ut

In what follows we keep the notation from the preceding proof. In the following lemma
let 1δ(z0) = {z : |z− z0| ≤ δ} be the disk about z0 of radius δ.

Note that up to this point the γ > 1 in Lemma 2.1 was arbitrary. Now we specify how
close it should be to 1.

Lemma 5.3. If 0 < β < 1 is fixed and γ > 1 is chosen so that βγ < 1, then

‖Rn‖K\1
n−β/2

(z0) = o(n
−1−α). (5.9)

Recall that here K is the set enclosed by 0.

Proof. Let us fix a δ > 0 such that 0 ∩ 1δ(z0) lies in the interior of the arc J from
Theorem 1.1. From µ ∈ Reg and the trivial estimate ‖Pn‖L2(µ) = O(1) we see that no
matter how small ε > 0 is given, for sufficiently large n we have ‖Pn‖0 ≤ (1 + ε)n. On
the other hand, in view of Lemma 2.1 we have, for z 6∈ 1δ(z0), z ∈ K ,

|Sτn,z0,K(z)| ≤ Cγ e
−cγ τnδ

2
,

so certainly
‖Rn‖K\1δ (z0) = o(n

−1−α). (5.10)

Consider now K ∩1δ(z0). Its boundary consists of the arc 0 ∩1δ(z0), which is part
of J , and of an arc on the boundary of 1δ(z0), where we already know the bound (5.10).
On the other hand, on 0 ∩1δ(z0) we have, by Lemma 2.7,

|Pn(z)| ≤ Cn
(1+|α|)/2

‖Pn‖L2(µ) ≤ Cn
(1+|α|)/2.

Therefore, by the maximum principle, we obtain the same bound (for large n) on the
whole set K ∩1δ(z0). As a consequence, for z ∈ K \1n−β/2,

|Rn(z)| ≤ Cn
(1+|α|)/2e−cγ τn(n

−β/2)γ
= o(n−1−α)

if we choose γ > 1 in Lemma 2.1 so that βγ < 1. These prove (5.9). ut
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After these preliminaries we return to the proof of Theorem 1.1, more precisely to the
lower estimate of λn(µ, z0).

Let η > 0 be arbitrary, and let n be so large that

1
1+ η

w(z0) ≤ w(z) ≤ (1+ η)w(z0),
1

1+ η
|z− z0| ≤ |q(z)− z0| ≤ (1+ η)|z− z0|

for all z∗ ∈ In, where In is the set from Lemma 5.2. Then from Lemma 5.2 we obtain
(recall that z∗ = q(z))∫
z∗∈In

|Rn(z
∗)|2|z∗ − z0|

α dsσ (z
∗) ≤ (1+ η)|α|

∫
z∗∈In

|Rn(z
∗)|2|z− z0|

α ds0(z)

≤ (1+ η)|α|
∫
z∗∈In

|Rn(z)|
2
|z− z0|

α ds0(z)+ o(n
−(α+1))

≤
(1+ η)|α|+1

w(z0)

∫
z∗∈In

|Rn(z)|
2w(z)|z− z0|

α ds0(z)+ o(n
−(α+1))

≤
(1+ η)|α|+1

w(z0)
λn(µ, z0)+ o(n

−(α+1)).

On the other hand, if, for some z ∈ σ , we have z∗ 6∈ In then necessarily |z−z0| ≥ n
−β/2,

so from Lemma 5.3 we obtain∫
z∗∈σ\In

|Rn(z
∗)|2|z∗ − z0|

α dsσ (z
∗) = o(n−(1+α)).

Combining these, we find that

λdeg(Rn)(µσ , z0) ≤

∫
z∈σ

|Rn(z
∗)|2|z∗ − z0|

α dsσ (z
∗)

≤
(1+ η)|α|+1

w(z0)
λn(µ, z0)+ o(n

−(α+1)).

Since deg(Rn) ≤ (1+ τ)n, we conclude from (4.6) (see also (2.1)) that

Lα

(πωσ (z0))α+1 = lim inf
n→∞

deg(Rn)α+1λdeg(Rn)(µσ , z0)

≤ lim inf
n→∞

(1+ τ)α+1 (1+ η)
|α|+1

w(z0)
nα+1λn(µ, z0).

But here τ, η > 0 are arbitrary, so we get

lim inf
n→∞

nα+1λn(µ, z0) ≥
w(z0)

(πωσ (z0))α+1Lα.

As ωσ (z0) ≤ ω0(z0)+ ε (see (5.4)), for ε→ 0 we finally arrive at the lower estimate

lim inf
n→∞

nα+1λn(µ, z0) ≥
w(z0)

(πω0(z0))α+1Lα. (5.11)
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5.2. The upper estimate

Let now σ be the lemniscate given by the first part of Proposition 5.1, and let Pn be the
polynomial extremal for λn(µσ , z0). Define, with some τ > 0,

Rn(z) = Pn(z)Sτn,z0,L(z),

where Sτn,z0,L is the fast decreasing polynomial given by Lemma 2.1 for the lemniscate
set L enclosed by σ (with some γ > 1). Let η > 0 be arbitrary, 1/2 < β < 1 as before,
and suppose that n is so large that

1
1+ η

w(z0) ≤ w(z) ≤ (1+ η)w(z0),

1
η + 1

≤ |q ′(z)| ≤ (1+ η),

1
1+ η

|z− z0| ≤ |q(z)− z0| ≤ (1+ η)|z− z0|

for all |z− z0| ≤ n
−β . Using Lemma 5.2 (more precisely, its version when σ encloses 0)

we have (recall again that z∗ = q(z))∫
z∗∈In

|Rn(z)|
2w(z)|z− z0|

α ds0(z) ≤ (1+ η)w(z0)

∫
z∗∈In

|Rn(z)|
2
|z− z0|

α ds0(z)

≤ (1+ η)w(z0)

∫
z∗∈In

|Rn(z
∗)|2|z− z0|

α dsσ (z
∗)+ o(n−(α+1))

≤ (1+ η)|α|+1w(z0)

∫
z∗∈In

|Rn(z
∗)|2|z∗ − z0|

α dsσ (z
∗)+ o(n−(α+1))

≤ (1+ η)|α|+1w(z0)λn(µσ , z0)+ o(n
−(α+1)).

On the other hand, Lemma 5.3 (but now applied for the system of curves σ rather than
for 0) implies, as before,∫

0\1
n−β/2(z0)

|Rn(z)|
2
|z− z0|

α dµ(z) = o(n−(1+α)).

Therefore,

λdeg(Rn)(µ, z0) ≤ (1+ η)|α|+1w(z0)λn(µσ , z0)+ o(n
−(α+1)),

which, similarly to the lower estimate, upon using (4.6) and letting τ, η tend to zero,
implies (see also (2.2))

lim sup
n→∞

nα+1λn(µ, z0) ≤
w(z0)

(πωσ (z0))α+1Lα.

Here, in view of (5.3), ω0(z0) ≤ ωσ (z0)+ ε, hence for ε→ 0 we conclude that

lim sup
n→∞

nα+1λn(µ, z0) ≤
w(z0)

(πω0(z0))α+1Lα.

This and (5.11) prove (5.2). ut
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6. Piecewise smooth Jordan curves

The proof in the preceding section can be carried out without any difficulty if 0 consists
of piecewise C2-smooth Jordan curves, provided that 0 is C2-smooth in a neighborhood
of z0. Indeed, in that case we can still talk about ω0 which is continuous where 0 is C2-
smooth [24, Proposition 2.2], and in the above proof the C2-smoothness was used only in
a neighborhood of z0. Therefore, we have

Proposition 6.1. Let 0 consist of finitely many disjoint, piecewise C2-smooth Jordan
curves. Let z0 ∈ 0, and supppose 0 is C2-smooth in a neighborhood of z0. Then the
measure µ given by (5.1) satisfies (5.2).

7. Arc components

In this section, we prove Theorem 1.1 when 0 is a union of C2-smooth Jordan curves
and arcs, and µ is the measure (5.1) considered before. To be more specific, our aim is to
verify

Proposition 7.1. Let 0 consist of finitely many disjoint C2-smooth Jordan curves or arcs
exterior to each other, and let z0 ∈ 0. Assume that in a neighborhood of z0 ∈ 0 the
piece of 0 lying in that neighborhood is C2-smooth, and z0 is not an endpoint of an
arc component of 0. Then the measure (5.1), where w is continuous and positive and
α > −1, satisfies (1.4).

We shall need some facts about Bessel functions, and a discretization of the equilibrium
measure ν0 that uses the zeros of an appropriate Bessel function.

7.1. Bessel functions and some local asymptotics

We shall need the Bessel function of the first kind of order β > 0:

Jβ(z) =

∞∑
n=0

(−1)n(z/2)2n+β

n!0(n+ β + 1)
,

as well as the functions [10]

Jβ(u, v) =
Jβ(
√
u)
√
v J ′β(
√
v)− Jβ(

√
v)
√
u J ′β(
√
u)

2(u− v)
,

J∗β(z) =
Jβ(z)

zβ
, J∗β(u, v) =

Jβ(u, v)
uβ/2vβ/2

.

The latter are analytic, and we have

J∗β(u, 0) =
1

22β+1u

∞∑
n=1

(−1)n(
√
u/2)2n

n!0(n+ β + 1)

(
β

0(β + 1)
−

2n+ β
0(β + 1)

)
=

J∗β+1(
√
u)

2β+10(β + 1)
.
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Let dν0(x) be the measure xβ dx with support [0, 2], and K(0)
n (x, t) its n-th repro-

ducing kernel. It is known (see [9, (1.2)] or [20, (4.5.8), p. 72]) that

K
(0)
n

(
x2

2n2 , 0
)

K
(0)
n (0, 0)

= (1+ o(1))
J∗β(x

2, 0)

J∗β(0, 0)
,

uniformly for |x| ≤ A with any fixed A. We have already mentioned (see e.g. [20, The-
orem 3.1.3]) that the polynomial K(0)

n (t, 0)/K(0)
n (0, 0) is the extremal polynomial of de-

gree n for λn(ν0, 0), so the preceding relation gives an asymptotic formula for this ex-
tremal polynomial on intervals [0, A/n2

]. If now dν1(x) = (2x)β dx but with support
[0, 1], andK(1)

n is the associated reproducing kernel, thenK(1)
n (t, 0)/K(1)

n (0, 0) is the ex-
tremal polynomial of degree n for λn(ν1, 0), and it is clear that this is just a scaled version
of the extremal polynomial for ν0:

K
(1)
n (t, 0)

K
(1)
n (0, 0)

=
K
(0)
n (2t, 0)

K
(0)
n (0, 0)

.

Therefore,
K
(1)
n

(
x2

4n2 , 0
)

K
(1)
n (0, 0)

= (1+ o(1))
J∗β(x

2, 0)

J∗β(0, 0)
.

Then the same is true for the measure 2−β dν1(x) = x
β dx with support [0, 1] (multiply-

ing the measure by a constant does not change the extremal polynomial for the Christoffel
functions). Next, consider the measure dν2(x) = |x|

α dx with support [−1, 1]. The ex-
tremal polynomial for λ2n(ν2, 0) is obtained from the extremal polynomial for λn(ν1, 0)
with β = (α − 1)/2 by the substitution t → t2 (see Section 3.1, in particular the last
paragraph), i.e.

K
(2)
2n (t, 0)

K
(2)
2n (0, 0)

=
K
(1)
n (t2, 0)

K
(1)
n (0, 0)

.

Hence, for even n,

K
(2)
n (t, 0)

K
(2)
n (0, 0)

= (1+ o(1))J(α+1)/2(nt), |t | ≤ A/n,

where

J(α+1)/2(z) :=
J∗(α−1)/2(z

2, 0)

J∗(α−1)/2(0, 0)
=

J∗(α+1)/2(z)

J∗(α+1)/2(0)
. (7.1)

Fix a positive number A. According to what we have just seen, for every even n,∫ A/n

−A/n

J(α+1)/2(nt)
2
|t |α dt ≤ (1+ o(1))

∫ A/n

−A/n

(
K
(2)
n (t, 0)

K
(2)
n (0, 0)

)2

|t |α dt

≤ (1+ o(1))λn(ν2, 0),

and so for any (even) n,∫ A

−A

J(α+1)/2(x)
2
|x|α dx = nα+1

∫ A/n

−A/n

J(α+1)/2(nt)
2
|t |α dt ≤ (1+o(1))nα+1λn(ν2, 0).
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Now if we let here n→∞ and use the limit (3.3) for the right-hand side, we obtain∫ A

−A

J(α+1)/2(x)
2
|x|α dx ≤ Lα,

where Lα is from (3.4). Finally, since here A is arbitrary, we conclude that∫
∞

−∞

J(α+1)/2(x)
2
|x|α dx ≤ Lα. (7.2)

7.2. The upper estimate in Theorem 1.1 for one arc

The aim of this section is to construct polynomials that satisfy the upper estimate for the
Christoffel functions in Theorem 1.1 (which is the same as in Proposition 7.1) when 0
consists of a single C2-smooth arc, and z0 ∈ 0 is not an endpoint of that arc. In the next
subsection we shall indicate what to do when 0 has other components as well.

Let ν0 be the equilibrium measure of 0, and s0 the arc measure on 0. Since 0 is
assumed to be C2-smooth, we have dν0(t) = ω0(t)ds0(t) with an ω0 that is continuous
and positive away from the endpoints of 0 [24, Proposition 2.2].

We may assume that z0 = 0 and the real line is tangent to 0 at the origin. By assump-
tion, the measure µ we are dealing with, is, in a neighborhood of the origin, of the form
dµ(z) = w(z)|z|α ds0(z) with some positive and continuous function w(z).

Since 0 is assumed to be C2-smooth, in a neighborhood of the origin we have the
parametrization γ (t) = γ1(t) + iγ2(t), γ1(t) ≡ t , where γ2 is a twice continuously
differentiable function such that γ2(0) = γ ′2(0) = 0. In particular, as t → 0 we have
γ2(t) = O(t

2), γ ′2(t) = O(|t |). We shall also take an orientation of 0, and we shall write
z ≺ w if z ∈ 0 precedes w ∈ 0 in that orientation. We may assume that this orientation
is such that around the origin we have z ≺ w⇔ <z < <w.

It is known that when dealing with |z|α weights on the real line, Bessel functions of
the first kind enter the picture [7], [9], [10]. For a given large n we shall construct the
necessary polynomials from two sources: from points on 0 that follow the pattern of the
zeros of the Bessel function J(α+1)/2, and from points that are obtained from discretizing
the equilibrium measure ν0 . The first type will be used close to the origin (at distance
≤ 1/nτ with some appropriate τ ), while the latter type will be on the rest of 0. So first
we shall discuss two different divisions of 0.

7.2.1. Division based on the zeros of Bessel functions. Let β = (α + 1)/2; it is a pos-
itive number because α > −1. It is known that Jβ , and hence also Jβ from (7.1), has
infinitely many positive zeros which are all simple and tend to infinity; let them be
jβ,1 < jβ,2 < · · · . We have the asymptotic formula [28, 15.53]

jβ,k = (k + β/2− 1/4)π + o(1), k→∞. (7.3)

The negative zeros of Jβ are −jβ,k , and we have the product formula [28, 15.41, (3)]

Jβ(z) =
(z/2)β

0(β + 1)

∞∏
k=1

(
1−

z2

j2
β,k

)
.
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Therefore,

Jβ(z) =
∞∏
k=1

(
1−

z2

j2
β,k

)
. (7.4)

Let a0 = 0, and for k > 0 let ak ∈ 0 be the unique point on 0 such that 0 ≺ ak , and

ν0(0ak) =
jβ,k

πn
, (7.5)

where 0ak denotes the arc of 0 between 0 and ak . For negative k let similarly ak be the
unique number for which ak ≺ 0 and

ν0(ak0) =
jβ,|k|

πn
. (7.6)

The reader should be aware that these ak and the whole division depend on n, so a more
precise notation would be ak,n for ak , but we shall suppress the additional parameter n.

This definition makes sense only for finitely many k, say for −k0 < k < k1, and in
view of (7.3) we have k0 + k1 = n+O(1), i.e. there are about n such ak on 0. The arcs
akak+1 are subarcs of 0 that follow each other according to ≺, they satisfy

ν0(ak−1ak) =
jβ,k − jβ,k−1

πn
, k > 0,

ν0(ak−1ak) =
jβ,k+1 − jβ,k

πn
, k < 0,

and their union is almost the entire 0: there can be two additional arcs around the two
endpoints with equilibrium measure< (jβ,k0−jβ,k0−1)/πn resp.< (jβ,k1−jβ,k1−1)/πn.

7.2.2. Division based solely on the equilibrium measure. In this subdivision of 0 we
follow the procedure in [24, Section 2]. Let b0b1 ⊂ 0 be the unique arc (at least for
large n it is unique) with 0 ∈ b0b1, ν0(b0b1) = 1/n, and if ξ0 is the center of mass
of ν0 on b0b1, then <ξ0 = 0. For k > 1 let bk ∈ 0 be the point on 0 (if any) with
0 ≺ bk and ν0(b1bk) = (k − 1)/n, and similarly for negative k let bk ≺ 0 be the point
on 0 with ν0(bkb0) = |k|/n. This definition makes sense only for finitely many k, say
for −l0 < k < l1. Thus, the arcs bkbk+1, −l0 < k < l1 − 1, continuously fill 00 (in
the orientation of 00) and they all have equal, 1/n weight with respect to the equilibrium
measure ν0 . It may happen that, with this selection, around the endpoints of 0 there still
remain two “little” arcs, say b−l0b−l0+1 and bl1−1bl1 of ν0-measure < 1/n. We include
also these two small arcs into our subdivision of 0, so in this case we divide 0 into n+ 1
arcs bkbk+1, k = −l0, . . . , l1 − 1.

Let ξk be the center of mass of the equilibrium measure ν0 on the arc bkbk+1:

ξk =
1

ν0(bkbk+1)

∫
bkbk+1

u dν0(u). (7.7)

Since the length of bkbk+1 is at most C/n (note that ω0 has a positive lower bound), and
0 is C2-smooth, it follows that ξk lies close to the arc bkbk+1:

dist(ξk, bkbk+1) ≤ C/n
2. (7.8)
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For the polynomials
Bn(z) =

∏
k 6=0

(z− ξk) (7.9)

it was proven in [24, Propositions 2.4, 2.5] (see also [24, Section 2.2]) that Bn(z)/Bn(0)
are uniformly bounded on 0:

|Bn(z)/Bn(0)| ≤ C0, z ∈ 0. (7.10)

7.2.3. Construction of the polynomials Cn. Choose a 0 < τ < 1 close to 1 (we shall see
later how close it has to be), and for an n define N = Nn = [n3(1−τ)

]. We set

Cn(z) :=
Nn∏

k=−Nn, k 6=0

(
1−

z

ak

) ∏
|k|>Nn

(
1−

z

ξk

)
. (7.11)

Note that the precise range of k in the second factor is −l0 ≤ k < −Nn and Nn < k ≤

l1 − 1. Since the number of all ξk is n + 1, this polynomial has degree n, and it takes
the value 1 at the origin. This will be the main factor in the test polynomial that will
give the appropriate upper bound for λn(µ, 0); the other factor will be the fast decreasing
polynomial from Corollary 2.2.

We estimate on 0 the two factors

An(z) :=

Nn∏
k=−Nn, k 6=0

(
1−

z

ak

)
and Bn(z) :=

∏
|k|>Nn

(
1−

z

ξk

)
separately. The estimates will be distinctly different for |z| ≤ n−τ and for |z| > n−τ .

7.2.4. Bounds for An(z) for |z| ≤ n−τ . In what follows, we shall use N instead of Nn
(= [n3(1−τ)

]). Consider first

A∗n(x) :=
N∏
k=1

(
1−

(nπω0(0)x)2

j2
β,k

)
(recall that jβ,k are the zeros of the Bessel function Jβ with β = (α + 1)/2). In view of
(7.4) we can write, for real |x| ≤ n−τ ,

Jβ(nπω0(0)x)
A∗n(x)

=

∏
k>N

(
1−

(nπω0(0)x)2

j2
β,k

)
.

Taking into account (7.3), we get here

nπω0(0)x
jβ,k

= O

(
nn−τ

k

)
,

hence the product on the right is

exp
{
O

(∑
k>N

(
nn−τ

k

)2)}
= exp

(
O

(
n2(1−τ)

N

))
= exp

(
O

(
1

n1−τ

))
= 1+ o(1).
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Thus, our first estimate is

A∗n(x) = (1+ o(1))Jβ(nπω0(0)x), |x| ≤ n−τ . (7.12)

Next, we go to a z ∈ 0 with |z| ≤ n−τ . Let x be the real part of z. Then (recall that 0
is C2-smooth and the real line is tangent to 0)

z = x +O(x2) = x +O(n−2τ ).

We shall need that the ak’s with |k| ≤ N are close to jβ,k/nπω0(0). To prove that,
consider the parametrization γ (t) = t + iγ2(t) of 0 discussed at the beginning of this
section. Then ak = γ (<ak) = <ak + O((<ak)2). By the definition of the points ak we
have, for 1 ≤ k ≤ N ,

jβ,k

πn
= ν0(0ak) =

∫
<ak

0
ω0(γ (t))|γ

′(t)| dt. (7.13)

Now since around the origin ω0 is C1-smooth [24, Proposition 2.2], on the right we have

ω0(γ (t)) = ω0(0)+O(|γ (t)|) = ω0(0)+O(|t |),

while
|γ ′(t)| =

√
1+ γ ′2(t)

2 =
√

1+O(t2) = 1+O(t2),

hence
jβ,k

πn
=

∫
<ak

0
(ω0(0)+O(|t |)) dt = ω0(0)<ak +O((<ak)2),

which implies

<ak =
jβ,k

πnω0(0)
+O((jβ,k/n)

2). (7.14)

Therefore, since here jβ,k ≤ Ck (see (7.3)),

ak −
jβ,k

nπω0(0)
= (ak −<ak)+<ak −

jβ,k

nπω0(0)
= O((k/n)2). (7.15)

Let
ρ = (α + 9)(1− τ), (7.16)

and suppose that ∣∣∣∣x − jβ,k

nπω0(0)

∣∣∣∣ ≥ 1
n1+ρ for all −N ≤ k ≤ N. (7.17)

Then in the product

An(z)

A∗n(x)
=

N∏
k=−N, k 6=0

1− z/ak
1− nπω0(0)x/jβ,k

=

N∏
k=−N, k 6=0

jβ,k − zjβ,k/ak

jβ,k − nπω0(0)x

all denominators are ≥ c/nρ . As for the numerators, we have (recall (7.15) and |ak| ≥
ck/n)

|jβ,k/ak − nπω0(0)| = O(k),
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and hence, because of z = x +O(x2),

|zjβ,k/ak − nπω0(0)x| = O(|z|k + nx2) = O(Nn−τ + nn−2τ )

= O(n3−4τ
+ n1−2τ ) = O(n3−4τ ).

Therefore, for the individual factors in An(z)/A∗n(z) we have

jβ,k − zjβ,k/ak

jβ,k − nπω0(0)x
= 1+O(n3−4τnρ),

from which we conclude that

An(z)

A∗n(x)
= (1+O(n3−4τnρ))2N = exp(O(n3−4τnρN))

= exp(O(n6−7τ+ρ)) = exp(O(n(15+α)(1−τ)−τ )) = 1+ o(1)

provided
(15+ α)(1− τ) < τ. (7.18)

Let
0n = {z ∈ 0 : |z| ≤ n

−τ and (7.17) is true with x = <z}. (7.19)

So far we have proved (see (7.12) and the preceding estimates)

An(z) = (1+ o(1))Jβ(nπω0(0)x), z ∈ 0n. (7.20)

As 0n is a subset of the arc 0 ∩ 1n−τ (0) of s0-measure at most O(Nn−1−ρ) =

O(n2−3τ−ρ), its relative measure compared to the s0-measure of 0 ∩1n−τ (0) is at most

O(n2−3τ−ρ+τ ) = O(n2−2τ−ρ) = o(N−2)

because
2− 2τ − ρ = −(α + 7)(1− τ) < −6(1− τ).

Since An has degree 2N , from the Remez-type inequality in Lemma 2.6 we conclude that

sup{|An(z)| : z ∈ 0 ∩1n−τ (0)} ≤ (1+ o(1)) sup{|An(z)| : z ∈ 0n}.

But Jβ(t) is bounded on the whole real line [28, Section 7.21], therefore by (7.20) there
is a constant C1 such that

|An(z)| ≤ C1 for all z ∈ 0, |z| ≤ n−τ . (7.21)

7.2.5. Bounds for Bn(z) for |z| ≤ n−τ . Consider now, for z ∈ 0, |z| ≤ n−τ , the expres-
sion

Bn(z) =
∏
|k|>N

ξk − z

ξk
.
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Recall that the smallest and largest indices here (they are k−l0 and kl1 ) refer to ξk that
were selected for the two additional intervals around the endpoints of 0, hence for them
we have

ξk − z

ξk
= 1+O(|z|) = 1+ o(1), k = −l0, l1 − 1.

The other indices refer to points ξk which were the centers of mass of the arcs bkbk+1
which have ν0-measure 1/n. We are going to compare log |z − ξk| with the average of
log |z− t | over bkbk+1 with respect to ν0:

log |z− ξk| − n
∫
bkbk+1

log |z− t | dν0(t) = −n
∫
bkbk+1

log
∣∣∣∣ z− tz− ξk

∣∣∣∣ dν0(t).
Here

z− t

z− ξk
= 1+

ξk − t

z− ξk
,

and for t ∈ bkbk+1 we have |ξk − t | ≤ C/n. Since |z| is small (at most n−τ ) and |ξk|
is comparatively large (≥ N/n = n2(1−τ)−τ ), the second term on the right is small in
absolute value, hence

log
∣∣∣∣ z− tz− ξk

∣∣∣∣ = < log
(

1+
ξk − t

z− ξk

)
= <

ξk − t

z− ξk
+O

(∣∣∣∣ ξk − tz− ξk

∣∣∣∣2).
Therefore, ∣∣∣∣n ∫

bkbk+1

log
∣∣∣∣ z− tz− ξk

∣∣∣∣ dν0(t)∣∣∣∣ = n ∫
bkbk+1

O

(∣∣∣∣ ξk − tz− ξk

∣∣∣∣2) dν0(t)
= O

(
(1/n)2

(k/n)2

)
= O

(
1
k2

)
,

because the integral∫
bkbk+1

<
ξk − t

z− ξk
dν0(t) = <

1
z− ξk

∫
bkbk+1

(ξk − t) dν0(t)

vanishes by the choice of ξk . Hence, if

Hn =
⋃

−l0<k<−N,N<k<l1−2

bkbk+1,

then

log
∏
|k|>N

|ξk − z| − n

∫
Hn

log |z− t | dν0(t) = o(1)+O
( ∑
|k|>N

k−2
)

= o(1)+O(N−1) = o(1).

If we set here z = 0, we get

log
∏
|k|>N

|ξk| − n

∫
Hn

log |t | dν0(t) = o(1).



780 Tivadar Danka, Vilmos Totik

Therefore,

log |Bn(z)| − n
∫
Hn

log
|z− t |

|t |
dν0(t) = o(1). (7.22)

As the whole integral ∫
0

log
|z− t |

|t |
dν0(t)

is the value of the logarithmic potential of the equilibrium measure ν0 at two points of 0,
and since this logarithmic potential is constant on 0 by Frostman’s theorem [16, Theorem
3.3.4], we deduce that this whole integral is 0, and so (7.22) is equivalent to

log |Bn(z)| + n
∫
0\Hn

log
|z− t |

|t |
dν0(t) = o(1). (7.23)

The set 0 \ Hn consists of the two small additional arcs b−l0b−l0+1, bl1−1bl1 and of the
“big” arc b−NbN+1. The integral, more precisely, n-times the integral, on the left over the
two small arcs is o(1) (recall that |z| is small, while on those arcs |t | stays away from 0),
and now we estimate the integral over the “big” arc, i.e. we consider

n

∫
b−NbN+1

log
|z− t |

|t |
dν0(t) = n

∫
<bN+1

<b−N

log
|z− γ (t)|

|γ (t)|
ω0(t)|γ

′(t)| dt. (7.24)

By the definition of the points bk we have b1 = (1/2+ o(1))/n and

N

n
= ν0(b1bN+1) =

∫
<bN+1

<b1

ω0(γ (t))|γ
′(t)| dt,

and the same reasoning as between (7.13) and (7.14) yields

<bN+1 =
N + 1/2
nω0(0)

+O((N/n)2).

Similarly,

<b−N =
−N + 1/2
nω0(0)

+O((N/n)2).

If z = γ (ζ ) = ζ + iγ2(ζ ), then in the integrand in (7.24) we have

ω0(γ (t)) = ω0(0)+O(|t |), |γ ′(t)| = 1+O(t2),

log |γ (t)| = log(|t | +O(t2)) = log |t | +O(|t |),

and (with γ (t) = t + iγ2(t))

log |γ (ζ )− γ (t)| = log
√
(ζ − t)2 + (γ2(ζ )− γ2(t))2,

where

γ2(ζ )− γ2(t) = γ
′

2(ζ )(ζ − t)+O((ζ − t)
2) = O(|ζ | |ζ − t |)+O((ζ − t)2).

Therefore, since |ζ | ≤ n−τ and |ζ − t | ≤ CN/n, we have

log |γ (ζ )− γ (t)| = log |ζ − t | +O(n−2τ )+O((N/n)2).
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By substituting all these into (7.24) we find that with

M1 = (−N + 1/2)/nω0(0), M2 = (N + 1/2)/nω0(0),

the expression in (7.24) is equal to

n

∫ M2+O((N/n)
2))

M1+O((N/n)2)
log
∣∣∣∣ζ − tt

∣∣∣∣ω0(0) dt = n ∫ M2

M1

log
∣∣∣∣ζ − tt

∣∣∣∣ω0(0) dt +O((N/n)2)
plus an error term which is at most

nO((N/n)2) + nO(N/n)O(n−2τ )+ nO((N/n)3)

= O(n6(1−τ)−1)+O(n3(1−τ)−2τ )+O(n9(1−τ)−2) = o(1)

if (7.18) is satisfied.
From what we have done so far, it follows, say for 0 ≤ ζ = <z ≤ n−τ , that with

M = N/nω0(0),

log |Bn(z)| = o(1)− nω0(0)
∫ M

−M

(log |ζ − t | − log |t |) dt.

But ∫ M

−M

(log |ζ − t | − log |t |) dt =
∫ M

M−ζ

log
u+ ζ

u
du =

∫ M

M−ζ

O(ζ/u) du

= O(ζ 2/M) = O(ζ 2n/N),

hence

log |Bn(z)| = O(nζ 2(n/N))+ o(1) = O(n2−2τ−3(1−τ))+ o(1)
= O(n−(1−τ))+ o(1) = o(1)

for all z ∈ 0, |z| ≤ n−τ , provided τ satisfies (7.18). Thus, when |z| ≤ n−τ ,

|Bn(z)| = 1+ o(1). (7.25)

All the reasonings so far used the assumption (7.18), which can be satisfied by choos-
ing τ < 1 sufficiently close to 1.

7.2.6. The square integral of Cn for |z| ≤ n−τ . Using (7.20), (7.21) and (7.25) we can
now estimate the square integral of |Cn(z)| against the measureµ over the arc 0∩1n−τ (0).
Indeed, let <0n be the projection of 0n (see (7.19)) onto the real line. Then <0n is an
interval [−αn, βn] minus all the intervals

Ik =

(
jβ,k

nπω0(0)
−

1
n1+ρ ,

jβ,k

nπω0(0)
+

1
n1+ρ

)
.
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Here αn, βn ∼ n−τ , and the |k| in the latter intervals is at most 2n1−τ (see (7.3)). There-
fore (use also

dµ(z) = w(z)|z|α ds0(z) = (1+ o(1))w(0)|x|α dx

and |γ ′(t)| = 1+ o(1) for t = O(n−τ )),∫
0∩1n−τ (0)

|Cn(z)|2 dµ(z) = (1+ o(1))
∫
<0n

Jβ(nπω0(0)x)2w(0)|x|α dx

+C

∫
⋃
k Ik

|x|α dx.

In view of (7.2) the first integral is at most

(1+ o(1))w(0)
(nπω0(0))α+1 Lα

with the Lα defined in (3.4). The second integral is at most

C

2n1−τ∑
k=1

1
n1+ρ

(
k

n

)α
= O(n(1−τ)(α+1)−α−1−ρ) = o(n−α−1)

because of (7.16).
Combining these we can see that

lim sup
n→∞

nα+1
∫
0∩1n−τ (0)

|Cn(z)|2 dµ(z) ≤
w(0)Lα

(πω0(0))α+1 . (7.26)

7.2.7. The estimate of Cn(z) for |z| > n−τ . Now let z ∈ 0, |z| > n−τ , say 0 ≺ z. In view
of (7.3) and of the definition of ak and bk ,

ν0(0ak) = k/n+O(n−1), ν0(0bk) = k/n+O(n−1), k > 0.

A similar relation holds for negative k. These imply

ak − bk = O(n
−1), (7.27)

and so there is an integer T0 (independent of n) such that

bk−T0 ≺ ak ≺ bk+T0 for k > T0,

and similarly
b−k−T0 ≺ a−k ≺ b−k+T0 for k > T0.

Since 0 is C2-smooth, this implies the existence of a δ > 0 and a T (actually, T = T0+1
will suffice) such that if |z| ≤ δ (and if z also satisfies the previous condition that z ∈ 0,
0 ≺ z) then

(i) z � ak , T < k ≤ N imply

|z− ak| < |z− ξk+T |, |ak| > |ξk−T |,

(ii) ak ≺ z, T < k ≤ N imply

|z− ak| < |z− ξk−T |, |ak| > |ξk−T |,



Christoffel functions with power type weights 783

(iii) ak ≺ z, −N ≤ k < −T imply

|z− ak| < |z− ξk−T |, |ak| > |ξk+T |.

For this particular z ∈ 0, 0 ≺ z, δ > |z| > n−τ we shall compare the value |Cn(z)|
with the value of a modified polynomial |C̃n(z)|, which we obtain as follows. Remove all
factors |1− z/ak| from |Cn(z)| with |k| ≤ T , and then

(i′) for z � ak , T < k ≤ N replace the factor |1 − z/ak| = |ak − z|/|ak| in |Cn(z)| by
|z− ξk+T |/|ξk−T |,

(ii′) for ak ≺ z, T < k ≤ N replace the factor |ak − z|/|ak| in |Cn(z)| by
|z− ξk−T |/|ξk−T |,

(iii′) for ak ≺ z, −N ≤ k < −T replace the factor |ak − z|/|ak| in |Cn(z)| by
|z− ξk−T |/|ξk+T |.

Removing a factor |1− z/ak| from |Cn(z)| decreases the absolute value of the polynomial
by at most a factor 1/C2n with some C2 because each ak , k 6= 0, is ≥ c/n in absolute
value. On the other hand, the replacements in (i′)–(iii′) increase the absolute value of the
polynomial at z because of (i)–(iii). Hence,

|Cn(z)| ≤ C3n
2T
|C̃n(z)|.

But |C̃n(z)| has the form

|C̃n(z)| =
∏
∗
|z− ξk|∏
∗∗
|ξk|

,

where all |z − ξk|, −l0 ≤ k < l1, appear in
∏
∗ except at most 5T of them (at most 2T

around z, at most 2T around 0, and at most T around aN ), and where some |z − ξk|
may appear twice, but at most T of them (all around aN ). Therefore, if z also satisfies
|z− ξk| ≥ n

−4 for all −l0 ≤ k ≤ l1 − 1, then∏
∗
|z− ξk| ≤

( l1−1∏
k=−l0, k 6=0

|z− ξk|
)

diam(0)T (n4)5T .

A similar reasoning gives that in
∏
∗∗ all |ξk| appear except perhaps 2T of them, and

none of the ξk is repeated twice, therefore,∏
∗∗
|ξk| ≥

( l1−1∏
k=−l0, k 6=0

|ξk|
) 1

diam(0)2T
.

Hence,

|Cn(z)| ≤ C3n
2T
|C̃n(z)| ≤ C4n

22T
l1−1∏

k=−l0, k 6=0

|z− ξk|

|ξk|
.

But the product on the right is |Bn(z)/Bn(0)| with Bn from (7.9), for which the bound
(7.10) is true. Hence, we conclude that

|Cn(z)| ≤ C5n
22T (7.28)

under the condition that |z− ξk| ≥ n−4 for all k.
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This reasoning was made for |z| ≤ δ and 0 ≺ z. The case |z| ≤ δ, z ≺ 0 is completely
similar. On the other hand, if z ∈ 0, |z| > δ, then we use, for all −N ≤ k ≤ N , k 6= 0,

|z− ak| = |z− ξk +O(n
−1)| = |z− ξk|(1+O(n−1))|

because all ak , ξk with |k| ≤ N lie at distance ≤ CN/n = O(n3(1−τ)−1) = o(1) from
the origin. Thus, if we replace every |z − ak| in Cn(z), |k| ≤ N , k 6= 0, by |z − ξk|, then
the value of the polynomial can decrease by at most a factor (1+O(n−1))n = O(1). We
also want to replace each |ak| by |ξk|:

N∏
k=1

|ak| ≥

T∏
k=1

|ak|

N∏
k=T+1

|ξk−T | ≥ cn
−T

N∏
k=1

|ξk|

because |ak| ≥ |ξk−T | for k > T and |ak| ≥ c/n for all k 6= 0. A similar estimate holds
for negative values, from which we get

|Cn(z)| ≤ Cn2T
∏
k 6=0

|z− ξk|

|ξk|
≤ CC0n

2T ,

since the last product is just |Bn(z)/Bn(0)|, for which we can use (7.10).
Therefore, for |z| > δ we can again claim the bound (7.28).
All in all, we have proven (7.28) on 0 with the exception of those z ∈ 0 for which

there is a ξk such that |z − ξk| < n−4. This exceptional set has arc measure at most
Cn · n−4

= Cn−3, so an application of Lemma 2.6 shows that the bound

|Cn(z)| ≤ C5n
22T (7.29)

holds throughout 0.

7.2.8. Completion of the upper estimate for a single arc. Let

Pn(z) = Cn(z)Sn,0,0(z),

where Cn(z) is as in (7.11) and Sn,0,0(z) is the fast decreasing polynomial from Corol-
lary 2.2 for K = 0 and for the point 0. This Pn has degree (1 + o(1))n, its value is 1 at
the origin, and |Pn(z)| ≤ |Cn(z)| on 0. On 0 ∩ 1n−τ (0) we just use |Pn(z)| ≤ |Cn(z)|,
while for |z| > n−τ we see from (7.29) and (2.4) that

|Pn(z)| ≤ 2C5n
22TCτ e

−cτn
τ0
= o(n−α−1).

As a consequence,

lim sup
n→∞

nα+1
∫
0

|Pn(z)|
2 dµ(z) ≤ lim sup

n→∞
nα+1

∫
0∩1n−τ (0)

|Cn(z)|2 dµ(z).

Since the integral on the left is an upper bound for λdeg(Pn)(µ, 0), from (7.26) (using also
(2.2)) we obtain

lim sup
n→∞

nα+1λn(µ, 0) ≤
w(0)Lα

(πω0(0))α+1 . (7.30)

This proves one half of Proposition 7.1 for a single arc.
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7.3. The upper estimate for several components

In this section, we sketch what to do with the preceding reasoning when 0 may have sev-
eral components which can be C2 Jordan curves or arcs. Let 00, . . . , 0k0 be the different
components of 0, and assume that z0 = 0 belongs to 00. Assume that 00 is a Jordan arc;
actually this is the only case we shall use below, i.e. when z0 belongs to an arc component
of 0, and the other components are Jordan curves. On 00 we introduce the points ak as
before; there is no need for them on the other components of 0 (they played a role above
only in a small neighborhood of 0).

On the other hand, on the whole 0 we introduce the analogues of the points ξk by
repeating the process in [24, Section 2]. The outline is as follows. Let θj = ν0(0j ),
consider the integers nj = [θjn], and divide each 0j , j > 0, into nj arcs I jk each having
equal weight θj/nj with respect to ν0 , i.e. ν0(I

j
k ) = θj/nj . On 00 introduce the points

bk as before, and the arcs I 0
k = bkbk+1. Let ξ jk be the center of mass of the arc I jk with

respect to ν0 , and consider the polynomial

Rn(z) =
∏
j,k

(z− ξ
j
k ) (7.31)

of degree at most n+O(1). Now the polynomial

Bn(z) = Rn(z)/(z− ξ
0
0 ) (7.32)

will have similar properties to the Bn before, namely (7.10) is true (see [24, Section 2], in
particular Propositions 2.4 and 2.5).

The rest of the argument in the preceding subsections does not change: the compo-
nents of 0l , l ≥ 1, are far from z0 = 0, the corresponding estimates in the above proof on
them are the same as the estimate in the preceding subsections for |z| > δ.

7.4. The lower estimate in Theorem 1.1 on Jordan arcs

In this section, the assumption is the same as before, namely that 0 consists of finitely
many C2-smooth Jordan arcs and curves, z0 belongs to an arc component of 0, and µ is
given by (5.1). Our aim is to prove the necessary lower bound for λn(µ, z0).

In this proof we shall closely follow the proof of [24, Theorem 3.1].
Let � be the unbounded component of C \ 0, and denote by g� the Green’s function

of � with respect to the pole at infinity (see e.g. [16, Sec. 4.4]).
Assume to the contrary that there are infinitely many n and for each n a polynomialQn

of degree at most n such that Qn(z0) = 1 and

n1+α
∫
|Qn|

2 dµ < (1− δ)
w(z0)Lα

(πω0(z0))α+1 (7.33)

with some δ > 0, where Lα was defined in (3.4). The strategy will be to show that this
implies the following: there exists another system 0∗ of piecewise C2-smooth Jordan
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curves and an extension of w to 0∗ such that 0 ⊆ 0∗, in a neighborhood 10 of z0 we
have 0 ∩10 = 0

∗
∩10, and for the measure

dµ∗(z) = w(z)|z− z0|
α ds0∗(z) (7.34)

with support 0∗,

lim inf
n→∞

n1+αλn(µ
∗, z0) <

w(z0)Lα

(πω0∗(z0))α+1 . (7.35)

Since this contradicts Proposition 6.1, (7.33) cannot be true.
Let 00, . . . , 0k0 be the connected components of 0, 00 being the one that contains z0.

We shall only consider the case when 00 is a Jordan arc; when 00 is a Jordan curve, the
argument is similar (see [24, Section 3]).

Let n± be the two normals to 00 at z0, and let A± = ∂g�(z0)/∂n± be the corre-
sponding normal derivatives of the Green’s function of � with pole at infinity. Assume,
for example, that A+ ≥ A−. Note that A− > 0 [24, Section 3].

Let ε > 0 be an arbitrarily small number. For each 0j that is a Jordan arc, connect the
two endpoints of 0j by another C2-smooth Jordan arc 0′j that lies close to 0j so that we
obtain a system 0′ of k0 + 1 Jordan curves with boundary (

⋃
j 0j ) ∪ (

⋃
j 0
′

j ). Assume
also that 0′0 is selected so that n+ is the outer normal to 0′ at z0. This can be done in such
a way that (with �′ being the unbounded component of C \ 0′)

∂g�′(z0)

∂n+
>

1
1+ ε

∂g�(z0)

∂n+
(7.36)

(see [24, Section 3]).
Select a small disk10 about z0 for which 0′∩10 = 0∩10, and, as in [24, Section 3],

choose a lemniscate σ = {z : |TN (z)| = 1} (with some polynomial TN of degree equal
to some integer N ) such that 0′ lies in the interior of σ (i.e. in the union of the bounded
components of C \ σ ) except for the point z0, where σ and 0′ touch each other, and
(with �σ being the unbounded component of C \ σ )

∂g�σ (z0)

∂n+
>

1
1+ ε

∂g�(z0)

∂n+
. (7.37)

For the Green’s function associated with the outer domain �σ of σ we have [24, (3.6)]

∂g�σ (z0)

∂n+
=
|T ′N (z0)|

N
. (7.38)

For a small a let σa be the lemniscate σa := {z : |TN (z)| = e−a}. According to [24,
Section 3], if 1 ⊂ 10 is a fixed small neighborhood of z0, then for sufficiently small a
this σa contains 0′ \1 in its interior, while in1 the two curves 00 and σa intersect in two
points U,V (see Figure 4). The points U and V are connected by the arc UV 00 on 00 and
also by the arc UV σa on σa (there are actually two such arcs on σa ; we take the one lying
in 1). For each 0j which is a Jordan arc, connect the two endpoints of 0j by a new C2

Jordan arc 0∗j going inside 0′ so that on 0∗j we have

g�(z) ≤ a
2, z ∈ 0∗j . (7.39)
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’

00

0∗0

U∗
U

z0 V ∗
V

0′0

σa

σ

00

0∗0

U∗
U

z0 V ∗
V

Fig. 4

In addition, 0∗0 can be selected so that in 1 it intersects σa in two points U∗, V ∗. Then
U∗V ∗σa is a subarc of UV σa . Let now 0∗ be the union of 0, of the 0∗j ’s with j > 0, of
0∗0 \ U

∗V ∗0∗0
and of U∗V ∗σa . Then 0∗ is the union of k0 + 1 piecewise smooth Jordan

curves.
Now let

m = [(1+ ε)7A−n/NA+] (7.40)

and consider the polynomial

Pn+mN (z) = Qn(z)TN (z)
m (7.41)

on 0∗ with the Qn from (7.33), and let µ∗ be the measure in (7.34) on 0∗. For the
polynomials Pn+Nm it was shown in [24, (3.18)–(3.20)] that

|Pn+mN (z)| ≤ C1n
1/2ena

2
−ma on 0∗ \ (UV 00 ∪ U

∗V ∗σa ), (7.42)

|Pn+mN (z)|≤ |Qn(z)| on UV 00 , (7.43)

|Pn+mN (z)| ≤ C1n
1/2 exp

(
n(1+ ε)4aA−/|T ′N (z0)| −ma

)
on U∗V ∗σa , (7.44)

where C1 is a fixed constant. Here, by the choice ofm in (7.40), and by (7.37) and (7.38),
the last exponent is at most

n

(
(1+ ε)5aA−

A+N
−
(1+ ε)6aA−

NA+

)
= −εn

(1+ ε)5aA−
NA+

.

Fix a so small that a2
− aA−/NA+ < 0. Then the inequality |TN (z)| ≤ 1 for z ∈ 0∗

and the estimates (7.42)–(7.44) yield

λn+mN (µ
∗, z0) ≤

∫
|Pn+mN |

2 dµ∗ ≤

∫
|Qn|

2 dµ+O(n−α−2).
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Hence, by (7.33), for infinitely many n,

(n+mN)α+1λn+mN (µ
∗, z0) ≤

(
n+mN

n

)α+1

(1− δ)
w(z0)Lα

(πω0(z0))α+1 + o(1). (7.45)

Since [24, (3.22)–(3.23)]

ω0(z0) =
1

2π

(
∂g�

∂n+
+
∂g�

∂n−

)
=

1
2π
(A+ + A−), (7.46)

ω0∗(z0) =
1

2π
∂g�∗(z0)

∂n+
≤

1
2π

∂g�(z0)

∂n+
=

1
2π
A+, (7.47)

we have(
n+mN

n

)α+1

(1− δ)
w(z0)Lα

(πω0(z0))α+1

≤

(
1+ (1+ ε)7

A−

A+

)α+1

(1− δ)
w(z0)Lα

(πω0∗(z0))α+1

(
A+

A+ + A−

)α+1

≤

(
1−

δ

2

)
w(z0)Lα

(πω0∗(z0))α+1

if ε is sufficiently small. Therefore, (7.45) implies

lim inf
n→∞

(n+mN)α+1λn+mN (µ
∗, z0) ≤

(
1−

δ

2

)
w(z0)Lα

(πω0∗(z0))α+1 ,

which is impossible according to Proposition 6.1. This contradiction shows that (7.33) is
impossible, and so

lim inf
n→∞

nλn(µ, z0) ≥
w(z0)Lα

(πω0(z0))α+1 . (7.48)

(7.30) and (7.48) prove Proposition 7.1.

8. Proof of Theorem 1.1

Let 0 be as in the theorem, and let 0 =
⋃k0
k=0 0

k be the decomposition of 0 into con-
nected components. Let � be the unbounded component of C \ 0. We may assume that
z0 ∈ 00. By assumption, z0 lies on a C2-smooth arc J of ∂�, and there is an open set O
such that J = 0 ∩O. Let 1δ(z0) be a small disk about z0 that lies in O together with its
closure. Now there are two possibilities for J :

Type I: only one side of J belongs to �.
Type II: both sides of J belong to �.

Type I occurs when 00
\1δ(z0) is connected, and Type II occurs otherwise.
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Let g�(z) be the Green’s function for the domain�with pole at infinity, which we as-
sume to be defined to be 0 outside�. The proof of Theorem 1.1 is based on the following
propositions.

Proposition 8.1. If J is of Type I, then there is a sequence {0m} of sets consisting of
disjoint C2-smooth Jordan curves 0km, k = 0, 1, . . . , k0, such that with some positive
sequence {εm} tending to 0 we have

(i) z0 ∈ 0
0
m and 0 ∩1δ(z0) = 0m ∩1δ(z0),

(ii) 1
1+εm

ω0(z0) ≤ ω0m(z0) ≤ (1+ εm)ω0(z0),
(iii) maxx∈0m g�(z) ≤ εm and maxx∈0 g�m(z) ≤ εm,
(iv) the Hausdorff distance of the outer boundaries of 0 and 0m tends to 0 as m→∞.

Property (i) means that in the δ-neighborhood of z0 the sets 0m and 0 coincide.

Proposition 8.2. If J is of Type II, then there is a sequence {0m} of sets consisting of
00
m := J ∩1δ(z0) and of disjoint C2 Jordan curves 0km, k = 1, . . . , k0 + 2, lying in the

component of 00
m such that (i)–(iv) above hold.

Pending the proofs of these propositions we now complete the proof of Theorem 1.1. It
follows from (i) and (iv) that there is a compact setK that contains 0 and all 0m such that
z0 lies on the outer boundaries of K , and in a neighborhood of z0 the outer boundaries
of K and 0 are the same. In particular, there is a circle in the unbounded component of
C \K that contains z0 on its boundary, so we can apply Lemma 2.1 to K and z0.

Fix an m and consider the set 0m either from Proposition 8.1 if J is of Type I or from
Proposition 8.2 if J is of Type II. We define the measure

µm(z) = w(z)|z− z0|
α ds0m(z),

where w is a continuous and positive extension of the original w (existing on J ) from
J ∩ 1δ(z0) to 0m. It follows from the Erdős–Turán criterion [19, Theorem 4.1.1] that
µm is in the Reg class.

For a positive integer n let Pn be the extremal polynomial of degree n for λn(µ, z0).
Consider the polynomial S4nεm/c2δ2,z0,K

(z) from Lemma 2.1 with γ = 2 (here c2 is the
constant from Lemma 2.1), and form the product Qn(z) = Pn(z)S4nεm/c2δ2,z0,K

(z). This
is a polynomial of degree at most n(1 + 4εm/c2δ

2) which takes the value 1 at z0. On
0m ∩1δ(z0) = 0 ∩1δ(z0) we have∫

0m∩1δ(z0)
|Qn(z)|

2 dµ(z) ≤

∫
0∩1δ(z0)

|Pn(z)|
2 dµ(z) ≤ λn(µ, z0). (8.1)

Since the L2(µ)-norms of {Pn} are bounded, it follows from µ ∈ Reg that there is an
nm such that if n ≥ nm then

‖Pn‖0 ≤ e
εmn.

Then, by the Bernstein–Walsh lemma (Lemma 2.10) and by property (iii), for all z ∈ 0m
we have

|Pn(z)| ≤ ‖Pn‖0e
ng�(z) ≤ e2nεm .
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Therefore, (2.3) and 0m ⊆ K imply that for z ∈ 0m \1δ(z0),

|Qn(z)| ≤ exp(2nεm − [4nεm/c2δ
2
]c2δ

2) < e−nεm

if n is sufficiently large. As a consequence, the integral of Qn over 0m \1δ(z0) is expo-
nentially small in n, which, combined with (8.1), yields

λn(1+4εm/c2δ2)(µm, z0) ≤ λn(µ, z0)+ o(n
−(1+α)).

Now we multiply both sides by n(1+ 4εm/c2δ
2)1+α and let n tend to infinity. Since The-

orem 1.1 has already been proven for 0m and for the measure µm (see Proposition 7.1),
we conclude (using also (2.1)) that

lim inf
n→∞

nα+1λn(µ, z0) ≥
1

1+ 4εm/c2δ2
w(z0)

(πω0m(z0))α+1Lα

(with the Lα from (3.4)), and an application of property (ii) yields

lim inf
n→∞

nα+1λn(µ, z0) ≥
1

(1+ εm)|α|+1(1+ 4εm/c2δ2)

w(z0)

(πω0(z0))α+1Lα.

If we reverse the roles of 0 and 0m in this argument, we similarly conclude that

lim sup
n→∞

nα+1λn(µ, z0) ≤ (1+ εm)|α|+1(1+ 4εm/c2δ
2)

w(z0)

(πω0(z0))2
Lα.

Finally, in these last two relations we can let m → ∞, and as εm → 0, the limit in
Theorem 1.1 follows.

Thus, it remains to prove Propositions 8.1 and 8.2.

8.1. Proof of Proposition 8.1

Both in this proof and in the next one we shall use the fact that if �1 ⊂ �2 (say both
with a smooth boundary), and z ∈ �1, then g�1(z) ≤ g�2(z). As a consequence, if z is a
common point on their boundaries, then the normal derivative of g�1 (the normal pointing
to the interior of �1) is not larger than the same normal derivative of g�2 (because both
Green’s functions vanish on the common boundary). Since, modulo a factor of 1/2π ,
the normal derivatives yield the equilibrium densities (see (8.2) and (8.4) below), it also
follows that if 01 ⊂ 02, then on (an arc of) 01 the equilibrium density ω02 is at most
as large as ω01 (see also [17, Theorem IV.1.6(e)], according to which the equilibrium
measure for 01 is the balayage onto 01 of the equilibrium measure of 02).

Choose, for each m and 1 ≤ k ≤ k0, C2-smooth Jordan curves 0km so that they lie
in � and are at distance < 1/m from 0k . For k = 0 the choice is somewhat different:
let 00

m be a C2 Jordan curve that lies in �, its distance from 00 is smaller than 1/m,
J ∩ 1δ(z0) ⊂ 00

m, and 00
m \ J lies in � (see Figure 5). We can select these so that

the outer domains �m of 0m are increasing with m. From this construction it is clear
that (i) and (iv) are true. Now C \ �m (the polynomial convex hull of 0m) is a shrinking
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00
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Fig. 5. The arc J and the selection of 00
m.

sequence of compact sets with intersection C \ �. Therefore, if cap denotes logarithmic
capacity, then cap(C \�m)→ cap(C \�) [16, Theorem 5.1.3]. Since {g�(z)− g�m(z)}
is a decreasing sequence of positive harmonic functions (more precisely, the subsequence
starting from g�(z)− g�l (z) is harmonic in �l) for which [16, Theorem 5.2.1]

g�(∞)− g�m(∞) = log
1

cap(C \�)
−

1

cap(C \�m)
→ 0,

we deduce from Harnack’s theorem [16, Theorem 1.3.9] that g�(z)−g�m(z)→ 0 locally
uniformly on compact subsets of �. This, and the fact that this sequence is defined in
� ∩1δ(z0) and has boundary values identically 0 on ∂� ∩1δ(z0), then imply (see e.g.
[11, Lemma 7.1]) the following: if n denotes the normal at z0 in the direction of � then

∂g�m(z0)

∂n
→

∂g�(z0)

∂n
as m→∞.

But in the Type I situation we have (see [14, II.(4.1)] combined with [16, Theorem 4.3.14]
or [17, Theorem IV.2.3] and [17, (I.4.8)])

ω0(z0) =
1

2π
∂g�(z0)

∂n
, (8.2)

and a similar formula is true for ω0m , hence

ω0m(z0)→ ω0(z0) as m→∞.

This takes care of (ii).
Finally, we use the following statement from [22, Theorem 7.1]:

Lemma 8.3. Let S be a continuum. Then the Green’s function gC\S(z,∞) is uniformly
1/2-Hölder continuous on S, i.e. if z0 ∈ �, then

gC\S(z0,∞) ≤ Cdist(z0, S)
1/2. (8.3)

Furthermore, here C can be chosen to depend only on the diameter of S.

If we apply this with S = 0k , k = 0, . . . , k0, and use g�m(z) ≤ g�km
(z) for each k

(where, of course, �km is the unbounded component of C \ 0km), then we can deduce the
first inequality in (iii). In this case (i.e. when J is of Type I), the second inequality in (iii)
is trivial, since, by construction, g�m is identically 0 on 0. ut
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8.2. Proof of Proposition 8.2

For anm let J1,m resp. J2,m be the two open subarcs of J of diameter 1/m that lie outside
1δ(z0), but which have one endpoint in 1δ(z0) (see Figure 6) (for large m these exist).

G

J1,m

z0

J2,m

D
d
( )z010(z0)

J1,m

J2,m
z0

0

Fig. 6. The arcs J1,m and J2,m.

Remove now J1,m and J2,m from 0. Since we are in the Type II situation, after this
removal the unbounded component of the complement of 00

\(J1,m ∪ J2,m) is�∪J1,m∪

J2,m, and 00
\(J1,m∪J2,m) splits into three connected components, one of them being J ∩

1δ(z0); let 00,1, 00,2 be the other two. Asm→∞we have cap(C\(�∪J1,m ∪ J2,m))→

cap(C \ �), and since now the domains � ∪ J1,m ∪ J2,m are shrinking, we infer from
Harnack’s theorem as before that g�(z) − g�m(z) → 0 locally uniformly on compact
subsets of �. This implies again that if n± are the two normals to 0 at z0 (note that now
both point to the interior of �), then

∂g�∪J1,m∪J2,m(z0)

∂n±
→

∂g�(z0)

∂n

as m→∞. Since now (see [14, II.(4.1)] or [17, Theorem IV.2.3] and [17, (I.4.8)])

ω0(z0) =
1

2π

(
∂g�(z0)

∂n+
+
∂g�(z0)

∂n−

)
, (8.4)

we conclude again that

0 ≤ ω0\(J1,m∪J2,m)(z0)− ω0(z0) < εm (8.5)

with some εm > 0 that tends to 0 as m→∞. By selecting a somewhat larger εm we may
also assume

g�∪J1,m∪J2,m(z) < εm, z ∈ J1,m ∪ J2,m (8.6)

(apply Lemma 8.3 to S = 0 ∩1δ(z0) and use g�∪J1,m∪J2,m(z) ≤ gC\(0∩1δ(z0))
(z)).

For the continua 00,1, 00,2, 01, . . . , 0k0 and for a small 0 < θ < 1/m select C2-
smooth Jordan curves γ 0,1, γ 0,2, γ1, . . . , γk0 that lie in�∪J1,m ∪ J2,m and are at distance
< θ from the corresponding continuum. Let 0m,θ be the union of J ∩1δ(z0) and of these
Jordan curves. Then 0m,θ consists (for small θ ) of k0 + 2 Jordan curves and one Jordan
arc (namely J ∩ 1δ(z0)), all of them C2-smooth. According to the proof of Proposition
8.1 we have

ω0m,θ (z0)→ ω0\(J1,m∪J2,m)(z0)
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as θ → 0, therefore, for sufficiently small θ , we have (see (8.5))

−εm < ω0m,θ (z0)− ω0(z0) < εm.

Thus, if θ is sufficiently small, we have properties (i), (ii) and (iv) in the proposition
for 0m = 0m,θ . The first inequality in (iii) follows exactly as at the end of the proof of
Proposition 8.1. Finally, the second inequality in (iii) follows from (8.6) because

g�m,θ (z) ≤ g�∪J1,m∪J2,m(z)

(where �m,θ is the unbounded component of C \ 0m,θ ) and g�m,θ (z) = 0 if z ∈ 0 unless
z ∈ J1,m ∪ J2,m.

These show that for sufficiently small θ we can select 0m in Proposition 8.2 to
be 0m,θ . ut

9. Proof of Theorem 1.2

Let 0 be as in Theorem 1.2, and let 0 =
⋃k0
k=0 0k be its decomposition into connected

components, 00 being the one that contains z0. We may assume that z0 = 0. Set

0̃ = {z : z2
∈ 0}, 0̃k = {z : z

2
∈ 0k}.

Every 0̃k is the union 0+k ∪ 0̃
−

k of two disjoint continua, where 0̃−k = −0̃
+

k . Set 0̃± =⋃
k 0̃
±

k . All the 0̃±k are disjoint, except when k = 0: then 0 is a common point of 0±0 , but
except for that point, 0̃+0 and 0̃−0 are again disjoint. In general, we shall use the notation H̃
for the set of points z such that z2

∈ H , and if H is a continuum, then we represent H̃ as
the union H̃+ ∪ H̃− of two continua, where H̃− = −H̃+, and H̃− and H̃+ are disjoint
except perhaps for the point 0 if 0 belongs to H .

Now 0̃+0 ∪ 0̃
−

0 is connected, and if J is the C2-smooth arc of 0 with one endpoint at
z0 = 0, then a direct calculation shows that J̃ is a C2-smooth arc that lies on the outer
boundary of 0̃, and J̃ contains 0 in its (one-dimensional) interior. Thus, 0̃ and z0 = 0
satisfy the assumptions in Theorem 1.1.

For a measure µ defined on 0 let µ̃ be the measure dµ̃(z) = 1
2 dµ(z

2), i.e. if, say,
E ⊂ 0̃+ is a Borel set and E2

= {z2
: z ∈ E}, then µ̃(E) = 1

2µ(E
2), and similarly for

E ⊂ 0−. So µ̃ is an even measure, which has the same total mass as µ has.
Let ν0 be the equilibrium measure of 0. We claim that ν0̃ = ν̃0. Indeed, for any

z ∈ 0̃,∫
log |z− t |dν̃0(t) =

∫
0̃+
(log |z− t | + log |z+ t |)dν̃0(t) =

1
2

∫
0

log |z2
− t2| dν0(t

2)

=
1
2

∫
log |z2

− u| dν0(u) = const

because the equilibrium potential of ν0 is constant on 0 by Frostman’s theorem [16,
Theorem 3.3.4], and z2

∈ 0. Since the equilibrium measure ν0̃ is characterized (among
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all probability measures on 0̃) by the fact that its logarithmic potential is constant on the
given set, we conclude that ν̃0 is indeed the equilibrium measure of 0̃ (here we use the
fact that all the sets we are considering are unions of finitely many continua, hence the
equilibrium potentials for them are continuous everywhere).

Let γ (t) be a parametrization of J̃+ with γ (0) = 0. Then γ (t)2 is a parametriza-
tion of J , and the two corresponding arc measures are |γ ′(t)|dt and |(γ (t)2)′|dt =
2|γ (t)| |γ ′(t)|dt , resp. Therefore, since the ν0̃-measure of an arc {γ (t) : t1 ≤ t ≤ t2}

is half the ν0-measure of the arc {γ (t)2 : t1 ≤ t ≤ t2}, we have∫ t2

t1

ω0̃(γ (t))|γ
′(t)| dt =

1
2

∫ t2

t1

ω0(γ (t)
2)2|γ (t)| |γ ′(t)| dt,

so
ω0̃(γ (t)) = ω0(γ (t)

2)|γ (t)|, t ∈ J̃+

(recall that on both sides, ω is the equilibrium density with respect to the corresponding
arc measure). A similar formula holds on J̃−. But ω0̃(z) is continuous and positive at 0
[24, Proposition 2.2], so the preceding formula shows that ω0(z) behaves around 0 as
ω0̃(0)/

√
|z|, and we have (see (1.5) for the definition of M(0, 0))

M(0, 0) = lim
z→0

√
|z|ω0(z) = ω0̃(0). (9.1)

Now the same argument as in the proof of Proposition 3.2 (see in particular (3.6))
shows that

λ2n(µ̃, 0) = λn(µ, 0). (9.2)

Since µ was assumed to be of the form w(z)|z|αdsJ (z) on J , as before we have∫ t2

t1

dµ̃(t) =
1
2

∫ t2

t1

w(γ (t)2)|γ (t)2|α2|γ (t)| |γ ′(t)| dt,

and since |γ ′(t)|dt is the arc measure on J̃+, we conclude that on J̃+ we have dµ̃(z) =
w(z2)|z|2α+1ds

J̃
(z), and the same representation holds on J̃−. Therefore, Theorem 1.1

can be applied to the set 0̃, the measure µ̃ and the point z0 = 0; the only change is that
now α has to be replaced by 2α + 1 when dealing with µ̃. Now from (9.2) we obtain

lim
n→∞

(2n)2α+2λ2n(µ̃, 0) = lim
n→∞

(2n)2α+2λn(µ, 0),

and since, according to Theorem 1.1, the limit on the left is

22α+20

(
2α + 2

2

)
0

(
2α + 4

2

)
w(0)

(πω0̃(0))
2α+2 ,

we obtain
lim
n→∞

n2α+2λn(µ, 0) = 0(α + 1)0(α + 2)
w(0)

(πω0̃(0))
2α+2 ,

which, in view of (9.1), is the same as (1.6) in Theorem 1.2. ut
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