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Abstract. We study random homogenization of second-order, degenerate and quasilinear
Hamilton–Jacobi equations which are positively homogeneous in the gradient. Included are the
equations of forced mean curvature motion and others describing geometric motions of level sets as
well as a large class of viscous, nonconvex Hamilton–Jacobi equations. The main results include the
first proof of qualitative stochastic homogenization for such equations. We also present quantitative
error estimates which give an algebraic rate of homogenization.
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1. Introduction

1.1. Motivation and informal summary of results

In this paper, we study time-dependent, quasilinear, viscous Hamilton–Jacobi equations
taking the form

∂tu
ε
− ε tr

(
A

(
Duε

|Duε|
,
x

ε

)
D2uε

)
+H

(
Duε,

x

ε

)
= 0 in Rd × (0,∞). (1.1)

We briefly summarize the main assumptions, which are given precisely in Section 1.2. The
diffusion matrixA(e, x) is assumed to be nonnegative definite for each (e, x) ∈ ∂B1×Rd ;
in particular, the diffusive term may vanish or be the Laplacian. The HamiltonianH(ξ, x)
is assumed to be positively homogeneous of order p ∈ [1,∞) in ξ , but is not necessarily
convex in ξ . Both A(e, ·) andH(ξ, ·) are assumed to be stationary random fields sampled
by a probability measure P which satisfies a finite range of dependence.

The interest is in describing the behavior of solutions of (1.1) for 0 < ε � 1. The main
result is a characterization of the limit of uε(x, t), subject to suitable initial conditions,
as ε → 0. We show that uε converges locally uniformly, with P-probability one, to the
solution u of a deterministic equation of the form

∂tu+H(Du) = 0 in Rd × (0,∞), (1.2)
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with an effective Hamiltonian H : Rd → R which has sublevel sets that are star-shaped
with respect to the origin. This is the first stochastic homogenization result for a viscous
equation with a Hamiltonian which may be nonconvex in Duε, or for a diffusion matrix
which may have dependence on Duε.

A particular case of (1.1) satisfying our assumptions is the equation of forced mean
curvature motion

∂tu
ε
− ε tr

((
Id −

Duε ⊗Duε

|Duε|2

)
D2uε

)
+ a

(
x

ε

)
|Duε| = 0 in Rd × (0,∞), (1.3)

where the forcing field a is positive, Lipschitz, bounded and satisfies

inf
x∈Rd

(
a(x)2 − (d − 1)|Da(x)|

)
> 0 P-a.s. (1.4)

The level sets of solutions of (1.3) follow a generalized evolution with normal velocity
εκ + a(x/ε), where κ represents the mean curvature of the surface. In this context, the
limiting homogenized equation takes the form

∂tu+ a

(
Du

|Du|

)
|Du| = 0, (1.5)

where a : ∂B1 → R is a positive function which describes the velocity of level sets of
u and thus the effective velocity of the original flow. The homogenization of (1.3) in the
random setting has been an open problem for some time; its importance was highlighted
in the recent review article [10, p. 773]. The condition (1.4) was introduced in [26] in the
context of periodic homogenization of (1.3) and its role is to ensure the Lipschitz regular-
ity of solutions (roughly speaking, it is the condition under which the Bernstein method
for estimating ‖Duε‖L∞ is applicable). It was recently shown in [12] to be necessary for
homogenization to hold, in general, even in that much simpler context: in other words,
without Lipschitz regularity, homogenization may fail.

Another special case of (1.1) includes the general class of viscous Hamilton–Jacobi
equations of the form

∂tu
ε
− ε1uε +H(Duε, x/ε) = 0 in Rd × (0,∞), (1.6)

where H satisfies, for some p > 1 and 0 < c0 ≤ C0,

H(te, x) = tpH(e, x) and c0 ≤ H(e, x) ≤ C0, ∀t ≥ 0, e ∈ ∂B1, x ∈ Rd .

Our results therefore give the first large class of nonconvex Hamilton–Jacobi equations
for which homogenization holds for d > 1. Even for (1.6) with the second-order term
removed, the conclusions are new: to our knowledge, the only previous results, even for
first-order nonconvex equations, are found in the recent papers [6, 7]. The latter articles
demonstrated homogenization in one space dimension and treated special cases in higher
dimensions for Hamiltonians of the form H(p, x) = H̃ (p)+W(x), an entirely different
structure from the one here.

Every proof of qualitative homogenization for a Hamilton–Jacobi equation in the ran-
dom setting has been based in some way on an application of the subadditive ergodic
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theorem. This requires the identification of a subadditive quantity whose limiting behav-
ior controls that of the solutions to the equation. Such subadditive structures have only
been found, with the exception of the results in [6, 7], in the case of convex or quasi-
convex Hamiltonians and equations with linear diffusion terms. For this reason, a general
qualitative theory of stochastic homogenization for equations with nonconvex Hamilto-
nians or quasilinear viscous terms has proved elusive. Indeed, even identifying a single
example for which it can be proven that homogenization holds for a viscous equation with
nonconvex or quasilinear structure has remained open until now.

In this paper, we propose a new strategy for obtaining qualitative homogenization re-
sults, based on the simple idea that the lack of a subadditive structure can be overcome
by a quantitative approach. Rather than using soft arguments based on ergodic theorems,
we assume a much stronger mixing assumption for the coefficients (a finite range of
dependence condition) and attempt to prove more: homogenization with an explicit er-
ror estimate. The quantitative theory of stochastic homogenization for Hamilton–Jacobi
equations originated in [2] for first-order equations and in [1] for semilinear viscous equa-
tions. The strategy here is to build on the techniques introduced in [2, 1] to handle more
general equations. While the arguments in those papers seem to still rely on subadditivity,
we demonstrate here that the ideas in fact do not require it.

Very recently (and several months after this paper was written), Ziliotto [35] pro-
duced an example of a first-order, coercive (and nonconvex) Hamilton–Jacobi equation
with stationary-ergodic coefficients for which homogenization fails. Thus, in addition to
negatively resolving the question of whether a general homogenization result holds for
nonconvex Hamilton–Jacobi equations, Ziliotto demonstrated the impossibility of obtain-
ing homogenization results by soft or qualitative arguments. This provides further moti-
vation for developing quantitative approaches to this and similar problems.

The assumption of finite range dependence is well-motivated physically and is anal-
ogous to the standard i.i.d. assumption in discrete probability models. It is not an as-
sumption made for simplicity: we do not know how to relax it even to allow very quick
decaying correlations of the coefficients. However, by stability arguments, we can ob-
tain homogenization results for coefficient fields which are uniform limits of finite-range
fields. This covers many typical examples, including for instance coefficient fields built
by convolutions of smooth (but not compactly supported) functions against Poisson point
clouds.

On a technical level, as we will see in Section 3, the finite range assumption gives
us almost sure bounds on the increments of a certain martingale, so that the fluctua-
tions of this martingale can be strongly controlled by Azuma’s inequality. An assumption
which allows for long-range correlations would not have this property. On a more philo-
sophical level, our strategy is quantitative and therefore requires a quantitative ergodic
assumption—but it turns out that the finite range of dependence condition happens to be
the only assumption under which it is known how to prove quantitative results. Indeed, it
is completely open to obtain quantitative results for the homogenization of even first-order
Hamilton–Jacobi equations under any assumption that allows for long-range correlations.
Even obtaining a convergence rate for the shape theorem in first-passage percolation is
well-known to be open when the edges do not satisfy a finite range of dependence!
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In the case of the forced mean curvature equation (1.3) with periodic coefficients, a
lot of attention has been given to the existence of plane-like solutions, which began with
the work of [11]. In our setting, these are solutions, for a given µ > 0, of the stationary
problem

− tr(A(Du, x)D2u)+H(Du, x) = µ in Rd

whose graphs stay within a bounded distance from an affine function. Plane-like solutions
are intimately connected to homogenization; it is not hard to see that their existence for
every given slope implies homogenization for general initial data (at least in the context in
which one has Lipschitz solutions for sufficiently smooth initial data, which is ensured by
our hypotheses). In the random setting, we do not expect that plane-like solutions exist,
in general. Indeed, their existence would imply a rate of homogenization of O(ε) for
affine initial data, while in dimension d = 2 we expect a convergence rate of O(ε2/3), in
line with the conjectured bound for first-passage percolation (a discrete version of a first-
order Hamilton–Jacobi equation) and other growing surface models expected to possess
a scaling limit related to the KPZ equation.

Our strategy for homogenization is nevertheless based on the construction of a weaker
variant of a plane-like solution in half-spaces. We consider the problem posed in the half-
space H+e = {x · e > 0}, for a given parameter µ > 0 and unit vector e:{

− tr(A(Dmµ, x)D2mµ)+H(Dmµ, x) = µ in H+e ,
mµ = 0 on ∂H+e .

We call this the planar metric problem, as the value of mµ(x) can be thought of as a
“distance” from the point x to the plane ∂H+e . Rather than prove thatmµ stays a bounded
distance from an affine function, it turns out to be sufficient for homogenization to show
roughly that, for some exponent α > 0 and a deterministic constant mµ(e), we have

sup
x∈Br∩H+e

1
r
|mµ(x)−mµ(e)(x · e)| = O(r

−α) as r →∞ with high probability.

In other words, we may soften the requirement that mµ be a bounded distance from a
plane by allowing the permitted distance to depend on the distance from the boundary
plane ∂H+e and by only checking points in a bounded set. The heart of the paper is the
proof of this estimate, which is stated precisely in Proposition 2.2 and proved in Sec-
tions 3 and 4. The argument is naturally split into two steps: first we show by a concentra-
tion argument, exploiting the finite range dependence of the coefficients, that the random
fluctuations of mµ(x) are at most of order O((x · e)1/2). Then we argue that the means
E[mµ(x)], which by stationarity can be written as a deterministic function of the form
f (x · e), must therefore be close to a plane, that is, f is close to a linear function. For
the last step we think of the distance to the boundary plane as “time” and consider the
“semigroup” generated by the “flow” and use a maximum principle argument. The fact
that ∂H+e is unbounded and the fluctuation estimate is not uniform raises another diffi-
culty which is overcome by a new “approximate finite speed of propagation” property
presented in Section 4.1.
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1.2. Precise assumptions and statement of homogenization

We begin with the structural conditions on the coefficients in (1.1) before giving the prob-
abilistic formulation of the problem. Throughout that paper, we fix an exponent p ≥ 1,
a dimension d ∈ N∗, a positive integer n ∈ N∗, constants 0 < c0 ≤ C0 < ∞ and a
modulus ρ ∈ C([1,∞)) satisfying

lim
R→∞

ρ(R) = ∞.

We also fix parameters θ, κ > 0. It is convenient to set

data := (d, p, n, c0, C0, ρ, θ, κ).

We consider diffusion matrices A : ∂B1 × Rd → Rd×d which take the form

A = 1
2σσ

T , where σ ∈ C1(∂B1 × Rd; Rd×n) (1.7)

is a matrix-valued function (with σ T denoting its transpose) which satisfies

|σ(e, x)| + |Dxσ(e, x)| + |Dξσ(e, x)| ≤ C0 in ∂B1 × Rd . (1.8)

For notational purposes, it is convenient to extend σ(·, x) (and A(·, x)) to Rd \ {0} by
defining σ(ξ, x) := σ(ξ/|ξ |, x), which makes them 0-homogeneous functions of their
first argument. The Hamiltonian

H ∈ C1(Rd × Rd) (1.9)

is assumed to satisfy, for every t > 0 and ξ, x ∈ Rd ,

H(tξ, x) = tpH(ξ, x) and c0|ξ |
p
≤ H(ξ, x) ≤ C0|ξ |

p (1.10)

|DxH(ξ, x)| + |ξ | |DξH(ξ, x)| ≤ C0|ξ |
p in (Rd \ {0})× Rd . (1.11)

The main structure condition on the coefficients is what we call the Lions–Souganidis (LS)
coercivity condition, since it was introduced (albeit in a slightly different form) in [26]:
we suppose that, with the modulus ρ fixed as above,

inf{Cσ,H (ξ, x) : ξ, x ∈ Rd , |ξ | ≥ R} ≥ ρ(R), (1.12)

where the quantity Cσ,H , which measures the coercivity of the equation, is defined by

Cσ,H (ξ, x) := inf
η∈Bκ (ξ)

(
θ(1− 2θ)H(η, x)2 − (1+ κ)3|σ(η, x)|2|Dxσ(η, x)|2|ξ |2

− θ(1+ κ)2|σ(η, x)|2|ξ |
(
|DxH(η, x)| + κ|DξH(η, x)|

))
.

At first glance, (1.12) appears to be quite a technical assumption. Let us mention that
it is redundant in the first-order case (A = 0) or when the Hamiltonian grows faster
than linearly (p > 1). The full condition is necessary to allow for p = 1 in the viscous
setting, which includes the forced mean curvature model. We show below in Section 1.3
that (1.12) is satisfied by each of our motivating examples. It is a generalization of the
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condition (1.4) for the forced mean curvature equation, which, as mentioned above, has
been shown to be necessary for homogenization, even in the periodic case [12]. The main
role of (1.12) is to ensure that Lipschitz estimates hold for solutions of the equations we
consider (this is proved in the Appendix). The reason it is so technical is because it is
the condition needed to ensure that Bernstein’s method for obtaining gradient bounds is
applicable.

We work with the probability space �, defined to be the set of all such coefficient
fields:

� := {(σ,H) : σ and H satisfy (1.7)–(1.12)}.

We endow � with a family {F(U)} of σ -algebras, indexed by the family of Borel sub-
sets U of Rd , and defined by

F(U) := the σ -algebra generated by the family of maps �→ Rd×n × R,

(σ,H) 7→ (σ (e, x),H(ξ, x)), where e ∈ ∂B1, ξ ∈ Rd and x ∈ U. (1.13)

The largest of these we denote by F := F(Rd). The interpretation of F(U) is that it is
the σ -algebra containing “all of the information which can be obtained by observing the
coefficients restricted to U .”

Throughout the paper, we consider a fixed probability measure P on (�,F) which
satisfies the following two conditions:

(P1) P is stationary: for every y ∈ Rd , we have

P = P ◦ Ty,

where Ty : �→ � acts on � by translation in y, i.e.,

Ty(σ,H) :=
(
(e, z) 7→ σ(e, z+ y), (ξ, z) 7→ H(ξ, z+ y)

)
.

(P2) P has a unit range of dependence: for all Borel subsets U,V ⊆ Rd such that
dist(U, V ) ≥ 1,

F(U) and F(V ) are P-independent.

Throughout the paper, all differential inequalities are to be understood in the viscosity
sense. Since the quasilinear diffusions we consider have singularities at ξ = 0, and for
the readers’ convenience, we recall the appropriate definitions in Section 1.5 below.

The main result of the paper is Theorem 2.1, stated at the beginning of Section 2.
Here we present a consequence of it which is simpler, more qualitative and thus easier
to read. It asserts that the initial value problem for (1.1) homogenizes almost surely at an
algebraic rate, at least for Lipschitz continuous solutions (the Lipschitz assumption can
be removed—see Remark 2.6 below).

Theorem 1.1. Let P be a probability measure on (�,F) which satisfies (P1) and (P2).

Then there exists a universal exponent α > 0 and a function H ∈ C
0, 2

7−

loc (Rd) satisfying,
for every ξ ∈ Rd ,

c0|ξ |
p
≤ H(ξ) ≤ C0|ξ |

p
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such that, for every T ≥ 1 and u, uε ∈ W 1,∞(Rd × [0, T ]) satisfying
∂tu

ε
− ε tr(A(Duε, x/ε)D2uε)+H(Duε, x/ε) = 0 in Rd × (0, T ],

∂tu+H(Du) = 0 in Rd × (0, T ],
uε(·, 0) = u(·, 0) on Rd ,

we have

P
[

sup
R≥1

lim sup
ε→0

sup
(x,t)∈BR×[0,T ]

ε−α|uε(x, t)− u(x, t)| = 0
]
= 1.

The proof of Theorem 1.1 is given at the end of Section 2.
As we will see from the argument, the exponent α in Theorem 1.1 can be taken to

be any positive number smaller than 1/90. Needless to say, this is not optimal, and we
made no attempt to optimize our proof to obtain the best exponent. It is less obvious that
the limiting Hölder exponent of 2/7 for the regularity of H can be improved, at least in
the general quasilinear setting (it is easy to show that H is Lipschitz in the semilinear
case). Note that in the statement of the theorem we used the notation C0,β−

loc (Rd) :=⋂
0<γ<β C

0,γ
loc (R

d).

1.3. Examples

In this subsection, we check that the motivating examples (1.3) and (1.6) satisfy the (LS)
condition (1.12).

Example 1 (Superlinear case). The assumption (1.12) is redundant in the case p > 1,
that is, we may remove the (LS) condition in the case of a superlinear Hamiltonian. There-
fore our results apply to a large family of quasilinear, viscous and, in general, nonconvex
Hamilton–Jacobi equations.

To check this, it is enough to show that if Cσ,H (ξ, x) ≤ K for some K ≥ 1, then
|ξ | ≤ RK for a sufficiently large real number RK . The condition Cσ,H (ξ, x) ≤ K implies
that there exists η ∈ Bκ(ξ) such that

K ≥ θ(1− 2θ)c2
0|η|

2p
− θ(1+ κ)2|σ |2C0(1+ |η|p)|ξ |

− (1+ κ)3|σ |2|Dxσ |2|ξ |2 − θκ(1+ κ)2|σ |2C0(1+ |η|p−1)|ξ |,

where σ and Dxσ are evaluated at (η, x). If we choose θ = 1/4, κ = 1/2, then, in view
of the fact that |ξ − η| ≤ κ ≤ 1, the above inequality implies

K ≥ C−1c2
0|ξ |

2p
− Cc0 − C‖σ‖

2
L∞(Rd )C0(1+ |ξ |p+1)

− C‖σ‖2
L∞(Rd )‖Dxσ‖

2
L∞(Rd )|ξ |

2
− C‖σ‖2

L∞(Rd )C0(1+ |ξ |p),

where C depends only on p. Since p > 1, this yields |ξ | ≤ RK , as desired.
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Example 2 (Forced mean curvature motion). Consider the case

σ(ξ, x) = σ(ξ) =
√

2
(
Id −

ξ

|ξ |
⊗

ξ

|ξ |

)
and H(ξ, x) = a(x)|ξ |,

where a is a random field satisfying c0 ≤ a(x) ≤ C0. Then

A(ξ) = 1
2σ(ξ)σ (ξ)

T
= Id −

ξ

|ξ |
⊗

ξ

|ξ |

and so equation (1.1) is the forced mean curvature equation (1.3).
We claim that, as pointed out in [26], the (LS) condition (1.12) is satisfied provided

that
inf
x∈Rd

(
a(x)2 − (d − 1)|Dxa(x)

∣∣) > 0. (1.14)

To check this, we suppose Cσ,H (ξ, x) ≤ K . Then there exists η ∈ Bκ(ξ) such that

K ≥ θ(1− 2θ)a(x)2|η|2− θ(1+ κ)2(d − 1)|Dxa(x)| |η| |ξ | − θκ(1+ κ)2(d − 1)2c0|ξ |.

Using |η − ξ | ≤ κ ≤ 1, we get

K ≥ θ(1− 2θ)
(
a(x)2 −

(1+ κ)2

1− 2θ
(d − 1)|Dxa(x)|

)
|ξ |2 − C|ξ |.

In view of assumption (1.14), we may choose κ , δ and θ so small that

a2
−
(1+ κ)2

1− 2θ
(d − 1)|Dxa| ≥ δ > 0 in Rd .

This implies that |ξ | ≤ RK for some RK > 0 depending only on (K, d, κ, δ, θ).

Example 3 (Anisotropic forced mean curvature motion). Our assumptions allow for the
previous example to be generalized to the anisotropic setting. We may consider the case

A(ξ, x) =

(
Id −

ξ

|ξ |
⊗

ξ

|ξ |

)
Ã(ξ̂ , x)

(
Id −

ξ

|ξ |
⊗

ξ

|ξ |

)
, H(ξ, x) =

∣∣∣∣B( ξ

|ξ |
, x

)
ξ

∣∣∣∣,
where Ã takes the form Ã = 1

2 σ̃ σ̃
T and B is a matrix-valued random field satisfying

c0Id ≤ B
TB ≤ C0Id . Note that in this context σ = (Id − ξ̂ ⊗ ξ̂ )̃σ . Then the following

condition implies that the (LS) condition holds:

inf
(e,x)∈∂B1×Rd

[
|B(e, x)e| − |σ(e, x)|2

(
|σx(e, x)|

2
+ |B(e, x)e||Bx(e, x)|

)]
> 0.

We leave the confirmation of this claim to the reader.
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1.4. Brief review of the literature

Periodic and almost periodic homogenization results were proved in [26] for the type of
quasilinear and geometric Hamilton–Jacobi equations considered here. The fundamental
qualitative homogenization results for convex Hamilton–Jacobi equations in the random
setting were first proved in [30, 32] in the first-order case and later in the semilinear,
viscous case in [25, 27]. New proofs and extensions of these results appeared later in [28,
31, 3, 4].

As explained above, for geometric equations, the existence of plane-like solutions in
periodic media was proved in [11]; see also [16] for a BV approach and [33] for a con-
struction of plane-like solutions with periodic exclusions. Our assumption (1.12) implies
that the forcing term does not change sign. This restriction has been lifted, under suitable
restriction, for periodic media: see [13], which contains an explicit computation in the
one-dimensional case; in [20] pulsating waves are constructed under a smallness condi-
tion of the forcing term; forced mean curvature motion for graphs, with sign changing
velocities, is studied in [9] under a rather sharp condition on the forcing term; in that
setting, [14] explains the construction of generalized traveling waves and analyses the
long-time behavior of the motion. When the velocity changes sign, pinning phenomena
may occur: this amounts to finding a stationary, positive supersolution at nonvanishing
applied load [19]. Another very interesting problem is to study the properties of the ho-
mogenized motion (the so-called stable norm, or equivalently, the effective Hamiltonian),
examining for example its regularity: for periodic coefficients, this question is studied
in [15].

1.5. Notation

The symbols C and c denote positive constants which may vary from line to line and,
unless otherwise indicated, depend only on the data and on an upper bound for |p| or µ.
For s, t ∈ R, we write s ∧ t := min{s, t} and s ∨ t := max{s, t}. We denote the d-
dimensional Euclidean space by Rd , N is the set of natural numbers and N∗ := N \ {0}.
For each x, y ∈ Rd , |x| denotes the Euclidean length of x and x · y the scalar product.
For r > 0, we set Br(x) := {y ∈ Rd : |x − y| < r} and Br := Br(0). If K is a subset
of Rd , we denote by K and ∂K its closure and its boundary, and let K + Br be the set
of points which are at a distance at most r of K . The Hausdorff distance between two
subsets U,V ⊆ Rd is distH (U, V ) = inf{r ≥ 0 : U ⊆ V + rB1 and V ⊆ U + rB1}.
The set of bounded and Lipschitz continuous maps on Rd is denoted W 1,∞(Rd). If E
is a set, then 1E is the indicator function of E. We denote the set of upper and lower
semicontinuous functions on a domain E ⊆ Rd by USC(E) and LSC(E), respectively.
The space of bounded and uniformly continuous functions is denoted BUC(E).

We usually do not display the dependence of various quantities on the random param-
eter ω = (σ,H) ∈ �, unless this is necessary.

Throughout the paper, differential equations and inequalities are to be understood in
the viscosity sense (see [18] for the general background). We next recall the appropriate
notion of viscosity solution for quasilinear equations like (1.1) which may be singular at
ξ = 0.
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Definition. Given U ⊆ Rd × (0,∞) and a function u ∈ C(U), we say that u is a
subsolution (respectively, supersolution) of the equation

∂tu− tr(A(Du, x)D2u)+H(Du, x) = 0 in U

if, for every φ ∈ C2(U) and (x0, t0) ∈ U such that

(x, t) 7→ u(x, t)− φ(x, t) has a local maximum (resp., minimum) at (x0, t0),

we have

∂tφ(x0, t0)− tr∗
(
A(Dφ(x0, t0), x)D

2φ(x0, t0)
)
+H(Dφ(x0, t0), x) ≤ 0

(resp.,

∂tφ(x0, t0)− tr∗
(
A(Dφ(x0, t0), x)D

2φ(x0, t0)
)
+H(Dφ(x0, t0), x) ≥ 0 ).

Here, for any symmetric matrix X ∈ Rd×d , tr∗(A(ξ, x)X) and tr∗(A(ξ, x)X) stand for
the upper and lower semicontinuous envelopes of the map (ξ, x) 7→ tr(A(ξ, x)X), which
agree with tr(A(ξ, x)X) on the domain of A and are defined at ξ = 0 for any matrix X by

tr∗(A(0, x)X) := lim sup
ξ→0, ξ 6=0, x′→x

tr(A(ξ, x′)X),

tr∗(A(0, x)X) := lim inf
ξ→0, ξ 6=0, x′→x

tr(A(ξ, x′)X).

The definitions of solution for other equations encountered in this paper (such as the
metric problem and approximate corrector problem) are completely analogous.

1.6. Outline of the paper

In the next section, we state the main result, reduce it to auxiliary results which are the
focus of the rest of the paper and show that Theorem 1.1 is a corollary of it. Sections 3
and 4 are the heart of the paper: there we give the proof of homogenization for the planar
metric problem. We give an estimate on the stochastic fluctuations in Section 3 and then
Section 4 contains the convergence of the statistical bias. The proof of Theorem 1.1 is
completed in the final two sections, where we provide a deterministic link between the
planar metric problem and the approximate correctors (Section 5) and between the ap-
proximate correctors and the full time-dependent, initial-value problem (Section 6). The
Appendix contains some auxiliary results on well-posedness and global Lipschitz bounds
for the metric, approximate corrector and full time-dependent problems.

2. Overview of the proof of Theorem 1.1

In this section, we state the main result and reduce its proof to four statements which are
the focus of the rest of the paper.
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2.1. Statement of the main result

We begin by stating the main result of the paper. Given L, T ≥ 1 and ε > 0, we consider
solutions u, uε ∈ W 1,∞(Rd × [0, T ]) of

∂tu
ε
− ε tr(A(Duε, x/ε)D2uε)+H(Duε, x/ε) = 0 in Rd × (0, T ],

∂tu+H(Du) = 0 in Rd × (0, T ],
uε(·, 0) = u(·, 0) on Rd ,

(2.1)

such that uε and u satisfy the following Lipschitz estimate: for every x, y ∈ Rd and
t, s ∈ [0, T ],

|uε(x, t)− uε(y, s)| ∨ |u(x, t)− u(y, s)| ≤ L(|x − y| + |t − s|). (2.2)

(See Remark 2.6 for comments on removing the Lipschitz hypothesis (2.2).)

Theorem 2.1. Consider a probability measure P on (�,F) satisfying (P1) and (P2).
Then there exists H : Rd → [0,∞), depending only on P, such that:

• For every L ≥ 1 and α ∈ (0, 2/7), there exists C = C(data, L, α) ≥ 1 such that, for
every ξ, η ∈ BL,

c0|ξ |
p
≤ H(ξ) ≤ C0|ξ |

p and |H(ξ)−H(η)| ≤ C|ξ − η|α. (2.3)

• For every L,R, T ≥ 1, there exists C(data, L,R, T ) ≥ 1 and q(data) <∞ such that,
for every k ∈ N and λ ∈ (0, 1], we have

P
[
there exist ε ∈ [2−(k+1), 2−k) and u, uε ∈ W 1,∞(Rd × [0, T ])

satisfying (2.1), (2.2) and sup
(x,t)∈BR×[0,T ]

|uε(x, t)− u(x, t)| ≥ λ
]

≤ C2kq exp(−2k/5λ18/C). (2.4)

In this section we give an overview of the proof of Theorem 2.1. Similar to the strategy
in [5, 1], the homogenization of time-dependent problems is reduced to the convergence
of a metric problem. Unlike in the convex case, however, we need to study the planar
metric problem, which roughly measures the distance from a point to a plane (rather than
between points, as in the usual metric problem considered in the convex case [4]).

2.2. Ingredients in the proof of Theorem 2.1

In this subsection, we state the key auxiliary propositions which are used to prove Theo-
rem 2.1. Recall from the introduction that the planar metric problem is{

− tr(A(Dmµ, x)D2mµ)+H(Dmµ, x) = µ in H+e ,
mµ = 0 on ∂H+e ,

(2.5)

where µ > 0 and, for a unit direction e ∈ ∂B1, we define H+e and H−e to be the half-
spaces

H+e := {x ∈ Rd : x · e > 0} and H−e := {x ∈ Rd : x · e < 0}. (2.6)
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In the Appendix, we show that this problem is well-posed and there exists a unique Lip-
schitz solution which we denote bymµ(·,H−e ) (Theorem A.6). The main step in the proof
of Theorem 1.1 is the demonstration that (2.5) homogenizes, that is, for every µ > 0 and
e ∈ ∂B1, there exists a deterministic quantity mµ(e) > 0 such that

lim
t→∞

mµ(te,H−e )
t

= mµ(e) P-a.s. (2.7)

We actually prove more, namely the quantitative version of (2.7) given in the following
proposition.

Proposition 2.2. Fix L ≥ 1, e ∈ ∂B1 and µ ∈ (0, L]. There existmµ(e) ≥ 0, C(data, L)
≥ 1 and q(data) <∞ such that, for every x ∈ H+e and λ > 0,

P[|mµ(x,H−e )−mµ(e)(x · e)| > λ] ≤ C exp
(

−λ2

(1+ x · e)8/5

)
. (2.8)

Moreover, the map (µ, e) 7→ mµ(e) is continuous on (0,∞)× ∂B1.

Proposition 2.2 is a consequence of the results in Sections 3 and 4, and its proof comes
near the end of Section 4.

Using the result of Proposition 2.2, we can identify H .

Definition (The effective Hamiltonian). We define the effective HamiltonianH : Rd→R
by setting H(0) := 0 and, for every t > 0 and e ∈ ∂B1,

H(te) := inf {µ > 0 : mµ(e) > t}.

It is immediate that H : Rd → R is continuous and coercive, and since mµ(e) is increas-
ing in µ, its sublevel sets are star-shaped with respect to the origin. We do not expect H
to be positively homogeneous, in general, unless p = 1 or P[A ≡ 0] = 1, due to the
interaction between the diffusion and the Hamiltonian.

The quantitative error estimates for the time-dependent initial-value problem require
an explicit Hölder estimate for H , which is proved at the end of Section 5.

Proposition 2.3. For every L ≥ 1 and α ∈ (0, 2/7), there exists a constant C =
C(data, L, α) ≥ 1 such that, for every ξ, η ∈ BL,

c0|ξ |
p
≤ H(ξ) ≤ C0|ξ |

p, (2.9)

|H(ξ)−H(η)| ≤ C|ξ − η|α. (2.10)

Once we have proved Proposition 2.2, the rest of the proof of Theorem 1.1 is determin-
istic and consists in transferring the limit for the planar metric problem to a limit for
solutions of the time-dependent problem by comparison arguments. This part of the proof
of our main result is a fairly routine, if technical, adaptation of the perturbed test function
method [21]. However, it is more difficult in our setting, due to the presence of the singu-
lar, quasilinear diffusion (as has been noticed previously [12]) and due to the need for a
quantitative statement.
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We state the deterministic comparison results in two parts. First, we give a link be-
tween the planar metric problem and the approximate correctors, which are the solutions
vδ(·, ξ), for each ξ ∈ Rd and δ > 0, of the problem

δvδ(x, ξ)− tr
(
A(ξ +Dvδ(x, ξ), x)D2vδ(x, ξ)

)
+H(ξ +Dvδ(x, ξ), x) = 0 in Rd .

It turns out that (2.7) is essentially equivalent to

lim
δ→0
−δvδ(0, ξ) = H(ξ) P-a.s. (2.11)

A quantitative version of this fact is summarized in the following proposition, which is
proved in Section 5.

Proposition 2.4. Fix λ, δ ∈ (0, 1], L ≥ 1, e ∈ ∂B1 and µ ∈ (0, L]. Select t > 0 such
that ξ = te satisfies µ = H(ξ). Then there exists C(data, L) ≥ 1 such that, for every
s ≥ C/(λδ),

sup
x∈Bs/2

|mµ(x,H−e − se)−mµ(e)(s + x · e)| ≤ λ/δ ⇒ |δvδ(0, ξ)+H(ξ)| ≤ Cλ1/5.

It is essentially well-known that, in a fairly general framework, the limit (2.11) implies
that (1.1) homogenizes. The final ingredient for the proof of Theorem 1.1 is a quantitative
version of this statement. It is proved in Section 6.

Proposition 2.5. Fix 0 < ε ≤ δ ≤ λ ≤ 1 and L,R, T ∈ [1,∞). Suppose that uε, u ∈
W 1,∞(Rd × [0, T ]) satisfy (2.1) and (2.2). Then

sup
(x,t)∈BR×[0,T ]

|uε(x, t)− u(x, t)| ≥ λ (2.12)

implies that, for a constant C = C(data, L,R, T ) ≥ 1,

sup
(x,ξ)∈BC/ε×BL

|δvδ(x, ξ)+H(ξ)| ≥
λ

C
− C

(
ε

δλ

)1/10

. (2.13)

2.3. Proofs of Theorems 1.1 and 2.1

We next give the proof of Theorem 2.1, subject to the four results stated in the previous
subsection (and some more standard auxiliary estimates proved later).

Proof of Theorem 2.1. We prove only the second statement of the theorem, since the first
is contained in Proposition 2.3. Fix L,R, T ≥ 1. We denote by C and c positive constants
which depend only on (data, L,R, T ) and may vary at each occurrence.

Also fix k ∈ N and 2−k ≤ δ ≤ λ ≤ 1. Below we will select δ in terms of k and λ.
The goal is to estimate the probability of the event that, for some ε ∈ (2−(k+1), 2−k] and
u, uε ∈ W 1,∞(Rd × [0, T ]) satisfying (2.1) and (2.2), we have

sup
(x,t)∈BR×[0,T ]

|uε(x, t)− u(x, t)| ≥ λ. (2.14)
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According to Proposition 2.5, we see that (2.14) implies

sup
(x,ξ)∈B

C2k×BL

|δvδ(x, ξ)+H(ξ)| ≥ cλ, (2.15)

provided that (
Cε

δλ

)1/10

≤ cλ,

which is equivalent to
λ ≥ C(2−k/δ)1/11. (2.16)

We next apply Proposition 2.4. We deduce that (2.15) implies, for s := Cδ−1λ−5,

sup{|mµ(y + x,H−e + x − se)−mµ(e)(s + y · e)| :
(µ, e, x, y) ∈ (0, CLp] × ∂B1 × BC2k × Bs/2} ≥ cλ

5δ−1. (2.17)

In order to estimate the probability of (2.17), we need to snap to a finite grid so that we can
apply union bounds to Proposition 2.2. This requires some (deterministic) continuity of
mµ(e) and mµ(x,H−e ) in all three parameters x, e and µ, which is given in Lemmas 4.7
and 4.8. We deduce from these lemmas and (2.17) the existence of a finite set

3 ⊆ (0, CLp] × ∂B1 × BC2k × Bs/2,

depending only on (data, k, δ, λ), such that 3 has at most C2kq(λδ)−q elements for an
exponent q = q(data) <∞, and

sup
(µ,e,x,y)∈3

|mµ(y + x,H−e + x − se)−mµ(e)(s + y · e)| ≥ cλ5δ−1
− C. (2.18)

Making q(data) < ∞ larger if necessary, and applying Proposition 2.2, we deduce that,
for every (µ, e, x, y) ∈ 3,

P[|mµ(y + x,H−e + x − se)−mµ(e)(s + y · e)| ≥ cλ5δ−1
− C]

≤ Csq exp
(
−cλ10

δ2s8/5

)
≤ Cλ−qδ−q exp

(
−cλ18

δ2/5

)
,

provided that λ5δ−1
≥ C (so that cλ5δ−1

−C ≥ cλ5δ−1) and s ≥ C/(λδ), which in view
of the definition of s is equivalent to λ ≤ c. Moreover, the first restriction that λ5δ−1

≥ C

can be removed since otherwise the last term on the right side is larger than 1. Therefore,
a union bound gives, up to a redefinition of q(data) <∞,

P[∃uε, u ∈ W 1,∞(Rd × [0, T ]) satisfying (2.1), (2.2) and (2.14)]

≤ P[(2.18) holds] ≤ C2kq(λδ)−q exp
(
−cλ18

δ2/5

)
. (2.19)

It remains to specify δ. Making no attempt to be optimal, we take δ := 2−k/2. It is clear
that this choice satisfies (2.16) provided that

λ ≥ C2−k/22.
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After another redefinition of q = q(data) < ∞, we see that the right side of (2.19) is at
most

C2kq exp(−c2k/5λ18).

This completes the proof of the theorem, since the restriction on λ may be removed: if it
is false, the quantity in the previous line is larger than 1. ut

We now show that Theorem 1.1 is a consequence of Theorem 2.1.

Proof of Theorem 1.1. Take α < 1/90, set λ(k) := 2−αk and observe that, for constants
R, T ≥ 1, the estimate (2.4) yields, for every m ∈ N sufficiently large,

P
[
∃ε ∈ (0, 2−m], sup

(x,t)∈BR×[0,T ]
ε−α|uε(x, t)− u(x, t)| ≥ 1

]
≤ C

∞∑
k=m

2kq exp(−2k/5−18kα/C) ≤ C exp(−2(1/5−18α)m),

where C depends on data and the Lipschitz constant of uε and u on Rd×[0, T ]. Summing
over m, applying the Borel–Cantelli lemma and then shrinking α slightly yields

P
[
lim sup
ε→0

sup
(x,t)∈BR×[0,T ]

ε−α|uε(x, t)− u(x, t)| = 0
]
= 1.

Taking the intersection of these events for a sequence R = Rj → ∞ then yields the
conclusion of the theorem. ut

Remark 2.6. Theorems 1.1 and 2.1 are stated and proved under the condition that both uε

and u are Lipschitz continuous in space and time. For u, this is not controversial, since it
satisfies a first-order equation with a coercive Hamiltonian and will thus be locally Lip-
schitz on Rd × (0, T ], at least if it is assumed to have at most affine growth initially.
However, uε will not be Lipschitz, in general, unless it is bounded in C1,1(Rd) at t = 0
(that initial data belonging to C1,1(Rd) suffices for a Lipschitz estimate is explained in
the Appendix). Therefore it may appear that Theorem 1.1 only implies qualitative homog-
enization for initial-value problems with sufficiently regular initial data.

However, this can be overcome easily, using the comparison principle and approxi-
mating any bounded and uniformly continuous initial condition from above and below
by C1,1 functions. The monotonicity of the solutions as functions of the initial data guar-
antees that we may interchange the two limits (for approximation and homogenization),
yielding a quite general qualitative homogenization result.

This interpolation trick also works at the level of quantitative estimates, provided we
assume Hölder continuous initial data, permitting us to deduce error estimates and an
algebraic rate of convergence for more general initial-value problems. In order to check
this, it is necessary to track the dependence on L (the upper bound for parameters such
as µ, |ξ |, etc.) of all the constants C in each quantitative estimate of the paper, in order
to ensure that the dependence is polynomial in L (which it is). For readability, we have
chosen not to display such dependence.
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3. The fluctuation estimate

In this section, we prove the following estimate on the fluctuations of the metric problem
to any nonempty compact target set S ⊆ Rd which satisfies the interior ball condition

S =
⋃

B1(x)⊆S

B1(x). (3.1)

The metric problem is{
− tr(A(Dm, x)D2m)+H(Dm, x) = µ in Rd \ S,
m = 0 on ∂S.

(3.2)

In the Appendix we show that (3.2) is well-posed and give some properties of its solution,
which we denote by mµ(·, S) ∈ W

1,∞
loc

(
Rd \ S

)
.

The main result of this section is the following estimate for the stochastic fluctuations
of mµ(x, S) for x ∈ Rd \ S.

Proposition 3.1. Let L ≥ 1 and S ⊆ Rd be a compact set satisfying (3.1). Then there
exists C(data, L) ≥ 1 such that, for every µ ∈ (0, L], x ∈ Rd and λ > 0,

P
[
|mµ(x, S)− E[mµ(x, S)]| > λ

]
≤ C exp

(
−

µ3λ2

C(1+ dist(x, S))

)
. (3.3)

Since the constant C in Proposition 3.1 does not depend on S, we obtain the same result
for the planar metric problem by considering an increasing sequence {Sn}n≥1 of compact
sets whose union is H−e and using the stability of viscosity solutions under local uniform
convergence and the obvious monotonicity of mµ(x, Sn) in n.

Corollary 3.2. Let L ≥ 1. Then there exists C(data, L) ≥ 1 such that, for every µ ∈
(0, L], e ∈ ∂B1, x ∈ H+e and λ > 0,

P
[
|mµ(x,H−e )− E[mµ(x,H−e )]| > λ

]
≤ C exp

(
−

µ3λ2

C(1+ e · x)

)
. (3.4)

The proof of Proposition 3.1 is based on Azuma’s inequality and is similar to the argu-
ments used by the authors in the viscous convex case [1], which were partially based on
those introduced in the first-order convex case [2, 29] and some previous ideas originating
in first-passage percolation [24, 34].

We continue with some notation and conventions in force throughout the remainder
of this section. We fix L ≥ 1, µ ∈ (0, L] and a compact set S ⊆ Rd satisfying (3.1).
Unless otherwise stated, we denote by C and c positive constants which may vary at
each occurrence and depend only on (data, L). Some of our estimates below depend on
a lower bound for µ, these are typically denoted by Cµ or cµ with the dependence on µ
made explicit. The constants `µ and Lµ are as in the statement of Lemma A.7 in the
Appendix, and for some constants C(data, L) ≥ 1 and c(data) > 0, we have

cµ ≤ `µ ≤ Lµ ≤ C. (3.5)
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For technical reasons, it is convenient to consider solutions of the metric problem for co-
efficients (σ,H) belonging to the closure � of the set � with respect to the topology of
local uniform convergence. The well-posedness and global Lipschitz estimates for coef-
ficients belonging to � are established in the Appendix. If it is necessary to display the
dependence of mµ(·, S) on the coefficients, we write mµ(·, S, ω) for ω = (σ,H) ∈ �.

3.1. Localization in sublevel sets

A key step in the proof of Proposition 3.1, following [1], is to show that the solutions
of the planar metric problem depend almost entirely on the coefficients restricted to their
sublevel sets. This paves the way for a martingale argument to estimate the stochastic fluc-
tuations. The result is summarized in Proposition 3.4 below. The main new observation
here is that the proof of [1, Lemma 3.3] does not require convexity of the Hamiltonian,
but a weak form of positive homogeneity. Nevertheless, we give a complete argument
here for the reader’s convenience and because the statement here is slightly different than
the one in [1].

Lemma 3.3. Fix coefficients ω1 = (σ1, H1) ∈ � and ω2 = (σ2, H2) ∈ �. Suppose that
t ≥ 1 and

(σ1, H1) ≡ (σ2, H2) in Rd × {x ∈ Rd \ S : mµ(x, S, ω1) ≤ t}.

Then, for every x ∈ Rd \ S such that mµ(x, S, ω1) ≤ t ,

mµ(x, S, ω1)−mµ(x, S, ω2)

≤
4C0L

3
µ

µlµ
exp

(
4Lµ
lµ

)
exp

(
−

µ

C0L2
µ

(t −mµ(x, S, ω2))

)
. (3.6)

Proof. For notational simplicity, we denote mi := mµ(·, S, ωi) for i ∈ {1, 2}. The ar-
gument is a comparison between m1 and w := ϕ(m2), where ϕ : R+ → R+ is given
by

ϕ(s) := s + k exp(α(s − t + k)),
and the constants k and α are defined by

k := sup{m1(x)−m2(x) : x ∈ Rd \ S, m1(x) = t}, α := (C0L
2
µ)
−1µ.

We may assume without loss of generality that k > 0, since otherwise (3.6) is immediate
and there is nothing more to show.

As in [1, proof of Lemma 3.3], we show by a direct computation that w is a super-
solution of the equation with coefficients ω1. We perform the computation as if m2 were
smooth; however, what follows can be made rigorous in the viscosity sense in the usual
manner, by performing the analogous computation on a smooth test function and using
Proposition A.5.

We compute

Dw(x) =
(
1+ αk exp(α(m2(x)− t + k))

)
Dm2(x),

D2w(x) =
(
1+ αk exp(α(m2(x)− t + k))

)
D2m2(x)

+ α2k exp(α(m2(x)− t + k))Dm2(x)⊗Dm2(x).
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Using the homogeneity of A1 and H1 with respect to the gradient variable, the bound
|A1| ≤ C0 and the gradient estimate |Dm2| ≤ Lµ, we find

− tr(A1(Dw, x)D
2w)+H1(Dw, x)

≥ (1+ αk)
(
− tr(A1(Dm2, x)D

2m2)+ (1+ αk)p−1H1(Dm2, x)
)
− C0α

2kL2
µ.

As (σ1, H1) = (σ2, H2) in {m1 ≤ t}, recalling the definition of α we therefore have, for
every x ∈ {m1 ≤ t},

− tr
(
A1(Dw(x), x)D

2w(x)
)
+H1(Dw(x), x) ≥ (1+ αk)µ− C0α

2kL2
µ = µ.

So w satisfies

− tr(A1(Dw, x)D
2w)+H1(Dw, x) ≥ µ in {m1 ≤ t} (3.7)

and, by the definition of k,

w ≥ 0 on S, w ≥ m1 on ∂{m1 ≤ t}. (3.8)

By the comparison principle (Proposition A.5),

w ≥ m1 in {m1 ≤ t}. (3.9)

Rewriting this in terms of m2 yields

m1(x) ≤ m2(x)+ k exp
(

µ

C0L2
µ

(m2(x)− t + k)

)
, x ∈ {m1 ≤ t}. (3.10)

The rest of the argument follows [1, proof of Lemma 3.3] and consists in estimating
the constant k by using Lipschitz estimates. For this we first note that, since k = t −

min{m2(x) : m1(x) = t}, there exists x0 ∈ Rd such that m1(x0) = t and m2(x0) = t − k.
Then the Lipschitz estimate on m1 in (A.19) implies that dist(x0, S) ≥ L

−1
µ t , while the

lower bound on the growth of m2 in (A.21) yields (lµ/Lµ)t − 2 ≤ m2(x0) = t − k. We
get a first, rough bound on k:

k ≤ t (1− lµ/Lµ)+ 2. (3.11)

Next we fix h ∈ [0, t − k] and note that, by the growth of m2 in (A.20), there exists
xh ∈ Rd such that m2(xh) = t − k − h and |xh − x0| ≤ h/lµ + 2. By definition of k, the
set {m2(·) ≤ t − k} is contained in {m1(·) ≤ t}, so that xh also belongs to {m1(·) ≤ t}.
Using (3.10) and (A.19), we find that

t − Lµ(l
−1
µ h+ 2) ≤ m1(xh) ≤ m2(xh)+ k exp

(
µ

C0L2
µ

(m2(xh)− t + k)

)
≤ t − k − h+ k exp

(
−

µ

C0L2
µ

h

)
. (3.12)
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Fix ε := exp(−1) and set h := µ−1(C0L
2
µ). Observe that, in view of (3.11), we have

t − k − h ≥ 0 provided that t ≥ 2C0L
3
µ/(µlµ). Then (3.12) gives

k ≤
1

1− ε

(
−
C0L

2
µ

µ
+
C0L

3
µ

µlµ
+ 2Lµ

)
≤ 4

C0L
3
µ

µlµ
.

Inserting this into (3.10) yields (3.6) for t ≥ 2C0L
3
µ/(µlµ). We conclude by noting

that (3.6) always holds for t ≤ 2C0L
3
µ/(µlµ). ut

It is convenient to rewrite the statement of Lemma 3.3 in terms of the sublevel sets of
mµ(·, S). To this end, we set

aµ := 3a′µ + 2lµ, where a′µ :=
C0L

3
µ

µlµ
−
C0L

2
µ

µ
log
(

µl3µ

4C0L3
µ

)
.

Notice that aµ = C(µlµ)−1.

Proposition 3.4. Fix coefficients ω1 = (σ1, H1) ∈ � and ω2 = (σ2, H2) ∈ �. Suppose
that t ≥ aµ and

(σ1, H1) ≡ (σ2, H2) in Rd × {mµ(·, S, ω1) ≤ t}.

Then

|mµ(x, S, ω1)−mµ(x, S, ω2)| ≤ lµ, x ∈ {mµ(·, S, ω1) ≤ t − aµ}, (3.13)

and, for any s ∈ [0, t − aµ],

distH
(
{mµ(·, S, ω1) ≤ s}, {mµ(·, S, ω2) ≤ s}

)
≤ 3. (3.14)

Proof. We use the notation mi := mµ(·, S, ωi) for i ∈ {1, 2} as in the proof of the
previous lemma. By the definition of a′µ, we have

lµ =
4C0L

3
µ

µlµ
exp

(
4Lµ
lµ

)
exp

(
−

µ

C0L2
µ

a′µ

)
.

Fix x ∈ Rd \ S such that m1(x) ≤ t − a
′
µ. If m1(x) > m2(x), then Lemma 3.3 gives

m1(x)−m2(x) ≤
4C0L

3
µ

µlµ
exp

(
4Lµ
lµ

)
exp

(
−

µ

C0L2
µ

(t −m2(x))

)
≤

4C0L
3
µ

µlµ
exp

(
4Lµ
lµ

)
exp

(
−

µ

C0L2
µ

(t −m1(x))

)
≤

4C0L
3
µ

µlµ
exp

(
4Lµ
lµ

)
exp

(
−

µ

C0L2
µ

a′µ

)
≤ lµ.
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Let s be the largest real number such that {m2(·) ≤ s} ⊆ {m1(·) ≤ t − a
′
µ}. Then there

exists x ∈ Rd \ S such that m2(x) = s and m1(x) = t − a
′
µ, so that

t − a′µ = m1(x) ≤ m2(x)+ lµ = s + lµ.

Therefore {m2(·) ≤ t − a
′
µ − lµ} ⊆ {m1(·) ≤ t}, and hence

(A1, H1) ≡ (A2, H2) in {m2(·) ≤ t − a
′
µ − lµ}.

Reversing the roles of m1 and m2 in the above argument, we obtain

m2 ≤ m1 + lµ in {m2(·) ≤ t − 2a′µ − lµ}.

Arguing as above, one also finds that {m1(·) ≤ t −3a′µ−2lµ} ⊆ {m2(·) ≤ t −2a′µ− lµ},
which shows that

|m2 −m1| ≤ lµ in {m1(·) ≤ t − 3a′µ − 2lµ}.

Recalling that aµ = 3a′µ + 2lµ, we get (3.13).
We now prove (3.14). If s ≤ t − aµ, then by (3.13) and (A.20),

{m1(·) ≤ s} ⊆ {m2(·) ≤ s + lµ} ⊆ {m2(·) ≤ s} + B1+2lµ ⊆ {m2(·) ≤ s} + B3.

Hence {m1(·) ≤ s} ⊆ {m2(·) ≤ s} +B3. Reversing the roles of m1 and m2 completes the
proof of (3.14). ut

3.2. Construction of the localized approximations mUµ

Given a compact setU ⊆ Rd such that S ⊆ U , we now define localized approximations to
mµ(·, S), which we denote bymUµ (·, S). For this purpose we fix a family {ωn = (σn, Hn)}
which is dense in � in the topology of local uniform convergence. We define, for every
k, n ∈ N,

BU,k(ωn) =
{
ω = (σ,H) ∈ � : sup

(ξ,x)∈Bk×U

|(σ,H)(ξ, x)− (σn, Hn)(ξ, x)| ≤ 1/k
}
,

and, for each x ∈ Rd and ω ∈ �,

mUµ (x, S, ω) := inf
k∈N

sup
n∈N

mµ(x, S, ωn)1BU,k(ωn)(ω).

Note that the events BU,k(ωn) are nonincreasing in k, and therefore the infimum in the
definition of mUµ is also a limit as k →∞. As usual, we suppress the dependence of mµ
on ω if there is no loss of clarity.

We next verify some basic properties of mUµ .
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Lemma 3.5. For each compact subset U ⊆ Rd satisfying S ⊆ U ⊆ Rd , and every
x ∈ Rd \S, the random variablemUµ (x, S) is F(U)-measurable. For every x, y ∈ Rd \S,

|mUµ (x, S)−m
U
µ (y, S)| ≤ Lµ|x − y|

and
mµ(·, S) ≤ m

U
µ (·, S) in Rd \ S.

Finally, for every ω = (σ,H) ∈ � and x ∈ Rd , there exists ω′ = (σ ′, H ′) ∈ � such that
(σ,H) ≡ (σ ′, H ′) in Rd × U and mUµ (x, S, ω) = mµ(x, S, ω

′).

Proof. As the coefficient fields (σ,H) ∈ � are locally uniformly continuous, the event
BU,k(ωn) belongs to F(U). So mUµ (x, S) is F(U)-measurable for any x. Moreover, the
map x 7→ mUµ (x, S) is Lµ-Lipschitz continuous on Rd because so is mµ(·, S).

Let us now check that mµ ≤ mUµ . Fix ω ∈ �. As the family {ωn = (σn, Hn)} is
dense in�, there exists a subsequence (ωn′ = (σn′ , Hn′)) which converges to ω = (σ,H)
locally uniformly. So, for any k ∈ N∗, there exists n′k ≥ k such that ω ∈ BU,k(ωn′k ). In
particular, for any x ∈ Rd ,

sup
n∈N

mµ(x, S, ωn)1BU,k(ωn) ≥ mµ(x, S, ωn′k
).

Since mµ(·, S, ωn′k )k∈N converges locally uniformly to mµ(·, ω) by the local uniform
convergence of (ωn′k ) to ω, we obtain the desired inequality upon sending k→∞.

We now prove the last statement of the lemma. Fix ω = (σ,H) ∈ � and x ∈ Rd . For
any k ∈ N, let nk ∈ N be such that ω ∈ BU,k(ωnk ) and

sup
n∈N

mµ(x, S, ωn)1BU,k(ωn) ≤ mµ(x, S, ωnk )+ 1/k.

By uniform continuity of the elements of �, there exists ω′ = (σ ′, H ′) ∈ �

and a subsequence (ωnk )k∈N which converges locally uniformly to ω′. It follows that
(mµ(·, S, ωnk ))k∈N converges locally uniformly to mµ(·, S, ω′), and therefore

mUµ (x, S, ω) = lim
k→∞

mµ(x, S, ωnk ) = mµ(x, S, ω
′).

Using ω ∈ BU,k(ωnk ), we deduce that (σ ′, H ′) = (σ,H) in Rd × U . ut

We next show that mUµ is a good approximation of mµ in those sublevel sets of mµ which
are contained in U .

Lemma 3.6. With aµ defined as in Proposition 3.4, fix t ≥ aµ and assume that

{mµ(·, S) ≤ t} ⊆ U.

Then
mµ(·, S) ≤ m

U
µ (·, S) ≤ mµ(·, S)+ lµ in {mµ(·, S) ≤ t − aµ},

and, for any s ∈ [0, t − aµ],

{mUµ (·, S) ≤ s} ⊆ {mµ(·, S) ≤ s} ⊆ {m
U
µ (·, S) ≤ s} + B3.
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Proof. Let ω ∈ � and x ∈ {mµ(·, S, ω) ≤ t − aµ}. According to Lemma 3.5 there exists
ω′ = (σ ′, H ′) ∈ � such that mUµ (x, S, ω) = mµ(x, S, ω

′) and (σ ′, H ′) = (σ,H) in
Rd × U .

By assumption, we have (σ ′, H ′) = (σ,H) in U ⊇ {mµ(·, S, ω) ≤ t}, and thus
Proposition 3.4 yields

|mµ(·, S, ω)−mµ(·, S, ω
′)| ≤ lµ in {mµ(·, S, ω) ≤ t − aµ}.

Applying this to x, we obtain |mµ(x, S, ω)−mUµ (x, S, ω)| ≤ lµ.
Now fix s ≤ t − aµ. We already know from Lemma 3.5 that mµ(·, S, ω) ≤

mUµ (·, S, ω), so that

{mUµ (·, S, ω) ≤ s} ⊆ {mµ(·, S, ω) ≤ s}.

Conversely, if x ∈ {mµ(·, S, ω) ≤ s}, then, by (A.20), one can find y ∈ Rd such that
|y − x| ≤ 3 and mµ(y, S, ω) ≤ s − lµ. Let ω′ = (σ ′, H ′) ∈ � be associated to y as
in Lemma 3.5: mUµ (y, S, ω) = mµ(y, S, ω

′) and (σ ′, H ′) = (σ,H) in Rd × U . Then,
by Proposition 3.4, mµ(y, S, ω′) ≤ mµ(y, S, ω) + lµ ≤ s. So mUµ (y, S, ω) ≤ s, which
proves the second part of the lemma. ut

We next obtain a result like the previous lemma, with the important difference that the
hypothesis requires only that the t-sublevel set ofmUµ , rather than the t-sublevel set ofmµ,
is contained in U . We define a new constant

aµ := 2(Lµ + lµ)+ aµ(2+ Lµl−1
µ ),

where aµ is defined in Proposition 3.4. Note that, as aµ = C(µlµ)
−1, we have aµ =

Cµ−1l−2
µ .

Lemma 3.7. Fix t ≥ aµ and assume that

{mUµ (·, S) ≤ t} ⊆ U.

Then
mµ(·, S) ≤ m

U
µ (·, S) ≤ mµ(·, S)+ lµ in {mUµ (·, S) ≤ t − aµ},

and, for any s ∈ [0, t − aµ],

{mUµ (·, S) ≤ s} ⊆ {mµ(·, S) ≤ s} ⊆ {m
U
µ (·, S) ≤ s} + B3.

Proof. Let s be the largest real number such that {mµ(·, S) ≤ s} ⊆ {mUµ (·, S) ≤ t}. Then,
since

{mµ(·, S) ≤ s} ⊆ {m
U
µ (·, S) ≤ t} ⊆ U,

Lemma 3.6 implies that

|mµ(·, S)−m
U
µ (·, S)| ≤ lµ in {mµ(·, S) ≤ s − aµ}, (3.15)
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and, for any τ ∈ [0, s − aµ],

{mUµ (·, S) ≤ s} ⊆ {mµ(·, S) ≤ s} ⊆ {m
U
µ (·, S) ≤ s} + B3.

It remains to show that {mUµ (·, S) ≤ t − aµ} ⊆ {mµ(·, S) ≤ s}. Observe that, by the
definition of s, there exists x such that mµ(x, S) = s and mUµ (x, S) = t . By (A.20), there
exists y ∈ Rd such that |x − y| ≤ l−1

µ aµ + 2 and mµ(y, S) = s − aµ. Then, by the
Lipschitz estimates,

|s − t | ≤ aµ + |s − aµ − t | ≤ aµ + |mµ(y, S)−m
U
µ (y, S)| + |m

U
µ (y, S)−m

U
µ (x, S)|

≤ aµ + lµ + Lµ(l
−1
µ aµ + 2).

Let now τ be the largest real number such that

{mUµ (·, S) ≤ τ } ⊆ {mµ(·, S) ≤ s − aµ}.

Then there exists x′ such that mUµ (x
′) = τ and mµ(x′) = s − aµ. So, by (3.15), we have

|τ − s + aµ| ≤ lµ. This gives the result since

aµ = (aµ + lµ + Lµ(l
−1
µ aµ + 2))+ (aµ + lµ). ut

We conclude this subsection by slightly modifying the statement of the previous lemma,
putting it in a form better suited for our purposes in the following subsection.

Proposition 3.8. Suppose that S ⊆ U ⊆ Rd and t ≥ 1 satisfy

{x ∈ Rd : mUµ (x, S) ≤ t} ⊆ UR0 ,

where R0 := 5+ l−1
µ aµ. (Note that R0 = Cµ

−1l−3
µ .) Then

0 ≤ mUµ (·, S)−mµ(·, S) ≤ lµ in {mUµ (·, S) ≤ t} (3.16)

and, for any s ∈ [0, t],

{mUµ (·, S) ≤ s} ⊆ {mµ(·, S) ≤ s} ⊆ {m
U
µ (·, S) ≤ s} + B3. (3.17)

Proof. In view of Lemma 3.7, one just needs to check that {mUµ (·) ≤ t + aµ} ⊆ U . Here
is the proof: as {mUµ (·) ≤ t} ⊆ U , Lemma 3.7 implies that

{mµ ≤ t − aµ} ⊆ {m
U
µ ≤ t − aµ} + B3.

Thus, from (A.20),

{mUµ ≤ t} ⊆ {mµ ≤ t} ⊆ {mµ ≤ t−aµ}+B l−1
µ aµ+2 ⊆ {m

U
µ ≤ t−aµ}+BR0 ⊆ U. ut
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3.3. Construction of the martingale

In this subsection, we perform a construction similar to the one in [1, Section 3.3]. The
eventual goal is to define a filtration {Gt }t≥0 on � so that the martingale E[mµ(x, S) |Gt ]
has bounded increments in t , almost surely with respect to P, permitting the application
of Azuma’s inequality. As in [1], the filtration Gt is a “perturbation” of the smallest σ -
algebra which makes the t-sublevel set of mµ measurable, but nevertheless is sufficiently
localized in its dependence on the coefficients that we may make use of independence.

We begin by introducing a discretization of the set K of compact subsets of Rd which
contain S. We endow K with the Hausdorff metric distH , defined by

distH (K,K ′) := max
{

inf
x∈K

sup
y∈K ′
|x − y|, inf

y∈K ′
sup
x∈K

|x − y|
}

= inf{r > 0 : K ⊆ K ′ + Br and K ′ ⊆ K + Br}.

Since the metric space (K, distH ) is locally compact, there exists a pairwise disjoint par-
tition (0i)i∈N of K into Borel subsets such that diamH (0i) ≤ 1 for each i ∈ N. For each
i ∈ N, we define

Ki :=
⋃
K∈0i

K + B1.

By definition, Ki has the interior ball condition of radius 1 (i.e. satisfies (3.1)) and

K ∈ 0i ⇒ K ⊆ Ki ⊆ K + B2.

We define compact sets Ki ⊆ K ′i ⊆ K
′′

i ⊆ K̃i for each i ∈ N by

K ′i := Ki + BR0 , K ′′i := K
′

i + B14, K̃i := K
′′

i + B1.

We enlarge 0i by setting

0̃i := {K ∈ K : K ⊆ Ki ⊆ K + B4}.

We define the following subsets of �, for each t > 0 and i ∈ N:

Fi(t) := the event that {x ∈ Rd : mK
′
i

µ (x, S) ≤ t} ∈ 0̃i .

We next show that the events {Fi(t)}i∈N cover �.

Lemma 3.9. For every t > 0, ⋃
i∈N

Fi(t) = �.

Proof. Fix i ∈ N such that {x ∈ Rd : mµ(x, S) ≤ t} ∈ 0i . We claim that Fi(t) holds.
Our assumption implies that

{x ∈ K ′i : m
K ′i
µ (x, S) ≤ t} ⊆ Ki .

Thus Proposition 3.8 is applicable and we deduce from (3.17) for s = t and our choice

of i that {m
K ′i
µ (·, S) ≤ t} ∈ 0̃i . That is, Fi(t) holds. ut

We next show that if Fi(t) holds, then the t-sublevel set of mµ is close to Ki .
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Lemma 3.10. Suppose that t > 0 and Fi(t) holds. Then

{mµ(·, S) ≤ t} ⊆ Ki + B3 and Ki ⊆ {mµ(·, S) ≤ t} + B4, (3.18)

sup
Ki

(m
K ′i
µ (·, S)−mµ(·, S)) ≤ 4Lµ + lµ, (3.19)

sup
∂Ki

|mµ(·, S)− t | ≤ 8Lµ + 2lµ. (3.20)

Proof. If Fi(t) holds, then

{m
K ′i
µ (·, S) ≤ t} ⊆ Ki ⊆ {m

K ′i
µ (·, S) ≤ t} + B4. (3.21)

Note that the first inclusion of (3.21) ensures the applicability of Proposition 3.8. The
inclusions in (3.18) therefore follow from (3.17) and (3.21). The inequality (3.19) is
obtained from (3.16), (3.21) and the Lipschitz estimate. To prove (3.20), note that if

x ∈ ∂Ki , then by the first inclusion in (3.21), we have m
K ′i
µ (x) ≥ t . By the second

inclusion of (3.21), there exists y ∈ Rd such that m
K ′i
µ (y) ≤ t and |x − y| ≤ 4. Thus, by

the Lipschitz estimate, m
K ′i
µ (x) ≤ t + 4Lµ. Combining this with the second conclusion

proves the claim. ut

We now form a partition of � by defining

E1(t) := F1(t), Ei+1(t) := Fi+1(t) \ (E1(t) ∪ · · · ∪ Ei(t)), i ∈ N.

By Lemma 3.9, {Ei(t)}i∈N is a pairwise disjoint partition of �.
An important property of Ei(t) is that it is measurable with respect to the restriction

of the coefficient fields to K ′′i , which is the assertion of the following lemma.

Lemma 3.11. For every 0 < s ≤ t and i, j ∈ N,

Fi(s) ∩ Fj (t) 6= ∅ ⇒ K ′i ⊆ K
′′

j and Ei(s) ∈ F(K ′′j ).

In particular, Ei(t) ∈ F(K ′′i ).
Proof. According to Lemma 3.10, if Fi(s) ∩ Fj (t) 6= ∅ for some 0 < s ≤ t , then

Ki ⊆ {mµ(·, S) ≤ s} + B4 ⊆ {mµ(·, S) ≤ t} + B4 ⊆ Kj + B7.

In particular, Fi(s) ∈ F(K ′j + B7). We also obtain the expression

Ei(s) = Fi(s) \
⋃

n∈D(i)

Fn(s),

where

D(i) := {n ∈ N : 1 ≤ n ≤ i − 1, Ki ⊆ Kn + B7, and Kn ⊆ Ki + B7}.

Notice that n ∈ D(i) implies K ′n ⊆ K
′

j + B14 = K
′′

j and thus Fn(s) ∈ F(K ′′j ). It follows
that Ei(s) ∈ F(K ′′j ), as desired. ut

In view of Lemma 3.9, we may define, for t > 0, a random element St of K by

St := Ki if Ei(t) holds for some i ∈ N.



822 Scott Armstrong, Pierre Cardaliaguet

Note that St is an approximation of the set {x ∈ H : mµ(x, S) ≤ t}, but with more local
dependence on the coefficient fields, as witnessed by Lemma 3.11.

We now define a filtration {Gt }t≥0 by G0 := {∅, �} and, for t > 0,

Gt := σ -algebra on � generated by all events of the form Ei(s) ∩ F ,
where 0 < s ≤ t , i ∈ N and F ∈ F(K ′′i ).

The martingale we are interested in is E[mµ(x, S) |Gt ] for a fixed x ∈ Rd . The eventual
goal, achieved in the following subsection, is to show that this martingale has bounded
increments and to deduce from Azuma’s inequality bounds on its fluctuations for t � 1
large.

We conclude this subsection with three lemmas containing some estimates we need.

Lemma 3.12. For every t > 0 and x ∈ Rd \ St ,

|mµ(x, S)− (t +mµ(x, St ))| ≤ 8Lµ + 2lµ.

Proof. By the maximality of mµ(·, St ) (the last statement of Theorem A.6), we find that,
for every x ∈ Rd \ St ,

mµ(x, S)− sup
y∈∂St

mµ(y, S) ≤ mµ(x, St ). (3.22)

By the maximality of mµ(·, S), we have, for every x ∈ Rd \ St ,

mµ(x, St )+ inf
y∈∂St

mµ(y, S) ≤ mµ(x, S).

Lemma 3.10 shows that, for every t > 0,

sup
y∈∂St

|t −mµ(y, S)| ≤ 8Lµ + 2lµ.

Combining the above yields the lemma. ut

Lemma 3.13. For every 0 < s ≤ t and x ∈ Rd ,

|mµ(x, S)− E[mµ(x, S) |Gt ]|1{x∈Ss } ≤ 8Lµ + 2lµ.

In particular, if t ≥ Lµ dist(x, S), then

|mµ(x, S)− E[mµ(x, S) |Gt ]| ≤ 8Lµ + 2lµ a.s.

Proof. Fix x ∈ Rd and 0 < s ≤ t . Define a random variable Z by

Z :=
∑

i∈{j∈N:x∈Kj }
m
K ′i
µ (x, S)1Ei (s).
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Notice that Z is Gs-measurable by the definition of the filtration, since m
K ′i
µ (x, S) is

F(K ′′i )-measurable. Since the event that x ∈ Ss is the union of Ei(s) over i ∈ {j ∈ N :
x ∈ Kj }, Lemma 3.10 shows that

|Z −mµ(x, S)1{x∈Ss }| ≤
∑

i∈{j∈N:x∈Kj }
|mµ(x, S)−m

K ′i
µ (x, S)|1Ei (s) ≤ 4Lµ + lµ.

Since Z and 1{x∈Ss } are Gt -measurable, we have

|mµ(x, S)− E[mµ(x, S) |Gt ]|1{x∈Ss }
≤ |Z −mµ(x, S)|1{x∈Ss } + |E[Z −mµ(x, S)1{x∈Ss } |Gt ]|
≤ 2‖Z −mµ(x, S)1{x∈Ss }‖L∞(�,P) ≤ 2(4Lµ + lµ).

This completes the proof of the first statement.
In order to check that, for t ≥ Lµ dist(x, S), mµ(x) is “almost” Gt -measurable, note

that in Ei(t) we have

{m
K ′i
µ (·, S) ≤ t} ⊆ Ki,

where, in view of (A.21),

m
K ′i
µ (x, S) ≤ Lµ dist(x, S) ≤ t.

So, in Ei(t), x belongs to Ki P-a.s., so that x ∈ S(t) P-a.s. ut

Lemma 3.14. For every t > 0 and x ∈ Rd ,∣∣∣E[mµ(x, St ) |Gt ] −∑
i∈N

E[mµ(x,Ki)]1Ei (t)
∣∣∣ ≤ 2Lµ(R0 + 15). (3.23)

Proof. We first argue that, for each x ∈ Rd , i ∈ N, t > 0,

E[mµ(x, K̃i)1Ei (t) |Gt ] = E[mµ(x, K̃i)]1Ei (t). (3.24)

Since Ei(t) ∈ Gt by definition, to establish (3.24) it suffices to show that, for every
A ∈ Gt ,

E[mµ(x, K̃i)1A∩Ei (t)] = E[mµ(x, K̃i)]P[A ∩ Ei(t)]. (3.25)

We obtain (3.25) from the fact that

A ∈ Gt ⇒ A ∩ Ei(t) ∈ F(K ′′i ), (3.26)

which we will check below, from the fact that mµ(x, K̃i) is F(Rd \ K̃i)-measurable, and
from the independence of F(Rd \ K̃i) and F(K ′′i ).

We now prove (3.26). We may assume that A = F ∩ Ej (s) with j ∈ N, F ∈ F(K ′′j )
and s ∈ (0, t], since such events generate Gt . Then A∩Ei(t) = F ∩Ej (s)∩Ei(t). Now,
eitherEj (s)∩Ei(t) = ∅ and there is nothing more to show, orK ′j ⊆ K

′′

i , by Lemma 3.11.
In the latter case, F ∩ Ej (s) ∈ F(K ′j ) ⊆ F(K ′′i ). By Lemma 3.11 again, Ei(t) ∈ F(K ′′i )
and thus F ∩ Ej (s) ∩ Ei(t) ∈ F(K ′′i ), as desired. This completes the proof of (3.26).



824 Scott Armstrong, Pierre Cardaliaguet

We now derive (3.23) from (3.24) using the Lipschitz estimates:

E[mµ(x, St ) |Gt ] =
∑
i∈N

E[mµ(x,Ki)1Ei (t) |Gt ]

≤

∑
i∈N

E[mµ(x, K̃i)1Ei (t) |Gt ] + Lµ(R0 + 15)

=

∑
i∈N

E[mµ(x, K̃i)]1Ei (t) + Lµ(R0 + 15)

≤

∑
i∈N

E[mµ(x,Ki)]1Ei (t) + 2Lµ(R0 + 15).

The reverse inequality is proved in the same way. ut

3.4. Proof of the fluctuation estimate

Using the results of the previous subsection, we are now ready to derive Proposition 3.1
from Azuma’s inequality.

Proof of Proposition 3.1. We fix x ∈ Rd and consider the Gt -adapted martingale {Xt }t≥0
defined by

Xt := E[mµ(x, S) |Gt ] − E[mµ(x, S)].
Note that X0 = 0 since G0 = {∅, �}.

The main step is to show, using Lemmas 3.12–3.14, that, for every t, s > 0,

|Xt −Xs | ≤ C(l
−1
µ |s − t | + 1+ µ−1l−3

µ ), (3.27)

where C is bounded for bounded µ’s. We may assume that s ≤ t . Then the event that
x ∈ Ss is Gs-measurable, and hence{

Xt = E[mµ(x, S) |Gt ]1{x∈Ss } + E[mµ(x, S)1{x 6∈Ss } |Gt ] − E[mµ(x, S)],
Xs = E[mµ(x, S) |Gs]1{x∈Ss } + E[mµ(x, S)1{x 6∈Ss } |Gs] − E[mµ(x, S)].

Subtracting these and applying Lemma 3.13, we get

|Xs −Xt | ≤ 4(4Lµ + lµ)+
∣∣E[mµ(x, S)1{x 6∈Ss } |Gt ] − E[mµ(x, S)1{x 6∈Ss } |Gs]

∣∣.
Applying Lemma 3.12 twice, we obtain

|Xs −Xt | ≤ 12(4Lµ + lµ)+
∣∣E[mµ(x, Ss)1{x 6∈Ss } |Gt ] − E[mµ(x, Ss)1{x 6∈Ss } |Gs]

∣∣.
Let us now estimate distH (Ss, St ). We set <µ,t := {mµ(·, S) ≤ t}. By Lemma 3.10 and
the growth of t 7→ <µ,t in (A.20), we have

distH (Ss, St ) =
∑
i,j∈N

distH (Ki,Kj )1Ei (s)∩Ej (t)

≤

∑
i,j∈N

(
distH (Ki,<µ,s)+ distH (<µ,s,<µ,t )+ distH (<µ,t ,Kj )

)
1Ei (s)∩Ej (t)

≤ l−1
µ |s − t | + 10.
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From the Lipschitz estimates we therefore obtain

|mµ(x, Ss)−mµ(x, St )|1{x 6∈Ss } ≤ Lµ(l
−1
µ |s − t | + 10).

Plugging this inequality into the estimate for |Xs − Xt | and using the fact that the
event {x 6∈ Ss} is Gs-measurable, we obtain

|Xs −Xt | ≤
∣∣E[mµ(x, St ) |Gt ] − E[mµ(x, Ss) |Gs]

∣∣+ Lµl−1
µ |s − t | + C.

To complete the proof of (3.27), it remains to show that∣∣E[mµ(x, St ) |Gt ] − E[mµ(x, Ss) |Gs]
∣∣ ≤ Lµ(l−1

µ |s − t | + 40+ 4R0). (3.28)

For this, we combine Lemma 3.14, the estimate for distH (Ss, St ) established above and
the Lipschitz estimate, to get∣∣E[mµ(x, St ) |Gt ] − E[mµ(x, Ss) |Gs]

∣∣
≤ 4Lµ(R0 + 15)+

∑
i,j∈N

∣∣E[mµ(x,Kj )] − E[mµ(x,Ki)
]
|1Ei (s)∩Ej (t)

≤ 4Lµ(R0 + 15)+ Lµ
∑
i,j∈N

distH (Ki,Kj )1Ei (s)∩Ej (t)

≤ 4Lµ(R0 + 15)+ Lµ distH (Ss, St ) ≤ 4Lµ(R0 + 15)+ Lµ(l−1
µ |s − t | + 10),

as desired. This yields (3.27) because R0 = Cµ
−1l−3

µ .
We now complete the proof of the proposition. We fix T ≥ 1 large and set τ = µ−1l−2

µ

and N = T/τ . Applying Azuma’s inequality shows that for every λ > 0,

P[|XT −X0| > λ] ≤ 2 exp
(
−
λ2

CN

)
.

Using X0 = 0 and the choice of N , we find, in view of (3.27), that for every λ > 0 and
T ≥ 1,

P[|XT | > λ] ≤ 2 exp
(
−
µl2µλ

2

CT

)
.

If we choose T = Lµ dist(x, S), we have, by Lemma 3.13,∣∣XT − (mµ(x, S)− E[mµ(x, S)]
)∣∣ ≤ C a.s.

Plugging this inequality into the former one, we obtain

P[|mµ(x, S)− E[mµ(x, S)]| > λ] ≤ C exp
(
−

µl2µλ
2

C dist(x, S)

)
.

This is (3.3). ut
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4. Convergence of the mean distance to a plane

In the previous section, we obtained good control of the stochastic fluctuations of the
solutions of the planar metric problem at points far from the boundary plane. To complete
the proof of Proposition 2.2, it remains to study the asymptotic behavior of the quantity
E[mµ(x,H−e )] as x ·e→∞. The precise statement we need is presented in the following
proposition, the proof of which is the focus of this section.

Proposition 4.1. For each L ≥ 1, there exists C(data, L) ≥ 1 and, for each µ ∈ (0, L]
and e ∈ ∂B1, a positive real number mµ(e) such that, for every x ∈ H+e ,

|E[mµ(x,H−e )] −mµ(e)(x · e)| ≤ Cµ(x · e)1/2 log1/2(1+ x · e),

where Cµ := Cµ−3/2(1 + |logµ|)−1/2. Moreover, (µ, e) 7→ mµ(e) is continuous
on (0,∞)× ∂B1.

The proof of Proposition 4.1 requires a new localization argument which is a generaliza-
tion of the finite speed of propagation property for first-order Hamilton–Jacobi equations.
This is presented in the next subsection and the proof of Proposition 4.1 is given in Sec-
tion 4.2.

Throughout, we fix L ≥ 1, µ ∈ (0, L] and e ∈ ∂B1 and set H± := H±e .

4.1. Propagation of influence

An important property of the planar metric problem is an “approximate finite speed of
propagation” property. To be more precise, what we show is that, while the diffusion
term of course creates an infinite speed of propagation, the behavior of the boundary
condition outside of a ball centered at x ∈ H+ of radius � (x · e)9/2 has essentially
negligible influence on the value ofmµ(x,H−). The result is summarized in the following
proposition.

Proposition 4.2. Let m1, m2
∈ W

1,∞
loc (H+) be, respectively, a subsolution and a super-

solution of the equation

− tr(A(Dm, y)D2m)+H(Dm, y) = µ in H+. (4.1)

Suppose also that there exist constants K,R,M ≥ 1 such that, for every i ∈ {1, 2} and
x ∈ H+,

ess sup
y∈H+

|Dmi(y)| ≤ K, (4.2)

0 ≤ mi(x) ≤ M + L|x|, (4.3)

m1
≤ m2 in ∂H+ ∩ BR. (4.4)

Then there exists C(data,K,L) ≥ 1 such that if s ≥ 1 and R ≥ Cµ−5(1 +M + s)9/2,
then

m1(se) ≤ m2(se)+ 1. (4.5)
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We expect that the exponent 9/2 appearing in the conclusion of Proposition 4.2 is subop-
timal. Indeed, our argument for obtaining it is somewhat crude and, for example, the proof
is easier and we obtain a better estimate in the semilinear case where A(ξ, x) = A(x).
This is of no consequence for the results in the paper, however, because Corollary 3.2
provides exponential estimates on the fluctuations of mµ(x,H−), which overwhelms any
finite power such as 9/2. Thus the statement above turns out to be more than enough for
what we need.

The proof of Proposition 4.2 is inspired by the proof of the finite speed of propaga-
tion for first-order equations, with the role of time being played by the unit direction e.
Indeed, the argument relies on a comparison between the planar metric problem and a
time-dependent one, which is captured in the following simple lemma.

Lemma 4.3. Suppose K ≥ 1 and m ∈ W 1,∞
loc (H+) is a nonnegative subsolution of (4.1)

satisfying the Lipschitz bound

ess sup
x∈H+

|Dm(x)| ≤ K. (4.6)

Fix λ, ν > 0 and define w ∈ W 1,∞
loc (H+ × (0,∞)) by

w(x, t) := −
1
λ

log
(
exp(−λm(x))+ exp(−λνt)

)
.

Then there exists C = C(data) such that if ν ≤ µ−CλK2, then w is a subsolution of the
time-dependent equation

∂tw − tr(A(Dw, x)D2w)+H(Dw, x) ≤ µ in H+ × (0,∞). (4.7)

Proof. We give the proof assuming that m is smooth; the general case is obtained by
performing analogous computations on smooth test functions, in the usual way. For con-
venience, denote Z(x, t) := exp(−λm(x))+ exp(−λνt) so that we may write w(x, t) =
−λ−1 logZ(x, t). Straightforward computations give

∂tZ(x, t) = −λν exp(−λνt),
DZ(x, t) = −λ exp(−λm(x))Dm(x),

D2Z(x, t) = −λ exp(−λm(x))
(
D2m(x)− λDm(x)⊗Dm(x)

)
,

(4.8)

and thus

∂tw(x, t) = −
1

λZ(x, t)
∂tZ(x, t) =

ν exp(−λνt)
Z(x, t)

,

Dw(x, t) = −
1

λZ(x, t)
DZ(x, t) =

exp(−λm(x))
Z(x, t)

Dm(x),

D2w(x, t) = −
1

λZ(x, t)

(
D2Z(x, t)−

1
Z(x, t)

DZ(x, t)⊗DZ(x, t)

)
=

exp(−λm(x))
Z(x, t)

(
D2m(x)−

λ exp(−λνt)
Z(x, t)

Dm(x)⊗Dm(x)

)
.
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Assembling these together and using the positive homogeneity and nonnegativity of H ,
the 0-homogeneity of A(·, x) and (4.6), we find that

∂tw(x, t)− tr(A(Dw, x)D2w(x, t))+H(Dw(x, t), x)

≤

(
exp(−λνt)
Z(x, t)

)
ν +

(
exp(−λm(x))
Z(x, t)

)(
exp(−λνt)
Z(x, t)

)
(Cλ|Dm(x)|2)

+

(
exp(−λm(x))
Z(x, t)

)(
− tr(A(Dm, x)D2m(x))+H(Dm(x), x)

)
≤ µ− (µ− ν)

(
exp(−λνt)
Z(x, t)

)
+ CλL2

(
exp(−λνt)
Z(x, t)

)
.

Therefore we get (4.7) provided we select ν ≤ µ− CλL2
µ, as claimed. ut

Proof of Proposition 4.2. The proof is broken into six steps. The main part is a compar-
ison argument that is similar to several others appearing later. It comes in Steps 2–4. We
then derive the conclusion of the proposition from the result of the comparison in the last
two steps. Throughout, C and c denote positive constants depending only on (data,K,L)
and may vary at each occurrence.

Step 1. We set up the comparison argument. We fix parameters λ, ν, δ, ε, T > 0 (selected
below), with ε ≤ δ1/3, and define

w1(x, t) := −
1
λ

log
(
exp(−λm1(x))+ exp(−λνt)

)
.

Provided that ν ≤ µ− Cλ, Lemma 4.3 asserts that w1 is a subsolution of

∂tw1 − tr(A(Dw1, y)D
2w1)+H(Dw1, y) = 0 in H+ × (0,∞). (4.9)

Fix another parameter η > 1 (to be chosen below in Step 2) and select a smooth, nonneg-
ative, nondecreasing and convex function g : R→ [0,∞) satisfying (here we assume ε
is sufficiently small)

g(t) = εt + 1/4 for t ∈ [0,∞), sup
t∈R

g′(t) ≤ ε and sup
t∈R

g′′(t) ≤ ε.

Define
ψ(x, t) := g

(
(1+ |x|2)1/2 − (T − t)

)
.

We note for later use that, with (·) := (1+ |x|2)1/2 − (T − t),
∂tψ(x, t) = g

′(·),

Dψ(x, t) = g′(·)(1+ |x|2)−1/2x,

D2ψ(x, t) = g′(·)(1+ |x|2)−1/2(Id − (1+ |x|2)−1x ⊗ x)+ g′′(·)(1+ |x|2)−1x ⊗ x,

and therefore, for every (x, t) ∈ H+ × [0,∞),

|Dψ(x, t)| ≤ ε and |D2ψ(x, t)| ≤ Cε. (4.10)
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We next introduce the auxiliary function 9 : H+ ×H+ × [0, T ] → R defined by

9(x, y, t) := w1(x, t)− ηm
2(y, t)−

|x − y|4

4δ
− ψ(x, t). (4.11)

Observe that 9 attains its supremum on H+ ×H+ × [0, T ] at some point (x0, y0, t0) ∈

H+×H+×[0, T ]. Indeed,w1 is bounded on this set,m2 is nonnegative andψ(x, t)→∞
as |x| → ∞ uniformly with respect to t ∈ [0, T ]. By the Lipschitz assumption (4.2),

|x0 − y0| ≤ (Kδ)
1/3
≤ Cδ1/3. (4.12)

The main claim, which is proved in the following three steps, is that, under a suitable
choice of η, we have

either t0 = 0 or x0 ∈ ∂H+ or y0 ∈ ∂H+. (4.13)

To prove (4.13), assume for contradiction that t0 > 0 and (x0, y0) ∈ H+ × H+, which
means that (x0, y0, t0) is an interior local maximum of the function 9.

Step 2. We apply the comparison machinery for viscosity solutions. Fix another pa-
rameter γ > 0 to be selected below. By the parabolic version of the maximum prin-
ciple for semicontinuous functions [18, Theorem 8.3], there exist symmetric matrices
X, Y ∈ Rd×d such that(

X, ξ0 +Dψ(x0, t0), ∂tψ(x0, t0)
)
∈ P2,+

w1(x0, t0), (Y, η−1ξ0) ∈ J 2,−
m2(y0),

and

−

(
1
γ
+ |M|

)
I2d ≤

(
X +D2ψ(x0, t0) 0

0 −ηY

)
≤ M + γM2, (4.14)

where ξ0 := δ
−1
|x0 − y0|

2(x0 − y0) and

M :=
1
δ

(
N −N

−N N

)
, N := |x0 − y0|

2Id + 2(x0 − y0)⊗ (x0 − y0).

If x0 = y0, then we take γ := 1. Otherwise, if x0 6= y0 (we will show below that this is
indeed the case), we set γ := δ|x0 − y0|

−2. In the latter case, we obtain

C

δ
|x0− y0|

2I2d ≤

(
X +D2ψ(x0, t0) 0

0 −ηY

)
≤
C

δ
|x0− y0|

2
(
Id −Id
−Id Id

)
. (4.15)

In particular,

|X| + |Y | ≤ Cδ−1
|x0 − y0|

2
+ Cε ≤ CK2/3δ−1/3

≤ Cδ−1/3.

Step 3. We prove a lower bound for |x0 − y0|:

|x0 − y0| ≥ c(µδ)
1/2. (4.16)
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In particular, this implies that we are in the case x0 6= y0. First we note that (4.10)
and (4.15) give a lower bound for Y which, in both cases x0 = y0 (when we haveM = 0)
and x0 6= y0, can be written as

Y ≥ −Cη−1δ−1
|x0 − y0|

2Id ≥ −Cδ
−1
|x0 − y0|

2Id .

Next we observe that the equation for m2 yields

− tr∗(A(η−1ξ0, y0)Y )+H(η
−1ξ0, y0) ≥ µ.

Combining the previous two inequalities and using the positive homogeneity and coer-
civity of H and (4.10) gives

Cδ−1
|x0 − y0|

2
+ Cδ−p|x0 − y0|

3p
≥ µ.

This yields (4.16).

Step 4. We complete the proof of (4.13) by deriving a contradiction, using the results of
the previous two steps and the equations respectively satisfied by w1 and m2. Using the
fact that w1 is a subsolution of (4.9) and ∂tψ ≥ 0, we have

− tr∗
(
A(ξ0 +Dψ(x0, t0), x0)X

)
+H(ξ0 +Dψ(x0, t0), x0)

≤ ∂tψ(x0, t0)− tr
(
A(ξ0 +Dψ(x0, t0), x0)X

)
+H(ξ0 +Dψ(x0, t0), x0) ≤ µ.

By (4.10) and (4.16),∣∣tr∗(A(ξ0 +Dψ(x0, t0), x0)X
)
− tr(A(ξ0, x0)X)

∣∣
≤ C|ξ0|

−1
|Dψ(x0, t0)| |X| ≤ Cδ|x0 − y0|

−3εδ−1/3
≤ Cµ−3/2δ−5/6ε,

and, by (4.10) and (4.12),

|H(ξ0 +Dψ(x0, t0), x0)−H(ξ0, x0)| ≤ C|ξ0|
p−1
|Dψ(y0, t0)| ≤ Cε.

Combining the previous three lines and using |D2ψ(x0, t0)| ≤ Cε, we get

− tr
(
A(ξ0, x0)(X +D

2ψ(x0, t0))
)
+H(ξ0, x0) ≤ µ+ Cµ

−3/2δ−5/6ε. (4.17)

Using the equation for m2, the homogeneity of A and H and the fact that η ≥ 1 and
H ≥ 0, we obtain

− tr(A(ξ0, y0)ηY )+H(ξ0, y0) ≥ ηµ. (4.18)

The goal is to show that (4.17) and (4.18) are incompatible. Using the matrix inequal-
ity (4.15), we find

tr
(
A(ξ0, x0)(X +D

2ψ(x0, t0))− A(ξ0, y0)ηY
)

≤ Cδ−1
|x0 − y0|

2
|σ(η, x0)− σ(η, y0)|

2
≤ Cδ−1

|x0 − y0|
4
≤ Cδ1/3.
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We note that

|H(ξ0, x0)−H(ξ0, y0)| ≤ C|ξ0|
p−1
|x0 − y0| ≤ Cδ

1/3.

Taking the difference of (4.17) and (4.18) and using the previous two inequalities, we get

(η − 1)µ ≤ C(µ−3/2δ−5/6ε + δ1/3).

If we choose η := 1+Cµ−1(µ−3/2δ−5/6ε+ δ1/3), for a sufficiently large constant C, we
obtain the desired contradiction. This completes the proof of (4.13).

Step 5. We deduce that, under certain restrictions on R and δ,

w1(x, t) ≤ ηm
2(x, t)+ 1/4 ∀(x, t) ∈ H× [0, T ]. (4.19)

We consider the three alternatives provided by (4.13). In the case t0 = 0, we get

sup
(x,t)∈H+×[0,T ]

(w1−ηm
2) ≤ max9 = w1(x0, 0)−ηm2(y0, 0)−

|x0−y0|
4

4δ
−ψ(x0, 0) ≤ 0

becausew1(·, 0) < 0 by construction and 0 ≤ m2(·, 0) by assumption. Therefore we con-
sider the case where x0 or y0 belongs to ∂H+. We give only the argument for x0 ∈ ∂H+,
the other case being analogous. We divide this case into two subcases: x0 ∈ BR or
x0 6∈ BR . If x0 ∈ BR , then the assumption (4.4) yields

max9 = w1(x0, t0)− ηm
2(y0)−

|x0 − y0|
4

4δ
− ψ(x0, t0)

≤ m1(x0)− ηm
2(y0) ≤ m

2(x0)−m
2(y0) ≤ K|x0 − y0| ≤ Cδ

1/3
≤ 1/4,

provided that δ is sufficiently small. If, on the contrary, x0 ∈ ∂H+ \ BR , then

max9 ≤ νT − ηm2(y0)− ψ(x0, t0) ≤ νT − g(R − T ).

If R ≥ T , then, since g(s) = εs + 1/4 for s ≥ 0,

max9 ≤ νT − ε(R − T ).

Therefore, if
R ≥ T (1+ ε−1ν), (4.20)

then we obtain max9 ≤ 1/4. This completes the proof of (4.19).

Step 6. We complete the argument by deriving (4.5). Fix s ≥ 1 and choose λ := cµ/L2
µ

and ν := µ/2. Then

w1(x, t) ≥ m
1(x)−

CL2

µ
exp

(
−cµ

(
µt

2
−m1(x)

))
.
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By assumption (4.3), we have m1(se) ≤ M + Ks, and thus we can choose t ≥ Cs +

2µ−1M so that the last term on the right-hand side is at most 1/4. On the other hand, if
1+ s − (T − t) ≤ 0, then, since g ≤ 1/4 on (−∞, 0], we have

ηm2(se)+ ψ(se, t) ≤ ηm2(se)+ g
(
(1+ s2)1/2 − (T − t)

)
≤ m2(se)+ (η − 1)(M +Ks)+ 1/4,

where we have used assumption (4.3) again in the last line. Note that we can choose t
such that both conditions t ≥ Cµs + 2µ−1M and 1+ s − (T − t) ≤ 0 hold, provided

T ≥ 2µ−1M + Cs + 1. (4.21)

In this case we get, by the choice of η,

m1(se) ≤ m2(se)+ Cµ−1(µ−3/2δ−5/6ε + δ1/3)(M +Ks)+ 3/4.

We conclude by selecting δ := µ9/7ε6/7 and ε := cµ5(M +Ks)−7/2. Then, if we choose
T := Cµ−1(M + s) and R = Cµ−5(M + s)9/2, so that (4.20) and (4.21) hold, we obtain
m1(se) ≤ m2(se)+ 1 as claimed. This completes the proof. ut

4.2. Convergence of means

The idea of the proof of Proposition 4.1 is to use the fluctuation estimate and the “ap-
proximate” finite speed of propagation to compare mµ(·,H−e ) with mµ(·,H−e + se) +
E[mµ(se,H−e )]. If these functions are close, then the map t 7→ E[mµ(te,H−e )] is almost
linear.

We begin by extending the fluctuation estimate to large balls, using union bounds. For
t > 0 and R > 1, we define

N+R (t) := sup
x∈BRt∩(∂H+e +te)

mµ(x,H−e ), N−R (t) := inf
x∈BRt∩(∂H+e +te)

mµ(x,H−e ). (4.22)

Lemma 4.4. There exists C(data, L) ≥ 1 such that, for every R, t > 1,

E
[
|N+R (t)− E[mµ(te,H−e )]|

]
+ E

[
|N−R (t)− E[mµ(te,H−e )]|

]
≤ C(µl2µ)

−1/2t1/2 log1/2(1+ Rt). (4.23)

Proof. We prove the estimate for N+R (t), the one for N−R (t) being obtained in a similar
way. By the Lipschitz estimate and a union bound,

P
[
|N+R (t)− E[mµ(te,H−e )]| ≥ λ

]
≤ P

[
sup{|mµ(x + te,H−e )− E[mµ(te,H−e )]| : x ∈ ∂H+e ∩ BRt ∩ cλZd} ≥ λ/2

]
≤

∑
x∈∂H+e ∩BRt∩cλZd

P
[
|mµ(x + te,H−e )− E[mµ(te,H−e )]| ≥ λ/2

]
.
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There are C(Rt)d−1λ1−d terms in the sum in the previous line. Therefore, by stationarity
and Corollary 3.2,

P
[
|N+R (t)− E[mµ(te,H−e )]| ≥ λ

]
≤ C(Rt)d−1λ1−d exp(−cµl2µλ

2/t).

Integrating this inequality, we get, for every α ≥ 1,

E
[
|N+R (t)− E[mµ(te,H−e )]|

]
=

∫
∞

0
P
[
|N+R (t)− E[mµ(te,H−e )]| ≥ λ

]
dλ

≤ α(t log(1+ Rt))1/2 + C(Rt)d−1
∫
∞

α(t log(1+Rt))1/2
λ1−d exp(−cµl2µλ

2/t) dλ.

Choosing α = (µl2µ)
−1/2, we find, after a change of variable in the integral,

E
[
|N+R (t)− E[mµ(te,H−e )]|

]
≤ α(t log(1+ Rt))1/2 + CRd−1td/2(µlµ)

d/2−1
∫
∞

(log(1+Rt))1/2
s1−d exp(−s2) ds

≤ (µl2µ)
−1/2(t log(1+ Rt))1/2 + C

This yields the lemma. ut

Using the previous lemma, the approximate finite speed of propagation and a very simple
comparison argument, we next show that the quantity E[mµ(te)] is almost linear in t .

Lemma 4.5. There exists C(data, L) ≥ 1 such that, for every s, t > 1,∣∣E[mµ((t + s)e,H−e )] − E[mµ(te,H−e )] − E[mµ(se,H−e )]
∣∣

≤ Cµ(s + t)
1/2 log1/2(1+ s + t), (4.24)

where Cµ := Cµ−3/2(1+ |logµ|)−1/2.

Proof. We may assume that s ≤ t . Let N+(t) and N−(t) be defined by (4.22), where we
take R := Cµ−5(1+Lµt+ s)9/2, with C the large constant appearing in Proposition 4.2.
We apply Proposition 4.2 to m1(x) := mµ(x) and m2(x) = mµ(x,H−e + te)+N+(t) in
the domain H+e + te. To check the hypotheses of the proposition, we note that both m1

and m2 are solutions of

− tr(A(x)D2m)+H(Dm, x) = µ in H+e + te. (4.25)

By the Lipschitz estimates, we have ‖Dm1
‖∞, ‖Dm

2
‖∞ ≤ Lµ. In particular, 0 ≤

mi(x) ≤ M + Lµ|x − te| for every x ∈ H−e + te and i ∈ {1, 2}, with M := Lµt .
Finally, we observe that m1

≤ m2 on (∂H−e + te) ∩ BR(te) by the definition of N+(t).
Therefore Proposition 4.2 yields

mµ((t + s)e,H−e ) ≤ mµ((t + s)e,H−e + te)+N+(t)+ 1.
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Taking expectations and applying Lemma 4.4, we get

E[mµ((t + s)e,H−e )]
≤ E[mµ((t + s)e,H−e + te)] + E[mµ(te,H−e )] + C(µl2µ)−1/2t1/2 log1/2(1+ Rt)+ 1

= E[mµ(se,H−e )] + E[mµ(te,H−e )] + C(µl2µ)−1/2 log1/2(1+ Rt).

Since R ≤ Cµ−5(1+ t)9/2 and `µ ≥ cµ, we obtain

E[mµ((t + s)e,H−e )]
≤ E[mµ(te,H−e )] + E[mµ(se,H−e )] + C(µl2µ|logµ|)−1/2t1/2 log1/2(1+ t)

≤ E[mµ(te,H−e )] + E[mµ(se,H−e )] + Cµ−3/2
|logµ|−1/2t1/2 log1/2(1+ t).

To obtain the reverse inequality, we takem1(x) = mµ(x,H−e + te)+N−(t) andm2(x) =

mµ(x,H−e ) and follow a similar reasoning. ut

We next use Lemma 4.5 to show that the expectation of the solution of the planar metric
problem is approximately affine far from the boundary plane, thereby obtaining the first
statement of Proposition 4.1.

Lemma 4.6. There exist mµ(e) > 0 and C(data, L) ≥ 1 such that, for every t > 1,∣∣∣∣1t E[mµ(te,H−e )] −mµ(e)
∣∣∣∣ ≤ Cµt−1/2 log1/2(1+ t), (4.26)

where Cµ := Cµ−3/2(1+ |logµ|)−1/2.

Proof. As the dependence on µ of the various constants C comes from Lemma 4.5,
we omit this dependence throughout the proof. For simplicity, we denote mµ(x) =
mµ(x,H−e ). We break the argument into three steps.

Step 1 (The application of Lemma 4.5). It is convenient to denote

G(t) :=
1
t
E[mµ(te,H−e )].

Then Lemma 4.5 gives, for every 1 < t < s,

|G(s)−G(t)| =
1
s

∣∣∣∣E[mµ(se)] − E[mµ(te)] −
(
s

t
− 1

)
E[mµ(te)]

∣∣∣∣
≤

1
s
|E[mµ(se)] − E[mµ(te)] − E[mµ((s − t)e)]|

+

(
1−

t

s

)∣∣∣∣1t E[mµ(te)] − 1
s − t

E[mµ((s − t)e)]
∣∣∣∣

≤ Cs−1/2 log1/2(1+ s)+
s − t

s
|G(t)−G(s − t)|. (4.27)

Step 2. We claim there exists C ≥ 1 such that, for every 1 < t < s,

|G(s)−G(t)| ≤ Ct−1/2 log1/2(1+ t). (4.28)
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The argument is by induction. Clearly the statement holds for a fixed constant C1 and
t ∈ (1, 2] by the Lipschitz estimate. Suppose that, for a fixed m ∈ N, the statement holds
whenever t ∈ (1, 2m] and with a constant C = Cm ≥ 1. Then for every t ∈ (1, 2m+1

] and
s ∈ (t, 3t/2], we have s − t ≤ 2m and s−1(s − t)1/2 ≤ 2−1/2t1/2, and therefore

s − t

s
|G(t)−G(s−t)| ≤ Cms

−1(s−t)1/2 log1/2(1+(s−t)) ≤ 2−1/2Cmt
1/2 log1/2(1+t).

Combining this with (4.27), we deduce that, for every t ∈ (1, 2m+1
] and s ∈ (t, 3t/2],

|G(s)−G(t)| ≤ (C + 2−1/2Cm)t
−1/2 log1/2(1+ t).

To remove the restriction on s, fix t ∈ (1, 2m+1
] and s ∈ (t,∞). Denote sk := 2−ks

for k ∈ N. Take n ∈ N to be the unique positive integer such that sn ∈ (3t/4, 3t/2].
According to (4.27), we get

|G(sn)−G(s)| ≤

n∑
k=1

|G(sk)−G(sk−1)| ≤

n∑
k=1

Cs
−1/2
k log1/2(1+ sk)

≤ Ct−1/2 log1/2(1+ t).

Since either sn ≤ 2m+1 and t ∈ [sn, 3sn/2), or else sn ∈ (t, 3t/2], we have

|G(sn)−G(t)| ≤ (C + 2−1/2Cm)t
−1/2 log1/2(1+ t).

Combining the previous two inequalities yields, for every t ∈ (1, 2m+1
] and s ∈ (t,∞),

|G(s)−G(t)| ≤ (C + 2−1/2Cm)t
−1/2 log1/2(1+ t).

Thus we have shown that (4.28) holds for every t ∈ (1, 2m+1
] and s ∈ (t,∞) with a

constant Cm+1 = C + (1 − c)Cm, for some c > 0. It is clear that the sequence (Cm)
of constants remains bounded as m → ∞. By induction, we therefore obtain (4.28) for
every 1 < t < s and a fixed constant C ≥ 1.

Step 3. It is immediate from Step 2 that the sequence (G(2m))m∈N is Cauchy and there-
fore has a limit, which we denote bymµ(e). Taking s = 2m in (4.28) and sendingm→∞
yields, for every t > 1,

|G(t)−mµ(e)| ≤ Ct
−1/2 log1/2(1+ t).

This completes the proof of (4.26). ut

The previous lemma gives the first statement of Proposition 4.1. To obtain the second
statement, it remains to check that (µ, e) 7→ mµ(e) is continuous, which relies on another
application of Proposition 4.2.



836 Scott Armstrong, Pierre Cardaliaguet

Lemma 4.7. For any L ≥ 1, there exist C(data, L) ≥ 1 and 0 < c(data, L) ≤ 1 such
that, for each 0 < ν ≤ µ ≤ L and e1, e2 ∈ ∂B1,

|mν(e1)−mµ(e2)| ≤ Cµ
1/p−1

|µ− ν| + Cµ|e1 − e2|
1/8(1+ ∣∣log |e1 − e2|

∣∣)1/2,
where Cµ = Cµ−31/16(1+ |logµ|)1/2 and

mµ(e) ≥ mν(e)+ cν
1/p−1(µ− ν).

Finally, for every µ > 0,

(µ/c0)
1/p
≤ mµ(e) ≤ (µ/C0)

1/p. (4.29)

Proof. We use Proposition 4.2 to approximate H−e by a compact target which is continu-
ous in e. We then use the fact that K 7→ mµ(x,K) is Lipschitz in the Hausdorff metric.

We fix e1, e2 ∈ ∂B1. Given R ≥ 2, there exists a smooth convex set K i
R , i ∈ {1, 2},

with diameter at most CR and curvature bounded by 1 which is contained in H−ei and is
such that BR ∩ ∂H−ei ⊆ KR ∩ ∂H

−
ei

. Furthermore, we may assume that K2
R is the image

of K1
R under the rotation that sends e1 to e2. Since the diameter of KiR is at most CR,

distH (K1
R,K

2
R) ≤ CR|e1 − e2|. (4.30)

Step 1. We show that, for every 1 < s < (C−1µ5R)2/9 − 1 and i ∈ {1, 2},

|mµ(sei,H−ei )−mµ(sei,K
i
R)| ≤ 1, (4.31)

where C is the constant in Proposition 4.2. Let m1
:= mµ(·,K

i
R) and m2

:= mµ(·,H−ei ).
Since K i

R ⊆ H−ei , we have m2
≤ m1. An application of Proposition 4.2 then gives (4.31).

Step 2. According to (A.19), for any x /∈ K1
R ∪K

2
R ,

|mµ(x,K
1
R)−mµ(x,K

2
R)| ≤ LµR|e2 − e1|.

By the Lipschitz estimate for mµ(·,K i
R), we obtain, provided that |e2 − e1| < c,

|mµ(se1,H−e1
)−mµ(se2,H−e2

)|

≤ |mµ(se1,H−e1
)−mµ(se1,K

1
R)| + |mµ(se1,K

1
R)−mµ(se2,K

1
R)|

+ |mµ(se2,K
1
R)−mµ(se2,K

2
R)| + |mµ(se2,K

2
R)−mµ(se2,H−e2

)|

≤ 2+ C(R + s)|e1 − e2|.

Dividing by s, taking expectations and using (4.26) yields

|mµ(e1)−mµ(e2)| ≤ 2s−1
+ C(Rs−1

+ 1)|e1 − e2| + Cµs
−1/2 log1/2(1+ s),

where Cµ = Cµ−3/2(1+ |logµ|)1/2. Taking

R := Cµ−5(1+ s9/2) and s := (µ−7/2
|e1 − e2|)

−1/4

we obtain, for every e1, e2 ∈ ∂B1 with |e1 − e2| ≤ c,

|mµ(e1)−mµ(e2)| ≤ Cµ
−31/16(1+ |logµ|)1/2|e1 − e2|

1/8∣∣log |e1 − e2|
∣∣1/2.
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Step 3. We next check the continuity of µ 7→ mµ(e). Fix 0 < ν ≤ µ <∞. It is clear that
mν ≤ mµ and thusmν ≤ mµ. By positive homogeneity ofH , (µ/ν)mν is a supersolution
of the planar metric problem for µ. By comparison, we get mµ ≤ (µ/ν)mν , and thus
mµ ≤ (µ/ν)mν . On the other hand, mν ≤ C−1

0 ν1/p. Combining these yields

|mµ −mν | ≤ Cν
1/p−1

|ν − µ|.

Step 4. We show that µ 7→ mµ(e) is strictly increasing. For ν < µ, let w := (1+ ε)mν .
Then, by homogeneity of H ,

− tr(A(Dw, x)D2e)+H(Dw, x) = (1+ ε)
(
− tr(A(Dmν, x)D2mν)+H(Dmν, x)

)
+ (1+ ε)((1+ ε)p−1

− 1)H(Dmν, x)
≤ (1+ ε)ν + CεLν ≤ µ

provided that ε ≤ c(µ − ν) ∧ 1. We deduce that mµ ≥ mν + (c(µ − ν) ∧ 1)mν , which
implies that mµ(e) ≥ (1+ c(µ− ν) ∧ 1)mν(e), as desired.

Step 5. We conclude by noticing that (4.29) follows from (A.22). ut

The proof of Proposition 4.1 is now complete, as the statement follows immediately from
Lemmas 4.6 and 4.7.

Proof of Proposition 2.2. Fix L ≥ 1, e ∈ ∂B1 and µ ∈ (0, L]. An immediate conse-
quence of Corollary 3.2 and Proposition 4.1 is that for every λ > 0 satisfying

λ ≥ Cµ−3/2(1+ x · e)1/2
(
1+ |logµ| + log(1+ x · e)

)1/2 (4.32)

and for every x ∈ H+e we have

P[|mµ(x,H−e )−mµ(e)(x · e)| > λ] ≤ C exp
(
−cµ3λ2

1+ x · e

)
. (4.33)

On the other hand, we have the following deterministic bounds from (A.22) and (4.29):

|mµ(x,H−e )−mµ(e)(x · e)| ≤ 2(µ/c0)
1/p(x · e) ≤ C(x · e)µ.

We deduce that if

µ ≤ c(1+ x · e)−1/5 log1/5(1+ x · e), (4.34)

λ ≥ C(1+ x · e)4/5(1+ log(1+ x · e))1/5, (4.35)

then
|mµ(x,H−e )−mµ(e)(x · e)| ≤ λ P-a.s.

Notice that (4.35) implies that at least one of (4.34) and (4.32) must hold. We deduce that,
for every µ > 0 and every λ satisfying (4.35), we have

P[|mµ(x,H−e )−mµ(e)(x · e)| > λ] ≤ C exp
(
−cλ2 log3/5(1+ x · e)

(1+ x · e)8/5

)
. (4.36)
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By adjusting the constant C, we obtain, for every λ > 0,

P[|mµ(x,H−e )−mµ(e)(x · e)| > λ] ≤ C exp
(

−λ2

(1+ x · e)8/5

)
. (4.37)

Indeed, the right side of (4.37) is larger than that of (4.36) and also larger than 1 if λ does
not satisfy (4.35). We have proved (2.8). The fact that (µ, e) 7→ mµ(e) is continuous was
already proved in Lemma 4.7. ut

We conclude this section with a crude deterministic estimate concerning the continuity of
mµ(x,H−−se)with respect to its parameters µ and e, which is obtained from a variation
of the proof of Lemma 4.7 above. This is needed in Section 2 in the proof of the main
result to “snap to a grid” before taking union bounds in the final step of the argument.

Lemma 4.8. There exists C(data, L) ≥ 1 such that, for every 0 < ν ≤ µ ≤ L, s ≥ 1,
e1, e2 ∈ ∂B1 and x ∈ (H+e1

− se1) ∩ (H+e2
− se2),

|mµ(x,H−e1
− se1)−mν(x,H−e2

− se2)|

≤ 2+ C
(
|µ− ν|1/2|x| + (1+ |x| + s)9/2|e2 − e1|

1/5p+1). (4.38)

Proof. We first argue that

|mµ(x,H−e1
− se1)−mν(x,H−e2

− se2)|

≤ Cν1/p−1
|µ− ν| |x| + 2+ Cµ−5(1+ |x| + s)9/2|e2 − e1|. (4.39)

The continuity estimate in µ was essentially already obtained above in Step 3 of the proof
of Lemma 4.7. There we found that mν ≤ mµ ≤ (µ/ν)mν , and this yields

|mµ(x,H−e1
− se1)−mν(x,H−e1

− se1)| ≤ Cν
−1
|µ− ν|mν(x) ≤ Cν

1/p−1
|µ− ν| |x|.

We turn to the continuity with respect to e. We denote by z the projection of x onto
∂(H+e1

− se1) and let s̃ > 0 be such that x = z+ s̃e1. We also set x2 = z+ s̃e2. For later
use, we record the following algebraic relations:

H−e1
+ z = H−e1

− se1, s̃ = x · e1 + s, z = x − (x · e1 + s)e1.

We split the estimate of |mµ(x,H−e1
− se1)−mµ(x,H−e2

− se2)| into three terms:

|mµ(x,H−e1
− se1)−mµ(x,H−e2

− se2)|

≤ |mµ(x,H−e1
+ z)−mµ(x2,H−e2

+ z)| + |mµ(x2,H−e2
+ z)−mµ(x,H−e2

+ z)|

+ |mµ(x,H−e2
+ z)−mµ(x,H−e2

− se2)|.

The first term on the right side can be handled as in Step 2 of the proof of Lemma 4.7,
where we have translated the picture by z. For R̃ := Cµ−5(1+ s̃9/2), we have

|mµ(x,H−e1
+ z)−mµ(x2,H−e2

+ z)|

= |mµ(z+ s̃e1,H−e1
+ z)−mµ(z+ s̃e2,H−e2

+ z)| ≤ 2+ C(R̃ + s̃)|e1 − e2|.
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The last two terms are controlled by the Lipschitz estimate:

|mµ(x2,H−e2
+ z)−mµ(x,H−e2

+ z)| ≤ Lµ|x2 − x| ≤ Cs̃ |e1 − e2|

≤ C(|x| + s)|e1 − e2|

and

|mµ(x,H−e2
+ z)−mµ(x,H−e2

− se2)| ≤ Lµ distH (H−e2
+ z,H−e2

− se2) ≤ C|z · e2 + s|

≤ C(|x| + s)|e2 − e1|.

Combining the above inequalities, we get

|mµ(x,H−e1
− se1)−mµ(x,H−e2

− se2)| ≤ 2+ Cµ−5(1+ |x| + s)9/2|e2 − e1|.

This proves (4.39). To complete the proof of the lemma, we use (A.22), which states that

mµ(x,H−e − se) ≤ Cµ1/p(x · e + s) ≤ Cµ1/p(|x| + s).

We obtain (4.38) by interpolating the previous inequality with (4.39) (i.e., we use the
latter for large µ and the former for small µ). ut

5. The approximate corrector problem

In this section, we prove Proposition 2.4, which links the planar metric and approximate
corrector problems. It essentially states that the quantity |δvδ(0, ξ)+H(ξ)| is controlled
by the convergence of the planar metric problem to its limit.

Rather than simply cite comparison results, the quasilinear viscous term and the de-
sire for quantitative results force us to use the full uniqueness machinery for viscosity
solutions of second-order equations [18] “inside” the usual perturbed test function argu-
ment. The technical details unfortunately obscure the relatively simple and straightfor-
ward ideas, and so we recommend to the reader Sections 5 and 6 of [2], where similar
ideas are encountered in a simpler situation.

Proof of Proposition 2.4. Fix ξ ∈ Rd \ {0}. Denote µ := H(ξ) > 0 and set e := ξ/|ξ |
and H± := H±e . The basic idea of the proof is to show that vδ(·, ξ) must be close enough
to mµ(·,H− − se), for s ≈ δ−1, in a ball of radius ≈ δ−1 centered at the origin, so that
we can infer the limit (2.11) from (2.7).

We assume that for fixed δ, λ ∈ (0, 1] and s := C′/(λδ), with C′ ≥ 1 to be selected
below, we have

sup
x∈Bs/2

|mµ(x,H− − se)−mµ(e)(s + x · e)| ≤ λ/δ. (5.1)

The goal is to prove that
−δvδ(0, ξ) ≤ µ+ Cλ1/5. (5.2)

(The proof that −δvδ(0, ξ) ≥ µ− Cλ1/5 is very similar, and so we omit it.)
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The argument for (5.2) is based on a comparison argument, and so as usual we “double
the variables,” introducing the auxiliary function

8(x, y) := mµ(x,H− − se)− (ξ · y + vδ(y, ξ))− λ ((1+ |x|2)1/2 − 1)︸ ︷︷ ︸
=:φ(x)

−
1
4ε
|x − y|4,

where ε ∈ (0, 1] is selected below.

Step 1. We show there exists a point (x0, y0) ∈ Bs/4 × Bs/4 such that

8(x0, y0) = sup
x,y∈Bs/2

8(x, y). (5.3)

We take (x0, y0) ∈ Bs/2 × Bs/2 to be any point at which 8 attains its maximum
over Bs/2 × Bs/2. We claim that x0 and y0 must lie in Bs/4 if we make a suitable choice
of C′. Observe that the Lipschitz estimate for mµ (see Theorem A.6) implies that

|x0 − y0| ≤ Cε
1/3. (5.4)

The inequality 8(x0, y0) ≥ 8(0, 0) gives

λφ(x0) ≤ |mµ(x0,H− − se)−mµ(0,H− − se)− ξ · x0| + |ξ | |x0 − y0| + Cδ
−1.

Using the previous line, (5.1), (5.4) and taking C′ ≥ C(data, L), we obtain

φ(x0) ≤
2λ
δ
+
C

λδ
+
Cε1/3

λ
≤
C

λδ
.

Since φ grows linearly, we get |x0| ≤ C/(λδ) and then (5.4) gives |y0| ≤ C/(λδ). These
constants C do not depend on the choice of C′, therefore we may further enlarge C′, if
necessary, to obtain |x0| + |y0| <

1
4 s. This completes the proof of the claim.

Step 2. Fix γ > 0. According to Step 1 and the maximum principle for semicontinuous
functions [18, Theorem 3.2], there exist symmetric matrices X, Y ∈ Rd×d satisfying

−

(
1
γ
+ |M|

)
I2d ≤

(
X 0
0 −Y

)
≤ M + γM2 (5.5)

and {
(X + λD2φ(x0), η + λDφ(x0)) ∈ J 2,+

(mµ(·,H− − se))(x0),

(Y, η − ξ) ∈ J 2,−
(vδ(·, ξ))(y0).

where η := ε−1(x0 − y0)
2
|x0 − y0| and M ∈ Rd×d is defined by

M :=
1
ε

(
N −N

−N N

)
, N := |x0 − y0|

2Id + 2(x0 − y0)⊗ (x0 − y0). (5.6)

We choose γ = ε|x0 − y0|
−2 so that (5.5) becomes

−
C|x0 − y0|

2

ε
I2d ≤

(
X 0
0 −Y

)
≤
C|x0 − y0|

2

ε

(
Id −Id
−Id Id

)
.
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Using the equations for mµ and vδ , we obtain

− tr
(
A(η + λDφ(x0), x0)(X + λD

2φ(x0))
)
+H(η + λDφ(x0), x0) ≤ µ (5.7)

and
− tr(A(η, y0)Y )+H(η, y0) ≥ −δv

δ(y0, ξ). (5.8)

The rest of the proof is concerned with deriving (5.2) from (5.4), (5.5), (5.7) and (5.8).

Step 3. We next obtain a lower bound for |x0 − y0| and |η|:

|x0 − y0| ≥ cµ
1/2ε1/2 and |η| ≥ cµ3/2ε1/2. (5.9)

Using (5.8) and (A.24), we have

cµ = cH(ξ) ≤ c0|ξ |
p
≤ −δvδ(y0, ξ) ≤ − tr(A(η, y0)Y )+H(η, y0) ≤ C0(|M| + |η|

p).

As |M| ≤ Cε−1
|x0 − y0|

2 and |η| = ε−1
|x0 − y0|

3, we get (5.9).

Step 4. We complete the proof of (5.2). Using (5.4) and the matrix inequality (5.6), we
obtain

tr(A(η, x0)X − A(η, y0)Y ) = tr
((
X 0
0 −Y

)(
σ(η, x0)

σ (η, y0)

)(
σ(η, x0)

σ (η, y0)

)T)
≤ Cε−1/3

|σ(η, x0)− σ(η, y0)|
2
≤ Cε−1/3

|x0 − y0|
2
≤ Cε1/3.

Thus

tr
(
A(η + λDφ(x0), x0)X

)
− tr(A(η, y0)Y )

≤ |A(η + λDφ(x0), x0)− A(η, x0)| |X| + tr(A(η, x0)X − A(η, y0)Y )

≤ |η|−1λ|X| + Cε1/3
≤ C(λµ−3/2ε−5/6

+ ε1/3).

Similarly,

|H(η + λDφ(x0), x0)−H(η, y0)| ≤ C|η|
p(λ+ |x0 − y0|) ≤ C(λ+ ε

1/3).

Subtracting (5.7) from (5.8) and combining the above inequalities yields

−δvδ(y0, ξ) ≤ µ+ C(λµ
−3/2ε−5/6

+ ε1/3).

We now select the value of ε by optimizing the last expression, which leads to the choice
ε := λ6/7µ−9/7. We obtain

−δvδ(y0, ξ) ≤ µ+ Cµ
−3/7λ2/7. (5.10)

We need to obtain the same inequality at the origin instead of y0. Since |x0 − y0| ≤

|x0| + |y0| ≤ s/2, (5.3) gives 8(x0 − y0, 0) ≤ 8(x0, y0). This inequality implies

vδ(y0, ξ)− v
δ(0, ξ) ≤ mµ(x0,H−− se)−mµ(x0− y0,H−− se)− ξ · y0+C|x0− y0|.



842 Scott Armstrong, Pierre Cardaliaguet

Another application of (5.1) then yields

vδ(y0, ξ)− v
δ(0, ξ) ≤ Cλ/δ + Cε1/3

≤ Cλ/δ + Cµ−3/7λ2/7.

Multiplying by δ, using λ, δ ≤ 1 and combining the result with (5.10) gives

−δvδ(0, ξ) ≤ µ+ Cµ−3/7λ2/7. (5.11)

This estimate obviously degenerates for small µ. Therefore, to obtain (5.2), it is necessary
to interpolate the previous inequality with the deterministic bound from (A.24), which is
useful precisely for small µ:

−δvδ(0, ξ) ≤ C0|ξ |
p
≤ Cµ ≤ µ+ Cµ.

We obtain
−δvδ(0, ξ) ≤ µ+ Cµ ∧ (µ−3/7λ2/7) ≤ µ+ Cλ1/5.

This completes the proof of (5.2). ut

Proof of Proposition 2.3. From Propositions 2.2 and 2.4, we deduce that

δvδ(0, ξ)→−H(ξ) in probability (with respect to P) as δ→ 0.

The growth bound (2.9) is therefore immediate from (A.24), while (A.25) and (2.9) imply
that, for all R > 0 and ξ, η ∈ BR ,

|H(ξ)−H(η)| ≤
(
LR(|ξ | ∧ |η|})

−2p/7
|ξ − η|2/7

)
∧ (C0(|ξ | + |η|)),

from which (2.10) follows. ut

6. Homogenization of the time-dependent problem

In this section, we prove Proposition 2.5, which roughly asserts that the limit (2.11) for
the approximate correctors controls the homogenization of the full time-dependent initial-
value problem for (1.1). The argument is a quantitative version of the so-called perturbed
test function argument, a technical device introduced in [21]. Like the result in the previ-
ous section, this is a purely deterministic PDE fact derived from a comparison argument
using the “full” uniqueness machinery for second-order equations.

It has been pointed out in [12] that, for the mean curvature equation and other singular
quasilinear equations, the argument from [21] does not apply in a straightforward way and
some regularization of the solutions is needed. We see this in our approach by the fact that,
at the end of the argument, we cannot send the parameters to zero in a sequence to obtain
a qualitative result; rather we have to send several of the parameters to zero at the same
time.
Proof of Proposition 2.5. Fix 0 < ε ≤ δ ≤ λ ≤ 1. We will argue that

sup
(x,t)∈BR×[0,T ]

(uε(x, t)− u(x, t)) ≥ λ (6.1)

implies

inf
(x,ξ)∈BC/ε×BL

(−δvδ(x, ξ)−H(ξ)) ≤ −
λ

C
+ C

(
ε

δλ

)1/10

. (6.2)
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This will prove only half of the proposition, since we must also establish that

inf
(x,t)∈BR×[0,T ]

(uε(x, t)− u(x, t)) ≤ −λ

⇒ sup
(x,ξ)∈BC/ε×BL

(−δvδ(x, ξ)−H(ξ)) ≥
λ

C
− C

(
ε

δλ

)1/10

. (6.3)

However, the argument we give for (6.1)⇒(6.2) can be modified in a straightforward way
to yield (6.3). Therefore we omit the proof of (6.3). For the rest of the proof, we assume
that (6.1) holds.

Throughout the argument, C and c denote positive constants which depend
on (data, L,R, T ) and may vary at each occurrence. We will prove the result under the
further assumption that λ ≤ c. We obtain the same result for all λ ∈ (0, 1] by adjusting
the constant C in the first term on the right side of (6.2).

Step 1. We begin by doubling the variables to find an initial touching point. This is not
the main comparison argument; the objective here is merely to get an initial direction ξ0
which is then used in the next step to introduce the appropriate approximate corrector.

We fix parameters α ∈ [ε, λ] and γ ∈ (0, λ] to be selected below and define a first
auxiliary function 8 : Rd × Rd × [0, T ] → R by

8(x, y, t) := uε(x, t)− u(y, t)−
1

2α
|x − y|2 − γφ(x)−

λ

2T
t,

where φ : Rd → R is given by φ(x) := (1 + |x|2)1/2 − 1. In order to check that 8
attains its supremum on Rd × Rd × [0, T ], we notice that, according to (2.2) and the
initial condition in (2.1), for every (x, y, t) ∈ Rd × Rd × [0, T ],

8(x, y, t) ≤ Lt + L|x − y| −
1

2α
|x − y|2 − γφ(x)

≤ Lt + αL2
−

1
4α
|x − y|2 − γ (|x| − 1).

The assumption (6.1) implies the existence of (x̂, t̂) ∈ BR × [0, T ] for which

8(x̂, x̂, t̂) ≥ λ− γφ(x̂)− 1
2λ ≥

1
2λ− γR.

Imposing the restriction that γ ≤ 1
4λR

−1, we get

8(x̂, x̂, t̂) ≥ 1
4λ.

Note that any (x, y, t) such that 8(x, y, t) ≥ 1
8λ must then satisfy

1
8λ ≤ Lt + αL

2
+ γ −

1
4α
|x − y|2 − γ |x|.

In particular,

γ |x| +
1

4α
|x − y|2 ≤ LT + αL2

+ 1 ≤ C(LT + L2). (6.4)
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and

t ≥
λ

8L
− αL−

γ

L
.

Imposing the restrictions γ ≤ 1
32λ and α ≤ 1

32L
−2λ yields

t ≥
λ

16L
> 0. (6.5)

We deduce that the set where 8 is at least 1
4λ is nonempty, bounded and contained in the

time interval [λ/(16L), T ]. Thus there exists (x0, y0, t0) ∈ Rd × Rd × [λ/(16L), T ] for
which

8(x0, y0, t0) = sup
(x,y,t)∈Rd×Rd×[0,T ]

8(x, y, t) ≥ 8(x̂, x̂, t̂) ≥ 1
4λ. (6.6)

It is useful to denote

ξ0 :=
x0 − y0

α
.

According to the Lipschitz assumption (2.2) for u(·, t0), we have

|ξ0| ≤ L. (6.7)

Step 2. We introduce the approximate corrector, which requires a new auxiliary func-
tion and a tripling of the variables, and find a new touching point. Fixing an additional
parameter β ∈ (0, ε], to be selected below, we set

9(x, y, z, t) := uε(x, t)− u(y, t)− εvδ(z/ε, ξ0)+ ξ0 · (x − z)−
1

2α
|x − y|2

−
1

4β3 |x − z|
4
−

1
2α
(|x − x0|

2
+ |y − y0|

2)− γφ(x)−
λ

2T
t.

Since, by (A.24),

9(x, y, z, t) ≤ 8(x, y, t)+
C0L

pε

δ
+ L|x − z| −

1
4β3 |x − z|

4

≤ 8(x, y, t)+
C0L

pε

δ
+ CL4/3β3

−
1

8β3 |x − z|
4

and

9(x0, y0, x0, t0) = 8(x0, y0, t0)− εv
δ(x0/ε, ξ0) ≥ 8(x0, y0, t0) ≥

1
4λ,

we obtain the existence of (xβ , yβ , zβ , tβ) ∈ Rd × Rd × Rd × [0, T ] such that

9(xβ , yβ , zβ , tβ) = sup
(x,y,z,t)∈Rd×Rd×Rd×[0,T ]

9(x, y, z, t) ≥ 1
4λ. (6.8)
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If we impose the restrictions C0L
pε ≤ 1

16λδ and CL4/3β3
≤ λ, then we obtain in partic-

ular
8(xβ , yβ , tβ) ≥

1
2λ− C0L

pε/δ − CL4/3β3
≥

1
8λ.

This implies by Step 1 that

tβ ≥
λ

16L
and |xβ | ≤

CL

γ
(L+ T ). (6.9)

In particular, tβ > 0.
We conclude this step with some estimates which are needed later. First we observe

that the Lipschitz estimate for vδ(·, ξ0) gives∣∣∣∣ 1
β3 |xβ − zβ |

2(xβ − zβ)− ξ0

∣∣∣∣ ≤ C.
Hence

|xβ − zβ | ≤ Cβ (6.10)

and in particular, by (6.9),

|zβ | ≤
CL

γ
(L+ T )+ Cβ ≤

CL

γ
(L+ T ). (6.11)

We next claim that

|xβ − x0|
2
+ |yβ − y0|

2
≤ Cεα/δ. (6.12)

To see this, we use the fact that

8(xβ , yβ , tβ) ≤ 8(x0, y0, t0) = 9(x0, y0, x0, t0)+ εv
δ(x0/ε, ξ0)

≤ 9(xβ , yβ , zβ , tβ)+ εv
δ(x0/ε, ξ0).

This can be expressed equivalently (recall β ≤ ε ≤ εδ−1) as

1
2α
(|xβ − x0|

2
+ |yβ − y0|

2)

≤ εvδ(x0/ε, ξ0)− εv
δ(z0/ε, ξ0)+ ξ0 · (xβ − zβ)−

1
4β3 |xβ − zβ |

4

≤ C(ε/δ + β) ≤ Cε/δ,

which yields (6.12).

Step 3 (The application of the parabolic version of the maximum principle for semicontin-
uous functions [18, Theorem 8.3]). We obtain, for every η > 0, the existence of d-by-d
symmetric matrices X, Y and Z and b ∈ R such that

−

(
1
η
+ |M|

)
I3d ≤

X 0 0
0 −Y 0
0 0 −ε−1Z

 ≤ M + ηM2, (6.13)
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and 
(X, ξβ + ξ

′, b) ∈ P2,+
uε(xβ , tβ),(

Y, ξ0 + ξ
′′, b −

λ

2T

)
∈ P2,+

u(yβ , tβ),

(Z,−ξ0 + ξβ)) ∈ J 2,−
vδ(·, ξ0)(zβ/ε),

where

M :=
1
α

2Id −Id 0
−Id 2Id 0

0 0 0

+ 1
β3

 N 0 −N

0 0 0
−N 0 N

+ γ
P 0 0

0 0 0
0 0 0

 ,
N := |xβ − zβ |

2Id + 2(xβ − zβ)⊗ (xβ − zβ), P := D2φ(xβ),

and 

ξβ :=
1
β3 |xβ − zβ |

2(xβ − zβ),

ξ ′ :=
1
α
(2(xβ − x0)− (yβ − y0))+ γDφ(xβ),

ξ ′′ :=
1
α
((xβ − x0)− 2(yβ − y0)).

Observe that (recall that β ≤ ε, α and γ ≤ 1)

|M| ≤ C

(
1
α
+
|xβ − zβ |

2

β3 + γ |P |

)
≤
C

β
, (6.14)

and, according to (6.12),

|ξ ′| ≤ C

(
ε

αδ

)1/2

+ γ and |ξ ′′| ≤ C

(
ε

αδ

)1/2

. (6.15)

Taking η := |M|−1 in the matrix inequality, in view of the fact that M ≥ 0, gives

−C|M|I3d ≤

X 0 0
0 −Y 0
0 0 −ε−1Z

 ≤ CM. (6.16)

As tβ > 0, the equations satisfied by uε, u and vδ yield

−ε tr(A(ξβ + ξ ′, xβ/ε)X)+H(ξβ + ξ ′, xβ/ε) ≤ −b, (6.17)

H(ξ0 + ξ
′′) ≥ −b +

λ

2T
, (6.18)

− tr(A(ξβ , zβ/ε)Z)+H(ξβ , zβ/ε) ≥ −δvδ(zβ/ε, ξ0). (6.19)

The rest of the proof is devoted to combining the previous five inequalities to obtain
the desired conclusion. Due to the singularity of the diffusion term, it is natural to split
the argument into two cases, depending on the size of |ξβ |. For this purpose, we fix an
additional parameter s ∈ [ε, 1], to be selected below.
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Step 4. We consider the case |ξβ | ≤ s. Then (6.16) and the estimate for |M| yield

|Z| ≤ Cε|M| ≤ Cε

(
1
α
+
s2/3

β

)
,

and the left side of (6.19) can then be estimated brutally:

−δvδ(zβ/ε, ξ0) ≤ − tr(A(ξβ , zβ/ε)Z)+H(ξβ , zβ/ε) ≤ Cε
(

1
α
+
s2/3

β

)
+ Csp.

Since sp ≤ s and H ≥ 0, we deduce that

−δvδ(zβ/ε, ξ0) ≤ H(ξ0)−
λ

2T
+ C

(
ε

α
+
s2/3ε

β

)
+ Cs. (6.20)

Step 5. We consider the case |ξβ | ≥ s. Then

|A(ξβ + ξ
′, xβ/ε)X − A(ξβ , xβ/ε)X| ≤ C|ξβ |

−1
|ξ ′| |X| ≤

C

s

((
ε

αδ

)1/2

+ γ

)
|M|.

Using (6.14), we get

ε|A(ξβ + ξ
′, xβ/ε)X − A(ξβ , xβ/ε)X| ≤

Cε

sβ

((
ε

αδ

)1/2

+ γ

)
. (6.21)

Multiplying the second inequality of (6.16) by the matrixσ(ξβ , xβ/ε)0
σ(ξβ , zβ/ε)

σ(ξβ , xβ/ε)0
σ(ξβ , zβ/ε)

T ,
taking the trace of the resulting expression and using (6.10) yields

− tr(εA(ξβ , xβ/ε)X − A(ξβ , zβ/ε)Z)

≤
Cε|N |

β3 |σ(ξβ , xβ/ε)− σ(ξβ , zβ/ε)|
2
+
Cε

α

≤
C

εβ
|zβ − xβ |

2
+
Cε

α
≤ C

(
β

ε
+
ε

α

)
. (6.22)

For the H terms, we similarly have

|H(ξβ + ξ
′, xβ/ε)−H(ξβ , zβ/ε)| ≤ C(|ξ

′
| + ε−1

|xβ − zβ |) ≤ C

(
β

ε
+

(
ε

αδ

)1/2

+ γ

)
.

(6.23)
The Hölder continuity of H (see (2.10)) combined with (6.15) gives

|H(ξ0 + ξ
′′)−H(ξ0)| ≤ CK|ξ

′′
|
a
≤ CK

(
ε

αδ

)1/7

. (6.24)
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Combining (6.17)–(6.19) and (6.21)–(6.24) yields (recall that β ≤ ε and s ≤ 1)

−δvδ(zβ/ε, ξ0) ≤ H(ξ0)−
λ

2T
+ CE,

where

E :=
β

ε
+
ε

α
+
ε

sβ

((
ε

αδ

)1/2

+ γ

)
+K

(
ε

αδ

)1/7

.

Step 6. Combining the results of Steps 4 and 5, we have shown that

−δvδ(zβ/ε, ξ0) ≤ H(ξ0)−
λ

2T
+ CE ′ (6.25)

with

E ′ :=
s2/3ε

β
+ s +

β

ε
+
ε

α
+
ε

sβ

((
ε

αδ

)1/2

+ γ

)
+K

(
ε

αδ

)1/7

.

Now we need to optimize the parameters in order to minimize the error E ′. It may not
be immediately obvious that the parameters can be chosen in such a way as to make E ′
small, ensuring even a qualitative proof. It is thus reassuring to notice that if we take β to
be a power of ε slightly larger than one, s to be a very small positive power of ε, and γ
to be equal to the other term sharing the parentheses with it, then we can send ε → 0 to
get E ′→ 0.

To obtain a quantitative bound, an analysis leads to the following choices of the pa-
rameters (recall that we consider ε ≤ δ ≤ λ to be given):

α :=
λ

32L
, β := ε

(
s1/3
+ s−1/2

(
ε

αδ

)1/4)
,

s :=

(
ε

αδ

)3/10

, γ :=
1
2

(
ε

αδ

)1/2

∧
λ

32+ 4R
.

It is straightforward to check that each of the constraints we have imposed on the pa-
rameters is fulfilled provided that λ ≤ c for a sufficiently small positive constant c. We
obtain

E ′ = C
(
ε

δλ

)1/10

.

Moreover, due to (6.7) and (6.11), the choice of γ yields

|zβ | ≤
C

γ
≤ Cλ1/2δ1/2ε−1/2

+ Cλ−1
≤ Cε−1,

provided that λ ≤ c for sufficiently small c. Thus (6.25) gives

inf
(x,ξ)∈BC/ε×BL

(−δvδ(x, ξ)−H(ξ)) ≤ −
λ

2T
+ C

(
ε

δλ

)1/10

,

as desired. This completes the proof of (6.2). ut
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Appendix. Well-posedness and Lipschitz estimates

The section is devoted to the well-posedness and global Lipschitz regularity of the metric
problem and of the approximate corrector equation.

A.1. The role of the (LS) condition

We start our discussion by explaining the technical role of the (LS) condition (1.12).
Beside (1.12), we suppose that the pair (σ,H) is in � and thus satisfies the standing
assumptions (1.7)–(1.11). Note that, by C1 regularity and the homogeneity assumptions
on σ , we have

|DξA(ξ, y)| ≤ C0|ξ |
−1

∀ξ ∈ Rd \ {0}. (A.1)

The (LS) condition (1.12) is devised to provide Lipschitz bounds on solutions. Its
usefulness is captured in the following technical lemma.

Lemma A.1. Let κ and ρ be as in the (LS) condition. Fix γ > 0,M ∈ R, ξ, η ∈ Rd \{0},
x, y ∈ Rd and symmetic matrices X, Y ∈ Rd×d . Assume that

− tr(A(ξ, x)X)+H(ξ, x) ≤ M ≤ − tr(A(η, y)Y )+H(η, y)

and (
X 0
0 −Y

)
≤ (1+ κ)γ

(
Id −Id
−Id Id

)
.

Assume also that γ (x − y) = ξ and (1+ γ )|ξ − η| ≤ κ . Then

|ξ | ≤ ρ−1
(

2M2

κ
+ 8C0|σ |

2κ2
)
∨

(
1+M
c0

)1/p

.

Proof. We may suppose that |ξ | ≥ 0 := (c−1
0 (1+M))1/p, otherwise there is nothing to

show. Let θ be as in the (LS) condition. According to Lemma A.2 below, there exists a
C1 map λ 7→ Zλ from [0, 1] to the set of d-by-d symmetric matrices such that Z0 = X,
Z1 ≤ Y and

d

dλ
Zλ =

1
(1+ κ)γ

Z2
λ.

Define
f (λ) = − tr(A(ξλ, xλ)Zλ)+H(ξλ, xλ).

where ξλ := (1− λ)ξ + λη and xλ := (1− λ)x + λy. Then f (0) ≤ M , while

f (1) = − tr(A(η, y)Z1)+H(η, y) ≥ − tr(A(η, y)Y )+H(η, y) ≥ M.

We deduce the existence of a largest value λ ∈ [0, 1] for which f (λ) = M . Note that
f ′(λ) ≥ 0. As |ξλ| ≥ 1 (since |ξ | ≥ 2), this means that

− tr
(
A

Z2
λ

(1+ κ)γ

)
− tr((AξZλ) · (η − ξ))

− tr((AxZλ) · (y − x))+
(
Hξ · (η − ξ)+Hx · (y − x)

)
≥ 0. (A.2)
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where A, H and their derivatives are evaluated at (ξλ, xλ). Without loss of generality we
assume that |ξ |, |η| ≥ 1. Following now the computation from [26, Theorem 1.1], we
obtain

tr((AxZλ) · (y − x))

≤ |σx | tr(AZ2
λ)

1/2
|x − y| ≤ θ tr

(
A

Z2
λ

(1+ κ)γ

)
+ θ−1(1+ κ)γ |σx |2|x − y|2

and, in the same way,

tr((AξZλ) · (η − ξ)) ≤ θ tr
(
A

Z2
λ

(1+ κ)γ

)
+ θ−1(1+ κ)γ |σξ |2|ξ − η|2

≤ θ tr
(
A

Z2
λ

(1+ κ)γ

)
+ θ−1(1+ κ)γC0|ξ − η|

2

because σξ (ξλ, x) is bounded by C0 since |ξλ| ≥ 1 thanks to assumption (A.1). Multiply
(A.2) by (1+ κ)γ to obtain, since γ (x − y) = ξ and (1+ γ )|ξ − η| ≤ κ ,

θ(1− 2θ) tr(AZ2
λ) ≤ (1+ κ)

(
κθ |Hξ | + θ |Hx | |ξ | + (1+ κ)|σx |2|ξ |2 + C0(1+ κ)κ2).

Next as f (λ) = M , we also have

H −M ≤ tr(AZλ) ≤ |σ |(tr(AZ2
λ))

1/2.

By (1.10) and the assumption |ξ | ≥ 0, we have H −M ≥ 0. So

(1+ κ)−1H 2
− κ−1M2

≤ |σ |2 tr(AZ2
λ)

and therefore

θ(1− 2θ)(1+ κ)−1H 2
≤ θ(1− 2θ)κ−1M2

+ (1+ κ)|σ |2
(
κθ |Hξ | + θ |Hx | |ξ | + (1+ κ)|σx |2|ξ |2 + C0(1+ κ)κ2).

Using the bound θ ≤ 1, we get

θ(1− 2θ)H 2
≤ (1+ κ)κ−1M2

+ 4(1+ κ)C0|σ |
2κ2

+ (1+ κ)2|σ |2
(
κθ |Hξ | + θ |Hx | |ξ | + (1+ κ)|σx |2|ξ |2

)
.

Applying the (LS) condition, we obtain |ξ | ≤ ρ−1(2κ−1M2
+ 8C0|σ |

2κ2). ut

The following lemma, which was used in the argument above, is borrowed from [8].

Lemma A.2. Let γ > 0 and X, Y ∈ Rd×d be symmetric matrices satisfying(
X 0
0 −Y

)
≤ γ

(
Id −Id
−Id Id

)
.

Then there exists a C1 map λ 7→ Zλ from [0, 1] to the set of d-by-d symmetric matrices
such that, for every λ ∈ [0, 1],

X = Z0 ≤ Zλ ≤ Y and
d

dλ
Zλ = γ

−1Z2
λ.
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Proof. We express the matrix inequality in the following form: for every ξ, η ∈ Rd ,

Xξ · ξ − Yη · η ≤ γ |ξ − η|2.

Thus, for every η ∈ Rd ,

sup
ξ∈Rd

(Xξ · ξ − γ |ξ − η|2) ≤ Yη · η.

For every λ ∈ [0, 1), we have X ≤ γ Id < λγ Id , and thus, for every η ∈ Rd ,

sup
ξ∈Rd

(Xξ · ξ − λγ |ξ − η|2) = X

(
Id −

X

λγ

)−1

η · η.

Define

Zλ := X

(
Id −

X

λγ

)−1

.

Observe that Zλ is an increasing family of symmetric matrices bounded above by Y . It
follows that Z0 and Z1 are well-defined and Z0 = X. Moreover,

d

dλ
Zλ =

X2

γ

(
Id −

λX

γ

)−2

= γ−1Z2
λ. ut

A.2. Comparison for the metric problem

We fix a nonempty, closed subset S ⊆ Rd and consider the metric problem{
− tr(A(Dm, x)D2m)+H(Dm, x) = µ in Rd \ S,
m = 0 on ∂S.

(A.3)

We assume that the coefficients (σ,H) of the equation belong to the closure � of � for
the local uniform convergence (as usual, A = 1

2σσ
T ). In view of the definition of �, we

note that σ ∈ C0,1(∂B1 × Rd) and H ∈ C0,1(Rd × Rd) satisfy

|σ(e, x)| + |Dxσ(e, x)| + |Dξσ(e, x)| ≤ C0 a.e. in ∂B1 × Rd ,
H(tξ, x) = tpH(ξ, x) and c0|ξ |

p
≤ H(ξ, x) ≤ C0|ξ |

p,

|DxH(ξ, x)| + |ξ | |DξH(ξ, x)| ≤ C0|ξ |
p a.e. in (Rd \ {0})× Rd . (A.4)

In order to show the well-posedness of (A.3), we first study the following constrained
problem, for a parameter K ≥ 1:{

max{− tr(A(Dm, x)D2m)+H(Dm, x)− µ, |Dm| −K} = 0 in Rd \ S,
m = 0 on ∂S.

(A.5)

We begin with a comparison principle for (A.5).
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Proposition A.3. Fix K ≥ 1 and µ > 0. Suppose m1
∈ USC

(
Rd \ S

)
and m2

∈

LSC
(
Rd \ S

)
are respectively a subsolution and a nonnegative supersolution of (A.5).

Then m1
≤ m2 in Rd \ S.

Proof. Throughout the proof, the constants C and c may depend on σ , H , µ, K and vary
at each occurrence.

For δ > 0 small, let ψ : R → R be a smooth map which is increasing, concave,
bounded above with ψ(0) = 0 and 0 ≤ ψ ′ ≤ 1 − 2δ and −(C0K

2)−1µδ ≤ φ′′ ≤ 0.
We set w(x) = ψ(m1(x)). Let us check that w is a subsolution of (A.5). Using the
homogeneity of H and A with respect to the gradient variable, we have (in the viscosity
sense)

− tr(A(Dw(x), x)D2w(x))+H(Dw(x), x)

≤ ψ ′(m1(x))
(
− tr

(
A(Dm1(x), x)D2m1(x)

)
+H(Dm1(x), x)

)
− ψ ′′(m1(x)) tr

(
A(Dm1(x), x)Dm1(x)⊗Dm1(x)

)
≤ µ(1− 2δ)+ ψ ′′(m1(x))C0|Dm

1(x)|2 ≤ µ(1− δ).

Moreover |Dw| − (1− 2δ)K = (1− 2δ)(|Dm1
| −K) ≤ 0. Thus w satisfies

max{− tr(A(Dw, x)D2w)+H(Dm, x)− (1− δ)µ, |Dm| − (1− 2δ)K} ≤ 0. (A.6)

We claim that w ≤ m2. To reach a contradiction, suppose thatM := supRd (w−m
2) > 0.

Set

Mα,β := sup
x,y∈Rd\S

(
w(x)−m2(y)−

|x − y|4

4α
−
β

2
|y|2

)
.

The supremum on the right side is evidently attained at some point

(xβ , yβ) ∈
(
Rd \ S

)
×
(
Rd \ S

)
.

By construction, w(x)−m2(y) is bounded above, and thus

Mα := lim
β→0

Mα,β = sup
x,y∈Rd\S

(
w(x)−m2(y)−

|x − y|4

4α

)
and

lim
β→0

β|yβ |
2
= 0. (A.7)

Since w is K-Lipschitz continuous (as it is a subsolution of (A.6)), we have

|xβ − yβ | ≤ (Kα)
1/3
≤ Cα1/3. (A.8)

If α is sufficiently small, we have xβ 6∈ ∂S and yβ 6∈ ∂S; indeed, if xβ ∈ ∂S, then

Mα,β = w(xβ)−m
2(yβ)−

|xβ − yβ |
4

4α
−
β

2
|yβ |

2
≤ 0,
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while if yβ ∈ ∂S, then, by Lipschitz continuity of w,

Mα,β ≤ w(yβ)+K|xβ − yβ | ≤ K
4/3α1/3 < M

for α small. Both cases are impossible since Mα,β ≥ M > 0. We deduce that the maxi-
mum point belongs to the interior: (xβ , yβ) ∈ (Rd \ S)× (Rd \ S).

Fix η > 0 to be selected below and apply the maximum principle for semicontinuous
functions [18, Theorem 3.2] to obtain symmetric matrices Xβ , Yβ ∈ Rd×d such that

(Xβ , ξβ) ∈ J 2,+
w(xβ), (Yβ , ξβ − βyβ) ∈ J 2,−

m2(yβ),

−

(
1
η
+ |M|

)
I2d ≤

(
Xβ 0
0 −(Yβ + βId)

)
≤ M + ηM2,

where ξβ := α−1
|xβ − yβ |

2(xβ − yβ) and

M :=
1
α

(
N −N

−N N

)
, N := |xβ − yβ |

2Id + 2(xβ − yβ)⊗ (xβ − yβ).

We select η := |M|−1. As N ≤ C|xβ − yβ |2Id , with this choice we obtain

−C|M|I2d ≤

(
Xβ 0
0 −(Yβ + βId)

)
≤ C|M|

(
Id −Id
−Id Id

)
. (A.9)

As w is a subsolution to (A.6) and m2 is a supersolution to (A.5), we have

max{− tr∗(A(ξβ , xβ)Xβ)+H(ξβ , xβ)− (1− δ)µ, |ξβ | − (1− 2δ)K} ≤ 0,
max{− tr∗(A(ξβ − βyβ , yβ)Yβ)+H(ξβ − βyβ , yβ)− µ, |ξβ − βyβ | −K} ≥ 0.

Note that as |ξβ | − (1− 2δ)K ≤ 0, we cannot have |ξβ − βyβ | ≥ K for β small enough.
Then the above inequalities can be rewritten as

− tr∗(A(ξβ , xβ)Xβ)+H(ξβ , xβ) ≤ (1− δ)µ, (A.10)
− tr∗(A(ξβ − βyβ , yβ)(Yβ − βId))+H(ξβ − βyβ , yβ) ≥ µ− C0β. (A.11)

We may also take β so small that
(
1− 1

3δ
)
µ < µ− C0β.

Next we provide a lower bound on |ξβ |. By (A.9), we have Yβ − βId ≥ −Cγ Id , and
thus by (A.11), we obtain

Cγ + C(|ξβ |
p
+ |βyβ |

p) ≥ µ
(
1− 1

3δ
)
.

By (A.7) we can choose β so small that C|βyβ |p < 1
3µδ, so that, by the definition of γ ,

Cα−1/3
|ξβ |

2/3
+ C|ξβ |

p
≥ µ

(
1− 2

3δ
)
.

This proves that for δ small enough,

|ξβ | ≥ C
−1α1/2. (A.12)
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In particular, assuming again that β is so small that β|yβ | ≤ C−1α1/2, we can remove the
“∗” in (A.10) and (A.11).

Note that, by (A.8), we have estimates on ξβ and γ :

|ξβ | ≤ K and γ ≤ K2/3α−1/3. (A.13)

Our aim now is to compute the difference between (A.10) and (A.11). Since H is
locally Lipschitz continuous, uniformly with respect to x, there is a constant C = CK
such that

H(ξβ − βyβ , yβ)−H(ξβ , xβ) ≤ C(β|yβ | + |xβ − yβ |) ≤ C(β|yβ | + α
1/3).

Using the regularity of A with respect to ξ in (A.1) and the bound below for ξβ in (A.12),
we have

|tr(A(ξβ − βyβ , yβ)(Yβ − βId))− tr(A(ξβ , yβ)(Yβ − βId))|

≤ C|ξβ |
−1β|yβ | |Yβ − βId | ≤ Cα

−1/2β|yβ | |Yβ − βId |.

On the other hand, since A = 1
2σσ

T with σ satisfying (A.4), and using (A.8), (A.9) and
(A.13), we also have

tr(A(ξβ , yβ)(Yβ − βId))− tr(A(ξβ , xβ)Xβ) ≤ Cγ |xβ − yβ |2 ≤ Cα1/3.

The difference between (A.10) and (A.11) then yields

−Cα−1/2β|yβ | |Yβ − βId | − C(β|yβ | + α
1/3) ≤ µ(1− δ)− µ+ Cβ.

We now let β → 0 (with α remaining fixed); taking into account the fact that βyβ → 0
and the bound on the matrix Yβ , we obtain

−Cα1/3
≤ −δµ.

Choosing α small then leads to a contradiction.
Thus far we have proved that, for any δ > 0 and any smooth map ψ : R→ R which

is increasing, concave, and bounded above with ψ(0) = 0 and 0 ≤ ψ ′ ≤ 1 − 2δ and
−(C0K

2)−1µδ ≤ φ′′ ≤ 0, we have ψ(m1) ≤ m2. We can now let δ → 0 and ψ tend to
the identity to obtain the desired inequality m1

≤ m2. ut

We next deduce a comparison principle for the metric problem (A.3) from Proposi-
tion A.3.

Proposition A.4. Fix µ > 0. Suppose thatm1
∈ W

1,∞
loc

(
Rd \ S

)
is a subsolution of (A.3)

satisfying
ess sup
x∈Rd\S

|Dm1(x)| <∞

and m2 is a nonnegative lower semicontinuous supersolution of (A.3). Then m1
≤ m2 in

Rd \ S.



Homogenization of geometric motions 855

Proof. With K := ess supx∈Rd\S |Dm
1(x)|, we see that m1 is a subsolution of (A.5).

Clearly m2 is a nonnegative supersolution of (A.5). Therefore we can apply Proposi-
tion A.3. ut

In the proof of Lemma 3.3, we needed the following comparison principle in bounded
domains. The proof is similar to that of Proposition A.4, even without need of penalization
at infinity; for this reason we omit it.

Proposition A.5. Let U be a bounded open subset of Rd . Assume that m1 is a globally
Lipschitz continuous subsolution andm2 is a nonnegative lower semicontinuous superso-
lution of

− tr(A(Dm, x)D2m)+H(Dm, x) = µ in U

such that m1
≤ m2 on ∂U . Then m1

≤ m2 in U .

A.3. Well-posedness of the metric problem

We now show that the metric problem has a unique globally Lipschitz solution, and that
the Lipschitz regularity is independent of the set S. As in the previous subsection, we
assume that the coefficients (σ,H) of the equation belong to the closure � of � with
respect to the topology of local uniform convergence.

Theorem A.6. Fix L ≥ 1, µ ∈ (0, L] and a nonempty closed subset S ⊆ Rd sat-
isfying (A.17). Then there exists a unique Lipschitz continuous solution mµ(·, S) ∈

C
0,1
loc (Rd \ S) of the metric problem (A.3). Moreover, there exists a constant C(data, L)

such that, for all x, y ∈ Rd \ S,

|mµ(x, S)−mµ(y, S)| ≤ C|x − y|.

Finally, mµ(·, S) is the maximal Lipschitz continuous subsolution of (A.3).

Proof. For K ≥ 2, we consider the problem (A.5). Clearly the zero function is a subso-
lution. As this problem obeys a comparison principle (Proposition A.3), Perron’s method
[18] provides the existence and uniqueness of a solution mK to (A.5), which is identi-
fied as the maximal subsolution of (A.5). It is clear that mK is Lipschitz continuous with
Lipschitz constant K .

Our aim is to show that if K is large enough, then the constraint on the gradient is
never in force and thusmK is a solution to (A.3). We do so by proving thatmK is actually
Lipschitz continuous with a Lipschitz constant K ′ ∈

[
1, 1

2K
]

to be chosen below.
We note that, by a standard stability argument for equation (A.5), we may assume for

convenience that (σ,H) ∈ �. Otherwise, we approximate (σ,H) by coefficients in �,
we prove the Lipschitz estimates for the approximate equation, obtaining an upper bound
on the Lipschitz constant depending only on (data, L), and then we pass to the limit in
the approximation.

We now replace mK by a bounded function. For δ > 0 small, let ψ : R → R be
a smooth map which is increasing, concave, and bounded above with ψ(0) = 0 and
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0 ≤ ψ ′ ≤ 1− 2δ and −(C0K
2)−1µδ ≤ φ′′ ≤ 0. We set w(x) = ψ(mK). As in the proof

of Proposition A.4, one easily checks that w satisfies the subsolution inequality (A.6).
The main part of the proof consists in checking that for suitable choices of the parameters
we have w(x) ≤ mK(y)+K ′|x − y| for x, y ∈ Rd \ S.

Towards a contradiction, assume that

M := sup
x,y∈Rd\S

(w(x)−mK(y)−K ′|x − y|) > 0.

For β > 0 small, set

Mβ := sup
x,y∈Rd\S

(
w(x)−mK(y)−K ′|x − y| − 1

2β|y|
2).

The supremum is attained at some (xβ , yβ) ∈
(
Rd \ S

)
×
(
Rd \ S

)
. Note that

0 < M ≤ Mβ ≤ m
K(xβ)−m

K(yβ)−K
′
|xβ − yβ |

≤ (K −K ′)|xβ − yβ | ≤
1
2K|xβ − yβ |,

which gives the lower bound

|xβ − yβ | ≥ 2M/K > 0. (A.14)

In particular, xβ 6= yβ . As in the proof of Proposition A.4, keeping the other parameters
fixed, we find that limβ→0 βyβ = 0.

We first assume that xβ /∈ ∂S and yβ /∈ ∂S. Fix η > 0. By the maximum principle for
semicontinuous functions [18, Theorem 3.2], there exist symmetric matrices Xβ , Yβ ∈
Rd×d such that

(Xβ , ξβ) ∈ J 2,+
w(xβ), (Yβ , ξβ − βyβ) ∈ J 2,−

mK(yβ),

−

(
1
η
+ |M|

)
I2d ≤

(
Xβ 0
0 −(Yβ + βId)

)
≤ M + ηM2,

where we denote γ := K ′|xβ − yβ |−1, ξβ := K ′(xβ − yβ)/|xβ − yβ | and

M := γ

(
N −N

−N N

)
, N := Id −

xβ − yβ

|xβ − yβ
⊗
xβ − yβ

|xβ − yβ
.

Note that M2
= 2γ 2M . Select η := (2γ )−1κ , where κ is the parameter in the (LS)

condition (1.12). As N ≤ Id , we obtain

−Cγ

(
1+

1
κ

)
I2d ≤

(
Xβ 0
0 −(Yβ + βId)

)
≤ (1+ κ)γ

(
Id −Id
−Id Id

)
.

Using the equations satisfied by w and mK , we have

max{− tr∗(A(ξβ , xβ)Xβ)+H(ξβ , xβ)− (1− δ)µ, |ξβ | − (1− δ)K} ≤ 0,
max{− tr∗(A(ξβ − βyβ , yβ)Yβ)+H(ξβ − βyβ , yβ)− µ, |ξβ | −K} ≥ 0.
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As 0 < |ξβ | = K ′ ≤ 1
2K and βyβ is small, the above inequalities yield, for sufficiently

small β,

− tr(A(ξβ , xβ)Xβ)+H(ξβ , xβ) ≤ (1− δ)µ, (A.15)

− tr
(
A(ξβ − βyβ , yβ)(Yβ − βId)

)
+H(ξβ − βyβ , yβ) ≥ µ− C0β. (A.16)

According to (A.14), γ ≤ K ′K/(2M). For β so small that (1+γ )β|yβ | ≤ κ , Lemma A.1
gives the existence of R(data, L) such that |ξβ | ≤ R. As |ξβ | = K ′, we obtain a contra-
diction if K ′ > R.

We have proved that if R < K ′ < 1
2K , then the supremum in the definition of Mβ , if

positive, can only be achieved by (xβ , yβ) if xβ ∈ ∂S or yβ ∈ ∂S. If xβ ∈ ∂S, then

Mβ = w(xβ)−m
K(yβ)−K

′
|xβ − yβ | −

1
2β|yβ |

2
≤ 0,

a contradiction. Consider the case yβ ∈ ∂S. As S satisfies the interior ball condition
of radius 1, there exists e ∈ ∂B1 such that the unit ball centered at zβ := yβ − e is
contained in S. Then, for r := c−1

0 (L+ C0(d − 1)), the map w2(x) := r(|x − zβ | − 1)+
is a supersolution to (A.3), and thus to (A.5). By the comparison principle, w(xβ) ≤
mK(xβ) ≤ r(|xβ − zβ | − 1)+. We deduce that

0 < Mβ = w(xβ)−m
K(yβ)−K

′
|xβ − yβ | −

1
2β|yβ |

2

≤ r(|xβ − zβ | − 1)+ −K ′|xβ − yβ | ≤ (r −K ′)|xβ − yβ | ≤ 0,

provided that we also have K ′ ≥ r , which is another contradiction.
In conclusion, we have shown that if C(data, L) := R ∨ r < K ′ < 1

2K , then we have
w(x) := ψ(mK(x)) ≤ mK(y) +K ′|x − y|. As δ and ψ are arbitrary, we can let ψ tend
to the identity to deduce that mK is Lipschitz with constant K ′ < 1

2K . Thus the gradient
constraint is never in force and mK is a Lipschitz continuous solution to (A.3). By the
comparison principle, it is unique and maximal. ut

We next summarize several properties of the metric problem associated to a nonempty
closed set S ⊆ Rd satisfying the uniform ball condition

S =
⋃

B1(x)⊆S

B1(x). (A.17)

As above, we consider coefficients (σ,H) belonging to �.

Lemma A.7. FixL ≥ 1,µ ∈ (0, L] and closed subsets S, S′ ⊆ Rd satisfying the uniform
ball condition (A.17). Then there exist 0 < lµ ≤ Lµ, C(data, L) ≥ 1 and c(data, L) ∈
(0, 1] satisfying

cµ ≤ lµ ≤ Lµ ≤ C (A.18)

such that:

(i) (Lipschitz estimates) For every x ∈ Rd \ S and y ∈ Rd \ S′,

|mµ(x, S)−mµ(y, S
′)| ≤ Lµ(|x − y| + distH (S, S′)). (A.19)
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(ii) (Estimate on sublevel sets) For every 0 ≤ s ≤ t ,

distH ({mµ(·, S) ≤ s}, {mµ(·, S) ≤ t}) ≤
1
lµ
|s − t | + 2. (A.20)

(iii) (Growth property) For every x ∈ Rd ,

lµ dist(x, S)− 2 ≤ mµ(x, S) ≤ Lµ dist(x, S). (A.21)

If the target is the half-space, i.e., S = H−e for some e ∈ ∂B1, then, for every
x ∈ H+e ,

(µ/C0)
1/px · e ≤ mµ(x,H−e ) ≤ (µ/c0)

1/px · e. (A.22)

Proof. The argument is standard and mostly borrowed from [1, proof of Proposition 2.2].
We only explain the differences.

(i) Theorem A.6 states that mµ(·, S) is uniformly Lipschitz continuous. Then one can
show, exactly as for [1, Proposition 2.2(ii)], that

|mµ(x, S)−mµ(x, S
′)| ≤ Lµ distH (S, S′).

(ii) For the estimate on level sets, we follow again [1, proof of Proposition 2.2]: Set
K := {mµ(·, S) ≤ s} and let ξ : Rd → R be a standard mollification kernel. For ε > 0,
we set ξε(y) := ε−dξ(y/ε) and wε := lµ dist(·,K) ∗ ξε + s − Clµε. Since dist(·,K) is
Lipschitz continuous, we have |Dwε| ≤ lµ, |D2wε| ≤ lµ/ε and |wε−dist(·,K)| ≤ Clµε.
Then, for lµ = cµ with c > 0 small enough, the function wε is a Lipschitz continuous
subsolution of

− tr(A(Dm, x)D2m)+H(Dm, x) = µ in Rd \ {mµ(·, S) ≤ s}

with wε ≤ s ≤ mµ(·, S) on ∂{mµ(·, S) ≤ s}. By comparison (Proposition A.4),

lµ dist(y,K)+ s − 2Clµε ≤ wε(y) ≤ mµ(y, S) in Rd \ {mµ(·, S) ≤ s}.

So, for ε small enough,

{mµ(·, S) ≤ s} ⊆ {mµ(·, S) ≤ t} ⊆ {mµ(·, S) ≤ s} + Bl−1
µ (t−s)+2.

The last two points are straightforward: for (iii), the first inequality in (A.21) is a
consequence of (ii) for s = 0, while the second one holds by the Lipschitz estimates.
When the target is a plane, the map x 7→ (µ/C0)

1/px · e is a subsolution to (2.5) by the
homogeneity of H , while x 7→ (µ/C0)

1/px · e is a supersolution: this yields (A.22) by
comparison. ut

A.4. The approximate corrector problem

In this subsection, we briefly discuss the approximate corrector problem: for δ > 0 and
ξ ∈ Rd , we consider

δvδ(·, ξ)−tr
(
A(ξ+Dvδ(·, ξ), x)D2vδ(·, ξ)

)
+H(ξ+Dvδ(·, ξ), x) = 0 in Rd . (A.23)
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Here we assume that the coefficients (σ,H) belong to�. We summarize the facts we need
in the following proposition, most of which is essentially known. The well-posedness
of mean curvature type equations has been well-understood since the pioneering papers
[17, 22, 23]. The only additional difficulty here comes from the singularity of the matrix
A(· + ξ, x), which is at −ξ instead of 0. This can be treated as in the proof of Propo-
sition A.3. The L∞ bound (A.24) on vδ is a straightforward consequence of assumption
(1.10). The Lipschitz estimate (in space) under coercivity condition (1.12) for equation
(A.23) has been established in [26], and subsequently discussed in [12]. The proof of
[26] relies on approximation by smooth solutions. The (suitably adapted) proof of Theo-
rem A.6 above provides an alternative argument. Therefore, we only check the regularity
of δvδ with respect to ξ .

Proposition A.8. For any δ > 0 and ξ ∈ Rd , equation (A.23) has a unique solu-
tion vδ(·, ξ) ∈ W 1,∞(Rd) which satisfies

−C0|ξ |
p/δ ≤ vδ(x, ξ) ≤ −c0|ξ |

p/δ. (A.24)

Moreover, for every R ≥ 1, there exists C(data, R) ≥ 1 such that, for every x, y ∈ Rd
and ξ, η ∈ BR \ {0},

|vδ(x, ξ)− vδ(y, η)| ≤ C(|ξ | + |η|)|x − y| +
C

δ
(|ξ | ∧ |η|)−2p/7

|ξ − η|2/7. (A.25)

Proof. As mentioned before the statement, we only verify the regularity of δvδ with
respect to ξ . Throughout, we denote by C and c constants which depend on (data, R)
and may vary at each occurrence. Given ξ, η ∈ BR \ {0}, we denote for simplicity
v1 := vδ(·, ξ) and v2 := vδ(·, η). Fix small parameters α, β > 0 to be chosen below,
consider

Mβ := sup
(x,y)∈Rd×Rd

(
v1(x)− v2(y)+ η · (x − y)−

|x − y|4

4α
− β|x|2

)
and denote by (xβ , yβ) a maximum point of the problem. We shall send β → 0 while
keeping α > 0 fixed. Note that

lim
β→0

Mβ = sup
(x,y)∈Rd×Rd

(
v1(x)− v2(y)+ η · (x − y)−

1
4α
|x − y|4

)
≥ sup

Rd
(v1 − v2)

and
lim sup
β→0

β|xβ |
2
= 0.

In view of the Lipschitz estimate on v2, we have

|xβ − yβ | ≤ Cα
1/3. (A.26)

We set ξβ := α−1
|xβ − yβ |

2(xβ − yβ) and ξ̂β := ξβ/|ξβ | if xβ 6= yβ (ξ̂β := 0 otherwise).
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Fix γ > 0 to be selected. By the maximum principle for semicontinuous func-
tions [18, Theorem 3.2], there exist symmetric matrices Xβ , Yβ ∈ Rd×d such that

(Xβ , ξβ − η + 2βxβ) ∈ J 2,+
v1(xβ), (Yβ , ξβ − η) ∈ J 2,−

v2(yβ),

−

(
1
γ
+ |M|

)
I2d ≤

(
Xβ + 2βId 0

0 −Yβ

)
≤ M + γM2,

where

M :=
1
α

(
N −N

−N N

)
, N := |xβ − yβ |

2Id + 2(xβ − yβ)⊗ (xβ − yβ).

We choose γ := α|xβ − yβ |−2 if xβ 6= yβ and γ = 1 otherwise. As N ≤ C|xβ − yβ |2Id ,
we obtain

−C
|xβ − yβ |

2

α
I2d ≤

(
Xβ + 2βId 0

0 −Yβ

)
≤
C|xβ − yβ |

2

α

(
Id −Id
−Id Id

)
, (A.27)

where, in view of (A.26),
C|xβ − yβ |

2/α ≤ Cα−1/3.

Using the equations for v1 and v2, we have

δv1(xβ)− tr∗
(
A(ξβ+ξ−η+βxβ , xβ)Xβ

)
+H(ξβ+ξ−η+βxβ , xβ) ≤ 0, (A.28)

δv2(yβ)− tr∗(A(ξβ , yβ)Yβ)+H(ξβ , yβ) ≥ 0. (A.29)

Plugging (A.24) into (A.29) we find, since by (A.27) we have |Yβ | ≤ C|xβ −yβ |2/α, that

C
|xβ − yβ |

2

α
+ C0

|xβ − yβ |
3

α
≥ −δvε(yβ) ≥ c0|η|

p.

This provides lower bounds for |xβ − yβ | and for |ξβ |:

|xβ − yβ | ≥ C
−1
|η|p/2α1/2 and |ξβ | ≥ C

−1
|η|3p/2α1/2.

From now on we assume that |ξ − η| ≤ (3C)−1
|η|3p/2α1/2 and that β is so small that

β|xη| ≤ (3C)−1
|η|3p/2α1/2. With this lower bound, we can simplify (A.28): using

|ξβ + ξ − η + βxβ | ≥ (3C)−1
|η|3p/2α1/2,

we obtain, in view of the regularity of A and (A.27),

|A(ξβ + ξ − η + βxβ , xβ)Xβ − A(ξβ , xβ)(Xβ + 2βId)|

≤ C0β+C|η|
−3p/2α−1/2

|ξ − η+βxβ | |Xβ | ≤ C|η|
−3p/2α−5/6(β(1+ |xβ |)+ |ξ − η|).

On the other hand, by the Lipschitz estimates,

H(ξβ , yβ)−H(ξβ + ξ − η + βxβ , xβ) ≤ C(|ξ − η| + β|xβ | + |xβ − yβ |),
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while, by the structural assumptions on A = 1
2σσ

T and (A.27),

tr(A(ξβ , yβ)Yβ)− tr
(
A(ξβ , xβ)(Xβ + 2βId)

)
≤ Cα1/3.

Computing the difference between (A.28) and (A.29) and collecting the above inequalities
we obtain (neglecting the lower order terms)

δv1(xβ)− δv2(yβ) ≤ C|η|
−3p/2α−5/6(β(1+ |xβ |)+ |ξ − η|)+ Cα1/3.

Therefore

Mβ ≤ δv1(xβ)−δv2(yβ)+η·(xβ−yβ) ≤ C|η|
−3p/2α−5/6(β(1+|xβ |)+|ξ−η|)+Cα1/3.

We now send β → 0 to obtain

sup
Rd
(v1 − v2) ≤ C|η|

−3p/2α−5/6
|ξ − η| + Cα1/3.

Taking α = |η|−9p/7
|ξ − η|6/7, we obtain

sup
Rd
(v1 − v2) ≤ C|η|

−2p/7
|ξ − η|2/7. ut

A.5. The time-dependent initial-value problem

We briefly discuss the well-posedness of the problem{
∂tu− tr(A(Du, x)D2u)+H(Du, x) = 0 in Rd × (0, T ],
u(·, 0) = g(·) on Rd ,

(A.30)

and its rescaled version{
∂tu

ε
− ε tr(A(Duε, x/ε)D2uε)+H(Duε, x/ε) = 0 in Rd × (0, T ],

uε(·, 0) = g(·) on Rd ,
(A.31)

Here we fix coefficients (σ,H) belonging to �.

Theorem A.9. For any g ∈ BUC(Rd), the initial-value problem (A.30) has a unique
solution u ∈ BUC(Rd × [0, T ]). If, in addition g ∈ C1,1(Rd), then u ∈ C0,1(Rd) and
there exists a constant L(data, ‖g‖C1,1) such that, for every x, y ∈ Rd and s, t ∈ [0, T ],

|u(x, t)− u(y, s)| ≤ L(|x − y| + |t − s|).

We do not give the proof of Theorem A.9 here. Well-posedness and Lipschitz estimates
for (A.30) are proved in [23] and [26], respectively, and can also be obtained by modifying
the arguments given here for the metric problem.
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Similar results for (A.31) can be obtained by applying Theorem A.9 and using the
scaling uε(x, t) = εu(x/ε, t/ε). In particular, for a C1,1 initial condition, the solution uε

satisfies the same Lipschitz estimate: for every x, y ∈ Rd and s, t ∈ [0, T ],

|uε(x, t)− uε(y, s)| ≤ L(|x − y| + |t − s|).

For the reader’s convenience, let us briefly recall how Lipschitz bounds are established
in this framework. Because of the C1,1 regularity of g, the maps (x, t) 7→ g(x) + Ct

and (x, t) 7→ g(x) − Ct are respectively super- and subsolutions of (A.30) (where C
depends on data and ‖g‖C1,1 only). This gives the estimate |u(x, t) − g(x)| ≤ Ct . As
the coefficients of the equation are independent of time, the comparison principle then
implies

sup
x∈Rd
|u(x, t)− u(x, s)| ≤ sup

x∈Rd
|u(x, t − s)− g(x)| ≤ C|t − s|,

and we have the Lipschitz regularity in time and a bound on |∂tu|. To get the Lipschitz
regularity in space, one now argues as for stationary equations (see, e.g., the proof of
Theorem A.6), using the bound on |∂tu| and the (LS) condition (1.12).
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