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Abstract. We give estimates on the number of combinatorial designs, which prove (and generalise)
a conjecture of Wilson from 1974 on the number of Steiner Triple Systems. This paper also serves as
an expository treatment of our recently developed method of Randomised Algebraic Construction:
we give a simpler proof of a special case of our result on clique decompositions of hypergraphs,
namely triangle decompositions of quasirandom graphs.
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1. Introduction

When does a graph G have a triangle decomposition? (By this we mean a partition of
its edge set into triangles.) There are two obvious necessary ‘divisibility conditions’: the
number of edges must be divisible by three, and the degree of any vertex must be even.
We say that G is tridivisible if it satisfies these divisibility conditions. In 1847 Kirkman
proved that any tridivisible complete graph has a triangle decomposition; equivalently,
there is a Steiner Triple System on n vertices if n is 1 or 3 mod 6. In [5] we showed more
generally that a tridivisible graph has a triangle decomposition if we assume a certain
pseudorandomness condition. In fact, we proved a more general result on clique decom-
positions of simplicial complexes, which in particular proved the Existence Conjecture
for combinatorial designs.

One purpose of the current paper is to illustrate the new technique (Randomised Al-
gebraic Construction) of [5] in the simplified setting of triangle decompositions; we will
also prove a conjecture of Wilson [12] on the number of Steiner Triple Systems. These
results are proved in the next three sections, roughly following the method of [5], but in-
troducing some novelties in technique that lead to considerable simplifications in the case
of triangle decompositions; the material here closely follows a lecture series that the au-
thor recently gave at the Israel Institute for Advanced Studies. In Section 5 we sketch an
argument of Bennett and Bohman [1] on the random greedy matching process and adapt
the calculations to the version needed in this paper. We generalise from Steiner Triple
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Systems to designs in Section 6. We conclude by noting that it remains an open problem
to obtain an asymptotic formula for the number of designs, or even just for the number of
regular graphs.

2. Triangle decompositions

We start by stating our result that tridivisible pseudorandom graphs have triangle de-
compositions. The pseudorandomness condition is as follows. Let G be a graph on n
vertices. The density of G is d(G) = |G|/

(
n
2

)
. We say that G is c-typical if every vertex

has (1 ± c)d(G)n neighbours and every pair of vertices have (1 ± c)d(G)2n common
neighbours. (We write b ± c for any real between b − c and b + c.)

Theorem 2.1. There exist 0 < c0 < 1 and n0 ∈ N such that if n ≥ n0 and G is a
c-typical tridivisible graph on n vertices with d(G) > n−10−7

and c < c0d(G)
106

then G
has a triangle decomposition.

Note that in Theorem 2.1 we allow the density to decay polynomially with n; this will
be important for the application in the next subsection, but in many cases of interest one
can consider d(G) and c to be fixed constants independent of n. One such consequence
of Theorem 2.1 noted in [5] is that the standard random graph modelG(n, 1/2) with high
probability (whp) has a partial triangle decomposition that covers all but (1 + o(1))n/4
edges. Indeed, deleting a perfect matching on the set of vertices of odd degree and then at
most two 4-cycles gives a graph satisfying the hypotheses of the theorem. This is asymp-
totically best possible, as whp there are (1 + o(1))n/2 vertices of odd degree, and any
set of edge-disjoint triangles must leave at least one edge uncovered at each vertex of odd
degree.

We remark that our definition of typicality here is weaker than that used in [5]. In fact,
for most of the paper we will assume the stronger version, then explain at the end how the
proof can be modified to work with the current definition. We also make the (well-known)
remark that typicality implies the standard regularity property (for appropriate constants)
that appears in Szemerédi’s Regularity Lemma, but the converse is not true, as regularity
allows individual vertices to behave badly, even to be isolated.

2.1. The number of Steiner Triple Systems

Another purpose of our paper is to prove the following conjecture of Wilson [12] on
the number of Steiner Triple Systems on n vertices, i.e. triangle decompositions of the
complete graph Kn; denote this by STS(n).

Theorem 2.2. If n is 1 or 3 mod 6, then STS(n) = (n/e2
+ o(n))n

2/6.

Note that Kn is tridivisible if and only if n is 1 or 3 mod 6, so STS(n) = 0 for all
other n. The upper bound in Theorem 2.2 was recently proved by Linial and Luria [8],
who showed that STS(n) ≤ (n/e2

+ O(
√
n))n

2/6. Our lower bound will be STS(n) ≥
(n/e2

+O(n1−a))n
2/6 for some small a > 0.
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Theorem 2.2 will follow quite easily from Theorem 2.1 and the semirandom method
(nibble). It will be most convenient for us to apply the results of Bohman, Frieze and
Lubetzky [2] on the triangle removal process (although we could make do with a simpler
nibble argument, or the argument of Bennett and Bohman [1] sketched in Section 5). We
say that an event E holds with high probability (whp) if P(E) = 1 − e−�(n

c) for some
c > 0 as n→∞; note that when n is sufficiently large, by union bounds we can assume
that any specified polynomial number of such events all occur.

In the triangle removal process, we start with the complete graph Kn, and at each
step we delete the edges of a uniformly random triangle in the current graph. It is shown
in [2] that whp the process persists until onlyO(n3/2+o(1)) edges remain, but we will stop
at n2−10−7

edges (i.e. at the nearest multiple of 3 to this number) so that we can apply
Theorem 2.1. We need the following additional facts from [2] about this stopped process:
whp the final graph is n−1/3-typical, and when pn2/2 edges remain the number of choices
for the deleted triangle is (1± n−2/3)(pn)3/6.

Proof of Theorem 2.2. Consider the following procedure for constructing a Steiner Triple
System on n vertices: run the triangle removal process until n2−10−7

edges remain, then
apply Theorem 2.1 (if its hypotheses are satisfied, which occurs in 1− o(1) proportion of
all instances of the process). Writing m for the number of steps and p(i) = 1 − 6i/n2,
we see that the logarithm of the number of choices in this procedure is

L1 =

m∑
i=1

(
log(p(i)3n3/6)± 2n−2/3)

= (n2/6)
(
log(n3/6)− 3± n−10−8)

,

since
∑m
i=1 logp(i) = (1 +O(n−10−7

log n))(n2/6)
∫ 1

0 logp dp and
∫ 1

0 logp dp = −1.
Also, for any fixed Steiner Triple System, the logarithm of the number of times it is
counted by this procedure is at most

L2 =

m∑
i=1

log(p(i)n2/6) = (n2/6)
(
log(n2/6)− 1± n−10−8)

.

Therefore log(STS(n)) ≥ L1 − L2 = (n
2/6)(log(n) − 2 ± 2n−10−8

), which implies the
stated bound on STS(n). ut

2.2. Strategy

The strategy of the proof of Theorem 2.1 is encapsulated by the following setup (we give
motivation and discussion below). We say that J ⊆ G is c-bounded if |J (v)| < c|V (G)|

for every v ∈ V (G), where J (v) = {u ∈ V (G) : uv ∈ J } is the neighbourhood of v in J .

Setup 2.3. Suppose we have G∗ ⊆ G with a ‘template’ triangle decomposition T such
that

Nibble: G \G∗ contains a set N of edge-disjoint triangles with ‘leave’ L := (G \G∗) \⋃
N that is c1-bounded.

Cover: For anyL ⊆ G\G∗ that is c1-bounded, there is a setMc of edge-disjoint triangles
such that L = (G \G∗) ∩

⋃
Mc and the ‘spill’ S := G∗ ∩

⋃
Mc is c2-bounded.
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Hole: For any tridivisible S ⊆ G∗ that is c2-bounded, there are ‘outer’ and ‘inner’ sets
Mo,M i of edge-disjoint triangles inG∗ such that

⋃
Mo is c3-bounded and (S,

⋃
M i)

is a partition of
⋃
Mo.

Completion Given L,Mc,Mo andM i as above, there are setsM1,M2,M3,M4 of edge-
disjoint triangles in G such that (L,

⋃
M2) is a partition of

⋃
M1,

⋃
M3 =

⋃
M4,

M3 ⊆ T and M2 ⊆ M4.

The key step is choosing T (which determines G∗). We will use our method of Ran-
domised Algebraic Construction, which takes a particularly simple form for triangle de-
compositions. To motivate the construction, suppose that V (G) is an abelian group, and
consider the set6 of triples xyz such that x+y+z = 0. We note that6 is a good ‘model’
for a triangle decomposition, as for any xy there is a unique z such that x + y + z = 0.
However, we cannot simply take 6, as not all such xyz are triangles of G; moreover,
x, y, z may not even be pairwise distinct.

The idea of the construction is that a suitable random subset of6 can act as a template,
which covers a constant fraction of G. Next we find an approximate decomposition of
the rest of G by random greedy algorithms: this is accomplished by steps Nibble and
Cover of Setup 2.3. After these steps, every edge of G has been covered once or twice,
and the spill S is the set of edges that have been covered twice. Finally, we use local
modifications built into the template to turn the approximate decomposition into an exact
decomposition: this is accomplished by steps Hole and Completion of Setup 2.3.

To motivate Completion, we imagine first that we have Hole and also Mo
⊆ T .

Then we could delete Mo and take M i instead, thus reducing by one the multiplicity of
every edge in S, so that we have a triangle decomposition of G. However, specifying a
triangle of T is very restrictive, as there are only order(n2) such triangles out of a total of
order(n3) triangles inG. If we had chosen T uniformly at random it would be hopeless to
obtain any useful configuration formed by triangles of T . However, the algebraic structure
implies that certain configurations of triangles are dense within a sparse configuration
space (described by linear constraints). This forms the basis of a modification procedure
that replaces Mc, Mo and M i by other sets of triangles with the same properties, where
M1 plays the role of Mc

∪M i , M2 of Mo, and each triangle f of M2 can be embedded
in a small subgraph that has one triangle decomposition (part ofM4) using f and another
triangle decomposition (part of M3) contained in T .

It is not hard to see that G contains a triangle decomposition in Setup 2.3. Indeed,
we start by taking the sets N provided by Nibble and then the sets Mc and S provided
by Cover. Now we note that S =

⋃
T +

⋃
N +

⋃
Mc
− G is tridivisible, as any

integer linear combination of tridivisible graphs is tridivisible. So we can apply Hole to
obtain Mo and M i . Then we can apply Completion to obtain M1,M2,M3,M4. Finally,
M = N∪M1∪(M4\M2)∪(T \M3) is a triangle decomposition ofG. Thus the remainder
of the proof will be to show that we can achieve Setup 2.3.

2.3. Template

We choose the template as follows.
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Construction 2.4. Let a ∈ N be such that 2a−2 < |V (G)| ≤ 2a−1. Let π : V (G) →
F2a \ {0} be a uniformly random injection. Let

T = {xyz ∈ K3(G) : π(x)+ π(y)+ π(z) = 0} and G∗ =
⋃
T .

To avoid cumbersome notation, we use xyz to denote either the vertex set {x, y, z} or
the edge set {xy, xz, yz} of a triangle. The context determines which interpretation is
intended, e.g. in Construction 2.4 the graph G∗ is the (disjoint) union of the edge-sets of
the triangles in T .

In this subsection we will show that whp the pair (G,G∗) is ‘typical’ (in a precise
sense defined below); this will allow us to implement the approximate decomposition
in steps Nibble and Cover. Moreover, we will show in Section 4 that G∗ is ‘linearly
typical’ (roughly speaking: we can count subgraph extensions with linear constraints on
the vertices); this will imply the existence of the local modifications used in steps Hole
and Completion.

We start with some notation and preliminary observations. Throughout the paper we
write n = |V (G)|. We identify G with its edge set E(G), so that |G| denotes the number
of edges of G (rather than the number of vertices, as is used by some authors). We write
[n] = {1, . . . , n}. We define

γ = 2−an,

and note that 1/4 < γ ≤ 1/2. We observe that if x, y, z ∈ F2a \ {0} and x + y + z = 0
then x, y, z are pairwise distinct. We note that +1 = −1 in F2a , so we can use + and −
interchangeably in F2a -arithmetic. We consider F2a as a vector space over F2, and observe
that any two nonzero elements span a subspace of dimension two.

Next we introduce the stronger typicality assumption used in [5]. We say that G is
(c, h)-typical if∣∣∣⋂

x∈S

G(x)

∣∣∣ = (1± |S|c)d(G)|S|n for any S ⊆ V (G) with |S| ≤ h.

Note that being c-typical is essentially the same as being (c, 2)-typical (up to a factor
of 2 in c). For most of the paper we will assume that G is (c, 16)-typical; at the end we
will explain how the proof can be modified to work with the weaker assumption thatG is
c-typical.

Now we define the typicality condition for (G,G∗) and show that it holds whp. Let
G∗ be a subgraph of G. We say that (G,G∗) is (c, h)-typical if∣∣∣ ⋂

x∈S∗

G∗(x) ∩
⋂

x∈S\S∗

G(x)

∣∣∣ = (1± |S|c)d(G∗)|S∗|d(G)|S|−|S∗|n
for any S∗ ⊆ S ⊆ V (G)with |S| ≤ h. For a convenient statement of the following lemma
we will assume that c is not too small; since the typicality conditions become stronger as
c decreases, without loss of generality we can assume c > c0d(G)

106
/2.

Lemma 2.5. Whp d(G∗) = (1± 3c)γ d(G)3 and (G,G∗) is (6c, 16)-typical.

The proof uses the following consequence of Azuma’s inequality.
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Definition 2.6. Let Sn be the symmetric group, f : Sn→ R and b ≥ 0. We say that f is
b-Lipschitz if for any σ, σ ′ ∈ Sn such that σ = τ ◦ σ ′ for some transposition τ ∈ Sn we
have |f (σ)− f (σ ′)| ≤ b.

Lemma 2.7 (see e.g. [9]). Suppose f : Sn → R is b-Lipschitz, σ ∈ Sn is uniformly
random and X = f (σ). Then

P(|X − EX| > t) ≤ 2e−t
2/2nb2

.

Proof of Lemma 2.5. We start by estimating E|G∗| =
∑
e∈G P(e ∈ G∗). For any e = xy,

given π(x) and π(y), we have e ∈ G∗ if and only if π(z) = π(x) + π(y) for some z
such that xyz ∈ K3(G). Since G is (c, 16)-typical, there are (1 ± 2c)d(G)2n choices
for z. Each satisfies π(z) = π(x) + π(y) with probability (2a − 3)−1, so E|G∗| =
|G|(1± 2c)d(G)2n(2a − 3)−1. We can view π as σ ◦ π0, where π0 : V (G)→ F2a \ {0}
is any fixed injection and σ is a random permutation of F2a \ {0}. Any transposition of σ
affects |G∗| by O(n), so by Lemma 2.7, whp we have d(G∗) = (1± 2.1c)γ d(G)3.

Similarly, we consider any S∗ ⊆ S ⊆ V (G)with |S| ≤ 16, write Y =
⋂
x∈S∗ G

∗(x)∩⋂
x∈S\S∗ G(x), and estimate E|Y | =

∑
y∈V (G) P(y ∈ Y ). For any y ∈

⋂
x∈S G(x),

given π(y) and π(x) for all x ∈ S, we have y ∈ Y if and only if for all x ∈ S∗ there
is xyzx ∈ K3(G) such that π(zx) = π(x) + π(y). Since G is (c, 16)-typical, there
are (1 ± |S|c)d(G)|S|n choices for y. By excluding O(1) choices of y we can assume
π(x) + π(y) 6= π(x′) for all x, x′ ∈ S. Then for each x ∈ S∗ there are (1 ± 2c)d(G)2n
choices for zx , and for any set of choices, with probability (1 + O(1/n))2−a|S

∗
| they all

satisfy π(zx) = π(x)+ π(y). This gives

E|Y | = O(1)+ (1± |S|c)d(G)|S|n · ((1± 2c)d(G)2n)|S
∗
|
· (1+O(1/n))2−a|S

∗
|.

Any transposition of σ affects |Y | by O(1), so by Lemma 2.7, whp we have |Y | =
(1± (3|S| + 1)c)d(G)|S|(γ d(G)2)|S

∗
|n = (1± 6|S|c)d(G∗)|S|d(G)|S|−|S

∗
|n. ut

Since d(G∗) = (1 ± 3c)γ d(G)3 and 1/4 < γ < 1/2, we have 0.24d(G)3 < d(G∗) <

0.51d(G) for small c. Also, as (G,G∗) is (6c, 16)-typical, we can deduce that G \G∗ is
50c-typical. Indeed, for any v ∈ V (G) we have

|(G \G∗)(v)| = (1± c)d(G)n− (1± 6c)d(G∗)n
= (d(G)− d(G∗))n± 6c(d(G)+ d(G∗))n = (1± 20c)d(G \G∗)n.

Furthermore, for any u, v ∈ V (G) we estimate |(G \G∗)(u) ∩ (G \G∗)(v)| as

|G(u) ∩G(v)| − |G∗(u) ∩G(v)| − |G(u) ∩G∗(v)| + |G∗(u) ∩G∗(v)|

= (1± 2c)d(G)2n− 2(1± 12c)d(G)d(G∗)n+ (1± 12c)d(G∗)2n

= (d(G)− d(G∗))2n± 12c(d(G)+ d(G∗))2n = (1± 50c)d(G \G∗)2n.

Applying the following theorem, we deduce Nibble with c1 = (50c)1/4.
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Theorem 2.8. There are b0 > 0 and n0 ∈ N such that if n > n0, n−0.1 < b < b0 and G
is a b-typical graph on n vertices with d(G) > b, then there is a set N of edge-disjoint
triangles in G such that L = G \

⋃
N is b1/4-bounded.

We remark that the parameters in Theorem 2.8 are not very sharp: we have just fixed some
convenient values that suffice for our purposes. Similar results are well-known, but we are
not aware of any reference that implies the theorem as stated, so we will sketch a proof in
Section 5.

For convenient reference, we give here the values of some other parameters that will
be used below:

c2 = 102c1d(G)
−6, c3 = 1020c2d(G)

−50

c4 = 1020c3d(G)
−100, c5 = 1010c4d(G)

−180.

The tightest constraint on c that will be required in our calculations is

100c5 = 1054(50c)1/4d(G)−336 < 10−6d(G)180
;

this holds for small c0 if c < c0d(G)
3000. (This is the bound we need if G is (c, 16)-

typical, but if G is c-typical we need the stronger bound in Theorem 2.1.)

2.4. Cover

Consider the following random greedy algorithm. Let L = {ei : i ∈ [t]} (with edges
ordered arbitrarily). Let Mc

= {Ti : i ∈ [t]} be triangles such that Ti consists of ei and
two edges ofG∗, and is chosen uniformly at random from all such triangles that are edge-
disjoint from all previous choices; if there is no available choice for Ti then the algorithm
aborts.

To analyse the algorithm we require a concentration inequality. We say that a random
variable Y is (µ,C)-dominated if there are constants µ1, . . . , µm with

∑m
i=1 µi < µ,

and we can write Y =
∑m
i=1 Yi with |Yi | ≤ C for all i, and conditional on any given

values of Yj for j < i we have E|Yi | < µi . The following lemma follows easily from
Freedman’s inequality [3] (see [5, Lemma 2.7]).

Lemma 2.9. If Y is (µ,C)-dominated then P(|Y | > 2µ) < 2e−µ/6C .

Sometimes we will use a modified inequality with 2 replaced by 1 + c. We also note
that if the Yi are independent (not necessarily identically distributed) indicator variables,
we recover a version of the Chernoff bound for (pseudo)binomial variables (where better
concentration is known). For the following lemma, we recall that L is c1-bounded, where
c1 = (50c)1/4, and that c2 = 102c1d(G)

−6.

Lemma 2.10. Whp the algorithm to choose Mc does not abort, and S := G∗ ∩
⋃
Mc is

c2-bounded.
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Proof. For i ∈ [t] we let Bi be the bad event that Si := G∗ ∩
⋃
j<i Tj is not c2-bounded.

We define a stopping time τ be the smallest i for which Bi holds or the algorithm aborts,
or∞ if there is no such i. It suffices to show whp τ = ∞.

We fix t0 ∈ [t] and bound P(τ = t0) as follows. For any i < t0, since Bi does not hold,
Si is c2-bounded. Writing ei = viv′i , we can bound the number of excluded choices for Ti
by c2n < |G

∗(vi) ∩G
∗(v′i)|/2, so at most one half of the triangles on ei are excluded.

Next we fix e = vv′ ∈ G∗, and estimate re :=
∑
i≤t0

P′(e ⊆ Ti), where P′ denotes
the conditional probability given the choices made before step i. We compare re to the
expected number of times that e would be covered if we chose all triangles independently.
To be precise, we let

Ee :=
∑
i≤t0

P(e ⊆ T ′i ),

where each T ′i is a uniform random triangle consisting of ei and two edges of G∗, and
(T ′i : i ∈ [t]) are independent. By the bound on excluded choices, P′(e ⊆ Ti) <

2P(e ⊆ T ′i ), so re < 2Ee.
The ith summand in Ee is only nonzero when ei ∩ e 6= ∅. As L is c1-bounded, the

number of such i is at most |L(v)| + |L(v′)| < 2c1n. Also, for each i such that ei ∪ e
spans a triangle, we have

P(e ⊆ T ′i ) = |G
∗(vi) ∩G

∗(v′i)|
−1 < 2d(G∗)−2n−1.

Therefore Ee < 4c1d(G
∗)−2 < c2/4.

Finally, fix v ∈ V (G) and consider

X = |St0(v)| =
∑
i≤t0

Xi, where Xi =
∑

v∈e∈G∗

1e⊆Ti .

We have |Xi | ≤ 2 and∑
i≤t0

E′(Xi) =
∑
i≤t0

∑
v∈e∈G∗

P′(e ⊆ Ti) =
∑

v∈e∈G∗

re < c2n/2.

By Lemma 2.9 we have P(X ≥ c2n) < 2e−c2n/24. Taking a union bound over i ≤ t0 ≤ t ,
we see that whp |S(v)| < c2n, i.e. S is c2-bounded and τ = ∞. ut

Below we will require several more random greedy algorithms similar to that above. One
could formulate an abstract general lemma to cover all cases [5, Lemma 4.11], but here
we will prefer the more intuitive approach of identifying the key principles of the proof,
so that it will be clear how it may be adapted to future instances. For a general random
greedy algorithm, we identify some desired boundedness conclusion, then at each step
of the algorithm, assuming that boundedness has not failed, we show that at most one
half (say) of the choices of the required configuration have been excluded. Then for each
edge e in the underlying graph H we estimate the expected number Ee of times that e
would be covered if we chose all configurations independently. If Ee < b/4 and the
configurations have constant size (not depending on n) then the graph of all covered
edges is whp b-bounded.
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We record some estimates that are useful for such arguments. Suppose H is a small
fixed graph (|H | ≤ 500 say), F ⊆ V (H) and φ is an embedding of H [F ] in G∗. We call
E = (φ, F,H) an extension. Let XE(G∗) be the number of embeddings φ∗ of H in G∗

that restrict to φ on F . We suppose thatE is 16-degenerate, meaning that we can construct
the embedding one vertex at a time, so that at each step we add a vertex adjacent to at
most 16 existing vertices. As (G,G∗) is (6c, 16)-typical, when we add a vertex adjacent to
t ≤ 16 existing vertices, there are (1±6tc)d(G∗)tn choices. Multiplying these estimates,
we obtain the following estimate for XE(G∗).

Lemma 2.11. Suppose E = (φ, F,H) is a 16-degenerate extension with |H | ≤ 500.
Then

XE(G
∗) = (1± 7|H |c)d(G∗)|H\H [F ]|n|V (H)|−|F |.

Now suppose that we wish to exclude embeddings φ∗ that use some edge in J which
is c-bounded. Fix e ∈ H \ H [F ] and consider the embeddings φ∗ with φ∗(e) ∈ J .
If e ∩ F 6= ∅ there are at most cn choices for the embedding of e, and then at most
n|V (H)|−|F |−1 choices for the remainder of φ∗. If e∩F = ∅ there are at most cn2 choices
for the embedding of e, and then at most n|V (H)|−|F |−2 choices for the remainder of φ∗.
Thus at most |H |cn|V (H)|−|F | choices of φ∗ are excluded, which is a negligible fraction
of XE(G∗).

3. Integral relaxations

In this section we establish Hole. Our first step is to consider an integral relaxation, in
the following sense. Instead of thinking of (S,

⋃
M i) as a partition of

⋃
Mo, we think of

S as a weighted sum of edge sets of triangles, where triangles in Mo have weight 1 and
triangles in M i have weight −1. We can express this by the equation 8A = S, where
8 is the corresponding ±1-vector indexed by triangles, and A is the inclusion matrix of
triangles against edges, i.e.Af e = 1e⊆f for any edge e and triangle f . It is straightforward
to show that this equation has a solution if we allow 8 to have any integer weights on
triangles (see [4, 13, 14] for more general results).

It will be more convenient to work with linear maps rather than matrices. For any
graphH we define Z-linear boundary/shadow maps ∂j : ZKi (H)→ ZKj (H) for i ≥ j ≥ 0
by ∂j (e) =

∑(
e
j

)
for e ∈ Ki(H), i.e. for J ∈ ZKi (H) and f ∈ Kj (H) we define

∂j (J )f =
∑
f⊆e∈Ki (H)

Je. For example, if J ∈ ZH then ∂1(J ) ∈ ZV (H) is defined by
∂1(J )v =

∑
v∈e∈H Je.

It will also be notationally convenient to identify vectors with (generalised) sets. It is
standard to identify v ∈ {0, 1}X with the set {x ∈ X : vx = 1}. Similarly, we can identify
v ∈ NX with the multiset in X in which x has multiplicity vx (for our purposes 0 ∈ N).
We also apply similar notation and terminology to that for multisets to vectors v ∈ ZX
(‘intsets’). Here our convention is that ‘for each x ∈ v’ means that x is considered |vx |
times in any statement or algorithm, and has a sign attached to it (the same as that of vx);
we also refer to x as a ‘signed element’ of v. For v ∈ ZX we write v = v+ − v−, where
v+x = max{vx, 0} and v−x = max{−vx, 0} for x ∈ X. Given J ∈ NG and v ∈ V (G),
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we define J (v) ∈ NV (G) by J (v)u = 1uv∈GJuv . Then we can extend the definition of
boundedness to multigraphs: J is c-bounded if |J (v)| < cn for every v ∈ V (G).

With this notation, our integral relaxation of Hole is expressed by the following
lemma (in whichKn denotes the complete graph on V (G)); for Hole we will need the ad-
ditional properties that 8(f ) = 0 for any f ∈ K3(Kn) \K3(G

∗), and 8(f ) ∈ {0, 1,−1}
for all f ∈ K3(G

∗), as then we can write 8 = Mo
−M i .

Lemma 3.1. There is 8 ∈ ZK3(Kn) with ∂28 = S such that ∂28
+ is 100c2-bounded.

Proof. We will construct8 = 80+81+82 such that J 0
= S−∂280, J 1

= J 0
−∂281,

J 2
= J 1

− ∂282 satisfy ∂iJ i = 0 for i = 0, 1, 2. Recalling that S is tridivisible, each
J i will be tridivisible, in the ‘intgraph’ sense: i.e.

∑
e J

i
e is divisible by 3 and

∑
u J

i
uv is

divisible by 2 for all v.

Step 0: For 80, we choose |S|/3 independent uniformly random triangles in Kn; then
J 0
= S − ∂280 satisfies ∂0J

0
= 0. For each vertex v, the number of these triangles

containing v is binomial with mean |S|/n < c2n/2, so by the Chernoff bound whp ∂280
is 1.1c2-bounded.

Step 1: We let J ∗ = ∂1J
0, so ∂0J

∗
= 2∂0J

0
= 0, i.e. |J ∗+| = |J ∗−|. Note for all

x ∈ V (G) that J ∗x is even, as J 0 is tridivisible, and |J ∗x | < 1.1c2n. We fix an arbitrary
sequence ((x+i , x

−

i ) : i ∈ [|J
∗+
|/2]) so that each x ∈ V (G) occurs J ∗+x /2 times as

some x+i and J ∗−x /2 times as some x−i . For each i we choose aibi ⊆ V (G) \ {x+i , x
−

i }

independently uniformly at random, and let 81 =
∑
i∈[|J ∗+|/2]({x

+

i aibi} − {x
−

i aibi});
then J 1

= J 0
− ∂281 satisfies ∂1J

1
= 0.

We claim that whp ∂28
±

1 are 8c2-bounded. To see this, we first fix any e ∈ Kn and
estimate the expected contributions to e from each step i, according to whether e contains
x+i , x−i , or neither. Each endpoint of e occurs at most 0.6c2n times as x±i , and for such
i we cover e with probability 2/(n − 2), so the expected contribution to (∂28

±

1 )e from

all such i is at most 2.5c2. At any other step, we cover e with probability
(
n−2

2

)−1
, so

the total expected contribution to (∂28
±

1 )e from these steps is at most 1.1c2. Now, for
each vertex v, summing over its incident edges, we see that |∂28

±

1 (v)| are both (4c2n, 1)-
dominated, so the claim holds by Lemma 2.9.

Step 2: We start by fixing an arbitrary expression J 1
=
∑
C∈C0

C, where each C is a
closed walk inKn with edge weights alternating between 1 and−1, and there are no can-
cellations, i.e. every edge appears in the sum only with weight 1 or only with weight −1.
As is well-known, such an expression may be found by a greedy algorithm: each C can
be obtained by following an arbitrary alternating walk on the signed elements of J 1 until
we return to our starting point using an edge with the opposite sign to that of the first
edge, whereupon we add −C to J 1 and repeat the procedure. (We note that this argu-
ment leads to a convenient shortcut for triangle decompositions, but does not generalise
to hypergraph decompositions.)

Next we express each C ∈ C0 as a sum of signed four-cycles in the complete graphKn
on V (G), where we write each closed walk of length 2m as a chain of m− 1 signed four-
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Fig. 1. Decomposing even signed cycles.

cycles, using the identity (see Figure 1)

m−1∑
i=1

(−1)i({xixi+1} − {xi+1yi+1} + {yi+1yi} − {yixi})

= {x1y1} + (−1)m{xmym} +
m−1∑
i=1

(−1)i{xixi+1} +

m−1∑
i=1

(−1)i{yiyi+1}.

This identity can be used as is if xi 6= yi for i ∈ [m]. For each i such that xi = yi , we
note that 1 < i < m, xi−1 6= yi−1, xi+1 6= yi+1, and xi+1 6= yi−1, so we can replace the
four-cycles for summands i − 1 and i by

(−1)i−1({xi−1xi} − {xixi+1} + {xi+1yi−1} − {yi−1xi−1}, and

(−1)i({xi+1yi−1} − {yi−1yi} + {yiyi+1} − {yi+1xi+1}).

Thus we can write J 1
=
∑
C∈C C, where each summand is a signed four-cycle in Kn.

Furthermore, the above construction has the property that for each v ∈ V (G) and w ∈
{−1, 1} we use at most 3|J 1+(v)| < 24c2n edges at v with weight w.

For each C = {ab} − {bc} + {cd} − {da} ∈ C we choose x ∈ V (G) \ {a, b, c, d}
independently uniformly at random, and add {xab} − {xbc} + {xcd} − {xda} to82; then
∂282=

∑
C∈C C=J

1. Let 0 denote the multigraph formed by summing {xa, xb, xc, xd}
over all such C. For any e ∈ Kn, at most 48c2n elements of C can contribute to 0e, so
E0e < 49c2n. Then for any v, summing over its incident edges, we see that |0(v)| is
(49c2n, 4)-dominated, so by Lemma 2.9 (modified), whp 0 is 50c2-bounded. Defining
8 = 80 +81 +82, we have ∂28 = S and ∂28

+ is 100c2-bounded. ut

To obtain Hole, we will modify 8 using the following ‘octahedral’ configurations (see
Figure 2). Consider a copy ofK2,2,2, the complete tripartite graph with two points in each
part, with parts {(j, 0), (j, 1)} for j ∈ [3]. Its triangles are {fx : x ∈ {0, 1}3}, where fx =
{(j, xj ) : j ∈ [3]}. The sign of fx is s(fx) = (−1)

∑
x . Thus each edge is in one triangle

of each sign. Defining � =
∑
x∈{0,1}3 s(fx){fx} ∈ ZK3(K2,2,2), we see that ∂2� = 0. This

gives a method to eliminate any signed triangle f from 8 without altering ∂28: we add
some copy of � with the opposite sign to f in which (say) f000 = f , thus replacing f
by seven other signed triangles that have the same total 2-shadow. Similarly (and more
importantly), we can eliminate any pair of triangles f, f ′ that have opposite sign and
share an edge e, replacing f, f ′ by six other signed triangles that have the same total
2-shadow and do not use e. We apply this method in the following two-phase algorithm.
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Fig. 2. An octahedron with signed triangles.

Octahedral Elimination Algorithm (Phase I). We eliminate all triangles in 8, according
to a random greedy algorithm, where in each step we consider some original signed ele-
ment f of 8, and choose an octahedral configuration �f to replace f . We refer to edges
of �f not in f as new edges, and choose �f uniformly at random subject to the new
edges belonging to G∗ and being disjoint from ∂28

+ and all new edges from previous
steps.

Let 8′ denote the result of Phase I (if it does not abort). Then ∂28
′
= ∂28 = S, and

we can write ∂28
′+
= ∂28

+
+ 0, where 0 is the graph of new edges, and every signed

element of 8′ contains at most one edge of ∂28
+.

Octahedral Elimination Algorithm (Phase II). We replace all signed edges apart from
those in S and 0. To do this, we fix a sequence S of pairs of signed elements of 8′, so
that (i) for each ff ′ ∈ S, there is some e ∈ ∂28

+ such that f and f ′ both contain e, and
f and f ′ have opposite signs, and (ii) the multiset consisting of all e as in (i) is ∂28

−.
Now we eliminate each ff ′ ∈ S, according to a random greedy algorithm, by subtracting
some copy �ff ′ of � with f000 = f and f001 = f ′, or vice versa, depending on the
signs. We refer to edges of �ff ′ not in f or f ′ as new edges, and choose �ff ′ uniformly
at random subject to the new edges belonging to G∗ and being distinct from ∂28

+
⋃
0

and all new edges from previous steps.
Let 9 denote the result of this algorithm (if it does not abort) and 0′ the graph of new

edges for Phase II. Then ∂29 = S and ∂29
−
= 0∪0′ ⊆ G∗. This implies9(f ) = 0 for

any f ∈ K3(Kn)\K3(G
∗), and9(f ) ∈ {0, 1,−1} for all f ∈ K3(G

∗), so9 = Mo
−M i ,

where Mo and M i are as in Hole, once we have verified the boundedness condition.

Lemma 3.2. Whp the Octahedral Elimination Algorithm produces Mo and M i as in
Hole.

Proof. We first show that whp 0 is c′2-bounded, where c′2 = 105c2d(G
∗)−9. The proof

follows the discussion after the proof of Lemma 2.10, where a configuration for f
consists of the new edges of some �f . By Lemma 2.11, at each step, the number of
choices of �f with all new edges belonging to G∗ (with no excluded configurations) is
(1 ± 60c)d(G∗)9n3. Assuming that the graph of previous new edges is c′2-bounded, as
∂28

+ is 100c2-bounded, the number of excluded configurations is at most 10c′2n
3, which
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is less than half of the total. Next, for each e ∈ G∗, we consider separately the contribu-
tions to Ee, according to whether e intersects f in 0 or 1 vertex (there is no contribution
to new edges from triangles containing e). There are at most 600c2n signed elements of
8 that intersect e in one vertex. For each of these, a random configuration covers e with
probability at most 3n2/(1− 60c)d(G∗)9n3, so the total contribution to Ee from such el-
ements is at most 2000c2d(G

∗)−9. Also,8 has at most 100c2n
2 signed elements, and for

each one that is disjoint from e the contribution to Ee is at most 6n/(1− 60c)d(G∗)9n3,
so the total contribution from such elements is at most 1000c2d(G

∗)−9. We obtain
Ee < 3000c2d(G

∗)−9, which implies the claimed bound on 0.
Next we claim that whp 0′ is c′′2 -bounded, where c′′2 = 20c′2d(G

∗)−7. The argument
is very similar to that given for 0. Now a configuration for ff ′ consists of the new edges
of some �ff ′ . By Lemma 2.11, at each step, the number of choices of �ff ′ with all
new edges belonging to G∗ (with no excluded configurations) is (1 ± 50c)d(G∗)7n2.
Assuming that the graph of previous new edges is c′′2 -bounded, as ∂28

+
⋃
0 is 2c′2-

bounded, the number of excluded configurations is at most 10c′′2n
2, which is less than

half of the total. Next, for each e ∈ G∗, we consider separately the contributions to Ee
according to whether e intersects f ∪ f ′ in 0 or 1 vertex (there is no contribution to new
edges if e ⊆ f ∪ f ′).

First we consider those ff ′ ∈ S that intersect e in one vertex x. There are two
choices for x ∈ e. If x ∈ f ∩ f ′ then there are at most 200c2n choices for f ∩ f ′

in ∂28
+
∪ ∂28

−, which determines f and f ′. If {x} = f \ f ′ then there are at most
|0(x)| < c′2n choices for f , and so f ′. The same bound applies if {x} = f ′ \ f ,
so there are at most 5c′2n such ff ′. Each contributes at most 2n/(1 − 50c)d(G∗)7n2

to Ee, so the total contribution from such ff ′ is at most 11c′2d(G
∗)−7. Also, |S| =

|∂28
−
| < 100c2n

2, and for each ff ′ ∈ S with e ∩ (f ∪ f ′) = ∅ the contribution to
Ee is at most 2/(1 − 50c)d(G∗)7n2, so the total contribution from such elements is at
most 300c2d(G

∗)−7. We obtain Ee < 12c′2d(G
∗)−7, which implies the claimed bound

on 0′. Recalling that d(G∗) > 0.24d(G)3 and c3 = 1020c2d(G)
−50 we see that

⋃
Mo
=

∂29
+
= S ∪ 0 ∪ 0′ is c3-bounded, so we have the required properties for Hole. ut

4. Completion

For Completion, we divide the analysis into two parts. Firstly, we will determine what
conditions on M1 and M2 enable us to find M3 and M4. Secondly, we will show that
the sets Mc, Mo and M i from Cover and Hole can be modified to give M1 and M2
satisfying the required conditions. For convenient notation we suppress the embedding
π : V (G) → F2a whenever we do not need to refer to it, instead thinking of V (G) as a
subset of F2a .

4.1. Shuffles

Suppose we have a set M2 of edge-disjoint triangles in G∗, and we want to find sets
M3 and M4 of edge-disjoint triangles in G∗ such that

⋃
M3 =

⋃
M4, M3 ⊆ T and
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M2 ⊆ M4. Our basic building blocks (‘shuffles’) will be edge-disjoint subgraphs of G∗,
each having two different triangle decompositions, one only using triangles in T , and the
other including any specified triangle of M2. Then the unions over all blocks of the two
triangle decompositions will give M3 and M4 as required.

We define the shuffles as follows. Fix x = (x1, x2, x3) ∈ F3
2a and t = (t1, t2) ∈ F2

2a
such that {x1, x2, x3, t1, t2} is linearly independent over F2. Let 〈x〉 be the subspace of F2a

generated by {x1, x2, x3}. The xt-shuffle Sxt is the complete tripartite graph with parts
ti + 〈x〉 = {ti + y : y ∈ 〈x〉}, i ∈ [3], where t3 := t1 + t2. If Sxt ⊆ G∗ then it has
a triangle decomposition M3xt only using triangles in T : take all triangles y1y2y3 where
each yi ∈ ti + 〈x〉 and y1 + y2 + y3 = 0. We define another triangle decomposition
M4xt of Sxt by translating each triangle of M3xt by (x1, x2, x3), i.e. M4xt consists of all
triangles y1y2y3 where yi ∈ ti + 〈x〉 for each i and x1 + x2 + x3 + y1 + y2 + y3 = 0.

To constructM3 andM4, we choose shuffles according to a random greedy algorithm,
where in each step we consider some z1z2z3 ∈ M2, and choose some shuffle Sxt ⊆ G∗

such that zi = ti + xi for all i ∈ [3]. We will see in Lemma 4.2 that the Randomised
Algebraic Construction is whp such that there are many choices for such a shuffle. This is
the most important property of the construction, and it would not hold if we had chosen
the template to be a uniformly random set of edge-disjoint triangles; in fact the expected
number of shuffles (or any ‘shuffle-like’ configuration) would be o(1). First we identify
a property that we need for triangles in M2 so that the required shuffles exist and can be
chosen to be edge-disjoint. We say that z1z2z3 is octahedral if z1+ z2+ z3 6= 0 and there
is a copy K ′ of K2,2,2 in G such that π(K ′) has parts {z1, z2 + z3}, {z2, z1 + z3} and
{z3, z1 + z2}; we call K ′ the associated octahedron of z1z2z3. We assume

(P1) all triangles in M2 are octahedral, with edge-disjoint associated octahedra.

Remark 4.1. The associated octahedron has all the properties that we require for the
construction ofM3 andM4, so we could implement our algorithm without using shuffles.
This remark was communicated to the author by Yang, and independently by Glebov and
Luria. We have opted to keep the shuffle argument in this paper, as it indicates how to
treat general (hyper)graphs (we only see how to dispense with it for triangles), and also
illustrates the arguments needed for Subsection 4.4.

Lemma 4.2. Under the random choice of π used in the definition of T , whp for any octa-
hedral z1z2z3 there are (1±200c)d(G)180γ 1822a shuffles Sxt ⊆ G∗ such that ti+xi = zi
for i ∈ [3].

Proof. We can write the number of such shuffles as a sum of indicator variables, X =∑
1E(K,`,x,t), where the sum ranges over all (K, `, x, t) such that K is a copy of K8,8,8

in G containing the associated octahedron K ′ of z1z2z3, ` is a bijective labelling of each
part ofK by F3

2, we let E(K, `, x, t) be the event that π(w) = ti + `(w) · x for all i ∈ [3]
andw in the ith part ofK , and we assume ` is consistent withK ′, in that `(π−1(zi)) = ei
and `(π−1(zi + zj )) = ei + ej for {i, j} ⊆ [3].

As G is (c, 16)-typical, there are (1± 181c)d(G)180n18 choices of (K, `). There are
22a
− O(n) choices of t , which determines x given z, as only O(n) choices of t are ex-

cluded by the condition that {x1, x2, x3, t1, t2} is linearly independent over F2: there are
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O(1) possible linear relations between them, and each such relation is linearly indepen-
dent or contradictory to the system ti + xi = zi for i ∈ [3] (as z1 + z2 + z3 6= 0), so
is satisfied by at most 2a choices of t . Given (K, `, x, t), conditional on π |K ′ , we have
P(E(K, `, x, t)) = (1+O(1/n))2−18a . Therefore EX = (1± 182c)d(G)180γ 1822a .

Also, any transposition τ of π affects X by at most 100 · 2a . To see this, we estimate
the number of shuffles containing z1z2z3 and any fixed v ∈ F2a \ {z1, z2, z3, z1 + z2,

z1 + z3, z2 + z3}. Consider any j ∈ [3], b ∈ F3
2 \ {ej , (1, 1, 1) − ej }, and the equations

ti + b · x = v and ti + xi = zi for i ∈ [3] in (t, x). We have four linearly independent
constraints, so there are at most 2a solutions. Including multiplicative factors for i, b and
τ gives the required bound. Now by Lemma 2.7 whpX = (1±200c)d(G)180γ 1822a . ut

4.2. Linear extensions

We digress to note a more general estimate for future reference. Suppose H is a graph,
y = (yi : i ∈ [g]) are variables, and for all v ∈ V (H) we have distinct linear forms
Lv(y) = cv +

∑
i∈Sv

yi for some cv ∈ F2a and Sv ⊆ [g]. We call E = (L,H) a
linear extension with base F = {v ∈ V (H) : Sv = ∅}. Let XE(G∗) be the number of
L-embeddings of H , i.e. embeddings φ of H in G∗ such that for some y ∈ Fg2a we have
φ(v) = Lv(y) for all v ∈ V (H). The above argument (see also [5, Lemma 5.15]) gives
the following formula analogous to that obtained for shuffles.

Lemma 4.3. Let E = (L,H) be a 16-degenerate linear extension with |H | ≤ 500.
Suppose

• H has a triangle decomposition M such that Lx + Ly = Lz for each xyz ∈ M ,
• the incidence matrix of {Sv : v ∈ V (H)} has full column rank g ≥ 1.

Then
XE(G

∗) = (1± 1.1|H |c)d(G)|H\H [F ]|γ |V (H)\F |2ga .

4.3. Shuffle algorithm

Recalling our general framework for random greedy algorithms, we want to show that,
of the potential shuffles Sxt with ti + xi = zi for i ∈ [3], at most half are excluded
due to sharing an edge with a previous shuffle, assuming some boundedness condition
on the graph 0 of new edges from previous shuffles. We classify the potential restrictions
according to the label of the shuffle edge involved, which is specified by some {j, k} ⊆ [3]
and bj , bk ∈ F3

2 such that bj /∈ {ej , (1, 1, 1)− ej } or bk /∈ {ek, (1, 1, 1)− ek} (here we do
not consider edges of the associated octahedra: these are already determined, and edge-
disjoint by (P1)). For any vjvk ∈ G∗, the shuffles excluded because of mapping the given
labelled shuffle edge to vjvk are given by the (x, t)-solutions of the system S of equations
tj + bj · x = vj , tk + bk · x = vk and ti + xi = zi for i ∈ [3]. There may be 0, 1 or 2a

solutions. We can ignore the case of no solutions, as it does not exclude anything. For the
cases with one solution, we can bound the number of excluded choices by the number of
edges covered by all shuffles, which is 192|M2|.
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It remains to consider the case that S has 2a solutions, which occurs when one of the
equations is redundant, due to being a linear combination of the other equations. There
are a constant number of linear combinations, and each constrains (vj , vk) to lie on a line,
as may be seen from general considerations of linear algebra, or simply by enumerating
the possibilities: without loss of generality tk + bk · x = vk is redundant, due to

(i) bk = ek and vk = zk ,
(ii) bk = (1, 1, 1)− ek and vk = z1 + z2 + z3 − zk ,

(iii) bj + bk = ej + ek and vj + vk = zj + zk ,
(iv) bj + bk = ei and vj + vk = zi , where [3] = {i, j, k}.
In cases (i) and (ii) where vk is fixed, assuming that 0 is c5-bounded, there are at most
c5n choices for vj such that vjvk ∈ 0. In cases (iii) and (iv) we need an additional
boundedness condition:

We say that 0 is linearly c5-bounded if 0 is c5-bounded and also contains at most
c52a edges from any line of the form {(x1 + µ, x2 + µ) : µ ∈ F2a }.

We also need similar conditions so that we can avoid the associated octahedra; writing
1 for the union of all associated octahedra of triangles in M2, we will ensure that
(P2) 1 is linearly c4-bounded.
Then the total number of excluded shuffles is at most 192(|M2| + (c4 + c5)22a) <

200c522a , which is less than half of the total.
Next we fix e ∈ G∗ and estimate Ee. To do so, we fix bj , bk as above, write e = vjvk

and estimate the sum over z1z2z3 ∈ M2 of the probability p that a random shuffle Sxt with
ti+xi = zi for i ∈ [3] satisfies tj +bj ·x = vj and tk+bk ·x = vk . For fixed z1z2z3, if the
system S as above has N solutions then p = N/(1±200c)d(G)180γ 1822a . When N = 1
the total contribution is at most |M2|/(1− 200c)d(G)180γ 1822a < 1.1c4d(G)

−180γ−18.
If N = 2a then (z1, z2, z3) is constrained to lie in a certain plane (this can be seen by
linear algebra, or by considering each possibiity as above: e.g. in case (iii) the plane is
vj + vk = zj + zk). Thus we see the final property that we need from M2:
(P3) M2 contains at most c42a elements z1z2z3 from any basic plane of the form b ·z = v

where b ∈ F3
2 \ {0}.

(Note that by (P1) we can assume v 6= 0 in (P3).) Then the total contribution is at most
c42a · 2a/(1 − 200c)d(G)180γ 1822a . Summing over {j, k}, bj and bk , we can estimate
Ee < 250c4d(G)

−180γ−18
= c5/4. Applying Lemma 2.9 as in the proof of Lemma 2.10,

we deduce that whp the boundedness assumptions on 0 used above do not fail (linear
boundedness follows in the same way as boundedness), and so the algorithm does not
abort. This completes the analysis of the first part of Completion: given M1 and M2 as
in Completion, under the conditions (P1)–(P3) on M2, we can find M3 and M4 as in
Completion.

4.4. Octahedral Elimination Algorithm

To complete the proof of Completion, and so of the theorems, it remains to show that we
can find M1 and M2 satisfying the conditions (P1)–(P3). We apply a similar two-phase
algorithm to that used in Hole.
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Phase I. We start with 8 = Mc
+ M i

− Mo, so ∂28 = L, ∂28
+
=
⋃
(Mc
∪ M i),

∂28
−
=
⋃
Mo. Next we eliminate all triangles in 8 according to a random greedy

algorithm, where in each step we consider some original signed element f of 8, and
choose an octahedral configuration �f to replace f . We say that a triangle f ′ of �f is
far if |f ′ ∩ f | ≤ 1, and that �f is valid if (i) none of its triangles are template triangles,
with the possible exception of f , and (ii) all of its far triangles are octahedral, and their
associated octahedra share edges only in �f , in which case we denote their union by the
extended configuration �+f . We say that an edge of �+f not in f is new, and choose a
valid �f uniformly at random subject to the new edges being distinct from all new edges
from previous steps.

Let 8′ denote the result of Phase I (if it does not abort). We have ∂28
′
= ∂28 = L,

and writing 0 for the graph of new edges, we see that every signed element of8′ is either
a far triangle consisting of three edges of 0, or is not far and consists of two edges of 0
and one edge of ∂28

+.

Phase II. Now we will eliminate all triangles of 8′ apart from those that contain an edge
of L or were far in the previous modification procedure. We partition all such triangles
into a sequence S of pairs of signed elements of 8′, so that for each ff ′ ∈ S, there is
some e ∈ ∂28

+ such that f and f ′ both contain e, and f and f ′ have opposite signs. We
eliminate each ff ′ ∈ S, according to a random greedy algorithm, by subtracting some
copy�ff ′ of� with f000 = f and f001 = f

′, or vice versa, depending on the signs. Now
we say that�ff ′ is valid if all of its triangles apart from f and f ′ are octahedral, and their
associated octahedra share edges only in�ff ′ , in which case we denote their union by the
extended configuration �+

ff ′
. We refer to edges of �+

ff ′
not in f or f ′ as new edges, and

choose a valid �ff ′ uniformly at random subject to the new edges being distinct from 0

and all new edges from previous steps.
Let 9 denote the result of this algorithm (if it does not abort) and 0′ the graph of new

edges for Phase II. Since ∂29 = ∂28 = L, defining M1 = 9
+ and M2 = 9

−, we see
that

⋃
M2 = 0 ∪ 0

′ and
⋃
M1 = L ∪ 0 ∪ 0

′, so (L,∪M2) is a partition of
⋃
M1. The

following lemma completes the proof of Completion, and so of the theorems, under the
assumption that G is (c, 16)-typical.

Lemma 4.4. Whp M2 satisfies (P1)–(P3).

Proof. To analyse Phase I, we first estimate the number of choices for an extended config-
uration on a triangle f . This can be described by the linear extension (�+f , L), where�+f
is as above, we have variables z = (z1, z2, z3), which we also use to label the vertices of
�f \f , we define Lx = x for all x ∈ �f , and define Lx for all other x as required for the
far triangles in�f to be octahedral, i.e. in the associated octahedron for a triangle abc, the
linear forms on the two vertices in each of the three parts are {La, Lb+Lc}, {Lb, Lc+La}
and {Lc, La +Lb}. By Lemma 4.3 whp G∗ is such that for any triangle f in 8, there are
(1± 60c)d(G)45γ 1523a valid choices of �f . Here we also use the fact that for any trian-
gle abc of �f other than f there are only 22a solutions to La(z) + Lb(z) + Lc(z) = 0.
The precise exponents of d(G) and γ (which are not important for the argument) may be
easily calculated from the observation that adding an octahedron to a triangle adds three
new vertices and nine new edges, and �+f is the composition of five such extensions.
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Next we claim that whp the graph 0 of new edges is linearly c′3-bounded, where
c′3 = 400c3d(G)

−45γ−15. We assume this bound on the current graph of new edges and
estimate how many configurations are excluded. Consider any edge uu′ of the extended
configuration. Suppose first that uu′ ∩ f = ∅. If Lu(y) + Lu′(y) is not constant, then
for any vv′ ∈ G∗ the number of L-embeddings with Lu(y) = v and Lu′(y) = v′ is at
most 2a . There are at most 45(|Mc

| + |M i
| + |Mo

|) < 100c3n
2 choices for a previous

new edge vv′, so this excludes at most 100c3n
22a configurations. On the other hand, if

Lu(y)+ Lu′(y) is constant, then Lu(y) and Lu′(y) are constrained to lie on a basic line;
there are at most c′32a choices for vv′ by linear boundedness, and each such vv′ excludes
at most 22a configurations. The latter estimate also applies to the case when one of u or
u′ is in f . Summing these bounds over all uu′, we see that fewer than half of the total
configurations are excluded.

Next we fix any edge uu′ of the extended configuration and any vv′ ∈ G∗, and es-
timate the sum over f ∈ 8 of the probability p that a random configuration satisfies
Lu(y) = v and Lu′(y) = v′. If uu′ ∩ f = ∅ and Lu(y) + Lu′(y) is not constant, then
p < 2a/(1− 60c)d(G)45γ 1523a for any f ∈ 8. There are at most c3n

2 choices for f , so
the total contribution is at most 2c3d(G)

−45γ−15. Otherwise, ifLu(y)+Lu′(y) is constant
or one of u or u′ is in f , then one vertex of f is specified by (Lu(y), Lu′(y)). For example,
writing f = abc, in the associated octahedron for az2z3, if u = z2 and u′ = a+z2 then a
is specified by (Lu(y), Lu′(y)). Then there are at most 2c3n choices for f (as

⋃
Mo is c3-

bounded). For each such f we have a contribution of at most 22a/(1−60c)d(G)45γ 1523a ,
so again the total contribution is at most 2c3d(G)

−45γ−15. Summing these bounds over
all uu′ we can estimate Evv′ < 100c3d(G)

−45γ−15
= c′3/4. Applying Lemma 2.9 as in

the proof of Lemma 2.10, we deduce the claimed bound on 0.
We also claim that whp there are at most 2c′32a far triangles in any basic plane

5 = {z : b · z = v}. To see this, we first consider the contribution from the template
triangles 5∗ = 5 ∩ T . Since z1 + z2 + z3 = 0 is linearly independent or contradic-
tory to the defining equation of 5, we have |5∗| ≤ 2a . Summing Evv′ < c′3/4 over an
edge vv′ in each triangle of 5∗, by Lemma 2.9 we see that whp 5 contains at most c′32a

template triangles. Now fix any far non-template triangle f ′ of the extended configura-
tion, any g ∈ K3(G

∗), and estimate the sum over f ∈ 8 of the probability p that a
random configuration satisfies Lf ′(y) = g. If f ′ ∩ f = ∅ then as f ′ is non-template it
determines the configuration, so p < 1/(1 − 60c)d(G)45γ 1523a , giving a total contri-
bution of at most 2c3d(G)

−45γ−15n−1. Otherwise, f ′ determines one of the associated
octahedra, so specifies one vertex of f , for example, writing f = abc, we see that if
f ′ = {z2, a + z2, a + z3} then a is specified. Then there are at most 2c3n choices for f ;
for each such f we have p < 2a/(1− 60c)d(G)45γ 1523a , so again the total contribution
is at most 2c3d(G)

−45γ−15n−1. Summing over f ′ and applying Lemma 2.9 as in the
proof of Lemma 2.10, we deduce the claimed bound on 5. This completes the analysis
of Phase I.

To analyse Phase II, we first estimate the number of choices for an extended con-
figuration on a pair ff ′. This can be described by the linear extension (�+

ff ′
, L), where

�+
ff ′

is as above, we have variables z = (z1, z2), which we also use to label the ver-



Counting designs 921

tices of �ff ′ \ (f ∪ f ′), we define Lx = x for all x ∈ �ff ′ , and define Lx for all
other x as required for the triangles in �ff ′ other than f and f ′ to be octahedral. The
linear forms are distinct, as f and f ′ are not template triangles. By Lemma 4.3 there
are (1 ± 60c)d(G)53γ 2022a valid �ff ′ . Again, the precise exponents of d(G) and γ are
not important for the argument, but are straightforward to calculate: e.g. γ appears with
exponent 20, as �ff ′ and each of the seven associated octahedra adds three new vertices
to the extension, but four vertices in the associated octahedra belong to the base of the
extension, being the third vertex of the template triangle containing an edge in f or f ′

other than e.
We claim that whp 0′ is linearly c4/2-bounded. The argument is very similar to that

given above for 0. Assuming this bound on the current graph of new edges, one can show
similarly to before that fewer than half of the total configurations are excluded. We also
need to estimate the sum over f ∈ 8 of the probability that a random configuration
satisfies Lu(y) = v and Lu′(y) = v′, for any uu′ in the extended configuration and
vv′ ∈ G∗. For most choices for uu′ the required bound follows as before, but there is
an additional case, namely when uu′ ∩ (f ∪ f ′) = ∅ and Lu(y) + Lu′(y) is constant,
it may be that no vertex of f ∪ f ′ is specified by (Lu(y), Lu′(y)), but instead some
pair (not e) is constrained to lie on a basic line. For example, writing f = abc and
f ′ = abc′, if u = b + z1 and u′ = c + z1 then (Lu(y), Lu′(y)) specifies b + c, but not
b or c. In this case, we use the fact that 0 is linearly c′3-bounded to see that there are at
most c′32a choices for ff ′. Each such ff ′ contributes at most 2a/(1−60c)d(G)53γ 2022a ,
giving a total contribution of at most 2c′3d(G)

−53γ−20. Summing over all uu′ we estimate
Evv′ < 100c′3d(G)

−53γ−20, so the claim follows from Lemma 2.9.
Finally, M2 satisfies the conditions (P1)–(P3): indeed, (P1) holds by definition of the

extended configurations and random greedy algorithms, (P2) holds as 1 ⊆ 0 ∪ 0′, and
(P3) holds as whp 9 has at most c4n triangles in any basic plane: this holds for the new
triangles in this algorithm by the same argument as for 8′, and we may include the far
triangles from the previous algorithm in this estimate. ut

This completes the proof of Completion, and so of Theorem 2.1, under the assump-
tion that G is (c, 16)-typical. The following modification proves the theorem under
the assumption that G is c-typical. It is well-known that G is c1/50-regular (say) in the
‘Szemerédi sense’ (see e.g. [6, Theorem 2.2]). For S ⊆ V (G) with |S| ≤ 16, say that S is
good if |

⋂
x∈S G(x)| = (1± |S|c

1/100)d(G)|S|n, otherwise bad. As G is c-typical, there
are no bad sets of size 1 or 2. By regularity, for k ≤ 15, any good k-set is contained in at
most c1/100n bad (k + 1)-sets. The proof of Lemma 2.5 still applies if we assume that all
subsets of S are good. Thus we can avoid using bad sets with negligible changes to the
calculations.

5. Random triangle removal

In this section we sketch a proof of Theorem 2.8, by describing how to apply the analysis
of random greedy hypergraph matching by Bennett and Bohman [1] (we choose this for
simplicity, but there are several other alternative approaches).
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Consider the random triangle removal algorithm starting with G rather than Kn. The
intuition is that after i steps the remaining graph Gi should look like a random subgraph
of G where edges are retained independently with probability p = 1 − 3t , where t =
i/|G|. For any e ∈ G let Te(i) denote the number of triangles of Gi containing e, and
Q(i) denote the total number of triangles of Gi . By assumption, Te(0) = (1 ± b)D for
all e ∈ G, where D = d(G)2n. Note also that Q(0) = (1± b)|G|D/3.

We will show that for 0 ≤ i ≤ (1− b1/4)|G|/3 whp

Q(i) = |G|Dp3/3± eq and Te(i) = Dp
2
± ed for all e ∈ Gi,

where eq = 2(1−3 logp)2b|G|D and ed = 2(1−3 logp)b2/3D. We restrict attention to
the upper bounds, as the lower bounds are similar. A convenient reformulation is to show
negativity of the shifted variables

Q+(i) = Q(i)− |G|Dp3/3− eq and T +e (i) = Te(i)−Dp
2
− ed .

This follows whp from martingale concentration inequalities (e.g. [3]) after we verify the
following ‘trend’ and ‘boundedness’ hypotheses, supposing that the required estimates
for Q and Te hold at previous steps (i.e. i < τ , where the stopping time τ is the first
step where any of the required estimates fails, or∞); we use primes to denote conditional
expectation given the history of the process.

Trend hypothesis: IfQ+(i) ≥ −b|G|D then E′Q+(i+1) ≤ Q+(i); if T +e (i) ≥ −b
2/3D

then E′T +e (i + 1) ≤ T +e (i).

Boundedness hypothesis: (Q+(i + 1) − Q+(i))2|G|p log n < (b|G|D)2, and −2 <

T +e (i + 1)− T +e (i) < θ with θ < 2/10 and θ2|G|p log n < (b2/3D)2.

We start with the boundedness hypothesis, which holds with room to spare. Indeed,
|Q+(i+1)−Q+(i)| = O(n), so (Q+(i+1)−Q+(i))2|G|p log n = O(n4 log n), whereas
(b|G|D)2 > b2d(G)3n6/4 > n5.5/4. Also, for any e ∈ Gi we have −2 ≤ Te(i + 1) −
Te(i) ≤ 0. The change inDp2 isO(Dp/|G|) and in ed isO(b2/3D/p|G|), so we can take
2 = 3 and θ = O(p + b2/3/p)D/|G|. Then θ2|G|p log n = O(p2

+ b2/3)D log n =
O(n log n), whereas (b2/3D)2 = b4/3d(G)4n2 > n1.4.

Next consider the trend hypothesis for Q. Conditional on the required estimates at
step i, if Q+(i) ≥ −b|G|D we have

E′[Q(i + 1)−Q(i)] = −Q(i)−1
∑
e∈Gi

Te(i)
2
+O(1)

= −9Q(i)/|G|p ± 2|G|pe2
d/Q(i)+O(1)

≤ −3Dp2
− 9eq/|G|p + 9bD/p + (6+ o(1))e2

d/Dp
2.

Also, since eq is increasing, the one-step change in −|G|Dp3/3 − eq is at most
(1+O(1/|G|))3Dp2. As p ≥ b1/4, we deduce

E′[Q+(i + 1)−Q+(i)] ≤ −9eq/|G|p + 9bD/p + 7e2
d/Dp

2

≤ −18(1− 3 logp)2bD/p + 9bD/p + 28(1− 3 logp)2b4/3D/p2
≤ 0.
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Now consider the trend hypothesis for Te. Conditional on the required estimates at
step i, if T +e (i) ≥ −b

2/3D we have

E′[Te(i + 1)− Te(i)] = −Q(i)−1Te(i)2(Dp2
± ed +O(1))

≤ −2Q(i)−1(Dp2
+ ed − b

2/3D)(Dp2
− ed −O(1))

≤ −6(Dp2)2/|G|Dp3
+ (6+ o(1))(b2/3D)(Dp2)/|G|Dp3

+O(eq/|G|
2p2).

Also, the one-step change in −Dp2 is at most (1+O(1/|G|))6Dp/|G|, and in −ed is at
most −(1+O(1/|G|p))18b2/3D/|G|p. We deduce

E′[T +e (i + 1)− T +e (i)] ≤ −10b2/3D/|G|p +O(log2 p)bD/|G|p2
≤ 0.

Thus the required estimates hold, i.e. for 0 ≤ i ≤ (1 − b1/4)|G|/3, whp we have
Q(i) = |G|Dp3/3± eq and Te(i) = Dp2

± ed for all e ∈ Gi .
Now we apply the same method to deduce the boundedness conclusion of Theo-

rem 2.8. For 0 ≤ i ≤ (1− b1/4)|G|/3 we show whp

|Gi(v)| = p|G(v)| ± ev for any vertex v,

where ev = 2b1/3d(G)n. The upper bound G+v (i) := |G
i(v)| − p|G(v)| − ev ≤ 0 will

follow whp after we verify the following two conditions.

Trend hypothesis: If G+v (i) ≥ −b
1/3d(G)n then E′G+v (i + 1) ≤ G+v (i).

Boundedness hypothesis: −2 < G+v (i + 1) − G+v (i) < θ with θ < 2/10 and
θ2|G|p log n < (b1/3d(G)n)2.

For the boundedness hypothesis, we can take 2 = 2 and θ = 3|G(v)|/|G|, so that
θ2|G|p log n = 6p|G(v)| log n = O(n log n), whereas (b1/3d(G)n)2 > b3n2

≥ n1.7.
For the trend hypothesis, if G+v (i) ≥ −b

1/3d(G)n we have

E′[|Gi+1(v)| − |Gi(v)|] = −
∑

e:v∈e∈Gi

Te(i)/Q(i)

≤ −(p|G(v)| + ev − b
1/3d(G)n)(Dp2

− ed)/(|G|Dp
3/3+ eq)

≤ −3|G(v)|/|G| − 3(ev − b1/3d(G)n)/|G|p +O(ed)
|G(v)|

|G|Dp2 +O(eq)
|G(v)|

|G|2Dp3 .

The one-step change in −p|G(v)| − ev is at most 3|G(v)|/|G|, so

pn E′[G+v (i + 1)−G+v (i)] ≤ −6b1/3
+O(ed/Dp)+O(eq/|G|Dp

2) ≤ 0,

as ed/Dp = O(b2/3p−1 logp), eq/|G|Dp2
= O(bp−2 log2 p) and p ≥ b1/4.

Thus, letting N be the set of triangles removed during the process, we see that whp
L = G \

⋃
N is b1/4-bounded.
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6. The number of designs

In this section we generalise Theorem 2.2 to estimate the number of designs. We start
by describing the results of [5] on the existence of designs. Let D be a q-graph (i.e. a
set of subsets of size q) of a set X of size n. We say that D is a design with parameters
(n, q, r, λ) if every subset of X of size r belongs to exactly λ elements of S. Note that
if q = 3, r = 2, λ = 1 then D is a Steiner Triple System. The necessary divisibility
conditions generalise in a straightforward way: if D exists then

(
q−i
r−i

)
must divide λ

(
n−i
r−i

)
for every 0 ≤ i ≤ r−1; to see this, fix any i-subset I ofX and consider the sets inD that
contain I . In [5] we proved the ‘Existence Conjecture’, which states that these divisibility
conditions are also sufficient for the existence of a design with parameters (n, q, r, λ),
assuming q, r, λ are fixed and n > n0(q, r, λ) is large. We will generalise Theorem 2.2 as
follows.

Theorem 6.1. For any q, r, λ there is n0 such that if n > n0 and
(
q−i
r−i

)
| λ
(
n−i
r−i

)
for all

0 ≤ i ≤ r − 1, and if we write Q =
(
q
r

)
and N =

(
n−r
q−r

)
, then the number D(n, q, r, λ) of

designs with parameters (n, q, r, λ) satisfies

D(n, q, r, λ) = λ!
−

(
n
r

)
((λ/e)Q−1N + o(N))

λQ−1
(
n
r

)
.

The proof of Theorem 6.1 follows that of Theorem 2.2: the lower bound generalises the
argument given earlier in this paper, and the upper bound generalises that of Linial and
Luria [8].

We start with the lower bound. In the same way as a Steiner Triple System can
be viewed as a triangle decomposition of Kn, we can view a design with parameters
(n, q, r, λ) as a Kr

q -decomposition of λKr
n, where Kr

q denotes the complete r-graph on q
vertices and λKr

n denotes the multi(hyper)graph in Kr
n in which each edge has multiplic-

ity λ. To generalise Theorem 2.1, we first need to define the divisibility and typicality
conditions for general r-graphs (we will omit multiplicities in the definitions, as we do
not need them for our application here).

For S ⊆ V (G), the neighbourhood G(S) is the (r − |S|)-graph {f ⊆ V (G) \ S :

f ∪S ∈ G}. We say thatG isKr
q -divisible if

(
q−i
r−i

)
divides |G(e)| for any i-set e ⊆ V (G),

for all 0 ≤ i ≤ r . We say that G is (c, h)-typical if there is some p > 0 such that for any
set A of (r − 1)-subsets of V (G) with |A| ≤ h we have |

⋂
S∈AG(S)| = (1± c)p

|A|n.
Now we can state the r-graph generalisation of Theorem 2.1. When d(G) is at least a

constant independent of n this follows from [5, Theorem 1.4]; the same proof shows that
d(G) can decay polynomially in n.

Theorem 6.2. For any q > r ≥ 1 there are c0, a ∈ (0, 1) and h, `, n0 ∈ N such that if
n ≥ n0 and G is a Kr

q -divisible (c, h)-typical r-graph on n vertices with d(G) > n−a

and c < c0d(G)
` then G has a Kr

q -decomposition.

In the proof of Theorem 6.1 it is more convenient to count designs together with a choice
for each e ∈ Kr

n of a bijection between the λ copies of e in λKr
n and the λ sets of the

design containing e; we will refer to such a structure as an edge-labelled design with
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parameters (n, q, r, λ) and denote their number by D∗(n, q, r, λ). As D∗(n, q, r, λ) =

λ!

(
n
r

)
D(n, q, r, λ), it suffices to show

D∗(n, q, r, λ) = ((λ/e)Q−1N + o(N))
λQ−1

(
n
r

)
.

Proof of Theorem 6.1. For the lower bound we start by setting aside a random subgraph
R ofKr

n in which each edge is chosen with probability n−a/Q, where we can apply Theo-
rem 6.2 with a and `, and we suppose without loss of generality that Q� h� `� 1/a
(i.e. parameters are chosen from left to right to satisfy various inequalities below).

Next we will consider the random greedy matching process in the following auxiliary
hypergraph A. We let V (A) consist of λ copies of each edge of Kr

n \ R and λ− 1 copies
of each edge of R. We let E(A) consist of all

(
q
r

)
-sets in V (A) that are edge-sets of a copy

of Kr
q in Kr

n.
In the random greedy matching process, we start with A, and at each step we select a

uniformly random edge e of the current hypergraph, then delete all vertices of e (and all
incident edges) to obtain the hypergraph for the next step. We stop the process when fewer
than nr−3`a vertices of A remain and let L denote the multigraph in Kr

n consisting of the
remaining vertices of A. Similarly to the previous section, one can adapt the analysis of
Bennett and Bohman [1] to show that whp (i) when pλ

(
n
r

)
edges remain the number of

choices for the next edge of the process is (1±n−1/Q)(pλ)Q
(
n
q

)
, and (ii) |L(e)| < 2n1−3`a

for any (r − 1)-set e ⊆ [n].
Next we apply a random greedy algorithm to sequentially cover each edge of L by a

copy of Kr
q in which all other edges are in R; as usual, at each step we make a uniformly

random choice subject to not using any previously covered edge. The proof of Lemma
2.10 generalises to show that whp the algorithm does not abort, and writing S for the
subgraph of R covered by the algorithm, we see that whp |S(e)| < n1−2`a for any (r−1)-
set e ⊆ [n]. By Chernoff bounds whp R is (n−2`a, h)-typical. Also whp |R| > 1

2n
r−a/Q,

so R′ := R \ S is (c0n
−`a, h)-typical with |R′| > nr−a . Furthermore, R′ was obtained

from λKr
n by deleting edge-disjoint copies ofKr

q , and λKr
n isKr

q -divisible by assumption,
so R′ is Kr

q -divisible. Therefore R′ has a Kr
q -decomposition by Theorem 6.2. Combining

this with the previous choices of Kr
q ’s we have constructed an edge-labelled design with

parameters (n, q, r, λ) (the vertices of A specify the edge-labelling).
Now we may calculate similarly to the proof of Theorem 2.2. Writing m for the num-

ber of steps in the random greedy matching process, and p(i) = 1 − n−a/Q − iQ
(
n
r

)−1

for the approximate density at the ith step, we deduce that the logarithm of the number of
choices is

L1 =

m∑
i=1

(
log
(
p(i)QλQ

(
n
q

))
± 2n−1/Q)

= λQ−1(n
r

)(
log
(
λQ
(
n
q

))
−Q± n−a/2Q

)
.

Also, for any fixed design, the logarithm of the number of times it is counted is at most

L2 =

m∑
i=1

log(p(i)λQ−1(n
r

)
) = λQ−1(n

r

)(
log
(
λQ−1(n

r

))
− 1± n−a/2Q

)
.
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As
(
n
q

)
Q
(
n
r

)−1
= N + o(N) we deduce

logD∗(n, q, r, λ) ≥ λQ−1(n
r

)
log((λ/e)Q−1N + o(N)).

For the upper bound in Theorem 6.1 we apply the Entropy Method, follow-
ing the argument of Linial and Luria [8] for Steiner Triple Systems (see their pa-
per for motivation and exposition of the method). We let X be a uniformly random
edge-labelled design with parameters (n, q, r, λ), and consider the entropy H(X) =
−
∑
D P(X = D) logP(X = D) (using natural logarithms). As D∗(n, q, r, λ) = eH(X),

it suffices to estimate H(X).
We consider the labelled edges of λKr

n in a uniformly random order: it is convenient
to select µ = (µe) ∈ [0, 1]λK

r
n uniformly at random, and to proceed by decreasing order

of µe. At each step, when we consider e, we reveal the block Xe of X that contains e and
is assigned to e according to the edge-labelling. Conditional on µ, we have

H(X) =
∑
e∈λKrn

H(Xe | (Xe′ : µ(e
′) > µ(e))).

We estimate H(Xe | (Xe′ : µ(e′) > µ(e))) ≤ logNµ
e , where Nµ

e is the size of the
support of the random variable Xe | (Xe′ : µ(e′) > µ(e)), i.e. Nµ

e = 1 if e is a labelled
edge of Xe′ for some e′ that precedes e, otherwise Nµ

e is the number of choices of a
labelled q-set f containing e (i.e. we fix labellings of the other Q − 1 edges in f ) such
that for each such labelled edge e′ in f , no labelled edge of the block Xe′ precedes e.

Next we condition on X, fix e, and write Fe for the event that µ(e′) ≤ µ(e) for
all e′ ∈ Xe. We estimate E logNµ

e , where the expectation is with respect to µ, and we
suppress the X-conditioning in our notation. We have

E logNµ
e = E(E[logNµ

e |µe]) = E(µQ−1
e E[logNµ

e |µe, Fe])

and by Jensen’s inequality E[logNµ
e |µe, Fe] ≤ logE[Nµ

e |µe, Fe].
Now we write E[Nµ

e |µe, Fe] = 1 +
∑
f P[Ef |µe, Fe], where the sum is over all

labelled q-sets f 6= Xe containing e, and Ef is the event that for each labelled edge e′

in f , no labelled edge of the block Xe′ precedes e. Note that there are only O(N/n)
such f with |f ∩ f ′| > r for some block f ′ of X. For any other such f we have
P[Ef |µe, Fe] = µQ(Q−1)

e . We deduce E[Nµ
e |µe, Fe] = µ

Q(Q−1)
e λQ−1N +O(N/n).

Finally,

logD∗(n, q, r, λ) = H(X) ≤
∑
e∈λKrn

EµQ−1
e logE[Nµ

e |µe, Fe]

= λ
(
n
r

) ∫ 1

0
tQ−1
[log(tQ(Q−1)λQ−1N)+O(1/n)] dt.

For anyA,B,C > 0 we have
∫ 1

0 t
A−1 log(CtB) dt = A−1 logC−A−2B. SettingA = Q,

B = Q(Q− 1), C = λQ−1N we deduce

logD∗(n, q, r, λ) ≤ λQ−1(n
r

)
log((λ/e)Q−1N + o(N)). �
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7. Concluding remarks

Although we have proved (and generalised) Wilson’s conjecture, one may still ask for
more precise estimates (even an asymptotic formula) for the number of Steiner Triple
Systems, and more generally designs. Such results have been obtained by Kuperberg,
Lovett and Peled [7], using very different methods to ours, but only for designs within a
certain range of parameters. One open case of particular interest (recently drawn to my
attention by Ron Peled) is the problem of estimating the number G(n, d) of d-regular
graphs on n vertices. These may be viewed as designs with parameters (n, 2, 1, d), for
which our methods give G(n, d) = d!−n(dn/e + o(dn))dn/2. Much more precise results
have been obtained by McKay and Wormald, including asymptotic enumeration for d =
ω(n/ log n) (see [10]) and d = o(

√
n) (see [11]); their conjecture in [10] regarding a

general asymptotic formula remains open.
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