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1. Introduction

The aim of this paper is to show that the moduli functor of semi log canonical stable pairs
is bounded:

Theorem 1.1. Fix an integer n, a positive rational number d and a set I ⊂ [0, 1] which
satisfies the DCC. Then the set Fslc(n, d, I ) of all log pairs (X,1) such that

(i) X is projective of dimension n,
(ii) (X,1) is semi log canonical,

(iii) the coefficients of 1 belong to I ,
(iv) KX +1 is an ample Q-divisor, and
(v) (KX +1)n = d ,

is bounded. In particular there is a finite set I0 such that Fslc(n, d, I ) = Fslc(n, d, I0).

The main new technical result we need to prove 1.1 is to show that abundance behaves
well in families:

Theorem 1.2. Suppose that (X,1) is a log pair where the coefficients of 1 belong to
(0, 1] ∩Q. Let π : X→ U be a projective morphism to a smooth variety U . Suppose that
(X,1) is log smooth over U . If there is a closed point 0 ∈ U such that the fibre (X0,10)

has a good minimal model then (X,1) has a good minimal model over U and every fibre
has a good minimal model.

Corollary 1.3. Let (X,1) be a log pair where 1 is a Q-divisor and let X → U be
a flat projective morphism to a variety U . Suppose that U is smooth and the support
of 1 contains neither a component of any fibre nor a codimension one component of the
singular locus of a fibre. Then the subset U0 ⊂ U of points u ∈ U such that the fibre
(Xu,1u) is divisorially log terminal and has a good minimal model is constructible.

Corollary 1.4. Let π : X → U be a projective morphism to a smooth variety U and let
(X,1) be log smooth over U . Suppose that the coefficients of 1 belong to (0, 1] ∩ Q. If
there is a closed point 0 ∈ U such that the fibre (X0,10) has a good minimal model then
the restriction morphism

π∗OX(m(KX +1))→ H 0(Xu,OXu(m(KXu +1u)))

is surjective for any m ∈ N such that m1 is integral and for any closed point u ∈ U . In
particular if ψ : X 99K Z is the ample model of (X,1) then ψu : Xu 99K Zu is the ample
model of (Xu,1u) for every closed point u ∈ U .

The moduli space of stable curves is one of the most intensively studied varieties. The
moduli space of stable varieties of general type is the higher dimensional analogue of the
moduli space of curves. Unfortunately, constructing this moduli space is more compli-
cated than constructing the moduli space of curves. In particular it does not seem easy to
use GIT to construct the moduli space in higher dimensions; for example see [33] for a
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precise example of how badly behaved the situation can be. Instead Kollár and Shepherd-
Barron initiated a program to construct the moduli space in all dimensions in [28]. This
program was carried out in large part by Alexeev for surfaces [1, 2].

We recall the definition of the moduli functor. For simplicity, in the definition of the
functor, we restrict ourselves to the case with no boundary. We refer to the forthcoming
book [20] for a detailed discussion of this subject and to [25] for a more concise survey.

Definition 1.5 (Moduli of slc models, [25, Definition 29]). Let H(m) be an integer val-
ued function. The moduli functor of semi log canonical models with Hilbert function H
is

Mslc
H (S) =

flat projective morphisms X→ S whose fibres are slc models with
ample canonical class and Hilbert function H(m), ωX is flat over S
and all reflexive powers of ωX commute with base change

 .
In this paper we focus on the problem of showing that the moduli functor is bounded, so
that if we fix the degree, we get a bounded family. The precise statement is given in 1.1.
We now describe its proof. We first explain the reduction to 1.2.

For curves, if one fixes the genus g then the moduli space is irreducible. In particular
stable curves are always limits of smooth curves. This fails in higher dimensions, so that
there are components of the moduli space whose general point corresponds to a non-
normal variety, or better, a semi log canonical variety.

Fortunately ([24, paragraphs 23, 24] and [26, 5.13]), one can reduce boundedness of
semi log canonical pairs to boundedness of log canonical pairs in a straightforward man-
ner. If (X,1) is semi log canonical then let n : Y → X be the normalisation. X has nodal
singularities in codimension one, so informally it is obtained from Y by identifying points
of the double locus, the closure of the codimension one singular locus. More precisely,
we may write

KY + 0 = n
∗(KX +1),

where 0 is the sum of the strict transform of 1 plus the double locus and (Y, 0) is log
canonical. If KX + 1 is ample then (X,1) is determined by (Y, 0) and the data of the
involution τ : S → S of the normalisation of the double locus. Note that the involution τ
fixes the different, the divisor 2 defined by adjunction in the following formula:

(KY + 0)|S = KS +2.

Conversely, if (Y, 0) is log canonical and KY + 0 is ample, and if τ is an involution
of the normalisation S of a divisor supported on b0c which fixes the different, then we
may construct a semi log canonical pair (X,1) whose normalisation is (Y, 0) and whose
double locus is S.

Note that τ fixes the pullback L of the very ample line bundle determined by a multi-
ple of KX +1. The group of all automorphisms of S which fixes L is a linear algebraic
group. It follows by standard arguments that if (Y, 0) is bounded then τ is bounded.

Thus to prove 1.1 it suffices to prove the result when X is normal, that is, (X,1) is
log canonical (see 7.3). The first problem is that a priori X might have arbitrarily many
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components. Note that if X = C is a curve of genus g then KX has degree 2g− 2, and so
X has at most 2g−2 components. In higher dimensions the situation is more complicated
since KX is not necessarily Cartier and so d is not necessarily an integer.

Instead we use [15, 1.3.1], which was conjectured by Alexeev [1] and Kollár [22]:

Theorem 1.6. Fix a positive integer n and a set I ⊂ [0, 1] which satisfies the DCC. Let
D be the set of log canonical pairs (X,1) such that the dimension of X is n and the
coefficients of 1 belong to I . Then the set

{vol(X,KX +1) | (X,1) ∈ D}

also satisfies the DCC.

Since there are only finitely many ways to write d as a sum of elements d1, . . . , dk taken
from a set which satisfies the DCC (see 2.4.1), we are reduced to proving 1.1 when X is
normal and irreducible.

Let F ⊂ Fslc(n, d, I ) be the subset of all log canonical pairs (X,1) where X is
irreducible. Since the coefficients of1 belong to a set which satisfies the DCC, [15, 1.3.3]
implies that some fixed multiple of KX +1 defines a birational map to projective space.
As the degree of KX + 1 is bounded by assumption, F is log birationally bounded, that
is, there is a log pair (Z, B) and a projective morphism π : Z → U such that given any
(X,1) ∈ F, we may find u ∈ U such that X is birational to Zu and the strict transform8

of 1 plus the exceptional divisors are components of Bu.
To fix ideas, it might help to introduce an example to illustrate some of the ideas that

go into the proof that F is bounded. We start with P2 and k ≥ 4 lines. The subscript 0 will
indicate we are working with this example. The variety U0 is the set of all configurations
of k lines, Z0 = P2

× U0 and B0 is the reduced divisor corresponding to the lines. We
take I0 = {1/2, 1}.

[15, 1.6] proves that F is a bounded family provided we assume in addition that the
total log discrepancy of (X,1) is bounded away from zero (meaning that the coefficients
of 1 are bounded away from one as well as the log discrepancy is bounded away from
zero). For applications to moduli this is far too strong; the double locus occurs with coef-
ficient one.

Instead we proceed as follows. By standard arguments we may assume that U is
smooth, the morphism π is smooth and its restriction to any strata of B is smooth, that
is, (Z, B) is log smooth over U . In the case of lines in P2, we simply replace U0 by the
open subset of lines in linear general position; the case of lines not in general position is
handled by Noetherian induction. We first reduce to the case when vol(Zu,KZu+8) = d.
We are looking for a higher model Y → Z such that if C is the strict transform of B plus
the exceptionals and u is a point then vol(Yu,KYu + 0) = d where 0 is the transform
of 1 plus the exceptionals. At this point we use some of the ideas that go into the proof
of [14, 1.9].

We describe how to reduce to the case when U is a point. We illustrate the argument
for lines in P2; the argument in the general case is very similar. In this case the elements
(X,1) ∈ F are constructed as follows. Start with P2 and a collection of k lines in general
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position. Let S → P2 be any sequence of smooth blowups and let D be the strict trans-
form of the lines plus the exceptional divisors. Now blow down some −1-curves on S to
obtain X. Let1 be any divisor supported on the pushforward ofD whose coefficients are
0, 1/2 or 1. Note that there are some restrictions on which −1-curves we blow down: we
are only allowed to blow down components of D and we are also assuming that (X,1)
is log smooth.

To proceed further we want to understand how the volume changes for one smooth
blowup of a smooth surface π : T → S. Working locally, we may assume that S = A2,
D is the sum of the two coordinate lines L1 and L2 and π blows up the origin. Let E
be the exceptional divisor and let M1 and M2 be the strict transform of the two lines. By
assumption 1 = a1L1 + a2L2 where ai = 0, 1/2 or 1. If we write

KT + a1M1 + a2M2 + eE = π
∗(KS + a1L1 + a2L2),

then e = a1 + a2 − 1.
Globally we have a pair (T ,2) such that π∗2 = 1. If the volume of the pair (T ,2)

is smaller than the volume of the pair (S,1) then the coefficient E of2 is smaller than e.
In particular, since e ≤ 1, if we increase the coefficient of any −1-curve we blow

down S → X to 1 then the volume is unchanged. So there is no harm in assuming that
S = X. Note also that if we blow up T → S a point which does not belong to D then
e ≤ 0 so that the volume is unchanged. Therefore we may also assume that X → Z

only blows up strata of a fibre of B, since blowups away from the strata do not change
the volume. Since (Z, B) is log smooth over U , any sequence of blowups of the strata of
a particular fibre can be realised in the whole family. By deformation invariance of log
plurigenera we may therefore assume that U is a point (see 7.2).

In general vol(Zu,KZu + 8) ≥ vol(X,KX + 1) = d. Our goal is to find a higher
model Y → Z where we always have equality. This follows using some results from [14]
(see 7.1). We give an example at the end of §1 which illustrates some of the subtleties
behind the statement and proof of 7.1.

So we may assume that vol(Zu,KZu + 8) = d . Since (X,1) is log canonical and
KX + 1 is ample, we can recover (X,1) from (Zu,8) as the log canonical model (see
2.2.2). Conversely, if u ∈ U is a point such that (Zu,8) has a log canonical model
f : Zu 99K X , where

X = ProjR(Zu,KZu +8), 1 = f∗8,

the coefficients of 0 ≤ 8 ≤ Bu belong to I and vol(Zu,KZu +8) = d , then (X,1) ∈ F.
It therefore suffices to prove that the set of fibres with a log canonical model is con-

structible. Note that (X,1) has a log canonical model if and only if the log canonical
section ring

R(X,KX +1) =
⊕
m∈N

H 0(X,OX(m(KX +1)))

is finitely generated. Conjecturally every fibre has a log canonical model. Once again the
problem is the components of 1 with coefficient one. The main result of [7] implies that
if there are no such components, that is, (X,1) is Kawamata log terminal, then the log
canonical section ring is finitely generated.
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In general (see 2.9.1), the existence of the log canonical model Z is equivalent to the
existence of a good minimal model f : X 99K Y , that is, a model (Y, 0) such thatKY +0
is semi-ample. In this case the log canonical model is simply the model Y → Z such that
KY + 0 is the pullback of an ample divisor.

In fact we prove in 1.2 a much stronger result: if one fibre (X0,10) has a good mini-
mal model then every fibre has a good minimal model. By [17, 1.1] it suffices to prove that
every fibre over an open subset has a good minimal model, or equivalently, the generic
fibre has a good minimal model.

Let η ∈ U be the generic point. We may assume that U is affine. We prove the
existence of a good minimal model for the pair (Xη,1η) in two steps. We first show that
(Xη,1η) has a minimal model. For this we run the (KX + 1)-MMP with scaling of an
ample divisor. We know that if we run the (KX0 + 10)-MMP with scaling of an ample
divisor then this MMP terminates with a good minimal model. Using [17, 2.10] and 5.3
we can reduce to the case when the diminished stable base locus of KX0 + 10 does not
contain any non-canonical centres. In this case we show (see 3.1) that every step of the
(KX +1)-MMP induces a (KX0 +10)-negative map. This generalises [14, 4.1], which
assumes that U is a curve and (X,1) is terminal. This MMP f : X 99K Y ends with a
minimal model for the generic fibre (see 3.2).

To finish off we need to show that the minimal model is a good minimal model. There
are two cases. We may write (X,1 = S + B), where S = b1c.

In the first case, if KX + (1− ε)S + B is not pseudo-effective for any ε > 0 then we
may run the (KX + (1 − ε)S + B)-MMP Y 99K W until we reach a Mori fibre space
W → Z (see 5.2). If ε > 0 is sufficiently small, this MMP induces a (KX0 + 10)-non-
positive map (see 5.1). It follows that this MMP is (KX +1)-non-positive. We know that
there is a component D of S whose image dominates the base Z of the Mori fibre space.
By induction the generic fibre of the image E of D in Y is a good minimal model. The
restriction E 99K F of the map Y 99K W need not be a birational contraction but we will
not lose semi-ampleness. The image of the divisor is pulled back from Z and so KX +1
has a semi-ample model.

In the second case KX + (1− ε)S +B is pseudo-effective. As KX + (1− ε)S +B is
Kawamata log terminal, it follows by work of B. Berndtsson and M. Păun (see 4.1) that
the Kodaira dimension is invariant (see 4.2). As KX + (1 − ε)S + B is pseudo-effective
and (X0,10) has a good minimal model, it follows thatKX0+10 is abundant, that is, the
Kodaira dimension is the same as the numerical dimension. By deformation invariance
of log plurigenera the generic fibre is abundant. As the restriction of KY + 0 to every
component of coefficient one is semi-ample, the restriction of KY + 0 to the sum of the
coefficient one part is semi-ample by 2.5.1, and we are done by 2.6.1.

As promised, here is an example to illustrate some of the subtleties of the argument
in the proof of 7.1. We go back to the example of lines in P2. We start with four lines
L1, L2, L3 and L4 in P2, all with coefficient one. In this case U0 is a point since there
is no moduli to four lines in linear general position. The volume of the pair in P2 is
then 1. Now suppose that (X,1) ∈ F. As already pointed out, d ≤ 1 and there is no
harm in assuming that X is a blowup of P2, f : X → P2. We may even assume that
all of the blowups lie over the six points where the four lines intersect. Fix the point p
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where the two lines L1 and L2 meet and assume that all blowups are over p. Then X is
a toric variety and f : X → P2 is a toric morphism. Let us simplify matters even more
and assume that we only alter one coefficient of one exceptional divisor E over p; let us
suppose that we do not include E in 2, that is, we make its coefficient zero. In this case,
since every other divisor occurs with coefficient one, we can compute the volume on the
weighted blowup of P2 corresponding to the divisor E, g : S → P2. The problem is that
unless we fix the degree d , there is no constraint on how many times we blow up over p,
that is, there is no constraint on the weighted blowup g. Let M1, M2, M3 and M4 be the
strict transforms of the four lines. Then (S,M1 +M2 +M3 + E) is a toric pair, so that
KS +M1 +M2 +M3 + E ∼ 0. It follows that

(KS +M1 +M2 +M3 +M4)
2
= (M4 − E)

2
= M2

4 + E
2
= 1+ E2.

It is a simple exercise in toric geometry to compute E2. If we make a weighted blow up
of type (a, b) then

E2
= −

1
ab
,

so that the volume is
ab − 1
ab

.

As expected, the volume satisfies the DCC. If we fix the volume d then there are only
finitely many possible values for (a, b). This is the content of 7.1 in this example.

2. Preliminaries

2.1. Notation and conventions

We will follow the terminology from [27]. Let f : X 99K Y be a proper birational map
of normal quasi-projective varieties and let p : W → X and q : W → Y be a common
resolution of f . We say that f is a birational contraction if every p-exceptional divisor is
q-exceptional. If D is an R-Cartier divisor on Y then f ∗D is the R-Weil divisor q∗p∗D.
Equivalently, if U is the domain of f then f ∗D is the R-Weil divisor onX corresponding
to the R-Cartier divisor (f |U )∗D on U .

If D is an R-Cartier divisor on X such that D′ := f∗D is R-Cartier then we say
that f is D-non-positive (resp. D-negative) if p∗D = q∗D′ + E where E ≥ 0 and E
is q-exceptional (respectively E is q-exceptional and the support of E contains the strict
transform of the f -exceptional divisors).

We say a proper morphism π : X → U is a contraction morphism if π∗OX = OU .
Recall that for any R-divisor D on X, the sheaf π∗OX(D) is defined to be π∗OX(bDc).

If X is a normal variety and B is a divisor whose components all have coefficient one
then the strata of B are the irreducible components of the intersections

BI =
⋂
j∈I

Bj = Bi1 ∩ · · · ∩ Bir
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of components of B, where I = {i1, . . . , ir} is a subset of the indices, including the empty
intersection X = B∅. If (X,1) is a log pair then the strata of (X,1) are the strata of the
support B of 1.

If we are given a morphism X → U , then we say that (X,1) is log smooth over U
if (X,1) has simple normal crossings and both X and the strata of (X,D) are smooth
over U , where D is the support of 1. If π : X → U and Y → U are projective mor-
phisms, f : X 99K Y is a birational contraction over U and (X,1) is a log canonical
pair (respectively divisorially log terminal Q-factorial pair) such that f is (KX+1)-non-
positive (respectively (KX +1)-negative) and KY + 0 is nef over U (respectively and Y
is Q-factorial), then we say that f : X 99K Y is a weak log canonical model (respectively
a minimal model) of KX +1 over U .

We sayKY+0 is semi-ample overU if there exists a contraction morphismψ : Y→Z

over U such that KY + 0 ∼R ψ∗A for some R-divisor A on Z which is ample over U .
Equivalently, when KY + 0 is Q-Cartier, KY + 0 is semi-ample over U if there exists an
integer m > 0 such that OY (m(KY + 0)) is generated over U . Note that in this case

R(Y/U,KY + 0) :=
⊕
m≥0

π∗OY (m(KY + 0))

is a finitely generated OU -algebra, and

Z = ProjR(Y/U,KY + 0).

If KY + 0 is semi-ample and big over U , then Z is the log canonical model of (X,1)
over U . A weak log canonical model f : X 99K Y is called a semi-ample model ifKY +0
is semi-ample.

Suppose that π : X → U is a projective morphism of normal varieties. Let D be an
R-Cartier divisor on X. Let C be a prime divisor. If D is big over U then

σC(X/U,D) = inf{multC(D′) | D′ ∼R,U D,D
′
≥ 0}.

Now let A be any ample Q-divisor over U and suppose thatD is pseudo-effective over U .
Following [31], let

σC(X/U,D) = lim
ε→0

σC(X/U,D + εA).

Then σC(X/U,D) exists (where we allow∞ as a limit) and is independent of the choice
ofA. There are only finitely many prime divisorsC such that σC(X/U,D) > 0, this num-
ber only depends on the numerical equivalence class ofD over U , and if we replace U by
an open subset which contains the image of the generic point of C then σC is unchanged.
However, with no more assumptions there are examples when σC(X/U,D) = ∞ [30].
On the other hand, if π(C) has codimension no more than one then σC(X/U,D) < ∞.
In this case the R-divisor Nσ (X/U,D) =

∑
C σC(D)C is determined by the numerical

equivalence class ofD (see [7, 3.3.1] and [31] for more details). Note that if the fibres of π
are irreducible and all of the same dimension then π(C) automatically has codimension
at most one for every prime divisor C on X.
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Now suppose that D is only an R-divisor. The real linear system associated to D
over U is

|D/U |R = {C ≥ 0 | C ∼R,U D}.

The stable base locus of D over U is the Zariski closed set B(X/U,D) given by the
intersection of the supports of the elements of |D/U |R. If |D/U |R = ∅, then we let
B(X/U,D) = X.

The diminished stable base locus of D over U is

B−(X/U,D) =
⋃
A

B(X/U,D + A),

where the union runs over all divisors A which are ample over U .
Suppose that U is a point. Following [31], if D is pseudo-effective we define the

numerical dimension

κσ (X,D) = max
H∈Pic(X)

{
k ∈ N

∣∣∣∣ lim sup
m→∞

h0(X,OX(mD +H))

mk
> 0

}
.

If D is nef then this is the same as

ν(X,D) = max{k ∈ N | H n−k
·Dk > 0}

for any ample divisor H [31]. If D is Q-Cartier then D is called abundant if κσ (X,D) =
κ(X,D), that is, the numerical dimension is equal to the Iitaka dimension. If we drop the
condition that X is projective and instead we have a projective morphism π : X → U ,
then a Q-Cartier divisor D on X is called abundant over U if its restriction to the generic
fibre is abundant.

If (X,1) is a log pair then a non-canonical centre is the centre of a valuation of log
discrepancy less than one.

We say a family D of log pairs is bounded if there is a morphism Z→ U of varieties,
where U is smooth, Z is flat over U , and a log pair (Z,6), where the support of 6
contains neither a component of a fibre nor a codimension one singular point of any fibre,
such that for every (X,1) ∈ D there is a closed point u ∈ U and an isomorphism of
log pairs between (X,1) and (Zu, 6u). In particular the coefficients of 1 belong to a
finite set.

2.2. The volume

Definition 2.2.1. Let X be a normal n-dimensional irreducible projective variety and let
D be an R-divisor. The volume of D is

vol(X,D) = lim sup
m→∞

n!h0(X,OX(mD))

mn
.

Let V ⊂ X be a normal irreducible subvariety of dimension d . Suppose that D is
R-Cartier with support not containing V . The restricted volume of D along V is

vol(X|V,D) = lim sup
m→∞

d!(dim Im(H 0(X,OX(mD))→ H 0(V ,OV (mD|V ))))

md
.
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Lemma 2.2.2. Let f : X → Z be a birational morphism between log canonical pairs
(X,1) and (Z, B). Suppose that KX + 1 is big and that (X,1) has a log canonical
model g : X 99K Y . If f∗1 ≤ B and vol(X,KX + 1) = vol(Z,KZ + B) then the
induced birational map Z 99K Y is the log canonical model of (Z, B).

Proof. Let π : W → X be a log resolution of (X,C+F) which also resolves the map g,
where C is the strict transform of B and F is the sum of the f -exceptional divisors. We
may write

KW +2 = π
∗(KX +1)+ E,

where 2,E ≥ 0 have no common components, π∗2 = 1 and π∗E = 0. Then the log
canonical model of (W,2) is the same as the log canonical model of (X,1). Replacing
(X,1) by (W,2) we may assume that (X,C + F) is log smooth and g : X → Y is a
morphism. Replacing (Z, B) by (X,D = C + F) we may assume Z = X.

If A = g∗(KX + 1) and H = g∗A then A is ample and KX + 1 − H ≥ 0. Let
L = D −1 ≥ 0, let S be a component of L with coefficient a and let

v(t) = vol(X,H + tS).

Then v(t) is a non-decreasing function of t and

v(0) = vol(X,H) = vol(X,KX +1) = vol(X,KX +D)
≥ vol(X,H + L) ≥ vol(X,H + aS) = v(a).

Thus v(t) is constant over the range [0, a]. As [29, 4.25(iii)] implies that

1
n

dv

dt

∣∣∣∣
t=0
= volX|S(H) ≥ S ·H n−1

= g∗S · A
n−1,

we have g∗S = 0. But then every component of L is exceptional for g, and g is the log
canonical model of (X,D). ut

2.3. Deformation invariance

Lemma 2.3.1. Let π : X → U be a projective morphism to a smooth variety U and let
(X,1) be a log smooth pair over U . Let A be a relatively ample Cartier divisor such that
b1c + A ∼ A′ where (X,1 + A′) is log smooth over U . If the coefficients of 1 belong
to [0, 1] then

f∗OX(m(KX +1)+ A)→ H 0(Xu,OXu(m(KXu +1u)+ Au))

is surjective for all positive integers m such that m1 is integral and for every u ∈ U .

Proof. We have

m(KX +1)+ A ∼ m

(
KX +1−

1
m
b1c +

1
m
A′
)
= m(KX +1

′),

where (X,1′) is log smooth over U , b1′c = 0 and 1′ is big over U , so that we may
apply [14, 1.8.1]. ut
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Lemma 2.3.2. Let π : X → U be a projective morphism to a smooth variety U and let
(X,1) be a log smooth pair over U . Assume that KX +1 is pseudo-effective over U . If
the coefficients of 1 belong to [0, 1] then

Nσ (X/U,KX +1)|Xu = Nσ (Xu,KXu +1u)

for every u ∈ U .

Proof. Since this result is local about every point u ∈ U , we may assume that U is affine.
Pick a relatively ample Cartier divisor A such that b1c + A ∼ A′ where (X,1 + A′) is
log smooth over U . Fix u ∈ U . Then 2.3.1 implies that

f∗OX(m(KX +1)+ A)→ H 0(Xu,OXu(m(KXu +1u)+ Au))

is surjective for all positive integers m such that m1 is integral. It follows that

Nσ (X/U,KX +1)|Xu ≤ Nσ (Xu,KXu +1u),

and the reverse inequality is clear. ut

Lemma 2.3.3. Let π : X → U be a projective morphism to a smooth variety U and let
(X,1) be a log smooth pair over U such that the strata of 1 have irreducible fibers
over U and KX +1 is pseudo-effective over U . Let 0 ∈ U be a closed point, let

20 = 10 −10 ∧Nσ (X0,KX0 +10)

and let 0 ≤ 2 ≤ 1 be the unique divisor such that 20 = 2|X0 . If the coefficients of 1
belong to [0, 1] then

2 = 1−1 ∧Nσ (X/U,KX +1).

Proof. Replacing U by an open neighbourhood of 0 ∈ U we may assume that U is affine.
Pick a relatively ample Cartier divisor H with the property that for every integral divisor
0 ≤ S ≤ b1c we may find S + H ∼ H ′ such that (X,1 + H ′) is log smooth over U .
Given a positive integer m, let

80 = 10 −10 ∧Nσ

(
X0,KX0 +10 +

1
m
H0

)
,

and let 0 ≤ 8 ≤ 1 be the unique divisor such that80 = 8|X0 . Consider the commutative
diagram

π∗OX(m(KX +8)+H) - π∗OX(m(KX +1)+H)

H 0(X0,OX0(m(KX0 +80)+H0))

?
- H 0(X0,OX0(m(KX0 +10)+H0)

?

The top row is an inclusion and the bottom row is an isomorphism by assumption. The
left vertical map is surjective by 2.3.1. Nakayama’s Lemma implies that the top row is an
isomorphism in a neighbourhood of X0. It follows that

8 ≥ 1−1 ∧Nσ

(
X/U,KX +1+

1
m
H

)
.
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Taking the limit as m goes to infinity we get

2 ≥ 1−1 ∧Nσ (X/U,KX +1),

and the reverse inequality follows by 2.3.2. ut

Lemma 2.3.4. Let π : X → U be a projective morphism to a smooth variety U and let
(X,D) be log smooth over U , where the coefficients of D are all one. Let 0 ∈ U be a
closed point. Then the restriction morphism

π∗OX(KX +D)→ H 0(X0,OX0(KX0 +D0))

is surjective.

Proof. Since the result is local, we may assume that U is affine. Cutting by hyperplanes
we may assume that U is a curve. Thus we want to show that the restriction map

H 0(X,OX(KX +X0 +D))→ H 0(X0,OX0(KX0 +D0))

is surjective. This is equivalent to showing that multiplication by a local parameter

H 1(X,OX(KX +D))→ H 1(X,OX(KX +D +X0))

is injective.
By assumption the image of every stratum ofD is the whole of U , and 0 = (KX+D)

−(KX+D) is semi-ample. Therefore a generalisation of Kollár’s injectivity theorem (see
[21], [9, 6.3] and [4, 5.4]) implies that the last displayed map is indeed injective. ut

2.4. DCC sets

Lemma 2.4.1. Let I ⊂ R be a set of positive real numbers which satisfies the DCC. Fix
a constant d. Then the set

T =
{
(d1, . . . , dk)

∣∣∣ k ∈ N, di ∈ I,
∑

di = d
}

is finite.

Proof. As I satisfies the DCC, there is a real number δ > 0 such that if i ∈ I then i ≥ δ.
Thus

k ≤ d/δ.

It is enough to show that any infinite sequence t1, t2, . . . of elements of T has a constant
subsequence. Possibly passing to a subsequence we may assume that the number of en-
tries k of each vector ti = (di1, . . . , di k) is constant. Since I satisfies the DCC, possibly
passing to a subsequence we may assume that the entries are non-decreasing. Since the
sum is constant, it is clear that the entries are constant, so that t1, t2, . . . is a constant
sequence. ut

Lemma 2.4.2. Let J be a finite set of real numbers at most one. Then the set

I =
{
a ∈ (0, 1]

∣∣∣ a = 1+
∑
i≤k

ai − k, a1, . . . , ak ∈ J
}

is finite.
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Proof. If ak = 1 then ∑
i≤k

ai − k =
∑
i≤k−1

ai − (k − 1).

Thus there is no harm in assuming that 1 /∈ J . If ak < 0 then

1+
∑
i≤k

ai − k < 0.

Thus we may assume that J ⊂ [0, 1).
Note that

1+
∑
i≤k

ai − k > 0 if and only if
∑
i≤k

(1− ai) < 1.

Since J is finite, we may find δ > 0 such that if a ∈ J then 1− a ≥ δ. This bounds k and
the result is clear. ut

2.5. Semi log canonical varieties

We will need the definition of certain singularities of semi-normal pairs [23, 7.2.1]. Let
X be a semi-normal variety which satisfies Serre’s condition S2. We say that X is demi-
normal if X has nodal singularities in codimension one [26, 5.1]. Let 1 be an R-divisor
on X such that no component of 1 is contained in the singular locus of X and KX +1 is
R-Cartier. Let n : Y → X be the normalisation of X and write

KY + 0 = n
∗(KX +1),

where 0 is the sum of the strict transform of 1 and the double locus. We say that (X,1)
is semi log canonical if (Y, 0) is log canonical. See [26] for more details about semi log
canonical singularities.

Theorem 2.5.1. Let (X,1) be a semi log canonical pair and let n : Y → X be the
normalisation. By adjunction we may write

KY + 0 = n
∗(KX +1),

where (Y, 0) is log canonical. If X is projective and 1 is a Q-divisor then KX + 1 is
semi-ample if and only if KY + 0 is semi-ample.

Proof. See [11] or [16, 1.4]. ut

Suppose that (X,1) is log canonical and π : X → U is a morphism of quasi-projective
varieties. Suppose that U is smooth, the fibres of π all have the same dimension and the
support of 1 does not contain any fibre.

If (X0,10) is the fibre over a closed point 0 ∈ U and X0 is integral and normal then
note that

(KX +1)|X0 = KX0 +10.
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2.6. Base point free theorem

Recall the following generalisation of Kawamata’s theorem:

Theorem 2.6.1. Let (X,1 = S +B) be a divisorially log terminal pair, where S = b1c
and B is a Q-divisor. Let H be a Q-Cartier divisor on X and let X → U be a proper
surjective morphism of varieties. If there is a constant a0 such that

(1) H |S is semi-ample over U ,
(2) aH − (KX +1) is nef and abundant over U for all a > a0,

then H is semi-ample over U .

Proof. See [18], [12, 3.2], [3], [8], [9], [10], [17, 4.1] and [11]. ut

2.7. Minimal models

Lemma 2.7.1. Let (X,1) be a log canonical pair whereX is a projective variety, and let
f : X 99K Y be a weak log canonical model. Suppose that the rational map φ associated
to the linear system |r(KX +1)| is birational. Then:

(1) Every component of Nσ (X,KX +1) is f -exceptional.
(2) If P is a prime divisor such that P is not a component of the base locus of |r(KX+1)|

and the restriction of φ to P is birational then P is not f -exceptional.

Proof. Let p : W → X and q : W → Y resolve f . As f is a weak log canonical model
of (X,1), we may write

p∗(KX +1) = q
∗(KY + 0)+ E,

where E ≥ 0 is q-exceptional. As q∗(KY + 0) is nef, it follows that

Nσ (X,KX +1) = p∗E.

In particular (1) holds.
If Q is the strict transform of P and ψ is the birational map associated to the linear

system |rp∗(KX +1)| then the restriction of ψ to Q is birational. On the other hand,

|rp∗(KX +1)| = |rq
∗(KY + 0)| + rE.

Therefore ψ is the birational map associated to the linear system |rq∗(KY + 0)|. In
particular Q is not q-exceptional, so that P is not f -exceptional. ut

Lemma 2.7.2. Let (X,1) be a divisorially log terminal pair where X is Q-factorial and
projective. Assume that KX +1 is pseudo-effective. Suppose that we run the (KX +1)-
MMP f : X 99K Y with scaling of an ample divisor A, so that (Y, 0 + tB) is nef, where
0 = f∗1 and B = f∗A.

(1) If F is f -exceptional then F is a component of Nσ (X,KX +1).
(2) If t >0 is sufficiently small then every component ofNσ (X,KX+1) is f -exceptional.
(3) If (X,1) has a minimal model and KX +1 is Q-Cartier then Nσ (X,KX +1) is a

Q-divisor.
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Proof. Let p : W→X and q : W→Y resolve f . As f is a minimal model of (X, tA+1)
for some t ≥ 0, we may write

p∗(KX + tA+1) = q
∗(KY + tB + 0)+ E,

where E = Et ≥ 0 is q-exceptional. As q∗(KY + tB + 0) is nef, it follows that

Nσ (X,KX + tA+1) = p∗E.

As A is ample, (1) holds. If t is sufficiently small then

Nσ (X,KX + tA+1) and Nσ (X,KX +1)

have the same support and so (2) holds.
If (X,1) has a minimal model then we may assume that t = 0 and soNσ (X,KX+1)

= p∗E0 is a Q-divisor. ut

Lemma 2.7.3. Let (X,1) be a divisorially log terminal pair where X is Q-factorial
and projective. Assume that KX + 1 is pseudo-effective. If f : X 99K Y is a birational
contraction such that Y is Q-factorial,KY +0 = f∗(KX+1) is nef and f only contracts
components of Nσ (X,KX +1) then f is a minimal model of (X,1).

Proof. Let p : W → X and q : W → Y resolve f . We may write

p∗(KX +1)+ E = q
∗(KY + 0)+ F,

where E,F ≥ 0 have no common components and both E and F are q-exceptional.
As KY + 0 is nef, the supports of F and of Nσ (W, q∗(KY + 0) + F) coincide. On

the other hand, every component of E is a component of Nσ (W, p∗(KX+1)+E). Thus
E = 0 and any divisor contracted by f is a component of F . ut

2.8. Blowing up log pairs

Lemma 2.8.1. Let (X,1) be a log smooth pair. If b1c = 0 then there is a sequence
π : Y → X of smooth blowups of the strata of (X,1) such that if we write

KY + 0 = π
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components, π∗0 = 1 and π∗E = 0, then no two
components of 0 intersect.

Proof. This is standard: see for example [13, 6.5]. ut

Lemma 2.8.2. Let (X,1) be a sub log canonical pair (so that some of the coefficients
of1 might be negative). We may find a finite set I ⊂ (0, 1] such that if π : Y → X is any
birational morphism and we write

KY + 0 = π
∗(KX +1)

then those coefficients of 0 which are positive belong to I .
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Proof. Replacing (X,1) by a log resolution we may assume that (X,1) is log smooth.
Let J be the set of coefficients of 1 and let I be the set given by 2.4.2.

Supppose that π : Y → X is a birational morphism. We may write

KY + 0 = π
∗(KX +1).

We claim that those coefficients of 0 which are positive belong to I . Possibly blowing up
more we may assume that π is a sequence of smooth blowups. If Z ⊂ X is smooth of
codimension k and a1, . . . , ak are the coefficients of the components of 1 containing Z
then the coefficient of the exceptional divisor is

a = 1+
∑
i≤k

ai − k.

If a > 0 then a ∈ I and we are done by induction on the number of blowups. ut

Lemma 2.8.3. Let (X,1) be a log smooth pair where the coefficients of 1 belong to
(0, 1]. Suppose that there is a projective morphism ψ : X → U , where U is an affine
variety. If (X,1) has a weak log canonical model then there is a sequence π : Y → X of
smooth blowups of the strata of 1 such that if we write

KY + 0 = π
∗(KX +1)+ E

where 0,E ≥ 0 have no common components, π∗0 = 1 and π∗E = 0, and if we write

0′ = 0 − 0 ∧Nσ (Y,KY + 0),

then B−(Y,KY + 0′) contains no strata of 0′. If 1 is a Q-divisor then 0′ is a Q-divisor.

Proof. Let f : X 99K W be a weak log canonical model of (X,1). Let 8 = f∗1. Let I
be the finite set whose existence is guaranteed by 2.8.2 applied to (W,8).

Suppose that π : Y → X is a sequence of smooth blowups of the strata of1. We may
write

KY + 0 = π
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components, π∗0 = 1 and π∗E = 0.
Note that if g : Y 99K W is the induced birational map then g is a weak log canonical

model of (Y, 0). In particular if we write

KY + 0 = g
∗(KW +8)+ E1

then E1 = Nσ (Y,KY + 0). Thus if we write

KY + 00 = g
∗(KW +8)+ E0,

where 00, E0 ≥ 0 have no common components, g∗00 = 8 and g∗E0 = 0, then

00 = 0
′
= 0 − 0 ∧Nσ (Y,KY + 0).
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Let p : V → Y and q : V → W resolve g, so that the strict transform of 8 and the
exceptional locus of q have global normal crossings. We may write

KV +9 = q
∗(KW +8)+ F,

where 9,F ≥ 0 have no common components, q∗9 = 8 and q∗F = 0. Note that the
coefficients of 9 belong to I .

As q∗(KW +8) is nef,9 has no components in common with Nσ (V ,KV +9) = F .
As

KY + p∗9 = g
∗(KW +8)+ p∗F, KY + 00 = g

∗(KW +8)+ E0,

we have
00 + p∗F = p∗9 + E0.

As 00 and E0, and also p∗9 and p∗F , have no common components, it follows that
0′ = p∗9, so that the coefficients of 0′ belong to I .

Suppose that Z is a stratum of (X,1) which is contained in Nσ (X,KX + 1). Let
π : Y → X blow up Z and let E be the exceptional divisor. The coefficient of E in 0
is no more than the minimum coefficient of any component of 1 containing Z. Either
the coefficient of E in 0′ is zero or E is a component of 0 − 0′, so that, either way,
the coefficient of E in 0′ is strictly less than the coefficient of any component of 1
containing Z. Since I is a finite set and (X,1) has only finitely many strata, it is clear
that after finitely many blowups no stratum of (Y, 0′) is contained inNσ (Y,KY +0′). ut

Lemma 2.8.4. Let (X,1) be a log pair and let π : X → U be a morphism of quasi-
projective varieties. Suppose that U is smooth, π is flat and the support of 1 contains
neither a component of a fibre nor a codimension one singular point of any fibre. Then the
subset U0 ⊂ U of points u ∈ U such that the fibre (Xu,1u) is divisorially log terminal
is constructible. Further, if U0 is dense in U then we may find a smooth dense open
subset U1 of U , contained in U0, such that the restriction of (X,1) to U1 is divisorially
log terminal.

Proof. Let V be a smooth open subset of the closure of U0. We may assume that V is
irreducible. Replacing U by V we may assume that U0 is dense in V .

Let f : Y → X be a log resolution. We may write

KY + 0 = f
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components. Passing to an open subset of U we may
assume that (Y, 0) is log smooth over U . As 0u is a boundary for a dense set of points
u ∈ U0, it follows that 0 is a boundary.

Suppose that F is an exceptional divisor of log discrepancy zero with respect to
(X,1), that is, of coefficient one in 0. Let Z = f (F ) be the centre of F in X. Note
that Fu has log discrepancy zero with respect to (Xu,1u) for any u ∈ U0. As (Xu,1u)
is divisorially log terminal, it follows that (Xu,1u) is log smooth in a neighbourhood of
the generic point of Zu. But then (X,1) is log smooth in a neighbourhood of the generic
point of Z and so (X,1) is divisorially log terminal. This is the second statement.
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As (X,1) is log smooth in a neighbourhood of the generic point of Z, we may find an
open subset U2 ⊂ U0 such that if u ∈ U2 then (Xu,1u) is log smooth in a neighbourhood
of the generic point of Zu. Possibly shrinking U2 we may also assume that the non-
Kawamata log terminal locus of (Xu,1u) is the restriction of the non-Kawamata log
terminal locus of (X,1). It follows that if u ∈ U2 then (Xu,1u) is divisorially log
terminal. ut

2.9. Good minimal models

Lemma 2.9.1. Let (X,1) be a divisorially log terminal pair, where X is projective and
Q-factorial. If (X,1) has a weak log canonical model then the following are equivalent:

(1) every weak log canonical model of (X,1) is semi-ample,
(2) (X,1) has a semi-ample model, and
(3) (X,1) has a good minimal model.

Proof. (1) implies (2) is clear.
We show that (2) implies (3). Suppose that g : X 99K Z is a semi-ample model of

(X,1). Let p : W → X be a log resolution of (X,1) which also resolves g, so that the
induced rational map is a morphism q : W → Z. We may write

KW +8 = p
∗(KX +1)+ E,

where 8,E ≥ 0 have no common components, p∗8 = 1 and p∗E = 0. [17, 2.10]
implies that (X,1) has a good minimal model if and only if (W,8) has a good minimal
model.

Replacing (X,1) by (W,8) we may assume that g is a morphism. We run the
(KX + 1)-MMP f : X 99K Y with scaling of an ample divisor over Z. Note that run-
ning the (KX + 1)-MMP over Z is the same as running the absolute (KX + 1 + H)-
MMP, where H is the pullback of a sufficiently ample divisor from Z. Note also that
Nσ (X,KX + 1) and Nσ (X,KX + 1 + H) have the same components. By (2) of 2.7.2
we may run the (KX +1)-MMP with scaling over Z until f contracts every component
of Nσ (X,KX +1). If 0 = f∗1 and h : Y → Z is the induced birational morphism then
h only contracts the divisor on which KY + 0 is trivial. As h∗(KY + 0) = g∗(KX +1)
is semi-ample, it follows that

KY + 0 = h
∗h∗(KY + 0)

is semi-ample and so f is a good minimal model. Thus (2) implies (3).
Suppose that f : X 99K Y is a minimal model and g : X 99K Z is a weak log canonical

model. Let p : W → Y and q : W → Z be common resolutions of Y and Z over X, with
induced morphism r : W → X. Then we may write

p∗(KY + 0)+ E1 = r
∗(KX +1) = q

∗(KZ +8)+ E2,

where 0 = f∗1, 8 = g∗1, E1 ≥ 0 is p-exceptional and E2 ≥ 0 is q-exceptional. As f
is a minimal model and g is a weak log canonical model, every f -exceptional divisor is
g-exceptional. Thus

p∗(KY + 0)+ E = q
∗(KZ +8),
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where E = E1 − E2 is q-exceptional. Negativity of contraction applied to q implies that
E ≥ 0, so that E ≥ 0 is p-exceptional. Negativity of contraction applied to p implies that
E = 0. But then KY + 0 is semi-ample if and only if KZ + 8 is semi-ample. Thus (3)
implies (1). ut

Lemma 2.9.2. Let (X,1) be a divisorially log terminal pair, where X is projective. Let
A be an ample dvisor. Let π : V → X be a divisorially log terminal modification of X
such that π is small and if we write

KV +6 = π
∗(KX +1),

then (V ,6) is divisorially log terminal and V is Q-factorial. If (V ,6) has a good mini-
mal model then there is a constant ε > 0 with the following properties:

(1) If gt : X 99K Zt is the log canonical model of (X,1+ tA) then Zt is independent of
t ∈ (0, ε) and there is a morphism Zt → Z0.

(2) If h : X 99K Y is a weak log canonical model of (X,1+ tA) for some t ∈ [0, ε) then
h is a semi-ample model of (X,1).

Proof. Note that as A is ample, (X,1 + tA) has a log canonical model Zt for t > 0 by
[7, 1.1]. Note also that since π is small, V andX have the same log canonical models and
weak log canonical models. At the expense of dropping the hypothesis that A is ample,
replacing X by V we may assume that X is Q-factorial.

Suppose that we run the (KX + 1)-MMP ft : X 99K Wt with scaling of A. Then
[6, 1.9.iii] implies that this MMP terminates with a minimal model, so that we may find
ε > 0 such that f = f0 = ft : X 99K W = Wt is independent of t ∈ [0, ε). Let8 = f∗1
and B = f∗A. If C ⊂ W is a curve such that (KW +8+ sB) ·C = 0 for some s ∈ (0, ε),
then

(KW +8+ tB) · C = 0 for all t ∈ [0, ε),

sinceKW +8+λB is nef for all λ ∈ (0, ε). The induced contraction morphismW → Zt
to the ample model contracts those curves C such that (KW + 8 + tB) · C = 0 so that
Z = Zt is independent of t ∈ (0, ε) and there is a contraction morphism Zt → Z0. This
is (1).

Let h : X 99K Y be a weak log canonical model of (X,1 + tA). Then h is a semi-
ample model of (X,1+ tA) and there is an induced morphism ψ : Y → Z.

Possibly replacing ε with a smaller number, we see that 2.7.1 implies that h contracts
every component of Nσ (X,KX +1), independently of the choice of weak log canonical
model. Note that if P is a prime divisor which is not a component ofNσ (X,KX+1) then
the restriction to P of the birational map associated to some multiple of KX + 1 + tA
is birational. In particular 2.7.1 implies that h does not contract P . Thus h contracts the
components of Nσ (X,KX +1) and no other divisors. Since Z is a log canonical model
of (X,1+tA), the morphismX 99K Z also contracts the components ofNσ (X,KX+1)
and no other divisors. It follows that ψ is a small morphism.

If 0 = h∗1, B = h∗A, 9 = ψ∗0 and C = ψ∗B then

KY + 0 + sB = ψ
∗(KZ +9 + sC)
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for any s. By assumption KZ + 9 + sC is ample for s ∈ (0, ε) and so KY + 0 + sB
is nef for s ∈ (0, ε). Thus KY + 0 is nef and so h is a semi-ample model of (X,1) by
2.9.1. ut

Lemma 2.9.3. Let k be any field of characteristic zero and let (X,1) be a log pair over k,
where X is a projective variety. Let (X̄, 1̄) be the corresponding pair over the algebraic
closure k̄ of k. Assume that (X̄, 1̄) is divisorially log terminal and X̄ is Q-factorial. Then
(X,1) has a good minimal model if and only if (X̄, 1̄) has a good minimal model.

Proof. If W is a scheme over k then W̄ denotes the corresponding scheme over k̄. If
f : X 99K Y is a good minimal model of (X,1) then f̄ : X̄ 99K Ȳ is a semi-ample model
of (X̄, 1̄) and so (X̄, 1̄) has a good minimal model by 2.9.1.

Conversely, suppose that (X̄, 1̄) has a good minimal model. Pick an ample divisor A
on X. We run the (KX +1)-MMP f : X 99K Y with scaling of A. Then f is a weak log
canonical model of (X,1 + tA) and so f̄ : X̄ 99K Ȳ is a weak log canonical model of
(X̄, 1̄ + tĀ). 2.9.2 implies that we may find ε > 0 such that f̄ is a semi-ample model
of (X̄, 1̄) for t ∈ [0, ε). If 0 = f∗1 then KȲ + 0̄ is semi-ample so that KY + 0 is
semi-ample. But then f is a good minimal model of (X,1). ut

3. The MMP in families I

Lemma 3.1. Let (X,1) be a divisorially log terminal pair and let π : X → U be a
projective contraction morphism, where U is smooth, affine and of dimension k, and X is
Q-factorial. Let 0 ∈ U be a closed point such that

(1) there are k divisors D1, . . . , Dk containing 0 such that if Hi = π∗Di and H =
H1 + · · · +Hk then (X,H +1) is divisorially log terminal,

(2) X0 is integral, dimX0 = dimX − dimU and dimV0 = dimV − dimU for all
non-canonical centres V of (X,1), and

(3) B−(X0,KX0 +10) contains no non-canonical centres of (X0,10).

Let f : X 99K Y be a step of the (KX + 1)-MMP. If f is birational and V is a non-
canonical centre of (X,1) then f is an isomorphism in a neighbourhood of the generic
point of V and f0 is an isomorphism in a neighbourhood of the generic point of V0. In
particular the induced maps φ : V 99K W and φ0 : V0 99K W0 are birational, where
W = f (V ). Let 0 = f∗1. Further,

(1) ifGi is the pullback ofDi to Y andG = G1+· · ·+Gk then (Y,G+0) is divisorially
log terminal,

(2) Y0 is integral, dimY0 = dimY − dimU and dimW0 = dimW − dimU for all
non-canonical centres W of (Y, 0), and

(3) B−(Y0,KY0 + 00) contains no non-canonical centres of (Y0, 00).

If V is a non-Kawamata log terminal centre or V =X, then φ :V 99KW and φ0 :V099KW0
are birational contractions. On the other hand, if f is a Mori fibre space then f0 is not
birational.
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Proof. Suppose that f is birational.
As f is a step of the (KX+1)-MMP andH is pulled back fromU , it follows that f is

also a step of the (KX + H + 1)-MMP, and so (Y,G + 0) is divisorially log terminal.
As every component of Y0 is a non-Kawamata log terminal centre of (Y,G) and X0 is
irreducible, it follows that Y0 is irreducible.

Let V be a non-canonical centre of (X,1). Then V is a non-canonical centre of
(X,H + 1). Let g : X → Z be the contraction of the extremal ray associated to f
(so that f = g unless f is a flip). Every component of V0 is a non-canonical centre of
(X0,10) [7, 1.4.5], and so no component of V0 is contained in B−(X0,KX0 + 10) by
hypothesis. On the other hand, note that the locus where g is not an isomorphism is the
locus of curves C such that (KX + H + 1) · C < 0. Thus the locus where g0 is not an
isomorphism is equal to the locus of curves C0 ⊂ X0 such that (KX0 +10) · C0 < 0. As
every such curve C0 is contained in B−(X0,KX0+10), it follows that the locus where g0
(respectively g) is not an isomorphism intersects V0 (respectively V ) in a proper closed
subset. In particular both φ : V 99K W and φ0 : V0 99K W0 are birational.

Now suppose that V is a non-Kawamata log terminal centre or V = X. If V is a
non-Kawamata log terminal centre then V is a non-canonical centre and so φ : V 99K W
and φ0 : V0 99K W0 are both birational. We can define divisors 60 and 20 on V0 and W0
by adjunction:

(KX0 +10)|V0 = KV0 +60 and (KY0 + 00)|W0 = KW0 +20.

If P is a divisor on W0 and f is not an isomorphism at the generic point of the centre N
of P on V0 then

a(P ;V0, 60) < a(P ;W0,20) ≤ 1.

Thus N is a non-canonical centre of (X,1). Therefore N is birational to P , so that
N is a divisor on V0. Thus φ0 : V0 99K W0 is a birational contraction. In particular
f0 : X0 99K Y0 is a birational contraction and so (1)–(3) clearly hold. As φ0 : V0 99K W0
is a birational contraction, it follows that φ : V 99K W is a birational contraction in a
neighbourhood of V0.

Suppose that f is a Mori fibre space. As the dimension of the fibres of f : X→ Y is
upper-semicontinuous, f0 is not birational. ut

Lemma 3.2. Let (X,1) be a divisorially log terminal pair and let π : X → U be a
projective morphism, where U is smooth and affine and X is Q-factorial. Let η ∈ U be
the generic point and let 0 ∈ U be a closed point. Suppose that either (1)–(3) below hold
where

(1) there are k divisors D1, . . . , Dk containing 0 such that if Hi = π∗Di and H =
H1 + · · · +Hk then (X,H +1) is divisorially log terminal,

(2) X0 is integral, dimX0 = dimX − dimU and dimV0 = dimV − dimU for all
non-canonical centres V of (X,1),

(3) B−(X0,KX0 +10) contains no non-canonical centres of (X0,10),
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or (X,1) is log smooth over U and (3) holds. If (X0,10) has a good minimal model then
we may run the (KX+1)-MMP f : X 99K Y until fη : Xη 99K Yη is an (Xη,1η)-minimal
model and f0 : X0 99K Y0 is a semi-ample model of (X0,10). IfD is a component of b1c,
E is the image of D and φ : D 99K E is the restriction of f to D then the induced map
φ0 : D0 99K E0 is a semi-ample model of (D0, 60), where 60 is defined by adjunction

(KX0 +10)|D0 = KD0 +60.

Further, B−(X,KX +1) contains no non-canonical centres of (X0,10).
Proof. Suppose that (X,1) is log smooth over U . If D1, . . . , Dk are k general divisors
containing 0 then (X,H+1) is log smooth, so that (1) and (2) hold. Thus we may assume
(1)–(3) hold.

We run the (KX + 1)-MMP f : X 99K Y with scaling of an ample divisor A. Let
0 = f∗1 and B = f∗A. By construction KY + tB + 0 is nef for some t > 0. Since
π : X→ U satisfies the hypotheses of 3.1, f0 : X0 99K Y0 is a weak log canonical model
of (X0, tA0 +10).

If KX + 1 is not pseudo-effective then this MMP ends with a Mori fibre space for
some t > 0 and so Y0 is covered by curves on which KY0 + tB0 + 00 is negative by 3.1.
This contradicts the fact that KX0 + tA0 + 10 is big. Thus KX + 1 is pseudo-effective
and given any ε > 0 we may run the MMP until t < ε.

Since KX0 + 10 has a good minimal model, 2.9.2 implies that there is a constant
ε > 0 such that if t ∈ (0, ε) then any more steps of this MMP are isomorphisms in a
neighbourhood of Y0. It follows that KYη + tBη + 0η is nef for all t ∈ (0, ε), so that
KYη + 0η is nef. As we are running a MMP, Y is Q-factorial and so Yη is Q-factorial.
Thus fη : Xη 99K Yη is a minimal model of (Xη,1η).

Suppose that D is a component of b1c. Then 3.1 implies that the induced map
φ0 : D0 99K E0 is a birational contraction, so that φ0 is a semi-ample model of (D0, 60).

As
(KY + 0)|Y0 = KY0 + 00

is nef, it follows that B−(Y,KY + 0) does not intersect Y0. Let G be an ample Q-divisor
on Y . Then the stable base locus of KY + 0 + tG does not intersect Y0 for any t > 0. If
x ∈ X0 is a point where f is an isomorphism then x is not a point of the stable base locus
ofKX+1+f ∗(tG). As t > 0 is arbitrary, it follows that B−(X,KX+1)|X0 is contained
in the locus where f : X 99K Y is not an isomorphism. By 3.1, f is an isomorphism in a
neighbourhood of any non-canonical centre. It follows that B−(X,KX +1) contains no
non-canonical centres of (X0,10). ut

4. Invariance of plurigenera

We will need the following result of B. Berndtsson and M. Păun.

Theorem 4.1. Let f : X → D be a projective contraction morphism to the unit disk D
and let (X,1) be a log pair. If
(1) (X,1) is log smooth over D and b1c = 0,
(2) the components of 1 do not intersect,



Boundedness of moduli of varieties of general type 887

(3) KX +1 is pseudo-effective, and
(4) B−(X,KX +1) does not contain any components of 10,

then
H 0(X,OX(m(KX +1)))→ H 0(X0,OX0(m(KX0 +10)))

is surjective for any integer m such that m1 is integral.

Proof. Note that the case1 = 0 is proven in [32]. Therefore we may assume that1 6= 0.
We check that the hypotheses of [5, Theorem 0.2] are satisfied and we will use the notation
introduced there.

We take α = 0 and p = m so that if L = OX(m1) then

p([1] + α) = m[1] ∈ c1(L)

is automatic. KX + 1 is pseudo-effective by assumption. As we are assuming (4), we
have νmin({KX +1}, X0) = 0 and ρjmin,∞ = 0. In particular J = J ′ and 4 = 0. As we
are assuming that the components of 1 do not intersect, the transversality hypothesis is
automatically satisfied.

If u ∈ H 0(X0,OX0(m(KX0 +10))) is a non-zero section then we choose h0 = e
−ϕ0

such that ϕ0 ≤ 0 = ϕ4 and
2h0(KX0 +10) ≥ 0.

Since u has no poles and b1c = 0, we have∫
X0

eϕ0−
1
m
ϕm1 <∞.

Now [5, Theorem 0.2] implies that we can extend u toU ∈ H 0(X,OX(m(KX+1))). ut

Theorem 4.2. Let π : X → U be a projective contraction morphism to a smooth vari-
ety U and let (X,1) be a log smooth pair over U such that b1c = 0. Then

h0(Xu,OXu(m(KXu +1u)))

is independent of the point u ∈ U , for all positive integers m. In particular
κ(Xu,KXu +1u) is independent of u ∈ U , and

f∗OX(m(KX +1))→ H 0(Xu,OXu(m(KXu +1u)))

is surjective for all positive integers m > 0 and all u ∈ U .

Proof. Fix a positive integer m. We may assume that U is affine. We may also assume
that the strata of 1 have irreducible fibers over U (cf. the proof of [14, 4.2]).

Replacing 1 by 1m = bm1c/m we may assume that m1 is integral.
By 2.8.1 there is a composition of smooth blowups of the strata of 1 such that if we

write
KY + 0 = π

∗(KX +1)+ E,
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where 0,E ≥ 0 have no common components, π∗0 = 1 and π∗E = 0, then no two
components of 0 intersect. Then (Y, 0) is log smooth overU ,m0 is integral and b0c = 0.

As

h0(Yu,OYu(m(KYu + 0u))) = h
0(Xu,OXu(m(KXu +1u))),

replacing (X,1) by (Y, 0) we may assume that no two components of 1 intersect.
We may assume that

h0(Xu,OXu(m(KXu +1u))) 6= 0

for some u ∈ U . Let F be the fixed divisor of the linear system |m(KXu +1u)| and let

2u = 1u −1u ∧ F/m.

There is a unique divisor 0 ≤ 2 ≤ 1 such that 2|Xu = 2u. Note that m2 is integral,

f∗OX(m(KX +2)) ⊂ f∗OX(m(KX +1))

and

H 0(Xu,OXu(m(KXu +2u))) = H
0(Xu,OXu(m(KXu +1u))).

Replacing (X,1) by (X,2)we may assume that no component of1u is in the base locus
of |m(KXu + 1u)|. In particular B−(Xu,KXu + 1u) does not contain any components
of 1u. Let A be an ample divisor on X. We may assume that (X,1 + A) is log smooth
over U . Since KXu +1u + tAu is big and (Xu,1u + tAu) is Kawamata log terminal for
any 0 < t < 1, it follows that (Xu,1u + tAu) has a good minimal model. 3.2 implies
that B−(X,KX + 1 + tA) does not contain any components of 1u for any 0 < t < 1.
Since

B−(X,KX +1) =
⋂
t>0

B−(X,KX +1+ tA),

it follows that B−(X,KX+1) contains no components of1u and we may apply 4.1. ut

Using 4.2 we can give another proof of [15, 1.8]:

Corollary 4.3. Let π : X → U be a projective contraction morphism to a smooth vari-
ety U . If (X,1) is a log smooth pair over U and the coefficients of 1 are all at most one
then vol(Xu,KXu +1u) is independent of u ∈ U .

Proof. If ε ∈ (0, 1] is rational then we have b(1− ε)1c = 0 and so 4.2 implies that
h0(Xu,OXu(m(KXu+ (1−ε)1u))) is independent of the point u ∈ U , for all sufficiently
divisible integersm > 0. In particular vol(Xu,KXu+(1−ε)1u) is independent of u ∈ U .
By continuity, vol(Xu,KXu +1u) is independent of u ∈ U . ut
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5. The MMP in families II

Lemma 5.1. Let (X,1) be a log canonical pair and let (X,8) be a divisorially log
terminal pair, where X is Q-factorial of dimension n. Let

1(t) = (1− t)1+ t8.

Suppose that X → U is projective, U is smooth and affine, and the fibres of π all have
the same dimension. Let f : X 99K Y be a step of the (KX +1(t))-MMP over U and let
0 = f∗1. Suppose 0 ∈ U is a closed point such that X0 is reduced, no component of X0
is contained in the support of1, KX0 +10 is nef and (X0,10) is log canonical. Let r be
a positive integer such that r(KX0 +10) is Cartier. If

0 < t ≤
1

1+ 2nr
then f is (KX+1)-trivial in a neighbourhood ofX0. In particular (Y0, 00) is log canoni-
cal,KY0+00 is nef, r(KY0+00) is Cartier and (Y, 0) is log canonical in a neighbourhood
of Y0.
Proof. Let R be the extremal ray corresponding to f .

If f is an isomorphism in a neighbourhood of X0 there is nothing to prove, and if
(KX +1) · R = 0, the result follows by [27, 3.17].

Otherwise, as KX0 + 10 is nef, (KX + 1) · R > 0 and so (KX + 8) · R < 0. Now
[19] (see also [7, 3.8.1]) implies that R is spanned by a rational curve C contained in X0
such that

−(KX +8) · C ≤ 2n.
As r(KX0 +10) is Cartier,

(KX +1) · C = (KX0 +10) · C ≥ 1/r.

Thus

0 > (KX +1(t)) · C = (1− t)(KX +1) · C + t (KX +8) · C
≥ (1− t)/r − 2nt = 1/r − t(1+ 2nr)/r ≥ 0,

a contradiction. ut

Lemma 5.2. Let (X,1 = S + B) be a divisorially log terminal pair, where S ≤ b1c
and X is Q-factorial. Let π : X → U be a projective morphism, where U is smooth and
affine, and the fibres of π all have the same dimension. Let 0 ∈ U be a closed point such
that X0 is integral, let n be the dimension of X and let r be a positive integer such that
r(KX0 +10) is Cartier. Suppose that X0 is not contained in the support of 1. Fix

ε <
1

2nr + 1
.

If (X0,10) is log canonical, and KX0 +10 is nef but KX + (1− ε)S +B is not pseudo-
effective, then we may run the (KX+(1−ε)S+B)-MMP f : X 99K Y overU , the steps of
which are all (KX +1)-trivial in a neighbourhood of X0, until we arrive at a Mori fibre
space ψ : Y → Z such that the strict transform of S dominates Z and KY + 0 ∼Q ψ∗L
for some divisor L on Z.
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Proof. We run the (KX + (1 − ε)S + B)-MMP f : X 99K Y with scaling of an ample
divisor over U . Then 5.1 implies that every step of this MMP is (KX + 1)-trivial in a
neighbourhood of X0. As KX + (1 − ε)S + B is not pseudo-effective, this MMP ends
with a Mori fibre space ψ : Y → Z. As every step of this MMP is (KX +1)-trivial in a
neighbourhood of X0, it follows that the strict transform of S dominates Z. ut

Lemma 5.3. Let (X,1) be a divisorially log terminal pair, where X is Q-factorial and
projective and 1 is a Q-divisor. If 8 is a Q-divisor such that

0 ≤ 1−8 ≤ Nσ (X,KX +1),

then (X,8) has a good minimal model if and only if (X,1) has a good minimal model.

Proof. Suppose that f : X 99K Y is a minimal model of (X,1). Let 0 = f∗1. Then (2)
of 2.7.2 implies that f contracts every component of Nσ (X,KX +1), so that

f∗(KX +1) = KY + 0 = f∗(KX +8).

Let p : W → X and q : W → Y resolve f . If we write

p∗(KX +1) = q
∗(KY + 0)+ E,

then E ≥ 0 is q-exceptional and p∗E = Nσ (X,KX +1). It follows that if we write

p∗(KX +8) = q
∗(KY + 0)+ F,

then
F = E − p∗(1−8) ≥ E − p∗(Nσ (X,KX +1)) = E − p

∗p∗E.

As E − p∗p∗E is p-exceptional, p∗F ≥ 0 by the negativity lemma and so f is a weak
log canonical model of (X,8). If f is a good minimal model of (X,1) then f is a
semi-ample model of (X,8) and so (X,8) has a good minimal model by 2.9.1.

Now suppose that (X,8) has a good minimal model. We may run the (KX + 8)-
MMP until we get a minimal model f : X 99K Y of (X,8). Let Y → Z be the ample
model of KX +8.

If t > 0 is sufficiently small then f is also a run of the (KX +1t )-MMP, where

1t = 8+ t (1−8).

Let n be the dimension of X and let r be a positive integer such that r(KX + 8) is
Cartier. If

0 < t <
1

1+ 2nr

and we continue to run the (KX + 1t )-MMP with scaling of an ample divisor then 5.1
(with U taken to be a point) implies that every step of this MMP is (KX +8)-trivial, so
that every step is over Z. After finitely many steps, 2.7.2 implies that we obtain a model
g : X 99K W which contracts the components of Nσ (X,KX + 1t ). As the supports of
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Nσ (X,KX+1) andNσ (X,KX+1t ) are the same and the support of1−8 is contained
in Nσ (X,KX +1), it follows that

g∗(KX +1) = g∗(KX +8).

Thus g∗(KX + 1) is semi-ample. On the other hand, g only contracts divisors in
Nσ (X,KX + 1), so that 2.7.3 implies that g is a minimal model of (X,1). Thus
g : X 99K W is a good minimal model of (X,1). ut

6. Abundance in families

Lemma 6.1. Suppose that (X,1) is a log pair where the coefficients of 1 belong to
(0, 1] ∩ Q. Let π : X → U be a projective morphism to a smooth affine variety U .
Suppose that (X,1) is log smooth over U . If there is a closed point 0 ∈ U such that
the fibre (X0,10) has a good minimal model then the generic fibre (Xη,1η) has a good
minimal model.

Proof. By 2.9.3 it is enough to prove that the geometric generic fibre has a good minimal
model. Replacing U by a finite cover we may therefore assume that π is a contraction
morphism and the strata of 1 have irreducible fibres over U .

Let f0 : Y0 → X0 be the birational morphism given by 2.8.3. As (X,1) is log smooth
over U , the strata of 1 have irreducible fibres over U and f0 blows up strata of 10, we
may extend f0 to a birational morphism f : Y → X which is a composition of smooth
blowups of strata of 1. We may write

KY + 0 = f
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components, f∗0 = 1 and f∗E = 0. Then (Y, 0) is
log smooth and the fibres of the components of 0 are irreducible. [17, 2.10] implies that
(Y0, 00) has a good minimal model, as (X0,10) has a good minimal model; similarly
[17, 2.10] also implies that if (Yη, 0η) has a good minimal model then so does (Xη,1η).

Replacing (X,1) by (Y, 0) we may assume that if

20 = 10 −10 ∧Nσ (X0,KX0 +10)

then B−(X0,KX0 +20) contains no strata of 20. There is a unique divisor 0 ≤ 2 ≤ 1
such that 2|X0 = 20. Then 2.3.3 implies that

2 = 1−1 ∧Nσ (X,KX +1),

so that
1−2 ≤ Nσ (X,KX +1).

Hence by 5.3 and 2.9.3 it suffices to prove that (Xη,2η) has a good minimal model.
Replacing (X,1) by (X,2) we may assume that B−(X0,KX0 +10) contains no strata
of 10. Then 3.2 implies that we can run the (KX + 1)-MMP f : X 99K Y over U to
obtain a minimal model of the generic fibre. Let 0 = f∗1.
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Pick a component D of b1c. Let φ : D 99K E be the restriction of f to D. Then
3.2 implies that φ0 is a semi-ample model of (D0, (10 − D0)|D0), and 2.9.1 implies
that (D0, (10 − D0)|D0) has a good minimal model. By induction on the dimension,
(Dη, (1η − Dη)|Dη ) has a good minimal model. But then φη : Dη 99K Eη is a semi-
ample model of (Dη, (1η −Dη)|Dη ).

Let S = b1c and B = {1} = 1 − S. Let T = f∗S and C = f∗B. Suppose that
KY0 + (1− ε)T0+C0 is not pseudo-effective for any ε > 0. Then KX0 + (1− ε)S0+B0
is not pseudo-effective for any ε > 0. It follows easily that KX + (1 − ε)S + B is not
pseudo-effective for any ε > 0. But thenKY + (1− ε)T +C is not either. 5.2 implies that
we may run the (KY+(1−ε)T +C)-MMP until we get to a Mori fibre space g : Y 99K W ,
ψ : W → V over U . By assumption g∗(KY + 0) ∼Q ψ∗L for some divisor L.

Pick a component D of S whose image F in W dominates V . Let E be the im-
age of D in Y . As we already observed, φη : Dη 99K Eη is a semi-ample model of
(Dη, (1η−Dη)|Dη ). As the birational map g0 : Y0 99K W0 is (KY0+00)-trivial, the bira-
tional map gη : Yη 99K Wη is also (KYη+0η)-trivial. Then Lη is semi-ample as (ψ∗L)|Fη
is semi-ample. The composition Xη 99K Wη is a semi-ample model of (Xη,1η) and so
(Xη,1η) has a good minimal model by 2.9.1.

Otherwise,KY0+(1−ε)T0+C0 is pseudo-effective for some ε > 0. If Y0 → Z0 is the
log canonical model of (Y0, 00) then T0 does not dominate Z0 and so if ε is sufficiently
small thenKX0 + (1− ε)S0+B0 has the same Kodaira dimension asKX0 +10. We have

κ(Xη,KXη +1η) ≥ κ(Xη,KXη + (1− ε)Sη + Bη) = κ(X0,KX0 + (1− ε)S0 + B0)

= κ(X0,KX0 +10) = κσ (X0,KX0 +10)

= ν(Y0,KY0 + 00) = ν(Yη,KYη + 0η).

The first inequality holds as Sη ≥ 0, the second equality holds by 4.2 (note that
(X0, (1 − ε)S0 + B0) is Kawamata log terminal as (X0,10) is divisorially log termi-
nal) and the last equality holds as intersection numbers are deformation invariant.

We have already seen that if E is a component of T then (KY +0)|Eη is semi-ample.
2.5.1 implies that (KY + 0)|Tη is semi-ample. Let H = KYη + 0η. Then H |Tη is semi-
ample and aH − (KYη + 0η) is nef and abundant for all a > 1. Thus fη : Xη 99K Yη is a
good minimal model by 2.6.1. ut

Lemma 6.2. Suppose that (X,1) is a log pair where the coefficients of 1 belong to
(0, 1] ∩ Q. Let π : X → U be a projective morphism to a smooth affine variety U .
Suppose that (X,1) is log smooth over U . If (X,1) has a good minimal model then
every fibre (Xu,1u) has a good minimal model.

Proof. Replacing U by a finite cover we may assume that π is a contraction morphism
and the strata of 1 have irreducible fibres over U .

Let f : Y → X be the birational morphism given by 2.8.3. We may write

KY + 0 = f
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components, f∗0 = 1 and f∗E = 0. Then (Y, 0)
is log smooth. [17, 2.10] implies that (Y, 0) has a good minimal model, as (X,1) does;
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similarly [17, 2.10] also implies that if (Yu, 0u) has a good minimal model then so does
(Xu,1u).

Replacing (X,1) by (Y, 0) we may assume that if

2 = 1−1 ∧Nσ (X,KX +1)

then B−(X,KX +2) contains no strata of 2. As

1−2 ≤ Nσ (X,KX +1),

5.3 implies that (X,2) has a good minimal model. 2.3.3 implies that

2u = 1u −1u ∧Nσ (Xu,KXu +1u),

so that B−(Xu,KXu +2u) contains no strata of 2u. Hence

1u −2u ≤ Nσ (Xu,KXu +1u).

Hence by 5.3 it suffices to prove that (Xu,2u) has a good minimal model. Replacing
(X,1) by (X,2) we may assume that B−(Xu,KXu +1u) contains no strata of 1u.

Let A be an ample divisor over U . Then [17, 2.7] implies that the (KX + 1)-MMP
with scaling of A terminates π : X 99K Y with a good minimal model for (X,1) over U .
Since B−(Xu,KXu +1u) contains no strata of 1u, 3.1 implies that πu : Xu 99K Yu is a
semi-ample model of (Xu,1u). Finally, 2.9.1 implies that (Xu,1u) has a good minimal
model. ut

Proof of 1.2. By 6.1 the generic fibre (Xη,1η) has a good minimal model. Hence we
may find a good minimal model of π−1(U0) over an open subset U0 of U . As (X,1) is
log smooth over U , every stratum of S = b1c intersects π−1(U0). Therefore we may
apply [17, 1.1] to conclude that (X,1) has a good minimal model over U . Finally, 6.2
implies that every fibre has a good minimal model. ut

Proof of 1.3. By 2.8.4 we may assume that (X,1) is divisorially log terminal and every
fibre (Xu,1u) is divisorially log terminal.

It suffices to prove that if U0 is dense then it contains an open subset. Let π : Y → X

be a log resolution. We may write

KY + 0 = π
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components. Passing to an open subset we may assume
that (Y, 0) is log smooth over U , so that

KYu + 0u = π
∗(KXu +1u)+ Eu

for all u ∈ U . Now [17, 2.10] implies that if (Y, 0) has a good minimal model over U
then so does (X,1). Similarly [17, 2.10] implies that if (Xu,1u) has a good minimal
model then so does (Yu, 0u).

Replacing (X,1) by (Y, 0) we may assume that (X,1) is log smooth over U . Then
1.2 implies that U0 = U . ut
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Lemma 6.3. Let π : X → U be a projective morphism to a smooth variety U and let
(X,1) be log smooth over U . Suppose that the coefficients of 1 belong to (0, 1] ∩ Q. If
there is a closed point 0 ∈ U such that the fibre (X0,10) has a good minimal model then
the restriction morphism

π∗OX(m(KX +1))→ H 0(X0,OX0(m(KX0 +10)))

is surjective for any m ∈ N such that m1 is integral.

Proof. 2.3.4 implies that we may assume that m ≥ 2. Replacing U by a finite cover we
may assume that π is a contraction morphism and the strata of 1 have irreducible fibres
over U . Since the result is local we may assume that U is affine and so we want to show
that the restriction map

H 0(X,OX(m(KX +1)))→ H 0(X0,OX0(m(KX0 +10)))

is surjective. Cutting by hyperplanes we may assume that U is a curve. Let f0 : Y0 → X0
be the birational morphism given by 2.8.3. As (X,1) is log smooth over U and the strata
of 1 have irreducible fibres over U , and as f0 blows up strata of 10, we may extend f0
to a birational morphism f : Y → X which is a composition of smooth blowups of strata
of 1. We may write

KY + 0 = f
∗(KX +1)+ E,

where 0,E ≥ 0 have no common components, f∗0 = 1 and f∗E = 0. Then (Y, 0) is
log smooth and the fibres of the components of 0 are irreducible. Note thatm0 is integral
and the natural maps induce isomorphisms

H 0(X,OX(m(KX +1))) ' H
0(Y,OY (m(KY + 0)))

and

H 0(X0,OX0(m(KX0 +10))) ' H
0(Y0,OY0(m(KY0 + 00)))

Replacing (X,1) by (Y, 0) we may assume that if

20 = 10 −10 ∧Nσ (X0,KX0 +10)

then B−(X0,KX0 +20) contains no strata of 20. There is a unique divisor 0 ≤ 2 ≤ 1
such that 2|X0 = 20. Now 1.2 implies that KX + 1 is pseudo-effective and so 2.3.3
implies that

2 = 1−1 ∧Nσ (X,KX +1).

As (X0,10) has a good minimal model, 5.3 implies that (X0,20) has a good minimal
model. Therefore 1.2 implies that (X,2) has a good minimal model over U and so [17,
2.9] implies that any run of the (KX +2)-MMP over U with scaling of an ample divisor
always terminates. 3.2 implies that we may run the (KX +2)-MMP f : X 99K Y over U
until we get a semi-ample model of the generic fibre; 3.1 implies that f is an isomorphism
in a neighbourhood of the generic point of every non-Kawamata log terminal centre of
(X,X0 + 2). Since any MMP over U terminates, we may continue this MMP until we
get to a good minimal model over U , without changing the fibre over 0.
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Let V ⊂ X × Y be the graph. Then V → X is an isomorphism in a neighbourhood
of the generic point of each non-Kawamata log terminal centre of (X,X0 +2). We may
find a log resolution W → V of the strict transform of 2 and the exceptional divisor
of V → Y which is an isomorphism in a neighbourhood of the generic point of each
non-Kawamata log terminal centre of (X,X0 + 2). If p : W → X and q : W → Y are
the induced morphisms then we may write

KW +8+W0 = p
∗(KX +X0 +2)+ E,

where W0 is the strict transform of X0, 8 is the strict transform of b2c and dEe ≥ 0 as
p is an isomorphism in a neighbourhood of the generic point of each non-Kawamata log
terminal centre of (X,X0 +2).

We may also write

p∗((m− 1)(KX +2)) = q∗f∗((m− 1)(KX +2))+ F.

Possibly shrinking U , we may assume X0 is Q-linearly equivalent to zero. If we set

A = p∗(m(KX +2))+ E − F, L = dAe and C = {−A}

then

L−W0 = p
∗(m(KX +2))+ E − F + C −W0

= p∗(KX +2)+ E + p
∗((m− 1)(KX +2))− F + C −W0

∼Q KW +8+ C + q
∗f∗((m− 1)(KX +2)).

(W,8+C) is log canonical, as (W,8+C) is log smooth and 8+C is a boundary.
Since all non-Kawamata log terminal centres of (W,8+C) dominate U , a generalisation
of Kollár’s injectivity theorem (see [21], [9, 6.3] and [4, 5.4]) implies that multiplication
by a local parameter

H 1(W,OW (L−W0))→ H 1(W,OW (L))

is an injective morphism and so the restriction morphism

H 0(W,OW (L))→ H 0(W0,OW0(L|W0))

is surjective. Note that the support of L−bq∗f∗(m(KX +2))c does not containW0, and

L− bq∗f∗(m(KX +2))c = dAe − bq
∗f∗(m(KX +2))c

≥ dA− q∗f∗(m(KX +2))e =

⌈
E +

1
m− 1

F

⌉
≥ 0.

We also have

|L| ⊂ |mp∗(KX +1)+ dE − F e| ⊂ |mp
∗(KX +1)+ dEe| = |m(KX +1)|.

Let q0 : W0 → Y0 be the restriction of q to W0. We have

|m(KX0 +10)| = |m(KX0 +20)| = |m(KY0 + f0∗20)| = |q
∗

0m(KY0 + f0∗20)|

⊂ |L|W0
| = |L|W0 ⊂ |m(KX +1)|X0 . ut

Proof of 1.4. Immediate from 6.3 and 1.2. ut
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7. Boundedness of moduli

Lemma 7.1. Let w be a positive real number and let I ⊂ [0, 1] be a set which satisfies
the DCC. Fix a log smooth pair (Z, B), where Z is a projective variety. Let F be the set of
all log smooth pairs (X,1) such that vol(X,KX +1) = w, the coefficients of 1 belong
to I and there is a sequence of smooth blowups f : X → Z of the strata of B such that
f∗1 ≤ B. Then there is a sequence of blowups Y → Z of the strata of B such that if
(X,1) ∈ F then

vol(Y,KY + 0) = w,

where 0 is the sum of the strict transform of1 and the exceptional divisors of the induced
birational map Y 99K X.

Proof. Let n = dimZ. We may suppose that 1 ∈ I . Let G be the set of log smooth pairs
(Y, 0) such that Y is projective of dimension n and the coefficients of 0 belong to I .

As [15, 1.3.1] implies that

V = {vol(Y,KY + 0) | (Y, 0) ∈ G}

satisfies the DCC, we may find δ > 0 such that

vol(Y,KY + 0) < w + δ implies vol(Y,KY + 0) ≤ w.

As the set {
r − 1
r

i

∣∣∣∣ r ∈ N, i ∈ I
}

satisfies the DCC, by [15, 1.5] we may find r ∈ N such that KY + r−1
r
0 is big whenever

(Y, 0) ∈ G and KY + 0 is big.
Pick ε > 0 such that

(1− ε)n >
w

w + δ

and set
a = 1− ε/r.

If (Y, 0) ∈ G then

KY + a0 = (1− ε)(KY + 0)+ ε
(
KY +

r − 1
r

0

)
,

so that

vol(Y,KY + a0) ≥ vol(Y, (1− ε)(KY + 0)) = (1− ε)n vol(Y,KY + 0).

As (Z, aB) is Kawamata log terminal, 2.8.1 implies we may pick a birational mor-
phism g : Y → Z such that if we write

KY +90 = g
∗(KZ + aB)+ E0,

where 90, E0 ≥ 0 have no common components, g∗90 = aB and g∗E0 = 0, then no
two components of 90 intersect. In particular (Y,90) is terminal.
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Pick (X,1) ∈ F and let 0 be the strict transform of 1 plus the exceptional divisors
of the induced birational map Y 99K X. Let 8 = g∗(a0). As 8 ≤ aB, if we write

KY +9 = g
∗(KZ +8)+ E,

where 9,E ≥ 0 have no common components, g∗9 = 8 and g∗E = 0, then 9 ≤ 90.
In particular (Y,9) is terminal.

Let 4 = 9 ∧ a0 and let 6 ≤ 1 be the strict transform of 4 on X. We have

vol(Y,KY + a0) = vol(Y,KY +4) = vol(X,KX +6)
≤ vol(X,KX +1) = w,

where we used [14, 5.3.2] for the first line and we used the fact that (Y,4) is terminal, as
(Y,9) is terminal, to get from the first line to the second.

It follows that

w ≤ vol(Y,KY + 0) ≤
1

(1− ε)n
vol(Y,KY + a0) < w + δ,

by our choice of ε, so that vol(Y,KY + 0) = w, by our choice of δ. ut

Lemma 7.2. Let n be a positive integer, letw be a positive real number and let I ⊂ [0, 1]
be a set which satisfies the DCC. Let F be a set of log canonical pairs (X,1) such that X
is projective of dimension n, the coefficients of 1 belong to I and vol(X,KX +1) = w.
Then there is a projective morphism Z → U and a log smooth pair (Z, B) over U such
that if (X,1) ∈ F then there is a point u ∈ U and a birational map fu : X 99K Zu such
that

vol(Zu,KZu +8) = w,

where8 ≤ Bu is the sum of the strict transform of1 and the exceptional divisors of f−1
u .

Proof. We may assume that 1 ∈ I . We may also assume that F consists of all log canon-
ical pairs (X,1) such that X is projective of dimension n, the coefficients of 1 belong
to I and vol(X,KX +1) = w.

By [15, 1.3] there is a constant r such that if (X,1) ∈ F then φr(KX+1) is birational.
(2.3.4) and (3.1) of [14] imply that the set F is log birationally bounded.

Therefore we may find a projective morphism π : Z→ U and a log pair (Z, B) such
that if (X,1) ∈ F then there is a point u ∈ U and a birational map f : X 99K Zu such
that the support of the strict transform of1 plus the f−1-exceptional divisors is contained
in the support of Bu. By standard arguments (see for example [14, proof of 1.9]), we may
assume that (Z, B) is log smooth over U and the intersection of the strata of B with the
fibres is irreducible.

Let 0 be a closed point of U . Let F0 ⊂ F be the set of log smooth pairs (X0,10)

such that there is a sequence of smooth blowups f : X0 → Z0 of the strata of B0 with
f∗10 ≤ B0. By 7.1 there is a sequence of blowups g : Y0 → Z0 of the strata of B0 such
that if (X0,10) ∈ F0 and 00 is the strict transform of 10 plus the exceptional divisors
then

vol(Y0,KY0 + 00) = w.



898 Christopher D. Hacon et al.

Let g : Y → Z be the sequence of blow ups of the strata of B induced by g0. Replacing
(Z, B) by (Y, C), where C is the sum of the strict transform of B and the exceptional
divisors of g, we may assume that if (X,1) ∈ F0 then

vol(Z0,KZ0 +90) = w,

where90 = f∗1 ≤ B0. Note that if we replaceZ by a higher model, F0 becomes smaller.
Suppose that (X,1) ∈ F. By a standard argument (see [14, proof of 1.9]), we may

assume that (X,1) is log smooth and f : X → Zu blows up the strata of Bu. Let
h : W → Z blow up the corresponding strata of B, so that Wu = X and hu = f . Let 2
be the divisor on W such that 2u = 1 and let f0 : W0 → Z0 be the induced birational
morphism. Then

vol(W0,KW0 +20) = vol(X,KX +1) = w,

by deformation invariance of the volume (see 4.3), so that (W0,20) ∈ F0.
But then

vol(Z0,KZ0 +80) = w,

where 80 = f0∗20. Let 8 = h∗2. Then 8u is the strict transform of 1 plus the excep-
tional divisors and

vol(Zu,KZu +8u) = w,
by deformation invariance of the volume. ut

Proposition 7.3. Fix an integer n, a constant d and a set I ⊂ [0, 1] which satisfies the
DCC. Then the set Flc(n, d, I ) of all (X,1) such that
(1) X is a union of projective varieties of dimension n,
(2) (X,1) is log canonical,
(3) the coefficients of 1 belong to I ,
(4) KX +1 is an ample Q-divisor, and
(5) (KX +1)n = d,
is bounded. In particular there is a finite set I0 such that Flc(n, d, I ) = Flc(n, d, I0).
Proof. If

X =

k∐
i=1

Xi

and (Xi,1i) is the corresponding log canonical pair then KXi + 1i is ample and if
di = (KXi + 1i)

n then d =
∑
di . Now 2.4.1 and 1.6 imply that there are only finitely

many tuples (d1, . . . , dk).
Thus it is enough to show that the set F of irreducible pairs (X,1) satisfying (1)–(5)

is bounded.
By 7.2 there is a projective morphism Z → U and a log smooth pair (Z, B) over U

such that if (X,1) ∈ F then there is a closed point u ∈ U and a birational map
fu : Zu 99K X such that

vol(Zu,KZu +8) = d,
where 8 ≤ Bu is the sum of the strict transform of 1 and the fu-exceptional divisors.
2.2.2 implies that fu is the log canonical model of (Zu,8).
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On the other hand, 1.3 implies that if we replace U by a finite disjoint union of locally
closed subsets then we may assume that every fibre of π has a log canonical model. When
we replace (Z, B) by the log canonical model over U , the fibres of π are the elements
of F. ut

Lemma 7.4. Let F be a family of log canonical pairs (X,1), where X is projective, the
coefficients of 1 belong to a finite set I and KX +1 is ample. Let

T = {(X,1, τ) | (X,1) ∈ F, τ : S → S},

where S is the normalisation of a divisor supported on b1c and τ is an involution which
fixes the different of (KX +1)|S . If F is a bounded family then so is T.

Proof. By assumption there is a projective morphism π : Z → U and a log pair (Z,6)
such that if (X,1) ∈ F then there is a point u ∈ U and an isomorphism (Zu,2) with
(X,1), where 2 is a divisor supported on 6u. As I is finite, possibly replacing U by a
disjoint union of locally closed subsets we may assume that 2 = 6u.

Let U1 be the set u of points of U such that (Zu, 6u) is isomorphic to some element
(X,1) of F. Replacing U by the closure of U1 we may assume that U1 is dense in U .
In particular we may assume that KZ + 6 is ample over U . As the set of points where
(Z,6) is log canonical is constructible, replacing U by a disjoint union of finitely many
locally closed subsets we may assume that (Z,6) is log canonical; we may also assume
that 6 meets each fibre Zu in a divisor and that (Zu, 6u) is log canonical.

Possibly replacing U by finitely many disjoint copies we may assume that there is a
divisorC′ onZ such that if (X,1, τ) ∈ T then S corresponds toC′u. Possibly replacingU
by a disjoint union of locally closed subsets we may assume that if C is the normalisation
of C′ then S is isomorphic to Cu. Possibly replacing U by a disjoint union of locally
closed subsets for the last time, we may assume that if we write

(KZ +6)|C = KC +8 and (KX +1)|S = KS +2,

then 2 corresponds to 8u.
Recall that the scheme IsomU (C,C), which represents the functor which assigns to

a scheme T over U the set of all isomorphisms CT → CT over T , is a countable union
of quasi-projective schemes over U . Pick m such that −m(KZ + 6) is Cartier. Since
−m(KZ + 6) is ample over U , the subscheme of IsomU (C,C) fixing the line bundle
OC(−m(KZ + 6)) is a closed subscheme which is quasi-projective over U . The set of
involutions fixing the different is then a closed subscheme.

It follows that T is a bounded family. ut

Proof of 1.1. Let T be the set of triples (X,1, τ) where (X,1) ∈ Flc(n, d, I ) and
τ : S → S is an involution of the normalisation of a divisor supported on b1c, which
fixes the different of (KX +1)|S .

By [26, 5.13], it is enough to prove that T is bounded. 7.3 implies that Flc(n, d, I ) is
bounded and so we may apply 7.4. ut
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[5] Berndtsson, B., Păun, M.: Quantitative extensions of pluricanonical forms and closed positive
currents. Nagoya Math. J. 205, 25–65 (2012) Zbl 1248.32012 MR 2891164

[6] Birkar, C.: Existence of log canonical flips and a special LMMP. Publ. Math. Inst. Hautes
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