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Multiplicative stochastic heat equations
on the whole space

Received April 29, 2015

Abstract. We carry out the construction of some ill-posed multiplicative stochastic heat equations
on unbounded domains. The two main equations our result covers are the parabolic Anderson model
on R3, and the KPZ equation on R via the Cole–Hopf transform. To perform these constructions,
we adapt the theory of regularity structures to the setting of weighted Besov spaces. One particular
feature of our construction is that it allows one to start both equations from a Dirac mass at the initial
time.
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1. Introduction

In the present paper, we consider the following stochastic partial differential equation:

∂tu = 1u+ u · ξ, u(0, ·) = u0(·), (E)

where u is a function of t ≥ 0, x ∈ Rd , and ξ is an irregular noise process. While large
parts of our analysis are dimension-independent, a natural subcriticality condition restricts
the dimensions in which we can consider the most interesting case of delta-correlated
noise. We will henceforth be mainly concerned with two instances of this equation: d = 3
and ξ is a white noise in space only, we refer to this case as (PAM); d = 1 and ξ is a
space-time white noise, we call this case (SHE).
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When ξ is a white noise in space, without dependence on time, this equation is indeed
called the parabolic Anderson model (PAM). In dimension d ≥ 2, the equation is ill-posed,
due to the very singular product u · ξ . Indeed, u is expected to be (2+α)-Hölder where the
regularity of the noise α is strictly lower than −d/2, so that the sum of the regularities of
u and ξ is strictly negative, and therefore the product u · ξ does not fall within the scope of
classical integration theories [BCD11, You36]. To make sense of this product, one actually
needs to perform some renormalisation which boils down to, roughly speaking, subtracting
some infinite linear term from the equation.

When the space variable is restricted to a torus of dimension 2, the solution of a
generalised version of (PAM) has been constructed independently by Gubinelli, Imkeller
and Perkowski [GIP15] using paracontrolled distributions, and by Hairer [Hai14b] via
the theory of regularity structures. The construction on a torus of dimension 3 follows
immediately from recent results of Hairer and Pardoux [HP15]. The construction of (PAM)
on the full space R2 has been obtained recently [HL15] using a simple change of unknown
that spares one from requiring elaborate renormalisation theories. This is not possible
anymore in dimension 3: in the present paper, we adapt the theory of regularity structures
to perform the construction of (PAM) on the full space R3.

When ξ is a space-time white noise, we refer to (E) as the multiplicative stochastic heat
equation (SHE). Already in dimension d = 1, the product u · ξ is ill-defined. However, in
dimension 1, the Itô integral allows one to make sense of this equation: it requires the noise
to be a martingale in time and the solution u to be adapted to the filtration of the noise. This
construction breaks down for space-time regularisations of the white noise so that it does
not imply convergence of space-time mollified versions of the original equation. When the
space variable is restricted to a torus of dimension 1, this equation has been constructed
by Hairer and Pardoux [HP15] in the framework of regularity structures: they define the
solution map on a space of noises that contains a large class of space-time mollifications
of the white noise. In the present paper, we lift the restriction of the torus and perform the
construction on the whole line R.

This equation is intimately related to the KPZ equation [KPZ86]. Indeed, formally,
the Cole–Hopf transform sends the ill-posed KPZ equation to (SHE); Bertini and Gi-
acomin [BG97] exploited this fact to prove the convergence of the fluctuations of the
weakly asymmetric simple exclusion process to the KPZ equation on R. A more direct
interpretation of the KPZ equation itself has recently been obtained by Hairer [Hai13]
when the space variable is restricted to a torus of dimension 1.

In addition to the ill-defined product u · ξ that needs to be renormalised for both (PAM)
and (SHE), there are two major issues that we address in this work: first, we construct
these SPDEs on an unbounded underlying space instead of a torus; second, we consider a
Dirac mass as the initial condition.

Let us first comment on the specific difficulty arising from the unboundedness of the
underlying space, when constructing the solutions to these SPDEs. Since the white noise
is not uniformly Hölder on an unbounded space, one cannot expect to obtain solutions
that are uniformly bounded over the underlying space and one needs to weight the Hölder
spaces of functions/distributions at infinity. This is a classical problem when dealing with
stochastic PDEs in unbounded domains—see for example [Iwa87, AR91], as well as
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the recent work [MW17] which is somewhat closer in spirit to the equations considered
here. A priori, these weights cause some trouble in obtaining a fixed point for the map
u 7→ P ∗ (u · ξ)+ P ∗ u0, where P is the heat kernel. Indeed, since the weight needed for
the product u · ξ is a priori larger than the weight of u itself, the map would take values in
a space bigger than the one u lives in and the fixed point argument would not apply.

There is a way of circumventing this problem by considering a time-increasing weight
and by using averaging in time of the weight due to time convolution with the heat kernel.
More precisely, the white noise can be weighted by a polynomial weight pa(x) = (1+|x|)a

with a as small as desired, so that if we weight the solution by et (x) = et (1+|x|), then∫ t
0 Pt−s ∗ (ξ ·us) ds can be weighted by

∫ t
0 pa(x)es(x) ds, which is smaller than et (x). We

refer to [HL15] for a construction of (PAM) on R2 using this idea, and to [HPP13] where
this trick already appeared. The main difficulty is therefore to incorporate the trick outlined
above into the theory of regularity structures, and this will require to have accurate control
on the weights arising along the construction. In particular, a major issue comes from the
fact that et (x)/es(y) is not bounded from above and below, uniformly over all (t, x), (s, y)
lying at distance, say, 1 from each other.

Let us point out that the important feature of the exponential weight is not the growth at
infinity in x, but the exponential growth in t . In particular, the trick presented above works
the same with et+`(x), where ` ∈ R is arbitrary. Consequently, if the initial condition has
bounded support, then one can choose ` arbitrarily small so that the weight of the solution
at any time t < −` decays exponentially fast in x.

At this point, let us mention that our method to construct solutions of SPDEs on the
whole space would still apply to equations of the form

∂tu = 1u+ F(u)+G(u) · ξ, u(0, ·) = u0(·),

where F,G are smooth functions whose growth at infinity is at most linear, and such that
G(0) = 0, and u0 decays exponentially fast at infinity. Let us give a brief explanation.
Under these hypotheses, if we weigh the solution at time t > 0 by et+`(x) for some
` < 0, then the weight of F(u) at time t is of order et+`(x), and the weight of G(u)ξ is
of order et+`(x)pa(x). Notice that if G(0) 6= 0 then the latter is not true anymore when
t + ` < 0. Due to the non-linearities, the fixed point map is only locally Lipschitz with a
proportionality constant which is quadratic in the solution. At the level of the weights, this
is not a problem as long as they are uniformly bounded over all x: this is the case for all
t < −`, and thus we can obtain a local solution.

On the other hand, this approach does not yield a solution theory for the KPZ equation
(without Cole–Hopf transform) on the whole line: the non-linearity is then quadratic in
the (derivative of) the solution so that its weight would be the square of the weight for the
solution, and the trick presented above would not work anymore.

Regarding the initial condition, let us point out that the Picard iterations associated
to (E) involve products of the form (P ∗u0)·ξ . By the classical integration theories [BCD11,
You36], this product makes sense as soon as the regularity of P ∗ u0 is strictly larger
than −α, where α is the regularity of the noise. P ∗ u0 is smooth away from t = 0, but its
space-time regularity near t = 0 coincides with the space regularity of u0. Since the time
regularity counts twice in the parabolic scaling, it is possible to make sense of (P ∗ u0) · ξ
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as long as u0 has a regularity better than −2− α, using integrable weights around time 0.
The Hölder regularity of the Dirac mass being equal to −d, this would prevent us from
choosing u0 = δ0 for both (PAM) and (SHE).

One way of circumventing this problem is to exploit the fact that on the other hand
the Dirac distribution is “almost” an L1 function. In particular, it belongs to the Besov
spaces Bβp,∞ as soon as β < −d + d/p. Since the classical integration theories allow
one to multiply Cα by Bβp,∞ as soon as α + β > 0, the threshold on the regularity of the
initial condition would not be modified upon this change of distribution spaces. Choosing
p small enough, one would then be able to take a Dirac mass as the initial condition. Let
us emphasise that we do not choose an Lp-type space for the white noise but still consider
the Hölder space Cα: otherwise, the integrability of the solution would be deteriorated
upon multiplication by the noise.

We now present the main steps of the construction of the solution to (E).
First, we define a regularity structure, which is an abstract framework that allows

one to associate to a function/distribution some generalised Taylor expansion around
any space/time point. The building blocks of this regularity structure are, on the one
hand, polynomials in the space/time indeterminates, and on the other hand, some abstract
symbols 4, I(4), . . . , associated with the noise. Then, one needs to reformulate the
solution map that corresponds to (E) into the abstract framework of the regularity structure.
Namely, one has to provide abstract formulations of multiplication by the noise ξ and
convolution with the heat kernel P .

Second, we build a so-called model which associates to the abstract symbols some
analytical values. Actually, we start with a mollified version of the noise ξε = ρε ∗ξ , where
ρε(t, x) = ε

−2−dρ(tε−2, xε−1) is a smooth, compactly supported function which is such
that ρ(t, x) = ρ(t,−x), and we build a model (5ε, F ε) which, in particular, associates to
the symbol 4 the smooth function ξε . One important feature is that the abstract solution
given by the solution map, with this particular model, coincides (upon an operation called
reconstruction) with the classical solution of the well-posed SPDE

∂tuε = 1uε + uε · ξε, uε(0, ·) = u0(·). (Eε)

Third, we renormalise the model (5ε, F ε) by modifying the values associated to
some symbols: namely, those that stand for ill-defined products. Roughly speaking, the
modification of these values consists in subtracting some divergent constant Cε . The effect
of this renormalisation procedure is actually very clear at the level of the SPDE, since the
abstract solution then corresponds to

∂t ûε = 1ûε + ûε · (ξε − Cε), ûε(0, ·) = u0(·). (̂Eε)

The final step consists in proving that the sequence of renormalised models converges
as ε ↓ 0 in a sense that will be made clear later on. The continuity of the solution map then
ensures that the sequence of abstract solutions converges, and furthermore the limit is the
fixed point of an abstract fixed point equation. This yields the convergence of the sequence
of renormalised solutions ûε to a limit u.

Let us now outline some major modifications that we bring to the original theory of
regularity structures [Hai14b]. First, since we want to start (E) from a Dirac mass, we need
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to choose an appropriate space of distributions. As explained earlier in the introduction,
we are led to using (some analog in the context of regularity structures of) the Bβp,∞ spaces.
Therefore, we present a new version of the reconstruction operator in this setting (see
Definition 2.5 and Theorem 2.10 for precise formulations). Second, our spaces of modelled
distributions are weighted at infinity; therefore, the reconstruction theorem and the abstract
convolution with the heat kernel need to be modified (we refer to Theorems 3.10 and 4.3).
One major difficulty we run into is that one would like to consider the same kind of weights
as in [HPP13, HL15], which are of the type w(t, x) = exp(t (1 + |x|)). Unfortunately,
such weights do not satisfy the very desirable property c ≤ |w(z)/w(z′)| ≤ C for some
constants c, C > 0, uniformly over space-time points z, z′ with |z− z′| ≤ 1, although they
do have this property for pairs of points that are only separated in space. As a consequence,
we need extremely fine control on the behaviour of our objects as a function of time (see for
example the bound (2.10) and the illustration of Figure 2). Note that in the case of (PAM),
where the noise varies only in space, we could have defined our regularity structure on
space only and viewed the solution as a function of time with values in a space of modelled
distributions, thus substantially shortening some of the arguments. We chose not to do
that, and instead we present results that work indifferently for (PAM) and (SHE). This
is possible since the algebraic and scaling properties of these two equations coincide. In
particular, the regularity structure can be built in the same way for both. On the other hand,
the analytic values associated to the elements in the regularity structure, i.e. the model, are
specific: in particular, the renormalisation constants are specific to (PAM) and (SHE).

The main result of the present work is as follows.

Theorem 1.1. We consider either (PAM) where d = 3, or (SHE) where d = 1. Let
u0 ∈ Cη,pw0 (Rd) with η > −1/2, p ∈ [1,∞) and w0(x) = e

`(1+|x|) for some ` ∈ R. There
exists a divergent sequence of constants Cε such that, on any interval of time (0, T ], the
sequence of solutions ûε of (̂Eε) converges uniformly on compact sets of (0,∞)×Rd to a
limit u, in probability.

Furthermore, the limit depends continuously on the initial condition u0 and, provided
that Cε is suitably chosen, it is independent of the choice of mollifier ρ. In the case of
(SHE), the limit can be chosen to coincide with the classical solution to the multiplicative
stochastic heat equation [Wal86, DPZ92].

Remark 1.2. In the framework of the regularity structure, we will define a lifted version
of (PAM) or (SHE). This lifted version will admit a unique fixed point (see Theorem 5.2).
The fixed point does not live in a space of usual distributions, but in a space of so-called
modelled distributions. However, the reconstruction operator defined in Theorem 3.10
associates continuously (in the respective topologies) a genuine distribution to such an
object.

Remark 1.3. We refer to Definition 3.8 for the precise space of distributions in which the
convergence holds. Moreover, the space Cη,pw0 (Rd) is defined in Subsection 4.3. We point
out however that for p sufficiently close to 1 and η negative one has δ0 ∈ Cη,pw0 .

Remark 1.4. A result of Mueller [Mue91] ensures that the classical (Itô) solution of
(SHE) is strictly positive at any time t > 0 as soon as it starts from an initial condition
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which is non-negative and non-zero. In the same way as in [HP15, Corollary 6.5], this
classical solution can be shown to coincide with our limit u so that, by setting h = log u,
we recover the Cole–Hopf solution to the KPZ equation formally given by

∂th = ∂
2
xh+ (∂xh)

2
+ ξ.

In particular, if we start u from δ0, the solution h is referred to as the “infinite wedge”
solution to the KPZ equation [ACQ11]. In this case, our convergence result is new also in
the case of solutions on the circle rather than the whole real line. Let us point out again
however that our approach does not provide a direct solution theory to the KPZ equation
on the line, as explained earlier in the introduction.

Remark 1.5. The exponent −1/2 obtained in this result is sharp. Indeed, since the equa-
tion is linear in the initial condition, it is sufficient to be able to take u0 = δy , which is
allowed in our setting. If we denote the corresponding solution (or solution kernel) by
Kt (x, y), general solutions are given by u(t, x) =

∫
Kt (x, y)u0(y) dy. Furthermore, in

the case of (PAM), it is straightforward to see by an approximation argument that Kt is
symmetric in both of its arguments. (In the case of (SHE) it is only symmetric in law.)
At this stage we then note that in both cases we expect Kt to inherit the regularity of
the linearised problem, namely to be of Hölder regularity Cα for α < 1/2 in both of its
arguments, but no better. (In the case of (SHE) this is of course a well-known fact.) Such
functions cannot be tested against a generic distribution in Cη,1 if η ≤ −1/2.

Remark 1.6. In the case of (PAM), denote by Kt the integral operator on L2(R3) with
kernel (x, y) 7→ Kt (x, y). ThenKt is in general an unbounded selfadjoint operator (with a
domain depending on the realisation of the underlying noise!). Furthermore, Kt is positive
definite since its kernel is obtained as a pointwise limit of positive kernels. Finally, for
any fixed t > 0, Kt does not admit any φ ∈ L2 with Ktφ = 0. Indeed, since the operators
Kt satisfy KtKs = Kt+s , one would have Kt/nφ = 0 for every n > 0, which would
contradict the fact that Ktφ converges to φ weakly as t → 0. As a consequence, we can
define an operator L = (1/t) logKt by functional calculus. This operator is naturally
interpreted as a suitably renormalised version of the random Schrödinger operator

Lξ = −1+ ξ

on R3. See [AC15] for more details on a similar construction in dimension 2 (and bounded
domain).

In both cases, the renormalisation constant Cε = cε + c
(1,1)
ε + c

(1,2)
ε is given by

cε :=

∫
G(z)ρ∗2ε (z) dz,

c(1,1)ε :=

∫
G(z1)G(z2)G(z3)ρ

∗2
ε (z1 + z2)ρ

∗2
ε (z2 + z3)

3∏
i=1

dzi,

c(1,2)ε :=

∫
G(z1)G(z2)

(
G(z3)ρ

∗2
ε (z3)− cεδ0(z3)

)
ρ∗2ε (z1 + z2 + z3)

3∏
i=1

dzi .

(1.1)
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In the case of (PAM), G is a compactly supported function that coincides with the Green’s
function of the 3-dimensional Laplacian in a neighbourhood of the origin, and the inte-
gration variables lie in the underlying space R3 and do not depend on time. In the case
of (SHE), G is taken to be the heat kernel in dimension 1, and the integration variables
z = (t, x) take values in R2. (With the usual convention that the heat kernel takes the
value 0 for negative times.) In both cases, cε = cε−1 with a proportionality constant c
that depends on ρ and on the equation under consideration. The other two constants
behave differently depending on the equation: for (PAM), c(1,1)ε = −

1
16π log ε +O(1) and

c
(1,2)
ε = O(1), while for (SHE) both c(1,1)ε and c(1,2)ε have finite limits as ε → 0 as shown

in [HP15].
Let us point out that we do not provide the details on the convergence of the models.

Instead, we refer the reader to [HP15] where the convergence of the mollified model
associated with (SHE) on the one-dimensional torus has been proven. Since the models
are “local” objects, the renormalisation is not affected upon passing to the whole line.
Regarding (PAM), the algebraic and scaling properties of the equation coincide with those
of (SHE) so that the proof works verbatim: only the actual values of the renormalisation
constants differ.

The remainder of the article is structured as follows. We start by giving a short
introduction to the theory of regularity structures, as used in our particular example,
in Section 2.1. The reader unfamiliar with the theory may find [Hai14b] or the shorter
introductions [Hai15, Hai14a] useful. In all existing works, the spaces of “modelled
distributions” on which the theory is built are based on the standard Hölder spaces. In
Section 2.2, we introduce new spaces of modelled distributions that are instead based on
a class of inhomogeneous Besov spaces and we prove the reconstruction theorem in this
context. In Section 3, we then leverage the local results of Section 2.2 to build suitable
weighted spaces. Section 4 contains a Schauder estimate for these spaces, which is the
main ingredient for building local solutions to the limiting problem. Finally, we combine
all of these ingredients in Section 5, where we give the proof of Theorem 1.1.

1.1. Notation

From now on, we work in Rd+1 where d is the dimension of space and 1 the dimension
of time. We choose the parabolic scaling s = (2, 1, . . . , 1), where s0 = 2 stands for the
time scaling and si = 1, i = 1, . . . , d, for the scaling of each direction of space. We let
|s| =

∑d
i=0 si . We denote by ‖z‖s = max(

√
|t |, |x1|, . . . , |xd |) the s-scaled supremum

norm of a vector z = (t, x) ∈ Rd+1. We will also use the notation |k| =
∑d
i=0 siki for any

k ∈ Nd+1. To keep notation clear, we restrict the letters s, t to denoting elements in R, x, y
to denoting elements in Rd , while the letters k,m, ` will stand for elements of N or Nd+1.
Moreover, in some cases we will use z to denote an element in Rd+1.

For any smooth function f : Rd+1
→ R and any k ∈ Nd+1, we let Dkf be the

function obtained from f by differentiating k0 times in direction t and ki times in each
direction xi , i ∈ {1, . . . , d}. For any r > 0, we let Cr be the space of functions f on Rd+1

such that Dkf is continuous for all k ∈ Nd+1 such that |k| ≤ r . We denote by Br the
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subset of Cr whose elements are supported in the unit parabolic ball and have their Cr -norm
smaller than 1. For all η ∈ Cr , all (t, x) ∈ Rd+1 and all λ > 0, we set

ηλt,x(s, y) := λ
−|s|η

(
s − t

λ2 ,
y1 − x1

λ
, . . . ,

yd − xd

λ

)
, ∀(s, y) ∈ Rd+1.

This rescaling preserves the L1-norm.
Finally, for all z ∈ Rd+1 and all λ > 0, we let B(z, λ) ⊂ Rd+1 be the ball of radius λ

centred at z; here we implicitly work with the s-scaled supremum norm ‖ · ‖s. For x ∈ Rd ,
we use the same notation B(x, λ) to denote the ball in Rd of radius λ and centre x.

2. Regularity structures and Besov-type spaces

In the first subsection, we recall the basic definitions of regularity structures and models—
this material is essentially taken from [Hai14b]. In the second subsection, we adapt the
definition of the spaces of modelled distributions from [Hai14b] to the setting of Besov
spaces. Then, we prove the corresponding reconstruction theorem. In the third subsection,
we introduce the weighted spaces of modelled distributions by adding weights around
t = 0 and x = ∞ in the spaces previously introduced.

2.1. Regularity structures and models

A regularity structure consists of two objects. First, a graded vector space T =
⊕

ζ∈A Tζ
where A, called the set of homogeneities, is a subset of R which is locally finite and
bounded from below. Second, a group G of continuous linear transformations of T whose
elements 0 ∈ G fulfil the following condition:

0τ − τ ∈ T<β , ∀τ ∈ Tβ , ∀β ∈ A,

where we write T<β as a shorthand for
⊕

ζ<β Tζ . A simple example of regularity structure
is given by the polynomials in d + 1 indeterminates X0, . . . , Xd . For every ζ ∈ N, let
Tζ be the set of all formal polynomials in Xi , i = 0, . . . , d with s-scaled degree equal
to ζ . Let us recall that the s-scaled degree of Xk =

∏d
i=0X

ki
i , for any given k ∈ Nd+1, is

equal to |k| =
∑

siki . The set of homogeneities in this example is A = N, while a natural
structure group is the group of translations on Rd+1.

In the case of our original class of equations (E), the regularity structure, together with
a set of canonical basis vectors for T , can be constructed as follows. We set α = −3/2− κ
for a given κ > 0 and we let Tα be a one-dimensional real vector space with basis vector4.
Then we define two collections U and F of formal expressions by setting 1, Xk ∈ U for
all k ∈ Nd+1 and by imposing that they are the smallest sets satisfying the following two
rules:

τ ∈ U ⇔ τ4 ∈ F , τ ∈ F ⇒ I(τ ) ∈ U .

(The product (4, τ) 7→ τ4 is taken to be commutative so we will also write 4τ instead.)
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Writing 〈U〉 for the free real vector space generated by a set U , we then set T (U) = 〈U〉,
T (F) = 〈F〉 and T = 〈U ∪ F〉. Moreover, we write T̄ ⊂ T (U) for the set of all
polynomials in the Xi , i = 0, . . . , d .

The homogeneity |τ | of an element τ ∈ U∪F is computed by setting |4| = α, |1| = 0,
|Xi | = 1 and by imposing the following rules:

|τ τ̄ | = |τ | + |τ̄ |, |I(τ )| = |τ | + 2.

The corresponding sets of homogeneities are denoted A(U), A(F) and A = A(U)∪A(F).
This also yields a natural decomposition of T by Tα = 〈{τ : |τ | = α}〉. It was shown in
[Hai14b, Sec. 8] that there is a natural group G acting on T in a way that is compatible with
the definition of an “admissible model” (see Definition 2.2 below). The precise definition
of G does not matter for the purpose of the present article, so we refer the interested reader
to [Hai14b, Sec. 8.1] and [HP15, Sec. 3.2].

U A(U) F A(F)
1 0 4 −3/2− κ

I(4) 1/2− κ 4I(4) −1− 2κ

I(4I(4)) 1− 2κ 4I(4I(4)) −1/2− 3κ

Xi 1 4Xi −1/2− κ

I(4I(4I(4))) 3/2− 3κ 4I(4I(4I(4))) −4κ

I(4Xi) 3/2− κ 4I(4Xi) −2κ

Fig. 1. The canonical basis vectors for the regularity structure for (E) with γ ∈ (3/2, 2 − 4κ).
Notice that here i ranges in {1, . . . , d}, while X0 has homogeneity 2 and therefore does not appear.

The regularity structure T (U) is the abstract framework to which the solution u of (E)
will be lifted. T (F), which is simply obtained by multiplying all the elements in T (U)
by 4, will therefore allow us to lift u · ξ . It turns out that it will suffice to restrict T (U) to
those homogeneities lower than a certain threshold γ > 0, to be fixed later on. Similarly,
we will restrict T (F) to those homogeneities lower than γ +α > 0. We will write T<γ (U)
and T<γ+α(F) to denote these two subspaces; eventually we will omit these subscripts
since the restriction will be clear from the context. Finally, we let Qζ : T → Tζ denote
the canonical projection on Tζ and we denote by |a|ζ the norm of Qζa.

Let us consider the heat kernel in dimension d:

P(t, x) :=
1

(4πt)d/2
e−|x|

2/(4t), x ∈ Rd , t > 0.

We will need the following decomposition of P into a series of smooth functions, which
was already used in [Hai14b, Lemma 5.5]. Actually, there is a slight difference here since
we consider the s-scaled supremum norm in Rd+1 instead of the s-scaled Euclidean norm,
but this makes no difference.
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Lemma 2.1. Fix r > 0. There exist a collection of smooth functions P−, Pn, n ≥ 0, on
R+ × Rd such that:

(1) for every z ∈ Rd+1
\ {0}, P(z) =

∑
n≥0 Pn(z)+ P−(z),

(2) the function P0 is supported in the unit ball, and for every n ≥ 0, we have

Pn(t, x) = 2ndP0(22nt, 2nx), t ∈ R+, x ∈ Rd ,

(3) for every n ≥ 0, we have
∫
z
Pn(z)z

k dz = 0 for all k ∈ Nd+1 such that |k| ≤ r .

As a consequence, for every k ∈ Nd+1, there exists C > 0 such that

|DkPn(z)| ≤ C2n(d+|k|), (2.1)

uniformly over all n ≥ 0 and all z ∈ Rd+1.

We will use the notation P+ =
∑
n≥0 Pn.

From now on, we deal with T<γ for a given γ that will be fixed later on. To simplify
notation, we will omit the subscript γ . We now associate to our regularity structure (T ,G)
some analytical features. To that end, recalling the definition of the sets of test functions Br
in Section 1.1, we introduce a set M of admissible models.

Definition 2.2. An admissible model is a pair (5, 0) that satisfies the following assump-
tions:

(1) The map 5 : z 7→ 5z goes from Rd+1 into the space L(T ,D′(Rd+1)) of linear
transformations from T into distributions on space-time, D′(Rd+1), such that

‖5‖z := sup
η∈Br

sup
λ∈(0,1]

sup
ζ∈A

sup
τ∈Tζ

|(5zτ)(η
λ
z )|

|τ |λζ
. 1, (2.2)

locally uniformly over z ∈ Rd+1, for some fixed r > |α|. We then define ‖5‖B as the
supremum of ‖5‖z over all z ∈ B, where B is a given subset of Rd+1.

(2) The map 0 : (z, z′) 7→ 0z,z′ goes from Rd+1
× Rd+1 into G. It is such that

‖0‖z,z′ := sup
β≤ζ

sup
τ∈Tζ

|0z,z′τ |β

|τ | ‖z− z′‖
ζ−β
s

. 1, (2.3)

locally uniformly over z, z′ ∈ Rd+1 such that ‖z − z′‖s ≤ 1. We let ‖0‖B :=
supz,z′∈B ‖0‖z,z′ for any B ⊂ Rd+1.

(3) For every z, z′ ∈ Rd+1,

5z0z,z′ = 5z′ . (2.4)

(4) For every k ∈ Nd+1 we have the identities

(5zX
k)(z′) = (z′ − z)k, (2.5)

(5zIτ)(z′) = 〈5zτ, P+(z′ − ·)〉 −
∑
|k|<|Iτ |

(z′ − z)k

k!
〈5zτ,D

kP+(z− ·)〉.
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Remark 2.3. It is not clear a priori that the last point in this definition makes sense, since
P+ is not a smooth test function. One should interpret expressions of the type 〈µ,P+〉 for
a distribution µ as a shorthand for

∑
n≥0〈µ,Pn〉 (and similarly for expressions involving

DkP+). The bound (2.2) then guarantees that these sums converge absolutely.

The mere existence of non-trivial admissible models is not obvious. However, it turns out
that every smooth function ξε can be lifted in a canonical way to an admissible model
(5(ε), 0(ε)) by setting

(5(ε)z 4)(z
′) = ξε(z

′), (5(ε)z τ τ̄ )(z
′) = (5(ε)z τ)(z

′)(5(ε)z τ̄ )(z
′), ∀τ, τ̄ ∈ T ,

and then imposing (2.5). Observe that all the products appearing in this definition are
well-defined since ξε is a function. It was shown in [Hai14b, Proposition 8.27] that this is
indeed an admissible model and we will henceforth refer to it as the “canonical model”
associated to ξε .

Notation 2.4. From now on, instead of writing 0(t,x),(t,y), we will simply write 0tx,y .
Similarly, we will write 0xt,s instead of 0(t,x),(s,x).

2.2. The reconstruction theorem in a Besov-type space

In order to build solutions to our SPDEs, we need to introduce appropriate spaces of
distributions. For the moment, we consider unweighted spaces for the sake of clarity, but
we will consider weighted versions later on. We refer the reader to Section 1.1 for the
notation.

Definition 2.5. Let α < 0 and p ∈ [1,∞]. We let Eα,p be the space of distributions f
on Rd+1 such that

‖f ‖α,p := sup
λ∈(0,1]

sup
t∈R

∥∥∥∥ sup
η∈Br (Rd+1)

|〈f, ηλt,x〉|

λα

∥∥∥∥
Lp(Rd ,dx)

<∞.

When p = ∞, we implicitly consider the supremum norm instead of the L∞-norm. In
that case, Eα,∞ actually coincides with the Hölder space Cα(Rd+1): this can be deduced
from the forthcoming wavelet characterisation of Proposition 2.6 which coincides with the
wavelet characterisation of Cα(Rd+1) stated, for instance, in [Mey92, Section 6.10]. In the
case p <∞, our space Eα,p does not coincide with the usual Besov space Bαp,∞ for our
special treatment of the time variable: again, this can be seen by comparing the wavelet
characterisations of these two spaces.

In order to deal with random distributions, it is more convenient to have a countable
characterisation of the spaces Eα,p. To that end, we rely on a wavelet analysis that we
briefly summarise below; we refer to the works of Meyer [Mey92] and Daubechies [Dau88]
for more details on wavelet analysis.
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Wavelet analysis. For every r > 0, there is a compactly supported function φ ∈ Cr(R)
such that:

(1) 〈φ(·), φ(· − k)〉 = δk,0 for every k ∈ Z,
(2) there exist ãk, k ∈ Z, with only finitely many non-zero values, and such that φ(x) =∑

k∈Z ãkφ(2x − k) for every x ∈ R,
(3) for every polynomial P of degree at most r and for every x ∈ R,∑

k∈Z

∫
P(y)φ(y − k) dy φ(x − k) = P(x).

Given such a function φ, we define for every (t, x) ∈ Rd+1 the recentred and rescaled
function φnt,x as follows:

φnt,x(s, y) = 2nφ(22n(s − t))

d∏
i=1

2n/2φ(2n(yi − xi)).

Observe that this rescaling preserves the L2-norm. We let Vn be the subspace of L2(Rd+1)

generated by {φnt,x : (t, x) ∈ 3n} where

3n := {(2−2nk0, 2−nk1, . . . , 2−nkd) : ki ∈ Z}.

Using (2), we deduce that

φnt,x =
∑
k

akφ
n+1
(t,x)n,k

, (t, x)n,k = (t, x)+ k2−(n+1), (2.6)

where only finitely many of the ak’s are non-zero, and for every k ∈ Zd+1,

k2−(n+1)
= (k02−2(n+1), k12−(n+1), . . . , kd2−(n+1)).

Using (3) above, we deduce that for every n ≥ 0, Vn contains all polynomials of scaled
degree less than or equal to r .

Another important property of wavelets is the existence of a finite set 9 of compactly
supported functions in Cr such that, for every n ≥ 0, the orthogonal complement of Vn
inside Vn+1 is given by the linear span of all the ψnx , x ∈ 3n, ψ ∈ 9. Necessarily, by (3),
each of the functions ψ ∈ 9 annihilates all polynomials of s-scaled degree less than or
equal to r . Finally, for every n ≥ 0,

{φnt,x : (t, x) ∈ 3n} ∪ {ψ
m
t,x : m ≥ n, ψ ∈ 9, (t, x) ∈ 3m}

forms an orthonormal basis of L2(Rd+1).
This wavelet analysis allows one to identify a countable collection of conditions that

determines the regularity of a distribution. The next proposition is in the flavour of classical
results on the characterisation of Besov spaces in terms of a wavelet analysis; we refer the
reader to [FJ90, Mey92] among other references.
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Proposition 2.6. Let α < 0, p ∈ [1,∞] and r > |α|. Let ξ be a distribution on Rd+1.
Set an,ψt,x := 〈ξ, ψ

n
t,x〉 for all (t, x) ∈ 3n, n ≥ 1, ψ ∈ 9 as well as b0

t,x := 〈ξ, φt,x〉 for all
(t, x) ∈ 30. If ξ ∈ Eα,p, then

sup
ψ∈9

sup
n∈N

sup
t∈2−2nZ

( ∑
x: (t,x)∈3n

2−nd
∣∣∣∣ a

n,ψ
t,x

2−n|s|/2−nα

∣∣∣∣p)1/p

<∞,

sup
t∈Z

( ∑
x: (x,t)∈30

|b0
t,x |

p
)1/p

<∞.

(2.7)

Conversely, to any sequences an,ψt,x and b0
t,x satisfying the bounds (2.7), one can associate

a distribution ξ ∈ Eα,p by setting

ξ :=
∑
ψ∈9

∑
n≥0

∑
(t,x)∈3n

a
n,ψ
t,x ψ

n
t,x +

∑
(t,x)∈30

b0
t,xφt,x . (2.8)

Remark 2.7. As an immediate consequence of this result, we have a continuous embed-
ding of Eα,p into Eα−d/p,∞, for every p ∈ [1,∞).

Proof of Proposition 2.6. The case p = ∞ is covered by [Hai14b, Proposition 3.20].
Let us adapt the proof for the case p ∈ [1,∞). If ξ ∈ Eα,p, then it is immediate to see
that the bounds (2.7) are satisfied, using the simple fact that for any (s, y) lying in the
parabolic hypercube of sidelength 2−n centred around (t, x) ∈ 3n, the function ψnt,x is of
the form ηλs,y with λ = 2−n, up to a constant multiplicative factor of order 2−n|s|/2. This
allows one in particular to turn the Lp-norm in space into an `p-norm at the expense of
the corresponding volume factor.

Let us now prove the more difficult converse implication. For λ ∈ (0, 1], let n0 ≥ 0 be
the largest integer such that 2−n0 ≥ λ. We need to show that the series∑

ψ∈9

∑
n≥0

∑
(s,y)∈3n

an,ψs,y 〈ψ
n
s,y, η

λ
t,x〉 +

∑
(s,y)∈30

b0
s,y〈φs,y, η

λ
t,x〉

converges for any test function η ∈ Br and any λ ∈ (0, 1], and that the bound of Defi-
nition 2.5 is fulfilled. Once this is established, it is simple to check that (2.8) defines a
distribution ξ (necessarily in Eα,p) and that the sequences an,ψt,x and b0

t,x coincide with the
coefficients of ξ on the wavelet basis.

If n ≥ n0, we use the fact that ψ kills polynomials of degree r to get the bound

sup
η∈Br
|〈ψns,y, η

λ
t,x〉| . 2−(n−n0)(r+|s|/2)+n0|s|/2,

uniformly over all the parameters. Observe that the left hand side actually vanishes as
soon as ‖(t − s, x − y)‖s ≥ C2−n0 for some positive constant C that only depends on the
size of the support of ψ . For a given (t, x) ∈ Rd+1, there are at most 22(n−n0) such s’s
in 2−2nZ, and 2d(n−n0) such y’s in 2−nZd . Consequently, using Jensen’s inequality at the
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third line we obtain∥∥∥∥ ∑
(s,y)∈3n

sup
η∈Br

|a
n,ψ
s,y 〈ψ

n
s,y, η

λ
t,x〉|

λα

∥∥∥∥
Lp(dx)

. sup
s∈2−2nZ

|t−s|≤C2−2n0

∥∥∥∥ ∑
y: (s,y)∈3n
|x−y|≤C2−n0

|a
n,ψ
s,y |

λα
2−(n−n0)(r+d)+n|s|/2

∥∥∥∥
Lp(dx)

. sup
s∈2−2nZ

( ∑
y: (s,y)∈3n

2−nd
∣∣∣∣ a

n,ψ
s,y

2−n|s|/2−nα

∣∣∣∣p)1/p

2−(n−n0)(r+α),

uniformly over all t ∈ R and all n ≥ n0. Therefore, since r was chosen sufficiently large
so that r + α > 0, the sum over n ≥ n0 converges.

On the other hand, for n < n0, we have the bound

sup
η∈Br
|〈ψns,y, η

λ
t,x〉| . 2n|s|/2,

uniformly over all the parameters. Moreover, the left hand side vanishes as soon as
‖(t − s, x − y)‖s > C2−n. Consequently, only a finite number of (s, y) ∈ 3n yield a
non-zero contribution, uniformly over all (t, x) ∈ Rd+1 and all n < n0. An elementary
computation using Jensen’s inequality gives the bound∥∥∥∥ ∑

(s,y)∈3n

sup
η∈Br

|a
n,ψ
s,y 〈ψ

n
s,y, η

λ
t,x〉|

λα

∥∥∥∥
Lp(dx)

. sup
s∈2−2nZ

( ∑
y: (s,y)∈3n

2−nd
∣∣∣∣ a

n,ψ
s,y

2−n|s|/2−nα

∣∣∣∣p)1/p

2−(n−n0)α,

uniformly over all n < n0 and all t ∈ R. The sum over all n < n0 of the last expression is
therefore uniformly bounded in n0 and t . Finally, the contribution of the φs,y’s is treated
similarly to the case n < n0. �

Given a regularity structure (T ,G) and a model (5, 0), we now define a space of modelled
distributions which mimics the space Eα,p.

Definition 2.8. Let γ > 0 and p ∈ [1,∞). The space Dγ,p consists of those maps
f : Rd+1

→ T<γ such that

∥∥|f (t, x)|ζ∥∥Lp(Rd ,dx) + ∥∥∥∥∫
y∈B(x,λ)

|f (t, y)− 0ty,xf (t, x)|ζ

λγ−ζ
λ−d dy

∥∥∥∥
Lp(Rd ,dx)

+

∥∥∥∥ |f (t, x)− 0xt,t−λ2f (t − λ
2, x)|ζ

λγ−ζ

∥∥∥∥
Lp(Rd ,dx)

<∞,

uniformly over all t ∈ R, all ζ ∈ A and all λ ∈ (0, 2]. We denote by ‖f ‖γ,p the
corresponding norm.
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For all B ⊂ Rd+1 of the form [s, t]×B(x0, L), we will use ‖f ‖B to denote the supremum
of the terms appearing in the Dγ,p-norm of f , but with the additional constraint that the
time indices are restricted to [s, t] and the Lp(Rd)-norms are replaced by the Lp-norm on
the ball B(x0, L).

Remark 2.9. Our spaces Dγ,p are the Lp counterparts of the space Dγ,∞
= Dγ from

[Hai14b, Def. 3.1]. Notice also that, just as in the definition of Eα,p, we treat space and
time translations separately; this will be useful in the weighted setting later on.

The definition of the space Dγ,p depends implicitly on the underlying model through 0. In
order to compare two elements f ∈ Dγ,p and f̄ ∈ D̄γ,p associated to two models (5, 0)
and (5̄, 0̄), we define ‖f ; f̄ ‖γ,p to be the supremum of

∥∥|f (t, x)− f̄ (t, x)|ζ∥∥Lp(dx)
+

∥∥∥∥∫
y∈B(x,λ)

|f (t, y)− f̄ (t, y)− 0ty,xf (t, x)+ 0̄
t
y,x f̄ (t, x)|ζ

λγ−ζ
λ−d dy

∥∥∥∥
Lp(dx)

+

∥∥∥∥ |f (t, x)− f̄ (t, x)− 0xt,t−λ2f (t − λ
2, x)+ 0̄x

t,t−λ2 f̄ (t − λ
2, x)|ζ

λγ−ζ

∥∥∥∥
Lp(dx)

over all t ∈ R, all ζ ∈ A and all λ ∈ (0, 2].
The following result shows that these modelled distributions can actually be recon-

structed into genuine distributions. This is a modification of [Hai14b, Theorem 5.12]. For
any function g : Rd → R and any x0 ∈ Rd , we use the notation

‖g‖Lp
x0,1
=

(∫
x∈B(x0,1)

|g(x)|p dx

)1/p

.

Theorem 2.10 (Reconstruction). Let (T ,G,A) be a regularity structure. Let γ > 0,
p ∈ [1,∞), α := minA < 0, r > |α| and (5, 0) be a model. There exists a unique
continuous linear map R : Dγ,p

→ Eα,p such that∥∥∥ sup
η∈Br
|〈Rf −5t,xf (t, x), ηλt,x〉|

∥∥∥
L
p

x0,1

. λγCt,x0,λ(5, f ), (2.9)

uniformly over all λ ∈ (0, 1], all (t, x0) ∈ Rd+1, all f ∈ Dγ,p and all admissible models
(5, 0). Here the proportionality constant can be given by

Ct,x0,λ(5, f ) =
∑

2−n≤λ

(
2−n

λ

)γ∧(r+α)
‖5‖Bnλ,t,x0

(1+ ‖0‖Bnλ,t,x0
)‖f ‖Bnλ,t,x0

(2.10)

with Bnλ,t,x0
= [t − 2λ2, t + λ2

− 2−2n
] × B(x0, 3).
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×
λ

t

t + λ2

x

×
λ

t

t + λ2

x

2−2n

Fig. 2. Reconstruction theorem. On the left, the original approach, and on the right, the approach
presented in our proof. The shaded region depicts the support of a test function ηλt,x , the dashed box
is the domain of the evaluations of the modelled distribution f required to define 〈Rnf, η

λ
t,x〉.

If (5̄, 0̄) is a second model for T and if R̄ is its associated reconstruction operator,
then∥∥∥ sup

η∈Br
|〈Rf − R̄f̄ −5t,xf (t, x)+ 5̄t,x f̄ (t, x), ηλt,x〉|p

∥∥∥
L
p

x0,1

. λγCt,x0,λ(5, 5̄, f, f̄ ), (2.11)

uniformly over all λ ∈ (0, 1], all f ∈ Dγ,p, all f̄ ∈ D̄γ,p, all (t, x0) ∈ Rd+1 and all
admissible models (5, 0), (5̄, 0̄). Here, the proportionality constant is obtained from
(2.10) by replacing ‖5‖Bnλ,t,x0

(1+ ‖0‖Bnλ,t,x0
)‖f ‖Bnλ,t,x0

by

‖5‖Bn(1+ ‖0‖Bn)‖f ; f̄ ‖Bn

+
(
‖5− 5̄‖Bn(1+ ‖0‖Bn)+ ‖5̄‖Bn‖0 − 0̄‖Bn

)
‖f̄ ‖Bn (2.12)

with Bn = Bnλ,t,x0
as defined above.

To prove this theorem, we adapt the arguments from [Hai14b, Theorem 3.10]. In particular,
we obtain Rf as the limit of a sequence Rnf ∈ Vn, where Vn is the subspace of L2(Rd+1)

defined by our wavelet analysis. Let us comment on the technical bound (2.10). Its purpose
is to provide precise control on the time locations of these values f (s, y) needed to define
〈Rf, ηλt,x〉. In the original proof of the reconstruction theorem [Hai14b, Theorem 3.10],
these points were taken in a domain slightly larger than the support of the test function ηλt,x .
In the setting with weights, this would only allow us to weigh 〈Rf, ηλt,x〉 by a weight
taken at a time slightly larger than the maximal time of the support of the test function. In
our present approach, the values f (s, y) used for the term coming from 〈Rnf, η

λ
t,x〉 will

always be such that s < t + λ2
− 2−2n. In the setting with weights, this will allow us to

weigh 〈Rf, ηλt,x〉 by a weight taken at time t + λ2. We refer to Figure 2 for an illustration.
The core of the proof rests on the following result. Recall the wavelet analysis intro-

duced above. Let fn =
∑
(t,x)∈3n

Ant,xϕ
n
t,x be a sequence of elements in Vn and define

δAnt,x = 〈fn+1 − fn, ϕ
n
t,x〉. The following criterion for the convergence of the sequence

fn is an adaptation of [Hai14b, Theorem 3.23], which in turn can be viewed as a multidi-
mensional generalisation of Gubinelli’s sewing lemma [Gub04].
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Proposition 2.11. Let α < 0. Assume that there exists a constant ‖A‖ such that

sup
n≥0

sup
t∈2−2nZ

( ∑
x: (t,x)∈3n

2−nd
∣∣∣∣ Ant,x

2−n|s|/2−nα

∣∣∣∣p)1/p

≤ ‖A‖,

sup
n≥0

sup
t∈2−2nZ

( ∑
x: (t,x)∈3n

2−nd
∣∣∣∣ δAnt,x

2−n|s|/2−nγ

∣∣∣∣p)1/p

≤ ‖A‖.

(2.13)

Then the sequence fn converges in E ᾱ,p for every ᾱ < α to a limit f ∈ Eα,p. Moreover,

‖f − fn‖ᾱ,p . ‖A‖2−n(α−ᾱ), ‖Pnf − fn‖α,p . ‖A‖2−nγ , (2.14)

for all ᾱ ∈ (α − γ, α).

Here, Pn denotes the orthogonal projection from L2(Rd+1) onto Vn. We also write V ⊥n
for the orthogonal complement of Vn in Vn+1. From the wavelet analysis, we know that
this is obtained as the linear span of all the ψnt,x with (t, x) ∈ 3n and ψ ∈ 9.

Proof of Proposition 2.11. Let us write fn+1 − fn = gn + δfn, where gn ∈ Vn and
δfn ∈ V

⊥
n . We bound separately the contributions of these two terms. By Proposition 2.6,

the Eβ,p-norm is equivalent to the supremum over n ≥ 0 of the Eβ,p-norms of the
projections onto V ⊥n and onto V0. Therefore, the sequence

∑M
n=0 δfn converges in E ᾱ,p as

M →∞ to an element in Eα,p precisely if

lim
n→∞
‖δfn‖ᾱ,p = 0, sup

n≥0
‖δfn‖α,p <∞. (2.15)

We have

〈δfn, ψ
n
t,x〉 =

∑
(s,y)∈3n+1

An+1
s,y 〈ϕ

n+1
s,y , ψ

n
t,x〉.

Observe that |〈ϕn+1
s,y , ψ

n
t,x〉| . 1 uniformly over all n ≥ 0, and the inner product vanishes

as soon as ‖(t − s, x − y)‖s > C2−n for some constant C > 0 depending on the sizes of
the supports of ϕ and ψ . Hence, for a given (t, x), the number of (s, y) ∈ 3n+1 with a
non-zero contribution is uniformly bounded in n ≥ 0. Therefore, we have

‖δfn‖β,p . sup
t∈2−2nZ

( ∑
x: (t,x)∈3n

2−nd
( ∑

(s,y)∈3n+1
‖(t−s,x−y)‖s≤C2−n

|An+1
s,y |

2−n|s|/2−nβ

)p)1/p

. sup
t∈2−2nZ

∑
s∈2−2(n+1)Z
|t−s|≤C22−2n

( ∑
x: (t,x)∈3n

∑
y:(s,y)∈3n+1
|x−y|≤C2−n

2−nd
∣∣∣∣ An+1

s,y

2−n|s|/2−nβ

∣∣∣∣p)1/p

. sup
s∈2−2(n+1)Z

2−n(α−β)
( ∑
y: (s,y)∈3n+1

2−(n+1)d
∣∣∣∣ An+1

s,y

2−n|s|/2−nα

∣∣∣∣p)1/p

,
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so that (2.15) follows from (2.13). Moreover, this yields the bound∥∥∥ ∞∑
n=m

δfn

∥∥∥
ᾱ,p
. ‖A‖2−m(α−ᾱ).

Let us now prove that the series of the gn’s is also summable in Eα,p. We have∥∥∥ M∑
n=m

gn

∥∥∥
α,p
.

M∑
n=m

sup
N≥0
‖QNgn‖α,p ∨ ‖P0gn‖α,p,

where QN denotes the projection onto V ⊥N , and P0 the projection onto V0. Since gn ∈ Vn,
we have

gn =
∑

(s,y)∈3n

〈gn, ϕ
n
s,y〉ϕ

n
s,y =

∑
(s,y)∈3n

δAns,yϕ
n
s,y .

Whenever N ≥ n, QNgn vanishes. On the other hand, |〈ϕns,y, ψ
N
t,x〉| . 2−(n−N)|s|/2 uni-

formly over allN < n, and this inner product actually vanishes as soon as ‖(t−s, x−y)‖s
> C2−N . Consequently, using the triangle inequality on the sum over s and Jensen’s in-
equality on the sum over y to pass from the third to the fourth line, we have

‖QNgn‖α,p

. sup
t∈2−2NZ

( ∑
x: (t,x)∈3N

2−Nd
( ∑
(s,y)∈3n

|δAns,y | |〈ϕ
n
s,y, ψ

N
t,x〉|

2−N |s|/2−Nα

)p)1/p

. sup
t∈2−2NZ

( ∑
x: (t,x)∈3N

2−Nd
( ∑

(s,y)∈3n
‖(t−s,x−y)‖s≤C2−N

2−(n−N)|s|
|δAns,y |

2−n|s|/2−Nα

)p)1/p

. sup
t∈2−2NZ

∑
s∈2−2nZ

|t−s|≤C22−2N

2−2(n−N)
( ∑
x: (t,x)∈3N

∑
y: (s,y)∈3n
|x−y|≤C2−N

2−nd
∣∣∣∣ δAns,y

2−n|s|/2−Nα

∣∣∣∣p)1/p

. sup
s∈2−2nZ

( ∑
y: (s,y)∈3n

2−nd
∣∣∣∣ δAns,y

2−n|s|/2−nγ

∣∣∣∣p)1/p

2−nγ ,

uniformly over all n > N ≥ 0. The calculation for P0gn is very similar. Consequently,
‖
∑
∞

n=m gn‖α,p . ‖A‖2
−mγ and the asserted convergence is proved. Moreover, the

bounds (2.14) follow immediately by keeping track of constants. �

We now proceed to the proof of the reconstruction theorem. Even though the general
method of proof is quite similar to that of [Hai14b, Theorem 3.10], a specific work is
needed here in order to get the refined bound (2.9).

Proof of Theorem 2.10. Set

M = (diam suppϕ) ∨max{diam suppψ : ψ ∈ 9} ∨max{|k| : ak 6= 0}.
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Let us introduce the following notation: for all t ∈ R, we let t↓n := t − C2−2n where
C = 7M2

+ 1. Recall the notation xn,k and tn,k introduced above (2.6). For all n ≥ 0, we
define

Rnf :=
∑

(t,x)∈3n

Ant,xϕ
n
t,x,

where, for all (t, x) ∈ Rd+1,

Ant,x :=

∫
y∈B(x,2−n)

2nd〈5t↓n,yf (t
↓n, y), ϕnt,x〉 dy,

with 〈·, ·〉 denoting the pairing between distributions and test functions. One can write

δAnt,x =
∑

k∈Zd+1

ak

(∫
v∈B(xn,k,2−(n+1))

2(n+1)d
〈5

t
↓n+1
n,k ,v

f (t
↓n+1
n,k , v), ϕn+1

tn,k,xn,k
〉 dv

−

∫
u∈B(x,2−n)

2nd〈5t↓n,uf (t
↓n, u), ϕn+1

tn,k,xn,k
〉 du

)
.

Observe that any two points v and u appearing in the integral above are at distance at most
(M + 3)2−(n+1) from each other. A simple calculation thus shows that

|δAnt,x | .
∑

k∈Zd+1

ak 6=0

∑
ζ∈A

∫
u∈B(x,2−n)

2n(d−ζ−|s|/2)F nζ (t
↓n, t

↓n+1
n,k , u) du, (2.16)

where the quantity F nζ is given by

F nζ (t, s, u) = ‖5‖su|f (s, u)− 0
u
s,tf (t, u)|ζ

+

∫
v∈B(u,(M+3)2−(n+1))

2nd‖5‖sv|f (s, v)− 0sv,uf (s, u)|ζ dv.

At this stage, it is simple to check that the conditions of Proposition 2.11 are satisfied, so
that R can be defined as the limit of Rn as n→∞.

Let us now establish (2.9). For every λ ∈ (0, 1], we let n0 be the smallest integer such
that 2−n0 ≤ λ. Then, we define n1 as the smallest integer such that

2−n0 ≥ 6M2−n1 , 2−2n0 ≥ (7M2
+ C)2−2n1 , (2.17)

we write

Rf −5t,xf (t, x) = (Rn1f − Pn15t,xf (t, x))

+

∑
n≥n1

Rn+1f −Rnf − (Pn+1 − Pn)5t,xf (t, x), (2.18)

where Pn is the orthogonal projection onto Vn. We bound the terms on the right hand side
separately. To that end, we introduce the set

3t,x,λn := {(s, y) ∈ 3n : |t − s| ≤ λ
2
+ 7M22−2n, |x − y| ≤ λ+ 5M2−n}.
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We claim that∥∥∥ ∑
(s,y)∈3

t,x,λ
n

|Ans,y − 〈5t,xf (t, x), ϕ
n
s,y〉|

∥∥∥
L
p

x0,1

. ‖5‖Bnλ,t,x0
(1+ ‖0‖Bnλ,t,x0

)‖f ‖Bnλ,t,x0

∑
ζ∈A

λ|s|+γ−ζ2−n(ζ−|s|/2), (2.19)

uniformly over all (t, x0) ∈ Rd+1, all λ ∈ (0, 1] and all n ≥ n1. We postpone the proof of
(2.19), and proceed to bounding the terms appearing in (2.18). The first term on the right
hand side of (2.18) yields the following contribution:

〈Rn1f − Pn15t,xf (t, x), η
λ
t,x〉 =

∑
(s,y)∈3n1

(An1
s,y − 〈5t,xf (t, x), ϕ

n1
s,y〉)〈ϕ

n1
s,y, η

λ
t,x〉.

We have |〈ϕn1
s,y, η

λ
t,x〉| . 2−n1|s|/2λ−|s| uniformly over all the parameters, and the inner

product vanishes as soon as (s, y) /∈ 3t,x,λn1 . Therefore, using (2.19) we obtain∥∥∥ sup
η∈Br
|〈Rn1f − Pn15t,xf (t, x), η

λ
t,x〉|

∥∥∥
L
p

x0,1

. ‖5‖
B
n1
λ,t,x0

(1+ ‖0‖
B
n1
λ,t,x0

)‖f ‖
B
n1
λ,t,x0

λγ ,

as required. We turn to the second term on the right hand side of (2.18). As before, we
write

Rn+1f −Rnf = δnf + gn

with δnf ∈ V ⊥n and gn ∈ Vn. We then have

〈δnf − (Pn+1 − Pn)5t,xf (t, x), ηλt,x〉

=

∑
(s,y)∈3n+1

∑
(r,u)∈3n

(An+1
s,y − 〈5t,xf (t, x), ϕ

n+1
s,y 〉)〈ϕ

n+1
s,y , ψ

n
r,u〉〈ψ

n
r,u, η

λ
t,x〉.

Observe that |〈ϕn+1
s,y , ψ

n
r,u〉| . 1 and |〈ψnr,u, η

λ
t,x〉| . 2−n(r+|s|/2)λ−(r+|s|), uniformly over

all the parameters. For every given (s, y), the first inner product vanishes except for
those finitely many space-time coordinates (r, u) ∈ 3n such that |r − s| ≤ 5M22−2(n+1)

and |u − y| ≤ 3M2−(n+1). Furthermore, the second inner product vanishes whenever
|r − t | > λ2

+M22−2n or |u− x| > λ+M2−n. Therefore,

|〈δnf − (Pn+1 − Pn)5t,xf (t, x), ηλt,x〉|

.
∑

(s,y)∈3
t,x,λ
n+1

|An+1
s,y − 〈5t,xf (t, x), ϕ

n+1
s,y 〉|2

−n(r+|s|/2)λ−(r+|s|),

uniformly over all the parameters. Using (2.19), it is then easy to get∥∥∥ sup
η∈Br
|〈δnf − (Pn+1 − Pn)5t,xf (t, x), ηλt,x〉|

∥∥∥
L
p

x0,1

. ‖5‖
Bn+1
λ,t,x0

(1+ ‖0‖
Bn+1
λ,t,x0

)‖f ‖
Bn+1
λ,t,x0

(
2−(n+1)

λ

)r+α
λγ ,
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as required. Finally, we treat the contribution of gn =
∑
(s,y)∈3n

δAns,yϕ
n
s,y :∥∥∥ sup

η∈Br
|〈gn, η

λ
t,x〉|

∥∥∥
L
p

x0,1

.
∥∥∥ ∑
(s,y)∈3n: |s−t |≤λ

2
+M22−2n

|y−x|≤λ+M2−n

|δAns,y |2
−n|s|/2λ−|s|

∥∥∥
L
p

x0,1

.

For all s in the sum above and for all k ∈ Zd+1 such that ak 6= 0, s↓n+1
n,k belongs to

[t − λ2
− (5M2

+ C)2−2(n+1), t + λ2
+ (5M2

− C)2−2(n+1)
], which is a subset of

[t − 2λ2, t + λ2
− 2−(n+1)

] thanks to (2.17) and the definition of C. By (2.16), a simple
calculation using Jensen’s inequality yields∥∥∥ sup

η∈Br
|〈gn, η

λ
t,x〉|

∥∥∥
L
p

x0,1

. ‖5‖Bnλ,t,x0
‖f ‖Bnλ,t,x0

2−nγ ,

so that the asserted bound follows.
We are now left with the proof of (2.19). We split Ans,y − 〈5t,xf (t, x), ϕ

n
s,y〉 into the

sum of

In(t, x, s, y) =

∫
u∈B(y,2−n)

2nd
〈
5s↓n,u

(
f (s↓n, u)− 0s

↓n

u,xf (s
↓n, x)

)
, ϕns,y

〉
du,

and
Jn(t, x, s, y) =

〈
5s↓n,y0

s↓n

y,x

(
f (s↓n, x)− 0x

s↓n,t
f (t, x)

)
, ϕns,y

〉
.

We start with |In(t, x, s, y)|, which can be bounded by∑
ζ∈A

∫
u∈B(y,2−n)

2n(d−ζ−|s|/2)‖5‖s↓n,u|f (s
↓n, u)− 0s

↓n

u,xf (s
↓n, x)|ζ du.

For all (s, y) ∈ 3t,x,λn , we have |y − x| ≤ λ+ 5M2−n so that using (2.17), we can bound
the integral over all u ∈ B(y, 2−n) by the same integral over all u ∈ B(x, 2λ). This yields

∥∥∥ ∑
(s,y)∈3

t,x,λ
n

|In(t, x, s, y)|

∥∥∥
L
p

x0,1

.
∑

s∈2−2nZ
|s−t |≤λ2

+7M22−2n

∥∥∥∥∑
ζ∈A

∫
u∈B(x,2λ)

2n(d−ζ−|s|/2)

× ‖5‖s↓n,u|f (s
↓n, u)− 0s

↓n

u,xf (s
↓n, x)|ζ du

∥∥∥∥
L
p

x0,1

. ‖5‖Bnλ,t,x0
‖f ‖Bnλ,t,x0

∑
ζ∈A

λ|s|+γ−ζ2−n(ζ−|s|/2),

as required. Notice that we have used the fact that the sum over s at the second line contains
at most (λ2n)2 elements, and that for all these s, we have s↓n ∈ [t − 2λ2, t + λ− 2−2n

]

thanks to (2.17) and the definition of C.
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To bound |Jn(t, x, s, y)|, we distinguish two cases. If s↓n > t , then it can be bounded
by

.
∑
ζ,β∈A
ζ≥β

‖5‖s↓n,y‖0‖s↓ny,s↓nx |x − y|
ζ−β
|f (s↓n, x)− 0x

s↓n,t
f (t, x)|ζ 2−n(β+|s|/2)

.
∑
ζ≥β

‖5‖s↓n,y‖0‖s↓ny,s↓nx

|f (s↓n, x)− 0x
s↓n,t

f (t, x)|ζ

λγ−ζ
λγ−β2−n(β+|s|/2).

On the other hand, if s↓n < t , then we write

Jn(t, x, s, y) = −
〈
5s↓n,y0s↓ny,tx

(
f (t, x)− 0x

t,s↓n
f (s↓n, x)

)
, ϕns,y

〉
,

and, for all (s, y) ∈ 3t,x,λn , we bound |Jn(t, x, s, y)| by

.
∑
ζ,β∈A
ζ≥β

‖5‖s↓n,y‖0‖s↓ny,txλ
ζ−β
|f (t, x)− 0x

t,s↓n
f (s↓n, x)|ζ2−n(β+|s|/2)

.
∑
ζ≥β

‖5‖s↓n,y‖0‖s↓ny,tx

|f (t, x)− 0x
t,s↓n

f (s↓n, x)|ζ

λγ−ζ
λγ−β2−n(β+|s|/2).

In both cases, we deduce that∥∥∥ ∑
(s,y)∈3

t,x,λ
n

|Jn(t, x, s, y)|

∥∥∥
L
p

x0,1

. ‖5‖Bnλ,t,x0
‖0‖Bnλ,t,x0

‖f ‖Bnλ,t,x0

∑
ζ∈A

λ|s|+γ−ζ2−n(ζ−|s|/2).

This ends the proof.
The uniqueness of the reconstruction follows from the same argument as in [Hai14b],

but for completeness, we recall it briefly. Assume that ξ1 and ξ2 are two candidates for
Rf that both satisfy (2.9). Let ψ be a compactly supported, smooth function on Rd+1 and
let η ∈ Br be even and integrating to 1. We set

ψλ(s, y) = 〈η
λ
s,y, ψ〉 =

∫
ψ(t, x)ηλt,x(s, y) dt dx.

Then
〈ξ1 − ξ2, ψλ〉 =

∫
ψ(t, x)〈ξ1 − ξ2, η

λ
t,x〉 dt dx.

We obtain

|〈ξ1 − ξ2, ψλ〉| . ‖ψ‖∞ sup
t
‖〈ξ1 − ξ2, η

λ
t,x〉‖Lp( dx) . ‖ψ‖∞λ

γ ,

so that 〈ξ1 − ξ2, ψλ〉 goes to 0 as λ ↓ 0. Since ψλ converges to ψ in the C∞ topology, one
has 〈ξ1 − ξ2, ψλ〉 → 〈ξ1 − ξ2, ψ〉. Hence ξ1 = ξ2 and the uniqueness follows.
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To complete the proof of the theorem, it remains to consider the case of two mod-
els (5, 0) and (5̄, 0̄). The reconstruction theorem applies to both f and f̄ separately,
using the sequences Rnf and R̄nf̄ associated to each of them. Then, we observe that
|δAnt,x − δĀ

n
t,x | satisfies the bound (2.16) with F nζ (t, s, u) replaced by

F̃ nζ (t, s, u) = ‖5‖su|f (s, u)− f̄ (s, u)− 0
u
s,tf (t, u)+ 0̄

u
s,t f̄ (t, u)|ζ

+

∫
B(u,(M+3)2−(n+1))

2nd‖5‖sv|f (s, v)− f̄ (s, v)− 0sv,uf (s, u)+ 0̄
s
v,uf̄ (s, u)|ζ dv

+ ‖5− 5̄‖su|f̄ (s, u)− 0̄
u
s,t f̄ (t, u)|ζ

+

∫
B(u,(M+3)2−(n+1))

2nd‖5− 5̄‖sv|f̄ (s, v)− 0̄sv,uf̄ (s, u)|ζ dv.

Furthermore, in this context, (2.19) becomes∥∥∥ ∑
(s,y)∈3

t,x,λ
n

|Ans,y − Ā
n
s,y − 〈5t,xf (t, x)− 5̄t,x f̄ (t, x), ϕ

n
s,y〉|

∥∥∥
L
p

x0,1

. Kn
t,x0,λ

∑
ζ∈A

λ|s|+γ−ζ2−n(ζ−|s|/2), (2.20)

where Kn
t,x0,λ

is given by (2.12). The proof of (2.20) follows from the same arguments as
above mutatis mutandis. This being given, the proof of (2.11) follows from exactly the
same arguments as above. �

3. Weighted spaces

We would like to deal with white noise as the elementary input in our regularity structure,
but unfortunately white noise does not live in any of the spaces Cα due to the unbounded-
ness of the underlying space. In order to circumvent this problem, we choose to consider
weighted versions of the previously mentioned spaces. We first define the class of functions
that have good enough properties to be used as weights.

Definition 3.1. A function w : Rd → R+ is a weight if there exists C > 0 such that for
all x, y ∈ Rd with |x − y| ≤ 1,

1
C
≤
w(x)

w(y)
≤ C.

All the weights considered in this article are built from two elementary families:

pa(x) := (1+ |x|)a, e`(x) := e`(1+|x|),

with a, ` ∈ R. It is easy to verify that these are indeed weights. We also observe that
the constant C can be taken uniformly over all a and ` in compact subsets of R. Given a
weight w, we let Cαw(Rd+1) be the set of distributions f on Rd+1 such that

sup
λ∈(0,1]

sup
(t,x)∈Rd+1

sup
η∈Br (Rd+1)

|〈f, ηλt,x〉|

w(x)λα
<∞.
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Remark 3.2. Our setting may seem surprising since our weights are in space and not in
space-time; the reason for this choice is twofold. First, the solution map for the SPDEs only
needs to be defined on (arbitrary) bounded intervals of time, so that it suffices to characterise
the regularity of the white noise on (0, T ] × Rd ; therefore, only the unboundedness of the
space variable matters. Second, and this is more serious, we aim at using the exponential
weights e`+t for the solution, and it happens that they are not space-time weights since
et (1+|x|)/es(1+|y|) is not uniformly bounded from above and below when (t, x) and (s, y)
are only constrained to be at distance at most 1 from each other.

We now characterise the regularity of white noise. Let us start with the case of the space-
time white noise, which is the driving noise for (SHE). Let χT : R→ R be a compactly
supported smooth function which is equal to 1 on (−2T , 2T ), and let ξ be a white noise
on Rd+1. Let ρ : Rd+1

→ R be a compactly supported, even, smooth function that
integrates to one. We set ρε(t, x) = ε−|s|ρ(tε−2, xε−1), and we define the mollified noise
ξε = ρε ∗ ξ .

Lemma 3.3. Fix a > 0, set w5(x) := (1+ |x|)a , x ∈ Rd , and let α < −|s|/2. Then, for
any T > 0, ξ · χT admits a modification that belongs almost surely to Cαw5 , and there
exists δ > 0 such that

E‖ξε · χT − ξ · χT ‖α,w5 . ε
δ,

uniformly over all ε ∈ (0, 1].

Observe that a can be taken as small as desired. In the case of (PAM), the white noise is
only in space and an immediate adaptation of the proof shows that it admits a modification
in Cαw5 for any α < −d/2.

Proof of Lemma 3.3. From Proposition 2.6, it suffices to show that almost surely

sup
n≥0

sup
ψ∈9

sup
(t,x)∈3n

|〈ξ · χT , ψ
n
t,x〉|

w5(x)2−n|s|/2−nα
<∞, sup

(t,x)∈30

|〈ξ · χT , ϕt,x〉|

w5(x)
<∞.

We only treat the first bound, since the second is similar. For any p ≥ 1, we write

E
[

sup
n≥0

sup
ψ∈9

sup
(t,x)∈3n

(
|〈ξ · χT , ψ

n
t,x〉|

w5(x)2−n|s|/2−nα

)2p]
.
∑
n≥0

∑
ψ∈9

∑
(t,x)∈3n

( E〈ξ · χT , ψnt,x〉2

w5(x)22−|s|n−2nα

)p
where we have used the equivalence of moments of Gaussian random variables. Recall
that the L2-norm of ψnt,x is 1, the cardinality of the restriction of 3n to the unit (s-scaled
parabolic) ball of Rd+1 is of order 2|s|n, and 9 is a finite set. Recall also that χT is
compactly supported. Thus the last term is of order∑

x∈Zd
w5(x)−2p

∑
n≥0

2|s|n(p+1)+2αnp.
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If we take p large enough, the sums over n and x converge. This shows that ξ · χT admits
a modification that almost surely belongs to Cαw5 . We turn to ‖(ξε − ξ)χT ‖α,w5 . The
computation is very similar, the only difference is in the term

E〈(ξ − ξε)χT , ψnt,x〉
2
= ‖ψnt,xχT − ρε ∗ (ψ

n
t,xχT )‖

2
L2 .

When t /∈ (−2T − ε, 2T + ε), this term vanishes. Otherwise, it can be bounded by a term
of order 1 ∧ (ε222n) uniformly over all ε ∈ (0, 1], all n ≥ 0 and all (t, x) ∈ Rd+1. We
obtain

E
[

sup
n≥0

sup
ψ∈9

sup
x∈3n

(
|〈(ξ − ξε)χT , ψ

n
x 〉|

w5(x)2−n|s|/2−nα

)2p]
.
∑
x∈Zd

∑
n≥0

2n(|s|+2pα+|s|p)(1 ∧ ε2p22np)

w5(x)2p
,

so that for α < −|s|/2 and p large enough, the previous calculation yields the bound
E‖ξε − ξ‖α,p,w5 . (ε|log ε|1/(2p)) ∨ ε−α−(|s|/2)(1+1/p) uniformly over all ε ∈ (0, 1]. �

Given a weight w5 on Rd , we define weighted versions of the seminorm on the model.
For any subset B ⊂ Rd+1, we set

|||5|||B := sup
z∈B

‖5‖z

w5(x)
, |||0|||B := sup

z,z′∈B
‖z−z′‖s≤1

‖0‖z,z′

w5(x)
,

where x is the space component of z in the above expressions. We are now in a position to
introduce the natural model associated to the mollified noise.

Lemma 3.4. Set w5(x) = (1+ |x|)a for a given a > 0. Then for any set B of the form
[0, T ] × Rd the seminorms |||5(ε)|||B and |||0(ε)|||B are almost surely finite.

These bounds are not uniform over ε ∈ (0, 1]; this is the reason why a renormalisation at
the level of the model is required.

Proof of Lemma 3.4. Let B = [0, T ] × Rd for a given T > 0. First, we observe that
the required bound on 5(ε)z holds for polynomials, and also for 4 by Lemma 3.3 since
〈ξε, ηz〉 coincides with 〈ξε · χT , ηz〉 for all test functions η ∈ Br(Rd+1) and all z ∈ B.
Then, the key observation is that all the elements in the regularity structure are built from
polynomials and 4 by multiplication and/or application of I. Additionally, for every
‖z − z′‖s ≤ 1, the definitions of 5(ε)z Iτ(z′) and 5(ε)z τ τ̄ (z′) only involve the values
of 5(ε)z τ(·) and 5(ε)z τ̄ (·) in a neighourhood of z, so that, for bounding these terms, the
definition of a weight allows one to disregard the precise location at which the evaluation is
taken. Since the regularity structure has finitely many elements, a simple recursion shows
that the analytical bound on 5(ε)z holds with the weight w5(x)n for some n ≥ 1, instead
of w5(x). Given the expression of w5(x), it suffices to decrease a accordingly in order
to get the required statement. Regarding the analytical bound on 0(ε)

z,z′
, the proof follows

from very similar arguments, using the proof of [Hai14b, Proposition 8.27] and the bound
of [Hai14b, Lemma 5.21]. �
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Notation 3.5. From now on, the seminorm on the model will always be taken with the set
B = [0, T ] ×Rd , and the maximal T will always be clear from the context. Therefore, we
will omit the subscript B on this seminorm for simplicity.

Let us now introduce weighted spaces of modelled distributions. Much as for the model,
we add weights at infinity in the spaces Dγ,p. Moreover, to allow for an irregular initial
condition, we also weight these spaces near time 0. For every ζ ∈ A and t ∈ R, we
consider two collections of weights on Rd , w(1)t (·, ζ ) and w(2)t (·, ζ ). We set

wt (x) := inf
ζ∈A

inf
i∈{1,2}

w(i)t (x, ζ ), (3.1)

and make the following assumption.

Assumption 3.6 (Weights and reconstruction). All the weights w(i)t (x, ζ ) are increasing
functions of time. Furthermore, there exists c > 0 such that, for any time T > 0, there
exists K > 0 such that

K−1
≤ sup
x,y∈Rd : |x−y|≤1

w(i)t (x, ζ )

w(i)t (y, ζ )
≤ K, (W-0)

sup
x∈Rd

w5(x)2w(i)s (x, ζ )
wt (x)

≤ K(t − s)−c/2 (W-1)

uniformly over all s < t ∈ (−∞, T ], all i ∈ {1, 2} and all ζ ∈ A.

From now on, we take Lp = Lp(Rd , dx) and, by convention, the integration variable is
always x, so that for example ‖f (x, y)‖Lp really means ‖f (·, y)‖Lp .

Definition 3.7. Let η, γ ∈ R and p ∈ [1,∞). We define D
γ,η,p

T ,w as the set of maps
f : (0, T ] × Rd → T<γ such that ∥∥∥∥ |ft (x)|ζw(1)t (x, ζ )

∥∥∥∥
Lp
. t ((η−ζ )∧0)/2,∥∥∥∥∫

y∈B(x,λ)

λ−d
|ft (y)− 0

t
y,xft (x)|ζ

w(2)t (x, ζ ) λγ−ζ
dy

∥∥∥∥
Lp
. t (η−γ )/2,

∥∥∥∥ |f (t, x)− 0xt,t−λ2f (t − λ
2, x)|ζ

w(1)t (x, ζ ) λγ−ζ

∥∥∥∥
Lp
. t (η−γ )/2,

(3.2)

uniformly over all λ ∈ (0, 2], all t ∈ (2λ2, T ], and all ζ ∈ A. If f takes values in T (U),
resp. T (F), we say that f belongs to D

γ,η,p

T ,w (U), resp. D
γ,η,p

T ,w (F). Finally, we let |||f |||
denote the corresponding norm.

As we did in the previous subsection, we need to be able to compare two modelled
distributions f and f̄ associated to two different models (5, 0) and (5̄, 0̄). To that end,
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we define |||f ; f̄ ||| as the supremum of∥∥∥∥ |f (t, x)− f̄ (t, x)|ζ
t ((η−ζ )∧0)/2 w(1)t (x, ζ )

∥∥∥∥
Lp(dx)

+

∥∥∥∥∫
y∈B(x,λ)

|f (t, y)− f̄ (t, y)− 0ty,xf (t, x)+ 0̄y,x f̄ (t, x)|ζ

t (η−γ )/2w(2)t (x, ζ ) λγ−ζ
dy

∥∥∥∥
Lp( dx)

+

∥∥∥∥ |f (t, x)− f̄ (t, x)− 0xt,t−λ2f (t − λ
2, x)+ 0̄t,t−λ2 f̄ (t − λ2, x)|ζ

t (η−γ )/2w(1)t (x, ζ ) λγ−ζ

∥∥∥∥
Lp( dx)

over all λ ∈ (0, 2], all t ∈ (2λ2, T ] and all ζ ∈ A.
Observe that the space D

γ,η,p

T ,w is actually locally identical to Dγ,p, so that, for any
test function ηλt,x supported away from the negative times, we can use Theorem 2.10 and
define a local reconstruction operator 〈R̃f, ηλt,x〉. The next theorem shows that there is
a canonical distribution Rf that coincides with R̃f everywhere. First, let us define a
weighted version of the space Eα,p.

Definition 3.8. Let α < 0, p ∈ [1,∞) and T > 0. We let E
α,p
w,T be the space of distribu-

tions f on (−∞, T )× Rd such that

sup
λ∈(0,1]

sup
t∈(−∞,T−λ2)

∥∥∥∥ sup
η∈Br (Rd+1)

|〈f, ηλt,x〉|

λαwt+λ2(x)

∥∥∥∥
Lp( dx)

<∞, (3.3)

where the weights wt were defined in (3.1).

We start with the following extension result.

Proposition 3.9. Let α ∈ (−2, 0), p ∈ [1,∞] and T > 0. Let f be a distribution on
the set of all η ∈ Cr(Rd+1) whose support does not intersect the hyperplane {t = 0}.
Assume that f satisfies the bound (3.3) with the second supremum restricted to all t ∈
(−∞, T − λ2) \ [−3λ2, 3λ2

]. Then f can be uniquely extended to an element of E
α,p
w,T .

Proof. The proof is divided into three steps. First, we show uniqueness of the extension.
Then, we build the extension but with a non-optimal weight. Finally, we show that the
weight can actually be improved. From now on, we let χ : R → R be a compactly
supported, smooth function such that suppχ ⊂ [5,∞) and

∑
n∈Z χ(2

2ns) = 1 for all
s ∈ (0,∞). We also let χ̃ : R→ R be a smooth function such that supp χ̃ ⊂ [−1, 1] and∑
k∈Z χ̃(x − k) = 1 for all x ∈ R.

Step 1: Uniqueness. For every n0 ≥ 1, we set νn0(t) =
∑
n≤n0

(χ(22nt) + χ(−22nt)).
Observe that this function vanishes in [−5 · 2−2n0 , 5 · 2−2n0 ]. We claim that for any
f ∈ E

α,p
w,T and n0 large enough, we have

|〈f, φt,x(1− νn0)〉| . 2−n0(2+α)wT (x), (3.4)
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uniformly over all φ ∈ Br(Rd+1) and all (t, x) ∈ Rd+1. Since 2+α > 0, this claim shows
that the knowledge of f away from the hyperplane {t = 0} is sufficient to characterise f .
The uniqueness statement is then immediate.

We now prove the claim. We use the following partition of unity:

∑
(s,y)∈3n0

ψn0,s,y(z) = 1, ψn0,s,y(z) = χ̃(2
2n0(z0 − s))

d∏
i=1

χ̃(2n0(zi − yi)).

Since 1− νn0 is supported in some centred interval of length of order 2−2n0 , we deduce
that there exists C > 0 such that φt,x(1 − νn0)ψn0,s,y is identically zero as soon as
|y − x| > C and |s| > C2−2n0 , uniformly over all φ ∈ Br , all (t, x) ∈ Rd+1, all n0 ≥ 0
and (s, y) ∈ 3n0 . Then, for any φ ∈ Br(Rd+1) and any (t, x) ∈ Rd+1, we have

〈f, φt,x(1− νn0)〉 =
∑

(s,y)∈3n0

〈f, φt,x(1− νn0)ψn0,s,y〉. (3.5)

Recall that |s| = 2 + d. For all z ∈ B(y, 2−n0), the function 2n0|s|φt,x(1 − νn0)ψn0,s,y

can be written as η2−n0
s,z for some η ∈ Br , up to some factor C, where |C| is uniformly

bounded over all φ ∈ Br , all n0 ≥ 0, all (s, y) ∈ 3n0 and all z ∈ B(y, 2−n0). Using
Jensen’s inequality, we thus get∣∣∣ ∑
(s,y)∈3n0

〈f, φt,x(1− νn0)ψn0,s,y〉

∣∣∣
. sup

s∈2−2n0Z
|s|≤C2−2n0

∑
y: (s,y)∈3n0
|y−x|≤C

2−n0(2+d+α) |〈f, 2n0|s|φt,x(1− νn0)ψn0,s,y〉|

2−n0α

. sup
s∈2−2n0Z
|s|≤C2−2n0

∑
y: (s,y)∈3n0
|y−x|≤C

∫
z∈B(y,2−n0 )

2−n0(2+α) |〈f, 2n0|s|φt,x(1− νn0)ψn0,s,y〉|

2−n0α
dz

. 2−n0(2+α)wT (x) sup
s∈R

|s|≤C2−2n0

( ∑
y: (s,y)∈3n0
|y−x|≤C

∫
z∈B(y,2−n0 )

sup
η∈Br

∣∣∣∣ 〈f, η2−n0
s,z 〉

wT (x)2−n0α

∣∣∣∣p dz)1/p

. 2−n0(2+α)wT (x) sup
s∈R

|s|≤C2−2n0

(∫
z∈B(x,C′)

sup
η∈Br

∣∣∣∣ 〈f, η2−n0
s,z 〉

wT (x)2−n0α

∣∣∣∣p dz)1/p

,

uniformly over all φ ∈ Br , all n0 ≥ 0 and all (t, x) ∈ Rd+1. For all n0 such that
(C + 1)2−2n0 < T , the right hand side is bounded by (3.3), thus concluding the proof of
the claim.

Step 2: Existence. Let us now consider a distribution f as in the statement, and let us
construct its extension.
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We use the following partition of the complement of the hyperplane {t = 0}:

∑
n∈Z
(χ(22nz0)+ χ(−22nz0))

∑
(s,y)∈3n

χ̃(22n(z0 − s))

d∏
i=1

χ̃(2n(zi − yi)) = 1 (3.6)

for all z ∈ Rd+1 with z0 6= 0. Then, for all n ∈ Z and all (s, y) ∈ 3n, we set

ψn,s,y(z) = (χ(22nz0)+ χ(−22nz0))χ̃(22n(z0 − s))

d∏
i=1

χ̃(2n(zi − yi)). (3.7)

We need to define 〈f, ηλt,x〉 for all those η ∈ Br and (t, x) ∈ Rd+1 such that t ∈
[−3λ2, 3λ2

]. The uniqueness part of the statement shows that f should not have any
contribution on the hyperplane {t = 0}. This suggests setting

〈f, ηλt,x〉 :=
∑

2−n<λ

∑
(s,y)∈3n

〈f, ηλt,xψn,s,y〉. (3.8)

Notice that we restricted the sum to those n such that 2−n < λ, since otherwise the product
ηλt,xψn,s,y is identically zero. We only need to check that the right hand side makes sense.
First, we notice that for any given n, the sum over s in (3.8) can be restricted to the set

S t,λn =
{
s ∈ 2−2nZ : s ∈ [t − λ2

− 2−2n, t + λ2
+ 2−2n

],

B(s, 2−2n) ∩ supp
(
χ(22n

·)+ χ(−22n
·)
)
6= ∅

}
.

The cardinality of this set is uniformly bounded in n ≥ 0. Then, for every n ≥ 0 such that
2−n < λ, we write∥∥∥ sup

η∈Br

∣∣∣ ∑
s∈S t,λn

∑
y∈2−nZd

〈f, ηλt,xψn,s,y〉

∣∣∣∥∥∥
L
p

x0,1

. sup
s∈S t,λn

∥∥∥∥ sup
η∈Br

∑
y∈2−nZd

|y−x|≤λ+C2−n

∫
u∈B(y,2−n)

2n|s||〈f, ηλt,xψn,s,y〉| du
∥∥∥∥
L
p

x0,1

,

where C > 0 depends on the size of the support of ψ , and where we have artificially added
the integral over u at the second line. At this point, we use Jensen’s inequality, the bound
(3.3), and the fact that the function ηλt,xψn,s,y can be written C′(λ2n)−|s|φ2−n

s,u for some
φ ∈ Br and some constant C′, where |C′| is bounded uniformly over all t, x, s, y, u, n as
above. This yields the bound

. sup
s∈S t,λn

2−2nλ−2
(∫

u∈B(x0,3)
sup
φ∈Br
|〈f, φ2−n

s,u 〉|
p du

)1/p

. λ−22−n(2+α)wt+3λ2(x0),

uniformly over all λ ∈ (0, 1], all t ≤ λ2, all x0 ∈ Rd and all n ∈ Z such that 2−n < λ. To
get the last bound, we have used the fact that for all s ∈ S t,λn , we have s > 3 · 2−2n and
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s < t + 2λ2. Using the assumption α > −2, we deduce that∑
2−n<λ

∥∥∥ sup
η∈Br

∣∣∣ ∑
s∈S t,λn

∑
y∈2−nZd

〈f, ηλt,xψn,s,y〉

∣∣∣∥∥∥
L
p

x0,1

. λαwt+3λ2(x0),

uniformly over all the parameters. Thus, we have extended f to a genuine distribution
over Rd+1, with the right regularity index but with a slightly worse weight than desired.

Step 3: Optimal bound. We now show that the weight in the last bound can be replaced by
wt+λ2(x0) as required. To that end, we refine the mesh of our partition of unity near the
maximal time of the support of the test function. We fix t, x, λ and assume that t ≤ 3λ2.
We have∑
n∈Z

χ(22n(t + λ2
− z0))

∑
(s,y)∈3n

χ̃(22n(z0 − s))χ̃(2n(z1 − y1)) . . . χ̃ (2n(zd − yd)) = 1

(3.9)

for all z ∈ (−∞, t + λ2) × Rd . Taking the product of (3.6) and (3.9), we deduce the
existence of a set S t,λn ⊂ R and a collection of smooth functions ψn,s,y , compactly
supported in B((s, y), 2−n), indexed by (s, y) ∈ S t,λn × (2−nZd), such that:

• for all z ∈ Rd+1 such that z0 ∈ (−∞, 0) ∪ (0, t + λ2),∑
2−n<λ

∑
s∈S t,λn

∑
y∈2−nZd

ψn,s,y(z) = 1,

• the number of elements of S t,λn is bounded uniformly over all n ∈ Z, and S t,λn ⊂

(−∞,−4 · 2−2n
] ∪ [4 · 2−2n, t + λ2

− 4 · 2−2n
],

• for all k ∈ Nd+1 with |k| ≤ r , we have |Dkψn,s,y | . 2n|k| uniformly over all n ∈ Z and
all (s, y) ∈ S t,λn × (2−nZd).

This allows us to write

ηλt,x(z) =
∑

2−n<λ

∑
s∈S t,λn

∑
y∈2−nZd

ηλt,x(z)ψn,s,y(z) (3.10)

for all z ∈ Rd+1 with z0 6= 0. In the sum over y, the number of elements with a non-zero
contribution is of order at most (λ2n)d . From Step 1, we know that

〈f, ηλt,x〉 =
∑

2−n<λ

∑
s∈S t,λn

∑
y∈2−nZd

〈f, ηλt,xψn,s,y〉. (3.11)

Then, we can apply the calculations made in Step 2, the only difference coming from the
set S t,λn whose elements are at distance at least 4 · 2−2n from t + λ2. This ensures the
required weight. �
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Theorem 3.10 (Reconstruction with weights). Let (T ,G,A) be a regularity structure.
Let γ > 0, p ∈ [1,∞), α := minA, r > |α| and (5, 0) be a model with the weight
w5(x) = (1+ |x|)c/2, x ∈ Rd . In addition to Assumption 3.6 on the weights, we require
that α′ = η∧α−c > −2 and γ −c > 0. Then there exists a unique continuous linear map
R : Dγ,η,p

w,T → E
α′,p
w,T such that 〈Rf, η〉 = 0 whenever η is supported in (−∞, 0) × Rd ,

and ∥∥∥ sup
η∈Br
|〈Rf −5t,xf (t, x), ηλt,x〉|

∥∥∥
L
p

x0,1

. Cλγ−ct (η−γ )/2wt+λ2(x0), (3.12)

uniformly over all λ ∈ (0, 1], all x0 ∈ Rd , all t ∈ [3λ2, T − λ2
], all f ∈ D

γ,η,p

w,T and all
admissible models (5, 0). Here C := |||5|||(1+ |||0|||)|||f |||. Furthermore,∥∥∥ sup

η∈Br
|〈Rf, ηλt,x〉|

∥∥∥
L
p

x0,1

. Cλα∧η−cwt+λ2(x0), (3.13)

uniformly over all λ ∈ (0, 1], all x0 ∈ Rd , all t ∈ (0, T − λ2
] and all f ∈ D

γ,η,p

w,T .
If (5̄, 0̄) is a second model for T and if R̄ is the associated reconstruction operator,

then setting

C̃ := |||5|||(1+ |||0|||)|||f ; f̄ ||| + |||5− 5̄|||(1+ |||0|||)|||f̄ ||| + |||5̄||| |||0 − 0̄||| |||f̄ |||,

we have the bound∥∥∥ sup
η∈Br
|〈Rf − R̄f̄ −5t,xf (t, x)+ 5̄t,x f̄ (t, x), ηλt,x〉|

∥∥∥
L
p

x0,1

. C̃λγ−ct (η−γ )/2wt+λ2(x0), (3.14)

uniformly over all λ ∈ (0, 1], all x0 ∈ Rd , all t ∈ (3λ2, T − λ2), all f ∈ Dγ,η,p

w,T , all
f̄ ∈ D̄

γ,η,p

w,T and all admissible models (5, 0), (5̄, 0̄). Moreover,∥∥∥ sup
η∈Br
|〈Rf − R̄f̄ , ηλt,x〉|

∥∥∥
L
p

x0,1

. C̃λα∧η−cwt+λ2(x0), (3.15)

uniformly over the same parameters.

Notice that in these statements we lose a factor λ−c compared to what one would have
expected; this is the price we pay for having added weights to our spaces and requiring
uniformity in space. However, we will see that we can choose the constant c as small as
we want.

Proof of Theorem 3.10. We only need to show that there is a unique distribution Rf ,
on the set of all test functions whose support does not intersect the hyperplane {t = 0},
that fulfills the requirements of the theorem for these test functions. Then Proposition 3.9
yields the desired result.

First, we set 〈Rf, η〉 := 0 for every η ∈ Br which is supported in the half-space
{t < 0}. Second, let λ ∈ (0, 1], x ∈ Rd and t ∈ [3λ2, T − λ2

]. By a simple localisation
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argument, one can build an element f̃ ∈ Dγ,p that coincides with f in [t − 2λ2, t + λ2
] ×

B(x, 3) and vanishes outside [t −3λ2, t +2λ2
]×B(x, 4). Indeed, it suffices to lift into the

polynomial regularity structure a smooth function equal to 1 on [t−2λ2, t+λ2
]×B(x, 3),

and vanishing outside [t − 3λ2, t + 2λ2
] × B(x, 4), and to define f̃ as the product of f

with this smooth function (this may require extending our original regularity structure with
the polynomials, and defining the canonical product between elements in the regularity
structure and polynomials).

Using the reconstruction theorem in Dγ,p, we set 〈Rf, ηλt,x〉 := 〈Rf̃ , ηλt,x〉. We now
show (3.12). Recall the definition of Bn = Bnλ,t,x0

from Theorem 2.10. Notice that

|||5|||Bn(1+ |||0|||Bn)|||f |||Bn . t (η−γ )/2w5(x0)
2 sup

ζ

sup
i∈{1,2}

w(i)
t+λ2−2−2n(x0, ζ ),

uniformly over all λ ∈ (0, 1], all x0 ∈ Rd , all t ∈ [3λ2, T − λ2
], all f ∈ D

γ,η,p

w,T and all
n ≥ 0. Using (W-1), we deduce that the right hand side is actually bounded by a term
of order t (η−γ )/2wt+λ2(x0)2nc uniformly over all the parameters. Therefore, by (2.9), we
deduce that (3.12) holds.

This determines the value of 〈Rf, φ〉 for any test function φ whose support does not
intersect the hyperplane {t = 0}. Indeed, any such function can be split into a finite sum of
functions of the form ηλt,x , with t ≥ 3λ2, on which Rf has already been constructed. It
is then simple to check that Rf is a well-defined distribution on the set of test functions
whose support does not intersect {t = 0}. We can apply Proposition 3.9, and the statement
of the theorem follows.

The case of two models is handled similarly, using the bound (2.11) from the recon-
struction theorem in Dγ,p, thus concluding the proof. �

4. Convolution with the heat kernel

The goal of this section is to define an operator that plays the role of the convolution with
the heat kernel, but at the level of modelled distributions. This will be carried out separately
for the singular part P+ and the smooth part P− of the heat kernel, as defined in Lemma
2.1. Although such an abstract operator was defined in [Hai14b, Section 5], the fact that
we have incorporated weights in our spaces imposes some additional constraints on this
map. The main difficulty comes from the singular part of the kernel P+, which is handled
in Theorem 4.3. The smooth part is simpler, and is addressed in Proposition 4.5. We end
this section with the treatment of the initial condition.

From now on, we take the following values for the parameters:

α = −3/2− κ, η = −1/2+ 3κ, γ = 3/2+ 2κ.

They fulfill the requirements that γ > −α and η − γ > −2. Recall that α is the regularity
of the noise, η is the regularity of the initial condition and γ is the upper bound of the
homogeneities involved in the regularity structure.
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We also consider, for all t ∈ R and all ζ ∈ A, two collections of weights w(1)
t (·, ζ )

and w(2)t (·, ζ ) on Rd . Observe that it is meaningful to write w(i)t (·, τ ) to denote w(i)t (·, |τ |)
for any τ ∈ T .

Assumption 4.1 (Weights and convolution). Let c, γ ′ > 0. In addition to Assumption
3.6, we require that:

w(i)t (x, τ ) ≤ w(i)t (x, I(τ4)), (W-2)

w5(x)w
(i)
t (x, τ4) ≤ w(i)t (x,X

k) whenever |τ | + α ≤ |k| − 2, (W-3)

w5(x)w
(1)
t (x, τ4) ≤ w(2)t (x,X

k), (W-4)

w(i)t (x, τ4) = w(i)t (x, τ ), (W-5)

for all x ∈ Rd , all s < t ∈ (−∞, T ], all τ ∈ U<γ ′ , all k ∈ Nd+1 such that |k| < γ ′ and
all i ∈ {1, 2}.

Take γ ′ = γ +α+ 2− c with c ∈ (0, κ/2). Here is a possible choice of weights satisfying
Assumption 4.1:

w5(x) := (1+ |x|)
c

28 (1−2κ),

w(1)t (x, ζ ) := (1+ |x|)
c

14 ζ et (1+|x|) e`(1+|x|),

w(2)t (x, ζ ) := (1+ |x|)
c

14 (ζ+3) et (1+|x|) e`(1+|x|),

(4.1)

where ζ ∈ A<γ ′(U) and ` is a constant which will allow us to consider an initial condition
in a weighted space.

Lemma 4.2. Suppose that u ∈ D
γ,η,p

w,T (U). Then the map f = u ·4 belongs to the space

D
γ+α,η+α,p

w,T (F).

Proof. By construction, we have 0z,z′(τ4) = (0z,z′τ)4 for all τ ∈ U and all z, z′ ∈ Rd+1,
so that |f (z)− 0z,z′f (z′)|ζ = |u(z)− 0z,z′u(z′)|ζ−α for all ζ ∈ A(F). By using (W-5),
it is then immediate to check the statement. �

4.1. Singular part of the heat kernel

Let u ∈ D := D
γ,η,p

T ,w (U), and set f = u · 4 ∈ D
γ+α,η+α,p

T ,w . For any given γ ′ > 0, we
define an abstract convolution map as follows:

(Pγ
′

+ f )(t, x) = I(f (t, x))

+

∑
ζ∈A(F)

∑
|k|<(ζ+2)∧γ ′

Xk

k!
〈5t,xQζf (t, x),D

kP+((t, x)− ·)〉

+

∑
|k|<γ ′

Xk

k!
〈Rf −5t,xf (t, x),DkP+((t, x)− ·)〉. (4.2)

This operator is well-defined as a consequence of the next result, which is the second main
technical step of the present work.
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Theorem 4.3. Take c ∈ (0, κ/2) and set γ ′ = γ + 2+α− c, η′ = η+ 2+α− c. Assume
that γ ′, η′ /∈ N. Let u ∈ D = D

γ,η,p

T ,w (U) and set f = u · 4 ∈ D
γ+α,η+α,p

T ,w (F). Then,

under Assumption 4.1 on the weights, we have Pγ
′

+ f ∈ D ′ := D
γ ′,η′,p

T ,w (U), and

|||P+f |||D ′ . |||5|||(1+ |||0|||)|||u|||D
holds uniformly over all T in compact subset of R+, all ` in any compact subset of R, all
u ∈ D and all admissible models (5, 0). In addition,

RP+f = P+ ∗Rf. (4.3)

Moreover, if (5̄, 0̄) is another model with the same weight w5 and if ū belongs to the
corresponding space D̄ equipped with the same weights w(1),w(2), then

|||P+f ; P̄+f̄ |||D ′,D̄ ′ . |||5|||(1+ |||0|||)|||u; ū|||D,D̄
+
(
|||5− 5̄|||(1+ |||0̄|||)+ |||5̄||||||0 − 0̄|||

)
|||ū|||D ,

uniformly over all T in a compact subset of R+, all ` in a compact subset of R, all
5, 5̄, 0, 0̄ and all u, ū.

Before we proceed to the proof of the theorem, we collect a few technical facts. Let us
denote by Br− the subset of Br whose elements are supported in the half-space {t ≤ 0}.
Using Theorem 3.10, we immediately get∥∥∥∥ sup

η∈Br−

∣∣∣∣ 〈Rf, ηλt,x〉wt (x)

∣∣∣∣∥∥∥∥
Lp
. λη+α−c, (4.4)

uniformly over all t ∈ (0, T ], all λ ∈ (0, 1] and all f ∈ D
γ+α,η+α,p

T ,w , as well as∥∥∥∥ sup
η∈Br−

∣∣∣∣ 〈Rf −5t−λ2,xf (t − λ
2, x), ηλt,x〉

wt (x)

∣∣∣∣∥∥∥∥
Lp
. λγ+α−ct (η−γ )/2, (4.5)

uniformly over all t ∈ [4λ2, T ], all λ ∈ (0, 1] and all f ∈ D
γ+α,η+α,p

T ,w . These two bounds
will be applied repeatedly to the function P0((t, x)− ·) ∈ Br− as well as its rescalings Pn,
n ≥ 0.

For all z, z′ ∈ Rd+1, all k ∈ Nd+1 such that |k| < γ ′, and all n ≥ 0, we define

P
k,γ ′

n;z,z′
(·) := DkPn(z− ·)−

∑
`: |k|+|`|<γ ′

(z− z′)`

`!
Dk+`Pn(z

′
− ·).

Using the classical Taylor formula, one obtains the following identities:

P
k,γ ′

n;tx,sx
(·) =

∑
`=(`0,0,...,0)

γ ′<|k|+2`0<γ
′
+2

(t − s)`

×

∫ 1

0
(1− u)|`|−1 |`|

`!
Dk+`Pn((s + u(t − s), x)− ·) du (4.6)

and
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P
k,γ ′

n;ty,tx
(·) =

∑
`=(0,`1,...,`d )
γ ′<|k|+|`|<γ ′+1

(y − x)`

×

∫ 1

0
(1− u)|`|−1 |`|

`!
Dk+`Pn((t, x + u(y − x))− ·) du, (4.7)

for all (t, x), (s, y) ∈ Rd+1. In these equations and later on in the proof of the theorem,
we use the notation (y − x)` and (t − s)` for (z − z′)` where z = (0, y), z′ = (0, x) in
the first case, and z = (t, 0), z′ = (s, 0) in the second case. Notice that in (4.6) and (4.7),
we do not consider space and time translations simultaneously. For space-time translations,
the situation is slightly more involved due to the scaling s, so we rely on the following
result.

Lemma 4.4 ([Hai14b, Proposition 11.1]). Let ∂γ ′ be the set of indices

{`′ ∈ Nd+1
: |`′| > γ ′, |`′ − em(`′)| < γ ′},

where ei is the unit vector of Rd+1, in the direction i ∈ {0, . . . , d}, and m(`′) := inf{i :
`′i 6= 0}. For all z, z′ ∈ Rd+1 and all k ∈ Nd+1 such that |k| < γ ′, we have

P
k,γ ′

n;z,z′
(·) =

∑
`: k+`∈∂γ ′

∫
Rd+1

Dk+`Pn(z
′
+ h− ·)µk+`(z− z′, dh).

Here, µk+`(z − z′, dh) is a signed measure on Rd+1, supported in the set {z̃ ∈ Rd+1
:

z̃i ∈ [0, zi − z′i]} and whose total mass is (z− z′)k+`/(k + `)!.

For the sake of readibility, we drop the superscript γ ′ in the operator Pγ
′

+ .

Proof of Theorem 4.3. From now on, the symbol . will be taken uniformly over all ` in a
given compact subset of R and all T in a given compact subset of R+. Also, the implicit
constant associated to this symbol always dominates the constant of (W-1) as well as all
the constants associated with Definition 3.1 for the corresponding weights. We provide a
complete proof of the statement concerning a single model. To prove the part with two
different models, the arguments work almost verbatim given the following two identities:

5zQζa − 5̄zQζ ā = 5zQζ (a − ā)+ (5z − 5̄z)Qζ ā,

(5z′Qζ0z′,z − 5̄z′Qζ 0̄z′,z)ā = 5z′Qζ (0z′,z − 0̄z′,z)ā + (5z′ − 5̄z′)Qζ 0̄z′,zā.

Let u ∈ D and set f = u ·4. For simplicity, we assume that |||u||| = 1. The proof is divided
into four steps. We will repeatedly use Lemma 2.1 without further mention.

For all n ≥ 0 and all (t, x) ∈ (0, T ] × Rd , we define

(Pγ
′

n f )(t, x) :=
∑

ζ∈A(F)

∑
|k|<(ζ+2)∧γ ′

Xk

k!
〈5t,xQζf (t, x),D

kPn((t, x)− ·)〉

+

∑
|k|<γ ′

Xk

k!
〈Rf −5t,xf (t, x),DkPn((t, x)− ·)〉.
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We will make sense of (4.2) by showing that the series of the coefficients of the monomials
of (Pγ

′

n f )(t, x) is absolutely convergent. We distinguish three types of terms in the D-
norm: the local terms that appear at the first line of (3.2), the terms of translation in space
at the second line, and the terms of translation in time at the third line. We argue differently
for each of them.

First step: Local terms. For all non-integer values ζ ∈ A<γ ′(U), we have∥∥∥∥ |If (t, x)|ζ
t ((η

′−ζ )∧0)/2w(1)t (x, ζ )

∥∥∥∥
Lp
.

∥∥∥∥ |u(t, x)|ζ−2−α

t ((η−ζ+2+α)∧0)/2w(1)t (x, ζ − 2− α)

∥∥∥∥
Lp
≤ 1,

where we have used condition (W-2) and the fact that η′ − ζ and η′ + c− ζ have the same
sign. Therefore, the desired bound follows.

We turn to the integer levels k such that |k| < γ ′. We distinguish two subcases. First,
if t ≤ 4 · 2−2n, we write k!Qk(Pnf )(t, x) as

〈Rf,DkPn((t, x)− ·)〉 −
∑

ζ≤|k|−2

〈5t,xQζf (t, x),D
kPn((t, x)− ·)〉. (4.8)

Using (4.4), we get ∥∥∥∥ 〈Rf,DkPn((t, x)− ·)〉w(1)t (x, |k|)

∥∥∥∥
Lp
. 2−n(η

′
−|k|),

uniformly over all the corresponding n and t . Since η′ /∈ N, the sum over these n yields a
bound of order t ((η

′
−|k|)∧0)/2, as required. We now bound the second term of (4.8). When

ζ = |k| − 2, this term has a zero contribution since Pn kills polynomials of degree r . On
the other hand, we use (W-3) to get, for all ζ < |k| − 2,∥∥∥∥ 〈5t,xQζf (t, x),D

kPn((t, x)− ·)〉

w(1)t (x, |k|)

∥∥∥∥
Lp
. 2−n(2+ζ−|k|)t (η+α−ζ )/2,

uniformly over all the corresponding n and t . Summing over all the corresponding n yields
a bound of the required order.

We now treat the case t ≥ 4 · 2−2n. We set tn = t − 2−2n, and write k!Qk(Pnf )(t, x)
as

〈Rf −5tn,xf (tn, x),DkPn((t, x)− ·)〉

−

∑
ζ≤|k|−2

〈5t,xQζ (f (t, x)− 0
x
t,tn
f (tn, x)),D

kPn((t, x)− ·)〉

+

∑
ζ>|k|−2

〈5tn,xQζf (tn, x),D
kPn((t, x)− ·)〉. (4.9)

The first and second terms can be treated easily using (4.5) and (W-3) respectively. We
now deal with the third term. Using (W-1), for all ζ > |k| − 2 we get∥∥∥∥ 〈5tn,xQζf (tn, x),D

kPn((t, x)− ·)〉

w(1)t (x, |k|)

∥∥∥∥
Lp
. t (η+α−ζ )/22−n(2+ζ−|k|−c),
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uniformly over all n such that t ≥ 4 · 2−2n. Since c < κ/2, we have 2+ ζ − |k| − c > 0,
so that the sum over these n yields the required bound.

Second step: Translation in space. We now look at (Pγ
′

+ f )(t, y)−0
t
y,x(P

γ ′

+ f )(t, x) with
|x − y| ≤ 1. If ζ ∈ A<γ ′(U) \ N, then the only contribution comes from I and we have

∥∥∥∥
∫
y∈B(x,λ)

λ−d |I(f (t, y)− 0ty,xf (t, x))|ζ dy

t (η
′−γ ′)/2λγ

′−ζw(2)t (x, ζ )

∥∥∥∥
Lp

.

∥∥∥∥
∫
y∈B(x,λ)

λ−d |u(t, y)− 0ty,xu(t, x)|ζ−α−2 dy

t (η−γ )/2λγ−ζ+α+2w(2)t (x, ζ − α − 2)

∥∥∥∥
Lp
,

where we have used (W-2) and the identity η′ − η = γ ′ − γ = 2+ α − c with c > 0. The
required bound follows.

We turn to the integer levels k with |k| < γ ′. We first treat the case λ2
≤ t ≤ 36 · 2−2n.

By Taylor’s formula, we write k!Qk((Pnf )(t, y)− 0ty,x(Pnf )(t, x)) as

〈Rf, P k,γ
′

n;ty,tx
〉 − 〈5t,xf (t, x), P

k,γ ′

n;ty,tx
〉

−

∑
ζ≤|k|−2

〈
5t,yQζ

(
f (t, y)− 0ty,xf (t, x)

)
,DkPn((t, y)− ·)

〉
. (4.10)

Using (4.7), we deduce that for any distribution g, we have

|〈g, P
k,γ ′

n;ty,tx
〉| . sup

η∈Br−
|〈g, ηC2−n

t,x 〉| |y − x|
dγ ′e−|k|2−n(2−dγ

′
e), (4.11)

uniformly over all y ∈ B(x, λ) and all n ≥ 0, for some constant C independent of
everything. Using (4.4), we thus get

∥∥∥∥
∫
y∈B(x,λ)

λ−d |〈Rf, P k,γ
′

n;ty,tx
〉| dy

w(2)t (x, |k|)

∥∥∥∥
Lp
. λdγ

′
e−|k|2−n(η

′
−dγ ′e),

uniformly over all λ2
≤ t ≤ 36 · 2−2n. Since η′ − γ ′ < 0, the sum over all these n yields a

bound of order t (η
′
−γ ′)/2λγ

′
−|k|. We turn to the second term of (4.10). Using (W-4) and

(4.11), for all ζ ∈ A<γ+α(F) we get

∥∥∥∥
∫
y∈B(x,λ)

λ−d |〈5t,xQζf (t, x), P
k,γ ′

n;ty,tx
〉| dy

w(2)t (x, |k|)

∥∥∥∥
Lp
. λdγ

′
e−|k|2−n(2+ζ−dγ

′
e)t (η+α−ζ )/2.

Since 2+ζ < γ ′, the sum over all n such that t ≤ 36·2−2n yields a bound of the right order.
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Regarding the third term of (4.10), notice that it actually vanishes whenever ζ = |k| − 2
since Pn kills polynomials of order r . We use (W-3) to obtain, for every ζ < |k| − 2,

∥∥∥∥
∫
y∈B(x,λ)

λ−d |〈5t,yQζ (f (t, y)− 0
t
y,xf (t, x)),D

kPn((t, y)− ·)〉| dy

w(2)t (x, |k|)

∥∥∥∥
Lp

.

∥∥∥∥
∫
y∈B(x,λ)

λ−d |f (t, y)− 0ty,xf (t, x)|ζ dy

w(2)t (x, |k|)

∥∥∥∥
Lp

2−n(2+ζ−|k|)

. t (η−γ )/2λγ+α−ζ2−n(2+ζ−|k|),

uniformly over all the corresponding parameters. Summing over the corresponding n, one
gets a bound of the right order.

We now turn to the case λ2
≤ 4 · 2−2n < 36 · 2−2n

≤ t . Recall that 2−n + λ is the size
of the support of the test functions involved in (4.11). We set tn = t − 9 · 2−2n, and we
observe that tn ≥ 3(2−n + λ)2. Then, we write k!Qk((Pnf )(t, y)− 0ty,x(Pnf )(t, x)) as

〈Rf −5tn,xf (tn, x), P
k,γ ′

n;ty,tx
〉 − 〈5t,x(f (t, x)− 0

x
t,tn
f (tn, x)), P

k,γ ′

n;ty,tx
〉

−

∑
ζ≤|k|−2

〈
5t,yQζ

(
f (t, y)− 0ty,xf (t, x)

)
,DkPn((t, y)− ·)

〉
. (4.12)

The first two terms can be easily bounded using (4.11), together with (4.5) and (W-4)
respectively. The third term coincides with the third term of (4.10), and the bound follows
from the same arguments.

In the case 4 · 2−2n
≤ λ2

≤ t , we set tn = t − 2−2n and write k!Qk((Pnf )(t, y) −
0ty,x(Pnf )(t, x)) as

〈Rf −5tn,yf (tn, y),DkPn((t, y)− ·)〉

−

〈
Rf −5tn,xf (tn, x),

∑
|k|+|`|<γ ′

(y − x)`

`!
Dk+`Pn((t, x)− ·)

〉
−

∑
ζ≤|k|−2

〈
5t,yQζ

(
f (t, y)− 0

y
t,tn
f (tn, y)

)
,DkPn((t, y)− ·)

〉
+

∑
ζ>|k|−2

〈
5t,yQζ0

y
t,tn

(
f (tn, y)− 0

tn
y,xf (tn, x)

)
,DkPn((t, y)− ·)

〉
−

∑
ζ>|k|−2

〈
5t,yQζ0

t
y,x

(
f (t, x)− 0xt,tnf (tn, x)

)
,DkPn((t, y)− ·)

〉
+

〈
5t,x

(
f (t, x)− 0xt,tnf (tn, x)

)
,

∑
|k|+|`|<γ ′

(y − x)`

`!
Dk+`Pn((t, x)− ·)

〉
. (4.13)
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The bounds for the first two terms follow easily from (4.5). The third term vanishes
when ζ = |k| − 2 since Pn kills polynomials of order r . On the other hand, for all
ζ < |k| − 2 we have

∥∥∥∥
∫
y∈B(x,λ)

λ−d |〈5t,yQζ (f (t, y)− 0
y
t,tn
f (tn, y)),D

kPn((t, y)− ·))〉| dy

w(2)t (x, |k|)

∥∥∥∥
Lp

.

∥∥∥∥
∫
y∈B(x,λ)

λ−d |f (t, y)− 0
y
t,tn
f (tn, y)|ζ dy

w(1)t (x, ζ )

∥∥∥∥
Lp

2−n(2+ζ−|k|)

.

∥∥∥∥ |f (t, x)− 0xt,tnf (tn, x)|ζw(1)t (x, ζ )

∥∥∥∥
Lp

2−n(2+ζ−|k|) . t (η−γ )/22−n(γ
′
−|k|),

where we have used (W-4) at the second line and Jensen’s inequality at the third line.
Summing over all n such that 4 · 2−2n

≤ λ2, one gets a bound of the right order. Regarding
the fourth term of (4.13), for all γ + α > β ≥ ζ > |k| − 2 we have

∥∥∥∥
∫
y∈B(x,λ)

λ−d |〈5t,yQζ0
y
t,tn

Qβ(f (tn, y)− 0
tn
y,xf (tn, x)),D

kPn((t, y)− ·))〉| dy

w(2)t (x, |k|)

∥∥∥∥
Lp

.

∥∥∥∥
∫
y∈B(x,λ)

λ−d |f (tn, y)− 0
tn
y,xf (tn, x)|β dy

w(2)tn (x, β)

∥∥∥∥
Lp

2−n(2−|k|+β−c)

. 2−n(2−|k|+β−c)t (η−γ )/2λγ+α−β ,

where we have used (W-1). Since c is small, we have 2+ β − |k| − c > 0, so that the sum
over all the corresponding n yields a bound of order λγ

′
−|k|t (η−γ )/2 as desired. The fifth

term of (4.13) is treated similarly, using (W-4). The bound of the sixth term follows easily
from (W-4) as well.

Third step: Translation in time. We need to control (P+f )(t, x) − 0xt,s(P+f )(s, x) for
all t > s > 0 such that t − s < s. We start with the non-integer levels ζ ∈ A<γ ′(U), for
which we have∥∥∥∥ |I(f (t, x)− 0xt,sf (s, x))|ζ

(t − s)(γ
′−ζ )/2s(η

′−γ ′)/2w(1)t (x, ζ )

∥∥∥∥
Lp

.

∥∥∥∥ |u(t, x)− 0xt,su(s, x)|ζ−2−α

(t − s)(γ−ζ+2+α)/2s(η−γ )/2w(1)t (x, ζ − 2− α)

∥∥∥∥
Lp
,

where we have used (W-2) and the identity γ ′ − γ = η′ − η = 2+ α− c with c > 0. This
ensures the required bound.

We now turn to the terms at integer levels k with |k| < γ ′. Actually we need to
distinguish three subcases. First, we assume that t − s < s ≤ 36 · 2−2n and we write
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Qk((Pnf )(t, x)− 0xt,s(Pnf )(s, x)) as

〈Rf, P k,γ
′

n;tx,sx
〉 − 〈5s,xf (s, x), P

k,γ ′

n;tx,sx
〉

−

∑
ζ≤|k|−2

〈
5t,xQζ

(
f (t, x)− 0xt,sf (s, x)

)
,DkPn((t, x)− ·)

〉
. (4.14)

By (4.6), we deduce that there exists δ > γ ′ + c such that for any distribution g we have

|〈g, P
k,γ ′

n;tx,sx
〉| . sup

η∈Br−
|〈g, η

2−n+
√
t−s

t,x 〉| |t − s|(δ−|k|)/22−n(2−δ), (4.15)

uniformly over all s, t, n, λ as above. This being given, the bounds of the first two terms
of (4.14) follow easily from (4.4) and (W-1). Regarding the third term, we notice that the
values ζ such that ζ = |k| − 2 have a zero contribution, since Pn kills polynomials of
degree r . On the other hand, for all ζ < |k| − 2, we use (W-3) to get

∥∥∥∥ 〈5t,xQζ (f (t, x)− 0
x
t,sf (s, x)),D

kPn((t, x)− ·)〉

w(1)t (x, |k|)

∥∥∥∥
Lp

. s(η−γ )/2(t − s)(γ+α−ζ )/22−n(2+ζ−|k|).

The sum over the corresponding n yields a bound of order s(η−γ )/2(t − s)(γ
′
−|k|)/2 as

required.
Second, we treat the case t − s ≤ 4 · 2−2n < 36 · 2−2n

≤ s. Set sn = t − 9 · 2−2n,
notice that sn ≥ 3(2−n +

√
t − s)2. We write k!Qk((Pnf )(t, x)− 0xt,s(Pnf )(s, x)) as

〈Rf −5sn,xf (sn, x), P
k,γ ′

n;tx,sx
〉 −

〈
5s,x

(
f (s, x)− 0xs,snf (sn, x)

)
, P

k,γ ′

n;tx,sx

〉
−

∑
ζ≤|k|−2

〈
5t,xQζ

(
f (t, x)− 0xt,sf (s, x)

)
,DkPn((t, x)− ·)

〉
. (4.16)

The bound of the first term is a direct consequence of (4.5) and (4.15), while the third term
coincides with the third term of (4.14) and the calculation made above applies. Regarding
the second term, by (W-1) and (4.15), for all ζ ∈ A(F) we have

∥∥∥∥ 〈5s,xQζ (f (s, x)− 0
x
s,sn
f (sn, x)), P

k,γ ′

n;tx,sx
〉

w(1)t (x, |k|)

∥∥∥∥
Lp

. s(η−γ )/2(t − s)(δ−|k|−c)/22−n(2+γ+α−δ).

Since 2+ γ + α − δ < 0, the sum over the corresponding n of the last expression yields a
bound of order s(η−γ )/2(t − s)(γ

′
−|k|)/2 as required.
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Finally, we consider the case 4 ·2−2n
≤ t−s ≤ s. We set sn = s−2−2n, tn = t−2−2n,

and we write k!Qk((Pnf )(t, x)− 0xt,s(Pnf )(s, x)) as

〈Rf −5tn,xf (tn, x),DkPn((t, x)− ·)〉

−

〈
Rf −5sn,xf (sn, x),

∑
|k|+|`|<γ ′

(t − s)`

`!
Dk+`Pn((s, x)− ·)

〉
−

∑
ζ≤|k|−2

〈
5t,xQζ

(
f (t, x)− 0xt,tnf (tn, x)

)
,DkPn((t, x)− ·)

〉
+

∑
ζ>|k|−2

〈
5t,xQζ0

x
t,tn

(
f (tn, x)− 0

x
tn,s
f (s, x)

)
,DkPn((t, x)− ·)

〉
+

〈
5s,x

(
f (s, x)− 0xs,snf (sn, x)

)
,

∑
|k|+|`|<γ ′

(t − s)`

`!
Dk+`Pn((s, x)− ·)

〉
. (4.17)

The required bound for the first two terms follows easily from (4.5), while the third term
can be bounded using (W-3). Let us treat the fourth term. For all β ≥ ζ > |k| − 2, using
(W-1) we have∥∥∥∥ 〈5t,xQζ0

x
t,tn

Qβ(f (tn, x)− 0
x
tn,s
f (s, x)),DkPn((t, x)− ·)〉

w(1)t (x, |k|)

∥∥∥∥
Lp

. s(η−γ )/2(t − s − 2−2n)(γ+α−β)/22−n(2+β−|k|−c).

Since c is small, we have 2 − c + β − |k| > 0. Therefore, the sum over all n such that
4 · 2−2n

≤ t − s is bounded by a term of order s(η−γ )/2(t − s)(γ
′
−|k|)/2 as required. Finally,

the fifth term of (4.17) can be bounded using (W-1).

Fourth step: Equality with the convolution. Let us show that RP+f = P+ ∗Rf . By the
uniqueness of the reconstruction theorem (Theorem 3.10), it suffices to show that∥∥∥∥ sup

η∈Br

|〈(P+ ∗Rf )−5t,x(P+f )(t, x), ηλt,x〉|
wt+λ2(x)

∥∥∥∥
Lp
. λγ

′

t (η
′
−γ ′)/2, (4.18)

uniformly over all λ ∈ (0, 1] and all t ∈ [3λ2, T − λ2
]. Using (2.5) and (4.2), it is

elementary to get

〈(P+ ∗Rf )−5t,x(P+f )(t, x), ηλt,x〉 =
∫
s,y

ηλt,x(s, y)
∑
n≥0

Rn(t, x, s, y) ds dy,

where

Rn(t, x, s, y) = 〈Rf −5t,xf (t, x), Pn((s, y)− ·)〉

−

∑
|`|<γ ′

(s − t, y − x)`

`!
〈Rf −5t,xf (t, x),D`Pn((t, x)− ·)〉.
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By the scaling properties of ηλ, we have∥∥∥∥ sup
η∈Br

|〈(P+ ∗Rf )−5t,x(P+f )(t, x), ηλt,x〉|
wt+λ2(x)

∥∥∥∥
Lp

.
∑
n≥0

∥∥∥∥∫
(s,y)∈B((t,x),λ)

λ−2−d |Rn(t, x, s, y)|

wt+λ2(x)
ds dy

∥∥∥∥
Lp
, (4.19)

uniformly over all the parameters. Then, we distinguish three cases. First, if 3λ2
≤ t ≤

36 · 2−2n, we write

Rn(t, x, s, y) = 〈Rf, P 0,γ ′
n,sy,tx〉 − 〈5t,xf (t, x), P

0,γ ′
n,sy,tx〉.

By Lemma 4.4, we deduce that for any distribution g we have∫
(s,y)∈B((t,x),λ)

λ−2−d
|〈g, P

0,γ ′
n;sy,tx

〉| ds dy

. sup
η∈Br−
|〈g, η2−n+2λ

t+λ2,x
〉|

∑
`∈∂γ ′

λ|`|2−n(2−|`|), (4.20)

uniformly over all the parameters. Therefore, arguments very similar to those presented
below (4.10) ensure that∥∥∥∥∫

(s,y)∈B((t,x),λ)

λ−2−d |Rn(t, x, s, y)|

wt+λ2(x)
ds dy

∥∥∥∥
Lp
.
∑
`∈∂γ ′

λ|`|2−n(η
′
−|`|),

so that the sum over the corresponding n yields a bound of order λγ
′

t (η
′
−γ ′)/2. Second,

if 3λ2
≤ 3 · 2−2n < 36 · 2−2n

≤ t , we set tn = t + λ2
− (2−n + 2λ)2. Notice that

tn ≥ 3(2−n + 2λ)2. Then, we write

Rn(t, x, s, y) = 〈Rf −5tn,xf (tn, x), P
0,γ ′
n,sy,tx〉

+
〈
5t,x

(
f (t, x)− 0xt,tnf (tn, x)

)
, P

0,γ ′
n,sy,tx

〉
,

and the arguments below (4.12) can easily be adapted to obtain a bound of order
λγ
′

t (η
′
−γ ′)/2 as above. Finally, when 3 · 2−2n

≤ 3λ2
≤ t , the desired bound follows

from the arguments presented below (4.13). This completes the proof of the theorem. �

4.2. Smooth part of the heat kernel

We now deal with the smooth part P− of the heat kernel defined in Lemma 2.1. For any
u ∈ D , we set f = u ·4 and we let P−Rf denote the map

(t, x) 7→
∑

k∈Nd+1, |k|<γ ′

Xk

k!
〈Rf,DkP−((t, x)− ·)〉,

which takes values in the polynomial regularity structure. The following result shows
that this is an element of D ′. Here we consider the weights defined in (4.1), but the only
important feature of these weights is that they do not grow faster than e|x|

2/T .
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Proposition 4.5. Let u ∈ D = D
γ,η

T ,w(U) and f = u · 4. Then P−Rf ∈ D ′ = D
γ ′,η′,p

T ,w
and

|||P−Rf |||D ′ . |||5|||(1+ |||0|||)|||u|||D , (4.21)

uniformly over all T in a compact domain of (0,∞), all ` in a compact domain of R, all
u ∈ D and all admissible models (5, 0). Moreover, if (5̄, 0̄) is another admissible model
with the same weight w5 and if ū belongs to the corresponding space D̄ , then

|||P−Rf ;P−R̄f̄ |||D ′,D̄ ′ . |||5|||(1+ |||0|||)|||u; ū|||D,D̄
+
(
|||5− 5̄|||(1+ |||0̄|||)+ |||5̄||| |||0 − 0̄|||

)
|||ū|||D , (4.22)

uniformly over all T , ` as above, all admissible models (5, 0), (5̄, 0̄) and all u ∈ D ,
ū ∈ D̄ .

Proof. Suppose that

sup
t∈(0,T ]

sup
|k|<γ ′+2

∥∥∥∥ 〈Rf,DkP−((t, x)− ·)〉wt (x)

∥∥∥∥
Lp
. |||5|||(1+ |||0|||)|||u|||D , (4.23)

uniformly over all T , `, (5, 0) and u as in the statement. We stress that this implies (4.21).
Indeed, for the local terms of the norm this is immediate. Regarding the space translations,
for every k ∈ Nd+1 such that |k| < γ ′ and all x, y ∈ Rd we have

Qk

(
P−Rf (t, y)− 0ty,xP−Rf (t, x)

)
= 〈Rf, P k,γ

′

−,ty,tx〉,

where P k,γ
′

−,ty,tx is the function obtained from (4.7) upon replacing Pn by P−. This being
given, a simple application of Jensen’s inequality shows that∥∥∥∥∫

y∈B(x,λ)

λ−d
|〈Rf, P k,γ

′

−,ty,tx〉|

wt (x)
dy

∥∥∥∥
Lp
.
∑
`∈∂γ ′

∥∥∥∥ 〈Rf,D`P−((t, x)− ·)〉wt (x)

∥∥∥∥
Lp
λ|`|−|k|,

so that the desired bound holds. Concerning the time translation, for every k ∈ Nd+1 such
that |k| < γ ′ and all 0 < t − s < s we have

Qk

(
P−Rf (t, x)− 0xt,sP−Rf (s, x)

)
= 〈Rf, P k,γ

′

−,tx,sx〉,

where P k,γ
′

−,tx,sx is the function obtained from (4.6) upon replacing Pn by P−. Much as
above, a simple application of Jensen’s inequality shows that∥∥∥∥ |〈Rf, P k,γ

′

−,tx,sx〉|

wt (x)

∥∥∥∥
Lp
. sup
u∈[s,t]

∑
`∈∂γ ′

∥∥∥∥ 〈Rf,D`P−((u, x)− ·)〉wt (x)

∥∥∥∥
Lp
|t − s|(|`|−|k|)/2,

and the desired bound follows.
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We now prove (4.23). Let φ̃ : [−1, 1] → R be a smooth function such that∑
i∈Z φ̃(x − i) = 1 for all x ∈ R. Then define φ(t, x) = φ̃(t)

∏d
i=1 φ̃(xi) for every

(t, x) ∈ Rd+1, so that
∑
i∈Z, j∈Zd φ((t − i, x − j)) = 1. In particular,

DkP−((t, x)− ·) =
∑

i∈Z,j∈Zd
DkP−((t, x)− ·)φ((t − i, x − j)− ·).

Since P−(t, x) is smooth and equals the heat kernel outside the parabolic unit ball, we
have

‖DkP−((t, x)− ·)φ((t − i, x − j)− ·)‖Cr . e
−(|j |2−d)+/(8t)

uniformly over all t ∈ (0, T ], all k ∈ Nd+1 such that |k| < γ ′ + 2 and all (i, j) ∈ Zd+1.
The expression (4.1) of the weights yields wt (x) = e(t+`)(1+|x|). Using (3.13) and setting
C = |||5|||(1+ |||0|||)|||u|||D , we get

∥∥∥∥ 〈Rf,DkP−((t, x)− ·)〉wt (x)

∥∥∥∥
Lp
. C

T+1∑
i=−1

∑
j∈Zd

e−(|j |
2
−d)+/(8t)

∥∥∥∥wt (x − j)
wt (x)

∥∥∥∥
Lp

. C
∑
j∈Zd

e(t+`)|j |−(|j |
2
−d)+/(8t) . C,

uniformly over all t ∈ (0, T ], all T in a compact domain of R+ and all k ∈ Nd+1 such that
|k| < γ ′ + 2. This ends the proof of (4.21). To obtain (4.22), we proceed similarly. Using
(3.15), the same calculation as above gives∥∥∥∥ 〈Rf − R̄f̄ , DkP−((t, x)− ·)〉

wt (x)

∥∥∥∥
Lp
. |||5|||(1+ |||0|||)|||u; ū|||

+
(
|||5− 5̄|||(1+ |||0|||)+ |||5̄||| |||0 − 0̄|||

)
|||ū|||,

uniformly over all t ∈ (0, T ], all T in a compact domain of R+ and all k ∈ Nd+1 such that
|k| < γ ′ + 2. This ends the proof. �

4.3. Initial condition

We take (4.1) as our choice of weights. Recall that ` is involved in the weight at time 0.
We define Cη,pw0 (Rd) as the space of distributions f on Rd such that

sup
λ∈(0,1]

∥∥∥∥ sup
φ∈Br (Rd )

|〈f, φλx 〉|

ληw0(x)

∥∥∥∥
Lp( dx)

<∞.

When w0(x) = 1, this space coincides with the usual Besov space Bαp,∞(Rd).
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Given u0 ∈ Cη,pw0 (Rd), we define v = Pu0 as follows:

v(t, x) :=
∑

k∈Nd+1

|k|<γ ′

Xk

k!
〈u0,D

kP(t, x − ·)〉.

This is the lift into the polynomial regularity structure of the smooth map (t, x) 7→
(P (t, ·) ∗ u0)(x).

Lemma 4.6. Let u0 ∈ Cη,pw0 (Rd). Then v = Pu0 belongs to D .

Proof. The contribution coming from the smooth part of the heat kernel is handled
similarly to the proof of Proposition 4.5, so we do not provide the details. We focus on the
contribution due to the singular part of the heat kernel. By hypothesis, we have∥∥∥∥ 〈u0,D

kPn(t, x − ·)〉

w0(x)

∥∥∥∥
Lp
. 2−n(η−|k|),

uniformly over all t > 0, all n ≥ 0 and all k ∈ Nd+1 such that |k| < γ + 2. Notice that
the definition of the kernels Pn ensures that the left hand side actually vanishes whenever
t > 2−2n. Therefore, by summing over n ≥ 0 the latter bound yields∥∥∥∥ 〈u0,D

kP+(t, x − ·)〉

w0(x)

∥∥∥∥
Lp
. t (η−|k|)/2,

uniformly over all t > 0. This yields the required bound for the local terms of the norm,
while the bounds on the time and space translation terms follow from the same arguments
as in the proof of Proposition 4.5. �

5. Solution map and renormalisation

We are now in a position to obtain a fixed point for the solution map

MT ,v : D → D, u 7→ (P+ + P−)(u ·4)+ v, (5.1)

where v is a given element in D . In practice, we will take v = Pu0 with u0 ∈ Cη,pw0 as in
Lemma 4.6. Recall that the weight w0 depends on the parameter ` ∈ R. We start with a
simple lemma.

Lemma 5.1. Let u ∈ D
γ,η,p

w,T (U). Then Ru is a function and Ru(t, x) = Q0u(t, x) with
Ru(t, ·) ∈ Cη,pwt (Rd). If in addition u only takes values in the strictly positive levels of the
polynomial regularity structure, then u = 0.
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Proof. Observe that uniformly over all λ ∈ (0, 1], all t ∈ (2λ2, T − λ2
] and all x0 ∈ Rd ,

we have∥∥∥∥∫
(s,y)∈B((t,x),λ)

λ−d−2
|u(s, y)− u(t, x)|0 ds dy

∥∥∥∥
L
p

x0,1

≤ sup
s∈(t−λ2,t+λ2)

∥∥∥∥∫
y∈B(x,λ)

λ−d |u(s, y)− 0sy,xu(s, x)|0 dy

∥∥∥∥
L
p

x0,1

+

∥∥∥∥∫
(s,y)∈B((t,x),λ)

λ−d−2∣∣0sy,x(u(s, x)− 0xs,tu(t, x))∣∣0 ds dy∥∥∥∥
L
p

x0,1

+

∑
ζ>0

∥∥∥∥∫
(s,y)∈B((t,x),λ)

λ−d−2
|0sy,txQζu(t, x)|0 ds dy

∥∥∥∥
L
p

x0,1

. sup
i=1,2

sup
β∈A

w(i)
t+λ2(x, β)λ

ζ0 ,

where ζ0 is the smallest non-zero element of A(U). Then, we write

〈Q0u(·)−5t,xu(t, x), η
λ
t,x〉 =

∫
s,y

Q0(u(s, y)− u(t, x))η
λ
t,x(s, y) ds dy

−

∑
ζ>0

〈5t,xQζu(t, x), η
λ
t,x〉,

so that, taking the Lpx0,1
-norm, one gets a bound of order λζ0 times some weight. From the

uniqueness of the reconstruction, we deduce that Ru(·) = Q0u(·) on (0, T ) × Rd . It is
then immediate to check that Ru(t, ·) belongs to Cη,pwt (Rd).

Recall that γ ∈ (1, 2). We now assume that u(t, x) =
∑
k∈Nd+1: |k|=1 Qk(u(t, x))X

k .
Let ei, i = 1, . . . , d , be the unit vector in the space direction i. We start with the following
simple observation. There exists a constant C > 0 such that∫

y∈B(0,λ)
λ−d

∣∣∣ d∑
i=1

yiai

∣∣∣ dy ≥ Cλ|a|,
uniformly over all λ ∈ (0, 1] and all a ∈ Rd . This being given, we take a =∑d
i=1(Qeiu(t, x))ei and use the equivalence of norms in Rd to get∥∥∥∥ d∑

i=1

|Qeiu(t, x)|

∥∥∥∥
L
p

x0,1

. λ−1
∥∥∥∥∫
y∈B(x,λ)

λ−d
d∑
i=1

|(y − x)iQeiu(t, x)| dy

∥∥∥∥
L
p

x0,1

. λ−1
∥∥∥∥∫
y∈B(x,λ)

λ−d |u(t, y)− 0ty,xu(t, x)|0 dy

∥∥∥∥
L
p

x0,1

. λγ−1w(2)t (x0, 0),

uniformly over all λ ∈ (0, 1], all t ∈ (2λ2, T − λ2
] and all x0 ∈ Rd . Therefore, the left

hand side vanishes. This concludes the proof. �
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Theorem 5.2. For any T > 0 and any u0 ∈ Cη,pw0 , the equation u =MT ,v(u) admits a
unique solution in D . Furthermore, the map v 7→ u is Lipschitz continuous, while the map
(v,5,0) 7→ u is locally Lipschitz continuous.

Proof. We first introduce a shift map on the models and the modelled distributions. For all
s ≥ 0, we let 5↓s and 0↓s be defined as follows:

〈5↓sz τ, ϕ〉 := 〈5z+(s,0)τ, ϕ(· + s, ·)〉, 0
↓s

z,z′
τ = 0z+(s,0),z′+(s,0)τ.

We let D
↓s,γ,η,p

w,T be the space of modelled distributions associated with the shifted model
(5↓s, 0↓s) and the shifted weights w↓s defined by setting

w↓s,(i)t (x, ζ ) := w(i)t+s(x, ζ ).

This amounts to shifting the parameter ` by s, in the definition (4.1) of the weights.
Formally, one should also write R↓s and P↓s for the convolution and reconstruction
operators associated with the shifted model, but we refrain from doing that for the sake of
readability.

Recall that the spaces D and D ′ differ by their parameters η, γ and η′, γ ′. Since
η′ − η = γ ′ − γ > 0, we deduce that there exists ρ > 0 such that ||| · |||D ′ ≤ T ρ ||| · |||D .
Until the end of the proof, we will be working in the spaces D

γ,η,p

w,T as well as their shifted
counterparts and we will play with only two parameters, namely T and `. Recall that ` is
the parameter involved in the weight at time 0. We will use the notation DT ,` instead of
D
γ,η,p

w,T for simplicity.
Using Theorem 4.3 and Proposition 4.5, we deduce the existence of C > 0 such that

|||MT ,v(u)−MT ,v(ū)|||D↓sT ,`
= |||(P+ + P−)((u− ū)4)|||D↓sT ,`

≤ CT ρ |||u− ū|||
D↓sT ,`

,

as well as

|||MT ,v(u)|||D↓sT ,`
= |||(P+ + P−)(u4)+ v|||D↓sT ,`

≤ CT ρ |||u|||
D↓sT ,`
+ |||v|||

D↓sT ,`
, (5.2)

uniformly over all s, T in a compact subset of R+, all ` in a compact subset of R and
all u, ū, v ∈ D↓sT ,`. The constant C does however depend on the realisation of the model
through the quantities appearing in Lemma 3.4.

Fix a “target” final time T > 0 and `0 ∈ R. Taking T ∗ small enough, we deduce
that MT ∗,v is a contraction on D↓sT ∗,` uniformly over all ` ∈ [`0, `0 + T ], all s ∈ [0, T ]

and all v ∈ D↓sT ∗,`. Fix u0 ∈ Cη,pw0 and let v = Pu0 ∈ DT ∗,`. The map MT ∗,v admits a
unique fixed point u∗ ∈ DT ∗,`0 . If T ∗ > T we are done, otherwise we take s ∈ (0, T ∗)
and we define `∗ = `0 + s < `0 + T , us := Ru(s, ·) and v∗ := Pus . By Lemmas
5.1 and 4.6, we know that v∗ ∈ DT ∗,`∗ . The map MT ∗,v∗ admits a unique fixed point
u∗∗ ∈ D↓sT ∗,`∗ . We then set u(t, ·) = u∗(t, ·) when t ∈ (0, T ∗] and u(t, ·) = u∗∗(t − s, ·)
when t ∈ (T ∗, T ∗ + s]. It follows in the same way as in [Hai14b, Proposition 7.11] that u
is indeed the unique solution to the fixed point problem MT ∗+s,v(u) = u, and that this
construction can be iterated until one reaches the final time T . Note that the linearity of
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the problem was exploited in an essential way here, since this is what guarantees that the
time T ∗ of local well-posedness does not depend on the initial condition.

Regarding the joint dependence on the model and the initial condition, we find as
above and thanks to the same results that for all R > 0, there exists T ∗ > 0 such that

|||u; ū|||D↓s ,D̄↓s ≤ |||5− 5̄||| + |||0 − 0̄||| + |||v; v̄|||D↓s ,D̄↓s ,

uniformly over all s in a compact subset of R+, and over all (5, 0), (5̄, 0̄) and v, v̄ ∈
D↓sT ∗,`0

such that the norms of all these elements are bounded by R. This yields the local
Lipschitz continuity of the solution map on (0, T ∗]. Iterating the argument as above, we
obtain the local Lipschitz continuity over any interval (0, T ]. �

Let v = Pu0 with u0 ∈ Cη,pw0 . It is easily seen from Theorems 3.10 and 4.3 that the unique
fixed point of MT ,v associated with the canonical model (5(ε), F (ε)) coincides, upon
reconstruction, with the solution to the well-posed SPDE (Eε) presented in the introduction.
However, the sequence of canonical models (5(ε), F (ε)) does not converge when ε → 0,
due to the ill-defined products involving the white noise.

Theorem 5.3. For every ε ∈ (0, 1], there exists a renormalised model (5̂ε, F̂ ε) such that:

• the unique fixed point of MT ,v associated to (5̂ε, F̂ ε) coincides, upon reconstruction,
with the classical solution of (̂Eε),
• the sequence (5̂ε, F̂ ε) converges to an admissible model (5̂, F̂ ), that is, there exist
C, δ > 0 such that uniformly over ε ∈ (0, 1] we have

|||5̂ε − 5̂||| + |||0̂ε − 0̂||| ≤ Cεδ.

Proof. This result is due to Hairer and Pardoux [HP15, Theorem 4.5] in the case of (SHE).
The case of (PAM) is treated similarly mutatis mutandis. Let us briefly explain why the
solution to (5.1) yields the classical solution to (̂Eε) when applied to the renormalised
model (5̂ε, F̂ ε).

We first note that, for any space-time point z, the renormalised model fulfils the
following identities:

5̂εz(4)(z) = ξε(z), 5̂εz(4I(4))(z) = −cε, 5̂εz(4I(4I(4)))(z) = 0,

5̂εz(4I(4I(4I(4))))(z) = −c(1)ε , 5̂εz(4I(Xi4))(z) = 0,
(5.3)

where c(1)ε = c
(1,1)
ε + c

(1,2)
ε (see (1.1) for the values of these constants).

Furthermore, iterating (5.1) shows that any solution U to MT ,v(U) = U will neces-
sarily be of the form

U(z) = u(z)
(
1+ I(4)+ I(4I(4))+ I(4I(4I(4)))

)
+

∑
|k|=1

∂ku(z)(X
k
+ I(Xk4))

for some continuous functions u and ∂ku. Recall that, for fixed ε > 0, the reconstruction
operator associated to the renormalised model is given by (RF)(z) = (5̂εzF(z))(z). It
then follows from (5.3) that

(R4U)(z) = u(z)(ξε(z)− Cε).
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Combining this with (4.3) concludes the proof. �

We are now in a position to conclude the proof of the main result of this article.

Proof of Theorem 1.1. The local Lipschitz continuity of the solution map stated in Theorem
5.2 together with the convergence of the renormalised models obtained in the previous
theorem ensure that the sequence of renormalised solutions converges to a limit û ∈ D

γ,p

w,T ,
for any initial condition u0 ∈ Cη,pw0 . By Theorem 2.10, we deduce the convergence of the
reconstructed solution R̂ε ûε towards R̂û in the space E

η−c,p
w,T .

Finally, a simple computation shows that the Dirac mass at some given point x0 belongs
to Cη,pw0 as soon as p ≤ d/(d + η), whatever weight w0 one chooses. Since η needs to be
greater than −1/2 for our result to hold, one can choose a Dirac mass when p = 1 for
instance. This concludes the proof. �
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[HL15] Hairer, M., Labbé, C.: A simple construction of the continuum parabolic Anderson
model on R2. Electron. Comm. Probab. 20, no. 43, 11 pp. (2015) Zbl 1332.60094
MR 3358965
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[You36] Young, L. C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta
Math. 67, 251–282 (1936) Zbl 1169.35006 MR 1555421

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1373.60110&format=complete
http://www.ams.org/mathscinet-getitem?mr=3728488
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1332.60093&format=complete
http://www.ams.org/mathscinet-getitem?mr=3274562
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1316.81061&format=complete
http://www.ams.org/mathscinet-getitem?mr=3336866
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1332.60094&format=complete
http://www.ams.org/mathscinet-getitem?mr=3358965
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1341.60062&format=complete
http://www.ams.org/mathscinet-getitem?mr=3417505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1323.35230&format=complete
http://www.ams.org/mathscinet-getitem?mr=3327517
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0654.60101&format=complete
http://www.ams.org/mathscinet-getitem?mr=0933824
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1101.82329&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0819.42016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1228209
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06786085&format=complete
http://www.ams.org/mathscinet-getitem?mr=3693966
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0749.60057&format=complete
http://www.ams.org/mathscinet-getitem?mr=1149348
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0608.60060&format=complete
http://www.ams.org/mathscinet-getitem?mr=0876085
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1169.35006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1555421

	1. Introduction
	2. Regularity structures and Besov-type spaces
	3. Weighted spaces
	4. Convolution with the heat kernel
	5. Solution map and renormalisation
	References

