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Abstract. Extremal problems for 3-uniform hypergraphs are known to be very difficult and de-
spite considerable effort the progress has been slow. We suggest a more systematic study of ex-
tremal problems in the context of quasirandom hypergraphs. We say that a 3-uniform hypergraph
H = (V ,E) is weakly (d, η)-quasirandom if for any subset U ⊆ V the number of hyperedges
of H contained in U is in the interval d

(
|U |
3
)
± η|V |3. We show that for any ε > 0 there exists

η > 0 such that every sufficiently large weakly (1/4+ ε, η)-quasirandom hypergraph contains four
vertices spanning at least three hyperedges. This was conjectured by Erdős and Sós and it is known
that the density 1/4 is best possible.

Recently, a computer assisted proof of this result based on the flag algebra method was given by
Glebov, Král’, and Volec. In contrast to their work our proof is based on the regularity method for
hypergraphs and requires no heavy computations. In addition we obtain an ordered version of this
result. Our method of proof allows us to study extremal problems of this type in a more systematic
way and we discuss a few extensions and open problems.

Keywords. Quasirandom hypergraphs, extremal graph theory, Turán’s problem

1. Introduction

1.1. Extremal problems for graphs and hypergraphs

Given a fixed graph F , a typical problem in extremal graph theory asks for the maximum
number of edges that a (large) graph G on n vertices containing no copy of F can have.
More formally, for a fixed graph F let the extremal number ex(n, F ) be the number |E|
of edges of an F -free graph G = (V ,E) on |V | = n vertices with the maximum number
of edges. It is well known and not hard to observe that the sequence ex(n, F )/

(
n
2

)
is

decreasing. Consequently, one may define the Turán density

π(F ) = lim
n→∞

ex(n, F )(
n
2

) ,
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which describes the maximum density of large F -free graphs. The systematic study of
these extremal parameters was initiated by Turán [34], who determined ex(n,Kk) for
complete graphs Kk . Recalling that the chromatic number χ(F ) of a graph F is the min-
imum number of colours one can assign to the vertices of F in such a way that any two
vertices connected by an edge receive distinct colours, it follows from a result of Erdős
and Stone [12] that

π(F ) = 1−
1

χ(F )− 1

(see also [10], where the result in this form appeared first). In particular, the value of π(F )
can be calculated in finite time. It also follows that the set {π(F ) : F is a graph} of all
Turán densities of graphs is given by

{0, 1/2, 2/3, . . . , (k − 1)/k, . . .}.

Already in his original work [34] Turán asked for hypergraph extensions of these
extremal problems. We restrict ourselves to 3-uniform hypergraphs H = (V ,E), where
V = V (H) is a finite set of vertices, and the set of hyperedges E = E(H) ⊆ V (3)

is a family of 3-element subsets of V . Despite considerable effort, even for 3-uniform
hypergraphs F no similar characterisation (as in the graph case) is known. Determining
the value of π(F ) is a well known and hard problem even for “simple” hypergraphs like
the complete 3-uniform hypergraphK(3)

4 on four vertices andK(3)−
4 , the hypergraph with

four vertices and three hyperedges. Currently the best known bounds for these Turán
densities are

5/9 ≤ π(K(3)
4 ) ≤ 0.5616 and 2/7 ≤ π(K(3)−

4 ) ≤ 0.2871,

where the lower bounds are given by what is believed to be optimal constructions due
to Turán (see, e.g., [7]) and Frankl and Füredi [13]. The stated upper bounds are due to
Razborov [23] and Baber and Talbot [1] and their proofs are based on the flag algebra
method introduced by Razborov [22]. For a thorough discussion of Turán type results and
problems for hypergraphs we refer to the recent survey of Keevash [17].

1.2. Quasirandom graphs and hypergraphs

We consider a variant of Turán type questions in connection with quasirandom hyper-
graphs. Roughly speaking, a quasirandom hypergraph “resembles” a random hypergraph
of the same edge density, by sharing some of the key properties with it, namely those that
hold true for the random hypergraph with probability close to 1.

The investigation of quasirandom graphs was initiated with the observation that sev-
eral such properties of randomly generated graphs are equivalent in a deterministic sense.
This phenomenon turned out to be useful and had a number of applications in combina-
torics. The systematic study of quasirandom graphs was initiated by Thomason [32, 33]
and by Chung, Graham, and Wilson [4]. A pivotal feature of random graphs is the uniform
edge distribution on “large” sets of vertices, and a quantitative version of this property is
used to define quasirandom graphs.
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More precisely, a graph G = (V ,E) is quasirandom with density d > 0 if for every
subset of vertices U ⊆ V the number e(U) of edges contained in U satisfies

e(U) = d

(
|U |

2

)
+ o(|V |2), (1.1)

where o(|V |2)/|V |2 → 0 as |V (G)| tends to infinity. Strictly speaking, we consider here
a sequence of graphs Gn = (Vn, En) where the number of vertices |Vn| tends to infinity,
but for the sake of a simpler presentation we will suppress the sequence in our discus-
sion. The main result in [4] asserts that (1.1) is deterministically equivalent to several
other important properties of random graphs. In particular, it implies that for any fixed
graph F with vF vertices and eF edges the number NF (G) of labelled copies of F in a
quasirandom graph G = (V ,E) of density d satisfies

NF (G) = d
eF |V |vF + o(|V |vF ). (1.2)

In other words, the number of copies of F is close to the expected value in a random
graph with edge density d.

The analogous statement for hypergraphs fails to be true and uniform edge distribution
on vertex sets is not sufficient to enforce a property similar to (1.2) for all fixed 3-uniform
hypergraphs F (see, e.g., Example 1.3 below). A stronger notion of quasirandomness
for which such an embedding result actually is true, was considered in connection with
the regularity lemma for hypergraphs (cf. Theorem 3.2 below). The central notion for
the work presented here, however, is the straightforward extension of (1.1) to 3-uniform
hypergraphs, which was for example studied in [5, 18].

Definition 1.1. A 3-uniform hypergraph H = (V ,E) is weakly (d, η)-quasirandom if
for every subset U ⊆ V of vertices the number e(U) of hyperedges contained in U
satisfies ∣∣∣∣e(U)− d(|U |3

)∣∣∣∣ ≤ ηn3. (1.3)

For future reference we note that a simple application of the sieve formula shows that the
condition (1.3) implies ∣∣e(X, Y,Z)− d |X| |Y | |Z|∣∣ ≤ 7ηn3 (1.4)

for allX, Y,Z⊆V , where e(X, Y,Z) denotes the number of triples (x, y, z)∈X×Y ×Z
for which {x, y, z} is a hyperedge of H . We shall denote by Q(3)

(d, η) the class of
all 3-uniform weakly (d, η)-quasirandom hypergraphs, where the three dots represent
the possible choices for the three sets X, Y , and Z in (1.4). In fact, we will consider
other classes of quasirandom 3-uniform hypergraphs, which we will symbolise by Q(3)

and Q(3) and which we will investigate in connection with Turán type questions in [27]
and [26] (see also Definition 5.2).
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1.3. Extremal problems for weakly quasirandom hypergraphs

Since in contrast to graphs, weakly quasirandom hypergraphs H may not contain every
fixed hypergraph F , it seems interesting to determine the maximum density d for which
a weakly quasirandom F -free hypergraph of density d exists. This leads to the following
notion of Turán density for weakly quasirandom hypergraphs.

Definition 1.2. Given a 3-uniform hypergraph F we set

π (F ) = sup
{
d ∈ [0, 1] : for every η > 0 and n ∈ N there exists an F -free,

3-uniform hypergraph H ∈ Q(3)
(d, η) with |V (H)| ≥ n

}
.

Erdős and Sós [11] (see also [8]) were the first to raise questions concerning π (F ).
In particular, they suggested studying the cases when F = K

(3)−
4 or F is a complete

3-uniform hypergraphK(3)
k . The following probabilistic construction, which can be traced

back to the work of Erdős and Hajnal [9], yields π (K
(3)−
4 ) ≥ 1/4.

Example 1.3. Consider a random tournament Tn on the vertex set [n] = {1, . . . , n}, i.e.,
an orientation of all edges of the complete graph on the first n positive integers such that
each of the two directions (i, j) or (j, i) of every pair of vertices {i, j} is chosen indepen-
dently with probability 1/2. Given such a tournament Tn we define a 3-uniform hyper-
graph H(Tn) on the same vertex set, by including a triple {i, j, k} in E(H(Tn)) if these
three vertices span a cyclically oriented cycle of length three, i.e., {i, j, k} ∈ E(H(Tn)) if
either (i, j), (j, k), and (k, i) are all in E(Tn), or (i, k), (k, j), and (j, i) are all in E(Tn).
It is easy to check that for every η > 0, with probability tending to 1 as n→∞ the hyper-
graphH(Tn) is weakly (1/4, η)-quasirandom. Moreover, no hypergraphH obtained from
a tournament in this way contains three hyperedges on four vertices, i.e., every such H is
K
(3)−
4 -free, and this establishes π (K

(3)−
4 ) ≥ 1/4.

Recently, Glebov, Král’, and Volec [15] showed that the construction in Example 1.3 is
optimal and proved

π (K
(3)−
4 ) = 1/4.

The proof in [15] is computer assisted and based on the flag algebra method. We present
a computer free and very different proof of the same result. Moreover, our proof yields
a strengthening of the result which for ordered vertex sets guarantees the appearance of
the K(3)−

4 in such a way that the apex vertex, that is, the vertex incident to three hyper-
edges of theK(3)−

4 , is either the first or the last. Our method of proof seems to indicate an
approach to several other problems of this type, and we shall discuss this in more detail
in the concluding remarks in Section 5.

Theorem 1.4. For every ε > 0 there exists an η > 0 and an integer n0 such that for
every n ≥ n0 every 3-uniform weakly (1/4 + ε, η)-quasirandom hypergraph H with
vertex set V (H) = [n] contains a K(3)−

4 whose apex is either its smallest or its largest
vertex.
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Strictly speaking, the authors of [11] and [15] considered a notion slightly different from
the weak quasirandomness as defined in Definition 1.1. In their formulation they only
required for an n-vertex hypergraph a lower bound of the form e(U) ≥ d

(
|U |
3

)
− ηn3

for every set U of vertices. However, a fairly standard application of the so-called
weak regularity lemma for hypergraphs (a straightforward extension of Szemerédi’s
regularity lemma for graphs [31]) implies that such a hypergraph contains a weakly
(d ′, η′)-quasirandom hypergraph on cn vertices for some d ′ ≥ d , c = c(d, η) > 0 and η′

with η′ → 0 as η → 0, and thus for the statement of Theorem 1.4 both assumption are
equivalent (see, e.g., [25, Proposition 2.5]).

Organisation

A central tool in the proof of Theorem 1.4 is the regularity method for 3-uniform hy-
pergraphs and we will introduce the relevant notation and results in Section 3. Roughly
speaking, the regularity lemma (Theorem 3.2) allows us to decompose any given large
hypergraph into quasirandom blocks. In fact, the blocks will enjoy stronger quasiran-
dom properties (compared to Definition 1.3), which in “appropriate situations” allow the
embedding of any fixed hypergraph (see Theorem 3.4). The main work in the proof of
Theorem 1.4 is to ensure such “appropriate situations” for embedding K(3)−

4 after the ap-
plication of the regularity lemma. These arguments will require several ideas from Ram-
sey theory and extremal graph theory. In particular, in the proof of Theorem 1.4 we will
establish a mean square degree condition in multipartite graphs that yields the existence
of triangles (Theorem 2.1), which might be of independent interest. The proof of Theo-
rem 1.4 will be given in Section 4. We close with a discussion of a few related results and
open problems in Section 5.

2. Forcing triangles in multipartite graphs

In this section we shall prove a purely graph-theoretic statement that will later be used in
the proof of π (K

(3)−
4 ) = 1/4. Essentially what we have to do then is to find a triangle

in the link of a vertex of some weakly quasirandom 3-uniform hypergraph H , and after
regularization this will become a problem of finding a triangle in some auxiliary multipar-
tite graph. The vertices of this auxiliary graph will actually not correspond to the vertices
of H but rather to some bipartite graphs on V (H), but this subtlety can be ignored until
we reach Section 4.

The idea to study multipartite versions of, e.g., Mantel’s theorem, or more generally
of the Erdős–Stone theorem, seems to go back at least to a suggestion by Bollobás (see
[2, discussion after the proof of Theorem VI.2.15]). To the best of our knowledge, the
first systematic investigations of this kind have been carried out by Bondy et al. [3]. In the
case of triangles they showed the following: Let dm denote the infimal real number with
the property that any m-partite graph G contains a triangle as soon as every edge density
between two vertex classes ofG is greater than dm. Then dm tends to 1/2 asm→∞, and
moreover dℵ0 = 1/2 for infinite-partite graphs with countably many vertex classes. In the
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other direction Bondy et al. showed that d4 > 1/2. The situation was further clarified
by Pfender [21] who proved that actually dm = 1/2 for all m ≥ 12; determining the
smallest m with dm = 1/2 is an interesting open problem.

The theorem that follows is of a similar flavour. We use the following notation. For
an m-partite graph G = (V ,E) with vertex classes V1 ∪· · · · ∪· Vm = V , for every vertex
x ∈ V and j ∈ [m] we denote by dj (x) the size of the neighbourhood of x in Vj .

Theorem 2.1. For every ε > 0 there exists an integerm such that if anm-partite graphG
with nonempty vertex classes V1, . . . , Vm satisfies∑

x∈Vi

dj (x)
2
≥ (1/4+ ε)|Vi | |Vj |2

whenever 1 ≤ i < j ≤ m, then G contains a triangle.

Proof. For convenience we work with the hierarchy

m−1
� m−1

∗ � δ � ε � 1,

and commence by defining a colouring of the pairs of indices from [m]with integers from
the interval [1, (2δ)−1

].
Let any i and j with 1 ≤ i < j ≤ m be given. For each r ∈ N we set

Qij (r) = {x ∈ Vi : dj (x) ≥ (1/2+ rδ)|Vj |}.

We contend that |Qij (1)| ≥ δ|Vi |. To see this, we split the right hand side of the inequality
in the statement into two parts according to whether x belongs toQ = Qij (1) or not. This
gives

(1/4+ ε)|Vi | |Vj |2 ≤ (1/2+ δ)2|Vi −Q| |Vj |2 + |Q| |Vj |2.

Dividing by |Vj |2 and using the trivial estimate |Vi −Q| ≤ |Vi | we deduce

(1/4+ ε)|Vi | ≤ (1/2+ δ)2|Vi | + |Q|;

since δ � ε, the desired conclusion follows.
Clearly, the larger r we take, the smaller the set Qij (r) becomes, and if r > (2δ)−1

then Qij (r) = ∅ holds vacuously. Thus there exists a largest positive value of r , denoted
by r(i, j), for which |Qij (r)| ≥ δ|Vi |. This concludes the definition of our colouring

r : [m](2)→ {1, . . . , b(2δ)−1
c}.

By Ramsey’s theorem, i.e., since we may assume the validity of the partition relation

m −→ (m∗)
2
b(2δ)−1c

,

it is allowed to assume that after some relabelling there is a colour r∗ such that r(i, j) = r∗
whenever 1 ≤ i < j ≤ m∗. Of course, we should now find a triangle in G with vertices
from V1 ∪ · · · ∪ Vm∗ . It will turn out that there actually is such a triangle with a vertex
in V1.
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Next we will single out some vertex from V1 that will later be shown to appear in
some triangle of G. To this end, we recall that |Q1i(r∗)| ≥ δ|V1| for all i ∈ {2, . . . , m∗}.
It follows that the subsets Q12(r∗), . . . ,Q1m∗(r∗) of V1 cannot be disjoint provided we
have chosenm∗ large enough. This means that some vertex x ∈ V1 appears in at least two
of them. For notational simplicity we assume x ∈ Q12(r∗) as well as x ∈ Q13(r∗) and
endeavor to construct a triangle with vertices from {x} ∪ V2 ∪ V3.

Let A2 denote the set of neighbours of x in V2, set B2 = V2 − A2, and define A3 as
well as B3 analogously. The choice of x implies |A2| = d2(x) ≥ (1/2 + r∗δ)|V2| and
A3(x) ≥ (1/2 + r∗δ)|V3|. Any edge between A2 and A3 gives rise to a triangle of the
desired kind, so for the sake of contradiction we will henceforth assume that no such edge
exists.

Then d3(y) ≤ |B3| ≤ (1/2 − r∗δ)|V3| for all y ∈ A2. For y ∈ B2 we either have
d3(y) < (1/2+(r∗+1)δ)|V3|, or y ∈ C = Q23(r∗+1). But the maximality of r∗ = r(2, 3)
implies |C| < δ|V2| and for y ∈ C we still have d3(y) ≤ |V3|. So dividing the right hand
side of the assumption

(1/4+ ε)|V2| |V3|
2
≤

∑
y∈V2

d3(y)
2

into three parts depending on whether y appears in A2, B2 − C or C we derive

(1/4+ ε)|V2| |V3|
2
≤ |A2|(1/2− r∗δ)2|V3|

2
+|B2|(1/2+ (r∗+1)δ)2|V3|

2
+ δ|V2| |V3|

2.

Since |A2| ≥ (1/2+ r∗δ)|V2| > |V2|/2 and |A2| + |B2| = |V2|, this implies

1/4+ ε ≤ (1/2+ r∗δ)(1/2− r∗δ)2 + (1/2− r∗δ)(1/2+ (r∗ + 1)δ)2 + δ.

Now 1/2+ r∗δ ≤ 1 and for each x ∈ [0, 1] we have (x + δ)2 ≤ x2
+ 3δ by δ ≤ 1, so

1/4+ ε ≤ (1/2+ r∗δ)(1/2− r∗δ)2 + (1/2− r∗δ)(1/2+ r∗δ)2 + 4δ.

Here, the sum of the first two terms gives 1/4 − (r∗δ)2 and hence at most 1/4, so that
altogether we get ε ≤ 4δ, contrary to δ � ε. Thereby Theorem 2.1 is proved. ut

The authors of the articles cited at the beginning of this section actually studied the more
general question of finding larger cliques, or even arbitrary graphs, in dense multipartite
graphs, obtaining results comparable to those indicated above. Similarly, the proof of
Theorem 2.1 generalises in a straightforward way from triangles to arbitrary cliques Kk;
we omit the details.

Theorem 2.2. For every ε > 0 and k ≥ 3 there exists an integer m such that if an m-
partite graph G with nonempty vertex classes V1, . . . , Vm satisfies∑

x∈Vi

dj (x)
2
≥

((
k − 2
k − 1

)2

+ ε

)
|Vi | |Vj |

2

whenever 1 ≤ i < j ≤ m, then G contains a clique Kk . ut

In fact, the proof guarantees �(nk) copies of Kk and as a result we may replace Kk in
Theorem 2.2 by an arbitrary graph F with chromatic number χ(F ) = k.
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3. Hypergraph regularity method

A key tool in the proof of Theorem 1.4 is the regularity lemma for 3-uniform hypergraphs.
We follow the approach from [30, 29] combined with the results from [16] and [20]. First,
we introduce the necessary notation.

For two disjoint sets X and Y we denote by K(X, Y ) the complete bipartite graph
with that vertex partition. We say a bipartite graph P = (X ∪· Y,E) is (δ2, d2)-regular if
for all subsets X′ ⊆ X and Y ′ ⊆ Y we have∣∣e(X′, Y ′)− d2|X

′
| |Y ′|

∣∣ ≤ δ2|X| |Y |,

where e(X′, Y ′) denotes the number of edges of P with one vertex in X′ and the other
in Y ′. Moreover, for k ≥ 2 we say a k-partite graph P = (X1 ∪· · · · ∪· Xk, E) is (δ2, d2)-
regular if all its

(
k
2

)
naturally induced bipartite subgraphs P [Xi, Xj ] are (δ2, d2)-regular.

For a tripartite graph P = (X ∪· Y ∪· Z,E) we denote by K3(P ) the triples of vertices
spanning a triangle in P , i.e.,

K3(P ) =
{
{x, y, z} ⊆ X ∪ Y ∪ Z : xy, xz, yz ∈ E

}
.

If the tripartite graph P is (δ2, d2)-regular, then the so-called triangle counting lemma
implies that

|K3(P )| ≤ d
3
2 |X| |Y | |Z| + 3δ2|X| |Y | |Z|. (3.1)

We say a 3-uniform hypergraph H = (V ,EH ) is regular with respect to a tripartite
graph P if it matches approximately the same proportion of triangles for every subgraph
Q ⊆ P . This is made precise in the following definition.

Definition 3.1. A 3-uniform hypergraph H = (V ,EH ) is (δ3, d3)-regular with respect
to a tripartite graph P = (X ∪· Y ∪· Z,EP ) with V ⊇ X ∪ Y ∪ Z if for every tripartite
subgraph Q ⊆ P we have∣∣|EH ∩K3(Q)| − d3|K3(Q)|

∣∣ ≤ δ3|K3(P )|.

Moreover, we simply say H is δ3-regular with respect to P if it is (δ3, d3)-regular for
some d3 ≥ 0. We also define the relative density of H with respect to P by

d(H |P) =
|EH ∩K3(P )|

|K3(P )|
,

where we use the convention d(H |P) = 0 if K3(P ) = ∅.

The regularity lemma for 3-uniform hypergraphs, introduced by Frankl and Rödl [14],
provides for every hypergraphH a partition of its vertex set and a partition of the edge sets
of the complete bipartite graphs induced by the vertex partition such that for appropriate
constants δ3, δ2 and d2,

(1) the bipartite graphs given by the partitions are (δ2, d2)-regular, and
(2) H is δ3-regular for “most” tripartite graphs given by the partition.

Here we use a refined version from [30, Theorem 2.3].
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Theorem 3.2 (Regularity Lemma). For all δ3 > 0, δ2 : N → (0, 1], and t0 ∈ N there
exists an integer T0 such that for every n ≥ t0 and every n-vertex 3-uniform hypergraph
H = (V ,EH ) the following holds. There are integers t and ` with t0 ≤ t ≤ T0, ` ≤ T0
and there exists a vertex partition V0 ∪· V1 ∪· · · · ∪· Vt = V and for all 1 ≤ i < j ≤ t there
exists a partition

P ij = {P ijα = (Vi ∪· Vj , Eijα ) : 1 ≤ α ≤ `}
of the edge set of the complete bipartite graph K(Vi, Vj ) satisfying the following proper-
ties:

(i) |V0| ≤ δ3n and |V1| = · · · = |Vt |,
(ii) for all 1 ≤ i < j ≤ t and α ∈ [`] the bipartite graph P ijα is (δ2(`), 1/`)-regular, and

(iii) H is δ3-regular with respect to P ijkαβγ for all but at most δ3t
3`3 tripartite graphs

P
ijk
αβγ = P

ij
α ∪· P

ik
β ∪· P

jk
γ = (Vi ∪· Vj ∪· Vk, E

ij
α ∪· E

ik
β ∪· E

jk
γ ) (3.2)

with 1 ≤ i < j < k ≤ t and α, β, γ ∈ [`].

Owing to their special rôle, we shall refer to the tripartite graphs considered in (3.2) as
triads. In the formulation of the regularity lemma in [30] a more refined version of hyper-
graph regularity was used. However, owing to the results of [16] and [20, Corollaries 2.1
and 2.3], for our purposes here the version from Definition 3.1 suffices.

Similarly to other proofs based on the regularity method, it will be convenient to
“clean” the regular partition provided by Theorem 3.2. In particular, we shall disregard
hyperedges of H that “belong” to irregular or sparse triads of the regular partition. Since
by property (iii) globally H is not regular for up to at most δ3t

3`3 triads, a simple aver-
aging argument shows that for m = m(δ3) (with m → ∞ as δ3 → 0) there exist vertex
classes Vi1 , . . . , Vim such that for all fixed 1 ≤ a < b < c ≤ m locally H is δ3-regular
for all but at most

√
δ3 `

3 triads P ia ibicαβγ with α, β, γ ∈ [`]. After removal of the hyper-
edges belonging to irregular or sparse triads, these considerations lead to the following
immediate consequence of Theorem 3.2.

Corollary 3.3. For all d3, δ3 > 0 and m ∈ N, and every function δ2 : N→ (0, 1], there
exist integers T0 and n0 such that for every n ≥ n0 and every n-vertex 3-uniform hyper-
graph H = (V ,E) the following holds. There exists a subhypergraph Ĥ = (V̂ , Ê) ⊆ H ,
a positive integer ` ≤ T0, a vertex partition V1∪· · · ·∪· Vm = V̂ , and for all 1 ≤ i < j ≤ m

there exists a partition P ij = {P ijα = (Vi ∪· Vj , E
ij
α ) : 1 ≤ α ≤ `} of the edge set of

K(Vi, Vj ) satisfying the following properties:
(i) |V1| = · · · = |Vm| ≥ (1− δ3)n/T0,

(ii) for every 1 ≤ i < j ≤ m and α ∈ [`] the bipartite graph P ijα is (δ2(`), 1/`)-regular,
(iii) Ĥ is δ3-regular with respect to P ijkαβγ for all tripartite graphs P ijkαβγ with 1 ≤ i <

j < k ≤ m and α, β, γ ∈ [`], where either d(Ĥ |P) = 0 or d(Ĥ |P) ≥ d3, and
(iv) for every 1 ≤ i < j < k ≤ m we have

e
Ĥ
(Vi, Vj , Vk) ≥ eH (Vi, Vj , Vk)− (d3 + δ3)|Vi | |Vj | |Vk|.

Moreover, if the vertex set V is [n] then we can ensure max(Vi) < min(Vi+1) for every
i = 1, . . . , m− 1.
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Proof. For the proof of Corollary 3.3 (including the “moreover” part) we shall apply the
regularity lemma (Theorem 3.2) with δ′3 sufficiently small such that

δ′3 < δ2
3 and

(
1− 11

√
δ′3
)(m

3

)
>

(
m

3

)
− 1 (3.3)

and with the integer t0 = max(m, d1/δ′3e, 21) and the given function δ2 : N→ (0, 1].
We recall that the hypergraph regularity lemma is proved by iterated refinements start-

ing with an arbitrary initial partition. Hence, given the hypergraph H = (V ,E) with
V = [n] we may split V initially into t0 equal sized intervals, I1 ∪· · · · ∪· It0 = [n], and
then the vertex partition V1 ∪· · · · ∪· Vt provided by the regularity lemma, Theorem 3.2,
will refine this initial partition of intervals.

We consider an auxiliary 3-uniform hypergraph R = ([t], ER) on the vertex set [t],
where a hyperedge {i, j, k} signifies the following two properties:

(a) at most
√
δ′3 `

3 triads P ijkαβγ are not δ′3-regular, and
(b) Vi , Vj , and Vk are contained in three different initial intervals Is .

Property (iii) of Theorem 3.2 and t ≥ t0 ≥ 21 imply that at most

δ′3t
3`3√
δ′3 `

3
=

√
δ′3 t

3 < 7
√
δ′3

(
t

3

)
triples {i, j, k} fail to satisfy (a). Moreover, at most

t0 ·

(
t/t0

2

)
t <

4
t0

(
t

3

)
triples are excluded because of (b). Consequently, owing to the choice of t0 ≥ 1/δ′3 we
infer that the auxiliary hypergraph R has density at least 1 − 11

√
δ′3. The choice of δ′3

in (3.3) entails that R contains a clique on m vertices, say i1, . . . , im. Again appealing
to (b) of the construction of R we may assume that there are 1 ≤ j1 < · · · < jm ≤ t0
such that Vik ⊆ Ijk for every k ∈ [m], and consequently these vertex sets satisfy the
“moreover” part of Corollary 3.3.

In order to construct the desired hypergraph Ĥ we remove hyperedges of H that
are contained in triads with density less than d3, i.e., hyperedges e ∈ EH ∩ K3(P

ijk
αβγ )

when d(H |P ijkαβγ ) < d3. Moreover, we remove hyperedges of H that are contained in

triads P ijkαβγ for whichH is not δ3-regular, and letH0 be the hypergraph that remains after

these deletions. Finally, Ĥ defined to be the subhypergraph ofH0 induced on Vi1∪· · · ·∪· Vim
has the desired properties. ut

We shall use a so-called counting/embedding lemma, which allows us to embed hyper-
graphs of fixed isomorphism type into appropriate, sufficiently regular and dense triads
of the regular partition provided by the regularity lemma. The following statement is a
direct consequence of [20, Corollary 2.3].
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Theorem 3.4 (Embedding Lemma). For every 3-uniform hypergraph F = (VF , EF )

with vertex set VF = [f ] and every d3 > 0 there exists δ3 > 0 and functions
δ2 : N → (0, 1] and N : N → N such that the following holds for every ` ∈ N. Let
P = (

⋃
· i∈[f ] Vi, EP ) be a (δ2(`), 1/`)-regular, f -partite graph with |V1| = · · · =

|Vf | ≥ N(`) and let H be an f -partite, 3-uniform hypergraph such that for every edge
ijk ∈ EF :

(a) H is δ3-regular with respect to to the tripartite graph P [Vi ∪· Vj ∪· Vk], and
(b) d(H |P [Vi ∪· Vj ∪· Vk]) ≥ d3.

Then H contains a copy of F , where for every i ∈ [f ] = VF the image of i is contained
in Vi .

In an application of Theorem 3.4 the tripartite graphs P [Vi ∪· Vj ∪· Vk] in (a) will be given
by triads P ijkαβγ from the partition given by the regularity lemma.

We shall consider weakly quasirandom hypergraphs H of density µ bounded away
from 0. In particular, this assumption implies that in any regular partition provided by
Theorem 3.2, the density of H induced on any three vertex classes Vi , Vj , and Vk will be
close to µ. For fixed i, j and k this only implies that d(H |P ijkαβγ ) ∼ µ on the average
taken over all `3 choices of α, β, γ ∈ [`]. This, however, gives only little information
on the density of H with respect to a particular P ijkαβγ . Consequently, for the proof of
Theorem 1.4 further analysis is required to arrive at a situation ready for an application
of Theorem 3.4. This will be the focus of Section 4.

4. Embedding K(3)−
4

In this section we deduce Theorem 1.4. The proof will be based on the regularity lemma
for hypergraphs in the form of Corollary 3.3 and the embedding lemma (Theorem 3.4).
Below we reduce the proof of Theorem 1.4 to a lemma (see Lemma 4.1 below) which
locates in a sufficiently regular partition of a weakly quasirandom hypergraph with density
> 1/4 a collection of triads that are ready for an application of the embedding lemma
for K(3)−

4 .

Proof of Theorem 1.4. Given ε > 0 we have to find appropriate η > 0 and n0 ∈ N. For
this purpose we start by choosing some auxiliary constants obeying the hierarchy

δ3 � d3, m
−1
� ε.

For these choices of δ3, d3 and F = K
(3)−
4 we appeal to Theorem 3.4 to obtain

δ2, N : N→ N. Without loss of generality we may assume that for all ` ∈ N,

δ2(`)� `−1, ε.

Applying Corollary 3.3 to d3, δ3, m, and δ2 we get two integers n′0 and T0. Now we claim
that any

η � T −1
0 and n0 � n′0, T0 ·N(T0)

are as desired.
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To justify this, we let any weakly (1/4+ ε, η)-quasirandom hypergraph H on n ≥ n0
vertices be given. Since n ≥ n′0 holds as well, we may apply Corollary 3.3, thus getting
a subhypergraph Ĥ ⊆ H with vertex partition V̂ = V1 ∪· · · · ∪· Vm and edge partitions
P ij = {P ijα : α ∈ [`]} of K(Vi, Vj ) for 1 ≤ i < j ≤ m.

In view of the embedding lemma (Theorem 3.4) it remains to locate four vertex classes
Vi1 , . . . , Vi4 with i1 < i2 < i3 < i4, max(Via ) < min(Via+1) for a = 1, 2, 3, and six
bipartite graphs P ab ∈ P ia ib for 1 ≤ a < b ≤ 4 from the regular partition, such that at
least three of the

(4
3

)
triads

P abc = P ab ∪· P ac ∪· P bc

with 1 ≤ a < b < c ≤ 4 are dense and regular, i.e., d(H |P abc) ≥ d3 andH is δ3-regular
with respect to P abc. For the “moreover” part, we also have to make sure that we embed
the apex vertex of K(3)−

4 either into Vi1 or into Vi4 . This will be rendered by Lemma 4.1
(stated below).

In fact due to property (iv) of Corollary 3.3 and the weak quasirandomness ofH given
by the assumption of Theorem 1.4 (see (1.4)) we have

e
Ĥ
(Vi, Vj , Vk) ≥ (1/4+ ε)|Vi | |Vj | |Vk| − (d3 + δ3)|Vi | |Vj | |Vk| − 7ηn3

≥ (1/4+ ε/2)|Vi | |Vj | |Vk|, (4.1)

where the last step exploits d3, δ3 � ε and η � T −1
0 .

Moreover, since every triad P ijkαβγ is (δ2(`), 1/`)-regular (as a tripartite graph), the
triangle counting lemma for graphs (see (3.1)) asserts that it spans at most

(1/`3
+ 3δ2(`))|Vi | |Vj | |Vk|

triangles. By our choice of the function δ2 we deduce from (4.1) that for every fixed
1 ≤ i < j < k ≤ m, at least

1/4+ ε/2
1+ 3δ2(`)`3 `

3 > (1/4+ ε/4)`3 (4.2)

triads P ijkαβγ satisfy d(H |P ijkαβγ ) ≥ d3.
For fixed 1 ≤ i < j < k ≤ m we consider an auxiliary tripartite 3-uniform hyper-

graph Aijk with vertices corresponding to bipartite graphs from the regular partition and
hyperedges representing dense triads. More precisely, we set V (Aijk) = P ij ∪· P ik ∪· Pjk

and we include the triple P ijα P ikβ P
jk
γ in E(Aijk) if d(Ĥ |P ijkαβγ ) ≥ d3. This way (4.2)

translates into the assertion that Aijk contains at least (1/4+ ε/4)`3 hyperedges.
In Lemma 4.1 below we analyse the

(
m
2

)
-partite, 3-uniform hypergraph A given by

the union of all Aijk with 1 ≤ i < j < k ≤ m. Note that only
(
m
3

)
of the

((m2)
3

)
naturally

induced tripartite subhypergraphs of A span any hyperedges. Lemma 4.1 asserts that such
a hypergraph A contains three hyperedges on six vertices, which translates back into four
vertex classes Vi1 , . . . , Vi4 and six bipartite graphs P ab ∈ P ia ib for 1 ≤ a < b ≤ 4 from
the regular partition of Ĥ , such that at least three of the four triads P abc with 1 ≤ a <
b < c ≤ 4 satisfy d(Ĥ |P abc) ≥ d3. Since Ĥ was δ3-regular for any triad, this shows
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that the assumptions of the embedding lemma, Theorem 3.4, are met for F = K(3)−
4 , and

therefore Ĥ ⊆ H contains a copy of K(3)−
4 . We also note that the “moreover” part of

Lemma 4.1 together with the “moreover” part of Corollary 3.3 implies that there exists
indeed a copy of K(3)−

4 in H = ([n], E) with the apex vertex either at the front or at the
end. This concludes the reduction of Theorem 1.4 to Lemma 4.1 (where ε corresponds
to ε/4 in the reduction above). ut

Lemma 4.1. For every ε > 0 there exists an integer m such that the following holds. If
A is an

(
m
2

)
-partite 3-uniform hypergraph with

(i) nonempty vertex classes P ij for 1 ≤ i < j ≤ m such that
(ii) for each triple 1 ≤ i < j < k ≤ m the restriction Aijk of A to P ij ∪ P ik ∪ Pjk

contains at least (1/4+ ε)|P ij | |P ik| |Pjk| triples,

then there are four distinct indices i1, i2, i3, i4 ∈ [m] together with six vertices P ab

in P ia ib for 1 ≤ a < b ≤ 4 such that P 12P 14P 24, P 13P 14P 34, and P 23P 24P 34 are
triples of A. Moreover, there exists such a configuration with

i4 = max(i1, i2, i3, i4) or i4 = min(i1, i2, i3, i4).

Proof. Suppose
m−1
� m−1

∗ � ε,

and let a 3-uniform hypergraph A as in the statement be given. Notice that each of the
three vertices P 12, P 13, and P 23 appears only once in the conclusion, so we may eliminate
them from consideration by “projecting” the nonempty tripartite parts of A onto appro-
priate bipartite graphs. That is, for any three distinct indices i, j, k ∈ [m] we define a
bipartite graphQi

jk with bipartition (P ij ,P ik) by putting an edge between P ij ∈ P ij and
P ik ∈ P ik if and only if for some P jk ∈ Pjk the triple P ijP ikP jk belongs to E(Aijk).

In the next step, we colour the 3-subsets of [m] with two colours, red and green,
with the intention of applying Ramsey’s theorem afterwards. So let any three indices
1 ≤ i < j < k ≤ m be given. Each triple P ijP ikP jk from E(Aijk), with P ij ∈ P ij ,
P ik ∈ P ik , and P jk ∈ Pjk , gives rise to a unique pair (P ijP ik, P ikP jk) of edges
P ijP ik ∈ E(Qi

jk) and P ikP jk ∈ E(Qk
ij ), and hence our assumption on the density

of Aijk yields ∑
P ik∈P ik

dQijk
(P ik)dQkij

(P ik) ≥ (1/4+ ε)|P ij | |P ik| |Pjk|.

Thus the Cauchy–Schwarz inequality shows that at least one of the two estimates∑
P ik∈P ik

dQijk
(P ik)2 ≥ (1/4+ ε)|P ij |2|P ik| (∗)

or ∑
P ik∈P ik

dQkij
(P ik)2 ≥ (1/4+ ε)|Pjk|2|P ik| (∗∗)
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holds. Hence no clash of colours arises if we colour {i, j, k} red when (∗) fails and green
when (∗∗) fails. If both (∗) and (∗∗) are valid, the colour of {i, j, k} is irrelevant and we
make an arbitrary choice. In other words, if {i, j, k} ends up being red, then necessar-
ily (∗∗) holds, whilst if the triple is green, then this indicates the validity of (∗).

By Ramsey’s theorem, or more precisely as we may assume the partition relation

m −→ (m∗)
3
2,

there is a set X ⊆ [m] of size m∗ such that all triples from X have the same colour. By
symmetry we can assume that this colour is red, and relabelling the indices if necessary
we may further suppose that X = [m∗]. We contend that a configuration of the desired
kind can be found with 1 ≤ i1 < i2 < i3 < m∗ and i4 = m∗.

To show this, we define an (m∗ − 1)-partite graph G with vertex classes Wi = P im∗
for 1 ≤ i < m∗ by demanding that the restriction of G to Wi ∪Wj be isomorphic to Qm∗

ij

whenever 1 ≤ i < j < m∗. Notice that for such i and j the triple {i, j,m∗} is red,
whence (∗∗) implies ∑

P∈Wi

dWj (P )
2
≥ (1/4+ ε)|Wi | |Wj |

2.

As we could have chosen m∗ so large that the conclusion of Theorem 2.1 applies to
m∗ − 1 and ε here in place of m and ε there, we may assume that G contains a triangle,
say with vertices P 14

∈ Wi1 , P 24
∈ Wi2 , and P 34

∈ Wi3 , where i1 < i2 < i3. Now, for
example, P 14P 24 being an edge of G and hence of Qm∗

i1i2
means that there is some vertex

P 12
∈ P i1i2 such that the triple P 12P 14P 24 appears in Ai1i2m∗ . For the same reason,

the desired vertices P 13 and P 23 exist. Thereby Lemma 4.1, and hence Theorem 1.4, is
proved. ut

5. Concluding remarks

5.1. Turán densities of cliques in weakly quasirandom hypergraphs

Our main result, Theorem 1.4, asserts that the weakly quasirandom Turán density
of K(3)−

4 is 1/4, but many open questions remain. It would be very interesting to de-
termine π (K

(3)
4 ) or more generally π (K

(3)
k ) for arbitrary k ≥ 4. We recall a random

construction from [28] which shows that

π (K
(3)
k ) ≥

k − 3
k − 2

. (5.1)

This lower bound is established by considering a random (k − 2)-colouring ϕ of the
pairs [n](2), where the colour of each pair is chosen uniformly and independently among
all k − 2 colours. Given such a colouring ϕ we let Hϕ be the 3-uniform hypergraph with
vertex set [n] containing only those hyperedges {x, y, z} with 1 ≤ x < y < z ≤ n that
satisfy ϕ(x, y) 6= ϕ(x, z). One can check that for any fixed η > 0, with high probability
the hypergraphHϕ is

(
k−3
k−2 , η

)
-quasirandom for sufficiently large n. On the other hand, for
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any k vertices 1 ≤ x1 ≤ · · · ≤ xk ≤ n, two of the k − 1 pairs {x1, xi} with i = 2, . . . , k
containing x1 must have the same colour in ϕ. Consequently, x1, . . . , xk cannot span
a clique and (5.1) follows. We believe this construction is optimal for k = 4 and put
forward the following conjecture.

Conjecture 5.1. We have π (K
(3)
4 ) = 1/2.

In [27] we establish a weaker version of Conjecture 5.1. This version is based on the
following strengthened form of the assumed quasirandom condition.

Definition 5.2. A 3-uniform hypergraph H = (V ,E) is (d, η, )-quasirandom if for
every subset U ⊆ V of vertices and every setX ⊆ V (2) of pairs in V the number e(U,X)
of ordered pairs (u, {x, x′}) satisfying {u, x, x′} ∈ E, u ∈ U , and {x, x′} ∈ X satisfies∣∣e(U,X)− d|U | |X|∣∣ ≤ η n3

and we denote by Q(3)
(d, η) the class of (d, η, )-quasirandom 3-uniform hypergraphs.

With this definition at hand we define for a 3-uniform hypergraph F the corresponding
quasirandom Turán density

π (F ) = sup
{
d ∈ [0, 1] : for every η > 0 and n ∈ N there exists an F -free,

3-uniform hypergraph H ∈ Q (d, η) with |V (H)| ≥ n
}
.

One can check that for every k ≥ 3, with high probability the hypergraph Hϕ defined
by a random (k − 2)-colouring ϕ above is indeed quasirandom in the sense of Defini-
tion 5.2, i.e., it is

(
k−3
k−2 , η,

)
-quasirandom for any fixed η > 0 for sufficiently large n.

Consequently, we also have

π (K
(3)
k ) ≥

k − 3
k − 2

. (5.2)

In [27] we establish a matching upper bound for k = 4 by a proof based on the regularity
method for hypergraphs.

Theorem 5.3. We have π (K
(3)
4 ) = 1/2.

Also for k > 4 it might be possible that the lower bound given in (5.1) (and (5.2)) is
best possible and we are not aware of any better constructions. However, we remark that
for k = 6 there is another construction attaining the same bound. For that we consider a
random two-colouring of [n](2) and letH consist of all triples {x, y, z} for which the three
pairs {x, y}, {x, z}, and {y, x} are not all of the same colour. Again it is easy to check that
with high probability the hypergraph H is (3/4, η)-quasirandom for every fixed η > 0,
while the simplest instance of Ramsey’s theorem, the so called “three in a party of six
theorem”, shows that H is K(3)

6 -free. It would be intriguing if both of these constructions
were best possible.
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5.2. Hypergraph with vanishing weakly quasirandom Turán density

For the classical Turán density π(·) Erdős [6] characterised all hypergraphs F with
π(F ) = 0. Restricting the discussion to 3-uniform hypergraphs, he showed that π(F ) = 0
if and only if F is tripartite, i.e., V (F) can be partitioned into three classes such that every
hyperedge of F contains precisely one vertex from each class. Since large, complete, and
balanced tripartite 3-uniform hypergraphs have density approaching 2/9, Erdős deduced
that if π(F ) > 0, then π(F ) ≥ 2/9.

We establish a similar characterisation of {F : π (F ) = 0}. Clearly, this set contains
all tripartite hypergraphs, and the additional quasirandomness assumption considered here
increases this set. In fact, it follows from [18] that in addition to all tripartite hypergraphs
it contains all linear 3-uniform hypergraphs F , where we say a hypergraph F is linear
if any pair of hyperedges shares at most one vertex. In [24] we obtain the following
characterisation of hypergraphs with vanishing weakly quasirandom Turán density.

Theorem 5.4. For each 3-uniform hypergraph F , the following are equivalent:

(a) π (F ) = 0.
(b) There is an enumeration of the vertices of F as v1, . . . , vf together with a colouring of

the pairs of vertices of F using red, blue and green colours such that if for i < j < k

the triple {vi, vj , vk} is a hyperedge of F , then {vi, vj } is red, {vi, vk} is blue, and
{vj , vk} is green.

Theorem 5.4 has the following consequence, which shows that π “jumps” from 0 to at
least 1/27.

Corollary 5.5. If a 3-uniform hypergraph F satisfies π (F ) > 0, then π (F ) ≥ 1/27.

For the proof of Corollary 5.5 we will display a weakly quasirandom hypergraph H of
density 1/27 which only contains subhypergraphs satisfying condition (b) of Theorem 5.4
(in fact, it will be universal for all such hypergraphs). Consequently, if π (F ) > 0, then
by Theorem 5.4 the hypergraph F fails to satisfy (b), whence it is not contained inH , and
therefore π (F ) ≥ 1/27.

The hypergraph H will given by the following random construction: We consider a
random three-colouring ψ : [n](2) → {red, blue, green}. For a given ψ we define the 3-
uniform hypergraph H = Hψ on the vertex set [n], where we include the triple {i, j, k}
with 1 ≤ i < j < k ≤ n in E(Hψ ) if ψ(i, j) is red, ψ(i, k) is blue, and ψ(j, k) is
green. It follows that for any η > 0, with high probability the random hypergraph Hψ
is weakly (1/27, η)-quasirandom for sufficiently large n. Moreover, it follows from the
construction that every subhypergraph of Hψ satisfies condition (b) of Theorem 5.4, and
hence Corollary 5.5 follows from Theorem 5.4.

We also note that if F satisfies π (F ) = 0, then by definition of π the hypergraph F
is contained in any weakly quasirandom hypergraph of positive density, and in particular
F ⊆ Hψ . Hence,ψ restricted to the vertices of this copy of F shows that F satisfies (b) of
Theorem 5.4, which establishes the implication (a)⇒(b). The converse is the main part of
Theorem 5.4; it is based on the regularity method for hypergraphs and is the main result
of [24].
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5.3. Two extensions of Theorem 1.4

We may suggest two extensions of the main result. Theorem 1.4 concerns the weakly
quasirandom Turán density for the hypergraphs K(3)−

4 . This hypergraph consists of one
apex vertex a whose link graph, i.e., the set of pairs that together with a form a hyperedge
in K(3)−

4 , is a triangle. It would be of interest to study the case, when the triangle is
replaced by a larger clique. We discuss partial results on this problem in Section 5.3.1.

For another extension of Theorem 1.4 we consider K(3)−
4 as a 3-uniform hypergraph

with three hyperedges on four vertices and, similarly, for r ≥ 3 we may consider r-
uniform hypergraphs with three edges on (r + 1)-vertices. In fact, we have established
the quasirandom Turán density for these hypergraphs, if the r-uniform hyperedges of H
are quasirandomly distributed with respect to the (r − 2)-tuples of the vertex set (see
Section 5.3.2).

5.3.1. Extending graph cliques to hypergraphs. We consider the following star-like 3-
uniform hypergraphs Sk . For k ≥ 3 the hypergraph Sk has vertex set {a, b1, . . . , bk} and
for all

(
k
2

)
pairs 1 ≤ i < j ≤ k the triple {a, bi, bj } is a hyperedge of Sk . We refer to

the vertex a which is contained in every hyperedge of Sk as the apex vertex. Clearly, for
k = 3 we have S3 = K

(3)−
4 and by Theorem 1.4 we have π (S3) = 1/4. From this point

of view the natural question is to determine π (Sk) for k > 3. We have partial results in
this direction. Let us begin with S4.

Theorem 5.6. We have 1/3 ≤ π (S4) ≤ 4/9.

The upper bound can be proved along the lines of Theorem 1.4 by using Theorem 2.2
for K4 instead of Theorem 2.1.

The lower bound is given by the following construction. Again we consider a random
three-colouring ψ : [n](2) → {red, blue, green}. Given ψ we define a 3-uniform hyper-
graphH = Hψ on the vertex set [n] containing those hyperedges {x, y, z}with x < y < z

where the colour pattern of the three pairs {x, y}, {x, z}, and {y, z} satisfies

(i) ψ(x, y) = ψ(y, z) 6= ψ(x, z), or
(ii) the ordered colour pattern (ψ(x, y), ψ(x, z), ψ(y, z)) is one of the three rainbow

patterns (red, blue, green), (green, red, blue), or (blue, green, red).

Note that there are six patterns of the first kind and so in total for the hyperedges of H
we allow nine of the 27 possible combinations. Standard probabilistic tail estimates show
that, for any η > 0, with high probability H is weakly (1/3, η)-quasirandom provided n
is sufficiently large.

It remains to show that H contains no copy of S4. Supposing the contrary, let a ∈ [n]
be the apex vertex of a copy of S4 in H and consider its monochromatic neighbourhoods
with respect to ψ , i.e., set

N<
red(a) = {x < a : ψ(x, a) = red} and N>

red(a) = {x > a : ψ(a, x) = red},

and let N<
green(a), N

>
green(a), N

<
blue(a), and N>

blue(a) be defined similarly for the other two
colours. By definition these six sets partition the set Va = [n] \ {a}. We consider the link
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graph La of a with vertex set Va where {u, v} forms an edge if {a, u, v} is a hyperedge
of H . Note that due to the colour patterns allowed in (i) and (ii) the six neighbourhood
sets are independent sets in La . Moreover, one can check that the three sets

N<
red(a) ∪· N

>
blue(a), N<

blue(a) ∪· N
>
green(a), and N<

green(a) ∪· N
>
red(a)

are also independent sets and partition Va . In other words, the link graph La is
3-colourable, and hence it cannot contain a copy of K4. In particular, the vertex a cannot
be the apex vertex of a copy of S4 in H .

For general k we can prove

k2
− 5k + 7
(k − 1)2

≤ π (Sk) ≤

(
k − 2
k − 1

)2

. (5.3)

The upper bound follows like the proof for k = 4 along the lines of Theorem 1.4 with the
generalisation of Theorem 2.1 for the clique Kk (see Theorem 2.2).

For the lower bound we consider a random (k − 1)-colouring

ψ : [n](2)→ {0, . . . , k − 2}.

As before, the colour pattern we see on the pairs of three vertices x < y < z determines
whether this triple forms a hyperedge of H . In the general case we allow the following
patterns:

(i) ψ(x, y) = ψ(y, z) 6= ψ(x, z), or
(ii) the ordered colour pattern (ψ(x, y), ψ(x, z), ψ(y, z)) is rainbow (i.e., all three

colours are different), but not of the form (i, j, i + 1) for i = 0, . . . , k − 2 and
j 6∈ {i, i + 1}, where addition is taken modulo k − 1.

This way, of all different (k − 1)3 patterns we allow (k − 1)(k − 2) patterns by part (i)
of the definition and (k − 1)(k − 2)(k − 3)− (k − 1)(k − 3) = (k − 1)(k − 3)2 patterns
in (ii). Hence, with high probability the hypergraph H is weakly (d, η)-quasirandom for
any fixed η > 0 and

d =
(k − 1)(k − 2)+ (k − 1)(k − 3)2

(k − 1)3
=
k2
− 5k + 7
(k − 1)2

.

Moreover, as above one can show that the link graph La of every vertex a ∈ [n] is (k−1)-
colourable, and hence it contains no Kk . In fact, with similar notation as above it can be
checked that the sets

N<
i (a) ∪· N

>
i+1(a)

for i = 0, . . . , k − 2 form a partition of [n] \ {a} into independent sets in La . This
establishes the lower bound of (5.3).

5.3.2. Three r-tuples on r+1 vertices. In their concluding remarks in [15], Glebov, Král’,
and Volec suggested an analogue of Theorem 1.4 in the context of r-uniform hypergraphs.
Instead of looking atK(3)−

4 they propose to look at the r-uniform hypergraph F (r) on r+1
vertices with three edges, so that an r-uniform hypergraph H contains F (r) if and only if
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the link of some (r − 2)-set of vertices contains a triangle. This is perfectly suited for the
natural generalization of Example 1.3 to this context.

To keep the discussion simple, we stick to the case r = 4. Then one may start
from a random directed 3-uniform hypergraph T (3)n with vertex set [n] in which for
any 3-element subset of [n] one of its two cyclic orientations has been chosen at ran-
dom with probabilities 1/2, all of these choices being mutually independent. Then, we
consider a 4-element set to be a hyperedge of the corresponding 4-uniform hypergraph
H(T

(3)
n ) if and only if each of its 2-element subsets is traversed by the two triples contain-

ing it in opposite directions. So {w, x, y, z} ∈ E(H(T (3)n )) happens for example in case
−→
xyz,
−−→
xwy,

−−→
xzw,

−−→
ywz ∈ E(T

(3)
n ). It is not hard to show that such a hypergraph H(T (3)n )

is F (4)-free. Also, it is easily checked that this hypergraph has density 1/8 and is weakly
quasirandom (i.e., it has uniform hyperedge distribution with respect to sets of vertices).
This means that in analogy with (1.4), for any η > 0, if n is sufficiently large, then with
high probability all sets U1, U2, U3, and U4 of vertices satisfy

e(U1, U2, U3, U4) =
1
8 |U1| |U2| |U3| |U4| ± ηn

4,

where e(U1, U2, U3, U4) contains all 4-tuples (u1, u2, u3, u4) ∈ |U1|×|U2|×|U3|×|U4|

such that {u1, u2, u3, u4} is a hyperedge of H(T (3)n ). This prompted the authors of [15]
to conjecture that any weakly quasirandom 4-uniform hypergraph H with density > 1/8
contains a copy of F (4).

An interesting hypergraph described by Leader and Tan [19] in a different context
shows however that this is not the case, and that at least twice as much density is needed.
Their construction starts from a random (graph) tournament Tn on n vertices as in Ex-
ample 1.3. Depending on Tn, they define a directed 3-uniform hypergraph D(3)n by as-
signing the cyclic orientation to any 3-element set {x, y, z} in such a way that it coincides
with the direction of the three arcs spanned by {x, y, z} in Tn either once or three times.
So, e.g. if −→xy,−→yz,−→zx ∈ E(Tn), then −→xyz ∈ E(D(3)n ), while if −→xy,−→xz,−→yz ∈ E(T2), then
−→
xzy ∈ E(D

(3)
n ). Now the 4-uniform hypergraph H(D(3)n ) defined as in the previous para-

graph but starting from D
(3)
n rather than the random orientation T (3)n is easily shown to

have density about 1/4. Moreover, it is weakly quasirandom and contains no copy of F (4).
In the light of this example, we propose a modification of the original question:

it may be observed that the intended extremal example H(T (3)n ) has stronger quasir-
andomness properties than H(D(3)n ) does. Notably, it behaves quasirandomly with re-
spect to pairs, which means that for any six graphs G12, . . . ,G34 on [n], about 1/8 of
the quadruples (x1, x2, x3, x4) with {x1, x2} ∈ E(G12), . . . , {x3, x4} ∈ E(G34) satisfy
{x1, x2, x3, x4} ∈ E(H). One may also show directly that the hypergraph H(D(3)n ) lacks
this property.

This may suggest that any 4-uniform hypergraph with density > 1/8 that is quasiran-
dom with respect to pairs in this sense does indeed contain a copy of F (4). More gener-
ally, we show in [25] that an r-uniform hypergraph of density> 21−r that is quasirandom
with respect to (r − 2)-tuples has to contain F (r). The proof presented in [25] relies on
the regularity method for r-uniform hypergraphs and is considerably more intricate than
the argument presented here.
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We note that the case r = 2 of this result might be viewed as the density version of
Mantel’s theorem. Thus the “three edge theorem” in [25] provides a common generalisa-
tion of Mantel’s theorem and Theorem 1.4 to the context of r-uniform hypergraphs.
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[12] Erdős, P., Stone, A. H.: On the structure of linear graphs. Bull. Amer. Math. Soc. 52, 1087–
1091 (1946) Zbl 0063.01277 MR 0018807
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[28] Rödl, V.: On universality of graphs with uniformly distributed edges. Discrete Math. 59, 125–

134 (1986) Zbl 0619.05035 MR 0837962
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