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Abstract. We introduce the notion of affinizations and R-matrices for arbitrary quiver Hecke alge-
bras. It is shown that they enjoy similar properties to those for symmetric quiver Hecke algebras.

‘We next define a duality datum D and construct a tensor functor SD : Modgr(RD) — Modgr(R)
between graded module categories of quiver Hecke algebras R and RrRD arising from D. The func-
tor 2 sends finite-dimensional modules to finite-dimensional modules, and is exact when RP is of
finite type. It is proved that affinizations of real simple modules and their R-matrices give a duality
datum. Moreover, the corresponding duality functor sends every simple module to a simple module

or zero when RP is of finite type. We give several examples of the functors 3P from the graded
module category of the quiver Hecke algebra of type Dy, Cy, By—1, Ag—1 to that of type Ay, Ay,
By, By, respectively.
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Introduction

Quiver Hecke algebras (or Khovanov—Lauda—Rouquier algebras), introduced by Kho-
vanov-Lauda [12, 13] and Rouquier [17] independently, are Z-graded algebras which
provide a categorification for the negative half of a quantum group. These algebras are
a vast generalization of affine Hecke algebras of type A in the direction of categorifi-
cation [1, 17], and they have special graded quotients, called cyclotomic quiver Hecke
algebras, which categorify irreducible integrable highest weight modules [4]. When the
quiver Hecke algebras are symmetric, we can study them more deeply.

e First of all, it is known that the upper global basis corresponds to the set of isomorphism
classes of simple modules over symmetric quiver Hecke algebras [18, 19].
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e The KLR-type quantum affine Schur—Weyl duality functor was constructed in [5] us-
ing symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. This
functor has been studied in various types [6, 7, 9].

The notion of R-matrices for symmetric quiver Hecke algebras was introduced in [5].
The R-matrices are special homomorphisms defined by using intertwiners and affiniza-
tions. It turned out that the R-matrices have very good properties with respect to real
simple modules [10]. They also have an important role as a main tool in studying a
monoidal categorification of quantum cluster algebras [8].

Let us explain the construction of R-matrices in [5] briefly. We assume that the quiver
Hecke algebra R is symmetric. Let M be an R-module and M, its affinization. The R-
module M, is isomorphic to k[z] ®k M as a k-vector space. The actions of e(v) and t;
on M, are the same as those on M, but the action of x; on M, is equal to the action of x;
on M with the action of z added (see (1.8)). For R-modules M and N, we next consider
the homomorphism Ry, n, € HOMg(M 0N, NyoM;) given by using intertwiners
(see (1.7)). Here HOM denotes the non-graded homomorphism space (see (1.5)). We set

norm .__ /._/ —s .__ pnorm
RMZ’N;’ o (Z - Z) RMZ,NZM I./\/[,N — RMZvN:’|Z=Z/=07

where s is the order of the zero of Ry, n_,. Then the morphisms R})™\ and ry y are

non-zero, commute with the spectral parameters z, z’, and satisfy the braid relations. Here,
in defining M, and rjs y, we crucially use the fact that R is symmetric.

In this paper, we introduce and investigate the notion of affinizations and R-matrices
for arbitrary quiver Hecke algebras, and construct a new duality functor between finitely
generated graded module categories of quiver Hecke algebras. The affinizations defined
in this paper generalize the affinizations M, for symmetric quiver Hecke algebras. The
root modules given in [2] are examples of affinizations.

We then define a tensor functor F2 : Modgr(RD) — Modg (R) between the graded
module categories of the quiver Hecke algebras R and RP, which arises from a duality
datum D consisting of certain R-modules and their homomorphisms. This is inspired by
the KLR-type quantum affine Schur—Weyl duality functor of [5]. The functor 3P sends
finite-dimensional modules to finite-dimensional modules. It is exact when R is of finite
type. We show that affinizations of real simple modules and their R-matrices give a duality
datum. The corresponding duality functor sends every simple module to a simple module
or zero when RP is of finite type.

Here is a brief description of our work. Let R(8) be an arbitrary quiver Hecke algebra.
We define an affinization (M, z);) of a simple R(8)-module M to be an R(f)-module M
with a homogeneous endomorphism zp; € Endg (M) and an isomorphism M/zyM ~ M
satisfying the conditions in Definition 2.2.

We then study the endomorphism rings of affinizations and the homomorphism spaces
between convolution products of simple modules and their affinizations. For a non-zero
R-module N, let s be the largest integer such that Ry y(Mo N) C zj,N oM. We set

RN =2y Rmy: MoN — NoM,
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and denote by ry; MoN — NoM the homomorphism induced by RV By the

definition rj; , never vanishes. The R-matrix ry;  has similar properties to R-matrices
for symmetric quiver Hecke algebras (Proposition 2.10). Proposition 2.12 tells us that if
(M, z\p) and (N, zy) are affinizations of simple modules M and N and one of M and N

is real (see (2.7)), then

(1) HOMRg[zy.zn1(MoN, MoN) = K[zm, zn]idMon;,
(ii) HOMR[zy,zn1(MoN, NoM) is a free k[zp, zy]-module of rank one.

Here, HOM denotes the space of non-graded homomorphisms (see (1.5)). We define
Ry\\'N s a generator of the k[zm, zn]-module HOMg(zy 2y (MoN, NoM). Then R{3'y

commutes with zp and zy by construction, and we prove that RR},’TWZM:zN:O €

HoM(M o N, N o M) does not vanish and coincides with Iy; 5 Up to a constant multiple
(Theorem 2.13).

We next define the duality datum D = {8;, M, z;, rj, R; }j res axiomatically. Here,
J is a finite index set, and

Mj € MOdgr(R(,Bj))a zj € ENDR(ﬁj)(Mj),
rj € ENDR(zﬁj)(Mj oM;), Rjre HOMR(/gj+/3k)(Mj o My, My o Mj),

satisfying certain conditions given in Definition 4.1. We construct a generalized Cartan
matrix AP and polynomial parameters lej (u, v) from the duality datum D and consider

the quiver Hecke algebra R? corresponding to AP and Q?j (u, v). For y € QE with
m = ht(y), we define
AP(y):= @ Af,
neldr
where
AL =My 0---oM,, forp=(ui....pum) et

It turns out that AP (y) has an (R, RP)-bimodule structure (Theorem 4.2), and we ob-
tain the duality functor SD: Modgr(RD) — Modg(R) by tensoring AD(y). Theorem
4.3 tells us that SD is a tensor functor and sends finite-dimensional modules to finite-
dimensional modules. Moreover, it is exact when AP is of finite type. Affinizations of
real simple modules and their R-matrices provide a duality functor which enjoys extra
good properties (Theorem 4.4).

Several examples of duality functors § are given in Sections 5 and 6. In Example
5.2, we construct a duality functor § from the graded module category of a quiver Hecke
algebra of type Dy to that of type A,. The other examples are in non-symmetric cases. We
discuss a duality functor from type C, to type Ay in Example 6.2, and ones from types
By;_1 and Ay_; to type B, in Examples 6.3 and 6.4.

1. Preliminaries

1.1. Quantum groups

Let / be an index set.
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Definition 1.1. A Cartan datum is a quintuple (A, P, IT, 1V, (-, -)) consisting of

(a) afree abelian group P, called the weight lattice,

(b) I ={w; | i € I} C P, called the set of simple roots,

(¢) MY ={h; |i € I} C PY := Hom(P, Z), called the set of simple coroots,

(d) a Q-valued symmetric bilinear form (-, -) on P,

which satisfy

(1) (vj, ;) € 2Z~gforanyi € I,

2) (hi, A) = 2(aj, M) /(j, ;) forany i € I and A € P,

(3) A := ({hi, a}))i jer is a generalized Cartan matrix, i.e., (h;,a;) = 2 forany i € I

and (h;,a;) € Z<gifi # j,

(4) Ilis alinearly independent set,
(5) foreachi € I, there exists A; € P such that (h;, A;) = §;; forany j € I.
Let us write Q = @@;c; Za; and Qp = )Y, ; Z>oa;. For B = > .  kio; € Q4 set
ht(8) = ) ;¢ ki. The Weyl group W associated with the Cartan datum is the subgroup of
Aut(P) generated by the reflections {r;};c; defined by

ri(A) = A — (hj, Moy for A € P.

Let g be the Kac-Moody algebra associated with a Cartan datum (A, P, T, TTY, (-, +))
and @ the set of positive roots of g. We denote by U, (g) the corresponding quantum
group, which is an associative algebra over Q(q) generated by e;, f; (i € I) and g"
(h € PY) with certain defining relations (see [3, Chap. 3] for details). Set A = Z|[q, q_l].
We denote by U, (g) the subalgebra of U, (g) generated by fl.(") = fl'/[n]i! fori e I
and n € Zxo, where ¢; = ¢*%)/% and

—n

a4 g

[n]; . Inlit = |kl
qi — ql'_l 11:[1

1.2. Quiver Hecke algebras
Let k be a field. For i, j € I, we take polynomials Q; ;(u, v) € K[u, v] such that
() Qi j(u,v) = Q;i(v,u),

(i)
Qi j(u,v) = 22(as05)+ e ) o5, =0 1 jip g 14V ?fi 7 (1.1
0 ifi = j,
where #; j.—q;;,0 € k™. We set
_ V) — O i (w, v
Q. v,y = St U TGO gy, (1.2)

u—w

For B € Q4 with ht(8) = n, set
n
Iﬂ = {U:(U],...,Un) el ‘ Z(Xuk =’3}
k=1

The symmetric group &, = (s | k = 1,...,n — 1) on n letters, where s is the transpo-
sition of k and k + 1, acts on I# by place permutations.



Affinizations and R-matrices for quiver Hecke algebras 1165

Definition 1.2. For 8 € Q, the quiver Hecke algebra R(B) associated with A and
(Qi,j(u, v));, jer is the k-algebra generated by

e lvelf), {all<ks=n), (ull<lizn-1)
satisfying the following defining relations:

e)e(V) =8, ye(), Y ew)=1, xe(v) =e(Wxr, XX =XX,
velb

e(v) =e(si(vV)y, wu=7guny iflk—1I1>1,

2
tke(v) = ka,ka (xk’ .Xk.l,.])e(\)),

—e(v) ifl =kand vy = vy, (1.3)
(tex1 — xgT)e(w) = ye(v)  if I =k+ 1and v = vy,
0 otherwise,

(Thr1 Th Tht1 — Tk Thk+1Tk)E(V)

Qv viess Ky Xet1, Xkr2)e(v)  if v = vga,
0 otherwise.

The algebra R(B) has the Z-graded algebra structure given by
deg(e(v)) =0, deg(xre(v)) = (ay, ay), deg(me(v)) = —(oy, onyyy).  (1.4)

For B € Q4, let us denote by Mod(R(B)) the category of R(B)-modules and by
R(B)-mod the category of finite-dimensional R(8)-modules.

We denote by Modg, (R(B)) the category of graded R(8)-modules and by R(8)-gmod
the category of finite-dimensional graded R(8)-modules. We denote by Mod¢, (R(8)) the
full subcategory of Modg(R()) consisting of finitely generated graded R(B)-modules.
Their morphisms are homogeneous of degree zero. Hence, Mod(R(8)), R(B)-mod,
Modg (R(B)), R(B)-gmod and Modys (R(B)) are abelian categories. We set Modg(R) :=
@ﬁeQ+ Modg (R(B)), R-mod := @ﬁeQJr R(B)-mod, etc. The objects of Modg, (R) are
sometimes simply called R-modules.

We denote by R(8)-proj the full subcategory of Modg(R(B)) consisting of finitely
generated projective graded R(f)-modules.

Let us denote by g the grading shift functor, i.e., (M) = My_1 for a graded module
M= @keZ M.

Forv e I? and v € I? | lete(v, V) be the idempotent corresponding to the concate-
nation v * v’ of v and v/, and set

e(B, p) = Z e(v,v).
velB velbf

For an R(B)-module M and an R(B’)-module N, we define an R(B8 + 8’)-module M o N
by

MoN :=R(B+BeB. ) ® (MQN).
R(B)®R(B)



1166 Masaki Kashiwara, Euiyong Park

We denote by M & N the head of Mo N.
For a graded R(8)-module M, the g-character of M is defined by

chy (M) := Z dimy (e(v) M)v.
velf

Here, dim, V := Zkez dim(Vk)qk for a graded vector space V = @kez V. It is well-
defined whenever dim V;, < oo for all k € Z.
Fori € I, let L(c;) be the simple graded R(o;)-module such that ch, (L(e;)) = (i).
For simplicity, we write L(i) for L(x;) if no confusion can arise.
For graded R(8)-modules M and N, let Homgg)(M, N) be the space of morphisms
in Modg(R(B)), i.e., the k-vector space of homogeneous homomorphisms of degree 0,
and set
HOMR(ﬁ)(M, N) = @ HOMR(ﬂ) (M, N),
keZ (1.5)
HOMRg(g) (M, N)i :=Homgg)(¢*M, N).

We write ENDgg) (M) for HOMg(g) (M, M). When f € Homgg) (g M, N), we denote
deg(f) :=k.

For simplicity, we write HOMg(M, N) for HOMg gy (M, N) if no confusion can arise.

We write [ R-proj] and [ R-gmod] for the (split) Grothendieck group of R-proj and the
Grothendieck group of R-gmod. Then the Z-grading gives a Z[g, ¢~ ']-module structure
on [R-proj] and [ R-gmod], and convolution gives an algebra structure.

Theorem 1.3 ([12, 13, 17]). There exist algebra isomorphisms
[R-projl >~ Uy (9).  [R-gmod] ~ A, (g™).

Here, Aq(g+) = {a € Uq_(g) | (a,U, (9)) C A}, where (-, -) is the non-degenerate
symmetric bilinear form on U, (g) defined in [11]. Note that A, (g") is an A-subalgebra
of U, (g) (cf. [8] where A, (g™) is denoted by Ag(M)za+1)-

Definition 1.4. Let ¢ be a Z-valued skew-symmetric bilinear form on Q. If we redefine
deg(tie(v)) to be —(aty,, oy, ) — €(ay, ay,,,), then this gives a well-defined Z-graded
algebra structure on R(8). We denote by R.(8) the Z-graded algebra thus defined.

The usual grading (1.4) is a special case of such a Z-grading.

We define R¢(8)-gmod, R.-gmod, etc., similarly.

Let us denote by Modg (R (B)[g'/?] the category of (%Z) -graded modules
over R¢(B). Forv € 1P we set

1
Hw) =5 Y clay,, o).
1<a<b<ht(B)
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Lemma 1.5. For € Q1 and M € Modg(R(B))[q'/?], set

(Ke(M))n = @ e(WMy_g).
velf

Then

(i) K¢ is an equivalence of categories from Modgr(R(,B))[ql/z] to Modgr(Rc(,B))[ql/z],
(i) for M € Modg:(R(B))[g'/*1 and N € Modg:(R(y))[q'/*1, we have

K(MoN) =~ g2*BN K (M)oKe(N).
Proof. (i) We have
re(V)(Ke(M))n = tre(V) Mp—H ()
C e(skVIMn—H ) —(ay o, )
= e(skV) (Ke(M))n—H(v)— (e oy, ) +H (stv)-
Then (i) follows from
H(Sk\)) - H(U) = %(c(akaA ) Olvk) - c(avk ) aVkJrl)) = —C(Olvk, aVkJrl)'
(i) For v € I and € 17, we have
e(W)Kc(M)g ® e()Ke(N)p = e(W)Ma—H ) ® e(WNp—H ()
Ce(w* u)(MoN)gtb—Hv)-H(w)
=e(vx W Ke(MoN)atb—H®)—H(w)+Hvxw)-

Since
H(vsp) — Hw) — H(u) = 3¢(8. ¥).
we have
Ke(M)a ® Ke(N)p C Ke(MON) 4 15
This yields a map

_1
Ke(M)y ® Ke(N)p — (g7 2PV Ke(MoN))arp,
which induces an isomorphism
Ke(M)oKe(N) S g 2BV K(MoN). O

We define the algebra U, (g)c as Z[qil/ 2] Q74+ U, (g) with a new multiplication o,
given by
aoch= q_%c(“’ﬁ)ab
fora € ZIg*'?] @z 411 Uy (9)o and b € Z[g='2] @z 41y Uy (9)p-
We define A, (g™)c similarly.

Corollary 1.6. There is a Z[g*'/*1-algebra isomorphism

£t Ag(@D)e = ZIgT'?] ® [Re-gmod].
Zlg*]
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1.3. Remark on parity

Under hypothesis (1) of Definition 1.1, the category Modg(R(B)) is divided into two
parts according to the parity of degrees for any 8 € Q..

Lemma 1.7. Let B € Q. Then there exists a map S: 1P — 7./27 such that
S(skv) = SV) + (o, oy )

for any v € IP and any integer k with 1 < k < ht(B8).

Proof. Let n = ht(B). Choose a total order < on I and set

S(v) == DT ().

1<a<b<n, vg=<vyp
Then we have
S(skv) = SW) + (Wkr1 < Vi) — 8k < vgy1)) (@ @y, )
= SW) 4 (1 = 8k = vig1) ) (@uyr Ayyy) = SOW) + (@, ayy,,) mod 2.
Here, for a statement P, we set §(P) to be 1 if P is true and O if P is false. O

Proposition 1.8. Let B € Q4 and S: IP — 7/27 be as in Lemma 1.7. Let
Modgr(R(ﬂ))S be the full subcategory of Modg (R(B)) consisting of graded R(B)-
modules M such that e(V)My = 0 forany v € I8 and k = S(v) + 1 mod 2. Then

Modg (R(8)) ~ Modg(R(8))* ® g Modg:(R(B))°.
Proof. For any graded R(B)-module M and ¢ = 0, 1 set

M?¢ = &P e(V)Mg.

velb keZ,
k=S(v)+¢e mod2

Then we can see easily that the M® are R(8)-submodules of M and M = MY M.
Moreover, M¢ € g° Modg(R(B))5. =

Note that g2 Modg: (R(8))S = Modg(R(B))5 and

HOMg(s)(M, N); =0 ifkis odd and M, N € Modg(R(8))°. (1.6)

1.4. R-matrices
Let € Qrandm =ht(8).Fork=1,...,m—1landv € I8, the intertwiner ¢x € R(B)
is defined by

(tkxr — xkt)e(v)  if vp = vey,
e (V) otherwise.

pre(v) = {
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Lemma 1.9 ([5, Lem. 1.5]).

() pze() = (Quup (ks Xt 1) + Sy Je(W).
(1) {@r}1<k<m—1 satisfies the braid relation.
(iii) For a reduced expression w = s;, ---si, € Gy, let ¢y, = @;, - - @;,. Then @, does
not depend on the choice of reduced expressions of w.
(iv) Forw € 6,, and 1 <k < m, we have QyXk = Xyk)Pw-
(V) Forw e Gy and 1l <k <m, ifwlk + 1) = w(k) + 1, then @k = Ty (k) Pw-
VD) @y-1ppe(v) = Ha<b, w(a)>w(b)(QUa»Uh (Xa» Xp) + Buy,v,)e (V).

For m, n € Zx, let w[m, n] be the element of &,,1, defined by

k+nifl <k <m,
k—mifm <k <m+n.

wlm, n](k) = {

Let M be an R(B)-module with ht(8) = m and N an R(B’)-module with ht(8") = n. The
R(B) ® R(B')-linearmap M @ N — NoM given by u ® v — @yn.m(v @ u) can be
extended to an R(8 + B’)-module homomorphism

Ry.n:MoN — NoM. (1.7)

For B =Y . @i, we set supp(B) := {ix | 1 <k < m}.
Definition 1.10. The quiver Hecke algebra R () is said to be symmetric if Q; ;j(u, v) is
a polynomial in u — v for all i, j € supp(B).

Suppose that R(8) is symmetric. Let z be an indeterminate. For an R(8)-module M, we
define an R(B)-module structure on M, := Kk[z] ®kx M by

eW)@®u)=a®eWu, xj(@a®u)=(za)@u-+aQ xju,

(1.8)
w(a Q@u) =a® (txu),

forv € I",a € k[z] and u € M. We call M, the affinization of M. For a non-zero R(B)-
module M and a non-zero R(B’)-module N, let s be the order of the zero of Ry, N, :
M;oN; — NyoM,, and

RypN, =G =27 Ry, v, -

We definery vy : MoN — NoM by

.__ pnorm
ry N = RMZ,NZ/|Z:Z/:O'

We set R(B)[z1,...,2k] = Klz1,...,2x] ®k R(B). For simplicity, we write
R[z1, ..., zk] for R(B)[z1, ..., zx] if there is no risk of confusion.

Theorem 1.11 ([5, Section 1]). Suppose that R(B8) and R(B’) are symmetric. Let M be
a non-zero R(B)-module and N a non-zero R(B’)-module. Then:
6)) R,‘{fl’rr’;‘\,, and xy N are non-zero.

(ii) R;llfl’r%, and xy N satisfy the braid relations.
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(iii) Set
A= Y (0T Quwbemed) ) En))e() Be).
nelb, velf 1<a<m,1=<b=n, p,#vp
Then A is in the center of R(B) ® R(B'), and
Ry, M. Ru N, (u®v) =A(u®v) forue M andv € Ny.
@iv) If M and N are simple modules, then
ENDR(g+p)z,2/1(Mz 0 Nz) = K[z, 71,
HOMRg(p1p)1z.1(Mz 0 Nz, Noyo M) ~ Klz, Z'IR™Y, .

2. Affinization

2.1. Definition of affinization
Definition 2.1. Forany i € [ and 8 € Q4 with ht(8) = m, we set
p=>( T x)ew,
velf aell,m], v,=i
where [1,m] = {1, ..., m}.
Note that p; g belongs to the center of R(). If there is no danger of confusion, we simply
write p; for p; g.

Definition 2.2. Let f€Q and M a simple R(B)-module. An affinization M := (M, z1)
of M is an R(f)-module M with an injective homogeneous endomorphism zp of M of

degree dy € Z-o and an isomorphism M/zpM S M satisfying the following condi-
tions:

(a) Mis a finitely generated free module over the polynomial ring k[zp],
(b) p;M £ Oforanyi € I.

If moreover

(c) the exact sequence 0 — zmM/zpyM — M/zjM — M/zuM — 0 of R(8)-
modules does not split,

then the affinization M is strong. We say that the affinization is even if dy is even.
Let us denote by 7rp: M — M the composition M — M/zyM = M.
Remark 2.3. (i) Condition (a) is equivalent to
(") The degree of M is bounded from below, that is, M,, = 0 for n < 0.
Moreover, under these equivalent conditions, we have

chy (M) = (1 — g™)~! ch, (M).
Note that every finitely generated R-module M satisfies (a’).
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(ii) The non-splitting condition (c) is equivalent to saying that zpgM/ ZK/I M is a unique
proper R(B)-submodule of M/ Z|2v| M.

(iii) If R(B) is a symmetric quiver Hecke algebra, then M, is a strong affinization of
any simple R(f)-module M for 8 # 0.

Example 2.4. (i) Fori € I, M := L(i), o L(i) is not an affinization of M := L(i)o L(i)
In fact, conditions (a) and (c¢) in Definition 2.2 hold but (b) does not.

(i) Let (M, z)) be an affinization of M. Assume that dy; = ab for a, b € Z- and
let z be an indeterminate of homogeneous degree b. Let k[zpg] — Kk[z] be the algebra
homomorphism given by z\y = z%. Then (K[z] k[ M, 2) is an affinization of M. If
a > 1 then it is never a strong affinization, because

kiz] ® M)/(z%k[z] ® M) (k[z]/klz]z") ® M
k[zm] k[zm] k

is a semisimple R(B)-module.
As seen in the proposition below, every affinization is essentially even.

Proposition 2.5. Let (M, z\) be an affinization of a simple module M. Assume that the
homogeneous degree dy of z\m is odd. Then there exists an R(B)-submodule M’ of M
such that

@) le\/l M c M/, and (M’, le\/l) is an affinization of M,

(i) M ~K[zm] ®k[z§,|] M’ as R(B)[zm]-modules.

Proof. Let Modg (R(8)) =~ Modgr(R(,fj))S ®q Modgr(R(ﬂ))S be the decomposition in
Proposition 1.8. We may assume that M belongs to Modgr(R(,B))S .LetM = M & M”
with M’ € Modg(R(8))% and M” € g Modg(R(B))5. Then zyM’' € M” and zyM” C
M’ by (1.6). Hence,

M/zmM = (M'/zuM”") & (M"/zqM"),

which implies that M’ /zyyM” ~ M and M” = zyM’, giving the desired result. ]

2.2. Strong affinization
Note that Lemmas 2.6 and 2.7 below hold without assumption (b) in Definition 2.2.

Lemma 2.6. Assume that

B € Q+ and (M, z\1) is a strong affinization of a simple R(B)-module M,
M has homogeneous degree dyy € Zg, and Ty : M — M is a canoni- (2. Dstrong
cal projection.

Then:

(i) The head of the R-module M is isomorphic to M, or equivalently zpM is a unique
maximal R(B)-module.
(ii) Lets := min{m € Z | M, # 0} and u € Mg \ {0}. Then M = R(B)u.
(iii) ENDpgy(M) =~ k[zm]idm.
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Proof. (i) Let S be a simple module and ¢: M — S be an epimorphism. By homo-
geneous-degree considerations, we may assume that (p(zl,‘\/I M) =0 fork > 0. Take k > 0
such that (p(zM M) = S and (p(zk+1M) = 0. Since z M/zk+1M ~ M/zmM is simple,
¢ induces an isomorphism ZM I\/I/zk+1 M = S.Itis enough to show thatk = 0.If k > 0
then we have a commutative dlagram

0—>ZMM/Zk+1M —>ZM 1l\/l/zk+1|\/| —>ZM IM/Zk M——=0

\ lw (2.2)

S

Hence the first row of the above diagram is a split exact sequence, which contradicts
Definition 2.2(c).

(i) Since u & zmM, (i) implies that M = R(B)u.

(iii) Let f € ENDg(g)(M) be a homogeneous endomorphism of degree £. Assume
that f(M) C ZMM for k € Z>o. We shall show f € k[zp]idp by descending induction

on k. If dyk > £, then f has to be O since f(u) ¢ z’,ﬁAM if f(u) # 0. Here u is as in (11)

Suppose that dyk < £. As M is the head of M, the composition M —> M—> M

decomposes as M M, M — M. Hence the composition must be equal to ¢y, for some
¢ € k, which yields
e f — cidm)(M) C zmM.

Therefore, (f — cz’,i,l)(l\/l) C Zk+1 M, and the induction proceeds. O

2.3. Normalized R-matrices

Lemma 2.7. Assume that

B € QF and (M, z) is an affinization of a simple R(B)-module M,

ZMm has homogeneous degree dyy € Zo, and my: M — M is a (2-3)weak
canonical projection.

Then

(i) ENDR(g)z1(M) = K[zm]idm,

(ii) foranyi € I, there exist ¢c; € K* and d; € Z>q such that ;|\ = CiZ;\l}j-

Proof. (i) The proof is similar to that of Lemma 2.6(iii). Let f € ENDg(g)[z,1(M) be a
homogeneous endomorphism of degree £. Suppose that f(M) C z,’i,l M for k € Z>o. We
shall show f € k[zpm]idpm by descending induction on k.

We have f = 0if dyk > € by degree considerations. If dyik < £, then the endomor-
phism z,\_/lk f induces an endomorphism of M. Hence it must be equal to ¢ id 7 for some
c € k. Then (f — czM)(M) C Zk'H M, and the induction proceeds.

(ii) The assertion follows from (1) immediately. ]

Lemma 2.8. Let B, M and M be as in (2.3)weak. Assume further that 8 # 0. Then M is
a finitely generated R(B)-module.
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Proof. Since B # 0, there exists i € I such that p; g has a positive degree. Then there
exists m > 0 such that zf\”/l € k(y;, ﬂ|M) C ENDg(M). Since M is finitely generated over
k[z’K’A], we obtain the desired result. O

Lemma 2.9. Let B, M and M be as in (2.3)weak. Let y € Qi and N € R(y)-gmod.
Then:

(i) The homomorphisms

YR E Mlzy) 1oN — NoMiz,'] and Ry iz NoMzy' 1= Mz ToN
are isomorphisms. Here, M[z,\_/ll] =K[zm, z,\_/ll] Rk[zm] M.
(ii) If N is a simple module, there exist c € K* and d € Z>qo such that Ry moRm.y =

C(Zﬁ/l oN) and Rm noRy M = c(Noz‘,f/l).

Proof. (i) is an immediate consequence of (ii). Let us show (ii). Set m = ht(8) and
n =ht(y). Then (Ry mo Rm.n)IMg N is given by

Z ( l_[ Qv (Xa, xb))e(v).

velBty 1<a<m<b<m+n,v,#vp

Since any element in the center of R(y) with positive degree acts by zero on N, it is equal
to

Z ( H Qu, v (Xa, 0))8(1)).

velPty 1<a<m<b=<m-+n,vs#vp

Consequently, it is a product of p; g|m’s up to a constant multiple. Hence Lemma 2.7(ii)
implies the desired result. O

Let M and M be as in (2.3)weak, and let N € R-gmod be a non-zero module. Let s be the
largest integer such that Ry y (Mo N) C z3,N oM. Then we set

My =2v RMn: MoN — NoM.

We denote by . .
rM’N: MoN — NoM

the homomorphism induced by R\"V. By the definition,
RR,?% =0and YN = 0 when N = 0.

We define R“NO”,\}l‘ and Ty i similarly.

The arguments in [8, 10] still work under these assumptions, and we obtain similar
results. We list some of them without repeating the proofs. A simple module S is called
real if So § is simple.

I y hever vanishes. We set

Proposition 2.10 ([10, Th. 3.2, Prop. 3.8], [8, Prop. 3.2.9, Th. 4.1.1]). Assume that

(a) M and N are simple R-modules, } (2.4)

(b) one of them is real simple and also admits an affinization.
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Then:

(i) Mo N has a simple head and a simple socle. Moreover, Im(r,, ) is equal to the head
of Mo N and the socle of NoM.
(i) We have

HoMgr(MoN,MoN) =Kkidy.n, HOMR(MON,NOM)ZkI‘MN
(iii) M © N appears only once in a Jordan—Holder series of Mo N in R-mod.

Proposition 2_.11. Let M and M be as in (2.3)weak, and let N be a simple R-module.
Assume that M is real. Then

(1)
HOMR[ZM](MON, MON) =k[Z|\/|]id|\/|oN, (25)
HOMRgz,)(N oM, NoM) = Kk[zm]idyom, 2.6)

(i) HOMR[; (Mo N, NoM) and HOMg[;,,j(N oM, Mo N) are free K[zp]-modules of
rank one.

Proof. (i) Let us first show (2.5). The idea of the proof is similar to that of Lemma 2.6(iii).

Let f € HOMg[;,j(MoN,MoN) be of homogeneous degree £. We know that
f(MoN) C zyMoN for some s € Z>o. We shall show f € k[zpm]idmon by de-
scending induction on s. If s >> 0, then f is zero by degree considerations. Now, we
consider z,, f. As z), f induces an endomorphism of M o N, by Proposition 2.10(ii) it is
equal to ¢id;,  for some ¢ € k. Hence

(f = czy)(MoN) C 3 'MoN.
Thus, the induction hypothesis implies that f — cz), € klzm]idy,y. The proof of (2.6)
is similar.
(i) By Lemma 2.9, we have an R[zp]-linear monomorphism N oM — Mo N. This

yields
HOMR[ZM](MON, NoM) — HOMR[ZM](MON, MoN) ~ klzm].

As HOMg[;,j(Mo N, N o M) is non-zero, HOMg[;,,j(Mo N, N o M) is a free k[z]-mod-
ule of rank one. ]

Proposition 2.12. Assume that

(@) (M, z\m) and (N, zN) are affinizations of simple modules M and N,
respectively, 2.7
(b) one of M and N is real.

Then

(1) HOMR[zy,zy1(MoN, MoN) = Kk[zm, zn]TidMoN.
(ii) HOMg[zp,zn1(MoN, NoM) is a free K[z\, zn]-module of rank one.
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Proof. (i) Assume that M is real simple. The other case can be proved similarly.

Let f be a homogeneous element of HOMg[;,, -y (MoN, MoN) of degree £. As-
suming that Im(f) C z’,i,(MoN), we shall show f € Kk[zm, zn]idmon by descending
induction on k. If kK > 0, then f is zero by homogeneous-degree considerations. We now
consider zﬁkf. The R[zm, zn]-linear homomorphism szf: MoN — MoN induces an
R[zpm]-linear homomorphism Mo N — Mo N. By Proposition 2.11, the latter is equal to
@(zm) idpy, 5 for some @(zm) € K[zm]. Hence

Im(f — Zﬁﬂ)(ZM) idmoN) C Z]|(\|+1|V|ON,

which implies
f —z2je(zm) idmon € Klzm, zn]idmon
by the induction hypothesis.

(ii) Since Ry NRN MIzy=0 is non-zero by Lemma 2.9(ii), assertion (i) tells us that
Rm.NRN.Mm € K[zm, zn]idnom is non-zero. The injectivity of Ry nRn v implies that
RN .m: NoM »— MoN is injective. Thus the composition with Ry 1 induces an injective
homomorphism

HOMR[Zm,zN](MONv NoM) — HOMR[zm,zN](MON» MoN) >~ K[zm, zn]-

We now consider the non-zero K[zn, zy]-module L := HOMg([z,,zn1(MoN, NoM).
Let a,b € K[z, zn] be non-zero relatively prime elements. If f € aL N bL, then
f(MoN) C a(NoM)Nb(NoM). Since a and b are relatively prime and N o M is a free
k[zm, zn]-module,

f(MoN) Cab(NoM),

which implies that (ab)_lf :MoN — No M is well-defined, i.e., f € abL. Therefore,
we conclude that L satisfies the condition:

if a, b € K[zm, zn] \ {0} are prime to each other, then aL NbL = abL,

which implies that L is a free k[zp, zn]-module of rank one. ]

We define R‘,;,Trﬁ as a generator of the k[zp, zy]-module HOMg(z,,,z (Mo N, NoM). Tt
is uniquely determined up to a constant multiple. We call it a normalized R-matrix.

Theorem 2.13. Assume (2.7). Then R\ lzp=on=0" MoN — NoM does not vanish
and is equal to ¥ 5 up to a constant multiple.

Proof. Since any simple R-module is absolutely simple, we may assume that the base
field k is algebraically closed without loss of generality.
By Proposition 2.10(ii), we have

HoMg(MoN,NoM) =kry o (2.8)

for anon-zero r; v € HOMg (MoN, NoM).Let £ be the homogeneous degree of r - i
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For a € Z, let k[z\m, zn]a be the homogeneous part of K[z, zn] of degree a and set
klzm, zN]sa = ®k2a k[zm, zn1k- Let ¢ € Z be the largest integer such that

MN(MoN) C Klzm, znIzc(NoM).

Then R\ induces a non-zero map

¢: MoN — (klzm, zn]zc(NoM))/(klzm, zn]zc+1(NoM)).
Since NoM is a free k[zp, zn]-module, we have
(kKlzm, zn]=c(No M)/ (Klzm, 2N]zcr1(NoM)) = klzm, znle @(N o M).
By (2.8), there exists a non-zero f(zm, zn) € Klzm, zn]e such that
o) = f(zm, ZN)I'M’N(M) forany u € MoN.
Hence, the homogeneous degree of er\l/‘l’rﬁ isc + ¢, and

R'N(MoN) C f(zm, zn)(NoM) + Kklzm, zn]zc+1(NoM).

Let us show that f(zm, zn) is a constant function (i.e., ¢ = 0). Assuming that ¢ > 0, take
a prime divisor a(zm, zn) of f(zm, zn). Let (x, y) € k? be such that a(x, y) = 0. Let
dy and dy be the homogeneous degrees of zp and zy, respectively, and let z be an inde-
terminate of homogeneous degree one. Then a(xz™, yz™N) = f(xz™, yz9N) = 0. Let
K[zm, zn] — K[z] be the map obtained by the substitution zp = xz™ and zy = yzN.
Set

K=klz] ® (MoN), K'=klz] ® (NoM), R =klz] ® RN

k[zm,zn] klzm,zn] klzm,zn]

Then we obtain the map
R: K — *T'K’.

Note that K/zK ~ MoN and K'/zK' ~ NoM. We shall show R'(K) C zXK’ for

any k > ¢ + 1 by induction on k. Assume that k > ¢ + 1 and R'(K) C zXK’. Then

the morphism MoN — N oM induced by z %R’ is equal to b r; y forsome b € k. If

b # 0, then the homogeneous degree of R’ is k + £ > ¢ + £, which is a contradiction.

Thus b =0 and R'(K) C ¥t K’. Hence the induction proceeds, and we conclude that
R‘l\‘}l)fm

N |ZM:x1de ZN:yZdN = O

for.ar.ly (x,y) € !{2 quch that a(x, y) = 0, which implies RR/(I)”I\YI] is divisible by a(zm, zN)-
This is a contradiction.

Therefore f is a constant function, and Ry"\ induces ry; 5 (up to a constant multiple)
after the specialization z)y = zy = 0. O

Corollary 2.14. Assume (2.7). If M is real, then RN lan=0 = RR/TI'E (up to a constant
multiple). ’
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Lemma 2.15. Assume (2.7). Then there exists a homogeneous element f(z\, zN) Such
that

(i) Ry'W © R\N = f(2m, 2n) idmon and Ry'Y o R = (M, 2N) idNom,
(i) f(zm,0) and (0, zN) are non-zero.

Proof. This follows from Proposition 2.12, Corollary 2.14 and Lemma 2.9. O

Lemma 2.16. Let (M, z\) and (N, zn) be affinizations of simple modules M and N,
respectively. Assume that either M or N is real, and Mo N ~ N oM. Let d be a common
divisor of the homogeneous degrees dy of zy and dy of zN. Let z be an indeterminate of
homogeneous degree d and let K[z, zn] — K[z] be the algebra homomorphism given by
M M/ gnd IN 7N/ Then Mo N := K[z] Qk[zp,zn1(MoN) is an affinization
of MoN.

Proof. By the assumptions, M o N is simple. Condition (a) in Definition 2.2 is obvious.
Condition (b) follows from p; [Mo,N = (p;IM) 0z (p; IN)- m]

Proposition 2.17. Let M and M be as in (2.3)weak. Assume that M is real. Normalize
R\{"V S0 that it induces id;y; after the specialization zyyoM = Mozy = 0. Then

@ (RM™ _idpom)(MoM) C (zmoM — Mozy)(MoM),
(i) RIS™ o RIS — idp M.

norm

Proof. (i) To avoid confusion, let (N, z)y) be a copy of (M, z)1) and regard Ry as

a homomorphism MoN — NoM. We denote by :: MoN 5 NoM the identity. We
regard MoN and NoM as R[zp, zy]-modules. Then Rr,\‘/‘l’rﬁ commutes with z)1 and zp,
but 1 does not. Precisely, we have 1 oz = zy ot andtozy =zpm o1

Let z be another indeterminate with the same homogeneous degree dy, and let

klzm, zn] — Klz]

be the algebra homomorphism given by zp +— z and zy —> z. Then Lemma 2.16 implies
that K := Kk[z] ®k[z,zy](MoN) is an affinization of M o M. The homomorphisms RR/(I)rﬁ
and ¢ induce R[z]-linear endomorphisms R" and :" of K. By Lemma 2.7(i), R’ and i’ are
powers of z up to a constant multiple. Since they are id; ; after the specialization z = 0,
we conclude that R’ = 1/, which completes the proof.

(i) This follows from Lemma 2.15 immediately. m]

Example 2.18. Leti € I. Let P(i") be a projective cover of the simple module L (i)°".
Then P (i") is an R(n«;)-module generated by an element u of degree O with the defining

relation zu = 0 (1 < k < n). Let ex(xq, ..., x,) be the elementary symmetric func-
tion of degree k. The center of R(nw;) is equal to K[ex(x1,...,x,) | k= 1,...,n] =
K[x1, ..., x,]%". Then we have

L@()°" ~ P(i")/(z R(na;)er(xy, .. .,xn)u).
k=1
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Set
n—1
KG") = P/ () Roaecta, ... xau),
k=1

and define zg(;») € ENDR(no,) (K(i")) by
ZKmyU = ep(X1, ..., Xy)U.

Then (K(i"), zk(n)) is a strong affinization of L(i)°". Note that p;|gin)y = zk(»). The
homogeneous degree of zk ;) is n(o;, a;).

3. Root modules

In this section, we shall review the results of McNamara [15] and Brundan—Kleshchev—
McNamara [2]. Throughout this section, we assume that the Cartan matrix A is of finite
type. Fix a reduced expression wg = r;, ...r;, of the longest element wyg € W. This
expression gives a convex total order < on the set ® of positive roots: o;; < ri o, <
<. < T -+ Tiy_, @y - For each positive root 8 € &, McNamara defined a simple R(8)-
module L(B), which he called the cuspidal module [14, 15].

Lemma 3.1 ([15, Lem. 3.4]). Forany B € ®4, L(B) is a real simple module.

Lemma 3.2 ([2, Lem. 3.2]). For n > 0, there exist unique (up to isomorphism) R(B)-
modules Ay, (B) with Ag(B) = O such that there are short exact sequences

0 2" VLB B 2n(B) 2> Au1(B) — O,

0~ g5An-1(B) 2 M) B L(B) >0 forn =1,

where qg = g P12 Moreover,

l—ql%"

@) [A(B)] = - [L(B)],
(i) A, (B) is a cyclic module with simple head isomorphic to L(B) and socle isomorphic
2(n—1)
o qg L(B),
@iii) forn > 1,

a5 "k if k=1,

k ~
EXtR(ﬁ)(An(,B)a L(B)) ~ 0 if k> 2.

Define the root module

A(B) = lim A, ().

Theorem 3.3 ([2, Th. 3.3]). There is a short exact sequence

0— g3AB) 5 AB) — L(B) — 0.
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Moreover,

(1) A(B) is a cyclic module with [A(B)] = [L(B)]/(1 — qé),
(1) L(B) is the head of A(B),
(iii) ENDg(g)(A(B)) = K[zg].

Corollary 3.4 ([2, Cor. 3.5]). Any finitely generated graded R(B)-module with all
simple subquotients isomorphic to L(B) (up to a grading shift) is a finite direct sum of
grade-shifted copies of the indecomposable modules A, (B) (n > 1) and A(B).

Proposition 3.5. Forany B € 4, (A(B), zg) is a strong affinization of L(p).

Proof. We can easily check that conditions (a) and (c¢) in Definition 2.2 are satisfied.

We shall show (b) by induction on ht(8). If 8 is a simple root, then (b) is obvious.
Assume that ht(8) > 1. Then, by [2, Lemma 4.9, Theorem 4.10], there exist o, y € @
such that ¢ 4+ y = B and there exists an exact sequence

0— q—(“v?’)A(y)oA(a) LN A(a)oA(y) — [1+ p]A(B) — 0.

Here p is some non-negative integer and [1 + p] is the g-integer with respect to the short
root. Moreover ¢ is given by

PU V) = Ty[mn(vOu) 3.1)

forany u € A(y) and v € A(w). Here m = ht(«) and n = ht(y).

By the induction hypothesis, (A(a), z¢) and (A(y), z,) are affinizations. By (3.1),
10 commut§§ with z4 and z,,. Then ¢ =a(zq, ZV)RZO(%,A(a) for some a(zy, zy) €Klzq, 7y ]
by Proposition 2.12.

Note that p;|A@)eay) = ®ila@) o ®ilag))s and pila@) = c1za and p;|aqy) = €22
for ci,cp € k™ and 51,52 € Zx¢. Hence, if (b) fails, then (z4zy)*|a(g) = O for some
s > 0. Consequently,

(zazy)’ Al@)o A(y) C Im(p) C Im(RZO(rf;‘A(a)).

%llke fzas2y) € Klza, 2y ] such that RYEH £ o) RX@) a0y = f(Za: 2p) ida@oam)-
en

(Zazﬂ)s Im(Rio(fxn)l,A(,,)) C f(zas Zy)A(V)OA(“)~
By Lemma 2.15, we have f(zq,0) # 0 and f(0, z,,) # 0, which implies

Im(RA(G) A¢y)) C f(Zas 2) A(y) 0 Ala).

Therefore f(zq, zy)_lRZO(r‘;‘)] AGY) is well-defined, which implies that f is an invertible
element of k. Hence Rg"(gn;’A(y) is an isomorphism. Then L(«) o L(y) is simple, which is

a contradiction. O

Note that [L(B8)] € [R-gmod] =~ Aq(g+) coincides with the dual PBW vector E*(8)

.....

is called the dual PBW basis. Here, we set

—-1)/2 —-1)/2
E*(M],...,mN) - (qglll(ml )/ E*(ﬂl)ml)"'(qglNN(mN )/ E*(ﬁN)mN)
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with By_k41 = ri, -1, and gg = ¢#P)/2 (k = 1,..., N). On the other hand,
E(B) = E*(B)/(E*(B), E*(B)) is called the PBW vector and

.....

is a basis of U, (g) called the PBW basis. Here E(B)™ = E(B)™/[m];! withi € I such
that (8, B) = («;, «;). Note that the PBW basis and the dual PBW basis are dual to each
other.

4. The duality functor

4.1. Duality data

Let R be the quiver Hecke algebra associated with a generalized Cartan matrix A and
polynomials Q; ;(u, v).

Definition 4.1. Let J be a finite index set. We say that D = {B;, M;, zj, r;, Rj t}j kes isa
duality datum if 8; € Q4 \ {0}, M; € Modg(R(B;)) and homogeneous homomorphisms
zj € ENDR(gj)(Mj), rj € ENDR(Qﬂj)(Mj o Mj), @1
Rix € HOMR(/gj+/3k)(Mj oMy, MyoM;) forj kel .
satisfy the following conditions:

(F-1) For j € J,degz; € 2Z¢. In addition, M; is a finitely generated free module over
the polynomial ring k[z;].
(F-2) For j € J,wehaver; € ENDR(zlgj)(Mj o Mj)fdegzj' and

Rj,j = (ZjOMj — MjOZj) rj +ideoMj .
(F-3) Fork,l e J,

(@) (zioMy) Ry = Ry (M o z;) in HOMpg, 4-5,)(My 0o My, M;o My),
(b) (Mjozr) Rk = Rk (zk o M) in HOMp (g, +8,) (Mo My, M;o My).

(F-4) There exist polynomials Q,?l (u,v) € Klu, v] (k,l € J) such that
(@) QP (u,v)=0,and QP (u, v) (k # 1) is of the form
tk,l;p,qupvq,
deg Ry ;+deg R; x—p deg zy —q deg /=0

where Tk I; (deg Ry j+deg Ry 1) /deg z;, 0 € k>,
D D
(b) Qk,](ua v) = Ql,k(v’ u),

) ik =1,
(©) RixRe:r = { QE[(ZkOMl’ Mpoz) ifk #1.

(F-5) Forany j, k,l € J,
(RijoMj)(MyoR; )(RjroM;) = (MjoR;x)(RjjoMp)(MjoRy )
in HOMR(/S,~+ﬂk+ﬂ1)(Mj oMyoM;, M;oMyoM;j).
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For simplicity, we write briefly {M;, z;, Rj x}j kes for {8;, M;, z;, rj, R; i} kes if there is
no risk of confusion.

We now construct a Cartan datum corresponding to the duality datum D as follows.
Let {ajD} jeJs be the simple roots. Then we define a weight lattice pD by PP = QP =

69. jes ZajD, and define a symmetric bilinear form on PP by

p p,_ |degz if j =k,
(Olj Q) = D . 4.2)
—(deg Qj’k(zj, zr))/2 = —(degR; x +degRy j)/2 otherwise.

Define h;D by (2) of Definition 1.1. Then the corresponding generalized Cartan matrix
AD .= (aﬁ)j,ke.] is given by
2. o)
D aj’.D)

(o

ajk =

—aP

Since Qj?k(zj, 0) ek*z s “* for j £k, —ajDk is a non-negative integer. Therefore, AL is a
generalized Cartan matrix. We then define R as the quiver Hecke algebra corresponding
to the datum {Q}Dk}j’ke‘].

We now have two different quiver Hecke algebras R and RP . To distinguish them, we
write

¥ (1<k<hy) and 7”1 <l<ht(y)-1

for the generators xx (1 <k <ht(y))and 7 (1 < j < ht(y) — 1) of RP(y) (v € QD).

The Z-grading on RD()/) is given as follows:

deg(e(w)) =0,  deg(e(w)x}) = degz,,,

—degzy, if = i,

de Py =
BT =\ deg Ry, i s # s,

which is well-defined (see Definition 1.4).
Lety € QE with m = ht(y), and define

AP@y) = @ AP,

neJv

where
AE =My, 0---oM,,  foru=(ui,...,um)€J’.

Let ¢: QP — Q be the linear map defined by ¢(osz) = B; for j € J. Then it is clear
that AP (y) is a left R(¢(y))-module.
We define a right R (y)-module structure on AP (y) as follows:
(a) e(u) is the projection to the component AD,
(b) the action okaD on AE is givenby M, 0--- oMy, 0z, oMy,  o---oM,,,
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(c) if ug # k41, the action of r,? on AE is given by
Myo---oMy, ORM,MH oMy, ,0---0My,,
(d) if wk = k41, the action of rkD on AE is given by
My, 0---oM,, or,oMy ,0---0oM,,.
Theorem 4.2. The right RP (y)-module structure on AP (y) is well-defined.

Proof. Since the proof is easy and similar to the arguments in [5], we omit it. O

By construction, the right R D (y)-module action commutes with the left R(¢ (y))-module
action, which means that

AP (y) has an (R(¢(y)), RP (y))-bimodule structure.
‘We now define a functor

57 Modgr(RP (y)) — Modg:(R(¢ (1))

by
3, (M) = AP(y) @g(y) M.
Set
§P= @ 3.
yeQP

For j € J, we write LD(j) for the simple RD(a]p)-module RD(a}[))/RD(a}))xP.
Theorem 4.3. Let D = {Bj, M;, z, rj, Rj }j kes be a duality datum. Then:

(1) The functor SD : Modgr(RD) — Modg(R) is a tensor functor.
(ii) For j e J,

FPRP@P) =M and FP(LP(j)) ~ M;/z;M;.
(iii) If AP is of finite type, then the functor §P is exact.

@iv) Ifa graded RD(y)-module L is finite-dimensional, then so is SD (L). Thus, we have
the induced functor P : RP-gmod — R-gmod.

Proof. Since the proof is easy and similar to one in [5], we omit it. O

4.2. Construction of duality data from affinizations

Let J be a finite index set. Let {8;, M}, z;};c; be a datum such that
(@) B € Q+\ {0},

(b) (Mj, z;) is an even affinization of a real simple R(f;)-module MJ- = M;/z;M;.
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Then we take R; ; as follows:
(© Rjx = RR/‘I’;"“Mk. Furthermore, we normalize R; j so that Rjklz;=z=0 = ideoMj
when j = k.
Then Proposition 2.17 implies that
rj == (zjoM; — Mjoz)) " (R; j — idm,om,) 4.3)

is a well-defined endomorphism of M; o M;.
Note that for any {8;, M;, z;};es satisfying (a) and (b), we can always choose R; ’s.
Moreover, R; ; is unique and R; x (j # k) is unique up to constant multiple.

Theorem 4.4. Under the above assumptions (a)—(c), we have the following.
(1) The datum D = {B;, M;, z;,r;, R }j kes is a duality datum.
(ii) Assume that AP is of finite type. Then:

(@) FP(M) is either a simple module or vanishes for any simple RP-module M.
Moreover, if M is a real simple module and FP (M) is non-zero, then TP (M) is
real.

(b) Let (N, zn) be an affinization of a simple RD-rrfodule N. If {S’D(l\_l) is simple,
then (FP(N), SD(ZN)) is an affinization of FP(N).

(c) Let M and N be simple RP-modules, and assume that one of them is real and
also admits an affinization. Then FP(M < N) is either zero or isomorphic to
FP M) o FP (V).

Proof. (i) Let us prove that D is a duality datum. Since axioms (F-1)—(F-4) are obvious,
we only give the proof of the braid relation (F-5):

Rik o Rix o Rijj = Rij o Rix o Rjx (4.4)

as a morphism M; oM; oMy — MyoM;oM; fori, j, k € J. By the definition, we have
Rv; m; = al(zi, z;)R;,; for a non-zero polynomial a(z;, z;). The R-matrices RM,-,M,- sat-
isfy the braid relation

Rm; .My © Ry vy, © Rmi vy = Ry v © R vy © Ry Mg -
The calculation
RMj,Mk o Rm;,m, © RMi,Mj = a(zj, Zk)Rj,k oa(zi,zx)Rix o a(z, Z.,')R,"j
=al(zj, zr)a(zi, zx)a(z;i, zj))Rjk o Rix o R; ;
and a similar calculation for RM,-,M_,~ o Rm; ™, © RM_,,M . show that
a(zj, zr)a(zi, z)a(zi, zj)(Rjk o Rig o Rij — Rij o Rigx o Rjx) = 0.

Hence we obtain (4.4).
(ii)(a) Let us prove that SD(M ) is a simple module or zero for every simple RD(;/)-
module M by induction on ht(y). Assume M >~ N < LD(j) for some j € J and a simple
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RD()/ — osz)-module N. By the induction hypothesis, FP(N) is a simple module or
zero. Letr: N oLD(j) — LD(j) o N be a non-zero homomorphism of RD(y)—modules.
Then Im(r) is isomorphic to N ¢ LD(j). Since P is exact, I (Im(r)) ~ ImGFP (r)) ~
FP(M). 1t FP(N) ~ 0, then FP (M) ~ 0. Assume that F(N) is a simple module. Then
ImGFP(r)) is isomorphic to FP(N) ¢ SD(LD(]')) or 0 according as &P (r) is non-zero
or zero by Proposition 2.10.

If M is real simple and FP (M) is simple, then FP(M)oFP (M) ~ FP(MoM) is
simple and hence FP (M) is real.

Thus we obtain (ii)(a).

(ii))(b) Let N be a simple RD(y)-module and set m = ht(y). We write Nz = FP(N)
and zz = &P (zn). Applying the functor F2 to the exact sequence

0—>NZ—N>N—>N—>O,

we obtain the exact sequence
0— Ngi Ng—)%p(l\_/)—>0.

Thus, we have an injective homogeneous endomorphism zg of Nz and Ng/zzNz =~
FP(N). Since M; is a finitely generated R(f;)-module for any j by Lemma 2.8, N3 is a
finitely generated graded R-module and F© (N) is a finite-dimensional R-module. Hence,
condition (a) of Definition 2.2 holds (see Remark 2.3(1)).

Let us show (b) of Definition 2.2. Let i € I. By Lemma 2.7(ii), for any j € J,
there exist dj € Z>o and ¢; € k> such that p,-IMj = cjz}jj. Since pilMll-]o"'oMMm =

d .
®ilm, )0 - 0 Milm,, ) = TT=; cu (x7) %, we obtain

pi|NS = Z (pi|Mltlom°Ml‘-m) ® N

neJv RD(y)
= Z My, 0---oMy,) ® (e(,lL)C(xF)dlll - (xr?)dum)h\l
ueJv RP(y)

Y Mo oM @ (o [I( T aP)),

nelJv Jj€J kell,m], pux=j

-a% g (114,

RP(y) jel

with ¢ = [}, ¢, which does not depend on v € JV. Therefore, condition (b) of
Definition 2.2 holds.
(ii)(c) immediately follows from (a) and the epimorphism

FP(M)oFP(N) - FP(M o N)

because M < N is simple. O
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5. Examples

Let g be a Kac—-Moody Lie algebra associated with a Cartan matrix A of finite type.
Suppose that

(@) {Bj}jes is a family of elements of ®_ which is linearly independent in Q,

(b) Bj — B ¢ ® forany j, k € J, where @ is the set of roots of g. } G.D

Let g be the Lie subalgebra of g generated by the root vectors of weight g; and —g; (cf.
[16, Th. 1.1]). Then g is a Kac—Moody Lie algebra associated to

A= @x)jres Wwith @iy :=2(B;, B/ (B, B)) (5.2)
We have an injective algebra homomorphism
U (g — U (9. (5.3)

Choosing a convex order of the set @ of positive roots, let (A(8;), z;) be the affiniza-
tion of L(;) given in Proposition 3.5. Then we have the duality datum

D :={A(B)), zj, Ri.1}j k.1t

Let gP be the Kac—Moody Lie algebra associated with AP . Suppose that AP is of finite
type. Then the functor F is exact, and gives a Z[¢*']-algebra homomorphism
[RD-gmod] — [R-gmod]

+1/2]

which gives a Z[q -algebra homomorphism (see Corollary 1.6)

Ag(@P)N)e = ZIgE?P1 ® Ay ). (5.4)
Zlg*

sending f; to the dual PBW generator E*(;) corresponding to [A(;)]. Here ¢ is the
bilinear form on QP given by ¢(a’?, ot,?) = %(deg Rk,j — degR; k).

By applying the exact functor Q(g'/?) Qqiq*i2) * to (5.4), we obtain a Q(g'/%)-
algebra homomorphism

U; @P)e = Q¢ ® U (g). (5.5)
Q(q)

Set cg := (E*(B), E*(B))"!. Then E(B) = cgE*(B) is the PBW vector corresponding
to B € ®,. Let ¢ be the algebra automorphism of U (gD)c sending f; to cg; fj. Then
the composition

Uy (8")e % U, @P)e > Qq') 2 U@
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sends f; to E(B;). Since degzn = (B}, Bj) by Theorem 3.3, the above homomorphism
sends the divided power f ,.(m) to the divided power E (,Bj)(’"). Moreover, the fj(m) ’s gener-

ate the A-algebra U, (gD)c, and the E (ﬂj)(m)’s are contained in U, (g). Hence we obtain
an algebra homomorphism

Uy @P)e — QIgt?1 © Uy (o). (5.6)
Qlg*"

Taking the classical limit ¢'/? = 1, we obtain the induced algebra homomorphism
U@ - U (9) (5.7)
sending f; to the root vector corresponding to —g; for j € J.

Proposition 5.1. If AD = A then the morphism [RD-gmod] — [R-gmod] induced
by 5P is injective. In particular 5P sends simple RP-modules to simple R-modules.

In such a case, the functor F2 categorifies the homomorphism (5.3).

Proof of Proposition 5.1. By assumption, we have U _(gD) ~ U~ (g). Hence the map
(5.7) is injective, which implies that (5.6) is injective. Hence (5.5) and (5.4) are injective.
O

Let us give several examples of such duality data.

Example 5.2. Let /] = {1, ..., ¢} and A a Cartan matrix of type A,. Hence («;, orj) =
25(i = j)—68(li — j| = 1) fori, j € I.Let R be the quiver Hecke algebra associated
with A and with the parameter Q; ;(u, v) defined as follows: for i, j € I withi < j,
—v ifj=i+1,

otherwise.

Qi (. v) = { Ll‘

Let J ={1,...,¢}and B; := a1 + a2, Bj :=«; for j € J\ {1}. Note that the 8;’s do
not satisfy condition (5.1)(b). We set

A(B1) == L(1,2)z,,  ABj) =Lz (G €I\,
where L(1, 2) := kv is the 1-dimensional R(B1)-module with the actions
eV =38, 12V, xv=xw=gv=0 forvel*t®

Note that degz; = 2 for j € J and the A(f;)’s are root modules. We set R;; =
RIl()l‘[Il

A AB" By direct computations, the R-matrix Ra(g;),a(g) (J # k) is given as fol-
lows: foru ® v e A(Bj) ® A(Br),

(ti(zz—z))+1)(w®u) ifj=1landk =2,

T1(v ®u) if j=1andk > 2,
R, a0 ®v) = {T1T2(z1 — 22) (v @ 1) if j=2andk =1,
T112(v Q@ u) if j >2andk =1,

71 (v ® u) otherwise,
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which yields
Rik = (z1 —22) "' Raggp.a if j=2andk =1,
Rap.a0 otherwise,
and
1 if |j —k|=1and (j,k) # (2,1),
degR) s = .k =(1,3),3,1),

=1 if(j, k) =2, D),
0 otherwise.

Thus, we have

2 0 -1 0 0 0
0 2 -1 0 0 0
-1 -1 2 -1 0 0

AP_| 0 0 -1 2 0o o |
0 0 0 0 - 2 —I
0 0 0 0 - —1 2

which is of type Dy, ie., the quiver Hecke algebra RP is of type D;. Note that
deg(e(1,2)tP) = 1 and deg(e(2, 1)tP) = —1 (see Definition 1.4). By Theorem 4.4,
we have the functor F2 between quiver Hecke algebras of type Dy and A, such that

PP () ~ L) forjel.

Let us consider the RP-module LP(1, 3) := LP (1)< LP(3) and the one-dimensional
R-module L(1,2,3) := L(1,2) ¢ L(3). Applying the functor SD to the exact sequence

0— LP1,3) = LP3)oLP() = LP(1)oLP3) - LP(1,3) — 0,
we obtain
0— FPP(1,3)) = LB3)oL(1,2) — L(1,2)0L(3) — TP (1,3)) — 0.

Since F2 sends every simple module to a simple module or zero by Theorem 4.4, and
L(3)oL(1,2) is not isomorphic to L(1,2)o L(3), we have

3PP,3) ~L(1,2,3).

Set LP(1,3,2) ~ LP(1,3) ¢ LP(2), which is one-dimensional. It is isomorphic to the
image of the composition of

LP(1)oLP(3)oLP(2) - LP(1)oLP(2)0LP(3)
— LP2)oLP(1)oLP3) = LP2)oLP(1,3).
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By applying %P, we obtain a diagram

L(1,2)0L(3)0L(2) — > L(1,2)0 L(2)o LB3) —= L(2)o L(1.2)oL(3)
iﬁ (5.8)
LQ)oL(1,2,3)

Hence SD(LD(L 3, 2)) is isomorphic to the image of f3 f2 f1. Let u1 2, u2 and u3 be the
generators of L(1,2), L(2) and L(3), respectively. Then

S 2@uz®uz) = 3(ui2Q@ua2@u3),  fr(u12@ua@u3z) = t1(u2 Qui 2 u3z).
Therefore,
Hfilui2®@uz@uz) = t3t1(Uur @uipQusz) = 1173(U2 QUi 2 @us),
which is killed by f3. Thus f3 f2 f1 = 0, and hence
FPP(,3,2)) ~0.

Consequently, &P can send simple modules to zero in this example.

6. Further examples for non-symmetric types

Let B € Q4 and let (M, zp) be an affinization of a real simple R(8)-module M. We set
J = {0}, Bo = B, Mg = M. Then

D = {Mo, zm, R\i'm)

is a duality datum. The corresponding simple root a(? satisfies (oe(z)) , ag)) ) = degzp. Let
(K(0™), zg(or)) be the affinization of the simple RD(nonD )-module L(ozoD )°™ given in
Example 2.18.
Now M°" := Mo --. oM (n times) has a structure of (R(ng), RD(nozg)))—bimodule.
We set
Ci(M) =M°"  ®  K(0") ~ FP(K(O").

RD (nonD)

Then zgny € END(K(0")) induces an endomorphism zc, vy € END(C,,(M)); deg 2y, - By
Theorem 4.4(ii)(b), we obtain the following lemma.

Lemma 6.1. (C,(M), z¢,(m)) is an affinization of the real simple module Men,
For example,

MoM
(zmoM + Mozp)(MoM) + r(MoM)’
where r is the endomorphism given in (4.3), and z¢c, () is the endomorphism induced by
ZMOZM-

Co(M) = (6.1)
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Let M € R(B)-gmod and N € R(B’)-gmod be real simple modules. Suppose that
R(B) and R(B’) are symmetric, and

RN Rign, = c(t —2)7 € Endgegip) (Mt © Nyy)
for some ¢ € k* and p € Zx¢. Set

R = (RR;:]H’]NZ/ OMtz)(Mtl ORR;:;]NZ/) S HOMR(2ﬂ+/3’) (Mtl OMt2 oNy, Ny OM»C1 OMtz),
Ry = (Mt1 o RnN(jr,thz)(R;lvo;I,thl OMtz) € HOMR(2/3+/3’)(NZ/ OMt1 OMtZ, Mt1 O]Wt2 oNy).
Setting t; +t; = O and t1t) = Z := zc, (M), We regard Ry, R, as homomorphisms in
HOMR (2544 (C2(Mz) 0 Ny, Ny 0 C2(Mz)), HOMR 28+ (Nz 0 Co(Mz), C2(Mz) o Ny)
respectively. Then we have
RoR| = 62(t1 — 2Nt — )P = 62(t1t2 —(t1 +t)2 + Z/z)p

=G+ 7P 6.2)

in Endg2p4 ) (Ca(Mz) o Ny).

Using (6.2), one can construct functors SD between symmetric and non-symmetric

quiver Hecke algebras. In particular, a functor from type C, (resp. C él), Aéi)_l) to type

Ag (resp. A¢+1, D¢41) can be constructed. We give such constructions in the following
examples.

Example 6.2. We take I, A, and Q;, j(u, v) given in Example 5.2. In particular, g is of
type Ag.
LetJ ={1,...,¢}and

B1 =201, Bj=a; forjeJ\({l}.
Let us denote
Mi =K%, M;=L()y (el\{1},
and zj := zg ;2. Then degz; = 4 and degz; = 2 for j # 1. Note that
RIU L = RL()2 L0 -

We set Rj ; := RM_,,Mk~ It follows from (6.2) that, for j, k € J with j < k,

z1+25  if(j,k) = (1,2),
Ri,jRjk =1z —zx ifk=j+1and (j, k) # (1,2), (6.3)
1 otherwise.

We now set
D = {Mj, z;, Rj i} ket
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Then D is a dual datum, and (6.3) implies that

2 -1 0 0 o
-2 2 -1 0 o
AD _ 0o -1 2 0 o0
0o 0 O 2 -1
0o 0 O -1 2

which is of type Cy. Therefore, we have the quiver Hecke algebra R” of type C; and the
functor F2 from the category of modules over quiver Hecke algebras of type Cy to that
of type A, with
D,yD, L Lo L(l) ifj=1,
STLTGN = { L(j) otherwise.

In the following examples for type By, we construct affinizations directly.

Example 6.3. Let ] = {1, ..., £} and A a Cartan matrix of type By:

2 -2 0 --- 0 0

-1 2 -1 --- 0 0

o -1 2 ... 0 0
A= )

0 0 o .- 2 -1

0 0 o -~ =1 2

and (o, ) =28(i=j=1)+45(=j#1)—=28(i — jl=1 fori, jel.
Let R be the quiver Hecke algebra associated with A and with the parameter Q; ; (i, v)
defined as follows: for i, j € I such thati < j,

ur—v if @, j)=(1,2),
Qi jwu,v)y=3u—v ifj=i+1land(,j) #(,2),
1 otherwise.

LetJ={l,...,0—1}and
pr=oa1+a, Bi=ajp (eJ\{1}D.
Note that (81, f1) = 2 and (B;. B;) = 4 for j # 1. We set
AB) =L(1,2);, AB)=LG+Dzy (G#D,
where the R(B1)-module L(1,2);, := k[z1]v is defined by

ai,ai)/2
z(lf 1)/ v, Tiv=0.

e(v)v =5U’(1’2)U, va =
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Note that A(B;)’s are root modules and deg z; is 2 or 4 according to whether j = 1 or
not. For j, k € J with j # k, we define

Rik = Rag).a) € Hompgg 1) (A(Bj) o A(Br), A(Br) o A(B))),
that is,
nTr@®p) ifj=1,
Rix(p®q)=1un(@®p) ifk=1,
71(¢ ® p) otherwise

for p ® g € A(Bj) ®k A(Bk). For j, k € J with j < k, we have

z7 -z if (k) =(1,2),
RijRik=1zj —zx ifk=j+1land(j, k) # (1,2),
1 otherwise.

Then we have the duality datum D = {A(B;), z;, Rj x}j .kes and

2 =2 0 0 o
-1 2 -1 0 o
AD _ 0o -1 2 0 o
0O 0 O 2 -1
0o 0 O -1 2

which is of type By_1. Therefore, we have the functor  from the category of modules
over a quiver Hecke algebra of type B,_ to that of type B, such that

FPULP () = im.’z) =1
L(j+1) otherwise,
where L(1,2) = L(1,2)z,/z1L(1, 2)4,.

It is easy to check that {8y, ..., B¢—1} satisfies (5.1) and AD is equal to the matrix A
defined by (5.2). Thus, Proposition 5.1 implies that the functor ¥ categorifies the in-
jective homomorphism U ’(gD) ~ U (g) - U (g) and 5P sends simple modules to
simple modules. By Theorem 4.4, for a simple R”-module N,

FP(NYOL(1,2) ifj=1,

D Dy ~
FP(NoL (J))—{gD(N)oL(j—i-l) otherwise.

Example 6.4. We use the same notations /, A and Q; ;(u, v) as in Example 6.3.
LetJ ={1,...,£—1}and

B =201 +a2, Bi=aj11 (eJ\{1D.



1192 Masaki Kashiwara, Euiyong Park

Note that (8, B;) = 4 forall j € J. We define an R(B1)-module structure on L(1, 1, 2),
= Kk[z1] ®xk (ku @ kv) by

e(v)(a®@u) =38y,1,1,2a ®u, e(V)(@a®v) =46, (1,1,2a v,
—zia®v ifj=1, —a®u ifj=1,

xj(@a®u) =1z1a Qv if j =2, xja®@v)=1aQ®u if j =2,
zia@®u otherwise, zia ® v otherwise,
a®uv ifk=1,

T(a ®@u) = T(a ® v) =0 for any k.

k( ) 0 itk & ( ) y

We set

AB) =L, 1,2),, AB)H)=LG+1Dz (G #D.

Note that A(8;)’s are root modules and degz; = 4 for j € J. For j, k € J with j # k
and p ® g € A(B;) ®k A(Bk), we define

Rjk == Rag)), ag € Hompgg,+,) (A(Bj) o A(Br), A(Br) o A(B))).
Then
zi—z, ifk=j+1,
ReiRix=1"
KTk 1 otherwise,

for j,k € J with j < k.
Thus, we have the duality datum D = {A(B;), z;, Rj ¢} kes and

2 -1 0 -~ 0 O
-1 2 -1 0 o0
AD _ 0o -1 2 0 o0
0o 0 O 2 -1
0o 0 O -1 2

is of type A¢_. Therefore, we have the quiver Hecke algebra R™ of type A¢_; and the
functor F between quiver Hecke algebras of type Ay—1 and By. Moreover,

DD, L JLAL1,2) ifj=1,
§UEL (J))_{L(j—i-l) otherwise,

where L(1,1,2) = L(1, 1,2),,/z1L(1, 1, 2),.

One can easily show that {8, ..., B¢—1} satisfies (5.1) and AD s equal to the ma-
trix A defined by (5.2). Thus, Proposition 5.1 implies that the functor T categorifies the
injective homomorphism U~ (g) — U~ (g) and F* preserves simple modules. We have

FP(N)o L(1,1,2) ifj=1,

D Dy ~
ST(NOL (J))—{g'D(N)QL(j—i-l) otherwise,

for every simple RP-module N by Theorem 4.4.
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