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Abstract. We introduce the notion of affinizations and R-matrices for arbitrary quiver Hecke alge-
bras. It is shown that they enjoy similar properties to those for symmetric quiver Hecke algebras.
We next define a duality datum D and construct a tensor functor FD : Modgr(R

D) → Modgr(R)

between graded module categories of quiver Hecke algebras R and RD arising from D. The func-
tor FD sends finite-dimensional modules to finite-dimensional modules, and is exact whenRD is of
finite type. It is proved that affinizations of real simple modules and their R-matrices give a duality
datum. Moreover, the corresponding duality functor sends every simple module to a simple module
or zero when RD is of finite type. We give several examples of the functors FD from the graded
module category of the quiver Hecke algebra of type D`, C`, B`−1, A`−1 to that of type A`, A`,
B`, B`, respectively.
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Introduction

Quiver Hecke algebras (or Khovanov–Lauda–Rouquier algebras), introduced by Kho-
vanov–Lauda [12, 13] and Rouquier [17] independently, are Z-graded algebras which
provide a categorification for the negative half of a quantum group. These algebras are
a vast generalization of affine Hecke algebras of type A in the direction of categorifi-
cation [1, 17], and they have special graded quotients, called cyclotomic quiver Hecke
algebras, which categorify irreducible integrable highest weight modules [4]. When the
quiver Hecke algebras are symmetric, we can study them more deeply.

• First of all, it is known that the upper global basis corresponds to the set of isomorphism
classes of simple modules over symmetric quiver Hecke algebras [18, 19].
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• The KLR-type quantum affine Schur–Weyl duality functor was constructed in [5] us-
ing symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. This
functor has been studied in various types [6, 7, 9].

The notion of R-matrices for symmetric quiver Hecke algebras was introduced in [5].
The R-matrices are special homomorphisms defined by using intertwiners and affiniza-
tions. It turned out that the R-matrices have very good properties with respect to real
simple modules [10]. They also have an important role as a main tool in studying a
monoidal categorification of quantum cluster algebras [8].

Let us explain the construction of R-matrices in [5] briefly. We assume that the quiver
Hecke algebra R is symmetric. Let M be an R-module and Mz its affinization. The R-
module Mz is isomorphic to k[z] ⊗k M as a k-vector space. The actions of e(ν) and τi
on Mz are the same as those on M , but the action of xi on Mz is equal to the action of xi
on M with the action of z added (see (1.8)). For R-modules M and N , we next consider
the homomorphism RMz,Nz′

∈ HOMR(Mz◦Nz′ , Nz′ ◦Mz) given by using intertwiners
(see (1.7)). Here HOM denotes the non-graded homomorphism space (see (1.5)). We set

Rnorm
Mz,Nz′

:= (z′ − z)−sRMz,Nz′
, rM,N := Rnorm

Mz,Nz′
|z=z′=0,

where s is the order of the zero of RMz,Nz′
. Then the morphisms Rnorm

Mz,Nz′
and rM,N are

non-zero, commute with the spectral parameters z, z′, and satisfy the braid relations. Here,
in defining Mz and rM,N , we crucially use the fact that R is symmetric.

In this paper, we introduce and investigate the notion of affinizations and R-matrices
for arbitrary quiver Hecke algebras, and construct a new duality functor between finitely
generated graded module categories of quiver Hecke algebras. The affinizations defined
in this paper generalize the affinizations Mz for symmetric quiver Hecke algebras. The
root modules given in [2] are examples of affinizations.

We then define a tensor functor FD : Modgr(R
D) → Modgr(R) between the graded

module categories of the quiver Hecke algebras R and RD, which arises from a duality
datum D consisting of certain R-modules and their homomorphisms. This is inspired by
the KLR-type quantum affine Schur–Weyl duality functor of [5]. The functor FD sends
finite-dimensional modules to finite-dimensional modules. It is exact when RD is of finite
type. We show that affinizations of real simple modules and their R-matrices give a duality
datum. The corresponding duality functor sends every simple module to a simple module
or zero when RD is of finite type.

Here is a brief description of our work. LetR(β) be an arbitrary quiver Hecke algebra.
We define an affinization (M, zM) of a simple R(β)-module M̄ to be an R(β)-module M
with a homogeneous endomorphism zM ∈ EndR(M) and an isomorphism M/zMM ' M̄
satisfying the conditions in Definition 2.2.

We then study the endomorphism rings of affinizations and the homomorphism spaces
between convolution products of simple modules and their affinizations. For a non-zero
R-module N , let s be the largest integer such that RM,N (M◦N) ⊂ z

s
MN ◦M. We set

Rnorm
M,N = z

−s
M RM,N : M◦N → N ◦M,
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and denote by r
M̄,N
: M̄ ◦N → N ◦M̄ the homomorphism induced by Rnorm

M,N . By the
definition r

M̄,N
never vanishes. The R-matrix r

M̄,N
has similar properties to R-matrices

for symmetric quiver Hecke algebras (Proposition 2.10). Proposition 2.12 tells us that if
(M, zM) and (N, zN) are affinizations of simple modules M̄ and N̄ and one of M̄ and N̄
is real (see (2.7)), then

(i) HOMR[zM,zN](M◦N,M◦N) = k[zM, zN] idM◦N,
(ii) HOMR[zM,zN](M◦N,N◦M) is a free k[zM, zN]-module of rank one.

Here, HOM denotes the space of non-graded homomorphisms (see (1.5)). We define
Rnorm
M,N as a generator of the k[zM, zN]-module HOMR[zM,zN](M◦N,N◦M). Then Rnorm

M,N
commutes with zM and zN by construction, and we prove that Rnorm

M,N |zM=zN=0 ∈

HOM(M̄ ◦N̄, N̄ ◦M̄) does not vanish and coincides with r
M̄,N̄

up to a constant multiple
(Theorem 2.13).

We next define the duality datum D = {βj ,Mj , zj , rj ,Rj,k}j,k∈J axiomatically. Here,
J is a finite index set, and

Mj ∈ Modgr(R(βj )), zj ∈ ENDR(βj )(Mj ),

rj ∈ ENDR(2βj )(Mj ◦Mj ), Rj,k ∈ HOMR(βj+βk)(Mj ◦Mk,Mk ◦Mj ),

satisfying certain conditions given in Definition 4.1. We construct a generalized Cartan
matrix AD and polynomial parameters QD

i,j (u, v) from the duality datum D and consider
the quiver Hecke algebra RD corresponding to AD and QD

i,j (u, v). For γ ∈ QD
+ with

m = ht(γ ), we define
1D(γ ) :=

⊕
µ∈J γ

1D
µ ,

where
1D
µ := Mµ1 ◦ · · · ◦Mµm for µ = (µ1, . . . , µm) ∈ J

γ .

It turns out that 1D(γ ) has an (R,RD)-bimodule structure (Theorem 4.2), and we ob-
tain the duality functor FD : Modgr(R

D) → Modgr(R) by tensoring 1D(γ ). Theorem
4.3 tells us that FD is a tensor functor and sends finite-dimensional modules to finite-
dimensional modules. Moreover, it is exact when AD is of finite type. Affinizations of
real simple modules and their R-matrices provide a duality functor which enjoys extra
good properties (Theorem 4.4).

Several examples of duality functors FD are given in Sections 5 and 6. In Example
5.2, we construct a duality functor FD from the graded module category of a quiver Hecke
algebra of typeD` to that of typeA`. The other examples are in non-symmetric cases. We
discuss a duality functor from type C` to type A` in Example 6.2, and ones from types
B`−1 and A`−1 to type B` in Examples 6.3 and 6.4.

1. Preliminaries

1.1. Quantum groups

Let I be an index set.
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Definition 1.1. A Cartan datum is a quintuple (A,P,5,5∨, (·, ·)) consisting of
(a) a free abelian group P, called the weight lattice,
(b) 5 = {αi | i ∈ I } ⊂ P, called the set of simple roots,
(c) 5∨ = {hi | i ∈ I } ⊂ P∨ := Hom(P,Z), called the set of simple coroots,
(d) a Q-valued symmetric bilinear form (·, ·) on P,
which satisfy
(1) (αi, αi) ∈ 2Z>0 for any i ∈ I ,
(2) 〈hi, λ〉 = 2(αi, λ)/(αi, αi) for any i ∈ I and λ ∈ P,
(3) A := (〈hi, αj 〉)i,j∈I is a generalized Cartan matrix, i.e., 〈hi, αi〉 = 2 for any i ∈ I

and 〈hi, αj 〉 ∈ Z≤0 if i 6= j ,
(4) 5 is a linearly independent set,
(5) for each i ∈ I , there exists 3i ∈ P such that 〈hj ,3i〉 = δij for any j ∈ I .

Let us write Q =
⊕

i∈I Zαi and Q+ =
∑
i∈I Z≥0αi . For β =

∑
i∈I kiαi ∈ Q+, set

ht(β) =
∑
i∈I ki . The Weyl group W associated with the Cartan datum is the subgroup of

Aut(P) generated by the reflections {ri}i∈I defined by

ri(λ) = λ− 〈hi, λ〉αi for λ ∈ P.

Let g be the Kac–Moody algebra associated with a Cartan datum (A,P,5,5∨, (·, ·))
and 8+ the set of positive roots of g. We denote by Uq(g) the corresponding quantum
group, which is an associative algebra over Q(q) generated by ei , fi (i ∈ I ) and qh

(h ∈ P∨) with certain defining relations (see [3, Chap. 3] for details). Set A = Z[q, q−1
].

We denote by U−A (g) the subalgebra of Uq(g) generated by f (n)i := f ni /[n]i ! for i ∈ I
and n ∈ Z≥0, where qi = q(αi ,αi )/2 and

[n]i =
qni − q

−n
i

qi − q
−1
i

, [n]i ! =

n∏
k=1

[k]i .

1.2. Quiver Hecke algebras

Let k be a field. For i, j ∈ I , we take polynomials Qi,j (u, v) ∈ k[u, v] such that

(i) Qi,j (u, v) = Qj,i(v, u),
(ii)

Qi,j (u, v) =

{∑
2(αi ,αj )+p(αi ,αi )+q(αj ,αj )=0 ti,j ;p,qu

pvq if i 6= j,

0 if i = j,
(1.1)

where ti,j ;−aij ,0 ∈ k×. We set

Qi,j (u, v,w) =
Qi,j (u, v)−Qi,j (w, v)

u− w
∈ k[u, v,w]. (1.2)

For β ∈ Q+ with ht(β) = n, set

Iβ :=
{
ν = (ν1, . . . , νn) ∈ I

n
∣∣∣ n∑
k=1

ανk = β
}
.

The symmetric group Sn = 〈sk | k = 1, . . . , n− 1〉 on n letters, where sk is the transpo-
sition of k and k + 1, acts on Iβ by place permutations.
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Definition 1.2. For β ∈ Q+, the quiver Hecke algebra R(β) associated with A and
(Qi,j (u, v))i,j∈I is the k-algebra generated by

{e(ν) | ν ∈ Iβ}, {xk | 1 ≤ k ≤ n}, {τl | 1 ≤ l ≤ n− 1}

satisfying the following defining relations:

e(ν)e(ν′) = δν,ν′e(ν),
∑
ν∈Iβ

e(ν) = 1, xke(ν) = e(ν)xk, xkxl = xlxk,

τle(ν) = e(sl(ν))τl, τkτl = τlτk if |k − l| > 1,

τ 2
k e(ν) = Qνk,νk+1(xk, xk+1)e(ν),

(τkxl − xsk(l)τk)e(ν) =


−e(ν) if l = k and νk = νk+1,

e(ν) if l = k + 1 and νk = νk+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)e(ν)

=

{
Q νk,νk+1(xk, xk+1, xk+2)e(ν) if νk = νk+2,

0 otherwise.

(1.3)

The algebra R(β) has the Z-graded algebra structure given by

deg(e(ν)) = 0, deg(xke(ν)) = (ανk , ανk ), deg(τle(ν)) = −(ανl , ανl+1). (1.4)

For β ∈ Q+, let us denote by Mod(R(β)) the category of R(β)-modules and by
R(β)-mod the category of finite-dimensional R(β)-modules.

We denote by Modgr(R(β)) the category of graded R(β)-modules and by R(β)-gmod
the category of finite-dimensional graded R(β)-modules. We denote by Modfg(R(β)) the
full subcategory of Modgr(R(β)) consisting of finitely generated graded R(β)-modules.
Their morphisms are homogeneous of degree zero. Hence, Mod(R(β)), R(β)-mod,
Modgr(R(β)), R(β)-gmod and Modfg(R(β)) are abelian categories. We set Modgr(R) :=⊕

β∈Q+ Modgr(R(β)), R-mod :=
⊕

β∈Q+ R(β)-mod, etc. The objects of Modgr(R) are
sometimes simply called R-modules.

We denote by R(β)-proj the full subcategory of Modgr(R(β)) consisting of finitely
generated projective graded R(β)-modules.

Let us denote by q the grading shift functor, i.e., (qM)k = Mk−1 for a graded module
M =

⊕
k∈ZMk .

For ν ∈ Iβ and ν′ ∈ Iβ
′

, let e(ν, ν′) be the idempotent corresponding to the concate-
nation ν ∗ ν′ of ν and ν′, and set

e(β, β ′) :=
∑

ν∈Iβ , ν′∈Iβ
′

e(ν, ν′).

For an R(β)-module M and an R(β ′)-module N , we define an R(β + β ′)-module M ◦N
by

M ◦N := R(β + β ′)e(β, β ′) ⊗
R(β)⊗R(β ′)

(M ⊗N).
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We denote by M �N the head of M ◦N .
For a graded R(β)-module M , the q-character of M is defined by

chq(M) :=
∑
ν∈Iβ

dimq(e(ν)M)ν.

Here, dimq V :=
∑
k∈Z dim(Vk)qk for a graded vector space V =

⊕
k∈Z Vk . It is well-

defined whenever dimVk <∞ for all k ∈ Z.
For i ∈ I , let L(αi) be the simple graded R(αi)-module such that chq(L(αi)) = (i).

For simplicity, we write L(i) for L(αi) if no confusion can arise.
For graded R(β)-modules M and N , let HomR(β)(M,N) be the space of morphisms

in Modgr(R(β)), i.e., the k-vector space of homogeneous homomorphisms of degree 0,
and set

HOMR(β)(M,N) =
⊕
k∈Z

HOMR(β)(M,N)k,

HOMR(β)(M,N)k :=HomR(β)(q
kM,N).

(1.5)

We write ENDR(β)(M) for HOMR(β)(M,M). When f ∈ HomR(β)(q
kM,N), we denote

deg(f ) := k.

For simplicity, we write HOMR(M,N) for HOMR(β)(M,N) if no confusion can arise.
We write [R-proj] and [R-gmod] for the (split) Grothendieck group of R-proj and the

Grothendieck group of R-gmod. Then the Z-grading gives a Z[q, q−1
]-module structure

on [R-proj] and [R-gmod], and convolution gives an algebra structure.

Theorem 1.3 ([12, 13, 17]). There exist algebra isomorphisms

[R-proj] ' U−A (g), [R-gmod] ' Aq(g+).

Here, Aq(g+) := {a ∈ U−q (g) | (a, U
−

A (g)) ⊂ A}, where (·, ·) is the non-degenerate
symmetric bilinear form on U−q (g) defined in [11]. Note that Aq(g+) is an A-subalgebra
of U−A (g) (cf. [8] where Aq(g+) is denoted by Aq(n)Z[q±1]).

Definition 1.4. Let c be a Z-valued skew-symmetric bilinear form on Q. If we redefine
deg(τle(ν)) to be −(ανl , ανl+1) − c(ανl , ανl+1), then this gives a well-defined Z-graded
algebra structure on R(β). We denote by Rc(β) the Z-graded algebra thus defined.

The usual grading (1.4) is a special case of such a Z-grading.
We define Rc(β)-gmod, Rc-gmod, etc., similarly.
Let us denote by Modgr(Rc(β))[q

1/2
] the category of

( 1
2Z
)
-graded modules

over Rc(β). For ν ∈ Iβ we set

H(ν) =
1
2

∑
1≤a<b≤ht(β)

c(ανa , ανb ).
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Lemma 1.5. For β ∈ Q+ and M ∈ Modgr(R(β))[q
1/2
], set

(Kc(M))n =
⊕
ν∈Iβ

e(ν)Mn−H(ν).

Then

(i) Kc is an equivalence of categories from Modgr(R(β))[q
1/2
] to Modgr(Rc(β))[q

1/2
],

(ii) for M ∈ Modgr(R(β))[q
1/2
] and N ∈ Modgr(R(γ ))[q

1/2
], we have

Kc(M ◦N) ' q
1
2 c(β,γ )Kc(M)◦Kc(N).

Proof. (i) We have

τke(ν)(Kc(M))n = τke(ν)Mn−H(ν)

⊂ e(skν)Mn−H(ν)−(ανk ,ανk+1 )

= e(skν)(Kc(M))n−H(ν)−(ανk ,ανk+1 )+H(skν)
.

Then (i) follows from

H(skν)−H(ν) =
1
2

(
c(ανk+1 , ανk )− c(ανk , ανk+1)

)
= −c(ανk , ανk+1).

(ii) For ν ∈ Iβ and µ ∈ I γ , we have

e(ν)Kc(M)a ⊗ e(µ)Kc(N)b = e(ν)Ma−H(ν)⊗ e(µ)Nb−H(µ)

⊂ e(ν ∗ µ)(M ◦N)a+b−H(ν)−H(µ)

= e(ν ∗ µ)Kc(M ◦N)a+b−H(ν)−H(µ)+H(ν∗µ).

Since
H(ν ∗ µ)−H(ν)−H(µ) = 1

2 c(β, γ ),
we have

Kc(M)a ⊗Kc(N)b ⊂ Kc(M ◦N)a+b+ 1
2 c(β,γ ).

This yields a map

Kc(M)a ⊗Kc(N)b → (q−
1
2 c(β,γ )Kc(M ◦N))a+b,

which induces an isomorphism

Kc(M)◦Kc(N)
∼
−→ q−

1
2 c(β,γ )Kc(M ◦N). ut

We define the algebra U−A (g)c as Z[q±1/2
] ⊗Z[q±1] U

−

A (g) with a new multiplication ◦c
given by

a ◦c b = q
−

1
2 c(α,β)ab

for a ∈ Z[q±1/2
] ⊗Z[q±1] U

−

A (g)α and b ∈ Z[q±1/2
] ⊗Z[q±1] U

−

A (g)β .
We define Aq(g+)c similarly.

Corollary 1.6. There is a Z[q±1/2
]-algebra isomorphism

ξc : Aq(g
+)c

∼
−→ Z[q±1/2

] ⊗
Z[q±1]

[Rc-gmod].
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1.3. Remark on parity

Under hypothesis (1) of Definition 1.1, the category Modgr(R(β)) is divided into two
parts according to the parity of degrees for any β ∈ Q+.

Lemma 1.7. Let β ∈ Q+. Then there exists a map S : Iβ → Z/2Z such that

S(skν) = S(ν)+ (ανk , ανk+1)

for any ν ∈ Iβ and any integer k with 1 ≤ k < ht(β).

Proof. Let n = ht(β). Choose a total order ≺ on I and set

S(ν) :=
∑

1≤a<b≤n, νa≺νb

(ανa , ανb ).

Then we have

S(skν) = S(ν)+
(
δ(νk+1 ≺ νk)− δ(νk ≺ νk+1)

)
(ανk , ανk+1)

≡ S(ν)+
(
1− δ(νk = νk+1)

)
(ανk , ανk+1) ≡ S(ν)+ (ανk , ανk+1) mod 2.

Here, for a statement P , we set δ(P ) to be 1 if P is true and 0 if P is false. ut

Proposition 1.8. Let β ∈ Q+ and S : Iβ → Z/2Z be as in Lemma 1.7. Let
Modgr(R(β))

S be the full subcategory of Modgr(R(β)) consisting of graded R(β)-
modules M such that e(ν)Mk = 0 for any ν ∈ Iβ and k ≡ S(ν)+ 1 mod 2. Then

Modgr(R(β)) ' Modgr(R(β))
S
⊕ qModgr(R(β))

S .

Proof. For any graded R(β)-module M and ε = 0, 1 set

Mε
:=

⊕
ν∈Iβ , k∈Z,

k≡S(ν)+ε mod 2

e(ν)Mk.

Then we can see easily that the Mε are R(β)-submodules of M and M = M0
⊕ M1.

Moreover, Mε
∈ qε Modgr(R(β))

S . ut

Note that q2 Modgr(R(β))
S
= Modgr(R(β))

S and

HOMR(β)(M,N)k = 0 if k is odd and M , N ∈ Modgr(R(β))
S . (1.6)

1.4. R-matrices

Let β ∈ Q+ andm = ht(β). For k = 1, . . . , m−1 and ν ∈ Iβ , the intertwiner ϕk ∈ R(β)
is defined by

ϕke(ν) :=

{
(τkxk − xkτk)e(ν) if νk = νk+1,

τke(ν) otherwise.
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Lemma 1.9 ([5, Lem. 1.5]).

(i) ϕ2
ke(ν) = (Qνk,νk+1(xk, xk+1)+ δνk,νk+1)e(ν).

(ii) {ϕk}1≤k≤m−1 satisfies the braid relation.
(iii) For a reduced expression w = si1 · · · sit ∈ Sm, let ϕw = ϕi1 · · ·ϕit . Then ϕw does

not depend on the choice of reduced expressions of w.
(iv) For w ∈ Sm and 1 ≤ k ≤ m, we have ϕwxk = xw(k)ϕw.
(v) For w ∈ Sm and 1 ≤ k < m, if w(k + 1) = w(k)+ 1, then ϕwτk = τw(k)ϕw.

(vi) ϕw−1ϕwe(ν) =
∏
a<b,w(a)>w(b)(Qνa ,νb (xa, xb)+ δνa ,νb )e(ν).

For m, n ∈ Z≥0, let w[m, n] be the element of Sm+n defined by

w[m, n](k) =

{
k + n if 1 ≤ k ≤ m,
k −m if m < k ≤ m+ n.

LetM be an R(β)-module with ht(β) = m and N an R(β ′)-module with ht(β ′) = n. The
R(β) ⊗ R(β ′)-linear map M ⊗ N → N ◦M given by u ⊗ v 7→ ϕw[n,m](v ⊗ u) can be
extended to an R(β + β ′)-module homomorphism

RM,N : M ◦N → N ◦M. (1.7)

For β =
∑m
k=1 αik , we set supp(β) := {ik | 1 ≤ k ≤ m}.

Definition 1.10. The quiver Hecke algebra R(β) is said to be symmetric if Qi,j (u, v) is
a polynomial in u− v for all i, j ∈ supp(β).

Suppose that R(β) is symmetric. Let z be an indeterminate. For an R(β)-module M , we
define an R(β)-module structure on Mz := k[z] ⊗k M by

e(ν)(a ⊗ u) = a ⊗ e(ν)u, xj (a ⊗ u) = (za)⊗ u+ a ⊗ xju,

τk(a ⊗ u) = a ⊗ (τku),
(1.8)

for ν ∈ In, a ∈ k[z] and u ∈ M . We call Mz the affinization of M . For a non-zero R(β)-
module M and a non-zero R(β ′)-module N , let s be the order of the zero of RMz,Nz′

:

Mz◦Nz′ → Nz′ ◦Mz, and

Rnorm
Mz,Nz′

:= (z′ − z)−sRMz,Nz′
.

We define rM,N : M ◦N → N ◦M by

rM,N := Rnorm
Mz,Nz′

|z=z′=0.

We set R(β)[z1, . . . , zk] := k[z1, . . . , zk] ⊗k R(β). For simplicity, we write
R[z1, . . . , zk] for R(β)[z1, . . . , zk] if there is no risk of confusion.

Theorem 1.11 ([5, Section 1]). Suppose that R(β) and R(β ′) are symmetric. Let M be
a non-zero R(β)-module and N a non-zero R(β ′)-module. Then:

(i) Rnorm
Mz,Nz′

and rM,N are non-zero.
(ii) Rnorm

Mz,Nz′
and rM,N satisfy the braid relations.
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(iii) Set

A =
∑

µ∈Iβ , ν∈Iβ
′

( ∏
1≤a≤m, 1≤b≤n,µa 6=νb

Qµa ,νb (xa � e(β ′), e(β) � xb)
)
e(µ) � e(ν).

Then A is in the center of R(β)⊗ R(β ′), and

RNz′ ,MzRMz,Nz′
(u⊗ v) = A(u⊗ v) for u ∈ Mz and v ∈ Nz′ .

(iv) If M and N are simple modules, then

ENDR(β+β ′)[z,z′](Mz◦Nz′) ' k[z, z′],
HOMR(β+β ′)[z,z′](Mz◦Nz′ , Nz′ ◦Mz) ' k[z, z′]Rnorm

Mz,Nz′
.

2. Affinization

2.1. Definition of affinization

Definition 2.1. For any i ∈ I and β ∈ Q+ with ht(β) = m, we set

pi,β =
∑
ν∈Iβ

( ∏
a∈[1,m], νa=i

xa

)
e(ν),

where [1, m] = {1, . . . , m}.

Note that pi,β belongs to the center of R(β). If there is no danger of confusion, we simply
write pi for pi,β .

Definition 2.2. Let β ∈Q+ and M̄ a simple R(β)-module. An affinization M := (M, zM)
of M̄ is an R(β)-module M with an injective homogeneous endomorphism zM of M of
degree dM ∈ Z>0 and an isomorphism M/zMM

∼
−→ M̄ satisfying the following condi-

tions:

(a) M is a finitely generated free module over the polynomial ring k[zM],
(b) piM 6= 0 for any i ∈ I .

If moreover

(c) the exact sequence 0 → zMM/z2
MM → M/z2

MM → M/zMM → 0 of R(β)-
modules does not split,

then the affinization M is strong. We say that the affinization is even if dM is even.

Let us denote by πM : M � M̄ the composition M � M/zMM
∼
−→ M̄ .

Remark 2.3. (i) Condition (a) is equivalent to

(a′) The degree of M is bounded from below, that is, Mn = 0 for n� 0.

Moreover, under these equivalent conditions, we have

chq(M) = (1− qdM)−1 chq(M̄).

Note that every finitely generated R-module M satisfies (a′).
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(ii) The non-splitting condition (c) is equivalent to saying that zMM/z2
MM is a unique

proper R(β)-submodule of M/z2
MM.

(iii) If R(β) is a symmetric quiver Hecke algebra, then M̄z is a strong affinization of
any simple R(β)-module M̄ for β 6= 0.

Example 2.4. (i) For i ∈ I , M := L(i)z◦L(i) is not an affinization of M̄ := L(i)◦L(i)
In fact, conditions (a) and (c) in Definition 2.2 hold but (b) does not.

(ii) Let (M, zM) be an affinization of M̄ . Assume that dM = ab for a, b ∈ Z>0 and
let z be an indeterminate of homogeneous degree b. Let k[zM] → k[z] be the algebra
homomorphism given by zM 7→ za . Then (k[z]⊗k[zM]M, z) is an affinization of M̄ . If
a > 1 then it is never a strong affinization, because

(k[z] ⊗
k[zM]

M)/(zak[z] ⊗
k[zM]

M) ' (k[z]/k[z]za)⊗
k
M̄

is a semisimple R(β)-module.

As seen in the proposition below, every affinization is essentially even.

Proposition 2.5. Let (M, zM) be an affinization of a simple module M̄ . Assume that the
homogeneous degree dM of zM is odd. Then there exists an R(β)-submodule M′ of M
such that

(i) z2
MM′ ⊂ M′, and (M′, z2

M) is an affinization of M̄ ,
(ii) M ' k[zM]⊗k[z2

M]
M′ as R(β)[zM]-modules.

Proof. Let Modgr(R(β)) ' Modgr(R(β))
S
⊕ qModgr(R(β))

S be the decomposition in
Proposition 1.8. We may assume that M̄ belongs to Modgr(R(β))

S . Let M = M′ ⊕M′′

with M′ ∈ Modgr(R(β))
S and M′′ ∈ qModgr(R(β))

S . Then zMM′ ⊂ M′′ and zMM′′ ⊂
M′ by (1.6). Hence,

M/zMM = (M′/zMM′′)⊕ (M′′/zMM′),

which implies that M′/zMM′′ ' M̄ and M′′ = zMM′, giving the desired result. ut

2.2. Strong affinization

Note that Lemmas 2.6 and 2.7 below hold without assumption (b) in Definition 2.2.

Lemma 2.6. Assume that

β ∈ Q+ and (M, zM) is a strong affinization of a simple R(β)-module M̄ ,
zM has homogeneous degree dM ∈ Z>0, and πM : M→ M̄ is a canoni-
cal projection.

 (2.1)strong

Then:

(i) The head of the R-module M is isomorphic to M̄ , or equivalently zMM is a unique
maximal R(β)-module.

(ii) Let s := min{m ∈ Z | Mm 6= 0} and u ∈ Ms \ {0}. Then M = R(β)u.
(iii) ENDR(β)(M) ' k[zM] idM.
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Proof. (i) Let S be a simple module and ϕ : M → S be an epimorphism. By homo-
geneous-degree considerations, we may assume that ϕ(zkMM) = 0 for k � 0. Take k ≥ 0
such that ϕ(zkMM) = S and ϕ(zk+1

M M) = 0. Since zkMM/zk+1
M M ' M/zMM is simple,

ϕ induces an isomorphism zkMM/zk+1
M M

∼
−→ S. It is enough to show that k = 0. If k > 0

then we have a commutative diagram

0 // zkMM/zk+1
M M //

∼

((

zk−1
M M/zk+1

M M //

ϕ

��

zk−1
M M/zkMM // 0

S

(2.2)

Hence the first row of the above diagram is a split exact sequence, which contradicts
Definition 2.2(c).

(ii) Since u 6∈ zMM, (i) implies that M = R(β)u.
(iii) Let f ∈ ENDR(β)(M) be a homogeneous endomorphism of degree `. Assume

that f (M) ⊂ zkMM for k ∈ Z≥0. We shall show f ∈ k[zM] idM by descending induction
on k. If dMk > `, then f has to be 0 since f (u) 6∈ zkMM if f (u) 6= 0. Here u is as in (ii).

Suppose that dMk ≤ `. As M̄ is the head of M, the composition M
z−kM f
−−−→ M

πM
−→ M̄

decomposes as M
πM
−→ M̄ → M̄ . Hence the composition must be equal to cπM for some

c ∈ k, which yields
(z−kM f − c idM)(M) ⊂ zMM.

Therefore, (f − czkM)(M) ⊂ z
k+1
M M, and the induction proceeds. ut

2.3. Normalized R-matrices

Lemma 2.7. Assume that

β ∈ Q+ and (M, zM) is an affinization of a simple R(β)-module M̄ ,
zM has homogeneous degree dM ∈ Z>0, and πM : M → M̄ is a
canonical projection.

 (2.3)weak

Then

(i) ENDR(β)[zM](M) ' k[zM] idM,
(ii) for any i ∈ I , there exist ci ∈ k× and di ∈ Z≥0 such that pi |M = ciz

di
M.

Proof. (i) The proof is similar to that of Lemma 2.6(iii). Let f ∈ ENDR(β)[zM](M) be a
homogeneous endomorphism of degree `. Suppose that f (M) ⊂ zkMM for k ∈ Z≥0. We
shall show f ∈ k[zM] idM by descending induction on k.

We have f = 0 if dMk > ` by degree considerations. If dMk ≤ `, then the endomor-
phism z−kM f induces an endomorphism of M̄ . Hence it must be equal to c idM̄ for some
c ∈ k. Then (f − czkM)(M) ⊂ z

k+1
M M, and the induction proceeds.

(ii) The assertion follows from (i) immediately. ut

Lemma 2.8. Let β, M and M̄ be as in (2.3)weak. Assume further that β 6= 0. Then M is
a finitely generated R(β)-module.
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Proof. Since β 6= 0, there exists i ∈ I such that pi,β has a positive degree. Then there
exists m > 0 such that zmM ∈ k(pi,β |M) ⊂ ENDR(M). Since M is finitely generated over
k[zmM], we obtain the desired result. ut

Lemma 2.9. Let β, M and M̄ be as in (2.3)weak. Let γ ∈ Q+ and N ∈ R(γ )-gmod.
Then:

(i) The homomorphisms

RM[z−1
M ],N
: M[z−1

M ]◦N→N ◦M[z−1
M ] and R

N,M[z−1
M ]
: N ◦M[z−1

M ]→M[z−1
M ]◦N

are isomorphisms. Here, M[z−1
M ] = k[zM, z−1

M ] ⊗k[zM] M.
(ii) If N is a simple module, there exist c ∈ k× and d ∈ Z≥0 such that RN,M◦RM,N =

c(zdM◦N) and RM,N ◦RN,M = c(N ◦z
d
M).

Proof. (i) is an immediate consequence of (ii). Let us show (ii). Set m = ht(β) and
n = ht(γ ). Then (RN,M◦RM,N )|M⊗N is given by∑

ν∈Iβ+γ

( ∏
1≤a≤m<b≤m+n, νa 6=νb

Qνa ,νb (xa, xb)
)
e(ν).

Since any element in the center of R(γ ) with positive degree acts by zero onN , it is equal
to ∑

ν∈Iβ+γ

( ∏
1≤a≤m<b≤m+n, νa 6=νb

Qνa ,νb (xa, 0)
)
e(ν).

Consequently, it is a product of pi,β |M’s up to a constant multiple. Hence Lemma 2.7(ii)
implies the desired result. ut

Let M and M̄ be as in (2.3)weak, and let N ∈ R-gmod be a non-zero module. Let s be the
largest integer such that RM,N (M◦N) ⊂ z

s
MN ◦M. Then we set

Rnorm
M,N = z

−s
M RM,N : M◦N → N ◦M.

We denote by
r
M̄,N
: M̄ ◦N → N ◦M̄

the homomorphism induced by Rnorm
M,N . By the definition, r

M̄,N
never vanishes. We set

Rnorm
M,N = 0 and r

M̄,N
= 0 when N = 0.

We define Rnorm
N,M and r

N,M̄
similarly.

The arguments in [8, 10] still work under these assumptions, and we obtain similar
results. We list some of them without repeating the proofs. A simple module S is called
real if S◦S is simple.

Proposition 2.10 ([10, Th. 3.2, Prop. 3.8], [8, Prop. 3.2.9, Th. 4.1.1]). Assume that

(a) M and N are simple R-modules,
(b) one of them is real simple and also admits an affinization.

}
(2.4)
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Then:

(i) M ◦N has a simple head and a simple socle. Moreover, Im(r
M,N

) is equal to the head
of M ◦N and the socle of N ◦M .

(ii) We have

HOMR(M ◦N,M ◦N) = k idM◦N , HOMR(M ◦N,N ◦M) = k r
M,N

.

(iii) M �N appears only once in a Jordan–Hölder series of M ◦N in R-mod.

Proposition 2.11. Let M and M̄ be as in (2.3)weak, and let N be a simple R-module.
Assume that M̄ is real. Then

(i)
HOMR[zM](M◦N,M◦N) = k[zM] idM◦N , (2.5)
HOMR[zM](N ◦M, N ◦M) = k[zM] idN◦M, (2.6)

(ii) HOMR[zM](M◦N,N ◦M) and HOMR[zM](N ◦M,M◦N) are free k[zM]-modules of
rank one.

Proof. (i) Let us first show (2.5). The idea of the proof is similar to that of Lemma 2.6(iii).
Let f ∈ HOMR[zM](M◦N,M◦N) be of homogeneous degree `. We know that

f (M◦N) ⊂ zsMM◦N for some s ∈ Z≥0. We shall show f ∈ k[zM] idM◦N by de-
scending induction on s. If s � 0, then f is zero by degree considerations. Now, we
consider z−sM f . As z−sM f induces an endomorphism of M̄ ◦N , by Proposition 2.10(ii) it is
equal to c idM̄◦N for some c ∈ k. Hence

(f − czsM)(M◦N) ⊂ z
s+1
M M◦N.

Thus, the induction hypothesis implies that f − czsM ∈ k[zM] idM̄◦N . The proof of (2.6)
is similar.

(ii) By Lemma 2.9, we have an R[zM]-linear monomorphism N ◦M � M◦N . This
yields

HOMR[zM](M◦N,N ◦M)� HOMR[zM](M◦N,M◦N) ' k[zM].

As HOMR[zM](M◦N,N ◦M) is non-zero, HOMR[zM](M◦N,N ◦M) is a free k[zM]-mod-
ule of rank one. ut

Proposition 2.12. Assume that

(a) (M, zM) and (N, zN) are affinizations of simple modules M̄ and N̄ ,
respectively,

(b) one of M̄ and N̄ is real.

 (2.7)

Then

(i) HOMR[zM,zN](M◦N,M◦N) = k[zM, zN] idM◦N,
(ii) HOMR[zM,zN](M◦N,N◦M) is a free k[zM, zN]-module of rank one.
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Proof. (i) Assume that M̄ is real simple. The other case can be proved similarly.
Let f be a homogeneous element of HOMR[zM,zN](M◦N,M◦N) of degree `. As-

suming that Im(f ) ⊂ zkN(M◦N), we shall show f ∈ k[zM, zN] idM◦N by descending
induction on k. If k � 0, then f is zero by homogeneous-degree considerations. We now
consider z−kN f . The R[zM, zN]-linear homomorphism z−kN f : M◦N→ M◦N induces an
R[zM]-linear homomorphism M◦N̄ → M◦N̄ . By Proposition 2.11, the latter is equal to
ϕ(zM) idM◦N̄ for some ϕ(zM) ∈ k[zM]. Hence

Im(f − zkNϕ(zM) idM◦N) ⊂ z
k+1
N M◦N,

which implies
f − zkNϕ(zM) idM◦N ∈ k[zM, zN] idM◦N

by the induction hypothesis.
(ii) Since RM,NRN,M|zN=0 is non-zero by Lemma 2.9(ii), assertion (i) tells us that

RM,NRN,M ∈ k[zM, zN] idN◦M is non-zero. The injectivity of RM,NRN,M implies that
RN,M : N◦M � M◦N is injective. Thus the composition with RN,M induces an injective
homomorphism

HOMR[zM,zN](M◦N,N◦M)� HOMR[zM,zN](M◦N,M◦N) ' k[zM, zN].

We now consider the non-zero k[zM, zN]-module L := HOMR[zM,zN](M◦N,N◦M).
Let a, b ∈ k[zM, zN] be non-zero relatively prime elements. If f ∈ aL ∩ bL, then
f (M ◦N) ⊂ a(N ◦M)∩ b(N ◦M). Since a and b are relatively prime and N ◦M is a free
k[zM, zN]-module,

f (M ◦ N) ⊂ ab(N ◦M),

which implies that (ab)−1f : M ◦ N→ N ◦M is well-defined, i.e., f ∈ abL. Therefore,
we conclude that L satisfies the condition:

if a, b ∈ k[zM, zN] \ {0} are prime to each other, then aL ∩ bL = abL,

which implies that L is a free k[zM, zN]-module of rank one. ut

We define Rnorm
M,N as a generator of the k[zM, zN]-module HOMR[zM,zN](M◦N,N◦M). It

is uniquely determined up to a constant multiple. We call it a normalized R-matrix.

Theorem 2.13. Assume (2.7). Then Rnorm
M,N |zM=zN=0 : M̄ ◦N̄ → N̄ ◦M̄ does not vanish

and is equal to r
M̄,N̄

up to a constant multiple.

Proof. Since any simple R-module is absolutely simple, we may assume that the base
field k is algebraically closed without loss of generality.

By Proposition 2.10(ii), we have

HOMR(M̄ ◦N̄, N̄ ◦M̄) = k r
M̄,N̄

(2.8)

for a non-zero r
M̄,N̄
∈ HOMR(M̄ ◦N̄, N̄ ◦M̄). Let ` be the homogeneous degree of r

M̄,N̄
.
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For a ∈ Z, let k[zM, zN]a be the homogeneous part of k[zM, zN] of degree a and set
k[zM, zN]≥a =

⊕
k≥a k[zM, zN]k . Let c ∈ Z be the largest integer such that

Rnorm
M,N(M◦N) ⊂ k[zM, zN]≥c(N◦M).

Then Rnorm
M,N induces a non-zero map

ϕ : M̄ ◦N̄ →
(
k[zM, zN]≥c(N◦M)

)
/
(
k[zM, zN]≥c+1(N◦M)

)
.

Since N◦M is a free k[zM, zN]-module, we have(
k[zM, zN]≥c(N◦M)

)
/
(
k[zM, zN]≥c+1(N◦M)

)
' k[zM, zN]c⊗(N̄ ◦M̄).

By (2.8), there exists a non-zero f (zM, zN) ∈ k[zM, zN]c such that

ϕ(u) = f (zM, zN)rM̄,N̄ (u) for any u ∈ M̄ ◦N̄ .

Hence, the homogeneous degree of Rnorm
M,N is c + `, and

Rnorm
M,N(M◦N) ⊂ f (zM, zN)(N◦M)+ k[zM, zN]≥c+1(N◦M).

Let us show that f (zM, zN) is a constant function (i.e., c = 0). Assuming that c > 0, take
a prime divisor a(zM, zN) of f (zM, zN). Let (x, y) ∈ k2 be such that a(x, y) = 0. Let
dM and dN be the homogeneous degrees of zM and zN, respectively, and let z be an inde-
terminate of homogeneous degree one. Then a(xzdM , yzdN) = f (xzdM , yzdN) = 0. Let
k[zM, zN] → k[z] be the map obtained by the substitution zM = xzdM and zN = yzdN .
Set

K = k[z] ⊗
k[zM,zN]

(M◦N), K ′ = k[z] ⊗
k[zM,zN]

(N◦M), R′ = k[z] ⊗
k[zM,zN]

Rnorm
M,N .

Then we obtain the map
R′ : K → zc+1K ′.

Note that K/zK ' M̄ ◦N̄ and K ′/zK ′ ' N̄ ◦M̄ . We shall show R′(K) ⊂ zkK ′ for
any k ≥ c + 1 by induction on k. Assume that k ≥ c + 1 and R′(K) ⊂ zkK ′. Then
the morphism M̄ ◦N̄ → N̄ ◦M̄ induced by z−kR′ is equal to b r

M̄,N̄
for some b ∈ k. If

b 6= 0, then the homogeneous degree of R′ is k + ` > c + `, which is a contradiction.
Thus b = 0 and R′(K) ⊂ zk+1K ′. Hence the induction proceeds, and we conclude that

Rnorm
M,N |zM=xz

dM , zN=yz
dN = 0

for any (x, y) ∈ k2 such that a(x, y) = 0, which implies Rnorm
M,N is divisible by a(zM, zN).

This is a contradiction.
Therefore f is a constant function, andRnorm

M,N induces r
M̄,N̄

(up to a constant multiple)
after the specialization zM = zN = 0. ut

Corollary 2.14. Assume (2.7). If M̄ is real, then Rnorm
M,N |zN=0 = R

norm
M,N̄

(up to a constant
multiple).
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Lemma 2.15. Assume (2.7). Then there exists a homogeneous element f (zM, zN) such
that

(i) Rnorm
N,M ◦ R

norm
M,N = f (zM, zN) idM◦N and Rnorm

M,N ◦ R
norm
N,M = f (zM, zN) idN◦M,

(ii) f (zM, 0) and f (0, zN) are non-zero.

Proof. This follows from Proposition 2.12, Corollary 2.14 and Lemma 2.9. ut

Lemma 2.16. Let (M, zM) and (N, zN) be affinizations of simple modules M̄ and N̄ ,
respectively. Assume that either M̄ or N̄ is real, and M̄ ◦N̄ ' N̄ ◦M̄ . Let d be a common
divisor of the homogeneous degrees dM of zM and dN of zN. Let z be an indeterminate of
homogeneous degree d and let k[zM, zN] → k[z] be the algebra homomorphism given by
zM 7→ zdM/d and zN 7→ zdN/d . Then M◦zN := k[z]⊗k[zM,zN](M◦N) is an affinization
of M̄ ◦N̄ .

Proof. By the assumptions, M̄ ◦N̄ is simple. Condition (a) in Definition 2.2 is obvious.
Condition (b) follows from pi |M◦zN = (pi |M)◦z(pi |N). ut

Proposition 2.17. Let M and M̄ be as in (2.3)weak. Assume that M̄ is real. Normalize
Rnorm
M,M so that it induces idM̄◦M̄ after the specialization zM◦M = M◦zM = 0. Then

(i) (Rnorm
M,M − idM◦M)(M◦M) ⊂ (zM◦M−M◦zM)(M◦M),

(ii) Rnorm
M,M ◦ R

norm
M,M = idM,M.

Proof. (i) To avoid confusion, let (N, zN) be a copy of (M, zM) and regard Rnorm
M,M as

a homomorphism M◦N → N◦M. We denote by ı : M◦N
∼
−→ N◦M the identity. We

regard M◦N and N◦M as R[zM, zN]-modules. Then Rnorm
M,N commutes with zM and zN,

but ı does not. Precisely, we have ı ◦ zM = zN ◦ ı and ı ◦ zN = zM ◦ ı.
Let z be another indeterminate with the same homogeneous degree dM, and let

k[zM, zN] → k[z]

be the algebra homomorphism given by zM 7→ z and zN 7→ z. Then Lemma 2.16 implies
that K := k[z]⊗k[zM,zN](M◦N) is an affinization of M̄ ◦M̄ . The homomorphisms Rnorm

M,N
and ı induce R[z]-linear endomorphisms R′ and ı′ of K . By Lemma 2.7(i), R′ and ı′ are
powers of z up to a constant multiple. Since they are idM̄◦M̄ after the specialization z = 0,
we conclude that R′ = ı′, which completes the proof.

(ii) This follows from Lemma 2.15 immediately. ut

Example 2.18. Let i ∈ I . Let P(in) be a projective cover of the simple module L(i)◦ n.
Then P(in) is an R(nαi)-module generated by an element u of degree 0 with the defining
relation τku = 0 (1 ≤ k < n). Let ek(x1, . . . , xn) be the elementary symmetric func-
tion of degree k. The center of R(nαi) is equal to k[ek(x1, . . . , xn) | k = 1, . . . , n] =
k[x1, . . . , xn]

Sn . Then we have

L(i)◦ n ' P(in)/
( n∑
k=1

R(nαi)ek(x1, . . . , xn)u
)
.
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Set

K(in) := P(in)/
(n−1∑
k=1

R(nαi)ek(x1, . . . , xn)u
)
,

and define zK(in) ∈ ENDR(nαi )(K(i
n)) by

zK(in)u = en(x1, . . . , xn)u.

Then (K(in), zK(in)) is a strong affinization of L(i)◦ n. Note that pi |K(in) = zK(in). The
homogeneous degree of zK(in) is n(αi, αi).

3. Root modules

In this section, we shall review the results of McNamara [15] and Brundan–Kleshchev–
McNamara [2]. Throughout this section, we assume that the Cartan matrix A is of finite
type. Fix a reduced expression w0 = ri1 . . . riN of the longest element w0 ∈ W. This
expression gives a convex total order ≺ on the set 8+ of positive roots: αi1 ≺ ri1αi2 ≺
· · · ≺ ri1 · · · riN−1αiN . For each positive root β ∈ 8+, McNamara defined a simple R(β)-
module L(β), which he called the cuspidal module [14, 15].

Lemma 3.1 ([15, Lem. 3.4]). For any β ∈ 8+, L(β) is a real simple module.

Lemma 3.2 ([2, Lem. 3.2]). For n ≥ 0, there exist unique (up to isomorphism) R(β)-
modules 1n(β) with 10(β) = 0 such that there are short exact sequences

0→ q
2(n−1)
β L(β)

in
−→ 1n(β)

pn
−→ 1n−1(β)→ 0,

0→ q2
β1n−1(β)

jn
−→ 1n(β)

qn
−→ L(β)→ 0 for n ≥ 1,

where qβ = q(β,β)/2. Moreover,

(i) [1n(β)] =
1−q2n

β

1−q2
β

[L(β)],

(ii) 1n(β) is a cyclic module with simple head isomorphic to L(β) and socle isomorphic
to q2(n−1)

β L(β),
(iii) for n ≥ 1,

ExtkR(β)(1n(β), L(β)) '

{
q−2n
β k if k = 1,

0 if k ≥ 2.

Define the root module

1(β) := lim
←−
n

1n(β).

Theorem 3.3 ([2, Th. 3.3]). There is a short exact sequence

0→ q2
β1(β)

zβ
−→ 1(β)→ L(β)→ 0.
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Moreover,

(i) 1(β) is a cyclic module with [1(β)] = [L(β)]/(1− q2
β),

(ii) L(β) is the head of 1(β),
(iii) ENDR(β)(1(β)) ' k[zβ ].

Corollary 3.4 ([2, Cor. 3.5]). Any finitely generated graded R(β)-module with all
simple subquotients isomorphic to L(β) (up to a grading shift) is a finite direct sum of
grade-shifted copies of the indecomposable modules 1n(β) (n ≥ 1) and 1(β).

Proposition 3.5. For any β ∈ 8+, (1(β), zβ) is a strong affinization of L(β).

Proof. We can easily check that conditions (a) and (c) in Definition 2.2 are satisfied.
We shall show (b) by induction on ht(β). If β is a simple root, then (b) is obvious.

Assume that ht(β) > 1. Then, by [2, Lemma 4.9, Theorem 4.10], there exist α, γ ∈ 8+
such that α + γ = β and there exists an exact sequence

0→ q−(α,γ )1(γ )◦1(α)
ϕ
−→ 1(α)◦1(γ )→ [1+ p]1(β)→ 0.

Here p is some non-negative integer and [1+ p] is the q-integer with respect to the short
root. Moreover ϕ is given by

ϕ(u⊗ v) = τw[m,n](v⊗ u) (3.1)

for any u ∈ 1(γ ) and v ∈ 1(α). Here m = ht(α) and n = ht(γ ).
By the induction hypothesis, (1(α), zα) and (1(γ ), zγ ) are affinizations. By (3.1),

ϕ commutes with zα and zγ . Then ϕ=a(zα, zγ )Rnorm
1(γ ),1(α) for some a(zα, zγ )∈k[zα, zγ ]

by Proposition 2.12.
Note that pi |1(α)◦1(γ ) = (pi |1(α))◦(pi |1(γ )), and pi |1(α) = c1z

s1
α and pi |1(γ ) = c2z

s2
γ

for c1, c2 ∈ k× and s1, s2 ∈ Z≥0. Hence, if (b) fails, then (zαzγ )s |1(β) = 0 for some
s > 0. Consequently,

(zαzγ )
s1(α)◦1(γ ) ⊂ Im(ϕ) ⊂ Im(Rnorm

1(γ ),1(α)).

Take f (zα, zγ ) ∈ k[zα, zγ ] such that Rnorm
1(γ ),1(α)R

norm
1(α),1(γ ) = f (zα, zγ ) id1(α)◦1(γ ).

Then
(zαzβ)

s Im(Rnorm
1(α),1(γ )) ⊂ f (zα, zγ )1(γ )◦1(α).

By Lemma 2.15, we have f (zα, 0) 6= 0 and f (0, zγ ) 6= 0, which implies

Im(Rnorm
1(α),1(γ )) ⊂ f (zα, zγ )1(γ )◦1(α).

Therefore f (zα, zγ )−1Rnorm
1(α),1(γ ) is well-defined, which implies that f is an invertible

element of k. Hence Rnorm
1(α),1(γ ) is an isomorphism. Then L(α)◦L(γ ) is simple, which is

a contradiction. ut

Note that [L(β)] ∈ [R-gmod] ' Aq(g
+) coincides with the dual PBW vector E∗(β)

∈ Aq(g
+). It is known that {E∗(m1, . . . , mN )}(m1,...,mN )∈ZN≥0

is a basis of Aq(g+), which
is called the dual PBW basis. Here, we set

E∗(m1, . . . , mN ) :=
(
q
m1(m1−1)/2
β1

E∗(β1)
m1
)
· · ·
(
q
mN (mN−1)/2
βN

E∗(βN )
mN
)
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with βN−k+1 := ri1 · · · rik−1αik and qβ = q(β,β)/2 (k = 1, . . . , N ). On the other hand,
E(β) = E∗(β)/(E∗(β), E∗(β)) is called the PBW vector and

{E(β1)
(m1) · · ·E(βN )

(mN )}(m1,...,mN )∈ZN≥0

is a basis of U−A (g) called the PBW basis. Here E(β)(m) = E(β)m/[m]i ! with i ∈ I such
that (β, β) = (αi, αi). Note that the PBW basis and the dual PBW basis are dual to each
other.

4. The duality functor

4.1. Duality data

Let R be the quiver Hecke algebra associated with a generalized Cartan matrix A and
polynomials Qi,j (u, v).

Definition 4.1. Let J be a finite index set. We say that D = {βj ,Mj , zj , rj ,Rj,k}j,k∈J is a
duality datum if βj ∈ Q+ \ {0},Mj ∈ Modgr(R(βj )) and homogeneous homomorphisms

zj ∈ ENDR(βj )(Mj ), rj ∈ ENDR(2βj )(Mj ◦Mj ),

Rj,k ∈ HOMR(βj+βk)(Mj ◦Mk,Mk ◦Mj ) for j, k ∈ J
(4.1)

satisfy the following conditions:
(F-1) For j ∈ J , deg zj ∈ 2Z>0. In addition,Mj is a finitely generated free module over

the polynomial ring k[zj ].
(F-2) For j ∈ J , we have rj ∈ ENDR(2βj )(Mj ◦Mj )− deg zj and

Rj,j = (zj ◦Mj −Mj ◦zj ) rj + idMj ◦Mj .

(F-3) For k, l ∈ J ,

(a) (zl ◦Mk)Rk,l = Rk,l (Mk ◦ zl) in HOMR(βk+βl)(Mk ◦Ml,Ml ◦Mk),
(b) (Ml ◦zk)Rk,l = Rk,l (zk ◦Ml) in HOMR(βk+βl)(Mk ◦Ml,Ml ◦Mk).

(F-4) There exist polynomials QD
k,l(u, v) ∈ k[u, v] (k, l ∈ J ) such that

(a) QD
k,k(u, v) = 0, and QD

k,l(u, v) (k 6= l) is of the form∑
degRk,l+degRl,k−p deg zk−q deg zl=0

tk,l;p,qu
pvq ,

where tk,l;(degRk,l+degRl,k)/deg zk, 0 ∈ k×,
(b) QD

k,l(u, v) = QD
l,k(v, u),

(c) Rl,kRk,l =

{
1 if k = l,
QD
k,l(zk ◦Ml,Mk ◦zl) if k 6= l.

(F-5) For any j, k, l ∈ J ,

(Rk,l ◦Mj )(Mk ◦Rj,l)(Rj,k ◦Ml) = (Ml ◦Rj,k)(Rj,l ◦Mk)(Mj ◦Rk,l)

in HOMR(βj+βk+βl)(Mj ◦Mk ◦Ml,Ml ◦Mk ◦Mj ).
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For simplicity, we write briefly {Mj , zj ,Rj,k}j,k∈J for {βj ,Mj , zj , rj ,Rj,k}j,k∈J if there is
no risk of confusion.

We now construct a Cartan datum corresponding to the duality datum D as follows.
Let {αDj }j∈J be the simple roots. Then we define a weight lattice PD by PD

= QD
:=⊕

j∈J ZαDj , and define a symmetric bilinear form on PD by

(αDj , α
D
k ) =

{
deg zj if j = k,
−(degQD

j,k(zj , zk))/2 = −(degRj,k + degRk,j )/2 otherwise.
(4.2)

Define hDj by (2) of Definition 1.1. Then the corresponding generalized Cartan matrix
AD
:= (aDjk)j,k∈J is given by

aDjk =
2(αDj , α

D
k )

(αDj , α
D
j )

.

Since QD
j,k(zj , 0) ∈ k×z

−aDjk
j for j 6= k,−aDjk is a non-negative integer. Therefore, AD is a

generalized Cartan matrix. We then define RD as the quiver Hecke algebra corresponding
to the datum {QD

j,k}j,k∈J .
We now have two different quiver Hecke algebras R and RD. To distinguish them, we

write
xDk (1 ≤ k ≤ ht(γ )) and τDl (1 ≤ l ≤ ht(γ )− 1)

for the generators xk (1 ≤ k ≤ ht(γ )) and τl (1 ≤ j ≤ ht(γ )− 1) of RD(γ ) (γ ∈ QD
+ ).

The Z-grading on RD(γ ) is given as follows:

deg(e(µ)) = 0, deg(e(µ)xDk ) = deg zµk ,

deg(e(µ)τDl ) =

{
− deg zµl if µl = µl+1,
degRµl ,µl+1 if µl 6= µl+1,

which is well-defined (see Definition 1.4).
Let γ ∈ QD

+ with m = ht(γ ), and define

1D(γ ) :=
⊕
µ∈J γ

1D
µ ,

where
1D
µ := Mµ1 ◦ · · · ◦Mµm for µ = (µ1, . . . , µm) ∈ J

γ .

Let φ : QD
→ Q be the linear map defined by φ(αDj ) = βj for j ∈ J . Then it is clear

that 1D(γ ) is a left R(φ(γ ))-module.
We define a right RD(γ )-module structure on 1D(γ ) as follows:

(a) e(µ) is the projection to the component 1D
µ ,

(b) the action of xDk on 1D
µ is given by Mµ1 ◦ · · · ◦Mµk−1 ◦zµk ◦Mµk+1 ◦ · · · ◦Mµm ,
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(c) if µk 6= µk+1, the action of τDk on 1D
µ is given by

Mµ1 ◦ · · · ◦Mµk−1 ◦Rµk, µk+1 ◦Mµk+2 ◦ · · · ◦Mµm ,

(d) if µk = µk+1, the action of τDk on 1D
µ is given by

Mµ1 ◦ · · · ◦Mµk−1 ◦rµk ◦Mµk+2 ◦ · · · ◦Mµm .

Theorem 4.2. The right RD(γ )-module structure on 1D(γ ) is well-defined.

Proof. Since the proof is easy and similar to the arguments in [5], we omit it. ut

By construction, the rightRD(γ )-module action commutes with the leftR(φ(γ ))-module
action, which means that

1D(γ ) has an (R(φ(γ )), RD(γ ))-bimodule structure.

We now define a functor

FDγ : Modgr(R
D(γ ))→ Modgr(R(φ(γ )))

by
FDγ (M) := 1

D(γ )⊗RD(γ ) M.

Set

FD =
⊕

γ∈QD
+

FDγ .

For j ∈ J , we write LD(j) for the simple RD(αDj )-module RD(αDj )/R
D(αDj )x

D
1 .

Theorem 4.3. Let D = {βj ,Mj , zj , rj ,Rj,k}j,k∈J be a duality datum. Then:

(i) The functor FD : Modgr(R
D)→ Modgr(R) is a tensor functor.

(ii) For j ∈ J ,

FD(RD(αDj )) ' Mj and FD(LD(j)) ' Mj/zjMj .

(iii) If AD is of finite type, then the functor FD is exact.
(iv) If a graded RD(γ )-module L is finite-dimensional, then so is FD(L). Thus, we have

the induced functor FD : RD-gmod→ R-gmod.

Proof. Since the proof is easy and similar to one in [5], we omit it. ut

4.2. Construction of duality data from affinizations

Let J be a finite index set. Let {βj ,Mj , zj }j∈J be a datum such that

(a) βj ∈ Q+ \ {0},
(b) (Mj , zj ) is an even affinization of a real simple R(βj )-module M̄j := Mj/zjMj .
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Then we take Rj,k as follows:

(c) Rj,k = Rnorm
Mj ,Mk

. Furthermore, we normalize Rj,j so that Rj,k|zj=zk=0 = idM̄j ◦M̄j
when j = k.

Then Proposition 2.17 implies that

rj := (zj ◦Mj −Mj ◦zj )
−1(Rj,j − idMj ◦Mj

) (4.3)

is a well-defined endomorphism of Mj ◦Mj .
Note that for any {βj ,Mj , zj }j∈J satisfying (a) and (b), we can always choose Rj,k’s.

Moreover, Rj,j is unique and Rj,k (j 6= k) is unique up to constant multiple.

Theorem 4.4. Under the above assumptions (a)–(c), we have the following.

(i) The datum D = {βj ,Mj , zj , rj ,Rj,k}j,k∈J is a duality datum.
(ii) Assume that AD is of finite type. Then:

(a) FD(M) is either a simple module or vanishes for any simple RD-module M .
Moreover, if M is a real simple module and FD(M) is non-zero, then FD(M) is
real.

(b) Let (N, zN) be an affinization of a simple RD-module N̄ . If FD(N̄) is simple,
then (FD(N),FD(zN)) is an affinization of FD(N̄).

(c) Let M and N be simple RD-modules, and assume that one of them is real and
also admits an affinization. Then FD(M � N) is either zero or isomorphic to
FD(M) � FD(N).

Proof. (i) Let us prove that D is a duality datum. Since axioms (F-1)–(F-4) are obvious,
we only give the proof of the braid relation (F-5):

Rjk ◦ Rik ◦ Rij = Rij ◦ Rik ◦ Rjk (4.4)

as a morphism Mi ◦Mj ◦Mk → Mk ◦Mj ◦Mi for i, j, k ∈ J . By the definition, we have
RMi ,Mj

= a(zi, zj )Ri,j for a non-zero polynomial a(zi, zj ). The R-matrices RMi ,Mj
sat-

isfy the braid relation

RMj ,Mk
◦ RMi ,Mk

◦ RMi ,Mj
= RMi ,Mj

◦ RMi ,Mk
◦ RMj ,Mk

.

The calculation

RMj ,Mk
◦ RMi ,Mk

◦ RMi ,Mj
= a(zj , zk)Rj,k ◦ a(zi, zk)Ri,k ◦ a(zi, zj )Ri,j

= a(zj , zk)a(zi, zk)a(zi, zj )Rj,k ◦ Ri,k ◦ Ri,j

and a similar calculation for RMi ,Mj
◦ RMi ,Mk

◦ RMj ,Mk
show that

a(zj , zk)a(zi, zk)a(zi, zj )(Rjk ◦ Rik ◦ Rij − Rij ◦ Rik ◦ Rjk) = 0.

Hence we obtain (4.4).
(ii)(a) Let us prove that FD(M) is a simple module or zero for every simple RD(γ )-

moduleM by induction on ht(γ ). AssumeM ' N �LD(j) for some j ∈ J and a simple
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RD(γ − αDj )-module N . By the induction hypothesis, FD(N) is a simple module or
zero. Let r : N ◦LD(j)→ LD(j)◦N be a non-zero homomorphism of RD(γ )-modules.
Then Im(r) is isomorphic to N � LD(j). Since FD is exact, FD(Im(r)) ' Im(FD(r)) '
FD(M). If FD(N) ' 0, then FD(M) ' 0. Assume that FD(N) is a simple module. Then
Im(FD(r)) is isomorphic to FD(N) � FD(LD(j)) or 0 according as FD(r) is non-zero
or zero by Proposition 2.10.

If M is real simple and FD(M) is simple, then FD(M)◦FD(M) ' FD(M ◦M) is
simple and hence FD(M) is real.

Thus we obtain (ii)(a).
(ii)(b) Let N̄ be a simple RD(γ )-module and set m = ht(γ ). We write NF = FD(N)

and zF = FD(zN). Applying the functor FD to the exact sequence

0→ N
zN
−→ N→ N̄ → 0,

we obtain the exact sequence

0→ NF
zF
−→ NF→ FD(N̄)→ 0.

Thus, we have an injective homogeneous endomorphism zF of NF and NF/zFNF '

FD(N̄). Since Mj is a finitely generated R(βj )-module for any j by Lemma 2.8, NF is a
finitely generated gradedR-module and FD(N̄) is a finite-dimensionalR-module. Hence,
condition (a) of Definition 2.2 holds (see Remark 2.3(i)).

Let us show (b) of Definition 2.2. Let i ∈ I . By Lemma 2.7(ii), for any j ∈ J ,
there exist dj ∈ Z≥0 and cj ∈ k× such that pi |Mj

= cj z
dj
j . Since pi |Mµ1◦···◦Mµm

=

(pi |Mµ1
)◦ · · · ◦(pi |Mµm

) =
∏m
k=1 cµk (x

D
k )

dµk , we obtain

pi |NF
=

∑
µ∈J γ

(pi |Mµ1◦···◦Mµm
) ⊗
RD(γ )

N

=

∑
µ∈J γ

(Mµ1 ◦ · · · ◦Mµm) ⊗
RD(γ )

(
e(µ)c(xD1 )

dµ1 · · · (xDm )
dµm

)∣∣
N

=

∑
µ∈J γ

(Mµ1 ◦ · · · ◦Mµm) ⊗
RD(γ )

(
ce(µ)

∏
j∈J

( ∏
k∈[1,m], µk=j

(xDk )
dj
))∣∣∣

N

= 1D(γ ) ⊗
RD(γ )

(
c
∏
j∈J

p
dj
j

)∣∣∣
N

with c =
∏m
k=1 cµk which does not depend on µ ∈ J γ . Therefore, condition (b) of

Definition 2.2 holds.
(ii)(c) immediately follows from (a) and the epimorphism

FD(M)◦FD(N)� FD(M �N)

because M �N is simple. ut
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5. Examples

Let g be a Kac–Moody Lie algebra associated with a Cartan matrix A of finite type.
Suppose that

(a) {βj }j∈J is a family of elements of 8+ which is linearly independent in Q,
(b) βj − βk /∈ 8 for any j, k ∈ J , where 8 is the set of roots of g.

}
(5.1)

Let g be the Lie subalgebra of g generated by the root vectors of weight βj and −βj (cf.
[16, Th. 1.1]). Then g is a Kac–Moody Lie algebra associated to

A := (aj,k)j,k∈J with aj,k := 2(βj , βk)/(βj , βj ). (5.2)

We have an injective algebra homomorphism

U−(g)� U−(g). (5.3)

Choosing a convex order of the set8+ of positive roots, let (1(βj ), zj ) be the affiniza-
tion of L(βj ) given in Proposition 3.5. Then we have the duality datum

D := {1(βj ), zj ,Rk,l}j,k,l∈J .

Let gD be the Kac–Moody Lie algebra associated with AD. Suppose that AD is of finite
type. Then the functor FD is exact, and gives a Z[q±1

]-algebra homomorphism

[RD-gmod] → [R-gmod]

which gives a Z[q±1/2
]-algebra homomorphism (see Corollary 1.6)

Aq((g
D)+)c → Z[q±1/2

] ⊗
Z[q±1]

Aq(g
+). (5.4)

sending fj to the dual PBW generator E∗(βj ) corresponding to [1(βj )]. Here c is the
bilinear form on QD given by c(αDj , α

D
k ) =

1
2 (degRk,j − degRj,k).

By applying the exact functor Q(q1/2)⊗Q[q±1/2] • to (5.4), we obtain a Q(q1/2)-
algebra homomorphism

U−q (g
D)c → Q(q1/2) ⊗

Q(q)
U−q (g). (5.5)

Set cβ := (E∗(β), E∗(β))−1. Then E(β) = cβE∗(β) is the PBW vector corresponding
to β ∈ 8+. Let ψ be the algebra automorphism of U−q (g

D)c sending fj to cβj fj . Then
the composition

U−q (g
D)c

∼
−→
ψ
U−q (g

D)c → Q(q1/2) ⊗
Q(q)

U−q (g)
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sends fj to E(βj ). Since deg zM = (βj , βj ) by Theorem 3.3, the above homomorphism
sends the divided power f (m)j to the divided power E(βj )(m). Moreover, the f (m)j ’s gener-
ate the A-algebra U−A (g

D)c, and the E(βj )(m)’s are contained in U−A (g). Hence we obtain
an algebra homomorphism

U−A (g
D)c → Q[q±1/2

] ⊗
Q[q±1]

U−A (g). (5.6)

Taking the classical limit q1/2
= 1, we obtain the induced algebra homomorphism

U−(gD)→ U−(g) (5.7)

sending fj to the root vector corresponding to −βj for j ∈ J .

Proposition 5.1. If AD
= A, then the morphism [RD-gmod] → [R-gmod] induced

by FD is injective. In particular FD sends simple RD-modules to simple R-modules.

In such a case, the functor FD categorifies the homomorphism (5.3).

Proof of Proposition 5.1. By assumption, we have U−(gD) ' U−(g). Hence the map
(5.7) is injective, which implies that (5.6) is injective. Hence (5.5) and (5.4) are injective.

ut

Let us give several examples of such duality data.

Example 5.2. Let I = {1, . . . , `} and A a Cartan matrix of type A`. Hence (αi, αj ) =
2δ(i = j) − δ(|i − j | = 1) for i, j ∈ I . Let R be the quiver Hecke algebra associated
with A and with the parameter Qi,j (u, v) defined as follows: for i, j ∈ I with i < j ,

Qi,j (u, v) =

{
u− v if j = i + 1,
1 otherwise.

Let J = {1, . . . , `} and β1 := α1+α2, βj := αj for j ∈ J \ {1}. Note that the βj ’s do
not satisfy condition (5.1)(b). We set

1(β1) := L(1, 2)z1 , 1(βj ) := L(j)zj (j ∈ J \ {1}),

where L(1, 2) := kv is the 1-dimensional R(β1)-module with the actions

e(ν)v = δν,(1,2)v, x1v = x2v = τ1v = 0 for ν ∈ Iα1+α2 .

Note that deg zj = 2 for j ∈ J and the 1(βj )’s are root modules. We set Rj,k =
Rnorm
1(βj ),1(βk)

. By direct computations, the R-matrix R1(βj ),1(βk) (j 6= k) is given as fol-
lows: for u⊗ v ∈ 1(βj )⊗1(βk),

R1(βj ),1(βk)(u⊗ v) =



(τ2τ1(z2 − z1)+ τ1)(v ⊗ u) if j = 1 and k = 2,
τ2τ1(v ⊗ u) if j = 1 and k > 2,
τ1τ2(z1 − z2)(v ⊗ u) if j = 2 and k = 1,
τ1τ2(v ⊗ u) if j > 2 and k = 1,
τ1(v ⊗ u) otherwise,
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which yields

Rj,k =

{
(z1 − z2)

−1R1(βj ),1(βk) if j = 2 and k = 1,

R1(βj ),1(βk) otherwise,

and

degRj,k =


1 if |j − k| = 1 and (j, k) 6= (2, 1),
1 (j, k) = (1, 3), (3, 1),
−1 if (j, k) = (2, 1),
0 otherwise.

Thus, we have

AD
=



2 0 −1 0 · · · 0 0
0 2 −1 0 · · · 0 0
−1 −1 2 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2


,

which is of type D`, i.e., the quiver Hecke algebra RD is of type D`. Note that
deg(e(1, 2)τD1 ) = 1 and deg(e(2, 1)τD1 ) = −1 (see Definition 1.4). By Theorem 4.4,
we have the functor FD between quiver Hecke algebras of type D` and A` such that

FD(LD(j)) ' L(βj ) for j ∈ J.

Let us consider theRD-moduleLD(1, 3) := LD(1)�LD(3) and the one-dimensional
R-module L(1, 2, 3) := L(1, 2) � L(3). Applying the functor FD to the exact sequence

0→ LD(1, 3)→ LD(3)◦LD(1)→ LD(1)◦LD(3)→ LD(1, 3)→ 0,

we obtain

0→ FD(LD(1, 3))→ L(3)◦L(1, 2)→ L(1, 2)◦L(3)→ FD(LD(1, 3))→ 0.

Since FD sends every simple module to a simple module or zero by Theorem 4.4, and
L(3)◦L(1, 2) is not isomorphic to L(1, 2)◦L(3), we have

FD(LD(1, 3)) ' L(1, 2, 3).

Set LD(1, 3, 2) ' LD(1, 3) � LD(2), which is one-dimensional. It is isomorphic to the
image of the composition of

LD(1)◦LD(3)◦LD(2)→ LD(1)◦LD(2)◦LD(3)

→ LD(2)◦LD(1)◦LD(3)→ LD(2)◦LD(1, 3).
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By applying FD, we obtain a diagram

L(1, 2)◦L(3)◦L(2)
f1 // L(1, 2)◦L(2)◦L(3)

f2 // L(2)◦L(1, 2)◦L(3)

f3
����

L(2)◦L(1, 2, 3)

(5.8)

Hence FD(LD(1, 3, 2)) is isomorphic to the image of f3f2f1. Let u1,2, u2 and u3 be the
generators of L(1, 2), L(2) and L(3), respectively. Then

f1(u1,2⊗ u3⊗ u2) = τ3(u1,2⊗ u2⊗ u3), f2(u1,2⊗ u2⊗ u3) = τ1(u2⊗ u1,2⊗ u3).

Therefore,

f2f1(u1,2⊗ u3⊗ u2) = τ3τ1(u2⊗ u1,2⊗ u3) = τ1τ3(u2⊗ u1,2⊗ u3),

which is killed by f3. Thus f3f2f1 = 0, and hence

FD(LD(1, 3, 2)) ' 0.

Consequently, FD can send simple modules to zero in this example.

6. Further examples for non-symmetric types

Let β ∈ Q+ and let (M, zM) be an affinization of a real simple R(β)-module M̄ . We set
J = {0}, β0 = β, M0 = M. Then

D = {M0, zM, R
norm
M,M}

is a duality datum. The corresponding simple root αD0 satisfies (αD0 , α
D
0 ) = deg zM. Let

(K(0n), zK(0n)) be the affinization of the simple RD(nαD0 )-module L(αD0 )
◦ n given in

Example 2.18.
Now M◦n := M◦ · · · ◦M (n times) has a structure of (R(nβ), RD(nαD0 ))-bimodule.

We set
Cn(M) = M◦ n ⊗

RD(nαD0 )
K(0n) ' FD(K(0n)).

Then zK(0n) ∈ END(K(0n)) induces an endomorphism zCn(M) ∈ END(Cn(M))n deg zM . By
Theorem 4.4(ii)(b), we obtain the following lemma.

Lemma 6.1. (Cn(M), zCn(M)) is an affinization of the real simple module M̄◦n.

For example,

C2(M) =
M◦M

(zM◦M+M◦zM)(M◦M)+ r(M◦M)
, (6.1)

where r is the endomorphism given in (4.3), and zC2(M) is the endomorphism induced by
zM◦zM.
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Let M ∈ R(β)-gmod and N ∈ R(β ′)-gmod be real simple modules. Suppose that
R(β) and R(β ′) are symmetric, and

Rnorm
Nz′ ,Mt

Rnorm
Mt,Nz′

= c(t− z′)p ∈ EndR(β+β ′)(Mt ◦Nz′)

for some c ∈ k× and p ∈ Z≥0. Set

R1 :=(R
norm
Mt1 ,Nz′

◦Mt2)(Mt1 ◦R
norm
Mt2 ,Nz′

) ∈ HOMR(2β+β ′)(Mt1 ◦Mt2 ◦Nz′ , Nz′ ◦Mt1 ◦Mt2),

R2 :=(Mt1 ◦R
norm
Nz′ ,Mt2

)(Rnorm
Nz′ ,Mt1

◦Mt2) ∈ HOMR(2β+β ′)(Nz′ ◦Mt1 ◦Mt2 ,Mt1 ◦Mt2 ◦Nz′).

Setting t1 + t2 = 0 and t1t2 = ẑ := zC2(M), we regard R1, R2 as homomorphisms in
HOMR(2β+β ′)(C2(Mz)◦Nz′ , Nz′ ◦C2(Mz)), HOMR(2β+β ′)(Nz′ ◦C2(Mz),C2(Mz)◦Nz′)

respectively. Then we have

R2R1 = c
2(t1 − z′)p(t2 − z′)p = c2(t1t2 − (t1 + t2)z

′
+ z′

2
)p

= c2(̂z+ z′
2
)p (6.2)

in EndR(2β+β ′)(C2(Mz)◦Nz′).

Using (6.2), one can construct functors FD between symmetric and non-symmetric
quiver Hecke algebras. In particular, a functor from type C` (resp. C(1)` , A(2)2`−1) to type
A` (resp. A`+1, D`+1) can be constructed. We give such constructions in the following
examples.

Example 6.2. We take I , A, and Qi,j (u, v) given in Example 5.2. In particular, g is of
type A`.

Let J = {1, . . . , `} and

β1 = 2α1, βj = αj for j ∈ J \ {1}.

Let us denote

M1 = K(12), Mj = L(j)zj (j ∈ J \ {1}),

and z1 := zK(12). Then deg z1 = 4 and deg zj = 2 for j 6= 1. Note that

Rnorm
L(j)z,L(k)w

= RL(j)z,L(k)w .

We set Rj,k := RMj ,Mk
. It follows from (6.2) that, for j, k ∈ J with j < k,

Rk,jRj,k =


z1 + z2

2 if (j, k) = (1, 2),
zj − zk if k = j + 1 and (j, k) 6= (1, 2),
1 otherwise.

(6.3)

We now set
D = {Mj , zj ,Rj,k}j,k∈J .
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Then D is a dual datum, and (6.3) implies that

AD
=



2 −1 0 · · · 0 0
−2 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2


,

which is of type C`. Therefore, we have the quiver Hecke algebra RD of type C` and the
functor FD from the category of modules over quiver Hecke algebras of type C` to that
of type A` with

FD(LD(j)) '

{
L(1) ◦ L(1) if j = 1,
L(j) otherwise.

In the following examples for type B`, we construct affinizations directly.

Example 6.3. Let I = {1, . . . , `} and A a Cartan matrix of type B`:

A =



2 −2 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2


,

and (αi, αj ) = 2δ(i = j = 1)+ 4δ(i = j 6= 1)− 2δ(|i − j | = 1) for i, j ∈ I .
LetR be the quiver Hecke algebra associated with A and with the parameter Qi,j (u, v)

defined as follows: for i, j ∈ I such that i < j ,

Qi,j (u, v) =


u2
− v if (i, j) = (1, 2),

u− v if j = i + 1 and (i, j) 6= (1, 2),
1 otherwise.

Let J = {1, . . . , `− 1} and

β1 = α1 + α2, βj = αj+1 (j ∈ J \ {1}).

Note that (β1, β1) = 2 and (βj , βj ) = 4 for j 6= 1. We set

1(β1) = L(1, 2)z1 , 1(βj ) = L(j + 1)zj (j 6= 1),

where the R(β1)-module L(1, 2)z1 := k[z1]v is defined by

e(ν)v = δν,(1,2)v, xjv = z
(αj ,αj )/2
1 v, τ1v = 0.
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Note that 1(βj )’s are root modules and deg zj is 2 or 4 according to whether j = 1 or
not. For j, k ∈ J with j 6= k, we define

Rj,k := R1(βj ),1(βk) ∈ HomR(βj+βk)(1(βj ) ◦1(βk),1(βk) ◦1(βj )),

that is,

Rj,k(p ⊗ q) =


τ2τ1(q ⊗ p) if j = 1,
τ1τ2(q ⊗ p) if k = 1,
τ1(q ⊗ p) otherwise

for p ⊗ q ∈ 1(βj )⊗k 1(βk). For j, k ∈ J with j < k, we have

Rk,jRj,k =


z2
j − zk if (j, k) = (1, 2),
zj − zk if k = j + 1 and (j, k) 6= (1, 2),
1 otherwise.

Then we have the duality datum D = {1(βj ), zj ,Rj,k}j,k∈J and

AD
=



2 −2 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2


,

which is of type B`−1. Therefore, we have the functor FD from the category of modules
over a quiver Hecke algebra of type B`−1 to that of type B` such that

FD(LD(j)) '

{
L(1, 2) if j = 1,
L(j + 1) otherwise,

where L(1, 2) = L(1, 2)z1/z1L(1, 2)z1 .
It is easy to check that {β1, . . . , β`−1} satisfies (5.1) and AD is equal to the matrix A

defined by (5.2). Thus, Proposition 5.1 implies that the functor FD categorifies the in-
jective homomorphism U−(gD) ' U−(g) → U−(g) and FD sends simple modules to
simple modules. By Theorem 4.4, for a simple RD-module N ,

FD(N � LD(j)) '

{
FD(N) � L(1, 2) if j = 1,
FD(N) � L(j + 1) otherwise.

Example 6.4. We use the same notations I , A and Qi,j (u, v) as in Example 6.3.
Let J = {1, . . . , `− 1} and

β1 = 2α1 + α2, βj = αj+1 (j ∈ J \ {1}).
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Note that (βj , βj ) = 4 for all j ∈ J . We define an R(β1)-module structure on L(1, 1, 2)z1

:= k[z1] ⊗k (ku⊕ kv) by

e(ν)(a ⊗ u) = δν,(1,1,2)a ⊗ u, e(ν)(a ⊗ v) = δν,(1,1,2)a ⊗ v,

xj (a ⊗ u) =


−z1a ⊗ v if j = 1,
z1a ⊗ v if j = 2,
z1a ⊗ u otherwise,

xj (a ⊗ v) =


−a ⊗ u if j = 1,
a ⊗ u if j = 2,
z1a ⊗ v otherwise,

τk(a ⊗ u) =

{
a ⊗ v if k = 1,
0 if k 6= 1,

τk(a ⊗ v) = 0 for any k.

We set

1(β1) = L(1, 1, 2)z1 , 1(βj ) = L(j + 1)zj (j 6= 1).

Note that 1(βj )’s are root modules and deg zj = 4 for j ∈ J . For j, k ∈ J with j 6= k
and p ⊗ q ∈ 1(βj )⊗k 1(βk), we define

Rj,k := R1(βj ),1(βk) ∈ HomR(βj+βk)(1(βj ) ◦1(βk),1(βk) ◦1(βj )).

Then

Rk,jRj,k =

{
zj − zk if k = j + 1,
1 otherwise,

for j, k ∈ J with j < k.
Thus, we have the duality datum D = {1(βj ), zj ,Rj,k}j,k∈J and

AD
=



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2


is of type A`−1. Therefore, we have the quiver Hecke algebra RD of type A`−1 and the
functor FD between quiver Hecke algebras of type A`−1 and B`. Moreover,

FD(LD(j)) '

{
L(1, 1, 2) if j = 1,
L(j + 1) otherwise,

where L(1, 1, 2) = L(1, 1, 2)z1/z1L(1, 1, 2)z1 .
One can easily show that {β1, . . . , β`−1} satisfies (5.1) and AD is equal to the ma-

trix A defined by (5.2). Thus, Proposition 5.1 implies that the functor FD categorifies the
injective homomorphism U−(g)→ U−(g) and FD preserves simple modules. We have

FD(N � LD(j)) '

{
FD(N) � L(1, 1, 2) if j = 1,
FD(N) � L(j + 1) otherwise,

for every simple RD-module N by Theorem 4.4.
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