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Abstract. This is the first of a series of papers, where we introduce a new class of estimates for
the Ricci flow, and use them both to characterize solutions of the Ricci flow and to provide a notion
of weak solutions to the Ricci flow in the nonsmooth setting. In this first paper, we prove various
new estimates for the Ricci flow, and show that they in fact characterize solutions of the Ricci
flow. Namely, given a family (M, gt )t∈I of Riemannian manifolds, we consider the path space PM
of its space-time M = M × I . Our first characterization says that (M, gt )t∈I evolves by Ricci
flow if and only if an infinite-dimensional gradient estimate holds for all functions on PM. We
prove additional characterizations in terms of the C1/2-regularity of martingales on path space,
as well as characterizations in terms of log-Sobolev and spectral gap inequalities for a family of
Ornstein–Uhlenbeck type operators. Our estimates are infinite-dimensional generalizations of much
more elementary estimates for the linear heat equation on (M, gt )t∈I , which themselves generalize
the Bakry–Émery–Ledoux estimates for spaces with lower Ricci curvature bounds. Thanks to our
characterizations we can define a notion of weak solutions for the Ricci flow. We will develop the
structure theory of these weak solutions in subsequent papers.
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1. Introduction

1.1. Background and overview

The Ricci flow, introduced by Richard Hamilton [Ham82], evolves Riemannian manifolds
in time and is given by the equation

∂tgt = −2 Ricgt . (1.1)

As with all geometric equations, the key to the analysis of (1.1) is to prove estimates that
are strong enough to capture the analytic and geometric behavior. Many of the known es-
timates for the Ricci flow are similar in nature to—but often have been harder to develop
than—the corresponding estimates for other geometric equations. Since the geometry it-
self is evolving, even the most basic geometric quantities, like the heat kernel, can behave
quite badly. Furthermore, many techniques from geometric analysis that rely on the pres-
ence of an ambient space (or a fixed underlying manifold) are not available for the Ricci
flow. In particular, it has been a longstanding open problem to find a notion of weak
solutions for the Ricci flow.

The goal of this paper, the first in a series, is to introduce a new class of estimates for
the Ricci flow. Our new estimates not only give new information about solutions of the
Ricci flow, but are designed to be sufficiently powerful to give analytic criteria for deter-
mining when a family of Riemannian manifolds solves the Ricci flow. That is, we will
see that if a family (M, gt )t∈I of Riemannian manifolds satisfies the analytic estimates
of this paper, then in fact this family solves (1.1). Such analytic criteria can be used to
define weak solutions and have become of increasing importance in other areas of Ricci
curvature (see for instance [LV09, Stu06, AGS14, Nab13]), but have not been available
up to now for the Ricci flow itself.

We start with the comparatively simple task of characterizing supersolutions of the
Ricci flow, i.e. families (M, gt )t∈I such that ∂tgt ≥ −2 Ricgt (see Section 1.2 and Sec-
tion 2). As summarized in Theorem 1.5, supersolutions can be characterized in terms of
various estimates for the linear heat equation on (M, gt )t∈I . These estimates generalize
the Bakry–Émery–Ledoux estimates for manifolds with lower Ricci curvature bounds
[BÉ85, BL06] (see also McCann–Topping [MT10]). In particular, one can characterize
supersolutions in terms of a log-Sobolev inequality, and a Poincaré inequality. The log-
Sobolev inequality is not the one discovered by Perelman [Per02], but the more recent
one from Hein–Naber [HN14].

To characterize solutions of the Ricci flow, and not just supersolutions, we prove
infinite-dimensional generalizations of the above estimates. Motivated by work in
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stochastic analysis [Mal84, Dri92, Fan94, AE95, Hsu97] and prior work of the second
author [Nab13], our approach to finding such infinite-dimensional generalizations is to
do analysis on path space. More precisely, it turns out that the right path space to con-
sider is the space PM of continuous curves in the space-time M = M × I , which are
allowed to move arbitrarily along the manifold M but are required to move backwards
along the I factor with unit speed. To be able to do analysis on PM we have to set up
quite a bit of machinery from stochastic analysis, notably the notions of Wiener mea-
sure, stochastic parallel transport, parallel gradient and Malliavin gradient, adapted to
our space-time setting. We describe this briefly in Section 1.3.1 and give a comprehen-
sive treatment in Section 3. For example, the construction of parallel transport is quite
subtle, since almost no curve of Brownian motion is C1. Nevertheless, using ideas from
Eells–Elworthy–Malliavin [Elw82, Mal97], we can make sense of parallel transport on
space-time for almost every curve of Brownian motion (see Section 3.2).

Having set the stage, let us now discuss our infinite-dimensional estimates. Our first
characterization in Section 1.3.2 directly relates solutions of the Ricci flow to gradient
estimates on path space. Specifically, we will see that a family (M, gt )t∈I evolves by
Ricci flow if and only if a certain gradient inequality (R2) holds for all functions on PM.
We will see how this directly generalizes the gradient estimate (S2) proved in Theorem
1.5 for supersolutions. Our second characterization in Section 1.3.3 is in terms of the time
regularity of martingales on path space. Specifically, we will see that martingales F τ on
path space satisfy a precise C1/2-Hölder estimate (R3) if and only if the family (M, gt )t∈I
evolves by Ricci flow. Our third characterization in Section 1.3.4 is in terms of an infinite-
dimensional log-Sobolev inequality (R4), and our final characterization in Section 1.3.5 is
in terms of the corresponding spectral gap (R5). Our characterizations of solutions of the
Ricci flow can be thought of as infinite-dimensional generalizations of the estimates for
supersolutions. Namely, if we evaluate our infinite-dimensional estimates for the simplest
possible test functions, i.e. functions on path space that only depend on the value of the
curve at a single time, then we actually recover the finite-dimensional estimates from
Theorem 1.5. Of course, there are many more sophisticated test functions that we can
plug in our estimates, and this is one of the reasons why our estimates are actually strong
enough to characterize solutions, and not just supersolutions. Our characterizations of
solutions of the Ricci flow constitute the main results of this article and are summarized
in Theorem 1.22.

Let us also emphasize that Theorem 1.22 truly relies on ideas from stochastic anal-
ysis, i.e. doing analysis on path space PM, as it seems that analysis on (M, gt )t∈I can
only be used to characterize supersolutions but not solutions. In fact, some indications
that stochastic analysis might be useful in the study of Ricci flow have already appeared
previously in the literature: Arnoundon–Coulibaly–Thalmaier [ACT08] proved the ex-
istence of Brownian motion in a time dependent setting (see also [Cou11]), and used
this to prove a Bismut type formula for the Ricci flow. Kuwada–Philipowski [KP11b,
KP11a] studied the relationship between time dependent Brownian motion and Perel-
man’s L-geodesics and obtained a nice nonexplosion result (see also [Che15]), and Guo–
Philipowski–Thalmaier [GPT15] found some applications of stochastic analysis to an-
cient solutions. With our new estimates, there are many more directions to explore.
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In future papers of this series we will use our estimates to investigate singularities
in the Ricci flow. In most situations, the Ricci flow develops singularities in finite time.
Typically, the curvature blows up in certain regions but remains bounded on the remaining
parts of the manifold [Ham95]. One would then like to understand these singularities and
find ways to continue the flow beyond the first singular time.

The formation of singularities is of course an ubiquitous phenomenon in the study of
nonlinear PDEs. For other geometric evolution equations there are good notions of weak
solutions that allow one to continue the flow through any singularity, e.g. Brakke and
level set solutions for the mean curvature flow [Bra78, ES91, CGG91], and Chen–Struwe
[CS89] solutions for the harmonic map heat flow. For the Ricci flow, however, it is only
known in a few special—albeit very important—cases how to continue the flow through
singularities. Most notably, Perelman’s Ricci flow with surgery [Per02, Per03] provides
a highly successful way to deal with the formation of singularities in dimension three.
Surgery has also been implemented in the case of four-manifolds with positive isotropic
curvature [Ham97, CZ06]. Recently, Kleiner–Lott [KL17] proved the beautiful result that
as the surgery parameters degenerate it is possible to pass to certain limits, called singular
Ricci flows. Also, there has been a lot of progress in the Kähler case—see e.g. Song–
Tian [ST09] and Eyssidieux–Guedj–Zeriahi [EGZ14]. In most other cases, however, it is
a widely open problem how to deal with the formation of singularities.

In the second paper of this series we will use the estimates of this first paper to give
a notion of the Ricci flow for a family of metric-measure spaces. Using analytic charac-
terizations to define weak solutions is a well developed tool in the context of lower Ricci
curvature [LV09, Stu06, AGS14], and more recently in the context of bounded Ricci cur-
vature [Nab13]. Similarly, making use of the characterizations of Theorem 1.22 we will
define a notion of weak solutions for the Ricci flow and develop their theory. We will
discuss this in subsequent papers, but let us briefly describe the idea. We consider metric-
measure spaces M equipped with a time function and a linear heat flow. We call M a weak
solution of the Ricci flow if the gradient estimate (R2) holds on PM. We then establish
various geometric and analytic estimates for these weak solutions. One of our applica-
tions concerns a question of Perelman about limits of Ricci flows with surgery [Per02].
Namely, the metric completion of the space-time of Kleiner–Lott [KL17], which they ob-
tained as a limit of Ricci flows with surgery where the neck radius is sent to zero, is a
weak solution in our sense.

1.2. Characterizations of supersolutions of the Ricci flow

As a motivation for our approach to characterize solutions of the Ricci flow, let us first
characterize supersolutions, i.e. smooth families of Riemannian manifolds such that

∂tgt ≥ −2 Ricgt . (1.2)

To fix notation, let (M, gt )t∈I be a smooth family of Riemannian manifolds, where
I = [0, T1]. To avoid technicalities, we assume throughout the paper that all manifolds
are complete and

sup
M×I

(|Rm| + |∂tgt | + |∇∂tgt |) <∞. (1.3)
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However, all our estimates are independent of the implicit constant in (1.3). We consider
the heat equation (∂t − 1gt )w = 0 on our evolving manifolds (M, gt )t∈I . For every
s, T ∈ I with s ≤ T , and every smooth function u with compact support, we write PsT u
for the solution at time T with initial condition u at time s. In other words,

(PsT u)(x) =

∫
M

u(y)H(x, T | y, s) dvolgs (y), (1.4)

where H(x, T | y, s) is the heat kernel with pole at (y, s). We write dν(x,T )(y, s) =
H(x, T | y, s)dvolgs (y). It is often useful to think of dν(x,T ) as the adjoint heat kernel
measure based at (x, T ).

The following theorem summarizes our characterizations of supersolutions of the
Ricci flow.

Theorem 1.5 (Characterizations of supersolutions of the Ricci flow). For every smooth
family (M, gt )t∈I of Riemannian manifolds (complete, satisfying (1.3)), the following
conditions are equivalent:

(S1) The family (M, gt )t∈I is a supersolution of the Ricci flow,

∂tgt ≥ −2 Ricgt .

(S2) For all test functions u, the heat equation on (M, gt )t∈I satisfies the gradient esti-
mate

|∇PsT u|gT ≤ PsT |∇u|gs .

(S3) For all test functions u, the heat equation on (M, gt )t∈I satisfies the estimate

|∇PsT u|
2
gT
≤ PsT |∇u|

2
gs
.

(S4) For all functions u : M → R with
∫
M
u2(y) dν(x,T )(y, s) = 1, we have the log-

Sobolev inequality∫
M

u2(y) log u2(y) dν(x,T )(y, s) ≤ 4(T − s)
∫
M

|∇u|2gs (y) dν(x,T )(y, s).

(S5) For all functions u : M → R with
∫
M
u(y) dν(x,T )(y, s) = 0, we have the Poincaré

inequality∫
M

u2(y) dν(x,T )(y, s) ≤ 2(T − s)
∫
M

|∇u|2gs (y) dν(x,T )(y, s).

In essence, this all follows from the Bochner formula for the heat operator � = ∂t −1gt ,

�|∇u|2 = 2〈∇u,∇�u〉 − 2|∇2u|2 − (∂tg + 2 Ric)(grad u, grad u); 1 (1.6)

see Section 2 for the (easy) proof of Theorem 1.5. The reader can also view this as a good
toy model for the more sophisticated infinite-dimensional computations on path space
that we carry out in later sections.

1 Here, we write grad u for the gradient vector, and ∇u for the corresponding 1-form, i.e.
(grad u)i = gij∇ju.
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Remark 1.7. Theorem 1.5 can be thought of as parabolic version of the Bakry–Émery
characterization of nonnegative Ricci curvature [BÉ85, BL06]. Another interesting char-
acterization of supersolutions of the Ricci flow, in terms of the Wasserstein distance, has
been given by McCann–Topping [MT10].

1.3. Characterizations of solutions of the Ricci flow

In this section we describe our main estimates on path space, and use them to characterize
solutions of the Ricci flow.

1.3.1. Stochastic analysis on evolving manifolds. Our estimates require quite some ma-
chinery from stochastic analysis, notably the notions of Wiener measure, stochastic par-
allel transport, parallel gradient and Malliavin gradient, adapted to our time-dependent
setting. We will now briefly describe these notions, and refer to Section 3 for a more
complete treatment.

Let (M, gt )t∈I be a smooth family of Riemannian manifolds, where I = [0, T1]. We
recall that we always assume that our manifolds are complete and that (1.3) is satisfied,
though the second assumption is for convenience. Throughout this work we will think of
the evolving manifolds in terms of the space-time M = M× I . As observed by Hamilton
[Ham93] there is a natural space-time connection defined by

∇XY = ∇
gt
X Y, ∇tY = ∂tY +

1
2∂tgt (Y, ·)

]gt . (1.8)

The point is that this connection is compatible with the metric, i.e. d
dt
|Y |2gt = 2〈Y,∇tY 〉.

It is useful to consider space-time curves going backwards in time [LY86, Per02].
Namely, for each (x, T ) ∈ M, we consider the based path space P(x,T )M consisting
of all space-time curves of the form {γτ = (xτ , T − τ)}τ∈[0,T ], where {xτ }τ∈[0,T ] is a
continuous curve in M with x0 = x.

We equip the path space P(x,T )M with a probability measure 0(x,T ), which we call
the Wiener measure of Brownian motion on our evolving family of manifolds, based at
(x, T ). The measure 0(x,T ) is uniquely characterized by the following property. If eσ :
P(x,T )M → Mk , γ 7→ (xσ1 , . . . , xσk ), is the evaluation map at σ = {0 ≤ σ1 < · · · <

σk ≤ T }, and if we write si = T − σi , then

eσ,∗d0(x,T )(y1, . . . , yk)

= H(x, T | y1, s1)dvolgs1 (y1) · · ·H(yk−1, sk−1 | yk, sk)dvolgsk (yk), (1.9)

where H is the heat kernel of ∂t −1gt ; see Section 3.2 for the construction of Brownian
motion.

It is often convenient to consider the total path space PTM =
⋃
x∈M P(x,T )M. Note

that we can identify (PTM, 0(x,T ))with (P(x,T )M, 0(x,T )), since the measure 0(x,T ) con-
centrates on curves starting at (x, T ). Sometimes it is also useful to equip the total path
space PTM with the measure 0T =

∫
0(x,T ) dvolgT (x).

The space (PTM, 0(x,T )) can be equipped with a notion of stochastic parallel trans-
port, a family of isometries Pτ (γ ) : (TxτM,gT−τ ) → (TxM,gT ). If the curves γ
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were C1, then Pτ (γ ) would just be the parallel transport from differential geometry,
with respect to the natural space-time connection defined in (1.8). Of course, almost no
curve of Brownian motion is differentiable at any point. Nevertheless, using deep ideas
of Eells–Elworthy–Malliavin we can still make sense of Pτ (γ ) for almost every curve γ :
see Section 3.2 for the construction.

The space (PTM, 0(x,T )) can be equipped with two natural notions of gradient. Sup-
pose first that F : P(x,T )M → R is a k-point cylinder function (k = 1, 2, . . .), i.e. a
function of the form F = u ◦ eσ , where eσ : P(x,T )M → Mk is an evaluation map
and u : Mk

→ R is a smooth function with compact support. If v ∈ (TxM,gT ),
then for almost every (a.e.) curve γ , we can consider the continuous vector field V =
{Vτ = P

−1
τ v}τ∈[0,T ] along γ , where Pτ = Pτ (γ ) denotes stochastic parallel transport as

in the previous paragraph. Note that the directional derivativeDVF(γ ) is well defined, as
a limit of difference quotients as usual.

The parallel gradient ∇‖F(γ ) ∈ (TxM,gT ) is then defined by the condition that

DVF(γ ) = 〈∇
‖F(γ ), v〉(TxM,gT ) (1.10)

for all v ∈ (TxM,gT ), where V = {Vτ = P−1
τ v}τ∈[0,T ] is the parallel vector field

associated to v, as above. More generally, there is a one-parameter family of parallel
gradients ∇‖σ (0 ≤ σ ≤ T ), which captures the part of the gradient coming from the time
interval [σ, T ]. In particular, ∇‖ = ∇‖0 .

The Malliavin gradient ∇HF is defined along similar lines, but takes values in an
infinite-dimensional Hilbert space. Namely, let H be the Hilbert space of H 1-curves
{vτ }τ∈[0,T ] in (TxM,gT ) with v0 = 0, equipped with the inner product 〈v,w〉H =∫ T

0 〈v̇τ , ẇτ 〉(TxM,gT )dτ . Then ∇HF : P(x,T )M → H is the unique almost everywhere
defined function such that

DVF(γ ) = 〈∇
HF(γ ), v〉H (1.11)

for a.e. curve γ and every v ∈ H, where V = {P−1
τ vτ }τ∈[0,T ].

Having defined them on cylinder functions, we can extend the (σ -)parallel gradient
and the Malliavin gradient to closed unbounded operators on L2; see Section 3.6 for
details.

Finally, the Ornstein–Uhlenbeck operator L = ∇H∗
∇

H is defined by composing
the Malliavin gradient with its adjoint. More generally, there is a family of Ornstein–
Uhlenbeck operators Lτ1,τ2 (0 ≤ τ1 < τ2 ≤ T ), which captures the part of the Laplacian
coming from the time interval [τ1, τ2]. In particular, L = L0,T .

1.3.2. Ricci flow and the gradient estimate. Our first characterization of solutions of the
Ricci flow is in terms of an infinite-dimensional gradient estimate on the associated path
space. Let (M, gt )t∈I be a smooth family of Riemannian manifolds and let PTM be its
path space, equipped with the Wiener measure and the parallel gradient. If F : PTM→ R
is a sufficiently nice function, for instance a cylinder function, one can ask whether one
can control the gradient of

∫
PTM

F d0(x,T ) viewed as a function of x ∈ M , in terms of
some natural gradient of F viewed as a function on path space. In fact, the answer to
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this question turns out to be highly relevant, in that it yields our first characterization of
solutions of the Ricci flow. Namely, we prove that (M, gt )t∈I evolves by Ricci flow if and
only if the gradient estimate∣∣∣∣∇x ∫

PTM

F d0(x,T )

∣∣∣∣ ≤ ∫
PTM

|∇
‖F | d0(x,T ) (R2)

holds for all functions F ∈ L2(PTM, 0T ) (for a.e. (x, T ) ∈M).

Remark 1.12. The infinite-dimensional gradient estimate (R2) can be thought of as
(vast) generalization of the finite-dimensional gradient estimate (S2) for the heat equa-
tion. Namely, let F = u◦eσ : PTM→ M → R be a 1-point cylinder function, and write
s = T − σ . By (1.9) the pushforward measure

eσ,∗ d0(x,T ) = dν(x,T )(·, s) (1.13)

is given by the heat kernel measure dν(x,T )(y, s) = H(x, T | y, s)dvolgs (y), and thus∫
PTM

F d0(x,T ) =

∫
M

u eσ,∗ d0(x,T ) = (PsT u)(x). (1.14)

Moreover, using (1.10) one sees that |∇‖F |(γ ) = |∇u|gs (eσ (γ )), which together with
(1.13) implies that∫

PTM

|∇
‖F | d0(x,T ) =

∫
M

|∇u| eσ,∗ d0(x,T ) = (PsT |∇u|)(x). (1.15)

Thus, in the special case of 1-point cylinder function the estimate (R2) reduces to the
finite-dimensional heat equation estimate

|∇PsT u| ≤ PsT |∇u|. (S2)

Of course, there are many more test functions on path space than just 1-point cylinder
functions. This is one of the reasons why our infinite-dimensional estimate (R2) is strong
enough to characterize solutions of the Ricci flow, while the finite-dimensional heat equa-
tion estimate (S2) just characterizes supersolutions.

1.3.3. Ricci flow and the regularity of martingales. Our second characterization of so-
lutions of the Ricci flow is in terms of the regularity of martingales on its path space.
Let (M, gt )t∈I be a smooth family of Riemannian manifolds, and let PTM be its path
space. For every function F ∈ L2(PTM, 0(x,T )), we can consider the induced martin-
gale {F τ }τ∈[0,T ],

F τ (γ ) =

∫
PT−τM

F(γ |[0,τ ] ∗ γ
′) d0γτ (γ

′), (1.16)

where the integral is over all Brownian curves γ ′ based at γτ , and ∗ denotes con-
catenation. The family {F τ }τ∈[0,T ] indeed has the martingale property (F τ

′

)τ = F τ
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(τ ′ ≥ τ ) and captures how F depends on the [0, τ ]-part of the curves (see Sec-
tion 3.3). The quadratic variation [F •]τ of the martingale {F τ }τ∈[0,T ] is defined by
[F •]τ = lim‖{τj }‖→0

∑
k(F

τk − F τk−1)2, where the limit is taken in probability, over
all partitions {τj } of [0, τ ] with mesh going to zero (see Section 3.3). It turns out that so-
lutions of the Ricci flow can be characterized in terms of certain bounds for d[F •]τ /dτ .
Namely, we prove that (M, gt )t∈I evolves by Ricci flow if and only if the estimate∫

PTM

d[F •]τ

dτ
d0(x,T ) ≤ 2

∫
PTM

|∇
‖
τF |

2 d0(x,T ) (R3)

holds for every F ∈ L2(PTM, 0(x,T )) (for all (x, T ) ∈M).

Remark 1.17. The estimate (R3) is a (vast) generalization of (S3). Namely, let F =
u ◦ eσ : PTM→ M → R be a 1-point cylinder function, and write s = T − σ . If ε > 0,
then by (1.13) and (1.16) we have

F ε(γ ) =

∫
M

u(y) dνγε (y, s) = (Ps,T−εu)(xε). (1.18)

Applying this twice and using the short time asymptotics of the heat kernel, one can
compute that∫
PTM

d[F •]τ

dτ

∣∣∣∣
τ=0

d0(x,T ) = lim
ε→0

1
ε

∫
PTM

(F ε − (F ε)0)2 d0(x,T )

= lim
ε→0

1
ε

∫
M

(
(Ps,T−εu)(z)−

∫
M

(Ps,T−εu)(ẑ) dν(x,T )(ẑ, T − ε)

)2

dν(x,T )(z, T − ε)

= 2|∇PsT u|2(x).

Thus, in the special case of 1-point cylinder functions, (R3) for τ = 0 reduces to2

|∇PsT u|
2
≤ PsT |∇u|

2. (S3)

1.3.4. Ricci flow and the log-Sobolev inequality. Our third characterization of solutions
of the Ricci flow is in terms of a log-Sobolev inequality on its path space. Log-Sobolev
inequalities have a long history, going back to Gross [Gro75]. In the context of Ricci flow,
they appear in Perelman’s monotonicity formula [Per02] and also in the inequality (S4)
of Hein–Naber [HN14]. We characterize solutions of the Ricci flow via an infinite-dimen-
sional generalization of the inequality (S4). Namely, we prove that (M, gt )t∈I evolves by
Ricci flow if and only if the log-Sobolev inequality∫

PTM

(
(F 2)τ2 log (F 2)τ2 − (F 2)τ1 log (F 2)τ1

)
d0(x,T )

≤ 4
∫
PTM

〈F,Lτ1,τ2F 〉 d0(x,T ) (R4)

2 For τ 6= 0, one gets the estimate PtT |∇Pstu|2 ≤ PsT |∇u|2, which is easily seen to be equiva-
lent to (S3).
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holds for every F in the domain of the Ornstein–Uhlenbeck operator Lτ1,τ2 (for all
(x, T ) ∈ M and all 0 ≤ τ1 < τ2 ≤ T ). Here, (F 2)τ denotes the martingale induced
by F 2.

Remark 1.19. If τ1 = 0 and τ2 = T the inequality (R4) takes the somewhat simpler
form ∫

PTM

F 2 log F 2 d0(x,T ) ≤ 4
∫
PTM

|∇
HF |2 d0(x,T ) (1.20)

for all F with
∫
PTM

F 2 d0(x,T ) = 1. Specializing further, for a 1-point cylinder function
F = u◦eσ : PTM→ M → R (s = T −σ ), using (1.11) one can see that |∇HF |2H(γ ) =

(T − s)|∇u|gs (eσ (γ )) (cf. Proposition 3.53). Together with (1.13) this shows that (R4)
then reduces to (S4).

1.3.5. Ricci flow and the spectral gap. Our final characterization of solutions of the Ricci
flow is in terms of the spectral gap of the Ornstein–Uhlenbeck operators on its path space.3

We prove that (M, gt )t∈I evolves by Ricci flow if and only if the Ornstein–Uhlenbeck
operators Lτ1,τ2 (for all (x, T ) ∈ M and all 0 ≤ τ1 < τ2 ≤ T ) satisfy the spectral gap
estimate ∫

PTM

(F τ2 − F τ1)2 d0(x,T ) ≤ 2
∫
PTM

〈F,Lτ1,τ2F 〉 d0(x,T ). (R5)

Remark 1.21. In the special case of 1-point cylinder functions, the estimate (R5) again
reduces to (S5).

1.3.6. Summary of main results. Our main results are summarized in the following the-
orem.

Theorem 1.22 (Characterizations of solutions of the Ricci flow). For every smooth fam-
ily (M, gt )t∈I of Riemannian manifolds (complete, satisfying (1.3)), the following condi-
tions are equivalent:

(R1) The family (M, gt )t∈I evolves by Ricci flow,

∂tgt = −2 Ricgt .

(R2) For every F ∈ L2(PTM, 0T ), we have the gradient estimate∣∣∣∣∇x ∫
PTM

F d0(x,T )

∣∣∣∣ ≤ ∫
PTM

|∇
‖F | d0(x,T ).

(R3) For every F ∈ L2(PTM, 0(x,T )), the induced martingale {F τ }τ∈[0,T ] satisfies∫
PTM

d[F •]τ

dτ
d0(x,T ) ≤ 2

∫
PTM

|∇
‖
τF |

2 d0(x,T ).

3 It is of course well known that a log-Sobolev inequality implies a spectral gap. However, the
important point we prove is that the spectral gap is in fact strong enough to characterize solutions
of the Ricci flow.



Characterizations of the Ricci flow 1279

(R4) The Ornstein–Uhlenbeck operator Lτ1,τ2 on the based path spaceL2(PTM, 0(x,T ))

satisfies the log-Sobolev inequality∫
PTM

(
(F 2)τ2 log (F 2)τ2−(F 2)τ1 log (F 2)τ1

)
d0(x,T ) ≤ 4

∫
PTM

〈F,Lτ1,τ2F 〉 d0(x,T ).

(R5) The Ornstein–Uhlenbeck operator Lτ1,τ2 on the based path spaceL2(PTM, 0(x,T ))

satisfies the spectral gap estimate∫
PTM

(F τ2 − F τ1)2 d0(x,T ) ≤ 2
∫
PTM

〈F,Lτ1,τ2F 〉 d0(x,T ).

Remark 1.23. As explained above, in the special case of 1-point cylinder functions the
estimates (R2)–(R5) reduce to (S2)–(S5), respectively.

Remark 1.24. Further characterizations are possible. In particular, we have an L2-ver-
sion of the gradient estimate, and a pointwise L1-version of the martingale estimate—see
(R2′) and (R3′) in Section 4.

Outline. This article is organized as follows. In Section 2, as a warmup for the proof of the
main theorem, we prove Theorem 1.5 characterizing supersolutions of the Ricci flow. In
Section 3, we set up the machinery of stochastic analysis in our setting of evolving man-
ifolds. In Section 4, we prove the main theorem (Theorem 1.22) characterizing solutions
of the Ricci flow.

2. Supersolutions of the Ricci flow

In this short section we prove Theorem 1.5, characterizing supersolutions of the Ricci
flow.
Proof of Theorem 1.5. We will prove the implications (S3)⇔(S1)⇔(S2) and (S1)⇒(S4)
⇒(S5)⇒(S3).

(S1)⇔(S3): If gt is a supersolution of the Ricci flow, then the Bochner formula (1.6)
implies

�|∇Pstu|
2
≤ 0. (2.1)

Thus, |∇Pstu|2−Pst |∇u|2 is a subsolution of the heat equation. Since it is zero for t = s,
it stays nonpositive for all t > s, in particular |∇PsT u|2 ≤ PsT |∇u|

2. To prove the
converse implication, assume that (∂tg + 2 Ric)(X,X) < 0 for some unit tangent vector
X ∈ TxM at some time s. Choose a test function u with ∇u(x) = X and ∇2u(x) = 0.
Then by (1.6) we have ∂t |∇Pstu|2 > 1|∇u|2 at p at t = s; this contradicts (S3).

(S1)⇔(S2): If gt is a supersolution of the Ricci flow, then using the Bochner formula
(1.6) and the Cauchy–Schwarz inequality we obtain

�|∇Pstu| =
1

|∇Pstu|

(
1
2
�|∇Pstu|

2
+

1
4
|∇|∇Pstu|

2
|
2

|∇Pstu|2

)
≤ 0. (2.2)

Thus, |∇Pstu| − Pst |∇u| is a subsolution of the heat equation. Since it is zero for t = s,
it stays nonpositive for all t > s, in particular |∇PsT u| ≤ PsT |∇u|. The converse impli-
cation follows by considering a test function as above.
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(S1)⇒(S4): Let w > 0. We start by deriving another estimate for the heat equation.
Using the Bochner formula (1.6) and the Peter–Paul inequality we compute

�

(
|∇Pstw|

2

Pstw

)
=

�|∇Pstw|2

Pstw
+ 2
〈∇|∇Pstw|

2,∇Pstw〉

(Pstw)2
− 2
|∇Pstw|

4

(Pstw)3
≤ 0. (2.3)

Thus, |∇Pstw|
2

Pstw
− Pst

|∇w|2

w
is a subsolution of the heat equation. Since it is zero for t = s,

this implies the estimate
|∇Psrw|

2

Psrw
≤ Psr

|∇w|2

w
. (2.4)

Now, using the heat kernel homotopy principle [HN14, (3.7)] and (2.4) we compute∫
w logw dν −

(∫
w dν

)
log
(∫

w dν

)
=

∫ T

s

(
PrT
|∇Psrw|

2

Psrw

)
(x) dr

≤ (T − s)

∫
|∇w|2

w
dν. (2.5)

Substituting w = u2 implies the log-Sobolev inequality (S4).
(S4)⇒(S5): This follows by evaluating (S4) for w2

= 1+ εu with
∫
u dν = 0.

(S5)⇒(S3): By the heat kernel homotopy principle [HN14, (3.7)] we have∫
u2 dν −

(∫
u dν

)2

= 2
∫ T

s

(PrT |∇Psru|
2)(x) dr. (2.6)

Thus, if (S3) fails at some (x, T ), then (S5) fails for dν(x,T ) with |T − s| small enough.
ut

3. Stochastic calculus on evolving manifolds

We will now discuss in more detail the required background from stochastic analy-
sis, adapted to our time-dependent setting. There are numerous excellent references for
stochastic analysis on manifolds, e.g. [Elw82, Éme89, Hsu02, IW81, Mal97, Str00]. For
readers who wish to focus on one single reference which is particularly close in spirit to
the content of the present section we recommend the book by Hsu [Hsu02].

3.1. Frame bundle on evolving manifolds

To set things up efficiently, we will first explain how to formulate the differential geometry
of evolving manifolds in terms of the frame bundle. For the frame bundle formalism
in the time-independent case, see e.g. Kobayashi–Nomizu [KN96] for the frame bundle
formalism; for the Ricci flow, see Hamilton [Ham93].

Let (M, gt )t∈I , I = [0, T1], be a smooth family of Riemannian manifolds, and write
M = M × I . Let Y be a time-dependent vector field. For each X ∈ (TxM,gt ) we can
compute the covariant spatial derivative ∇XY = ∇

gt
X Y using the Levi-Civita connection

of the metric gt . The covariant time derivative is defined as ∇tY = ∂tY + 1
2∂tgt (Y, ·)

]gt .
The point is that this gives metric compatibility, namely d

dt
|Y |2gt = 2〈Y,∇tY 〉.
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Consider the On-bundle π : F→M, where the fibres F(x,t) are given by the orthog-
onal maps u : Rn → (TxM,gt ), and g ∈ On acts from the right via composition. The
horizontal lift of a curve γt in M is a curve ut in F with πut = γt such that ∇γ̇t (ute) = 0
for all e ∈ Rn. Given a vector αX + β∂t ∈ T(x,t)M and a frame u ∈ F(x,t), there is a
unique horizontal lift αX∗ + βDt with π∗(αX∗ + βDt ) = X. Here, X∗ is just the hori-
zontal lift of X ∈ TxM with respect to the fixed metric gt , and Dt = d

ds

∣∣
0us , where us is

the horizontal lift based at u of the curve s 7→ (x, t+ s) with x constant. Most of the time
we only consider curves of the form γτ = (xτ , T − τ). We denote space-time parallel
transport by Pτ1,τ2 = uτ2u

−1
τ1
: (Txτ1

M,gT−τ1)→ (Txτ2
M,gT−τ2), and observe that this

induces parallel translation maps for arbitrary tensor fields. We write Dτ = −Dt .
Given a representation ρ of On on some vector space V and an equivariant map

from F to V , we get a section of the associated vector bundle F×ρ V , and vice versa. For
example, a time-dependent function f corresponds to the invariant function f̃ = fπ :

F → R, and a time-dependent vector field Y corresponds to a function Ỹ : F → Rn via
Ỹ (u) = u−1Yπu, which is equivariant in the sense that Ỹ (ug) = g−1Ỹ (u). The following
lemma shows how to compute derivatives in terms of the frame bundle.

Lemma 3.1 (First derivatives). X̃f = X∗f̃ , ∂̃tf = Dt f̃ , ∇̃XY = X∗Ỹ , and ∇̃tY =
Dt Ỹ .

Proof. The first two formulas are obvious, since the horizontal lift of a function is con-
stant in fiber direction. To prove the last formula, let ut be a horizontal curve with
πut = γt = (x, t), where x is fixed. Then

(Dt Ỹ )ut1
=
d

dt

∣∣∣∣
t1

Ỹ (ut ) =
d

dt

∣∣∣∣
t1

u−1
t Yπut = u

−1
t1

d

ds

∣∣∣∣
0
P−1
t1,t1+s

Y(x,t1+s) = u
−1
t1
(∇tY )(x,t1)

= (∇̃tY )ut1
. (3.2)

The third formula follows from a similar computation. In fact, it is a well known formula
from differential geometry with respect to a fixed metric gt (see e.g. [KN96, Chap. III]).

ut

Let e1, . . . , en be the standard basis of Rn. We write Hi for the horizontal vector fields
Hi(u) = (uei)

∗, where ∗ denotes the horizontal lift, as before. The horizontal Laplacian
is defined by 1H =

∑n
i=1H

2
i .

Lemma 3.3 (Laplacian). 1̃f = 1H f̃ and 1̃Y = 1H Ỹ .

Proof. This is a classical fact from differential geometry with respect to a fixed metric gt
(see e.g. [KN96, Chap. III]). ut

We also need the notion of the antidevelopment of a horizontal curve (this concept is also
known as Cartan’s rolling without slipping; see e.g. [KN96]), generalized to the time-
dependent setting. The point is that the horizontal vector fields provide a way to identify
curves in Rn with horizontal curves in F.
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Definition 3.4 (Antidevelopment). If {uτ }τ∈[0,T ] is a horizontal curve in F with π(uτ )
= (xτ , T − τ), its antidevelopment {wτ }τ∈[0,T ] is the curve in Rn that satisfies

duτ

dτ
= Dτ +Hi(uτ )

dwiτ

dτ
, w0 = 0. (3.5)

3.2. Brownian motion and stochastic parallel transport

The goal of this section is to generalize the Eells–Elworthy–Malliavin construction of
Brownian motion and stochastic parallel translation (see e.g. [Hsu02]), to our setting of
evolving manifolds. We note that a related construction in the time-dependent setting has
been given by Arnaudon–Coulibaly–Thalmaier [ACT08].

The idea is to solve (3.5) in a stochastic setting. This provides a way to identify
Brownian curves {wτ }τ∈[0,T ] in Rn with horizontal Brownian curves {uτ }τ∈[0,T ] in F.
The virtue of this approach is that it yields both Brownian motion on M , via projecting,
and stochastic parallel transport, via Pτ1,τ2 = uτ2u

−1
τ1

.
Let (M, gt )t∈I , I = [0, T1], be a one-parameter family of Riemannian manifolds, and

let π : F→ M × I be the time-dependent On-bundle introduced in the previous section.
We fix a frame u ∈ F, write π(u) = (x, T ), and denote the projections to space and time
by π1 : F → M and π2 : F → I , respectively. It will be convenient to work with the
backward time τ , defined by t = T − τ . As before, we write Dτ = −Dt .

Motivated by (3.5), we consider the following stochastic differential equation (SDE)
on F:

dUτ = Dτdτ +Hi(Uτ ) ◦ dW
i
τ , U0 = u. (3.6)

Here, Wτ is Brownian motion on Rn, and ◦ indicates that the equation is in the Stratono-
vich sense. To keep the factor 2 in Hamilton’s Ricci flow, ∂tgt = −2 Ricgt , we use the
convention that dWτ does not have the standard normalization from stochastic calculus,
but is scaled by a factor

√
2, i.e. dW i

τdW
j
τ = 2δijdτ .

Proposition 3.7 (Existence, uniqueness, and Itô formula). The SDE (3.6) has a unique
solution {Uτ }τ∈[0,T ]. The solution satisfies π2(Uτ ) = T − τ , and does not explode. More-
over, Uτ (ω) is continuous in τ for almost every Brownian path ω ∈ C([0, T ],Rn), and
for any C2-function f : F→ R we have the Itô formula

df (Uτ ) = Hif (Uτ )dW
i
τ +Dτf (Uτ )dτ +HiHif (Uτ )dτ. (3.8)

Proof. We recall that SDEs on manifolds can be reduced to SDEs on Euclidean space
(see e.g. [Hsu02, Sec. 1.2]). Choose an embedding F ⊂ RN and suitable extensions of all
functions to RN . By the standard theory of SDEs on Euclidean space, there is a unique
solution of the system (a = 1, . . . , N )

dUaτ = D
a
τ dτ +H

a
i (Uτ ) ◦ dW

i
τ , U0 = u. (3.9)

It follows from a Gronwall type argument that the solution actually stays inside F (see
e.g. [Hsu02, Prop. 1.2.8]). This proves existence of a solution of (3.6). It is also easy to
derive a uniqueness result for solutions of (3.6) from the standard uniqueness result for
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SDEs on Euclidean space (see e.g. [Hsu02, Thm. 1.2.9]). In particular, the solution is
independent of the choices of embedding and extensions. Since Brownian motion in Rn
is continuous in τ for almost every path, the same is true for Uτ .

To prove (3.8), we first convert (3.9) into a SDE in the Itô sense. Computationally this
is done by dropping the ◦ and adding one-half times the quadratic variation of H(Uτ )
and Wτ :

dUaτ = D
a
τ dτ +H

a
i (Uτ )dW

i
τ +

1
2dH

a
i (Uτ )dW

i
τ , U0 = u. (3.10)

Now, using Itô calculus in Euclidean space we compute

dH a
i (Uτ )dW

i
τ = ∂bH

a
i (Uτ )dU

b
τ dW

i
τ = 2∂bH a

i (Uτ )H
b
i (Uτ )dτ, (3.11)

and

df (Uτ ) = ∂af (Uτ )dU
a
τ +

1
2∂a∂bf (Uτ )dU

a
τ dU

b
τ

= ∂af (Uτ )D
a
τ dτ + ∂af (Uτ )H

a
i (Uτ )dW

i
τ

+
(
∂af (Uτ )∂bH

a
i (Uτ )H

b
i (Uτ )+ ∂a∂bf (Uτ )H

a
i (Uτ )H

b
i (Uτ )

)
dτ. (3.12)

Since the term in brackets is equal to HiHif (Uτ ), this proves (3.8).
By assumption (1.3) the metrics are equivalent at all times and there exists a distance-

like function, i.e. a smooth function r : M → R such that, after fixing an arbitrary point
o ∈ M ,

C−1(1+ dt (x, o)) ≤ r(x) ≤ C(1+ dt (x, o)), |∇r| ≤ C, ∇∇r ≤ C, (3.13)

for some C < ∞. Let r̃ : F → R be the extension of r that is independent of time and
the fiber coordinates. Applying the Itô formula (3.8) to r̃ , we see that the solution of (3.9)
does not explode, i.e. Uτ does not escape to spatial infinity. Finally, for f = π2 the Itô
formula (3.8) takes the simple form dπ2(Uτ ) = −dτ . Together with π2(U0) = T , this
implies that π2(Uτ ) = T − τ . ut

Using Proposition 3.7 we can now define Brownian motion and stochastic parallel trans-
port on our evolving family of Riemannian manifolds.

Definition 3.14 (Brownian motion). We call π(Uτ ) = (Xτ , T − τ) Brownian motion
based at (x, T ).

Definition 3.15 (Stochastic parallel transport). The family of isometries Pτ = U0U
−1
τ :

(TXτM,gT−τ )→ (TxM,gT ), depending on τ and the Brownian curve, is called stochas-
tic parallel transport.

Brownian motion comes naturally with its path space, diffusion measure, and filtered σ -
algebra.

Definition 3.16 (Based path spaces). We let P0Rn be the space of continuous curves
{ωτ }τ∈[0,T ] in Rn with ω0 = 0, let PuF be the space of continuous curves {uτ }τ∈[0,T ]
in F with u0 = u and π2(uτ ) = T −τ , and let P(x,T )M be the space of continuous curves
{γτ = (xτ , T − τ)}τ∈[0,T ] in M with γ0 = (x, T ).
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To introduce the diffusion measure, note that Proposition 3.7 defines a map U : P0Rn→
PuF, U(ω)(τ) = Uτ (ω). We also have a natural map 5 : PuF → P(x,T )M, induced by
the projection π : F→ M × I .

Definition 3.17 (Diffusion measures). Let 00 be the Wiener measure on P0Rn, let 0u =
U∗00 be the probability measure on PuF obtained by pushing forward via U , and let
0(x,T ) = (5◦U)∗00 be the probability measure on P(x,T )M obtained by pushing forward
via 5 ◦ U .

Finally, recall that the Wiener space P0Rn comes naturally equipped with a filtered fam-
ily of σ -algebras 6τ = 6τ (P0Rn), which is generated by the evaluation maps eτ1 :

P0Rn→ Rn, eτ1(ω) = ωτ1 with τ1 ≤ τ .

Definition 3.18 (Filtered σ -algebras). We denote by 6τ (PuF) and 6τ (P(x,T )M) (or
simply by 6τ if there is no risk of confusion) the pushforward of 6τ (P0Rn) under the
maps U and 5 ◦ U , respectively.

3.3. Conditional expectation and martingales

If F : PuF → R is integrable, we write Eu[F ] =
∫
PuF

F d0u for its expectation. More
generally, if σ ∈ [0, T ], we write F σ = Eu[F |6

σ
] for the conditional expectation

given the σ -algebra 6σ (see Definition 3.18). We recall that the conditional expecta-
tion F σ is the unique 6σ -measurable function such that

∫
�
F σ d0u =

∫
�
F d0u for

all 6σ -measurable sets �. Similarly, if F is an integrable function on P(x,T )M, we also
writeE(x,T )[F ] and F σ = E(x,T )[F |6σ ] for its expectation and conditional expectation,
respectively.

Proposition 3.19 (Conditional expectation). If F : P(x,T )M → R is integrable and
σ ∈ [0, T ], then for a.e. Brownian curve {γτ }τ∈[0,T ] the conditional expectation F σ =
E(x,T )[F |6

σ
] is given by the formula

F σ (γ ) =

∫
PT−σM

F(γ |[0,σ ] ∗ γ
′) d0γσ (γ

′), (3.20)

where the integral is over all Brownian curves {γ ′τ = (x
′
τ , T − σ − τ)}τ∈[0,T−σ ] based at

γσ = (xσ , T − σ) with respect to the measure 0γσ , and γ |[0,σ ] ∗ γ ′ ∈ P(x,T )M denotes
the concatenation of γ |[0,σ ] and γ ′.

Proof. Using Proposition 3.7 we see that the martingale problem for (3.6) is well posed.
Thus, by the Stroock–Varadhan principle [SV79, Thm. 10.1.1], we have the strong
Markov property

Eu[f (U
u
σ+τ ) |6

σ
] = E[f (Uvτ )]|v=Uuσ (3.21)

for all test functions f : F → R and all stopping times σ ≤ T , where {Uu0
τ }τ∈[0,π2(u0)]

denotes the solution of (3.6) with initial condition u0. If we push forward via π : F→M,
and choose σ constant, equation (3.21) implies

E(x,T )[f (X
(x,T )
σ+τ ) |6

σ
] = E[f (Xvτ )]|v=(X(x,T )σ ,T−σ)

(3.22)
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for all test functions f : M → R. Note that (3.22) is exactly (3.20) for the case where
F is the 1-point cylinder function f ◦ uσ+τ .4 Now, if F is a k-point cylinder function,
then by conditioning at the first evaluation time we can split up the computation of its
(conditional) expectation to computing an expectation of a 1-point cylinder function and
of a (k − 1)-point cylinder function. Arguing by induction, we infer that (3.20) holds for
all cylinder functions. Since the cylinder functions are dense in the space of all integrable
functions (cf. Definition 3.18), this proves the proposition. ut

For any F ∈ L1(PTM, 0(x,T )), the induced martingale F τ = E(x,T )[F |6τ ] is defined
by taking the conditional expectation with respect to the σ -algebras 6τ for every τ ∈
[0, T ]. It indeed has the martingale property

E(x,T )[F
τ ′
|6τ ] = F τ (τ ′ ≥ τ). (3.23)

The quadratic variation of the martingale F • = {F τ }τ∈[0,T ] (and more generally of
any stochastic process where the following limit exists) is defined by

[F •]τ = lim
‖{τj }‖→0

∑
k

(F τk − F τk−1)2, (3.24)

where the limit is taken in probability, over all partitions {τj } of [0, τ ] with mesh going to
zero.

Assume now that F ∈ L2(PTM, 0(x,T )). Then the convergence in (3.24) is not just
in probability but also in L1. Moreover, we have the Itô isometry

E
[
[F •]τ ′ − [F

•
]τ

∣∣6τ ] = E[(F τ ′ − F τ )2 |6τ ]. (3.25)

The differential of [F •]τ takes the form d[F •]τ = Yτ dτ for some nonnegative
6τ -adapted stochastic process Y , which we denote by Yτ = d[F •]τ /dτ . According to
Fatou’s lemma and (3.25) it can be estimated by

d[F •]τ

dτ
≤ lim inf

ε→0+

1
ε
E[[F •]τ+ε−[F

•
]τ |6

τ
] = lim inf

ε→0+

1
ε
E[(F τ+ε−F τ )2 |6τ ] (3.26)

for almost every τ and almost every γ .

3.4. Heat equation and Wiener measure

The goal of this section is to explain the relationship between the Wiener measure and the
heat equation on our evolving manifolds. In particular, we will see that the Wiener mea-
sure is indeed characterized by (1.9). We start with the following representation formula
for solutions of the heat equation.

Proposition 3.27 (Representation formula for solutions of the heat equation). If s ∈
[0, T ], and w is a solution of the heat equation ∂tw = 1gtw with w|s = f ∈ C∞c (M),
then w(x, T ) = E(x,T )[f (XT−s)].

4 If F = f ◦ uσ ′ is a 1-point cylinder function with σ ′ ≤ σ , then (3.20) holds true trivially.
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Proof. By Definition 3.14 we have w(Xτ , T − τ) = w̃(Uτ ), where w̃ denotes the lift of
w to the frame bundle, which is constant in fiber directions. By the Itô formula (Proposi-
tion 3.7) we have

dw̃(Uτ ) = Hiw̃(Uτ ) dW
i
τ +Dτ w̃(Uτ ) dτ +1H w̃(Uτ ) dτ, (3.28)

where 1H =
∑n
i=1H

2
i is the horizontal Laplacian. Since w solves the heat equation,

the sum of the last two terms vanishes (see Lemmas 3.1 and 3.3), and by integration we
obtain

w̃(UT−s)− w̃(U0) =

∫ T−s

0
Hiw̃(Uτ ) dW

i
τ . (3.29)

Note that w̃(U0) = w̃(u) = w(x, T ) and w̃(UT−s) = w(XT−s, s) = f (XT−s) =

f (π1UT−s). Moreover, after taking expectations the term on the right hand side of (3.29)
disappears by the martingale property, i.e. since the integrand is 6τ -adapted (cf. Defini-
tion 3.18), and since Brownian motion has zero expectation. Thus,

w(x, T ) = Eu[f (π1UT−s)] = E(x,T )[f (XT−s)], (3.30)

as claimed. ut

Proposition 3.31 (Characterization of the Wiener measure). If eσ : P(x,T )M → Mk

is the evaluation map at σ = {0 ≤ σ1 ≤ · · · ≤ σk ≤ T }, given by eσ (γ ) =
(π1γσ1 , . . . , π1γσk ), and if we write si = T − σi , then

eσ,∗ d0(x,T )(y1, . . . , yk)

= H(x, T | y1, s1)dvolgs1 (y1) · · ·H(yk−1, sk−1 | yk, sk)dvolgsk (yk). (3.32)

Moreover, equation (3.32) uniquely characterizes the Wiener measure on P(x,T )M.

Proof. By Proposition 3.27 we have the equality∫
M

H(x, T | y, s)f (y)dvolgs (y) =
∫
P(x,T )M

f (π1γσ ) d0(x,T )(γ ) (3.33)

for every test function f , say smooth with compact support. Since these functions are
dense in the space of all integrable functions on M , this proves (3.32) for k = 1.

Now, if f : Mk
→ R and σ = {0 ≤ σ1 ≤ · · · ≤ σk ≤ T }, then in view of

Proposition 3.19 and what we have just proved, the conditional expectation (e∗σf )
σk−1 =

E(x,T )[e
∗
σf |6

σk−1 ] is given by

(e∗σf )
σk−1(γ ) =

∫
M

f (π1γσ1 , . . . , π1γσk−1 , yk)H(π1γσk−1 , sk−1 | yk, sk)dvolgsk (yk).

(3.34)
Now using the formula E(x,T )[e∗σf ] = E(x,T )[E(x,T )[e

∗
σf |6

σk−1 ]] and induction, we
obtain (3.32).

Finally, by the density of cylinder functions in the space of measurable functions (cf.
Definition 3.18), equation (3.32) uniquely characterizes the Wiener measure on P(x,T )M.

ut
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3.5. Feynman–Kac formula

We will now prove a Feynman–Kac type formula for vector valued solutions of the heat
equation with potential

∇tY = 1gtY + AtY, Y |s = Z, (3.35)

where At ∈ End(TM) is a smooth family of endomorphisms, and Z is say smooth with
compact support.

The idea is to generalize the representation formula for solutions of the heat equa-
tion (Proposition 3.27) in two ways, by: (i) using stochastic parallel translation (Defini-
tion 3.15) to transport everything to TxM , and (ii) multiplication by an endomorphism
RT−s = RT−s(γ ) : TxM → TxM , which is obtained by solving an ODE along every
Brownian curve γ , to capture how the potential At affects the solution.

Proposition 3.36 (Feynman–Kac formula). If s ∈ [0, T ], At ∈ End(TM), and Y is a
vector valued solution of the heat equation with potential, ∇tY = 1gtY + AtY , with
Y |s = Z ∈ C

∞
c (TM), then

Y (x, T ) = E(x,T )[RT−sPT−sZ(XT−s)], (3.37)

where Rτ = Rτ (γ ) : TxM → TxM is the solution of the ODE d
dτ
Rτ = RτPτAT−τP

−1
τ

with R0 = id.

Remark 3.38. Similar formulas hold for tensor valued solutions of the heat equation
with potential.

Proof of Proposition 3.36. Let Ỹ : F→ Rn, Ỹ (u) = u−1Yπu, be the equivariant function
associated to Y . Applying the Itô formula (Proposition 3.7) to each component, we obtain

dỸ (Uτ ) = Hi Ỹ (Uτ )dW
i
τ +Dτ Ỹ (Uτ )dτ +1H Ỹ (Uτ )dτ

= Hi Ỹ (Uτ )dW
i
τ − ÃT−τ Ỹ (Uτ )dτ, (3.39)

where we lifted equation (3.35) to F using Lemmas 3.1 and 3.3. Let R̃τ : Rn → Rn be
the solution of the ODE d

dτ
R̃τ = R̃τ ÃT−τ with R̃0 = id. Then

d(R̃τ Ỹ (Uτ )) = R̃τHi Ỹ (Uτ )dW
i
τ . (3.40)

The right hand side disappears after taking expectations, by the martingale property, as in
the proof of Proposition 3.27. Thus,

Ỹ (u) = Eu[R̃T−s ỸT−s(UT−s)]. (3.41)

Finally, we can translate from Ỹ to Y by computing

Y (x, T ) = uỸ (u) = Eu[U0R̃T−sU
−1
0 U0U

−1
T−sUT−s ỸT−s(UT−s)]

= E(x,T )[RT−sPT−sZ(XT−s)]. (3.42)
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Here, we have used Rτ = U0R̃τU
−1
0 , which can be checked by computing

d
dτ
(U0R̃τU

−1
0 ) = U0R̃τ ÃT−τU

−1
0 = U0R̃τU

−1
0 U0U

−1
τ Uτ ÃT−τU

−1
τ UτU

−1
0

= U0R̃τU
−1
0 PτAT−τP

−1
τ ,

which shows that Rτ and U0R̃τU
−1
0 solve the same ODE, and thus must be equal. ut

3.6. Parallel gradient and Malliavin gradient

Let F : P(x,T )M→ R be a cylinder function. If γ ∈ P(x,T )M is a continuous curve and
V is a right continuous vector field along γ , then the directional derivative DVF(γ ) is
well defined as a limit of difference quotients, namely

DVF(γ ) = lim
ε→0

F(γ V,ε)− F(γ )

ε
, (3.43)

where γ V,ε={(xV,ετ , T−τ)}τ∈[0,T ] is the curve in P(x,T )M defined by xV,ετ =expgτxτ (εVτ ).

Definition 3.44 (Parallel gradient). Let σ ∈ [0, T ]. If F : P(x,T )M → R is a cylinder
function, then its σ -parallel gradient is the unique almost everywhere defined function
∇
‖
σF : P(x,T )M→ (TxM,gT ) such that

DV σF(γ ) = 〈∇
‖
σF(γ ), v〉(TxM,gT ) (3.45)

for almost every Brownian curve γ and every v ∈ (TxM,gT ), where V σ = {V στ }τ∈[0,T ]
is the vector field along γ given by V στ = 0 if τ ∈ [0, σ ) and V στ = P

−1
τ v if τ ∈ [σ, T ].

Explicitly, if F = u ◦ eσ : P(x,T )M→ Mk
→ R, and if we write sj = T − σj , then it is

straightforward to check that

∇
‖
σF = e

∗
σ

(∑
σj≥σ

Pσj grad(j)gsj u
)
, (3.46)

where grad(j) denotes the gradient with respect to the j -th variable, and Pσj is stochastic
parallel transport.

Let H be the Hilbert space of H 1-curves {vτ }τ∈[0,T ] in (TxM,gT ) with v0 = 0,
equipped with the inner product

〈v,w〉H =

∫ T

0
〈v̇τ , ẇτ 〉(TxM,gT ) dτ. (3.47)

Definition 3.48 (Malliavin gradient). If F : P(x,T )M → R is a cylinder function, then
its Malliavin gradient is the unique almost everywhere defined function ∇HF : P(x,T )M

→ H such that
DVF(γ ) = 〈∇

HF(γ ), v〉H (3.49)

for every v ∈ H and almost every Brownian curve γ , where V = {P−1
τ vτ }τ∈[0,T ].
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Let us now explain the extension to operators on L2. This is based on the integration by
parts formula from the appendix (Theorem A.1), which says that the formal adjoint ofDV
is given by

D∗VG = −DVG+
1
2G

∫ T

0

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , dWτ

〉
. (3.50)

We recall the Itô isometry

E

[(∫ T

0
Xτ dWτ

)2]
= E

[∫ T

0
X2
τ dτ

]
. (3.51)

By the Itô isometry (3.51) and assumption (1.3) we obtain the estimate

E(x,T )

[(∫ T

0

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , dWτ

〉)2]
≤ C|v|2H. (3.52)

Using (3.50), (3.52), and the definition of the formal adjoint, we see that if Fn is a se-
quence of cylinder functions with Fn → 0 and DVFn → K in L2(P(x,T )M), then
(K,G) = 0 for all cylinder functions G, and thus K = 0. It follows that ∇H can be
extended to a closed unbounded operator from L2(P(x,T )M) to L2(P(x,T )M,H), with
the cylinder functions being a dense subset of the domain. Similarly, ∇‖σ can be extended
to a closed unbounded operator from L2(P(x,T )M) to L2(P(x,T )M, TxM), again with the
cylinder functions being a dense subset of the domain.

3.7. Ornstein–Uhlenbeck operator

The Ornstein–Uhlenbeck operator L = ∇
H∗
∇

H is an unbounded operator on
L2(PTM, 0(x,T )) defined by composing the Malliavin gradient with its adjoint. More
generally, there is a family of Ornstein–Uhlenbeck operators Lτ1,τ2 on L2(PTM, 0(x,T ))

defined by the formula Lτ1,τ2 =
∫ τ2
τ1
∇
‖∗
τ ∇
‖
τ dτ , which captures the part of the Lapla-

cian coming from the time range [τ1, τ2]. The next proposition shows in particular that
L = L0,T .

Proposition 3.53. If F : PTM → R is a cylinder function, then for almost every curve
γ ∈ (PTM, 0(x,T )) we have

|∇
HF |2(γ ) =

∫ T

0
|∇
‖
τF |

2(γ ) dτ. (3.54)

Proof. The cylinder function has the form F = u ◦ eσ : PTM → Mk
→ R. By the

definition of the Malliavin gradient (Definition 3.48), for almost every γ ∈ (PTM, 0(x,T ))
we have

k∑
j=1

〈vσj , Pσj grad(j)gsj u(eσj γ )〉 = DVF(γ ) = 〈∇
HF(γ ), v〉H

=

∫ T

0

〈
d
dτ
∇

HF(γ ), d
dτ
v
〉
dτ. (3.55)



1290 Robert Haslhofer, Aaron Naber

It follows that
d
dτ
∇

HF(γ ) =

k∑
j=1

1{τ≤σj }Pσj grad(j)gsj u(eσj γ ). (3.56)

In view of this, writing σ0 = 0, we compute

|∇
HF |2H(γ ) =

∫ T

0

∣∣ d
dτ
∇

HF(γ )
∣∣2 dτ = k∑

j=1

(σj − σj−1)

∣∣∣ k∑
`=j

Pσ` grad(`)gs` u(eσ`γ )
∣∣∣2

=

∫ T

0
|∇
‖
τF |

2(γ ) dτ, (3.57)

where we have used the fact that the integrands are piecewise constant. ut

4. Proof of the main theorem

In this section, we prove our main theorem (Theorem 1.22) characterizing solutions of
the Ricci flow.

We will prove the implications (R1)⇒(R2)⇒(R3′)⇒(R4)⇒(R5)⇒(R3)⇒(R2′)
⇒(R1). Here, (R3′) denotes the (seemingly stronger) statement that for every F in
L2(PTM, 0(x,T )) we have the pointwise estimate√

d[F •]τ

dτ
(γ ) ≤

√
2E(x,T )[|∇‖τF | |6

τ
](γ ) (R3′)

for almost every γ ∈ P(x,T )M and almost every τ ∈ [0, T ], and (R2′) denotes the (seem-
ingly weaker) statement that for every F ∈ L2(PTM, 0T ), we have the gradient estimate∣∣∣∣∇x ∫

PTM

F d0(x,T )

∣∣∣∣2 ≤ ∫
PTM

|∇
‖F |2 d0(x,T ). (R2′)

Before delving into the proof, we observe that it suffices to prove the estimates for
cylinder functions, since this implies the general case by approximation. For illustration,
let us spell out the approximation argument for (R2): Let F ∈ L2(PTM, 0T ). Let Fj
be a sequence of cylinder functions that converges to F in L2(PTM, 0T ) and pointwise
almost everywhere. By Fubini’s theorem and the dominated convergence theorem, for a.e.
x ∈ M we obtain limj→∞ E(x,T )[F 2

j ] = E(x,T )[F
2
] < ∞. We can assume that for a.e.

x ∈ M the function F is in the domain of the parallel gradient based at (x, T ) (since
otherwise the right hand side of (R2) is infinite by convention and the estimate holds
trivially). Thus, limj→∞ E(x,T )[|∇‖Fj |] = E(x,T )[|∇

‖F |] < ∞ for a.e. x ∈ M . If we
know that (R3) holds for cylinder functions, then we can infer that

lim sup
j→∞

∣∣∣∣∇x ∫
PTM

Fj d0(x,T )

∣∣∣∣ ≤ ∫
PTM

|∇
‖F | d0(x,T ) (4.1)

for a.e. x ∈ M . Once we know that the local Lipschitz bounds (4.1) hold, passing to a
subsequential limit we can conclude that (R2) holds for F for a.e. x ∈ M .
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4.1. The gradient estimate

The goal of this section is to prove the implication (R1)⇒(R2). We start with the follow-
ing theorem for the gradient of the expectation value.

Theorem 4.2 (Gradient formula). If (M, gt )t∈I is an evolving family of Riemannian
manifolds and F : PTM→ R is a cylinder function, then

gradgT E(x,T )[F ] = E(x,T )

[
∇
‖F +

∫ T

0

d
dτ
Rτ∇

‖
τF dτ

]
, (4.3)

where Rτ = Rτ (γ ) : TxM → TxM is the solution of the ODE d
dτ
Rτ =

−RτPτ
(
Ric+ 1

2∂tg
)
P−1
τ with R0 = id.

Our proof of Theorem 4.2 is by induction on the order of the cylinder function. The main
ingredients are the Feynman–Kac formula for vector valued solutions of the heat equation
(Proposition 3.36), the formula for the conditional expectation value (Proposition 3.19),
and the following evolution equation for the gradient.

Proposition 4.4 (Evolution of the gradient). If (M, gt )t∈I is an evolving family of Rie-
mannian manifolds, and u solves the heat equation ∂tu = 1gtu, then its gradient,
gradgt u, solves the equation

∇t gradgt u = 1gt gradgt u−
(
Ric+ 1

2∂tgt
)
(gradgt u, ·)

]gt . (4.5)

Proof. Using the formula ∂t (g−1) = −g−1(∂tg)g
−1 and the definitions of gradgt (u)

and ∇t , we compute

∇t gradgt u = gradgt (∂tu)− ∂tgt (gradgt u, ·)
]gt +

1
2∂tgt (gradgt u, ·)

]gt

= 1gt gradgt u−
(
Ric+ 1

2∂tgt
)
(gradgt u, ·)

]gt , (4.6)

where we have used the equation ∂tu = 1gtu and commuted the Laplacian and the
gradient. ut

Proof of Theorem 4.2. We argue by induction on the order k = |σ | of the cylinder func-
tion F = e∗σu.

If k = 1, then by (1.13) the expectation E(x,T )[F ] is given by integration with respect
to the heat kernel, namely

E(x,T )[F ] =

∫
M

u(y)H(x, T | y, s) dvolgs (y) = (PsT u)(x), (4.7)

where s = T − σ . On the other hand, by Proposition 4.4 we have the evolution equation

∇t gradgt Pstu = 1gt gradgt Pstu−
(
Ric+ 1

2∂tgt
)
(gradgt Pstu), (4.8)

where we view Ric+ 1
2∂tgt as an endomorphism (using the metric gt ). We can thus apply

the Feynman–Kac formula (Proposition 3.36), and obtain

(gradgT PsT u)(x) = E(x,T )[RσPσ (gradgs u)(Xσ )], (4.9)
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where Rτ = Rτ (γ ) : TxM → TxM is the solution of the ODE d
dτ
Rτ =

−RτPτ
(
Ric+ 1

2∂tg
)
P−1
τ with R0 = id. Using the fundamental theorem of calculus and

(3.46), we can rewrite this as

(gradgT PsT u)(x) = E(x,T )

[(
id+

∫ σ

0

d
dτ
Rτ dτ

)
Pσ (gradgs u)(Xσ )

]
= E(x,T )

[
∇
‖F +

∫ T

0

d
dτ
Rτ ∇

‖
τF dτ

]
. (4.10)

Thus, the gradient formula (4.3) holds true for 1-point cylinder functions.
Now, arguing by induction, let F = e∗σu be a k-point cylinder function and let si =

T − σi . Note that
E(x,T )[F ] = E(x,T )

[
E(x,T )[F |6

σ1 ]
]
. (4.11)

Using Proposition 3.19 we see that G := E(x,T )[F |6
σ1 ] is a 1-point cylinder function

given by G = e∗σ1
w with

w(y) = E(y,s1)[u(y,X
′
σ2−σ1

, . . . , X′σk−σ1
)], (4.12)

where the expectation is over all Brownian curves starting at (y, T − σ1). Note that by
(4.11) and the case k = 1 of the gradient formula we have

gradgT E(x,T )[F ] = gradgT E(x,T )[G] = E(x,T )[Rσ1Pσ1(gradgs1 w)(Xσ1)], (4.13)

where Rτ = Rτ (γ ) : TxM → TxM is the solution of the ODE d
dτ
Rτ =

−RτPτ
(
Ric+ 1

2∂tg
)
P−1
τ withR0 = id. Using the product rule and induction, we compute

(gradgs1 w)(y) = E(y,s1)[grad(1)gs1 u(y,X
′
σ2−σ1

, . . . , X′σk−σ1
)]

+ E(y,s1)

[
∇
′‖u(y,X′σ2−σ1

, . . . , X′σk−σ1
)

+

∫ T−σ1

0

d
dτ
R′τ ∇

′‖
τ u(y,X

′
σ2−σ1

, . . . , X′σk−σ1
) dτ

]
, (4.14)

where X′ and ∇ ′‖ denote Brownian motion and the parallel gradient based at (y, T −σ1),
and R′τ = R′τ (γ

′) : TyM → TyM is the solution of the ODE d
dτ
R′τ =

−R′τP
′
τ

(
Ric+ 1

2∂tg
)
P ′−1
τ with R′0 = id, where P ′τ denotes stochastic parallel transport

based at (y, T − σ1). Note that

E(y,s1)[grad(1)gs1 u(y,X
′
σ2−σ1

, . . . , X′σk−σ1
)] + E(y,s1)[∇

′‖u(y,X′σ2−σ1
, . . . , X′σk−σ1

)]

=

k∑
j=1

E(y,s1)[P
′
σj−σ1

(gradjgsj u)(X
′
σ1−σ1

, . . . , X′σk−σ1
)]. (4.15)

Moreover, if γ = γ |[0,σ1] ∗ γ
′ then Pτ (γ |[0,σ1] ∗ γ

′) = Pσ1(γ ) ◦ P
′
τ−σ1

(γ ′) and thus

Pσ1R
′
τ−σ1

P−1
σ1
= R−1

σ1
Rτ (4.16)
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for τ ≥ σ1, since both sides solve the same ODE with the same initial condition at time σ1.
Putting everything together, we conclude that

gradgT E(x,T )[F ] = E(x,T )

[
Rσ1∇

‖F +

∫ T

σ1

d
dτ
Rτ ∇

‖
τF dτ

]
= E(x,T )

[
∇
‖F +

∫ T

0

d
dτ
Rτ ∇

‖
τF dτ

]
, (4.17)

where we have also used Proposition 3.19, Pσj (γ |[0,σ1] ∗ γ
′) = Pσ1(γ ) ◦ P

′
σj−σ1

(γ ′), and
(3.46). ut

Proof of (R1)⇒(R2). The gradient formula (Theorem 4.2), together with the above ap-
proximation argument, immediately establishes the implication (R1)⇒(R2). To see this,
just observe that for families of Riemannian manifolds evolving by Ricci flow the time
integral in (4.3) vanishes, |∇x

∫
PTM

F d0x | and |gradgT E(x,T )[F ]| are the same (just in
different notation), and |E(x,T )[∇‖F ]| ≤

∫
PTM
|∇
‖F | d0(x,T ). ut

4.2. Regularity of martingales

The goal of this section is to establish the implication (R2)⇒(R3′). For convenience of
the reader, we also prove the (obvious and logically not needed) implication (R3′)⇒(R3).
We start with the following formula for the quadratic variation of a martingale on path
space.

Theorem 4.18 (Quadratic variation formula). If (M, gt )t∈I is an evolving family of Rie-
mannian manifolds and F : P(x,T )M→ R is a cylinder function, then

d[F •]τ

dτ
(γ ) = 2|∇yE(y,T−τ)[Fγ [0,τ ]]|2(π1γτ ) (4.19)

for almost every γ ∈ P(x,T )M, where Fγ [0,τ ] : PT−τM→ R is defined by Fγ [0,τ ](γ ′) =
F(γ |[0,τ ] ∗ γ

′).

Proof. Given a cylinder function F = u ◦ eσ : P(x,T )M → Mk
→ R and a number

τ ∈ [0, T ], let j be the largest integer such that σj ≤ τ . Recall that we use the notation
γτ = (xτ , T − τ) for space-time curves. By the formula for the conditional expectation
(Proposition 3.19) and the characterization of the Wiener measure (Proposition 3.31), for
ε > 0 small enough, F τ+ε is given by

F τ+ε(γ )

=

∫
Mk−j

u(π1γσ1 , . . . , π1γσj , yj+1, . . . , yk) dνγτ+ε (yj+1, sj+1) . . . dν(yk−1,sk−1)(yk, sk).

We can write this as F τ+ε = e∗τ+εwε, where we define wε = wε,γσ1 ,...,γσj
by

wε(z) =

∫
Mk−j

u(π1γσ1 , . . . , π1γσj , yj+1, . . . , yk) dν(z,T−τ−ε)(yj+1, sj+1)

. . . dν(yk−1,sk−1)(yk, sk).
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Now, since the function d[F •]τ
dτ

is 6τ -measurable, we can compute

d[F •]τ

dτ
(γ )=E(x,T )

[
d[F •]τ

dτ

∣∣∣∣6τ]= lim
ε→0+

1
ε
E(x,T )[(F

τ+ε
−(F τ+ε)τ )2 |6τ ], (4.20)

where we have also used the martingale property (F τ+ε)τ = F τ and the definition of the
quadratic variation (see Section 3.3). Using again Propositions 3.19 and 3.31, as well as
some rough short time asymptotics for the heat kernel, we conclude that

d[F •]τ

dτ
(γ ) = lim

ε→0+

1
ε

∫
M

(
wε(z)−

∫
M

wε(ẑ) dνγτ (ẑ, T − τ − ε)

)2

dνγτ (z, T − τ − ε)

= 2|∇w0|
2(π1γτ ). (4.21)

Since w0(y) = E(y,T−τ)[Fγ [0,τ ]], this proves the theorem. ut

Proof of (R2)⇒(R3′). Let (M, gt )t∈I be a smooth family of Riemannian manifolds such
that the gradient estimate (R2) holds, and let F : P(x,T )M → R be a cylinder function.
Observe that

|∇
‖
τF |(γ |[0,τ ] ∗ γ

′) = |∇
‖

0Fγ [0,τ ]|(γ
′). (4.22)

Now, using Theorem 4.18, the gradient estimate (R2), and (4.22), we compute (for a.e. γ
for a.e. τ )√
d[F •]τ

dτ
(γ )=E(x,T )

[√
d[F •]τ

dτ

∣∣∣∣6τ]=√2E(x,T )[|∇yE(y,T−τ)[Fγ [0,τ ]]|(π1γτ ) |6
τ
]

≤
√

2E(x,T )
[
Eγτ [|∇

‖

0Fγ [0,τ ]|]
∣∣6τ ] = √2E(x,T )[|∇‖τF | |6

τ
], (4.23)

where we have also used Proposition 3.19 in the last step. This proves (R3′). ut

Proof of (R3′)⇒(R3). Let F ∈ L2(PTM, 0(x,T )). Using the assumption (R3′), the
Cauchy–Schwarz inequality, and the definition of the conditional expectation (see Sec-
tion 3.3), we compute

E(x,T )

[
d[F •]τ

dτ

]
≤ 2E(x,T )

[
(E(x,T )[|∇

‖
τF | |6

τ
])2
]
≤ 2E(x,T )[|∇‖τF |

2
]. (4.24)

This proves the martingale estimate (R3). ut

4.3. Log-Sobolev inequality and spectral gap

In this section, we prove the implications (R3′)⇒(R4)⇒(R5).

Proof of (R3′)⇒(R4). Let F : PTM→ R be a cylinder function, and let {Gτ }τ∈[0,T ] be
the martingale induced by the functionG = F 2, i.e.Gτ = E(x,T )[F 2

|6τ ]. Using the Itô
formula and the martingale property we compute

E(x,T )[G
τ2 logGτ2 −Gτ1 logGτ1 ] = E(x,T )

[∫ τ2

τ1

d(Gτ logGτ )
]

= E(x,T )

[∫ τ2

τ1

1
2Gτ

d[G•]τ

dτ
dτ

]
. (4.25)



Characterizations of the Ricci flow 1295

By assumption (R3′), the Cauchy–Schwarz inequality, and the definition of Gτ , we have
the estimate

d[G•]τ

dτ
≤ 2(E(x,T )[|2F∇‖τF | |6

τ
])2 ≤ 8Gτ E(x,T )[|∇‖τF |

2
|6τ ]. (4.26)

Combining (4.25) and (4.26) we conclude that

E(x,T )[G
τ2 logGτ2 −Gτ1 logGτ1 ] ≤ 4E(x,T )

[∫ τ2

τ1

E(x,T )[|∇
‖
τF |

2
|6τ ] dτ

]
= 4E(x,T )[〈F,Lτ1,τ2F 〉], (4.27)

where we have used Proposition 3.53 in the last step. This proves the log-Sobolev in-
equality (R4). ut

Proof of (R4)⇒(R5). Applying the log-Sobolev inequality (R4) for F 2
= 1 + εG and

using approximation, we obtain

E(x,T )[(G
τ2)2 − (Gτ1)2] ≤ 2E(x,T )[〈G,Lτ1,τ2G〉]. (4.28)

Since E(x,T )[(Gτ2)2 − (Gτ1)2] = E(x,T )[(G
τ2 −Gτ1)2], this proves the spectral gap. ut

4.4. Conclusion of the argument

The goal of this final section is to prove the remaining implications (R5)⇒(R3)⇒(R2′)
⇒(R1).

Proof of (R5)⇒(R3). Using the formula for the Malliavin gradient (Proposition 3.53) we
can rewrite the spectral gap estimate (R5) in the form

E(x,T )[(F
τ2 − F τ1)2] ≤ 2E(x,T )

[∫ τ2

τ1

|∇
‖
τF |

2 dτ

]
. (4.29)

Dividing both sides by τ2 − τ1 and taking the limit τ2 → τ1 we obtain

E(x,T )

[
d[F •]τ

dτ

]
≤ 2E(x,T )[|∇‖τF |

2
], (4.30)

which is exactly the martingale estimate (R3). ut

Proof of (R3)⇒(R2′). The quadratic variation formula (Theorem 4.18) at τ = 0 reads

|∇xE(x,T )[F ]|
2
=

1
2E(x,T )

[
d[F •]τ

dτ

∣∣∣∣
τ=0

]
. (4.31)

Together with the martingale estimate (R3) at τ = 0 this implies

|∇xE(x,T )[F ]|
2
≤ E(x,T )[|∇

‖F |2], (4.32)

which is exactly the gradient estimate (R2′). ut
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Proof of (R2′)⇒(R1). Let (M, gt )t∈I be an evolving family of Riemannian manifolds
satisfying the gradient estimate (R2′). If we plug in a 1-point cylinder function F =
u ◦ eσ : PTM→ M → R, the estimate (R2′) reduces to

|∇PsT u|
2
≤ PsT |∇u|

2 (4.33)

(cf. Remark 1.12). Thus, by Theorem 1.5 (only the implication (S3)⇒(S1) is needed),
(M, gt )t∈I is a supersolution of the Ricci flow. To show that (M, gt )t∈I is also a subsolu-
tion, we will analyze the gradient estimate (R2′) for a carefully chosen family of 2-point
cylinder functions. Namely, given a point (x, T ) ∈ M in space-time (T > 0) and a unit
tangent vector v ∈ (TxM,gT ), we choose a test function u : M ×M → R such that

grad(1)gT u = 2v, grad(2)gT u = −v, HessgT u = 0 at (x, x). (4.34)

We consider the 1-parameter family of test functions

F σ (γ ) = u(e0(γ ), eσ (γ )), (4.35)

where σ ∈ [0, T ]. We will now analyze the asymptotics for σ → 0. We start with the
rough estimate

E(x,T )[|∇
‖F σ − v|] = O(σ). (4.36)

Together with the gradient formula (Theorem 4.2) this implies that

lim
σ→0
|gradgT E(x,T )[F

σ
]|

2
= 1 = lim

σ→0
E(x,T )[|∇

‖F σ |2]. (4.37)

To compute the next order term, we first note that the gradient formula (Theorem 4.2)
yields the estimate

gradgT E(x,T )[F
σ
] = E(x,T )[∇

‖F σ ] + σ
(
Ric+ 1

2∂tg
)
(x,T )

(v)+ o(σ ). (4.38)

Using this, we compute

1
2
d
dσ

∣∣
σ=0

(
|gradgT E(x,T )[F

σ
]|

2
− E(x,T )[|∇

‖F σ |2]
)

=
〈
v, d

dσ

∣∣
σ=0(gradgT E(x,T )[F

σ
] − E(x,T )[∇

‖F σ ])
〉

=
(
Ric+ 1

2∂tg
)
(x,T )

(v, v). (4.39)

Together with (4.37), since the gradient estimate (R2′) holds by assumption, we conclude
that (

Ric+ 1
2∂tg

)
(x,T )

(v, v) ≤ 0. (4.40)

Since (x, T ) and v are arbitrary, this proves that (M, gt )t∈I is a subsolution of the Ricci
flow. As we already know that (M, gt )t∈I is a supersolution of the Ricci flow, this finishes
the proof. ut
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Appendix. A variant of Driver’s integration by parts formula

The purpose of this appendix is to prove Theorem A.1 below, a variant of Driver’s integra-
tion by parts formula [Dri92]. We write (F,G) = E(x,T )[FG]. Moreover, if vτ ∈ TxM
we use the notation 〈vτ , dWτ 〉 = (U

−1
0 vτ )i dW

i
τ .

Theorem A.1 (Integration by parts). Let F,G : PTM → R be cylinder functions, let
{vτ }τ∈[0,T ] ∈ H, and write V = {P−1

τ vτ }τ∈[0,T ]. Then

D∗VG = −DVG+
1
2G

∫ T

0

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , dWτ

〉
(A.2)

satisfies (DVF,G) = (F,D∗VG).

Proof. We adapt the proof from [Hsu02, Sec. 8] to our setting of evolving manifolds.
Since DV satisfies the product rule, it is enough to show that

E(x,T )[DVF ] =
1
2E(x,T )

[
F

∫ T

0

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , dWτ

〉]
(A.3)

for all cylinder functions F . We prove this by induction on the order k of the cylinder
function F .

k = 1: Let F = e∗σu be a 1-point cylinder function, and let s = T − σ . Since w(x, t) :=
Pstu(x) satisfies the heat equation, its gradient satisfies

∇t gradgt w = 1gt gradgt w −
(
Ric+ 1

2∂tg
)
(gradgt w, ·)

]gt (A.4)

(cf. the proof of Proposition 4.4). By the Feynman–Kac formula (Proposition 3.36) we
have

gradgT w(x, T ) = E(x,T )[RσPσ gradgs u(Xσ )], (A.5)

where Rτ = Rτ (γ ) : (TxM,gT ) → (TxM,gT ) solves the ODE d
dτ
Rτ =

RτPτ
(
Ric+ 1

2∂tg
)
T−τ

P−1
τ with R0 = id, and where we view

(
Ric+ 1

2∂tg
)
T−τ

as an
endomorphism of TM (using the metric gT−τ ).

By (3.29) we have

u(Xσ ) = w(x, T )+

∫ σ

0
∇
H w̃ (Uτ ) · dWτ , (A.6)

where w̃ is the invariant lift ofw and ∇H w̃ = (H1w̃, . . . , Hnw̃) is its horizontal gradient.
Let {zτ }τ∈[0,T ] ∈ H and let R†

τ be the adjoint of the operator Rτ . Using the above and
the Itô isometry (3.51), we compute the following expectation value:

E(x,T )

[
u(Xσ )

∫ σ

0
〈R†
τ żτ , dWτ 〉

]
= E(x,T )

[∫ σ

0
∇
H w̃ (Uτ ) · dWτ

∫ σ

0
〈R†
τ żτ , dWτ 〉

]
= 2E(x,T )

[∫ σ

0
〈R†
τ żτ ,∇

H w̃(Uτ )〉 dτ

]
= 2E(x,T )

[∫ σ

0
〈żτ , RτU0∇

H w̃(Uτ )〉gT dτ

]
. (A.7)
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Let Nτ := RτU0∇
H w̃(Uτ ) = RτPτ gradgT−τ w(Xτ , T − τ). Integration by parts gives

E(x,T )

[∫ σ

0
〈żτ , Nτ 〉gT dτ

]
= E(x,T )

[
〈zσ , Nσ 〉gT −

∫ σ

0
〈zτ , dNτ 〉gT

]
= E(x,T )[〈zσ , Nσ 〉gT ], (A.8)

where in the last step we have used the fact that Nτ is a martingale (cf. (3.40)). Putting
things together, and taking also into account that

E(x,T )

[
u(Xσ )

∫ T

σ

〈R†
τ żτ , dWτ 〉

]
= E(x,T )[u(Xσ )] · E(x,T )

[∫ T

σ

〈R†
τ żτ , dWτ 〉

]
= 0,

(A.9)
we obtain

E(x,T )

[
u(Xσ )

∫ T

0
〈R†
τ żτ , dWτ 〉

]
= 2E(x,T )[〈R†

σ zσ , Pσ gradgs u(Xσ )〉gT ]. (A.10)

Finally, we let vτ = R†
τ zτ . Then

R†
τ żτ = v̇τ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , (A.11)

and (A.3) follows.

k − 1→ k: Let F = e∗σf be a k-point cylinder function and let si = T − σi . Define a
new function of k − 1 variables by

g(x1, . . . , xk−1) = E(xk−1,sk−1)[f (x1, . . . , xk−1, X
′
σk−σk−1

)], (A.12)

where X′ is based at xk−1. Let G : P(x,T )M→ R be the (k − 1)-point cylinder function

G(γ ) = g(eσ1γ, . . . , eσk−1γ ). (A.13)

In the computations below we will frequently use the Markov property (Proposition 3.19).
The first step is to express

E(x,T )[DVF ] =

k∑
j=1

E(x,T )[〈vσj , Pσj grad(j)gsj f (Xσ1 , . . . , Xσk )〉gT ] (A.14)

in terms of G. To this end, note that for j = 1, . . . , k − 2 we simply have

grad(j)gsj g(x1, . . . , xk−1) = E(xk−1,sk−1)[grad(j)gsj f (x1, . . . , xk−1, X
′
σk−σk−1

)]. (A.15)

For j = k − 1 using the product rule and the gradient formula (A.5) we have

grad(k−1)
gsk−1

g(x1, . . . , xk−1) = E(xk−1,sk−1)[grad(k−1)
gsk−1

f (x1, . . . , xk−1, X
′
σk−σk−1

)]

+ E(xk−1,sk−1)[R
′
σk−σk−1

P ′σk−σk−1
gradgsk f (x1, . . . , xk−1, X

′
σk−σk−1

)],
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where R′τ = R′τ (γ ) : (Txk−1M,gsk−1) → (Txk−1M,gsk−1) solves the ODE d
dτ
R′τ =

R′τP
′
τ

(
Ric+ 1

2∂tg
)
sk−1−τ

P ′−1
τ with R′0 = id. Taking expectations, we thus obtain

E(x,T )[DVF ] = E(x,T )[DVG] + E(x,T )[〈vσk , Pσk grad(k)gsk f (Xσ1 , . . . , Xσk )〉gT ]

− E(x,T )
[
E(Xσk−1 ,sk−1)[〈vσk−1 ,

Pσk−1R
′
σk−σk−1

P ′σk−σk−1
grad(k)gsk f (Xσ1 , . . . , Xσk−1 , X

′
σk−σk−1

)〉gT ]
]
.

By the induction hypothesis we have

E(x,T )[DVG] =
1
2E(x,T )

[
G

∫ σk−1

0

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , dWτ

〉]
. (A.16)

Conditioning, using the induction hypothesis for 1-point functions, and unconditioning
again, we compute

E(x,T )[〈vσk − vσk−1 , Pσk grad(k)gsk f (Xσ1 , . . . , Xσk )〉gT ]

= E(x,T )
[
E(Xσk−1 ,sk−1)[〈P

−1
σk−1

(vσk − vσk−1),

P ′σk−σk−1
grad(k)gsk f (Xσ1 , . . . , Xσk−1 , X

′
σk
)〉gsk−1

]
]

=
1
2E(x,T )

[
F

∫ T

sk−1

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ (vτ − vσk−1), dWτ

〉]
. (A.17)

Finally, using the induction hypothesis for 1-point functions and the ODE for R′ we com-
pute

E(x,T )
[
E(Xσk−1 ,sk−1)[〈vσk−1 ,

(Pσk − Pσk−1R
′
σk−σk−1

P ′σk−σk−1
) grad(k)gsk f (Xσ1 , . . . , Xσk−1 , X

′
σk−σk−1

)〉gT ]
]

= E(x,T )
[
E(Xσk−1 ,sk−1)[〈(I − R

′†
σk−σk−1

)P−1
σk−1

vσk−1 ,

P ′σk−σk−1
grad(k)gsk f (Xσ1 , . . . , Xσk−1 , X

′
σk−σk−1

)〉gsk−1
]
]

= E(x,T )

[
F

∫ sk

sk−1

〈
Pτ
(
Ric+ 1

2∂tg
)
P−1
τ vσk−1 , dWτ

〉]
. (A.18)

Adding (A.16), (A.17) and (A.18) we conclude that

E(x,T )[DVF ] =
1
2E(x,T )

[
F

∫ T

0

〈
d
dτ
vτ − Pτ

(
Ric+ 1

2∂tg
)
P−1
τ vτ , dWτ

〉]
. (A.19)

This proves the theorem. ut
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