
DOI 10.4171/JEMS/788

J. Eur. Math. Soc. 20, 1303–1373 c© European Mathematical Society 2018

Nicolas Lerner · Toan Nguyen · Benjamin Texier

The onset of instability in first-order systems

Received April 24, 2015

Abstract. We study the Cauchy problem for first-order quasi-linear systems of partial differential
equations. When the spectrum of the initial principal symbol is not included in the real line, i.e.,
hyperbolicity is violated at initial time, the Cauchy problem is strongly unstable in the sense of
Hadamard. This phenomenon, which extends the linear Lax–Mizohata theorem, was explained by
G. Métivier [Contemp. Math. 368, 2005]. In the present paper, we are interested in the transition
from hyperbolicity to non-hyperbolicity, that is, the limiting case where hyperbolicity holds at ini-
tial time, but is violated at positive times: under that hypothesis, we generalize a recent work by
N. Lerner, Y. Morimoto and C.-J. Xu [Amer. J. Math. 132 (2010)] on complex scalar systems, as
we prove that even a weak defect of hyperbolicity implies a strong Hadamard instability. Our exam-
ples include Burgers systems, Van der Waals gas dynamics, and Klein–Gordon–Zakharov systems.
Our analysis relies on an approximation result for pseudo-differential flows, proved by B. Texier
[Indiana Univ. Math. J. 65 (2016)].
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1. Introduction

We study well-posedness issues in Sobolev spaces for the Cauchy problem for first-order,
quasi-linear systems of partial differential equations:

∂tu+
∑

1≤j≤d

Aj (t, x, u)∂xj u = F(t, x, u), (1.1)

where t ≥ 0, x ∈ Rd , u(t, x) ∈ RN , the maps Aj are smooth from R+ ×Rdx ×RNu to the
space of N ×N real matrices and F is smooth from R+ × Rdx × RNu into RN .

We prove a general ill-posedness result in Sobolev spaces for the Cauchy problem
for (1.1), under an assumption of a weak defect of hyperbolicity that describes the tran-
sition from hyperbolicity to ellipticity. This extends recent results of G. Métivier [16]
and N. Lerner, Y. Morimoto and C.-J. Xu [12]. Here “well-posedness” is understood in
the sense of Hadamard [4], meaning existence and regularity of a flow; “hyperbolicity”,
as discussed in Section 1.1, means reality of the spectrum of the principal symbol; and
“ellipticity” corresponds to existence of non-real eigenvalues for the principal symbol.

We begin this introduction with a discussion of hyperbolicity and well-posedness
(Section 1.1), then give three results: Theorem 1.2 describes ill-posedness of elliptic
initial-value problems, while Theorems 1.3 and 1.6 are ill-posedness results for systems
undergoing a transition from hyperbolicity to ellipticity. These results are illustrated in a
series of examples in Section 1.5. Our main assumption (Assumption 2.1) and main result
(Theorem 2.2) are stated in Sections 2.1 and 2.2.

1.1. Hyperbolicity as a necessary condition for well-posedness

Lax–Mizohata theorems, named after Peter Lax and Sigeru Mizohata, state that well-
posed non-characteristic initial-value problems for first-order systems are necessarily hy-
perbolic, meaning that all eigenvalues of the principal symbol are real.

P. Lax’s original result [10] is stated in aC∞ framework, for linear equations, i.e. such
that Aj (t, x, u) ≡ Aj (t, x). Lax uses a relatively strong definition of well-posedness that
includes continuous dependence not only on the data, but also on the source. This allows
him in particular to consider WKB approximate solutions; the proof in [10] shows that in
the non-hyperbolic case, if the eigenvalues are separated, the C0 norms of high-frequency
WKB solutions grow faster than theCk norms of the datum and source, for any k. The sep-
aration assumption ensures that the eigenvalues are smooth, implying smoothness for the
coefficients of the WKB cascade of equations. In the sameC∞ framework for linear equa-
tions but without assuming spectral separation, S. Mizohata [18] proved that existence,
uniqueness and continuous dependence on the data cannot hold in the non-hyperbolic
case.

Later S. Wakabayashi [26] and K. Yagdjian [27, 28] extended the analysis to the quasi-
linear case, but it was only in 2005 that a precise description of the lack of regularity of the
flow was given by Métivier: Theorem 3.2 in [16] states that in the case where the Aj are
analytic, under the assumption that for some fixed vector u0

∈ RN and some frequency
ξ0
∈ Rd the principal symbol

∑d
j=1Aj (u

0)ξ0
j is not hyperbolic, some analytical data
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uniquely generate analytical solutions, but the corresponding flow for (1.1) is not Hölder
continuous from high Sobolev norms to L2, locally around a Cauchy–Kovalevskaya so-
lution issued from the constant datum u0.

Métivier’s result is a long-time Cauchy–Kovalevskaya result. Without loss of general-
ity, assume indeed that u0

= 0. Then Theorem 3.2 in [16] states that data that are small
in high norms may generate solutions that are instantaneously large in low norms. To see
this, assume in (1.1) the hyperbolic ansatz: u(t, x) = εv(t/ε, x/ε), where ε > 0. If we
set F ≡ 0 for simplicity, and τ = t/ε, y = x/ε, the equation for v is

∂τv +

d∑
j=1

Aj (ετ, εy, εv)∂yj v = 0. (1.2)

If all fluxesAj are analytic in their arguments, the Cauchy–Kovalevskaya theorem en-
sures the existence and uniqueness of a solution v issued from an analytic datum v(0, x),
over an O(1) time interval in the fast variable τ . What is more, by regularity of the coef-
ficients of (1.2) with respect to ε, the solution v stays close, in analytical seminorms, to
the solution w of the constant-coefficient system

∂τw +

d∑
j=1

Aj (0)∂yjw = 0

over O(1) time intervals. By Assumption on Aj (0), the Fourier transform ŵ(τ, ξ0) of
w in the spectral direction ξ0 grows like eτC(ξ

0) for some C > 0. This implies similar
growth for v(t/ε, ξ0), and in turn growth like εetC(ξ

0)/ε for û(t, ξ0), but only on O(ε)
time intervals, due to the initial rescaling in time. The content of Métivier’s result is
therefore that the solution v to (1.2) exists, and the growth persists, over “long”,O(|log ε|)
time intervals, so that the exponential amplification is effective.

In the scalar complex case, the results of N. Lerner, Y. Morimoto and C.-J. Xu [12]
extended the analysis of Métivier to the situation where the symbol is initially hyperbolic,
but hyperbolicity is instantaneously lost, in the sense that a characteristic root is real at
t = 0, but leaves the real line at positive times. The main result of [12] states that such
a weak defect of hyperbolicity implies a strong form of ill-posedness; the analysis is
based on representations of solutions by the method of characteristics, following [15].
This argument does not carry over to systems, even in the case of a diagonal principal
symbol, if the components of the solution are coupled through the lower-order term F(u).

Our goal in this article is to extend the instability results of [12] on complex scalar
equations to the case of quasi-linear first-order systems (1.1). In the process, we recover
a version of the results of [16], with a method of proof that does not rely on analyticity.

1.2. On the local character of our assumptions and results

Our assumptions are local in nature. They bear on the germ, at a given point (t0, x0, ξ0) ∈

R+ ×Rd ×Rd , representing time, position, and frequency, of the principal symbol eval-
uated at a given reference solution. Under these local assumptions, we prove local insta-
bilities, which extend the aforementioned Lax–Mizohata theorems, and which roughly
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say that there are no local solutions possessing minimal smoothness with initial data tak-
ing values locally in an elliptic region. These local instabilities are independent of the
global properties of the system (1.1). In particular, the system (1.1) may have formal con-
served quantities; see for instance the compressible Euler equations (1.16) introduced in
Section 1.5.

1.3. Transition from hyperbolicity to ellipticity

Our starting point is to assume that there exists a local smooth solution φ to (1.1) with a
large Sobolev regularity:

φ ∈ C∞([0, T0], H
s1(U)) (1.3)

for some T0 > 0, some open set U ⊂ Rd , and some Sobolev regularity index s1 =
1+d/2+s2, where s2 > 0 is large enough, depending on the parameters in our problem.1

If the matricesAj and the source F depend analytically on (t, x, u), then we can choose φ
to be a Cauchy–Kovalevskaya solution. However, we do not use analyticity in the rest of
the paper.

The linearized principal symbol at φ is

A(t, x, ξ) :=

d∑
j=1

ξjAj (t, x, φ(t, x)). (1.4)

The upcoming ill-posedness results are based on readily verifiable conditions bearing on
the jet at t = 0 of the characteristic polynomial P of the principal symbol:

P(t, x, ξ, λ) := det(λ Id−A(t, x, ξ)). (1.5)

Most of these conditions are stable under perturbations of the principal symbol, and all
can be expressed in terms of the fluxes Aj and the initial datum φ(0). In particular, it is of
key importance that the verification of these conditions does not require any knowledge
of the behavior of the reference solution φ at positive times.

Also, it should be mentioned that our hypotheses do not require the computation of
eigenvalues and are expressed explicitly in terms of derivatives of P given by (1.5) at
initial time.

1.3.1. Hadamard instability. If (1.1) does possess a flow, how regular can we reason-
ably expect it to be? A good reference point is the regularity of the flow generated by a
symmetric system. If for all j and all u, the matrices Aj (u) are symmetric, then local-
in-time solutions to the initial-value problem for (1.1) exist and are unique in H s for
s > 1 + d/2 [3, 7, 9]; moreover, given a ball BH s (0, R) ⊂ H s , there is an associated
existence time T > 0. The flow is Lipschitz BH s (0, R) ∩ H s+1

→ L∞([0, T ], H s),
continuous BH s (0, R) → L∞([0, T ], H s), but not uniformly continuous BH s (0, R) →

1 We use regularity of φ in particular in the construction of the local solution operator—see
Appendix D, specifically the proof of Lemma D.2, in which q0 is the order of a Taylor expansion
involving φ.
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L∞([0, T ], H s) in general [7]. Micro-locally symmetrizable systems also enjoy these
properties [17].

Accordingly, ill-posedness will be understood as follows:

Definition 1.1. We will say that the initial-value problem for the system (1.1) is ill-posed
in the vicinity of the reference solution φ satisfying (1.3) if for some x0 ∈ U , given any
parameters m,α, δ > 0, T such that

m ∈ R, 1/2 < α ≤ 1, B(x0, δ) ⊂ U, 0 < T ≤ T0, (1.6)

where U and T0 are as in (1.3), there is no neighborhood U of φ(0) in Hm(U) such that,
for all u(0) ∈ U , the system (1.1) has a solution u ∈ L∞([0, T ],W 1,∞(B(x0, δ))) issued
from u(0) which satisfies

sup
u0∈U

0≤t≤T

‖u(t)− φ(t)‖W 1,∞(B(x0,δ))

‖u0 − φ(0)‖αHm(U)

<∞. (1.7)

Thus (1.1) is ill-posed near the reference solution φ if either data arbitrarily near φ(0)
fail to generate trajectories, corresponding to absence of a solution, or if trajectories is-
sued close to φ(0) deviate from φ, corresponding to absence of Hölder continuity for the
solution operator. In the latter case, we note that:

• the deviation is relative to the initial closeness, so that φ is unstable in the sense of
Hadamard, not in the sense of Lyapunov;
• the deviation is instantaneous: T is arbitrarily small, and it is localized: δ is arbitrarily

small,
• the initial closeness is measured in a strong Hm norm, where m is arbitrarily large,2

while the deviation is measured in a weaker W 1,∞ norm, defined as ‖f ‖W 1,∞ =

‖f ‖L∞ + ‖∇xf ‖L∞ .

In our proofs of ill-posedness in the sense of Definition 1.1, we will always assume
existence of a solution issued from a small perturbation of φ(0), and proceed to dis-
prove (1.7).

Note that the flows of ill-posed problems in the sense of Definition 1.1 exhibit a
lack of Hölder continuity. F. John [6] introduced a notion of “well-behaved” problem,
weaker than well-posedness. In well-behaved problems, Cauchy data generate unique so-
lutions, and, in restriction to balls in the WM,∞ topology, for some integer M , the flow
is Hölder continuous in appropriate norms. The notions introduced in [6] were developed
by H. Bahouri [1], who used sharp Carleman estimates.

The restriction to α > 1/2 in Definition 1.1 is technical. Precisely, it comes from the
fact that we prove ill-posedness by disproving (1.7), as indicated above. This gives weak
bounds on the solution, which we use to bound the non-linear terms. Consider non-linear
terms in (1.1) which are controlled by `0-homogeneous terms in u, with `0 ≥ 2, that is,

2 That is, the only restriction on m is the Sobolev regularity of φ; we need, in particular, m ≤ s1
for (1.7) to make sense.
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such that ∂uAj = O(u`0−2) and ∂uF = O(u`0−1). These bounds hold if, for instance,
Aj (u)∂xj u = u`0−1∂xu and F(u) = u`0 , using scalar notation. Then the proof of our
general result (Theorem 2.2) shows ill-posedness with α > 1/`0. (See indeed Lemma
3.16 and its proof, and note the constraint 2K ′ > K which appears at the end of the proof
in Section 3.15.)

Finally, we point out that Definition 1.1 describes only the behavior of solutions which
belong to W 1,∞. This in particular excludes shocks, which are expected to form in finite
time for systems (1.1), even in the case of smooth data. Shocks with jump across elliptic
zones could exhibit some stability properties.

1.3.2. Initial ellipticity. Our first result states that the ellipticity condition

P(0, ω0) = 0, ω0 = (x0, ξ0, λ0) ∈ U × (Rd \ {0})× (C \ R), (1.8)

where P is the characteristic polynomial defined in (1.5), implies ill-posedness:

Theorem 1.2. Under the ellipticity condition (1.8), the Cauchy problem for system (1.1)
is ill-posed in the vicinity of the reference solution φ, in the sense of Definition 1.1.

R

spA(t, x, ξ) ⊂ C
iR

` = 0

λ0

λ̄0

Fig. 1. In Theorem 1.2, corresponding to ` = 0 in Assumption 2.1, the principal symbol at
(0, x0, ξ0) has non-real eigenvalues λ0, λ̄0. These may correspond to coalescing points in the spec-
trum, for (t, x, ξ) near (0, x0, ξ0).

Theorem 1.2 (proved in Section 4) states that hyperbolicity is a necessary condition for
the well-posedness of the initial-value problem (1.1), and partially recovers Métivier’s
result3. An analogue to Theorem 1.2 in the high-frequency regime is given in [14], based
on [24] just like our proof of Theorem 1.2; the main result of [14] precisely describes how
resonances may induce local defects of hyperbolicity in strongly perturbed semilinear
hyperbolic systems, and thus destabilize WKB solutions.

3 Theorem 3.2 in [16] shows not only instability, but also existence and uniqueness, under as-
sumption of analyticity for the fluxes, the source and the initial data.
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1.3.3. Non-semisimple defect of hyperbolicity. We now turn to situations in which the
initial principal symbol is hyperbolic:

P(0, x, ξ, λ) = 0 implies λ ∈ R, for all (x, ξ) ∈ U × (Rd \ {0}), (1.9)

and aim to describe situations in which some roots of P are non-real for t > 0. Let

0 := {ω = (x, ξ, λ) ∈ U × (Rd \ {0})× R : P(0, ω) = 0},

By reality of the coefficients of P , non-real roots occur in conjugate pairs. In particular,
eigenvalues must coalesce at t = 0 if we are to observe non-real eigenvalues for t > 0.

Let then ω0 ∈ 0 be such that

∂λP(0, ω0) = 0, ∂2
λP(0, ω0) 6= 0. (1.10)

The eigenvalue λ0 of A(0, x0, ξ0) thus has multiplicity two. Assume in addition that

(∂2
λP∂tP)(0, ω0) > 0. (1.11)

The eigenvalues are continuous,4 implying that condition (1.11) is open, meaning that if
it holds at ω0, then it holds at any nearby ω in 0.

Theorem 1.3. Assume that conditions (1.10)–(1.11) hold for some ω0 ∈ 0, and the other
eigenvalues of A(0, x0, ξ0) are simple. Then the Cauchy problem for system (1.1) is ill-
posed in the vicinity of the reference solution φ, in the sense of Definition 1.1.

The conditions (1.10)–(1.11) are relevant, and, as far as we know, new, also in the linear
case.

Van der Waals systems and Klein–Gordon–Zakharov systems illustrate Theorem 1.3
(see Sections 1.5, 7.3 and 7.4).

The proof of Theorem 1.3, given in Section 5, reveals that under (1.10)–(1.11), the
eigenvalues that coalesce at t = 0 branch from the real axis. The branching time is typi-
cally not identically equal to t = 0 around (x0, ξ0); for (x, ξ) close to (x0, ξ0), it is equal
to t?(x, ξ) ≥ 0, with a smooth transition function t?. At (t?(x, ξ), x, ξ) the branching
eigenvalues are not time-differentiable, in particular not semisimple. Details are given in
Section 5.1, in the proof of Theorem 1.3. Figure 3 shows the typical shape of the transition
function. The elliptic domain is {t > t?}, and the hyperbolic domain is {t < t?}.

1.3.4. Semisimple defect of hyperbolicity. Time-differentiable defects of hyperbolicity
of size two can be simply characterized in terms of P :

Proposition 1.4. Let P(t, x, ξ, λ) be the characteristic polynomial (1.5) of the principal
symbol A(t, x, ξ) as in (1.4). Assume initial hyperbolicity (1.9). Let ω = (x, ξ, λ) ∈ 0. If
∂λP(0, ω) = 0 6= ∂2

λP(0, ω), then for the branches λ of eigenvalues of A which coalesce
at (0, x, ξ),

λ(·, x, ξ) is differentiable at t = 0
=m∂tλ(0, x, ξ) 6= 0

}
⇔

{
∂tP(0, ω) = 0,

(∂2
tλP(0, ω))

2 < (∂2
t P∂

2
λP)(0, ω).

(1.12)

4 By continuity of A and Rouché’s theorem (see [8] or [25]).
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R

spA(t, x0, ξ0) ⊂ C
iR

` = 1/2

λ0

λ+(t, x0, ξ0)

λ−(t, x0, ξ0)

Fig. 2. In Theorem 1.3, corresponding to ` = 1/2 in Assumption 2.1, a bifurcation occurs at
(0, x0, ξ0) in the spectrum of the principal symbol. The eigenvalues are not time-differentiable. The
arrows indicate the direction of time.

hyperbolic

elliptic

t?

(x0, ξ0) (x, ξ)

t

` = 1/2

Fig. 3. In Theorem 1.3, the transition occurs at t = t?(x, ξ) ≥ 0, near (x0, ξ0).

Proof. We assume λ ∈ C2. The proof in the general case is postponed to Appendix A.
For t in a neighborhood of 0, we have P(t, x, ξ, λ(t, x, ξ)) ≡ 0. Differentiating with
respect to t , we find

∂tP(0, ω)+ ∂tλ(0, x, ξ)∂λP(0, ω) = 0.

Since λ(0, x, ξ) is real-valued, by reality of P , the derivatives ∂tP and ∂λP are real. If
we assume =m∂tλ(0, x, ξ) 6= 0, then ∂tP(0, ω) = ∂λP(0, ω) = 0. Differentiating again
with respect to t , we find

∂2
t P(0, ω)+ 2∂tλ(0, x, ξ)∂2

tλP(0, ω)+ (∂tλ(0, x, ξ))
2∂2
λP(0, ω) = 0. (1.13)

Equation (1.13), a second-order polynomial equation for ∂tλ(0, x, ξ), has non-real roots
if and only if the second condition on the right-hand side of (1.12) holds. ut

We now examine the situation in which a double and semisimple eigenvalue λ0 belongs
to a branch λ of double and semisimple eigenvalues at t = 0, which all satisfy condi-
tions (1.12):
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Hypothesis 1.5. For some ω0 = (x0, ξ0, λ0) ∈ 0 satisfying (1.10) and (1.12), and such
that λ0 is a semisimple eigenvalue of A(0, x0, ξ0), and for all ω = (x, ξ, λ) in a neighbor-
hood of ω0 in 0, we have

∂λP(0, ω) = ∂tP(0, ω) = 0,
and λ is a semisimple eigenvalue of A(0, x, ξ).

Semisimplicity of an eigenvalue means simpleness as a root of the minimal polynomial.
Condition (∂2

tλP(ω))
2 < (∂2

t P∂
2
λP)(ω) is open; in particular, if it holds at ω0 ∈ 0, it

holds at all nearby ω ∈ 0. Thus under Hypothesis 1.5, conditions (1.10) and (1.12) hold
in a neighborhood of ω0 in 0.

Theorem 1.6. Assume that Hypothesis 1.5 holds, and that the other eigenvalues of
A(0, x0, ξ0) are simple. Then the Cauchy problem for system (1.1) is ill-posed in the
vicinity of the reference solution φ, in the sense of Definition 1.1.

R

spA(t, x, ξ) ⊂ C
iR

` = 1

λ0

λ+(t, x, ξ)

λ−(t, x, ξ)

Fig. 4. In Theorem 1.6, corresponding to ` = 1 in Assumption 2.1, a bifurcation occurs at (0, x, ξ)
in the spectrum of the principal symbol, for all (x, ξ) near (x0, ξ0). The eigenvalues are time-
differentiable. The arrows indicate the direction of time.

An analogue to Theorem 1.6 in the high-frequency regime is the result of Y. Lu [13], in
which it is shown how higher-order resonances, not present in the data, may destabilize
precise WKB solutions. Under the assumptions of Theorem 1.6 and assuming analyticity
of the coefficients, B. Morisse [19] proves existence, uniqueness and instability in Gevrey
spaces, further extending G. Métivier’s analysis [16].

Theorem 1.6 is illustrated by the Burgers systems of Sections 1.5 and 7.1.

1.4. Remarks

Taken together, our results assert that, for principal symbols with eigenvalues of multi-
plicity at most two, if one of the following holds:
(a) condition (1.8),
(b) conditions (1.10)–(1.11),
(c) Hypothesis 1.5,
then ill-posedness ensues.
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t? ≡ 0

(x0, ξ0) (x, ξ)

t

` = 1

hyperbolic

elliptic

Fig. 5. In Theorem 1.6, the transition occurs at t = 0, uniformly near (x0, ξ0).

We note that condition (1.11) is stable by perturbation, and that conditions (1.10)–
(1.11) are generically necessary and sufficient for occurrence of non-real eigenvalues in
symbols that are initially hyperbolic. Indeed:

• non-real eigenvalues may occur only if the initial principal symbol has double eigen-
values, implying necessity of condition (1.10), and
• as shown by the proof of Theorem 1.3, the opposite sign (∂2

λP∂tP)(0, ω0) < 0 in
condition (1.11) implies real eigenvalues for small t > 0.

Here generically means that the above discussion leaves out the degenerate case
∂tP(0, ω0) = 0.

We consider the case ∂tP(0, ω0) = 0 in Theorem 1.6. Note however that there is a
significant gap between (b) and (c), the assumptions of Theorems 1.3 and 1.6. Indeed,
while condition ∂tP = 0 in Hypothesis 1.5 lies at the boundary of the case considered
in Theorem 1.3, Hypothesis 1.5 describes a situation which is quite degenerate, since we
ask for the closed conditions ∂λP = 0, ∂tP = 0 (and also for semisimplicity) to hold on
a whole branch of eigenvalues near λ0.

Non-semisimple eigenvalues are typically not differentiable at the coalescing point,
the canonical example being (

0 1
±tα 0

)
(1.14)

with α = 1. The proof of Theorem 1.3 shows that the principal symbol at (t, x0, ξ0)

can be reduced to (1.14), with α = 1 and a negative sign, implying non-real and non-
differentiable eigenvalues.

By contrast, semisimple eigenvalues admit one-sided directional derivatives (see for
instance Chapter 2 of T. Kato’s treatise [8], or [22, 25]). In particular, there is some re-
dundancy in our assumptions of semisimplicity and condition (1.12).

We finally observe that our analysis extends somewhat beyond the framework of The-
orems 1.2, 1.3 and 1.6. Consider for instance, in one space dimension, a smooth principal
symbol of the form
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ξ

(
0 1

x2t − t2 + t3a(x) 0

)
with eigenvalues λ± = ±ξ(x2t − t2 + t3a(x))1/2,

with a(x) ∈ R, so that the eigenvalues are time-differentiable only at x = 0: conditions
(1.12) hold only at x = 0. Semisimplicity does not hold at (t, x) = (0, 0). Condition
(1.11) does not hold at (t, x, λ) = (0, 0, 0). However, by the implicit function theorem,
eigenvalues cross at (s(x), x) for a smooth s with s(x) = x2

+ O(x3). By inspection,
condition (1.11) holds at (s(x), x). Since x is arbitrarily small, Theorem 1.3 applies,
yielding instability.

1.5. Examples

Burgers systems. Our first example is the family of Burgers-type systems in one space
dimension

∂t

(
u1
u2

)
+

(
u1 −b(u)2u2
u2 u1

)
∂x

(
u1
u2

)
= F(u), (1.15)

in which b > 0 and F = (F1, F2) ∈ R2 are smooth. When b(u) is not constant, the
instability result for scalar equations in [12] does not directly apply. We show in partic-
ular that if F2 is not initially zero, then Theorem 1.6 yields ill-posedness for the Cauchy
problem for (1.15). Under the same condition F2(t = 0) 6≡ 0, Theorem 1.6 also applies
to two-dimensional systems

∂tu+

(
u1∂x1 −b(u)2u2(∂x1 + ∂x2)

u2(∂x1 + ∂x2) u1∂x1

)
u = F(u).

Details are given in Sections 7.1 and 7.2.

Van der Waals gas dynamics. Our results also apply to the one-dimensional, isentropic
Euler equations in Lagrangian coordinates{

∂tu1 + ∂xu2 = 0,
∂tu2 + ∂xp(u1) = 0,

(1.16)

with a Van der Waals equation of state, for which p′(u1) ≤ 0 for some u1 ∈ R. We prove
that if (φ1, φ2)(t, x) is a smooth solution such that, for some x0 ∈ R,

(i) p′(φ1(0, x0)) < 0 or (ii) p′(φ1(0, x0)) = 0, p′′(φ1(0, x0))∂xφ2(0, x0) > 0,

then the initial-value problem for (1.16) is ill-posed in any neighborhood of φ. Con-
dition (i) is an ellipticity assumption (under which Theorem 1.2 applies), and condi-
tion (ii) is an open condition on the boundary of the domain of hyperbolicity (un-
der which Theorem 1.3 applies). System (1.16) has the formal conserved quantity∫
R(|v(t, x)|

2
+ 2P(u(t, x))) dx, where P ′ = p. As briefly discussed in Section 1.2,

the instabilities evidenced here are local and neither preclude nor are contradicted by
global stability properties of the system, such as formal conservation laws. This example
is developed in Section 7.3.
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Klein–Gordon–Zakharov systems. Our last class of examples is given by the following
one-dimensional Klein–Gordon system coupled to wave equations with Zakharov-type
non-linearities:

∂t

(
u

v

)
+ ∂x

(
v

u

)
+

(
α 0
0 0

)
∂x

(
n

m

)
= (n+ 1)

(
v

−u

)
,

∂t

(
n

m

)
+ c∂x

(
m

n

)
+

(
α 0
0 0

)
∂x

(
u

v

)
= ∂x

(
0

u2
+ v2

)
.

(1.17)

The linear differential operator in (u, v) in the subsystem in (u, v) is a Klein–Gordon
operator, with critical frequency scaled to 1. The linear differential operator in (n,m)
in the subsystem in (n,m) is a wave operator, with acoustic velocity c. The source in
∂x(u

2
+ v2) is similar to the non-linearity in the Zakharov equation [20, 23]. Systems of

the form (1.17) with α = 0 are used to describe laser-matter interactions; in the high-
frequency limit, they can be formally derived from the Maxwell–Euler equations [2]. We
consider the case |c| < 1, corresponding to the physical situation of an acoustic velocity
being smaller than the characteristic Klein–Gordon frequencies.

It was shown in [2] that for α = 0 system (1.17) is conjugate via a non-linear change
of variables to a semilinear system, implying in particular well-posedness in H s(R) for
s > 1/2.

Here we show that if α 6= 0 and φ = (u, v, n,m) is a smooth solution such that

u(0, x0) = 0, v(0, x0) = −
c

2α
, αc∂xu(0, x0) > 0, for some x0 ∈ R,

then Theorem 1.3 applies and the Cauchy problem for (1.17) is ill-posed in the vicinity
of φ. This situation is analogous to the Turing instability, where 0 is a stable equilibrium
point for both ordinary differential equations X′ = AX and X′ = BX, but not for X′ =
(A+ B)X.

We come back to this example in detail in Section 7.4.

2. Main assumption and result

Theorems 1.2, 1.3 and 1.6 can all be recast in the same framework, which we now present.

2.1. Bounds for the symbolic flow of the principal symbol

2.1.1. Degeneracy index and associated parameters. Let ` ∈ {0, 1/2, 1}.5 Define

h =
1

1+ `
=


1 if ` = 0,
2/3 if ` = 1/2,
1/2 if ` = 1,

ζ =

{
0 if ` ∈ {0, 1},
1/3 if ` = 1/2.

The parameters h and ζ define our time, space and frequency scales.

5 Theorem 1.2 corresponds to ` = 0, Theorem 1.3 to ` = 1/2, and Theorem 1.6 to ` = 1.
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2.1.2. The time transition function and the elliptic domain. Introduce a time transition
function t? such that

• if ` = 0 or ` = 1, then t? ≡ 0,
• if ` = 1/2, then t? depends smoothly on (x, ξ) and singularly on ε, and is slowly

varying in x, in the sense that for some smooth function θ?,

t?(ε, x, ξ) = ε
−hθ?(ε

1−hx, ξ) with θ? ≥ 0, θ?(0, ξ0) = 0, ∇x,ξ θ?(0, ξ0) = 0.
(2.1)

Define then the elliptic domain6 by

D := {(τ ; t, x, ξ) : t?(x, ξ) ≤ τ ≤ t ≤ T (ε), |x| ≤ δ, |ξ − ξ0| ≤ δε
ζ
}, (2.2)

for some ξ0 ∈ Rd \ {0} and some δ > 0, with

T (ε)`+1
= T?|log ε|, T? > 0. (2.3)

2.1.3. The rescaled and advected principal symbol. We consider a reference solution φ
satisfying (1.3), and the associated principal symbol (1.4). The rescaled and advected
principal symbol is7

A?(ε, t, x, ξ) :=
(
Q(A− µ)Q−1)(εht, x0 + ε

1−hx?(ε
ht, x, ξ), ξ?(ε

ht, x, ξ)
)

(2.4)

for some x0 ∈ Rd , with 0 < h ≤ 1 as in (2.3), where, in D,
• the symbol µ = µ(t, x, ξ) is real and smooth, and Q(t, x, ξ) ∈ CN×N is smooth and

pointwise invertible,
• the bicharacteristics (x?, ξ?) solve

∂t

(
x?
ξ?

)
=

(
−∂ξµ

ε1−h∂xµ

)
(t, x0 + ε

1−hx?, ξ?),

(
x?
ξ?

)
(0, x, ξ) =

(
x

ξ

)
. (2.5)

We assume that the symbol A? is block diagonal, and for its blocks A?j we assume either
the bound

εh−1
|∂αx ∂

β
ξ A?j | ≤ Cαβ <∞ for some Cαβ > 0, in D, uniformly in ε, (2.6)

or the block structure

εh−1A?j =

(
0 εh−1A?j12

ε1−hA?j21 0

)
(2.7)

with |∂αx ∂
β
ξ A?j12| + |∂

α
x ∂

β
ξ A?j21| ≤ Cαβ for some Cαβ > 0, in D, uniformly in ε.

If ` = 0, then h = 1. As a consequence, in the block diagonalization of A? all blocks
satisfy (2.6), by the assumed smoothness of the components of A?.

If ` = 1/2, we assume that some block of A? satisfies (2.7), and the other blocks
of A? satisfy (2.6).

If ` = 1, we assume that all blocks of A? satisfy (2.6).

6 The elliptic domains corresponding to Theorems 1.3 and 1.6 are pictured in Figures 3 and 5.
7 In the elliptic case, corresponding to Theorem 1.2, we have ` = 0, h = 1, Q ≡ Id, µ ≡ 0, so

that (x?, ξ?) ≡ (x, ξ), and then A? is simply A?(ε, t, x, ξ) = A(εt, x, ξ).
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2.1.4. Symbolic flow and growth functions. The symbolic flow S = S(τ ; t, x, ξ) of A?
is defined as the solution to the family of linear ordinary differential equations

∂tS + iε
h−1A?(ε, t, x, ξ)S = 0, S(τ ; τ) ≡ Id. (2.8)

In Section 2.1.3, we have assumed that A? is block diagonal. Accordingly, the solution S
to (2.8) is block diagonal, with blocks S(1), S(2), . . . .

Let γ±(x, ξ) be two continuous functions defined on {|x| ≤ δ, |ξ − ξ0| ≤ δε
ζ
} such

that γ−(0, ξ0) = γ
+(0, ξ0), and

eγ±(τ ; t, x, ξ) := exp
(
γ±(x, ξ)

(
(t − t?(x, ξ))

`+1
+ − (τ − t?(x, ξ))

`+1
+

))
, (2.9)

where t+ := max(t, 0) and the time transition function t? is defined in (2.1). We under-
stand eγ± as growth functions,8 measuring how fast the solution S to (2.8) is growing, as
seen in Assumption 2.1 below. The associated γ± are rates of growth.

2.1.5. Bounds. We postulate bounds for S in the elliptic domain D in terms of the growth
functions eγ± :

Assumption 2.1. For some (x0, ξ0) ∈ U×(Rd \{0}), some `,Q,µ, γ±, and t? as above,
any T? > 0, for some δ > 0, for A? satisfying the structural assumptions of Section 2.1.3,
for some ε0 > 0 and all 0 < ε < ε0, the solution S to (2.8) satisfies:

• the lower bound, for some smooth family of unit vectors Ee(x) ∈ CN , for |x| < δ:

ε−ζ eγ−(0; T (ε), x, ξ0) . |S(0; T (ε), x, ξ0)Ee(x)|, (2.10)

• the upper bound for the j -th diagonal block S(j) of S, for (τ, t, x, ξ) ∈ D:

|S(j)(τ ; t, x, ξ)| .

(
1 ε−ζ

εζ 1

)
eγ+(τ ; t, x, ξ). (2.11)

In (2.10), the notation a . b, where a and b are functions of (ε, τ, t, x, ξ), is used to
mean existence of a uniform bound

a(ε, τ, t, x, ξ) ≤ C|ln ε|C
′

b(ε, τ, t, x, ξ), (2.12)

where C,C′ > 0 do not depend on (ε, τ, t, x, ξ). This means in particular that powers of
|ln ε| play the role of constants in our analysis. They are indeed destined to be absorbed
by arbitrarily small powers of ε.

In (2.11), we use . for matrices. Here we mean blockwise inequalities “modulo con-
stants”, in the sense of (2.12). That is, in (2.11) we assume that the j -th diagonal block
of S itself has a block structure, with the top left block being bounded entrywise by eγ+ ,
the top right block being bounded entrywise by ε−ζ eγ+ , etc.

We further comment on Assumption 2.1 in Section 2.3.

8 In the elliptic case, we have ` = 0, t? ≡ 0, so that the growth functions are simply eγ± =
eγ
±(t−τ).
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2.2. Hadamard instability

The non-linear information contained in Assumption 2.1 on the symbolic flow of the
principal symbol (1.4) translates into an instability result for the quasi-linear system (1.1):

Theorem 2.2. Under Assumption 2.1, system (1.1) is ill-posed in the vicinity of the ref-
erence solution φ, in the sense of Definition 1.1.

Theorem 2.2 states that either there exists no solution map, or the solution map fails
to enjoy any Hölder-type continuity estimates. The proof of Theorem 2.2 is given in
Section 3. Key ideas in the proof are sketched in Section 2.4.

Theorems 1.2, 1.3 and 1.6 all follow from Theorem 2.2.

2.3. Comments on Assumption 2.1

Our main assumption is flexible enough to cover the three different situations described
in Theorems 1.2, 1.3 and 1.6. Before further commenting on its ingredients in Section
2.3.1 and its verification in Section 2.3.2, we point out two key features:

• Assumption 2.1 is non-linear. It bears on the whole system (1.1), not just the principal
symbol. For instance, instability occurs for the Burgers systems of Section 1.5 under a
condition bearing on the non-linear term F .

• Assumption 2.1 is finite-dimensional, in the sense that it postulates bounds for solu-
tions to ordinary differential equations in a finite-dimensional setting. These are turned
into bounds for solutions to partial differential equations via Theorem D.3. An informal
discussion of the role of Theorem D.3 is given in Section 2.4.

2.3.1. On the ingredients of Assumption 2.1

• Our localization constraints in (x, ξ) ∈ R2d respect the uncertainty principle. In-
deed, we localize spatially in a box of size ∼ ε1−h. We localize in frequency in a box
of size ∼ εζ around ξ0 but then in the proof we use highly oscillating data and an
εh-semiclassical quantization, so that frequencies εhξ are localized in a box of size εζ

around ξ0, meaning a frequency localization in a box of size εζ−h. If ` = 0 or ` = 1,
then ζ = 0. The area of the (x, ξ)-box is then ε2d(1−2h)

≥ 1, since h = 1 or h = 1/2. If
` = 1/2, then h = 2/3 and ζ = 1/3. The area of the (x, ξ)-box is ε2d(1−h+ζ−h)

= 1.

• The index ` measures the degeneracy of the defect of hyperbolicity. We have ` = 0
in the case of initial ellipticity (Theorem 1.2), ` = 1/2 in the case of a non-semisimple
defect of hyperbolicity (Theorem 1.3) and ` = 1 in the case of a semisimple defect of hy-
perbolicity (Theorem 1.6). The instability is recorded inO(ε|ln ε|)1/(1+`) time forO(1/ε)
initial frequencies. In particular, the higher the degree of degeneracy, the longer we need
to wait in order to record the instability.

• In the case ` > 0, eigenvalues of the principal symbol are initially real (hyperbolicity).
Instability occurs as (typically) a pair of eigenvalues branch from the real axis at t = 0.
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The matrix Q should be understood as a change of basis, which includes a projection
onto the space of bifurcating eigenvalues. The scalar µ corresponds to the real part of the
bifurcating eigenvalues. Assumption 2.1 is formulated for the principal symbol evaluated
along the bicharacteristics of µ.

• In the non-semisimple case, the defect of hyperbolicity is typically not uniform in (x, ξ).
That is, if eigenvalues branch from the real axis at initial time at the distinguished point
(x0, ξ0), then the branching will typically occur for later times t?(x, ξ) > 0 for (x, ξ)
close to (x0, ξ0). This is clearly seen in Lemma 5.1, under the assumptions of Theorem
1.3, and pictured in Figure 3.

• The parameter γ+ corresponds to an upper rate of growth. In the elliptic case, γ+ is
equal to the largest imaginary part in the initial spectrum, as seen in Section 4. In the
case of a smooth defect of hyperbolicity, γ+ = =m∂tλ(0, x, ξ), where λ is a bifurcating
eigenvalue, as seen in Section 6.

• In the case ` = 1/2, the block structure (2.7) derives from a reduction of the principal
symbol to normal form; see Sections 5.1 and 5.2 in the proof of Theorem 1.3.

• In the case ` = 1, the block structure (2.6) reveals a cancellation, seen in (6.4) in the
proof of Theorem 1.6.

• The smoothly varying direction Ee (x) along which the lower bound (2.10) holds is not
necessarily an eigenvector of A?; see the discussion in Section 2.3.3 and Lemma 5.10.

2.3.2. On verification of Assumption 2.1. We give in Theorems 1.2, 1.3 and 1.6 suffi-
cient conditions, expressed in terms of the spectrum of A and the jet of the characteristic
polynomial of A at t = 0, for Assumption 2.1 to hold. These sufficient conditions are
satisfied in particular by Burgers, Van der Waals, and Klein–Gordon–Zakharov systems
(Section 7). These conditions bear only on the coefficients of the system (the differential
operator and the source) and φ(0), the initial datum of the reference solution. In particu-
lar, we may in practice verify these conditions without having any knowledge of φ(t) for
t > 0.

2.3.3. On spectral conditions describing the transition from hyperbolicity to ellipticity.
Conditions (1.8), (1.10)–(1.11) and (1.12) are all expressed in terms of the characteristic
polynomial of A. Their generalizations in the form of conditions (2.10) and (2.11) are
expressed in terms of the symbolic flow of A. Our point here is to explain why conditions
bearing on the spectrum of A do not seem to be appropriate. The discussion below also
highlights three difficulties in the analysis of the case ` = 1/2: the lack of smoothness of
the eigenvalues of the principal symbol, the lack of uniformity of the transition time (in
the sense that the function t? does depend on (x, ξ)), and the lack of smoothness of the
eigenvectors.

A simple way to express the fact that an eigenvalue λ of A branches from the real axis
at t = 0 is

λ(0, x, ξ) ∈ R for all (x, ξ) near (x0, ξ0), with =m∂tλ(0, x0, ξ0) > 0. (2.13)
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But then by reality of the coefficients of A, eigenvalues branch from R in pairs, so that
(0, x0, ξ0) is a branching point in the spectrum, and typically eigenvalues are not dif-
ferentiable at a branching point, so that (2.13) is not general enough. For instance, the
eigenvalues of the principal symbol for the one-dimensional compressible Euler equa-
tions {

∂tu+ ∂xv = 0,
∂tv + ∂xp(u) = 0,

(2.14)

are
λ±(t, x, ξ) = ±ξ(p

′(u(t, x)))1/2.

For a Van der Waals equation of state, for which p′(u) ≤ 0 for some u ∈ R, a transition
from hyperbolicity to ellipticity occurs for data u(0, ·) satisfying

p′(u(0, x0)) = 0, ∂t (p
′(u(0, x0))|t=0 = −p

′′(u(0, x0))∂xv(0, x0) < 0. (2.15)

The associated eigenvalues are O(t1/2), in particular not time-differentiable at t = 0, so
that condition (2.13) is not appropriate.

A way around this difficulty is to consider the integral growth condition∫ t

0
=mλ(τ, x, ξ) dτ = γ (t, x, ξ)t`+1, γ (0, x0, ξ0) > 0, (2.16)

for some ` ≥ 0 and some rate function γ that is continuous in (t, x, ξ) at (0, x0, ξ0), and
some local solution λ of P = 0. Condition (2.16) may be verified by using the Puiseux
expansions of the eigenvalues at t = 0, such as in the Van der Waals example (for details
on Puiseux expansions, see for instance [8, Chapter 2], or [25, Proposition 4.2]). There
are, however, at least two serious problems with (2.16).

The first is that in (2.16), it is assumed that the loss of hyperbolicity occurs at t = 0
over a whole neighborhood of (x0, ξ0), which is typically not the case. Consider in this
connection the preparation condition (2.15) for the datum. From the second condition
in (2.15), we find by application of the implicit function theorem that in the vicinity of
(0, x0) the set {p′(u) = 0} is the graph of a smooth map x 7→ t∗(x). The transition
curve x 7→ t∗(x), defined locally in a neighborhood of x0, parameterizes the loss of
hyperbolicity: for t < t∗(x) we have p′(u) > 0, which implies =mλ± ≡ 0, while for
t > t∗(x) we have p′(u) < 0, which implies =mλ± 6= 0. On the curve t = t∗(x), we
have p′(u) ≡ 0, which implies that the eigenvalues coalesce: λ− = λ+. This means in
particular that for (x, ξ) close to, and different from, (x0, ξ0)we should not expect the loss
of hyperbolicity to be instantaneous as in (2.16), but rather to happen at time t∗(x, ξ), and
condition (2.16) should be replaced by∫ t

t∗(x,ξ)

=mλ(τ, x, ξ) dτ = γ (t, x, ξ)(t − t∗(x, ξ))
`+1, γ (0, x0, ξ0) > 0, (2.17)

for some smooth time transition function t∗ ≥ 0 with t∗(x0, ξ0) = 0.
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The second problem with (2.16), still present in (2.17), is that while failure of time-
differentability of the eigenvalues is accounted for in (2.16), the associated lack of regu-
larity of eigenvectors is not. For instance, in the Van der Waals system (2.14), the eigen-
vectors of the principal symbol are e± := (1,±(p′(u))1/2). In particular, under condition
(2.15), the eigenvectors e± are not time-differentiable at t = 0. It is then unclear how to
convert conditions (2.16) and (2.17) into growth estimates for corresponding system of
partial differential equations. Indeed, for instance in the simpler case of ordinary differ-
ential equations, spectral estimates such as (2.16) or (2.17) are typically converted into
growth estimates for solutions via projections onto spectral subspaces, an operation that
requires smooth projections.

We conclude this discussion by sketching a way around the lack of regularity of eigen-
vectors. Going back to the Van der Waals example, consider the ordinary differential
equations

∂tS + iξ

(
0 1

p′(u) 0

)
S = 0, S(τ ; τ) ≡ Id,

parameterized by (x, ξ). Under condition (2.15), we have

p′(u(t, x)) = −α(x)t +O(t2)

for (t, x) close to (0, x0). Restricting for simplicity to the case p′(u(t, x)) = −t , we find
that the entries (y, z) of a column of S satisfy the system of ordinary differential equations

y′ + iξz = 0, z′ − itξy = 0,

implying that y satisfies the Airy equation

y′′ = tξ2y,

for which sharp lower and upper bounds are known.
This motivates consideration, in Section 2.1, of the symbolic flow associated with the

principal symbolA. An important issue is then the conversion of growth conditions for the
symbolic flow into estimates for solutions to the system of partial differential equations.
This is achieved via Theorem D.3.

2.4. On the proof of Theorem 2.2

We give here an informal account of key points in the proof of Theorem 2.2. The proof
is in three parts: (1) preparation steps which transform the equation into the prepared
equation (3.36)–(3.37), (2) the use of a Duhamel representation formula, (3) lower and
upper bounds.

(1) We introduce a spatial scale h and write perturbation equations about the reference so-
lution φ. We then block diagonalize the principal symbol (this isQ from Assumption 2.1),
localize in space around the distinguished point x0, factor out the real part of the branch-
ing eigenvalues (this is µ from Assumption 2.1) and change to a reference frame defined
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by the bicharacteristics of µ. Finally, we operate a stiff localization in the elliptic domain
D given by Assumption 2.1, and rescale time. The key point in these preparation steps is
to carefully account for the linear errors in the principal symbol, which take the form of
commutators. The resulting principal symbol is a perturbation of the symbolA?(ε, t, x, ξ)
defined in Assumption 2.1.

(2) Assumption 2.1 provides bounds for the flow of A?. As pointed out in Section 2.3,
these bounds bear on solutions to ordinary differential equations in finite dimensions, in
particular they are, at least theoretically, easier to verify than bounds bearing on spectra of
differential operators. We use Theorem D.3, taken from [24] and proved in Appendix D,
to convert these bounds into estimates for a solution to (1.1).

Consider a pseudo-differential Cauchy problem9

∂tu+ opε(A)u = g, u(0) = u0 ∈ L
2, (2.18)

where A is a symbol of order zero. Above, opε(A) denotes the εh-semiclassical quanti-
zation of the symbol A, as defined in (3.1). Associated with the above Cauchy problem
in infinite dimensions, consider the Cauchy problem in finite dimensions

∂tS +AS = 0, S(τ ; τ) = Id.

Theorem D.3 asserts that if S(τ ; t) and its (x, ξ)-derivatives grow in time like exp(γ t1+`),
with rate γ > 0 and degeneracy index ` ≥ 0, then opε(S) furnishes a good approximation
to a solution operator for ∂t + opε(A), in O(|ln ε|)1/(1+`) time. That is, the solution of
(2.18) is given by

u(t) ' opε(S(0; t))u0 +

∫ t

0
opε(S(τ ; t))g(τ ) dτ. (2.19)

(3) The preparation steps (see (1) above) reduce our problem to a system of the
form (2.18). Via representation (2.19), upper and lower bounds for a solution u to (2.18)
are easily derived from the bounds of Assumption 2.1, and from the postulated bound for
the source g. In our proof, the source g includes in particular non-linear errors. Since we
have no way of bounding solutions to (1.1) near φ (the impossibility of controlling the
growth of solutions with respect to the initial data being precisely what we endeavor to
prove), we assume a priori bounds for the solution. The compared growth of opε(S)u0 and
the Duhamel term from (2.19) eventually provide a contradiction. Note that the a priori
bound (see (3.9) in Section 3.5) is particularly weak, since we allow for arbitrarily large
losses of derivatives.

We finally note that Gårding’s inequality (see for instance [11, Theorem 1.1.26]) as-
serts that non-negativity of the symbol A implies semipositivity of the operator opε(A).
This is the classical tool for converting bounds for symbols into estimates for the associ-
ated equations. It is shown in [24] how estimates derived from Gårding’s inequality fail
to be sharp in the non-self-adjoint case, as opposed to bounds based on Theorem D.3.

9 Notation and results pertaining to pseudo-differential calculus are recalled in Appendix B.
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3. Proof of Theorem 2.2

As discussed in Section 2.4, the proof decomposes into three parts:

(1) Preparation steps which transform the original equation (1.1) into the prepared equa-
tion (3.36)–(3.37). This step covers Sections 3.1 to 3.10.

(2) The use of a Duhamel representation formula in which the solution to the prepared
equation is expressed as the sum of the “free” solution (defined as the action of an
approximate solution operator on the datum) and a remainder (Sections 3.11 and
3.12).

(3) Lower bounds for the free solution and upper bounds for the remainder conclude the
proof (Sections 3.13 to 3.15).

3.1. Initial perturbation

The goal is to prove ill-posedness, in the sense of Definition 1.1. Parameters m,α, δ, T
are given, as in (1.6), and we endeavor to disprove (1.7). Define

ϕ0(ε, x) := <e
(
opε(Qε(0)−1)(ei(·)·ξ0/ε

h

θ Ee)(x)
)
, ε > 0, h =

1
1+ `

, ` ≥ 0,

where (x0, ξ0) is the distinguished point in the cotangent space given in Assumption 2.1,
and

• opε(·) denotes a pseudo-differential operator in εh-semiclassical quantization:

opε(a)v := (2π)
−d

∫
Rd
eix·ξa(t, x, εhξ)v̂(ξ) dξ ; (3.1)

• Qε(0) = Q(0, x0 + ε
1−hx, ξ), with Q as in Assumption 2.1;

• the vector Ee is as in Assumption 2.1;
• the spatial cut-off θ ∈ C∞c (Rd) has support included in B(0, δ), and is such that θ ≡ 1

in B(0, 1/2).

Consider the following family of data, indexed by ε > 0:

uε(0, x) = φ(0, x)+ εKϕ0

(
x − x0

ε1−h

)
(3.2)

where φ(0, x) is the datum for the background solution φ as in (1.3), andK will be chosen
large enough so that uε(0) is a small perturbation of φ(0) in Hm norm.

Theorem 2.2 is a consequence of the following result for the family of initial-value
problems (1.1)–(3.2), indexed by ε:

Theorem 3.1. Given the parameters defined in (1.6), given a local solution φ of (1.1)
satisfying (1.3) with s1 large enough, under Assumption 2.1, if K is large enough then
either
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• for any T and δ with 0 < T ≤ T0 and B(x0, δ) ⊂ U there is no ε0 > 0 such that for all
0 < ε < ε0, the initial-value problem for (1.1) with initial datum (3.2) has a solution
in L∞([0, T ],W 1,∞(B(x0, δ)), or
• for some T and δ with 0 < T ≤ T0, B(x0, δ) ⊂ U , some ε0 > 0, all 0 < ε < ε0,

the initial-value problem for (1.1) with initial datum (3.2) has a solution uε in
L∞([0, T ],W 1,∞(B(x0, δ)), and the solution satisfies

sup
0<ε<ε0

0≤t≤εhT (ε)

‖uε(t)− φ(t)‖W 1,∞(B(x0,ε1−hδ))

‖uε(0)− φ(0)‖αHm(U)

= ∞ (3.3)

where T (ε) is defined in (2.3), so that in particular εhT (ε)→ 0 as ε→ 0.

Lemma 3.2. Theorem 3.1 implies Theorem 2.2.

Proof. We have

ϕ0

(
x − x0

ε1−h

)
= <e ei(x−x0)ξ0/εϕ̃

(
x − x0

ε1−h

)
,

where ϕ̃ := opε(Q(0, ·, ξ0 + ·))(θ Ee ), hence∥∥∥∥ϕ0

(
x − x0

ε1−h

)∥∥∥∥
Hm(U)

. ε−m+(1−h)d/2.

Let K > m− (1− h)d/2. Then

‖uε(0, ·)− φ(0, ·)‖Hm(U) . εK−m+(1−h)d/2
ε→0
−−→ 0.

Thus given a neighborhood U of φ(0) in Hm(U), if ε is small enough then uε(0) lies
in U .

If for some ε small enough, the initial-value problem (1.1), (3.2) does not have a
solution, then this means ill-posedness in the sense of Definition 1.1. If there is a solution
for any small ε, then (3.3) disproves (1.7), since the sequence εhT (ε) converges to 0, and
again this means ill-posedness in the sense of Definition 1.1. ut

3.2. The posited solution and its avatars

We assume that for some 0 < T ≤ T0, some δ > 0 with B(x0, δ) ⊂ U , some ε0 > 0,
and all 0 < ε < ε0, the Cauchy problem for (1.1) with initial datum (3.2) has a unique
solution

uε ∈ L∞([0, T ],W 1,∞(B(x0, δ))).

Our goal is then to prove (3.3). For future reference, we list here the successive avatars of
the solution that we will use in this proof:

u̇ perturbation u̇ := (uε − φ)(t, x0 + ε
1−hx) (3.6)

u[ spatial localization and projection u[ := opε(Qε)(θu̇) (3.14)
u? convection u? := M

?(0; t)u[ (3.27)
v stiff truncation and rescaling in time v := (opε(χ)u?)(ε

ht) (3.32)
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3.3. Amplitude of the perturbation, limiting observation time and observation radius

The parameter K measures the size of the initial perturbation (3.2). We choose K to be
large enough:

(2α − 1)K > 2αm+ (1− α)(1− h)d, (3.4)

where m measures the loss of Sobolev regularity and α the loss of Hölder continuity of
the flow (as seen in the target estimate (3.3)), and h = 1/(1+ `).

The parameter T?, defined in (2.3), measures the final observation time in the rescaled
time frame. In the original time frame, the final observation time is (εT?|ln ε|)1/(1+`). We
choose T? to be large enough:

γ−(0, ξ0)T? > K, (3.5)

depending on K and the lower rate of growth γ− introduced in (2.9).
The parameter δ measures the radius of the observation ballB(0, δ)where the analysis

takes place. (The radius is ε1−hδ in the original spatial frame, and just δ in the rescaled
spatial frame associated with u̇; see Section 3.2 above and (3.6).) If Theorem 3.1 holds for
a given value of δ, then it holds for any smaller radius. In particular, we may assume that
the given value of δ is so small that the bounds of Assumption 2.1 hold on |x| + |ξ − ξ0|

≤ δ. In the final steps of our analysis (Sections 3.14 and 3.15), we will further choose δ
to be small enough, depending on the growth functions γ± introduced in Assumption 2.1
and T? (see condition (3.64) and the proof of Corollary 3.21).

3.4. The perturbation equations

Our analysis is local in t, x, ξ , with 0 ≤ t ≤ εhT (ε), |x − x0| ≤ ε
1−hδ and |ξ − ξ0| ≤ δ,

where T (ε) is defined in (2.3), and T? and δ are defined in Section 3.3.
The perturbation variable u̇ is defined in a rescaled spatial frame by

u̇(ε, t, x) := (uε − φ)(t, x0 + ε
1−hx) with h = 1/(1+ `). (3.6)

The equation for u̇ is

∂t u̇+ ε
−1A(t, x0 + ε

1−hx, εh∂x)u̇+ Ḃ(ε, t, x)u̇ = Ḟ , (3.7)

where A is the 1-homogeneous principal symbol (1.4) and Ḃ is of order zero:

Ḃ(ε, t, x)u̇ :=
∑
j

(
∂uAj (t, x0 + ε

1−hx, φε) u̇
)
∂xjφε − ∂uF(t, x0 + ε

1−hx, φε)u̇

with φε := φ(t, x0 + ε
1−hx). In (3.7), the source Ḟ contains non-linear terms:

Ḟ = G0(ε, t, x, u̇) · (u̇, u̇)+

d∑
j=1

G1j (ε, t, x, u̇) · (u̇, ∂xj u̇), (3.8)
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where (u, v) 7→ G0(ε, t, x, u̇) · (u, v) and (u, v) 7→ G1j (ε, t, x, u̇) · (u, v) are bilinear,
defined as

G0(ε, t, x, u̇) := −

∫ 1

0
(1− τ)

( d∑
j=1

∂2
uAj (φε + τ u̇)∂xjφε − ∂

2
uF(φε + τ u̇)

)
dτ,

G1j (ε, t, x, u̇) := −

∫ 1

0
∂uAj (φε + τ u̇) dτ.

Above we have omitted the arguments (t, x0 + ε
1−hx) of ∂kuAj and ∂2

uF . In this proof,
a perturbative analysis around φ at (x0, ξ0), we will treat Ḟ as a small source, and Ḃ as
a small perturbation of the principal symbol.

3.5. A priori bound

The goal is to prove the instability estimate (3.3). We work by contradiction, as we assume
that there exists C > 0 such that for all t ∈ [0, εhT (ε)],

‖uε(t)− φ(t)‖W 1,∞(B(x0,ε1−hδ)) ≤ C‖u
ε(0)− φ(0)‖αHm(U),

uniformly in (ε, t), for 0 ≤ t ≤ εhT (ε) = (εT?|ln ε|)1/(1+`). By choice of the initial
datum (3.2), this implies (see the proof of Lemma 3.2)

‖uε(t)− φ(t)‖W 1,∞(B(x0,ε1−hδ)) ≤ Cε
α(K−m+(1−h)d/2), (3.9)

with a possibly different constant C > 0, for all t ≤ εhT (ε). By definition of u̇, this
yields

‖u̇(t)‖W 1,∞(B(0,δ)) ≤ Cε
K ′ for t ≤ εhT (ε), (3.10)

with
K ′ := α(K −m)− (1− α)(1− h)d/2. (3.11)

By condition (3.4), K ′ > K/2.

3.6. Uniform remainders

The linear propagator in (3.7) will undergo many transformations in this proof, through
linear changes of variables corresponding to projections, localizations, conjugations, and
so on. Every change of variable produces error terms. We will henceforth denote by Rk ,
for k ∈ Z, any bounded family Rk(ε, t) in Sk , in the sense that

sup
0<ε<ε0

0≤t≤εhT (ε)

‖Rk(ε, t)‖k,r <∞ (3.12)

for r large enough, with ‖·‖k,r for symbols introduced in (B.2) of Appendix B. For k = 0,
we say that a symbol belongs to R0 if either (3.12) holds with k = 0 or

sup
0<ε<ε0

0≤t≤εhT (ε)

∑
|α|≤d+1

sup
ξ∈Rd
|∂αx R0(ε, t)|L1(Rdx ) <∞. (3.13)
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By Proposition B.1, the corresponding operators opε(Rk) are bounded H k
→ L2:

‖Rkw‖L2 . ‖w‖ε,k, ‖w‖ε,s := ‖(1+ |εhξ |2)s/2ŵ(ξ)‖L2(Rdξ )
,

uniformly in 0 < ε < ε0 and 0 ≤ t ≤ εhT (ε). The notation . was introduced in (2.12).

3.7. Spatial localization and projection

The matrix-valued symbol Q(x, ξ), introduced in Assumption 2.1, is smooth, locally
defined and invertible around (x0, ξ0). As explained in Appendix C, we may extend Q
smoothly to a globally defined symbol of order zero, which is globally invertible, with
Q−1
∈ S0. In the following, we identify Q with its extension and let

u[(t, x) := opε(Qε)(θu̇), (3.14)

corresponding to a spatial localization followed by a micro-local change of basis. In
(3.14), the function θ = θ(x) is the spatial truncation introduced in Section 3.1, and
we set

Qε(t, x, ξ) := Q(t, x0 + ε
1−hx, ξ). (3.15)

Here opε(·) denotes a pseudo-differential operator in εh-semiclassical quantization, as
in (3.1). Classical results on pseudo-differential calculus are gathered in Appendix B. In
particular, opε(Qε) maps L2 to L2, uniformly in ε, so that

‖u[‖L2 . ‖θu̇‖L2 . ‖u̇‖L2(B(0,δ)). (3.16)

We now deduce from equation (3.7) for u̇ an equation for u[, via the change of un-
known (3.14). Here we note that the leading, first-order term in (3.7) is

A(t, x0 + ε
1−hx, εh∂x) = opε(iAε), Aε := A(t, x0 + ε

1−hx, ξ).

Thus the equation for u[ is

∂tu
[
+ ε−1 opε(Qε) opε(iAε)(θu̇)+ opε(Qε)(θḂu̇)− opε((∂tQ)ε)(θu̇)

= opε(Qε)(θḞ )−

d∑
j=1

opε(Qε)(Aj (φε)u̇∂xj θ).

At this point the goal is to express the terms in θu̇ above in the form of terms in u[,
modulo small errors—that is, to approximately invert (3.14). This is done as follows.

By composition of pseudo-differential operators with slow x-dependence (Proposi-
tion B.3),

Id = opε(Q
−1
ε ) opε(Qε)+ ε opε(R−1), (3.17)

where R−1 is a uniform remainder in the sense of Section 3.6. With (3.17) we may thus
express θu̇ in terms of u[:

θu̇ = opε(Q
−1
ε )u[ + ε opε(R−1)(θu̇). (3.18)



The onset of instability in first-order systems 1327

Using inductively (3.17) and composition of pseudo-differential operators (Proposi-
tion B.2), we obtain

θu̇ = opε(R0)u
[
+ εn opε(R0)(θu̇) (3.19)

for n as large as allowed by the regularity of φ.
By (3.18), the first-order term in the above equation for u[ is

opε(Qε) opε(iAε)(θu̇) = opε(Qε) opε(iAε) opε(Q
−1
ε )u[

+ ε opε(Qε) opε(iAε) opε(R−1)(θu̇),

implying, by Proposition B.3,

opε(Qε) opε(iAε)(θu̇) = opε(iQεAεQ
−1
ε )u[ + ε opε(R0)(θu̇).

Moreover, by (3.19), we may write

εh
(
opε(Qε)

(
θḂu̇)− opε((∂tQ)ε)(θu̇)) = ε

h opε(B
[)u[ + εn opε(R0)(θu̇),

where B[ ∈ R0. From the above, the equation for u[ becomes

∂tu
[
+ ε−1 opε(iQεAεQ

−1
ε )u[ + opε(B

[)u[ = F [, (3.20)

where

B[ ∈ R0, F [ := opε(Qε)(θḞ )−

d∑
j=1

opε(Qε)(Aj (φε)u̇∂xj θ)+ ε
n opε(R0)(θu̇).

(3.21)

3.8. Advected coordinates

Let M be the flow of opε(iµε) (or rather, as argued at the beginning of Section 3.7, of
opε(µ̃ε), where µ̃ is a globally defined symbol extending µ) in the sense that

∂tM = opε(iµε)M, M(τ ; τ) ≡ Id,

where the symbol µ is introduced in Assumption 2.1, and µε is defined from µ by rescal-
ing space as in (3.15). Let M? be the associated backward flow, defined by

∂τM
?
= −M? opε(iµε), M?(τ ; τ) ≡ Id.

By hyperbolicity (reality and regularity of µ, and Proposition B.1), both M and M?

map L2 to L2, uniformly in ε, t , for t ≤ εhT (ε). Egorov’s lemma (see for instance [11,
Theorem 4.7.8] or [21, Theorem 8.1]) states that

M?M = Id+ ε opε(R−1), MM?
= Id+ ε opε(R−1), (3.22)

where we recall that R−1 is a generic notation for bounded symbols of order −1 (see
Section 3.6); in other words, the equalities in (3.22) really mean that both M?M − Id and
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MM?
− Id belong to the class of operators of the form ε opε(R−1). By Egorov’s lemma,

given a ∈ Sm, we also have

M? opε(aε)M = opε(aε?)+ ε opε(Rm−1), (3.23)

where aε? denotes the symbol aε evaluated along the bicharacteristic flow, in the following
sense: for any symbol10 b we denote

b?(t, x, ξ) := b(t, x?(t, x, ξ), ξ?(t, x, ξ)), (3.24)

where (x?, ξ?) is the bicharacteristic flow of µε. What is more, the remainder Rm−1 above
has an expansion

opε(Rm−1) = opε(a?1)+ · · · + ε
n opε(a?n)+ ε

n+1 opε(Rm−n−1), (3.25)

for n as large as allowed by the regularity of µ, a and φ, where a?i ∈ Sm−i has sup-
port included in the support of a?. Identities (3.23) and (3.25) also hold if M and M?

are interchanged, with backward bicharacteristics replacing forward bicharacteristics. By
(3.22),

M? opε(R0) = M
? opε(R0)(MM

?
+ ε opε(R−1)),

implying, by (3.23),

M? opε(R0) = opε(R0?)M
?
+ ε

(
M? opε(R−1)+ opε(R−1)M

?
)
,

and reasoning inductively we arrive at

M? opε(R0) = opε(R0)M
?
+ εn opε(R0), (3.26)

where n is as large as allowed by the regularity of φ. The advected variable is defined as

u? := M
?(0; t)u[. (3.27)

Then
∂tu? = M

?(∂t − opε(iµε))u
[,

and ∂tu[ is given by equation (3.20) for u[. Using (3.22), we find

M? opε
(
iQε(Aε − µε)Q

−1
ε

)
u[ = opε

(
(iQε(Aε − µε)Q

−1
ε )?

)
u?

+ ε opε(R0)u? − εM
? opε(QεAεQ

−1
ε ) opε(R−1)u

[,

with notation (3.24). Thus, by (3.26),

M? opε
(
iQε(Aε − µε)Q

−1
ε

)
u[ = opε

(
(iQε(Aε − µε)Q

−1
ε )?

)
u?

+ ε opε(R0)u? + ε
n opε(R0)u

[.

10 Except for A, as seen in the definition of A? in (2.4).
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Moreover, in view of (3.26), the order-zero term B[ in (3.20) contributes to the equation
for u? the terms

M?(0; t) opε(B
[)u[ = opε(B?)u? + ε

n opε(R0)u
[, B? ∈ R0.

The equation in u? thus becomes

∂tu? + ε
−1 opε

(
(iQε(Aε − µε)Q

−1
ε )?

)
u? + opε(B?)u? = F?, (3.28)

where
B? ∈ R0, F? := M

?F [ + εn opε(R0)u
[. (3.29)

The symbol (Qε(Aε −µε)Q
−1
ε )? equalsQε(Aε −µε)Q

−1
ε evaluated along the bicharac-

teristics of µε, as defined in (3.24).

3.9. Frequency, space, and time truncation functions

We introduce frequency cut-offs χ [0, χ̃0, χ0, spatial cut-offs θ [0, θ̃0, θ0, and temporal cut-
offs ψ[0, ψ̃0, ψ0. All are smooth and take values in [0, 1]. Given two cut-offs ψ1 and ψ2,

ψ1 ≺ ψ2 means (1− ψ2)ψ1 ≡ 0. (3.30)

Equivalently, ψ1 ≺ ψ2 when ψ2 ≡ 1 on the support of ψ1.

The frequency cut-offs χ [0, χ̃0, χ0 are all assumed to be supported in the ball {|ξ | ≤ δ}.
All three are identically 1 on a neighborhood of ξ = 0. Furthermore, χ [0 ≺ χ̃0 ≺ χ0.

The spatial cut-offs θ [0, θ̃0, θ0 are all assumed to be supported in {|x| ≤ δ}. All three
are identically 1 on a neighborhood of x = 0. Moreover, θ [0 ≺ θ̃0 ≺ θ0. We assume in
addition θ0 ≺ θ , where θ is the spatial cut-off of Section 3.7.

The temporal cut-offs ψ[0, ψ̃0, ψ0 are non-decreasing, supported in {t ≥ −δ}, and
identically 1 in a neighborhood of {t ≥ 0}. In particular, ψ̃0 ≡ 1 on {t ≥ −δ/3}. We have
ψ
[
0 ≺ ψ̃0 ≺ ψ0. The truncation ψ̃0 is pictured in Figure 6.

ψ̃0

0

1

−δ −δ/3

Fig. 6. The truncation function ψ̃0.

Associated with these cut-offs, define

χ(ε, t, x, ξ) := χ0

(
ξ − ξ0

εζ

)
θ0(x)ψ0(t − t?(ε, x, ξ)), (3.31)
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and define similarly χ [ and χ̃ in terms of χ [0, θ
[
0, ψ

[
0 and χ̃0, θ̃0, ψ̃0 respectively. In (3.31),

the transition function t? is defined in (2.1), which we reproduce here:

t?(ε, x, ξ) = ε
−hθ?(ε

1−hx, ξ) with θ? ≥ 0, θ?(0, ξ0) = 0, ∇x,ξ θ?(0, ξ0) = 0.

Recall that the value of ζ is fixed in Assumption 2.1, depending on `: ζ = 0 if ` = 0 or
` = 1, and ζ = 1/3 if ` = 1/2.

Lemma 3.3. The support of χ is a neighborhood of the elliptic domain D defined in
(2.2), and

|∂αx ∂
β
ξ χ | . ε−|β|ζ ,

where ζ is introduced in Section 2.1.1, in particular, ζ < h. The same holds of course for
the other truncations χ [ and χ̃ , which satisfy χ [ ≺ χ̃ ≺ χ .

Proof. For (t, x, ξ) to belong to the support of χ , we need to have simultaneously |ξ−ξ0|

≤ εζ , |x| ≤ δ, and t?(ε, x, ξ)− δ ≤ t . This defines a neighborhood of D (precisely, of the
projection of D onto the (t, x, ξ) domain).

We may now assume that t? is not identically zero, otherwise χ is not stiff. Then (see
Section 2.1.1) ` = 1/2, h = 2/3, ζ = 1/3. By the Faà di Bruno formula

∂
β
ξ {ψ0(t − t?(ε, x, ξ))} =

∑
1≤k≤|β|

β1+···+βk=β

C(βk)ψ
(k)
0 (t − t?)

k∏
j=1

(ε−h∂
βj
ξ θ?),

where C(βk) are positive constants. We note that ∂αξ θ?(ε, x, ξ) = O(ε
ζ ) if |α| = 1 and ξ

belongs to the support of χ0, by assumption on θ?, while ∂αξ θ? = O(1) if |α| ≥ 2.
Consider the case of a decomposition of β into a sum of βj ’s of length one. By the

above formula and the bound on ∇ξ θ?, the corresponding bound is ε−|β|(h−ζ ).
If β is decomposed into β1 + · · · + βk with |β1| = 2 and |βj | = 1 for j ≥ 2,

then k = |β| − 1. The corresponding bound is ε−h+(|β|−2)(h−ζ )
≤ ε−|β|(h−ζ ) as soon as

ζ ≤ h/2, which holds true. It is now easy to verify that the decomposition of |β| into
sums of multi-indices of length one corresponds to the worst possible loss in powers of ε.

We turn to x-derivatives of ψ0(t− t?). By assumption, θ? is a function of ε2(1−h)(x, x)

and ε1−h(x, ξ). Thus x-derivatives bring in either powers of ε−h+2(1−h)
= 1, since

h = 2/3, or powers of ε−h+1−h+ζ
= 1, since ζ = h/2 = 1/3.

Thus |∂αx ∂
β
ξ ψ0(t− t?)| . ε−|β|(h−ζ ) if ` = 1/2. Considering finally the full truncation

function χ , we observe that the term in χ0 contributes the exact same loss per ξ -derivative,
and the spatial truncation θ0 gives no loss. ut

Corollary 3.4. The operator opε(χ) maps L2(Rd) to L2(Rd), uniformly in ε, and so do
opε(χ

[) and opε(χ̃).

Proof. Since χ is compactly supported in x, we may use pointwise bounds for ∂αx χ and
the bound (B.5) of Proposition B.1. The result then follows from Lemma 3.3. ut
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3.10. Localization in the elliptic zone and rescaling in time

We define
v := opε(χ̃(t))(u?(ε

ht)), (3.32)

meaning that we first rescale time in u? and then apply opε(χ̃) evaluated at t , where χ̃
is defined just below (3.31). We now derive an equation for v, based on equation (3.28)
for u?.

Consider first the leading, first-order term in (3.28). When evaluated at εht , its symbol
is precisely (for A? see (2.4)) the rescaled and advected symbol for which Assumption
2.1 holds: (

(iQε(Aε − µε)Q
−1
ε )?

)
(εht) = A?(ε, t, x, ξ).

Thus

opε(χ̃)
(

opε
(
(iQε(Aε − µε)Q

−1
ε )?

)
u?

)
(εht) = opε(χ̃) opε(iA?)(u?(ε

ht)).

Similarly, denoting B := B?(ε
ht), where B? is the order-zero correction to the leading

symbol which appears in (3.28),

opε(χ̃)(opε(B?)u?)(ε
ht) = opε(χ̃) opε(B)(u?(ε

ht)).

We now introduce a commutator:

opε(χ̃) opε(iA? + εB)(u?(ε
ht)) = opε(iA? + εB)v + 0̃(u?(ε

ht)),

where
0̃ := [opε(χ̃), opε(iA? + εB)]. (3.33)

By definition of v,

∂tv = opε(∂t χ̃)(u?(ε
ht))+ εh opε(χ̃)((∂tu?)(ε

ht)).

Together with (3.28), this implies

∂tv + ε
h−1 opε(iA? + εB)v = opε(∂t χ̃)(u?(ε

ht))− εh−10̃(u?(ε
ht))+ εh opε(χ̃)F?.

We will handle the right-hand side as a remainder. The following lemma shows that we
may introduce a truncation function in the above principal symbol.

Lemma 3.5. For any bounded family P(ε, t) ∈ S1, for χ defined in (3.31) and v defined
in (3.32),

opε(P )v = opε(χP )v + [opε(P ), opε(χ)]v + ε
n(opε(R0)u?)(ε

ht), (3.34)

where R0 is a uniform remainder in the sense of Section 3.6.
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Proof. By definition of χ̃ and χ , and Proposition B.2, for any n′ ∈ N∗,

opε(χ̃) = opε(χχ̃) = opε(χ) opε(χ̃)+ ε
n′h opε(Rn′(χ, χ̃)),

and the remainder satisfies

‖opε(Rn′(χ, χ̃))‖L2→‖·‖ε,−n′
. ‖∂n

′

ξ χ‖0,C(d)‖∂
n′

x χ̃‖0,C(d).

We use here the norms ‖ · ‖m,r for pseudo-differential symbols of order m, as defined in
(B.2). By Lemma 3.3,

‖∂n
′

ξ χ‖0,C(d) . ε−(n
′
+C(d))ζ and ‖∂n

′

x χ̃‖0,C(d) ≤ ε
−C(d)ζ .

Since ζ < h, we have εn
′h−(n′+2C(d))(h−ζ )

≤ εn for any n, if n′ is chosen large enough.
Thus

opε(χ̃) = opε(χ) opε(χ̃)+ ε
n opε(R0), (3.35)

where R0 is bounded for t ≤ T (ε). This implies

opε(P )v = opε(P ) opε(χ̃)u?(ε
ht) = opε(P ) opε(χ)v + ε

n opε(R0)(u?(ε
ht)).

Now

opε(P ) opε(χ) = opε(χP )+ [opε(P ), opε(χ)],

and (3.34) is proved, with a symbol R0 which is a uniform remainder in the sense of
Section 3.6, meaning that we rescale in time the remainder which appears in (3.35). ut

Applying Lemma 3.5 to P = iA?+ εB, we derive the final form of the equation satisfied
by v:

∂tv + ε
h−1 opε(χ(iA? + εB))v = ε

hg, (3.36)

where the source term g is defined in terms of the remainder F? from (3.28)–(3.29):

g = ε−1(0v − 0̃(u?(ε
ht)))+ ε−h opε(∂t χ̃)(u?(ε

ht))+ opε(χ̃)(F?(ε
ht))

+ εn(opε(R0)u?)(ε
ht), (3.37)

with 0 defined just like 0̃ in (3.33), but with χ in place of χ̃ .
The derivation of (3.36)–(3.37) ends the first step of the proof of Theorem 2.2. Our

goal now is to estimate the growth in time of the solution to (3.36) over the interval
[0, T (ε)], where T (ε) = (T?|ln ε|)1/(1+`). For this, we will first derive an integral repre-
sentation formula for v.
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3.11. An integral representation formula

At this point we use the theory developed in Appendix D. Theorem D.3 gives an integral
representation formula for the solution v to (3.36) issued from v(0):

v = opε(6(0; t)))v(0)+ε
h

∫ t

0
opε(6(τ ; t))(Id+ε opε(R0))

(
g(τ)+ε opε(R0)v(0)

)
dτ,

(3.38)

where R0 are uniform remainders, as defined in Section 3.6, and the approximate solution
operator opε(6(s; t)) is defined by

6 =

q0∑
q=0

εhqSq , (3.39)

where q0 is large enough.11 In (3.39), the leading term S0 is defined for 0 ≤ τ ≤ t ≤ T (ε)
and all (x, ξ) ∈ Rd × Rd by

∂tS0 + ε
h−1χ(iA? + εB)(t, x, ξ)S0 = 0, S0(τ ; τ) = Id, (3.40)

and the Sq for q ≥ 1 are correctors, defined inductively as the solutions of

∂tSq + ε
h−1χ(iA? + εB)(t, x, ξ)Sq + ε

h−1
∑

q1+q2=q
q1>0

(χ(iA? + εB)) ]q1 Sq2 ,

Sq(τ ; τ) ≡ 0,

(3.41)

with σ1 ]n σ2 := (−i)
n(n!)−1∑

|α|=n ∂
α
ξ σ1∂

α
x σ2. From (3.40) and (3.41) we deduce the

representation, for q ≥ 1,

Sq(τ ; t) = −ε
h−1

∫ t

τ

S0(τ
′
; t)

∑
q1+q2=q
q1>0

(χ(iA?+εB))(τ
′, x, ξ)]q1Sq2(τ ; τ

′) dτ ′. (3.42)

In order to be able to exploit the representation (3.38), we need to check that Assumption
D.1, under which Theorem D.3 holds, is satisfied. This is the object of the forthcoming
section.

3.12. Bound on the solution operator

Recall that S, the symbolic flow of iεh−1A?, is defined in (2.8), and is assumed to satisfy
the bounds of Assumption 2.1. The upper bound (2.11) in Assumption 2.1 is assumed to
hold for S in the domain D defined in (2.2):

D := {(τ ; t, x, ξ) : t?(x, ξ) ≤ τ ≤ t ≤ T (ε), |x| ≤ δ, |ξ − ξ0| ≤ δε
ζ
},

where the transition time t? is defined in (2.1) and the final observation time T (ε) is
defined in (2.3).

11 Depending on ζ , the final observation time T? (see (2.3)), and the growth function γ—see
Appendix D and in particular the proof of Lemma D.2.



1334 Nicolas Lerner et al.

The goal in this section is to show that the symbolic flow S0, which is defined as
the solution of (3.40), and the correctors Sq defined as the solutions to (3.41), satisfy the
bounds of Assumption D.1. This will allow us to use the representation Theorem D.3,
and will justify representation (3.38). This will also give a bound for the norm of the
approximate solution operator opε(6) defined in (3.39).

We are looking for bounds for the correctors Sq and their derivatives. Consider the
representation (3.42). Disregarding (x, ξ)-derivatives, we see in (3.42) that Sq appears as
a time integral of a product S0(χ(iA? + εB))Sq2 with q2 < q. We may recursively use
(3.42) at rank q2, and by induction Sq(τ ; t) appears as a time integral of the form

εq(h−1)
∫
τ≤τ1≤···≤τq≤t

S0(τ1; t)(χ(iA? + εB))(τ1)S0(τ2; τ1)(χ(iA? + εB))(τ2) · · ·

· · · S0(τn; τn−1)(χ(iA? + εB))(τn)S0(τ ; τn) dτ1 . . . dτn, (3.43)

in which there are q occurrences of iA? + εB and q + 1 occurrences of S0. Note again
that in (3.43) we ignore (x, ξ)-derivatives. From this, it can be seen that we need to

• derive bounds on S0 and its (x, ξ)-derivatives; these will be deduced from the bounds
of S postulated in Assumption 2.1;
• derive bounds for products of S0 with χ(iA?+εB); here the block structure assumption

(2.6)–(2.7) from Assumption 2.1 will come in.

3.12.1. Product bounds for S. In a first step, we prove bounds for products of symbols
involving the symbolic flow S of (2.8) and the rescaled and advected principal symbol A?
of (2.4). For α, β ∈ N2d and 0 ≤ τ ≤ t we denote

Sα,β(τ ; t) := ε
h−1S(τ ; t)∂αx ∂

β
ξ A?(τ ),

and for (αi, βi) ∈ N2d and 0 ≤ τ ≤ τn ≤ τn−1 ≤ τ1 ≤ t we consider the products

Sn(τ, τ1, . . . , τn; t) := Sα1,β1(τ1; t)Sα2,β2(τ2; τ1) · · · Sαn,βn(τn; τn−1)S(τ ; τn). (3.44)

Lemma 3.6. Under Assumption 2.1,

|Sn(τ, τ1, . . . , τn; t, x, ξ)| .

(
1 ε−ζ

εζ 1

)
eγ+(τ ; t, x, ξ)

for all n ≥ 1 and all αi, βi ∈ N2d , all 0 ≤ τ ≤ τn ≤ · · · ≤ τ1 ≤ t with (τ ; t, x, ξ) ∈ D,
uniformly in ε. By . we mean here entrywise inequalities modulo constants, for each
block of Sn, as described below (2.12).

Proof. If all blocks of A? satisfy (2.6), then ζ = 0, and the stated bound simply follows
from the multiplicative nature of the growth function, namely the identity

eγ+(τ1; t)eγ+(τ ; τ1) = eγ+(τ ; t). (3.45)
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Suppose then that a block A?j satisfies (2.7), and consider the associated component S(j)
of the symbolic flow (2.8). Bound (2.11) from Assumption 2.1 and the cancellation ob-
served in the product(

1 εh−1

ε1−h 1

)(
1 εh−1

ε1−h 1

)
= 2

(
1 εh−1

ε1−h 1

)
(3.46)

imply, after omitting the index j ,

|S(τ1; t)∂
α
x ∂ξA?(τ1)S(τ ; τ1)| .

(
1 εh−1

ε1−h 1

)
eγ+(τ ; t). (3.47)

The result follows from (3.45)–(3.47) by a straightforward induction. ut

3.12.2. Product bounds for ∂αx S. Next we show that spatial derivatives of S and products
involving ∂αx S satisfy the upper bound (2.11) from Assumption 2.1. For α, β, β ′ ∈ Nd
and 0 ≤ τ ≤ t we denote

S̃α,β(τ ; t) := ε
h−1∂αx S(τ ; t)∂

β
x ∂

β ′

ξ A?(τ ),

and for αi ∈ Nd , βi ∈ N2d and 0 ≤ τ ≤ τn ≤ τn−1 ≤ τ1 ≤ t we set

S̃n(τ, τ1, . . . , τn; t) := S̃α1,β1(τ1; t)S̃α2,β2(τ2; τ1) · · · S̃αn,βn(τn; τn−1)∂
α
x S(τ ; τn).

Lemma 3.7. Under Assumption 2.1,

|∂αx S| + |S̃n| .
(

1 ε−ζ

εζ 1

)
eγ+

for each block of the block diagonal matrices S and Sn. The precise meaning of . is
described below (2.12).

Above, and often below, the time- and space-frequency arguments are omitted. In particu-
lar, the “interior” temporal arguments of S̃n, namely τn, . . . , τ1, are omitted. It is implicit
that the τi are constrained only by τ ≤ τn ≤ τn−1 ≤ · · · ≤ τ1 ≤ t , and that the αi, βi and
n ≥ 1 are arbitrary.

Proof of Lemma 3.7. We first prove by induction on |α| that ∂αx S enjoys the representa-
tion

∂αx S =
∑
n≤|α|

∫
Sn, (3.48)

where Sn is defined in (3.44). By (3.48), we mean precisely

∂αx S(τ ; t) =
∑

1≤n≤|α|

Cn

∫
τ≤τ1≤···≤τn≤t

Sn(τ, τ1, . . . , τn; t) dτ1 . . . dτn, (3.49)

with the constants Cn independent of (ε, t, x, ξ). In the following, whenever products,
such as Sn, are integrated in time, the integration variables are the “interior” variables,
as described just above this proof. In order to prove (3.48) for |α| = 1, we apply ∂αx to
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equation (2.8) for S:

∂t∂
α
x S + iε

h−1A?∂
α
x S = −iε

h−1(∂αxA?)S.

This implies the representation

∂αx S(τ ; t) = −iε
h−1

∫ t

τ

S(τ ′; t)∂αxA?(τ
′)S(τ ; τ ′) dτ ′, |α| = 1,

which takes the form (3.48). For greater values of |α|, we have similarly

∂αx S = −iε
h−1

∑
α1+α2=α
|α1|>0

∫ t

τ

S∂α1
x A?∂

α2
x S,

and the induction step is straightforward. From (3.48) the bound on ∂αx S follows by the
bound on Sn in Lemma 3.6 and the multiplicative nature of eγ+ . Time integrals only
contribute powers of |ln ε|, which are invisible in . estimates. Finally, from (3.48) we
deduce (using the same notational convention as in (3.48))

S̃n =
∑

n′≤|α1|+···+|αn|+n+|α|

∫
Sn′ , (3.50)

and Lemma 3.6 applies again. ut

3.12.3. Bounds for the symbolic flow S0. Here we bound S0, the solution to (3.40). While
S is the flow of iεh−1A?, the symbol S0 is the flow of εh−1χ(iA? + εB), where χ is a
stiff truncation and B is a bounded symbol of order zero. We prove here that the upper
bound (2.11) in Assumption 2.1 is stable under the perturbations induced by χ and B, in
the sense that S0 and its spatial derivatives satisfy the same upper bound as S.

In a first step, we consider the solution Sχ to

∂tSχ + ε
h−1χA?Sχ = 0, Sχ (τ ; τ) ≡ Id. (3.51)

Associated with Sχ , we define products Sχ,n involving ∂αx Sχ just like S̃n was defined as
a product involving ∂αx S, but with χA? in place of A?; explicitly,

Sχ,α,β(τ ; t) := ε
h−1∂α1

x Sχ (τ ; t)∂
α2
x ∂

β
ξ (χA?(τ )), α = (α1, α2) ∈ N2d , β ∈ Nd ,

and for αi ∈ N2d , βi ∈ Nd and 0 ≤ τ ≤ τn ≤ τn−1 ≤ τ1 ≤ t ,

Sχ,n(τ, τ1, . . . , τn; t)

:= Sχ,α1,β1(τ1; t)Sχ,α2,β2(τ2; τ1) · · · Sχ,αn,βn(τn; τn−1)∂
α
x Sχ (τ ; τn).

Corollary 3.8. The solution Sχ to (3.51) enjoys the bounds

|∂αx Sχ (τ ; t, x, ξ)| .

(
1 ε−ζ

εζ 1

)
eγ+(τ ; t, x, ξ), (3.52)

|Sχ,n| . ε−|β|ζ
(

1 ε−ζ

εζ 1

)
eγ+(τ ; t, x, ξ), (3.53)

for any 0 ≤ τ ≤ t ≤ T (ε) and any (x, ξ).
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Just like the bounds of Lemma 3.7, the bounds of Lemma 3.8 are understood entrywise,
for each block of the block diagonal matrices Sχ and Sχ,n.

While the bound of Assumption 2.1 was stated over D, the bound of Corollary 3.9
holds for any (x, ξ) and 0 ≤ τ ≤ t ≤ T (ε), with T (ε) defined in (2.3). This comes from
the truncation χ in (3.51).
Proof of Corollary 3.8. There are five cases:

• If τ ≤ t ≤ t? − δ, then χ ≡ 0 on [τ, t] (see the definition of χ in (3.31)), implying
Sχ = Id.

• If τ ≤ t? − δ ≤ t , then by the properties of the flow and the previous case,

Sχ (τ ; t) = Sχ (τ ; t?)Sχ (t?; t) = Sχ (t?; t),

and we are reduced to the case t? ≤ τ ≤ t ≤ T (ε).

• If t? ≤ τ ≤ t ≤ T (ε), then χ ≡ 1 on [τ ; t], and Sχ = S by uniqueness.

• If t? − δ ≤ τ ≤ t ≤ t?, comparing equation (2.8) for S with equation (3.51) for Sχ we
find the representation

Sχ (τ ; t) = S(τ ; t)− ε
h−1

∫ t

τ

S(τ ′; t)(1− χ)(τ ′)A?(τ ′)Sχ (τ ; τ ′) dτ ′,

and applying ∂αx to both sides gives

∂αx Sχ (τ ; t)

= ∂αx S(τ ; t)− ε
h−1

∑∫ t

τ

∂α1
x S(τ

′
; t)∂α2

x

(
(1− χ)(τ ′)A?(τ ′)

)
∂α3
x Sχ (τ ; τ

′) dτ ′,

(3.54)

where the sum is over all α1+α2+α3 = α. Since we are only interested in upper bounds,
we have omitted multinomial constants Cαi > 0 in (3.54). We factor out the expected
growth by letting S[χ := e−1

γ+
Sχ , S[ := e−1

γ+
S. Then, by the property (3.45) of the growth

function, ∂αx S
[
χ solves, with the summation sign omitted,

∂αx S
[
χ (τ ; t) = ∂

α
x S

[(τ ; t)−εh−1
∫ t

τ

∂α1
x S

[(τ ′; t)∂α2
x

(
(1−χ)(τ ′)A?(τ ′)

)
∂α3
x S

[
χ (τ ; τ

′) dτ ′.

(3.55)
Now given a matrix M =

(
m11 m12
m21 m22

)
, we let

M :=

(
m11 εζm12

ε−ζm21 m22

)
.

Then we have an identity analogous to (3.46):

M1M2 = M1M2. (3.56)

In particular, if M1 and M2 are bounded in ε, then M1M2 is bounded in ε. Thus from
(3.55)–(3.56) we deduce

∂αx S
[
χ (τ ; t) = ∂

α
x S

[
−

∫ t

τ

∂α1
x S

[(τ ′; t)∂α2
x

(
(1− χ)(τ ′)(εh−1A?(τ

′))
)
∂α3
x S

[
χ (τ ; τ

′) dτ ′.
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The key is now that εh−1∂αx ((1−χ)A?) is uniformly bounded in ε. Indeed, by Lemma 3.3,
spatial derivatives of the truncation χ are uniformly bounded. By the block conditions
(2.6)–(2.7) and the definition of A? just above (3.56), the matrix εh−1A? is uniformly
bounded in ε. Further, S[ is uniformly bounded, by Lemma 3.7. Thus we obtain the bound

|∂αx S
[
χ (τ ; t)| ≤ C

(
1+

∫ t

τ

|∂α3
x S

[
χ (τ ; τ

′)| dτ ′
)

with |α3| ≤ |α|, for some C > 0, implying by Gronwall and a straightforward induction

|∂αx S
[
χ (τ ; t)| ≤ Ce

C(t−τ), t? − δ ≤ τ ≤ t ≤ t?,

which is good enough since t − τ ≤ δ. Going back to Sχ , we find the bound (3.52).

• The same arguments apply in the remaining case t? − δ ≤ τ ≤ t? ≤ t .

At this point, (3.52) is proved and we turn to (3.53). First consider products involving no
spatial derivatives of Sχ , which we denote Sχ,n, for consistency with (3.44). Here we note
that the proof of Lemma 3.6 uses only the upper bound (2.11) for S, via the cancellation
(3.46). We may thus repeat that proof and derive a bound for Sχ,n. The only difference is
that while A? is uniformly bounded in ε, the truncation function χ is stiff in ξ , as seen in
(3.31) and the definition of t? in (2.1), and reflected in Lemma 3.3. This gives the bound
(3.53) with Sχ,n in place of S̃χ,n.

Finally, spatial derivatives are well behaved, in the sense that they are bounded without
loss in ε. Thus from the bound in Sχ,n we derive the bound (3.53) exactly as in the proof
of Lemma 3.7, via a representation formula identical to (3.50), with S̃χ,n and Sχ,n in
place of S̃n and Sn. ut

Corollary 3.9. The solution S0 to (3.40) enjoys the bound

|∂αx S0(τ ; t, x, ξ)| . ε−ζ eγ+(τ ; t, x, ξ)

for any 0 ≤ τ ≤ t ≤ T (ε) and any (x, ξ).

Proof. From equations (3.51) for S̃χ and (3.40) for S0, we deduce the representation

∂αx S0(τ ; t) = ∂
α
x Sχ (τ ; t)+ ε

h

∫ t

τ

∂α1
x Sχ (τ

′
; t)∂α2

x (χB(τ
′))∂α3

x S0(τ ; τ
′) dτ ′, (3.57)

with an implicit summation over α1 + α2 + α3 = α, and implicit multinomial constants
Cαi > 0. We factor out the expected growth before applying Gronwall’s lemma, by letting
S
[
0 := e−1

γ+
S0 and S[χ := e−1

γ+
Sχ . From Corollary 3.8, we know that |∂αx Sχ | . ε−ζ .

Moreover, from Lemma 3.3 and the fact that B ∈ R0, the symbol ∂α2
x (χB) is uniformly

bounded. Thus from (3.57) we deduce

|∂αx S
[
0(τ ; t)| . ε−ζ + εh−ζ

∫ t

τ

|∂α3
x S

[
0(τ ; τ

′)| dτ ′, |α3| ≤ |α|.

We may now conclude the proof by Gronwall’s lemma and a straightforward induction,
since T (ε) grows at most logarithmically and h− ζ > 0. ut
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3.12.4. Product bounds for S0. The next step is to prove product bounds for ∂αx S0, as in
Lemma 3.7. For this, for α = (α1, α2) ∈ N2d , β ∈ Nd and 0 ≤ τ ≤ t we let

S0,α,β(τ ; t) := ε
h−1∂α1

x S0(τ ; t)∂
α2
x ∂

β
ξ (χA?(τ )),

and for αi ∈ N2d , βi ∈ Nd and 0 ≤ τ ≤ τn ≤ τn−1 ≤ τ1 ≤ t we write

S0,n(τ, τ1, . . . , τn; t) := S0,α1,β1(τ1; t)S0,α2,β2(τ2; τ1) · · · S0,αn,βn(τn; τn−1)∂
α
x S0(τ ; τn).

(3.58)

Corollary 3.10. We have
|S0,n| . ε−ζ(1+|β|)eγ+ (3.59)

for any 0 ≤ τ ≤ τn ≤ τn−1 ≤ · · · ≤ τ1 ≤ t ≤ T (ε), any (x, ξ), any αi, βi and any n ≥ 1,
with |β| =

∑
i |βi |.

Proof. First observe that for n = 1, if we used Corollary 3.9 directly, we would find the
upper bound

εh−1
|∂α1
x S0(τ

′
; t)∂α2

x A?(τ
′)∂α3

x S0(τ ; τ
′)| . εh−1−2ζ eγ+ ,

which is not good enough since h − 1 − ζ < 0 if ζ = 1 − h. Hence the need for more
than the bound on ∂αx S0 from Corollary 3.9.

Second, note that the loss in (3.59) comes from ξ -derivatives applied to χ , exactly as
in the proof of Corollary 3.8.

We are going to use the representations

∂αx S0 = ∂
α
x Sχ +

∑
1≤k≤m−1

∫
SBχ,k +

∫
SBχ,0,m, |α| ≥ 0, (3.60)

for any m ∈ N, with

SBχ,k := ε
kh(∂α1

x Sχ∂
α′1
x (χB)) · · · (∂

αk
x Sχ∂

α′k
x (χB))∂

αk+1
x Sχ ,

SBχ,0,k := ε
kh(∂α1

x Sχ∂
α′1
x (χB)) · · · (∂

αk
x Sχ∂

α′k
x (χB))∂

αk+1
x S0.

In (3.60) we use compact notation as in (3.48). In particular, time arguments are implicit

and form “chains” in the sense that in products (Sχ∂
α′1
x χB)(Sχ∂

α′2
x χB), the time argu-

ments of the first term are (τ ; τ1) and those of the second term are (τ1; τ2). The integrals
in (3.60) are time integrals bearing on the “interior” variables of SBk and SB0k; see the ex-
plicit definition of S in (3.44), and see how the compact notation of (3.48) is expanded
into explicit notation in (3.49).

By Assumption 2.1 and Corollary 3.9,

|SBχ,k| + |S
B
χ,0,k| . εk(h−ζ )ε−ζ eγ+ . (3.61)

The representation (3.60) is proved by using (3.57) recursively n− 1 times.
From (3.60), we find S0,1 = ε

h−1∂
α1
x S0∂

α2
x ∂

β
ξ (χA?)∂

α3S0 is a sum of nine terms:

• The term εh−1∂
α1
x Sχ∂

α2
x ∂

β
ξ (χA?)∂

α3
x Sχ = Sχ,1 is bounded by using Corollary 3.8.
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• For term II = εh−1SBχ,k∂
α2
x ∂

β
ξ (χA?)∂

α3
x Sχ , we use Corollary 3.8 for the rightmost prod-

uct, of the form εh−1∂
α′
k+1
x Sχ∂

α2
x ∂

β
ξ (χA?)∂

α3
x Sχ , and then bound separately the remaining

k products of the form εh∂
α′i
x S∂

α′′i
x (χB). This gives |II| . εk(h−ζ )ε−ζ(1+|β|)eγ+ , and we

use ζ < h.

• Term III = εh−1SBχ,0,m∂
α2
x ∂

β
ξ (χA?)∂

α3
x Sχ cannot be handled by the same argument

as II, since the rightmost product here has the form εh−1∂
α′
m+1
x S0∂

α2
x ∂

β
ξ (χA?)∂

α3
x Sχ . Here

we use (3.61) with k = m large, the bound |∂α2
x ∂

β
ξ (χA?)| . ε−|β|ζ , and the bound of

Corollary 3.8 for |∂α3
x Sχ |. There occurs a loss of ε−ζ , but this is compensated by an

appropriate choice of m. Precisely, we find |III| . εm(h−ζ )−2ζ−|β|ζ eγ+ and then choose
m large enough, depending on h, so that m(h− ζ )− ζ ≥ 0.

• Term IV = εh−1∂
α1
x Sχ∂

α2
x ∂

β
ξ (χA?)S

B
χ,k is symmetric to II. Here we isolate the leftmost

product εh−1∂
α1
x Sχ∂

α2
x ∂

β
ξ (χA?)∂

α′1
x Sχ .

• In term V = εh−1SBχ,k∂
α2
x ∂

β
ξ (χA?)S

B
χ,k′

, we use the cancellation of Corollary 3.8 for the

term in the middle, εh−1∂
αk+1
x Sχ∂

α2
x ∂

β
ξ (χA?)∂

α′′1
x Sχ . The remaining terms contain k + k′

occurrences of S, and there is a prefactor εh(k+k
′). Thus we obtain the bound |V| .

ε(k+k
′)(h−ζ )ε−ζ(1+|β|)eγ+ .

• The remaining terms all involve at least m factors, hence, by (3.61), have an εm(h−ζ )

prefactor. We handle these terms just like III above.

From the above, we conclude that

|S0,1| . ε−ζ(1+|β|)eγ+ ,

where |β| is the number of ξ -derivatives in S̃0,1.
The general case n ≥ 2 is handled in exactly the same way. Via representations (3.60),

products involving ∂αx S0, as in the statement of the corollary, are expanded into sums of
products involving ∂α

′

x Sχ , and remainders which involve products with a large number of
εhB terms, and S0 terms. These remainders are handled as term III above, using h < ζ ,
hence εm(h−ζ ) as small as needed for m large. We are then left with products involving
only χA?, χB and spatial derivatives of Sχ . For these, we use Corollary 3.7 as we did
above in the treatment of terms I and II (using the case n ≥ 2 in Corollary 3.8, while we
used only n = 1 in the above treatment of I and II). ut

The final bound in these preparation steps involves products of S0 with χ(iA? + εB), as
already met in (3.43). For α = (α1, α2) ∈ N2d , β ∈ Nd and 0 ≤ τ ≤ t we let

SB0,α,β(τ ; t) := ε
h−1∂α1

x S0(τ ; t)∂
α2
x ∂

β
ξ (χ(iA? + εB)(τ)),

and for αi ∈ N2d , βi ∈ Nd and 0 ≤ τ ≤ τn ≤ τn−1 ≤ τ1 ≤ t we consider the products

SB0,n(τ, τ1, . . . , τn; t) := S
B
0,α1,β1

(τ1; t)S0,α2,β2(τ2; τ1) · · · S
B
0,αn,βn(τn; τn−1)∂

α
x S0(τ ; τn).

(3.62)
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Corollary 3.11. We have
|SB0,n| . ε−ζ(1+|β|)eγ+

for any 0 ≤ τ ≤ τn ≤ τn−1 ≤ · · · ≤ τ1 ≤ t ≤ T (ε), any (x, ξ), any αi, βi , and any
n ≥ 1, with |β| =

∑
i |βi |.

Proof. Developing the product, we find that SB0,n is a product of terms of the form

S0,n′ of (3.58) and terms of the form εh∂αx ∂
β
ξ χB. By Corollary 3.10, |S0,n| .

ε−ζ(1+|β|)eγ+ , where |β| is the total number of ξ -derivatives that appear in S0,n. More-
over, |εh∂αx ∂

β
ξ (χB)| . εh−|β|ζ . The result then follows from ζ < h. ut

3.12.5. Bounds on the correctors Sq . We are now ready to prove bounds on spatial
derivatives of the correctors Sq introduced in (3.41):

Corollary 3.12. For 0 ≤ τ ≤ t ≤ T (ε) and any (x, ξ),

|∂αx Sq | . ε−ζ(1+q)eγ+ for 0 ≤ q ≤ q0.

Proof. For q = 0, Corollary 3.9 gives the desired bound. For q = 1, the corrector S1
admits the representation (3.42), so that ∂αx S1 appears as a sum of terms

εh−1
∫ t

τ

∂α1
x S0(τ

′
; t)∂α2

x ∂
κ
ξ (χ(iA? + εB))(τ

′)∂α3+κ
x S0(τ ; τ

′) dτ ′,

where |κ| = 1 and α1+α2+α3 = α. Corollary 3.10 applies and gives the desired bound.
Consider now the representation (3.42) for Sq with any q ≥ 2. In this representation,
∂αx Sq appears as a sum of terms

εh−1
∫ t

τ

∂α1
x S0(τ

′
; t)∂α2

x ∂
κ
ξ (χ(iA? + εB))(τ

′)∂α3+κ
x Sq ′(τ ; τ

′) dτ ′, (3.63)

where |κ| + q ′ = q, |κ| > 0, and α1 + α2 + α3 = α. We may recursively use the
representation (3.42) in (3.63), so that ∂αx Sq appears as a time integral of terms SB0,n as in
(3.62), with exactly q derivatives bearing on the ξ variables. The result then follows from
Corollary 3.11. ut

3.12.6. Bounds on the approximate solution operator opε(6). We arrive at a bound for
the action of the approximate solution operator opε(6) defined in (3.39):

Corollary 3.13. For 0 ≤ τ ≤ t ≤ T (ε),

‖opε(6(τ ; t))w‖L2(B(x0,δ))
. ε−ζ exp(γ+(t1+` − τ 1+`))‖w‖L2(Rd ),

where γ+ := max|x|≤δ, |ξ−ξ0|≤δ γ (x, ξ).

Proof. Let θ1 be a spatial cut-off that is identically 1 on a neighborhood of B(x0, δ). Then

‖opε(6(τ ; t))w‖L2(B(x0,δ))
≤ ‖opε(θ16(τ ; t))w‖L2(Rd ).
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Now by Proposition B.1,

‖opε(θ16(τ ; t))w‖L2(Rd ) ≤
∑
|α|≤d+1

sup
ξ∈Rd
‖∂αx (θ16(τ ; t, ·, ξ))‖L1(Rd )‖w‖L2(Rd ).

By Corollary 3.10, for all 0 ≤ q ≤ q0 and |ξ − ξ0| ≤ δ,

εqh‖θ1∂
α
x Sq(τ ; t, ·, ξ)‖L1(Rd ) . ε−ζ(1+q) sup

|x|+|ξ−ξ0|≤δ
eγ+(τ ; t, x, ξ).

The result then follows from ζ < h and the pointwise bound

eγ+(τ ; t, x, ξ) ≤ exp(γ+(t1+` − τ 1+`)) for ` ≥ 0. ut

3.12.7. Lower bound for S0. We verify that the lower bound (2.10) in Assumption 2.1 is
stable by perturbation:

Lemma 3.14. For δ and ε small enough, the flow S0 satisfies the lower bound (2.10) from
Assumption 2.1, that is,

ε−ζ eγ−(0; T (ε), x, ξ0) . |S0(0; T (ε), x, ξ0)Ee(x)|

for |x| ≤ δ and Ee(x) as in Assumption 2.1.
Proof. First observe that t?(ε, 0, ξ0) = 0, so that the equations for S and Sχ coincide over
the time interval [δ, T (ε)] at (x, ξ) = (0, ξ0). A simple perturbation argument, similar to
the arguments developed in detail above, then implies that Sχ (0; T (ε), 0, ξ0) satisfies the
lower bound (2.10). Next we use the representation (3.57) from the proof of Corollary
3.9, with α = 0, which implies

|S0Ee | ≥ |Sχ Ee | − ε
h

∫ t

0
|Sχ (τ

′
; t)| |B(τ ′)| |S0(τ ; τ

′)| dτ ′.

As argued above, we may use the lower bound (2.10) for Sχ ; moreover, Corollaries 3.8
and 3.9 provide upper bounds for S0 and Sχ . These yield the lower bound

|S0(0; T (ε), x, ξ0)Ee | & ε−ζ eγ−(0; T (ε), x, ξ0)− ε
h−ζ eγ+(0; T (ε), x, ξ0).

Now at (τ ; t, x, ξ) = (0; T (ε), x, ξ0), for δ and ε small enough,

eγ+e−1
γ−

. exp
((
γ+(x, ξ0)− min

|x|≤δ
γ−(x, ξ0)

)
T (ε)1+`

)
.

The constant
δ0 := max

|x|≤δ
γ+(x, ξ0)− min

|x|≤δ
γ−(x, ξ0)

is small for small δ, by continuity of γ± and the fact that γ+(0, ξ0) = γ−(0, ξ0). In
particular, we may choose δ depending on T? defined in (2.3) and satisfying (3.5), so that

h− ζ − T?δ0 > 0. (3.64)

Thus for |x| < δ and ε small enough,

1− εh−ζ eγ+e−1
γ−
(0; T (ε), x, ξ0) ≥ 1− εh−ζ−T?δ0 ≥ 1/2,

and the result follows. ut
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3.12.8. Bounds on ∂αx ∂
β
ξ Sq . We finally give bounds on (x, ξ)-derivatives of S0 and of the

correctors Sq . This ends the verification of Assumption D.1.

Lemma 3.15. For 0 ≤ τ ≤ t ≤ T (ε) and any (x, ξ),

|∂αx ∂
β
ξ Sq | . ε−ζ(1+|β|+q)eγ+ . (3.65)

Proof. From the representation

∂
β
ξ S0(τ ; t) = −ε

h−1
∑

β1+β2=β
|β1|>0

∫ t

0
S0(τ

′
; t)∂

β1
ξ (χ(iA? + εB))(τ

′)∂
β2
ξ S0(τ ; τ

′) dτ ′

and Corollary 3.11, we find by induction the bound (3.65) for q = 0. Moreover , applying
∂αx ∂

β
ξ to the equation for Sq , we find the representation

∂αx ∂
β
ξ Sq = −ε

h−1
∫ t

τ

S0

(
∂α1
x ∂

β1
ξ (χ(iA?+εB))∂

α2
x ∂

β2
ξ Sq+∂

α
x ∂

β
ξ

(
(χ(iA?+εB))]q1Sq2

))
,

with an implicit summation over α1 + α2 = α, β1 + β2 = β, q1 + q2 = q with
|α1|, |β1|, q1 > 0. We use the above representation recursively, and find that ∂αx ∂

β
ξ Sq

is a sum of terms SB0,n, with a total number of ξ -derivatives equal to |β| + q. It now suf-
fices to apply Corollary 3.11. ut

3.12.9. Conclusion. Before moving on to the third and last part of the proof of Theorem
2.2, we recapitulate our arguments so far.

The bound |∂αx ∂
β
ξ (χA?)| . ε−|β|ζ and Lemma 3.15 verify Assumption D.1. Thus at

this point the integral representation (3.38) is justified, via Theorem D.3. We reproduce
here equation (3.38):

v = opε(6(0; t)))v(0)+ε
h

∫ t

0
opε(6(τ ; t))(Id+ε opε(R0))

(
g(τ)+ε opε(R0)v(0)

)
dτ.

This ends the second part of the proof. Next we will prove a lower bound for v, in
L2(B(0, δ)) norm. For this, we will bound from above the time-integrated term in (3.38),
and bound from below the “free” solution opε(6(0; t))v(0). The bound from above rests
on Corollary 3.13 bounding the action of opε(6), and on a bound for the source g, which
is the object of the forthcoming Section 3.13. The bound from below is a consequence of
Lemma 3.14.

3.13. Bound on the source term

Our goal in this section is to give an upper bound for the source term g from (3.36). The
source g is defined in (3.37), which we reproduce here:

g = ε−1(0v − 0̃(u?(ε
ht)))+ ε−h opε(∂t χ̃)(u?(ε

ht))+ opε(χ̃)(F?(ε
ht))

+ εn(opε(R0)u?)(ε
ht).
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We let

g0 := opε(χ̃)(F?(ε
ht))+ εn(opε(R0)u?)(ε

ht),

gχ := ε
−1(0v − 0̃(u?(εht)))+ ε−h opε(∂t χ̃)(u?(ε

ht)),

so that g = g0 + gχ . We first consider g0.

Lemma 3.16. We have

‖opε(χ
[)g0(t)‖L2 . ‖u̇(εht)‖2

W 1,∞(B(0,δ)) + ε
n
‖u̇(εht)‖L2(B(0,δ)),

uniformly in t ∈ [0, T (ε)], for n as large as allowed by the regularity of φ, where the
possibly stiff truncation χ [ is defined just below (3.31), in particular χ [ ≺ χ̃ with the
notation of (3.30).

Proof. There are three types of terms in g0: (a) a commutator coming from the spatial
cut-off θ , (b) non-linear terms, (c) remainders of size O(εn). The term F? is defined in
(3.29) in terms of F [ defined in (3.21), which in turn is defined in terms of Ḟ defined
in (3.8). We recall their definitions:

Ḟ = G0(ε, t, x, u̇) · (u̇, u̇)+

d∑
j=1

G1j (ε, t, x, u̇) · (u̇, ∂xj u̇),

F [ = opε(Qε)(θḞ )−

d∑
j=1

opε(Qε)(Aj (φε)u̇∂xj θ)+ ε
n opε(R0)(θu̇),

F? = M
?F [ + εn opε(R0)u

[.

(a) The commutator term is the term in ∂xj θ in F [. This term is rendered small by the
left action of opε(χ

[). Indeed, commutators that arise from a localization step depend on
derivatives p′, where p is the localization symbol. If we further localize with p[ such that
p[ is identically 1 on the support of p, then from (1 − p)p[ = 0 we deduce p[p′ ≡ 0,
and the associated commutator is arbitrarily small. This is made precise below.

Consider first the term

opε(χ
[)M? opε(Qε)(Aj (φε)u̇∂xj θ).

We start by approximately commuting opε(χ
[) andM?, by use of (3.23) (withM in place

of M? and conversely): in view of Lemma 3.3,

opε(χ
[)M?

= M? opε(χ
[

(?))+ ε
h−ζ opε(R0), (3.66)

where χ [(?) denotes evaluation of χ [ along the backward characteristics of µε. Note that
we here use the definition (3.13) for R0. In particular, the characteristics depend on time
through εht . Expanding χ [(?) in powers of εht , for t ≤ T (ε), we find terms that are all
supported in the support of χ [, up to an O(εn) remainder, with n as large as allowed by
the regularity of φ. In conjunction with Proposition B.2, this implies

M? opε(χ
[

(?)) opε(Qε) = opε(θ0R0)+ ε
n opε(R0),
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where θ0 is defined in Section 3.10, in particular (1− θ)θ0 ≡ 0. Now

opε(θ0R0)(Aj (φε)u̇∂xj θ) = opε(θ0∂xj θR0)(Aj (φε)u̇)+ [opε(θ0R0), ∂xj θ ](Aj (φε)u̇),

and the first term on the right is identically zero, since θ0∂xj θ ≡ 0. For the second term, we
use Proposition B.2: up to O(εn), the operator involves products of θ0 and its derivatives
with derivatives of ∂xj θ . These products are identically zero. Thus

‖M? opε(χ
[

(?)) opε(Qε)(Aj (φε)u̇)‖L2 . εn‖u̇‖L2(B(0,δ)).

Now Egorov’s lemma (see (3.23)), as used in (3.66), yields an expansion to arbitrary
order, as in (3.25). The supports of the symbols that appear in this expansion share the
property that we used for χ [(?). We obtain

‖opε(χ
[)M? opε(Qε)(Aj (φε)u̇∂xj θ)‖L2 . εn‖u̇‖L2(B(0,δ)).

(b) The non-linear terms are local in u̇ and ∇x u̇, so that

θ(x)G0(ε, t, x, u̇) · (u̇, u̇) ≡ θ(x)G0(ε, t, x, θ
]u̇) · (θ]u̇, θ]u̇),

where θ ≺ θ] (see notation (3.30)), with supp θ] ⊂ B(0, δ). A similar identity holds
for G1. Thus

‖θG0(u̇) · (u̇, u̇)‖L2 ≤ ‖θG0(θ
]u̇) · (θ]u̇, θ]u̇)‖L2 . C(|θ]u̇|L∞)‖θ

]u̇‖L∞‖θ
]u̇‖L2 .

Since θ] has support in B(0, δ), we have ‖θ]u̇‖L2 . ‖u̇‖L2(B(0,δ)), and the same in L∞

norm. By the a priori bound (3.10), we have in particular ‖u̇‖L∞(B(0,δ)) . 1, sinceK ′ > 0.
Thus

‖θG0(u̇) · (u̇, u̇)‖L2 . ‖u̇‖2L∞(B(0,δ)).

A similar argument for G1 yields an upper bound that involves ‖u̇‖W 1,∞(B(0,δ)). We con-
clude that

‖opε(χ
[)M? opε(Qε)(θḞ )‖L2 . ‖u̇‖2

W 1,∞(B(0,δ)).

(c) The remainders of the form εn opε(R0)(θu̇) and εn opε(R0)u
[ in g contribute

εn‖θu̇‖L2 to the estimate for opε(χ
[)g, by definition of uniform remainders (Section

3.6), and the bound (3.16) on u[. The same bound holds for the remainder in u?, since
‖u?‖L2 . ‖u[‖L2 , by the properties of M?. We use in addition Corollary 3.4 for all these
remainders. ut

Corollary 3.17. For any P ∈ S0, for the source term g0 defined just above the statement
of Lemma 3.16, we have

‖opε(χ
[) opε(P )g0‖L2 . ε2K ′

‖P ‖0,C(K ′), (3.67)

uniformly in t ∈ [0, T (ε)], for some C(K ′) > 0, where ‖ · ‖0,r is the norm in S0 defined
in (B.2). The constant K ′ is defined in (3.11) in terms of K,α,m and d .
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Proof. By Lemma 3.16 and Proposition B.1,

‖opε(P ) opε(χ
[)g‖L2 . ‖P ‖0,C(d)(‖u̇‖

2
L2(B(0,δ)) + ε

n
‖u̇‖L2(B(0,δ))),

and with (3.10) we obtain the upper bound (3.67) by taking n = K ′. It remains to
handle the commutator [opε(χ

[), opε(P )]. Here we use Proposition B.2: modulo terms
which are O(εn), the symbol of the commutator is a sum of terms of the form Pα :=

εh|α|(∂αx χ
[∂αξ P − ∂

α
ξ χ

[∂αx P). Since χ [ ≺ χ̃ (with the notation introduced in (3.30)), we
have Pα ≡ χ̃Pα . Thus, by Proposition B.2 again,

opε(Pα)g = opε(Pα) opε(χ̃)g + ε
h(|α|+1) opε(Qα)g, (3.68)

where the leading terms inQα have the same form as Pα . For the first term in (3.68) above,
we use Corollary 3.16, as we may since χ̃ ≺ χ . We also use the fact that ‖opε(Pα)‖L2→L2

is bounded uniformly in ε, by Lemma 3.3 and the bound (B.5). For the leading terms
in Qα , we use inductively (3.68), and arrive at (3.67). The Taylor expansion in the com-
position of operators needs to be carried out up to orderO(K ′), hence the dependence on
‖P ‖0,C(K ′) in the upper bound. ut

Lemma 3.18. For any P ∈ S0 and for gχ defined just above Lemma 3.16,

‖opε(χ
[) opε(P )gχ‖L2 . εK

′
+n
‖P ‖0,n,

uniformly in t ∈ [0, T (ε)], for n as large as allowed by the regularity of φ.

Proof. First consider the case P = Id. Since derivatives of ψ̃0 vanish identically on the
support of ψ[0 , by Proposition B.2 we have

‖opε(χ
[) opε(∂t χ̃)‖L2→L2 . εnh‖∂nξ χ

[
‖0,C(d)‖∂

n
x ∂t χ̃‖0,C(d).

By Lemma 3.3, this implies

‖opε(χ
[) opε(∂t χ̃)‖L2→L2 . εnhε−(n+2C(d))ζ ,

and the above is arbitrarily small if n is large enough, since ζ < h. The same argument
holds for the other two terms in gψ . In the general case of P ∈ S0, we may reason as in the
proof of Corollary 3.17, that is, by first spelling out the composition opε(ψ

[) opε(P ) up
to a large order, and then using the above. Remainders are small by the condition ζ < h.

The above argument proves the bound

‖opε(ψ
[) opε(P )gψ‖L2 . εn(‖u?(ε

ht)‖L2 + ‖v‖L2). (3.69)

We finally use (B.4) to control ‖v‖L2(Rd ), and obtain, via Lemma 3.3,

‖v‖L2(Rd ) . ε−ζC(d)‖u?(ε
ht)‖L2(Rd ).

This loss is irrevelant since in (3.69) the integer n can be chosen to be very large. We
conclude the proof by using the bound ‖u?‖L2 . ‖u[‖L2 and (3.16) for u[. ut
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3.14. Lower bound for the free part of the solution

First we describe the time transition function and the truncation ψ0 for frequencies close
to ξ0:

Lemma 3.19. For |x| ≤ δ and |ξ | ≤ δεζ−h,

0 ≤ t?(ε, x, ξ0 + ε
hξ) ≤ Cδ,

for some C > 0 independent of δ. In particular, for such (x, ξ),

ψ0
(
−t?(ε, x, ξ0 + ε

hξ)
)
≡ 1, ψ0

(
T (ε)− t?(ε, x, ξ0 + ε

hξ)
)
≡ 1,

and similarly for ψ̃0 and ψ[0 .

Proof. We may assume ` = 1/2. We have

t?(ε, x, ξ0 + ε
hξ) = ε−hθ?(ε

1−hx, ξ0 + ε
hξ)

= ε−hθ?(ε
1−hx, ξ0)+

∫ 1

0
∂ξ θ?(ε

1−hx, ξ0 + ε
hτξ) · ξ dτ,

and by the assumption on θ? defined in (2.1), for |x| ≤ δ and |ξ | ≤ δε−h+ζ we have

|ε−hθ?(ε
1−hx, ξ0)| ≤ Cε

−h+2(1−h)δ2
= Cδ2,

|∂ξ θ?(ε
1−hx, ξ0 + ε

hτξ)| ≤ C(ε1−h
|x| + εh|ξ |) ≤ Cεζ δ,

for some C > 0 which does not depend on δ. This proves the bound on t?. In particular,
for such (x, ξ) we have −t? ≥ −δ/9 and T (ε) − t? ≥ −δ/9, implying the result for ψ0,
by definition of ψ0 (see for instance Figure 6). ut

Based on the above result for t? and ψ̃0, we identify the leading term in the datum for v
defined in (3.32):

Corollary 3.20. We have

‖v(0)− εKeix·ξ0/ε θ̃0(x)Ee(x) ‖L2 . εK+h−ζ , (3.70)

where θ̃0 is the spatial cut-off introduced in Section 3.9.

Proof. At this point the reader may find useful to jump back to Section 3.2. Since M?
|t=0

= Id, the datum for v is

v(0) = εK opε(χ̃(0)) opε(Qε(0))
(
θ <e

(
opε(Qε(0)−1)(ei(·)·ξ0/ε

h

θ Ee)
))
.

We may commute opε(Qε) and θ , since this produces an error that is O(εK+h) in L2,
thanks to Proposition B.2. Then in the datum we handle separately the oscillations in
+ξ0/ε

h and the oscillations in −ξ0/ε
h. We obtain

εK opε(Qε(0)) opε(Qε(0)−1)(ei(·)·ξ0/ε
h

θ Ee ) = εKeix·ξ0/ε
h

θ Ee +O(εK+1),
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where O(·) denotes control in L2. Thus the oscillation in ξ0/ε
h contributes to v(0) the

term
εK opε(χ̃(0))(e

ix·ξ0/ε
h

θ2
Ee ) = εKeix·ξ0/ε

h

opε(χ̃(0, x, ξ0 + ·))(θ
2
Ee )

modulo terms that are O(εK+h). By definition of χ̃ in Section 3.9,

χ̃(0, x, ξ0 + ε
hξ) = χ̃0(ε

h−ζ ξ)θ̃0(x)ψ̃0(−t?(ε, x, ξ0 + ε
hξ)).

In the above we may use Lemma 3.19, since χ̃0(ε
h−ζ ξ) is non-zero only if |ξ | ≤ δεζ−h.

Thus
χ̃(0, x, ξ0 + ε

hξ) = χ0(ε
h−ζ ξ)θ̃0(x) = θ̃0(x)+ ε

h−ζO(ξ).

We may expand the above up to an arbitrary power of εh−ζ . The remainder is a stiff
symbol in ξ , hence we will lose ε−ζC(d) in evaluating its operator norm (in accordance
with Proposition B.1), but such a loss is irrevelant if the prefactor εn(h−ζ ) is large enough.
Also, the Taylor expansion brings out a large ξn prefactor, implying that the L2 norm
of the remainder depends on the high Sobolev norm ‖θ̃0Ee ‖H n , but θ̃0 ∈ C

∞
c and Ee is

assumed to be smooth, hence this derivative loss is irrevelant as well. We thus obtain

‖opε(χ̃(0))(e
ix·ξ0/ε

h

θ2
Ee )− eix·ξ0/ε

h

θ̃0θ
2
Ee ‖L2 . εh−ζ .

By choice of θ0, we have θ0 ≺ θ . Thus θ̃0θ
2
≡ θ̃0, and we have obtained the leading term

εKeix·ξ0/ε
h
θ̃0(x)Ee (x) as claimed in (3.70).

It remains to prove that the oscillation in−ξ0/ε
h has a small contribution to the datum.

The leading term in the datum associated with this oscillation has the form

εKe−ix·ξ0/ε
h

opε(χ̃(−ξ0 + ·)Pε)θ̃ , θ̃ := θ Ee ,

where Pε ∈ S0, uniformly in ε. The key is then that opε(χ(−ξ0+·)Pε)θ̃ , which is smooth
and supported in B(0, δ) (because θ̃0 is supported in B(0, δ)) is pointwise bounded by
‖F θ̃‖L1(|ξ |≥c/εh), with c = 2|ξ0| − ε

ζ δ/2 > 0. This L1 norm is arbitrarily small, since
F θ̃ belongs to the Schwartz class. Spatial derivatives are handled in the same way. ut

Corollary 3.21. For v defined in (3.32) and for ε and δ small enough,

‖opε(χ
[(T (ε))) opε(S0(0; T (ε)))v(0)‖L2(B(0,δ)) & εK−ζ exp(γ−T (ε)`+1),

where γ− := min|x|≤δ γ−(x, ξ0) and χ [ is introduced in Section 3.9.

Proof. According to Corollary 3.20, the datum is

v(0, x) = εK ṽ(0, x)+O(εK+h−ζ ), ṽ(0, x) = eix·ξ0/ε
h

θ̃0(x)Ee(x).

We have

opε(S0(0; T (ε)))ṽ(0)(x) = eix·ξ0/ε
h

S0(0; T (ε), x, ξ0)θ̃0 Ee(x)+ ε
hV0, (3.71)
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with

V0 := e
ix·(ξ+ξ0/ε

h)
∑
|α|=1

opε

(∫ 1

0
(∂αξ S0)

(
0; T (ε), x, ξ0 + τ(·)

)
dτ

)
(∂αx (θ̃0Ee ))(x).

We now apply opε(χ
[(T (ε))) to (3.71). The leading term is

eix·ξ0/ε
h

opε(χ
[(T (ε), x, ξ0 + ·))

(
S0(0; T (ε), ·, ξ0)θ̃0Ee

)
.

By definition of χ [ in Section 3.10,

χ [(T (ε), x, ξ0 + ε
hξ) = χ

[
0(ε

h−ζ ξ)θ
[
0(x)ψ

[
0
(
T (ε)− t?(ε, x, ξ0 + ε

hξ)
)
.

We use Lemma 3.19, as in the proof of Corollary 3.20:

χ [(T (ε), x, ξ0 + ε
hξ) = χ

[
0(ε

h−ζ ξ)θ
[
0(x) = θ

[
0(x)

(
1+ εh−ζ

∫ 1

0
∂ξχ

[
0(ε

h−ζ τξ) · ξ dτ

)
.

The leading term now is

U0 = e
ix·ξ0/ε

h

S0(0; T (ε), x, ξ0)θ
[
0(x)Ee(x),

since θ [0 ≺ θ̃0. And since θ [0 ≡ 1 in a neighborhood of 0, we may use Lemma 3.14, which
states that for ε and δ small enough and |x| < δ,

ε−ζ eγ−(0; T (ε), x, ξ0) . |S0(0; T (ε), x, ξ0)Ee (x)|.

Consider the lower growth function eγ− , as defined in (2.9), at (x, ξ) = (x, ξ0). It involves
t?(ε, x, ξ0). By Lemma 3.19, 0 ≤ t?(ε, x, ξ0) ≤ Cδ. Thus

ε−ζ exp(γ−T (ε)1+`) . ε−ζ eγ−(0; T (ε), x, ξ0),

uniformly in |x| ≤ δ, with γ− defined in the statement of this corollary. Hence we obtain
a lower bound for the L2(B(0, δ)) norm of the leading term of the free solution as desired.

It remains to bound from above the terms we ignored so far. The first involves the
remainder in the datum, which is O(εK+h−ζ ) in L2 norm. By Corollaries 3.4 and 3.13,
the action of opε(S0) on this remainder is controlled by εh−ζ εK−ζ exp(γ+T (ε)1+`).

The other terms are εK+h opε(χ
[(T (ε)))V0 and εK+h−ζW0, where

W0 := e
ix·ξ0/ε

h

θ
[
0(x)

∑
|α|=1

opε

(∫ 1

0
∂αξ χ

[
0(ε
−ζ τ(·)) dτ

)(
∂αx (S0(0; T (ε), ·, ξ0)θ̃0Ee)

)
(x).

By Corollary 3.4, Lemma 3.15 and Proposition B.1,

εK+h‖opε(χ
[(T (ε)))V0‖L2(Rd ) . εh−ζ εK−ζ exp(γ+T (ε)1+`).

For W0, we observe that opε(∂
α
ξ χ

[
0) is a Fourier multiplier, bounded in L2

→ L2

norm by the maximum of its symbol, equal to a constant independent of ε. We may
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then bound ∂αx S0 by using Corollary 3.9. Thus εK+h−ζW0 is controlled in L2 just like
εK+h opε(χ

[(T (ε)))V0.
Summing up, we have obtained a lower bound of the form

εK−ζ exp(γ−T (ε)`+1)
(
1− εh−ζ exp((γ+ − γ−)T (ε)1+`)

)
.

By definition of T (ε) in (2.3),

εh−ζ exp((γ+ − γ−)T (ε)1+`) = εh−ζ−(γ
+
−γ−)T? .

Given T?, since h − ζ > 0, we may choose δ small enough for γ+ − γ− to be so small
that h− ζ − (γ+− γ−)T? is strictly positive. The result follows if ε is small enough. ut

3.15. Endgame

We apply opε(χ
[(T (ε))) to the left of the representation formula (3.38) for v at t =

T (ε), with χ [ defined in Section 3.10, and prove that the contribution of the initial datum
dominates the time-integrated Duhamel term. This eventually provides a contradiction to
the assumed a priori bound (3.9), and concludes the proof.

In view of (3.38), we find

‖opε(χ
[(T (ε)))v(T (ε))‖L2(B(0,δ)) ≥ I− (II+ III).

The leading term is

I = opε(χ
[(T (ε))) opε(S0(0; T (ε)))v(0).

This term is bounded from below in L2(B(0, δ)) norm by Corollary 3.21:

‖I‖L2(B(0,δ)) & εK−ζ exp(γ−T (ε)`+1).

The error term in the contribution of the datum is

II :=
q0∑
q=1

εhq opε(χ
[(T (ε))) opε(Sq(0; T (ε)))v(0).

We control II by Corollary 3.4 (action of opε(χ
[) in L2), Lemma 3.15 (bounds for Sq and

their derivatives) and (B.5). This gives

‖II‖L2(B(0,δ)) . εK+h−ζ exp(γ+T (ε)`+1).

The Duhamel term is

III = εh
∫ T (ε)

0
opε(χ

[(T (ε))) opε(6(τ ; T (ε)))(Id+ ε opε(R0))(g+ ε opε(R0)v(0)) dt ′.

We bound III by using Corollary 3.17 and Lemma 3.18, in which we choose n = K ′:

‖III‖L2(B(0,δ)) . εh−ζ exp(γ+T (ε)1+`)(ε2K ′
+ ε1+K).
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Above, we have used the bounds of Corollary 3.12 to control the norm ‖6‖0,C(K ′), which
appears in the upper bound of Corollary 3.17. Since 2K ′ > K by (3.4), we have obtained

‖opε(χ
[)v(T (ε))‖L2(B(0,δ)) & εK−ζ exp(γ−T (ε)`+1)− εK+h−ζ exp(γ+T (ε)`+1).

We can now conclude the proof just as that of Corollary 3.21. Precisely, rewriting the
lower bound as

‖opε(χ
[)v(T (ε))‖L2(B(0,δ)) & εK−ζ exp(γ−T (ε)`+1)(1− εh−(γ

+
−γ−)T?),

and choosing δ small enough that h − (γ+ − γ−)T? > 0 (recall that γ+ is the local
maximum of the rate function γ from Assumption 2.1 and γ− is the local minimum of
the lower rate function γ−), we find for ε small enough the lower bound

‖opε(χ
[)v(T (ε))‖L2(B(0,δ)) ≥ C|ln ε|

∗εK−ζ−γ−T?

for some C > 0 independent of ε, where |ln ε|∗ is some power of |ln ε|. By choice of T?
in (3.5), we have K − ζ − γ−T? < 0 if δ is small enough. Hence we get a lower bound
which blows up as ε→ 0, contradicting the a priori bound (3.10).

4. Proof of Theorem 1.2: initial ellipticity

We are going to verify that, under the assumption (1.8) of initial ellipticity, Assumption
2.1 holds with parameters

` = 0, h = 1, ζ = 0, µ ≡ 0, t? ≡ 0.

Then Theorem 1.2 is a consequence of Theorem 2.2.

4.1. Block decomposition

Let λ0, λ1, . . . , λp be the spectrum ofA at (0, x0, ξ0). The ellipticity condition (1.8) states
that one of the λj is non-real. By reality of A, complex eigenvalues come in conjugate
pairs. In particular, at least one of the λj has strictly positive imaginary part. We may
assume =mλ0 > 0 and

=mλ0 > max
1≤j≤p

=mλj . (4.1)

Let m be the algebraic multiplicity of λ0 in the spectrum, and E0(t, x, ξ) the gener-
alized eigenspace associated with the family λ0,1(t, x, ξ), . . . , λ0,m(t, x, ξ) of (possi-
bly non-distinct) eigenvalues of A which coalesce at (0, x0, ξ0) with value λ0, that is,
λ0,j (0, x0, ξ0) = λ0. Let E1(t, x, ξ) be the direct sum of the other generalized eigen-
spaces. Let Q0 be the projector onto E0 parallel to E1. The λ0,j may not be smooth, but
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are continuous (see for instance [25, Proposition 1.1]), andQ0 is smooth (see for instance
[8] or [25, Proposition 2.1]), and determines a smooth change of basisQ(t, x, ξ) in which
A is block diagonal:

QAQ−1
=:

(
A(0) 0

0 A(1)

)
. (4.2)

We focus on the block A(0) associated with the eigenvalues λ0,j . The symbolic flow ac-
cordingly splits into S(0), S(1), where S(0) solves

∂tS(0) + iA(0)(εt, x0 + x, ξ)S(0) = 0, S(0)(τ ; τ) = Id.

By (4.1) and a repeat of the arguments below, the component S(1) of the symbolic flow is
seen to grow no faster than S(0) near (0, ξ0).

4.2. Reduction to upper triangular form at the distinguished point

Let now P be a constant (independent of t, x, ξ ) change of basis to upper triangular form
of A(0)(0, x0, ξ0), and Qµ be the diagonal matrix

Qµ = diag(1, µ−1, µ−2, . . . , µ1−m).

The parameter µ will be chosen small enough below. Then

QµPA(0)(0, x0, ξ0)P
−1Q−1

µ = λ0 Id+ µJ,

where J is upper triangular, bounded in µ, with zeros on the diagonal. By a Taylor ex-
pansion of A(0)(εt, x0 + x, ξ) in (t, x, ξ), we observe that

iA(0)(εt, x0 + x, ξ) = P
−1Q−1

µ

(
iλ0 Id+ iµJ + B(ε, t, x, ξ)

)
PQµ,

where the Taylor remainder B has the form

B = εtB1(ε, t, x, ξ)+ (x, ξ − ξ0) · B2(ε, t, x, ξ)

with B1 and B2 bounded, uniformly in ε, in the domain

|x| ≤ δ, |ξ − ξ0| ≤ δ, t ≤ T?|ln ε|. (4.3)

Let

S̃(τ ; t) := exp(i(t − τ)λ0)PQµS(0)(τ ; t). (4.4)

Then S̃ solves

∂t S̃ + (iµJ + B)S̃ = 0, S̃(τ ; τ) = PQµ. (4.5)
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4.3. Bounds for the symbolic flow

Consider the Hermitian matrix

<e(iµJ + B) := 1
2

(
(iµJ + B)+ (iµJ + B)∗

)
.

Its eigenvalues λ are semisimple, and vanish at (µ, t, x, ξ) = (0, 0, 0, ξ0), hence satisfy,
for (t, x, ξ) in the domain (4.3), the bound (see for instance [25, Corollary 3.4])

|λ| ≤ c0(µ+ εT?|ln ε| + |x| + |ξ − ξ0|) =: γ0(ε, µ, t, x, ξ)

for some c0 > 0 independent of ε, µ, t, x, ξ , for (t, x, ξ) in (4.3) and (ε, µ) small enough.
Thus

−γ0 Id ≤ <e(iµJ + B) ≤ γ0Id. (4.6)

Let
S± := exp

(
±(t − τ)γ0(ε, µ, t, x, ξ)

)
S̃.

From (4.5) we deduce, for any fixed vector Ee ∈ Cm,
1
2 <e (∂tS±Ee, S±Ee)Cm +

(
(<e(iµJ + B)± γ0)S±Ee, S±Ee

)
Cm = 0.

By (4.6), this implies, for Ee unitary,

|PQµEe |e
−(t−τ)γ0 ≤ |S̃(τ ; t)Ee | ≤ |PQµ|e

(t−τ)γ0 . (4.7)

Back to S(0) via (4.4), we now have

|S(0)(τ ; t, x, ξ)| ≤ |PQµ| |(PQµ)
−1
|e(t−τ)(=mλ0+γ0).

We now choose µ = |ln ε|−1 and let

γ+ := =mλ0 + c0(|x| + |ξ − ξ0|).

We have obtained, for ε small enough,

|S(0)(τ ; t)| ≤ |ln ε|?e(t−τ)γ
+

,

corresponding to the upper bound (2.11). Finally, since |PQµEe | = c1µ
1−m for some

c1 > 0 and Ee = (0, 0, . . . , 0, 1) ∈ Cm, we deduce from (4.7) the lower bound

|S(0)(τ ; t)Ee | & e(t−τ)γ
−

, γ− = =mλ0 − c0(|x| + |ξ − ξ0|),

corresponding to the lower bound (2.10).

5. Proof of Theorem 1.3: non-semisimple defect of hyperbolicity

It suffices to verify that, under the assumptions of Theorem 1.3, Assumption 2.1 holds
with parameters

` = 1/2, h = 2/3, ζ = 1/3.

Then Theorem 1.3 is a consequence of Theorem 2.2. We may assume initial hyperbolicity
(1.9), since otherwise Theorem 1.2 applies.
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5.1. The branching eigenvalues

Let ω0 := (x0, λ0, ξ0). By assumption,

P(0, ω0) = 0, ∂λP(0, ω0) = 0, ∂tP(0, ω0) 6= 0, ∂2
λP(ω0) 6= 0. (5.1)

By the second and fourth conditions in (5.1) and the implicit function theorem, there
exists a smooth function µ? with µ?(0, x0, ξ0) = λ0 such that ∂λP = 0 is equivalent to
λ = µ?(t, x, ξ) for (t, x, ξ) close to (0, x0, ξ0).

By the first three conditions in (5.1) and the implicit function theorem, there is a
smooth τ? with τ?(x0, ξ0) = 0 such that P(µ?) = 0 is locally equivalent to t = τ?(x, ξ).

We now use the above implicitly defined functions µ? and τ? to describe the spectrum
of A near (t, x, ξ, λ) = (0, ω0).

Lemma 5.1. In a neighborhood of (0, ω0), we have P = 0 if and only if

(λ− µ(x, ξ))2 = −(t − τ?(x, ξ))e(t, x, ξ, λ), (5.2)

where µ(x, ξ) := µ?(τ?(x, ξ), x, ξ) and e is smooth and satisfies e(0, x0, ξ0, λ0) > 0.

Proof. Given t close to 0 and (x, ξ, λ) close to ω0, we expand the characteristic polyno-
mial:

P(t, x, ξ, λ) = P
(
τ?(x, ξ), x, ξ, µ?(τ?(x, ξ)), x, ξ

)
+ (t − τ?(x, ξ))e1(t, x, ξ)+ (λ− µ(x, ξ))

2e2(t, x, ξ, λ)

= (t − τ?(x, ξ))e1(t, x, ξ)+ (λ− µ(x, ξ))
2e2(t, x, ξ, λ), (5.3)

since P(τ?, ·, µ?(τ?)) ≡ 0, with

e1(t, x, ξ) :=

∫ 1

0
(∂tP)

(
(1− τ)τ?(x, ξ)+ τ t, x, µ(x, ξ)

)
dτ,

e2(t, x, ξ, λ) :=

∫ 1

0
(1− τ)(∂2

λP)
(
t, x, ξ, (1− τ)µ(x, ξ)+ τλ

)
dτ.

We let e := e1e
−1
2 . Then e(0, x0, ξ0, λ0) > 0, as a consequence of the definition of e1

and e2 and condition (1.11). The result follows from (5.3). ut

Equation (5.2) describes a pair of eigenvalues branching at t = τ?(x, ξ) from the real
axis, with imaginary parts growing like (t − τ?)1/2. The time curve t = τ?(x, ξ) is the
boundary between the hyperbolic region t < τ?(x, ξ) in which the eigenvalues are real,
and the elliptic region t > τ?(x, ξ) in which the eigenvalues are not real and where we
expect to record an exponential growth for the symbolic flow. In the introduction, Figure 3
pictures the hyperbolic and elliptic zones in the (t, x, ξ) domain near (0, x0, ξ0).

We note that under the assumptions of Theorem 1.3, the above defined time transition
function τ? satisfies

τ? ≥ 0, τ ′?(x0, ξ0) = 0, τ ′′? (x0, ξ0) ≥ 0, (5.4)

where τ ′?(x0, ξ0) is the differential at (x0, ξ0), and τ ′′? (x0, ξ0) the Hessian. Indeed, if the
first condition in (5.4) were violated, then hyperbolicity would not hold at t = 0, contra-
dicting (1.9). Thus 0 is a global mininum for τ?, and (5.4) ensues.
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Remark 5.2. Note that under the assumption ∂2
λP∂tP < 0, eigenvalues stay real for

small t > 0, by Lemma 5.1.

5.2. Change of basis

By Lemma 5.1, the eigenvalues λ±(t, x, ξ) of A(t, x, ξ)− µ(x, ξ) Id satisfy

λ±(t, x, ξ)
2
= −(t − τ?(x, ξ))e

(
t, x, ξ, µ(x, ξ)+ λ±(t, x, ξ)

)
, (5.5)

where e is smooth in all its arguments, and e(0, x0, ξ0, µ(x0, ξ0))>0 with µ(x0, ξ0)=λ0.
From (5.5) and continuity of e, we deduce that λ− and λ+ are purely imaginary, hence
λ++ λ− = 0, since the matrix A−µ Id has real coefficients. From (5.5), we also deduce
the bound, for some C > 0, locally around (0, x0, ξ0),

|λ±| ≤ C|t − t?|
1/2,

which we may plug back in (5.5) and deduce, by regularity of e,

λ± = ±i(t − τ?)
1/2e(t, x, ξ, µ(x, ξ))1/2 +O(t − τ?). (5.6)

We now reduce A to canonical form:

Lemma 5.3. There exists a smooth change of basisQ such that locally around (0, x0, ξ0),

Q(t, x, ξ)
(
A(t, x, ξ)− µ(x, ξ) Id

)
Q(t, x, ξ)−1

=

(
A(0) 0

0 A(1)

)
,

where

A(0) =

(
0 1

−(t − τ?)e0 +O(t − τ?)
3/2 0

)
,

and A(1) ∈ C(N−2)×(N−2) is smooth. In the bottom left entry of A(0), the function τ? is the
time transition function introduced just above Lemma 5.1, and we denote e0(t, x, ξ) =

e(t, x, ξ, µ(t, x, ξ)) with e as in Lemma 5.1.

Proof. We may smoothly block diagonalize A − µ, for instance as described in Sec-
tion 4.1. The block associated with λ0 is size two, since the multiplicity of λ0 is 2 (see
(1.10)). Thus for some smooth Q̃, Q̃(A − µ)Q̃−1

=
( B0 0

0 A(1)

)
, where B0 is a 2 × 2

matrix
(
a11 a12
a21 a22

)
with smooth entries aij . The spectrum of B0 is {λ−, λ+}, where λ± sat-

isfy (5.6). Since, as noted above, λ− = −λ+, the trace of B0 is zero, that is, a22 = −a11.
Moreover, a21a12 6= 0 at (0, x0, ξ0). Indeed, if a21a12(0, x0, ξ0) = 0, the spectrum
of B0 would be smooth in time, contradicting (5.2). Without loss of generality, we as-

sume a21(0, x0, ξ0) 6= 0. Then Q0 =
( 0 −a−1

21

1 −a−1
21 a11

)
is a smooth change of basis such that

Q0B0Q
−1
0 =

(
0 1
? 0

)
. The bottom left entry of B0 is the product λ−λ+ of its eigenval-

ues. By (5.6), we find that λ−λ+ = −(t − τ?)e0 + O(t − τ?), and the result holds with
Q =

(Q0 0
0 IdCN−2

)
Q̃. ut
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5.3. The symbolic flow

Our goal is to prove the bounds of Assumption 2.1 for the solution S to the ordinary
differential equation

∂tS(τ ; t)+ iε
−1/3A?(t)S(τ ; t) = 0, S(τ ; τ) ≡ Id,

where A? is defined by (2.4), which we recall:

A?(t) = (Q(A− µ Id)Q−1)
(
ε2/3t, x0 + ε

1/3x?(ε
2/3t, x, ξ), ξ?(ε

2/3t, x, ξ)
)
.

Recall that h = 2/3 and ζ = 1/3 here. The change of basis Q is given by Lemma 5.3,
the real part of the branching eigenvalues µ is introduced in Lemma 5.1, and (x?, ξ?) is
the bicharacteristic flow, solving (2.5), which we reproduce here:

∂tx? = −∂ξµ(t, x0 + ε
1/3x?, ξ?), ∂tξ? = ε

1/3∂xµ(t, x0 + ε
1/3x?, ξ?). (5.7)

The block decomposition ofA given by Lemma 5.3 induces a block decomposition ofA?.
We focus on the top left block A?(0) in A?. As per Lemma 5.3, its bottom left entry
involves the function

τ??(ε, t, x, ξ) := τ?
(
x0 + ε

1/3x?(ε
2/3t, x, ξ), ξ?(ε

2/3t, x, ξ)
)
. (5.8)

The bicharacteristic flow (5.7) satisfies

x0 + ε
1/3x?(ε

2/3t, x, ξ) = x0 + ε
1/3x +O(εt), ξ?(ε

2/3t, x, ξ) = ξ +O(ε), (5.9)

uniformly in (x, ξ) with |x| + |ξ − ξ0| ≤ δ. Here O(ε) refers to a uniform . bound. In
particular for t bounded from above by a power of |ln ε|, we have O(εt) = O(ε). Thus
τ?? defined in (5.8) satisfies

τ?? = θ?(ε
1/3x, ξ)+O(ε), θ?(x, ξ) := τ?(x0 + x, ξ).

By (5.4), we see that θ? as defined above satisfies the conditions of equation (2.1). In
accordance with (2.1), we let t?(ε, t, x, ξ) := ε−2/3θ?(ε

1/3x, ξ). Then

ε−1/3(ε2/3t − τ??) = ε
1/3(t − ε−2/3θ?(ε

1/3x, ξ))+O(ε2/3) = ε1/3(t − t?)+O(ε
2/3),

(5.10)
uniformly in (x, ξ) with |x| + |ξ − ξ0| ≤ δ.

Lemma 5.4. The top left block A?(0) of A? in the block decomposition of Lemma 5.3
satisfies

ε−1/3A?(0) =

(
0 ε−1/3

−ε1/3(t − t?)f0 +O(ε
2/3) 0

)
with f0(ε, x, ξ) := e0(0, x0 + ε

1/3x, ξ), so that f0 > 0 for (x, ξ) near (0, ξ0).
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Proof. The bottom left entry of ε−1/3A?(0) involves the function e0 = e(µ) evaluated in
the time-rescaled and advected frame. In view of (5.9), by regularity of e and µ,

e0
(
ε2/3t, x0 + ε

1/3x?(ε
2/3t, x, ξ), ξ?(ε

2/3t, x, ξ)
)
= e0(0, x0 + ε

1/3x, ξ)+O(ε2/3).

The bottom left entry of ε−1/3A?(0) also involves t−τ? and (t−τ?)3/2 in the time-rescaled
and advected frame. In view of (5.10), these functions contribute to ε−1/3A?(0)

ε−1/3(ε2/3t − τ??) = ε
1/3(t − t?)+O(ε

2/3)

and ε−1/3(ε2/3t − τ??)
3/2
= O(ε2/3). We may invoke Lemma 5.3 to conclude the proof.

ut

By Lemma 5.4, the flow S(0) of iε−1/3A?(0) solves

∂tS(0)+iε
−1/3

(
0 ε−1/3

−ε1/3(t − t?)f0 0

)
S(0) = ε

2/3CS(0), S(0)(τ ; τ) = Id, (5.11)

where C := C(ε, t, x, ξ) =
(

0 0
c 0

)
with |∂αx ∂

β
ξ c| . 1 for 0 ≤ t ≤ T (ε) and |x| + |ξ − ξ0|

≤ δ. The coefficient f0 = f0(ε, x, ξ) satisfies f0 > 0 for |x| + |ξ − ξ0| ≤ δ.

5.4. Reduction to a perturbed Airy equation

Let

D(x, ξ) :=

(
−iε1/3f0(x, ξ)

1/3 0
0 1

)
,

so that D is well-defined and invertible on |x| < δ, |ξ − ξ0| ≤ δ, and

Z(τ ; t) := DS(0)(f
−1/3
0 τ + t? ; f

−1/3
0 t + t? ), (5.12)

where f0, t?, D, S(0) and Z all depend on (x, ξ). For future use, we note that

D(x, ξ)

(
z11 z12
z21 z22

)
D(x, ξ)−1

=

(
z11 −i(εf0)

1/3z12
i(εf0)

−1/3z21 z22

)
, (5.13)

D(x, ξ)−1
(
z11 z12
z21 z22

)
D(x, ξ) =

(
z11 i(εf0)

−1/3z12
−i(εf0)

1/3z21 z22

)
. (5.14)

Lemma 5.5. On |x| ≤ δ, |ξ − ξ0| ≤ δ, the map Z satisfies the perturbed Airy equation

Z′ +

(
0 1
t 0

)
Z = ε1/3C̃Z, Z(τ ; τ) = D, (5.15)

where C̃ := (DCD−1)(f
−1/3
0 t + t?) with C as in (5.11).
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Proof. It suffices to use (5.13) and observe that, by Lemma 5.4,

iε−1/3

f0(x, ξ)1/3
D(x, ξ)A?(0)

(
t

f0(x, ξ)1/3
+ t?, x, ξ

)
D(x, ξ)−1

=

(
0 1
t 0

)
− ε1/3C̃. ut

From the above, we will deduce lower and upper bounds for S(0) by comparison with the
vector Airy function Z defined as the solution of

Z′ +
(

0 1
t 0

)
Z = 0, Z(τ ; τ) = Id. (5.16)

5.5. Bounds for the Airy function

We will use (5.15) to show that the symbolic flow grows in time like the Airy function,
for which the following is known (see for instance [5, Chapter 7.6]).

Lemma 5.6 (Airy equation). Let Ai be the inverse Fourier transform of eiξ
3/3, and j =

e2iπ/3. The functions Ai, Ai(j ·) form a basis of solutions of the ordinary differential
equation y′′ = ty, and they satisfy

Ai(t) =
1

2
√
π
e−(2/3)t

3/2
t−1/4(1+O(t−3/2)), t →∞,

Ai(−t) =
1
√
π
t−1/4(sin

( 2
3 t

3/2
+ π/4

)
+O(t−3/2)

)
, t →∞,

Ai(j t) =
1

2
√
π
e−iπ/6e(2/3)t

3/2
t−1/4(1+O(t−3/2)), t →∞,

Ai(−j t) =
1

2
√
π
eiπ/6e(2/3)it

3/2
t−1/4(1+O(t−3/2)), t →∞.

From the above lemma, we deduce uniform bounds for the time derivative Ai′:

e(2/3)t
3/2
|Ai′(t)| + e−(2/3)t

3/2
|Ai′(j t)| + |Ai′(−t)| + |Ai′(−j t)| ≤ C(1+ t)1/4

for some C > 0 and all t ≥ 0. By Lemma 5.6, the solution to (5.16) is

Z(τ ; t) =
1

W(τ)

(
−jAi′(jτ )Ai(t)+ Ai′(τ )Ai(j t) −Ai(jτ )Ai(t)+ Ai(τ )Ai(j t)
jAi′(jτ )Ai′(t)− jAi′(τ )Ai′(j t) Ai(jτ )Ai′(t)− jAi(τ )Ai′(j t)

)
,

where W is the Wronskian, satisfying

W(τ) := Ai(jτ )Ai′(τ )− jAi′(jτ )Ai(τ ) ≡
1

4π
(−
√

3+ i).

The bounds for Ai and Ai′ imply the upper bound, for 0 ≤ τ ≤ t ,

|Z(τ ; t)| ≤ C(1+ |τ |)1/4(1+ |t |)1/4eAi(τ ; t), (5.17)
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and the lower bound ∣∣∣∣(1 0)Z(0; t)
(

0
1

)∣∣∣∣ ≥ ceAi(0; t) (5.18)

for some c > 0 independent of τ, t , where the growth function eAi is defined by

eAi(τ ; t) = exp
( 2

3 (t
3/2
+ − τ

3/2
+ )

)
, x+ := max(x, 0). (5.19)

We note that eAi is multiplicative:

eAi(τ ; t
′)eAi(t

′
; t) = eAi(τ ; t) for all τ, t ′, t ′. (5.20)

Remark 5.7. If we assumed ∂2
λP∂tP < 0, then we would have to consider the Airy

condition for negative times. Lemma 5.6 would then yield polynomial bounds for the
symbolic flow.

5.6. Bounds for the symbolic flow

Let
2(t, x, ξ) := f0(x, ξ)

1/3(τ − t?(ε, x, ξ)). (5.21)

Our goal is to verify the bounds of Assumption 2.1 for S(0) in the elliptic domain D
defined in (2.2). We recall the definition of D:

D := {(τ ; t, x, ξ) : t?(ε, x, ξ) ≤ τ ≤ t ≤ T (ε), |x| ≤ δ, |ξ − ξ0| ≤ δε
1/3
}.

Lemma 5.8. In D,

|D−1Z(2(τ);2(t))D| .
(

1 ε−1/3

ε1/3 1

)
eAi(2(τ);2(t)),

with eAi defined in (5.19).

Above, . means entrywise inequality “modulo constants”, as defined in (2.12).

Proof. In D we have 0 ≤ 2(τ) ≤ 2(t) . 2(T (ε)). The bound (5.17) states that
|Z(2)| . eAi(2). Then (5.14) implies the result. ut

From Lemma 5.8 we now derive bounds for S(0). Given that S(0) is expressed in terms of
Z defined in (5.12) and that Z is a perturbation of Z, we are in a situation very much like
the one of Section 3.12. Accordingly, the proof of the following corollary borrows from
Section 3.12, in particular from the proofs of Corollaries 3.9 and 3.8.

Corollary 5.9. The flow S(0) of iε−1/3A?(0), which solves (5.11), satisfies

|S(0)| .

(
1 ε−1/3

ε1/3 1

)
eAi(2). (5.22)
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Proof. By Lemma 5.5 and the definition (5.16) of Z,

Z(τ ; t) = Z(τ ; t)D + ε1/3
∫ t

τ

Z(t ′; t)C̃(t ′)Z(τ ; t ′) dt ′.

By the definition (5.12) of Z, we have S(0) = D−1Z(2). Thus

S(0)(τ ; t) = D
−1Z(2(τ);2(t))D + ε2/3

∫ 2(t)

2(τ)

D−1Z(t ′;2(t))C̃(t ′)Z(2(τ); t ′) dt ′.

Since C̃ is defined in Lemma 5.5 to be (D−1CD)(f
−1/3
0 t + t?), we obtain

S(0)(τ ; t) = D
−1Z(2(τ);2(t))D

+ ε2/3
∫ 2(t)

2(τ)

D−1Z(t ′;2(t))DC(f−1/3
0 t ′ + t?)S(0)(τ ; f

−1/3
0 t ′ + t?) dt

′.

The change of variable t ′ = 2(τ ′) corresponding to τ ′ = f−1/3
0 (t ′ + t?) transforms the

above integral into

ε2/3f
1/3
0

∫ t

τ

D−1Z(2(τ ′);2(t))DC(τ ′)S(0)(τ ; τ ′) dτ ′.

We now factor out the expected growth in view of applying Gronwall’s lemma, as we did
before in the proof of Corollary 3.9: we let

S
[

(0) := eAi(2)
−1S(0) and Z[(τ ′; t) := eAi(2)

−1D−1Z(2(τ ′);2(t))D.

By the multiplicative property (5.20) of the growth function eAi, we find

S
[

(0)(τ ; t) = Z[(τ ; t)+ ε2/3f0

∫ t

τ

Z[(τ ′; t)C(τ ′)S[(0)(τ
′
; t) dτ ′.

We now rescale the top right and bottom left entries, as we consider the equation for S[(0),
with notation introduced just above (3.56). In view of (3.56),

S
[

(0)(τ ; t) = Z[(τ ; t)+ ε1/3f0

∫ t

τ

Z[(τ ′; t)(ε1/3C(τ ′))S
[

(0)(τ
′
; t) dτ ′. (5.23)

We have ε1/3C(t) = O(t), and t is bounded by some power of |ln ε| in D. Lemma 5.8
implies that |Z[| . 1. Hence Gronwall’s lemma implies the bound |S[(0)(τ ; t)| . 1,which
corresponds precisely to (5.22). ut

Lemma 5.10. For some universal constant c0 > 0,∣∣∣∣(1 0)S(0)

(
0
1

)∣∣∣∣ ≥ c0 ε
−1/3eAi(2).
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Proof. Consider the representation (5.23). We focus on the top right entry. The lower
bound (5.18) for the vector Airy function states that the top right entry of Z is bounded
from below by eAi. By (5.14), this implies∣∣∣∣(1 0)D−1ZD

(
0
1

)∣∣∣∣ ≥ c0ε
−1/3eAi (5.24)

for some c0 > 0 independent of τ, t . Borrowing notation from the proof of Corollary 5.9,
this means that the top right entry of Z[ is bounded away from zero, uniformly in time.
We know from Corollary 5.9 that |S[(0)| . 1 and |Z[| . 1. Thus from (5.23) and (5.24)
we deduce the result, since t . 1 in D. ut

We observe that, for eAi defined in (5.19) and 2 defined in (5.21),

eAi(2) ≡ eγ with γ (x, ξ) := 2
3f0(x, ξ)

1/2, t? = ε
−2/3τ?(x0 + ε

1/3x, ξ),

where τ? is given by the implicit function theorem in Section 5.1. Hence Corollary 5.9
and Lemma 5.10 yield the bounds of Assumption 2.1 for S(0) with γ+ = γ− = γ and
with Ee equal to the constant vector

(
0
1

)
.

In order to complete the verification of Assumption 2.1, and thus conclude the proof
of Theorem 1.3, it remains to show that the other components of the symbolic flow do
not grow faster than S(0). This follows directly from the simplicity hypothesis in The-
orem 1.3. Indeed, by that hypothesis, we may smoothly diagonalize the other compo-
nent A?(1) of A? near (0, x0, ξ0) (use for instance [25, Corollary 2.2]). The eigenvalues
of A?(1) are real near (0, x0, ξ0). The equation for the symbolic flow of A?(1) splits into
scalar differential equations, with purely imaginary coefficients. Thus the symbolic flow
of A?(1) is bounded.

6. Proof of Theorem 1.6: smooth defect of hyperbolicity

It suffices to verify that, under the assumptions of Theorem 1.6, Assumption 2.1 holds
with parameters

` = 1, h = 1/2, ζ = 0, µ = <e λ±, t? ≡ 0,

where λ± are the bifurcating eigenvalues, as given by Proposition 1.4.

6.1. Block decomposition

As in the proof of Theorem 1.2, we may smoothly block diagonalize A by a change of
basisQ(t, x, ξ), for small t and (x, ξ) close to (x0, ξ0). Then identity (4.2) holds, and we
focus on the block A(0), of size two, such that

spA(0)(0, x0, ξ0) = {λ0}, λ0 ∈ R,

where (x0, ξ0, λ0) are the coordinates of ω0 ∈ 0 which appears in Hypothesis 1.5. By
Hypothesis 1.5 and Proposition 1.4, the eigenvalues λ± of A(0) branch from the real axis
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at t = 0, for all (x, ξ) in a neighborhood of (x0, ξ0). We define µ to be the real part of
these eigenvalues. The corresponding equation for the symbolic flow is

∂tS(0)+ ε
−1/2(A(0)−µ)

(
ε1/2t, x0+ ε

1/2x?(ε
1/2t, x, ξ), ξ?(ε

1/2t, x, ξ)
)
S(0) = 0, (6.1)

where (x?, ξ?) are the bicharacteristics of µ.

6.2. Time regularity and cancellation

By Proposition 1.4, the eigenvalues λ± are differentiable in time, at t = 0 and for all
(x, ξ) near (x0, ξ0). Indeed, Hypothesis 1.5 implies that conditions (1.12) are satisfied in
a whole neighborhood of (x0, ξ0). We may thus write

λ±(ε
1/2t, x0 + ε

1/2x?, ξ?)− µ(0, x0 + ε
1/2x?, ξ?) = iε

1/2t λ̃±(ε, t, x, ξ)+ o(ε
1/2),

(6.2)
uniformly in t = O(|ln ε|) and (x, ξ) close to (x0, ξ0), where (x?, ξ?) is evaluated at
(ε1/2t, x, ξ), and where

λ̃±(ε, 0, x, ξ) = ∂t =mλ±(0, x0 + ε
1/2x?(0, x, ξ), ξ?(0, x, ξ)) ∈ R. (6.3)

Consider the 2× 2 matrix A(0)(0, x, ξ). It has one semisimple eigenvalue µ(0, x, ξ) (the
semisimplicity is part of Hypothesis 1.5). Thus

A(0)(0, x, ξ) = µ(0, x, ξ)Id.

In particular, by regularity of the entries of A,

ε−1/2A(0)(ε
1/2t, x0 + ε

1/2x?, ξ?) = tÃ(0)(ε, 0, x, ξ)+ ε1/2t2B(ε, t, x, ξ), (6.4)

where B is uniformly bounded for ε close to 0, t = O(|ln ε|∗) and (x, ξ) close to (x0, ξ0).
Thus equation (6.1) takes the form

∂tS(0) + tÃ(0)(ε, 0, x, ξ)S(0) = ε1/2t2B(ε, t, x, ξ)S(0). (6.5)

The key cancellation that takes place in (6.4) has transformed the equation for S(0) into an
autonomous equation with a small, linear, time-dependent perturbation. The eigenvalues
of Ã(0) are λ̃±(ε, 0, x, ξ) from (6.2)–(6.3). These eigenvalues are distinct by Proposi-
tion 1.4.

6.3. Bounds for the symbolic flow

The solution S to

∂tS + itÃ(0)(ε, 0, x, ξ)S = 0, S(τ ; τ) = Id,

is
S(τ ; t) = exp

(
−iÃ(0)(ε, 0, x, ξ)(t2 − τ 2)/2

)
.

The eigenvalues of Ã(0), being distinct, are smooth in (ε, x, ξ) (see for instance [25,
Corollary 2.2]). In particular,

λ̃±(ε, 0, x, ξ) = λ̃±(0, 0, x, ξ)+O(ε) = =m∂tλ±(0, x0, ξ?(0, x, ξ))
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locally uniformly in (x, ξ). Let λ+ be the eigenvalue with positive imaginary part, and

γ (x, ξ) := 1
2 λ̃±(0, 0, x, ξ) = 1

2 =m∂tλ+(0, x0, ξ?(0, x, ξ)).

Then
|S(τ ; t, x, ξ)| . exp(γ (x, ξ)(t2 − τ 2)), (6.6)

and since Ã(0) is smoothly diagonalizable, for some smoothly varying vector Ee(x, ξ) we
have

|S(τ ; t, x, ξ)Ee(x, ξ)| & exp(γ (x, ξ)(t2 − τ 2)). (6.7)

Perturbation arguments already encountered in Section 3.12 (specifically, in the proof
of Corollary 3.9) show that the bounds (6.6)–(6.7) for S yield similar bounds for the
symbolic flow S(0) solving (6.5). These bounds imply the upper and lower bounds (2.11)
and (2.10) from Assumption 2.1.

For the other components of the flow, we use the simplicity assumption in Theorem
1.6, as we did in the last paragraph of Section 5.6 in the proof of Theorem 1.3.

7. Examples

7.1. One-dimensional Burgers systems

The 2× 2, one-dimensional Burgers system

∂t

(
u1
u2

)
+

(
u1 −b(u)2u2
u2 u1

)
∂x

(
u1
u2

)
= F(u1, u2), (7.1)

where F and b are smooth and real-valued, has a complex structure if b is constant. In the
case b ≡ 1, F ≡ (0, 1), a strong instability result for the Cauchy–Kovalevskaya solution
issued from (u0

1, 0), where u0
1 is analytic and real-valued, was proved in [12].

We assume b > 0, and the existence of a local smooth solution φ = (φ1, φ2). The
principal symbol is

A(t, x, ξ) = ξ

(
φ1 −b(φ)2φ2
φ2 φ1

)
.

Without loss of generality, we let ξ = 1. The eigenvalues and eigenvectors are

λ± = φ1 ± iφ2b(φ), e± =
1

(1+ b(φ)2)1/2

(
±ib(φ)

1

)
.

The characteristic polynomial is

P = (λ− φ1)
2
+ b(φ)2φ2

2 .

Initial ellipticity. If φ2(0, x0) 6= 0 for some x0 ∈ R, then the principal symbol is elliptic
at t = 0, and Theorem 1.2 applies.
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Smooth defect of hyperbolicity. Consider the case φ2(0, x) ≡ 0. We cannot observe a
defect of hyperbolicity as in Theorem 1.3, since the eigenvalues are smooth in time. Via
Proposition 1.4, we see that Theorem 1.6 holds as soon as

F2(φ(0, x0)) 6= 0 for some x0 ∈ R. (7.2)

If b(u) = b(u2), then (7.1) is a system of conservation laws

∂tu1 + ∂xf1(u) = F1(u), ∂tu2 + ∂xf2(u) = F2(u),

with fluxes

f1(u) =
1
2u

2
1 −

∫ u2

0
yb(y)2 dy, f2(u) = u1u2.

If, for instance, F(u) = (0, u2
1) and b(u2) = 1 + u2

2, then the system is ill-posed for all
data.

7.2. Two-dimensional Burgers systems

Consider the following family of 2× 2 systems in R2:

∂tu+

(
u1∂x1 −b(u)2u2(∂x2 + ∂x1)

u2(∂x1 + ∂x2) u1∂x1

)
u = F(u).

We assume b > 0, and the existence of a local smooth solution φ = (φ1, φ2). The
principal symbol is

A =

(
ξ1φ1 −(ξ1 + ξ2)b(φ)

2φ2
(ξ1 + ξ2)φ2 ξ1φ1

)
.

The eigenvalues and eigenvectors are

λ± = ξ1φ1 ± i(ξ1 + ξ2)φ2b(φ), e± =
1

(1+ b(φ)2)1/2

(
±ib(φ)

1

)
.

Initial ellipticity. If φ2(0, x0) 6= 0 for some x0 ∈ R2, then the principal symbol is initially
elliptic at any (ξ1, ξ2) ∈ S1 such that ξ1 + ξ2 6= 0.

Smooth defect of hyperbolicity. Consider the case φ2(0, x) ≡ 0. By Proposition 1.4, the
assumptions of Theorem 1.6 are satisfied under condition (7.2).

7.3. Van der Waals gas dynamics

The compressible Euler equations in one space dimension, in Lagrangian coordinates, are{
∂tu1 + ∂xu2 = 0,
∂tu2 + ∂xp(u1) = 0.
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We assume that the smooth pressure law p satisfies the Van der Waals condition

p′(u1) ≤ 0 for some u1 ∈ R,

and we assume existence of a smooth solution φ = (φ1, φ2). The principal symbol at
ξ = 1 is

A =

(
0 1

p′(φ1) 0

)
.

The eigenvalues are λ± = (p′(φ1))
1/2. Initial ellipticity. If p′(φ1(0, x0)) < 0 for some

x0 ∈ R, then Theorem 1.2 applies.

Non-semisimple defect of hyperbolicity. If p′(φ1(0, x)) ≥ 0 for all x (initial hyperbol-
icity) and p′(φ1(0, x0)) = 0 for some x0 (coalescence of two eigenvalues), and if

p′′(φ1(0, x0))∂xφ2(0, x0) > 0,

then condition (1.11) holds, and Theorem 1.3 applies.

7.4. Klein–Gordon–Zakharov systems

Consider the family of systems in one space dimension
∂t

(
u

v

)
+ ∂x

(
v

u

)
+

(
α 0
0 0

)
∂x

(
n

m

)
= (n+ 1)

(
v

−u

)
,

∂t

(
n

m

)
+ c∂x

(
m

n

)
+

(
α 0
0 0

)
∂x

(
u

v

)
= ∂x

(
0

u2
+ v2

)
,

(7.3)

indexed by α ∈ R and c ∈ R \ {−1, 1}. We assume existence of a smooth solution
φ = (u, v, n,m). The principal symbol at ξ = 1 is

A =


0 1 α 0
1 0 0 0
α 0 0 c

−2u −2v c 0

 . (7.4)

The case α = 0. The principal symbol is block diagonal, and there are four distinct
eigenvalues {±1,±c}. This implies that (7.3) is strictly hyperbolic, hence locally well-
posed in H s for s > 3/2 (see for instance [17, Theorem 7.3.3]). It was observed in [2]
that for c /∈ {−1, 1} and α = 0, system (7.3) is conjugate to a semilinear system, which
implies a sharper existence result:

Proposition 7.1 ([2, Section 2.2]). If c /∈ {−1, 1} and α = 0, the system (7.3) is locally
well-posed in H s(R) for s > 1/2.

Proof. The change of variables

(ũ, ṽ) = (u+ v, u− v),

(ñ, m̃) =

(
n+m−

1
1− c

ũ2
−

1
1+ c

ṽ2, n−m−
1

1+ c
ũ2
−

1
1− c

ṽ2
)
,
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transforms (7.3) into a system for Ũ := (ũ, ṽ, ñ, m̃):

∂t Ũ +


0 1 0 0
1 0 0 0
0 0 0 c

0 0 c 0

 ∂xŨ = (n+ 1)


−ṽ

ũ

−2(1− c)−1ũṽ

−2(1+ c)−1ũṽ

 . (7.5)

System (7.5), being symmetric hyperbolic and semilinear, is locally well-posed inH s(R)
for s > 1/2. ut

The case α 6= 0. By Proposition 7.1, system (7.3) takes the form of a symmetric perturba-
tion of a well-posed system. The characteristic polynomial of the principal symbol (7.4)
at ξ = 1 is

P(t, x, λ) = (λ2
− c2)(λ2

− 1)− α2λ2
+ 2αc(v + uλ).

Consider an initial datum for (u(0), v(0), n(0),m(0)) such that, for some x0 ∈ R,

u(0, x0) = 0, v(0, x0) = −
c

2α
, αc∂xu(0, x0) > 0. (7.6)

The first two conditions in (7.6) imply that at ω0 = (x0, 1, 0),

P(0, ω0) = ∂λP(0, ω0) = 0.

The third condition in (7.6) implies

(∂tP∂
2
λP)(0, ω0) =

(
2αc∂tv(0, x0)

)
(−1−c2

−α2) =
(
2αc∂xu(0, x0)

)
(1+c2

+α2) > 0,

so that the third condition in (7.6) implies (1.11). Theorem 1.3 thus asserts instability of
the Cauchy problem for (7.3) in the vicinity of any smooth solution φ satisfying (7.6) at
t = 0.

In particular, for any given α0 > 0, we can find initial data, depending on α0, such
that (7.3) with α = 0 is well-posed, whereas (7.3) with α = α0 is ill-posed. Such initial
data are O(1/α0) in L∞(R).

Appendix A. Proof of Proposition 1.4

The principal symbol can be block diagonalized, with a 2 × 2 block A0 with double
real eigenvalue λ0 at (0, x, ξ), and an (N − 2) × (N − 2) block which does not admit
λ0 as an eigenvalue at (0, x, ξ). Throughout this proof, (x, ξ) are fixed and omitted in
the arguments. The characteristic polynomial of A factorizes into P = P0P1, where
P1(0, ω0) 6= 0 and P0, P1 have real coefficients. We may concentrate on P0:

P0(λ) = λ
2
− λ trA0 + detA0.

The eigenvalues λ± of A0 at (t, x, ξ) are

λ±(t) =
1
2 trA0(t)±

1
21(t)

1/2, 1(t) := (trA0)
2
− 4 detA0. (A.1)
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By assumption, these eigenvalues coalesce at t = 0, so that1(0) = 0. The goal is then to
prove the equivalence (1.12).

If the left side of (1.12) holds, then 1(t) = −αt2 + O(t3) with α > 0. Thus
∂t1(0) = 0; on the other hand,

∂t1(0) = 2 trA0(0)∂t trA0(0)− 4∂t detA0(0) = 4λ0∂t trA0(0)− 4∂t detA0(0)
= −4(∂tP0)(0).

Moreover, ∂2
t 1(0) < 0; on the other hand,

∂2
t 1(0) = 2(∂t trA0(0))2 + 2 trA0(0)∂2

t trA0(0)− 4∂2
t detA0(0),

implying, since trA0(0) = 2λ0,

∂2
t 1(0) = 2(∂t trA0(0))2 + 4λ0∂

2
t trA0(0)− 4∂2

t detA0(0)

= 2(∂t∂λP0)
2
− 2∂2

λP0∂
2
t P0(0),

which gives indeed (∂2
tλP)

2 < ∂2
t P∂

2
λP at t = 0.

The converse implication is proved in the same way: the right side of (1.12) implies
∂t1(0) = 0, ∂2

t 1(0) < 0, as shown above, and this implies that the eigenvalues in (A.1)
are differentiable and leave the real axis at t = 0.

Appendix B. Symbols and operators

Pseudo-differential operators in εh-semiclassical quantization are defined by

opε(a)u := (2π)
−d

∫
Rd
eix·ξa(x, εhξ)û(ξ) dξ, ε, h > 0. (B.1)

Here h = 1/(1+`), as in Assumption 2.1, and a is a classical symbol of orderm: a ∈ Sm,
for somem ∈ R, that is, a smooth map in (x, ξ), with values in a finite-dimensional space,
such that

‖a‖m,r := sup
|α|,|β|≤r

(x,ξ)∈R2d

〈ξ〉|β|−m|∂αx ∂
β
ξ a(x, ξ)| <∞ (B.2)

A family ‖ · ‖ε,s of ε-dependent norms is defined by

‖u‖ε,s := ‖〈ε
hξ〉s/2û(ξ)‖L2(Rdξ )

, s ∈ R, 〈·〉 := (1+ | · |2)1/2.

Introducing dilations (dε) such that (dεu)(x) = εhd/2u(εhx), we observe that

‖dεu‖H s = ‖u‖ε,s, opε(a) = d
−1
ε op(ã)dε, ã(x, ξ) := a(εhx, ξ). (B.3)
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Proposition B.1. Given m ∈ R and a ∈ Sm,

‖opε(a)u‖L2 . ‖a‖m,C(d)‖u‖ε,−m (B.4)

for all u ∈ H−m, with some C(d) > 0 depending only on d . If m = 0, then

‖opε(a)u‖L2 .
∑

0≤|α|≤d+1

sup
ξ∈Rd
‖∂αx a(·, ξ)‖L1(Rdx )‖u‖L2 . (B.5)

Proof. By use of dilations (B.3), we observe that opε(a)u = op1(〈ξ〉
−mã)〈D〉mdεu. Then

(B.4) with any C(d) > [d/2] + 1 follows for instance from [11, Theorem 1.1.4 and its
proof], and (B.5) is proved in [5, Vol. 3, Theorem 18.8.1]. ut

Proposition B.2. Given a1 ∈ S
m1 , a2 ∈ S

m2 , and n ∈ N,

opε(a1) opε(a2) =

n∑
q=0

εhq opε(a1 ]q a2)+ ε
h(n+1) opε(Rn+1(a1, a2)),

where

a1 ]q a2 =
∑
|α|=q

(−i)|α|

α!
∂αξ a1∂

α
x a2, (B.6)

and Rn+1(a1, a2) ∈ S
m1+m2−(n+1) satisfies

‖opε(Rn+1(a1, a2))u‖L2 . ‖∂nξ a1‖m1,C(d)‖∂
n
x a2‖m2,C(d)‖u‖ε,m1+m2−n−1,

with C(d) > 0 depending only on d , for all u ∈ Hm1+m2−n−1.

Proof. Use for instance [11, Theorem 1.1.20, Lemma 4.1.2 and Remark 4.1.4] and (B.3).
ut

Specializing to symbols with a slow x-dependence, we obtain:

Proposition B.3. Given a1 ∈ S
m1 and a2 ∈ S

m2 , if a2 depends on x through ε1−hx, then∥∥(opε(a1) opε(a2)− opε(a1a2)
)
u
∥∥
ε,s

. ε‖a1‖m1,C(d)‖a2‖m2,C(d)‖u‖ε,s+m1+m2−1.

Appendix C. On extending locally defined symbols

Our assumptions are local in (x, ξ) around (x0, ξ0). Accordingly the symbols Q and µ
that appear in Assumption 2.1 are defined (after a change of spatial frame) only locally
around (0, ξ0). We explain here how to extend the locally defined family of invertible
matrices Q(x, ξ) into an element of S0 with an inverse (in the sense of matrices) which
belongs to S0.

The spectrum ofQ(0, ξ0) is a finite subset of C. In particular, we can find α ∈ R such
that the spectrum is contained in C \ eiαR−. By continuity of the spectrum, for all (x, ξ)
close enough to (0, ξ0), the spectrum of Q(x, ξ) does not intersect the half-line eiαR−.
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Let δ > 0 be such that this property holds true over Bδ = B(0, δ) × B(ξ0, δ). We may
then define the logarithm of the matrix e−iαQ in Bδ by

Log(e−iαQ) =
∫ 1

0
(e−iαQ− Id)

(
(1− t) Id+ te−iαQ

)−1
dt,

and the notation Log is justified by the identity

exp Log(e−iαQ) = e−iαQ in Bδ. (C.1)

Let σ(x, ξ) be a smooth cut-off in C∞c (Rd × Rd) such that 0 ≤ σ(x, ξ) ≤ 1, σ ≡ 1 on a
neighborhood of (x0, ξ0), and the support of σ is included in Bδ/2. Let

R(x, ξ) = σ(x, ξ)Log(e−iαQ(x, ξ))+ (1− σ(x, ξ)) Id in Bδ.

We may extend smoothly R by setting R ≡ Id on the complement of Bδ in R2d . Then for
all (x, ξ) ∈ R2d , the matrix

Q̃(x, ξ) = expR(x, ξ)

is smooth and invertible. Moreover,

inf
R2d

det Q̃ > 0.

Indeed, the infimum over the closed ball B̄δ is positive, by compactness and continu-
ity, and the determinant is constantly eN outside B̄δ . Thus the norms |Q̃(x, ξ)| and
|Q̃(x, ξ)−1

| are globally bounded over R2d . Since Q̃ is constant outside a compact set,
this implies Q̃ ∈ S0 and Q̃−1

∈ S0. Finally, by (C.1) and the definition of the cut-off σ ,

Q̃(x, ξ) = e−iαQ(x, ξ) for (x, ξ) close to (0, ξ0).

Thus eiαQ̃ is an appropriate extension of Q.

Appendix D. An integral representation formula

We adapt to the present context an integral representation formula introduced in [24].
Consider the following initial value problem, posed in the time interval [0, T (ε)] with
T (ε) := (T?|ln ε|)1/(1+`) for some T? > 0 and some ` ≥ 0:

∂tu+ opε(A)u = g, u(0) = u0, (D.1)

where A = A(ε, t) belongs to S0 for all ε > 0 and all t ≤ T (ε). Recall that opε(·) denotes
εh-semiclassical quantization of operators, as defined in (B.1). The parameter h belongs
to (0, 1]. The datum u0 belongs to L2, and the source g is in C0([0, T (ε)], L2(Rd)).
Denote by S0 the flow of −A, defined for 0 ≤ τ ≤ t ≤ T (ε) by

∂tS0(τ ; t)+AS0(τ ; t) = 0, S0(τ ; τ) = Id.
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For some q0 ∈ N∗, denote by {Sq}1≤q≤q0 the solution to the triangular system of linear
ordinary differential equations

∂tSq +ASq +
∑

q1+q2=q
q1>0

A ]q1 Sq2 = 0, Sq(τ ; τ) = 0, (D.2)

with ]q introduced in (B.6).

Assumption D.1. The symbol A is compactly supported in x, uniformly in ε, t, ξ , and

〈ξ〉|β||∂αx ∂
β
ξ A(ε, t, x, ξ)| . ε−|β|ζ ,

|∂αx ∂
β
ξ Sq(ε, τ ; t, x, ξ)| . ε−ζ(1+|β|+q) exp(γ t`+1).

for some 0 ≤ ζ < h, some γ > 0, all x, ξ and all t ≤ T (ε).

Denote 6 :=
∑

0≤q≤q0
εqhSq . Then opε(6) is an approximate solution operator for

(D.1):

Lemma D.2. Under Assumption D.1, if q0 is large enough, depending on ζ , h, γ and T?,
then

∂t opε(6)+ opε(A) opε(6) = ρ, (D.3)

where ρ satisfies, for 0 ≤ τ ≤ t ≤ T (ε) and all u ∈ L2(Rd),

‖ρ(τ ; t)u‖L2 . ε‖u‖L2 . (D.4)

Proof. By Proposition B.2,

opε(A) opε(Sq) = opε(ASq)+
∑

1≤q ′≤q0

εq
′h opε(A]q ′Sq)+ ε(q0+1)h opε(Rq0+1(A, Sq)),

and summing over 0 ≤ q ≤ q0 we obtain

opε(A) opε(6) = opε(A6)+
∑

0≤q2≤q0
1≤q1≤q0

ε(q1+q2)h opε(A ]q1 Sq2)+ ε
(q0+1)hR,

where
R :=

∑
0≤q≤q0

εqh opε(Rq0+1(A, Sq)).

Further, by the definition (D.2) of the correctors,

−∂t opε(6) = opε(A6)+
∑

1≤q1+q2≤q0
q1>0

ε(q1+q2)h opε(A ]q1 Sq2).

Comparing this with the above, we find that (D.3) holds with

−ρ :=
∑

q0+1≤q1+q2≤2q0
1≤q1≤q0
0≤q2≤q0

ε(q1+q2)h opε(A ]q1 Sq2)+ ε
(q0+1)hR. (D.5)



The onset of instability in first-order systems 1371

Since A is compactly supported in x, so are the correctors Sq for q ≥ 1, and the deriva-
tives of S0. Thus under Assumption D.1,

|∂αx (A ]q1 Sq2)|L1(Rdx ) . ε−ζ(1+q1+q2) exp(γ t1+`),

uniformly in ξ . Hence, by Proposition B.1,

‖opε(A ]q1 Sq2)‖L2→L2(Rd ) . ε−ζ(1+q1+q2) exp(γ t1+`).

Thus the L2
→ L2 norm of the first term in the right-hand side of (D.5) is controlled by∑

q0+1≤q1+q2≤2q0
1≤q1≤q0
0≤q2≤q0

ε(q1+q2)hε−ζ(1+q1+q2) exp(γ t1+`) . ε(h−ζ )(q0+1)−ζ−γ T?

over the interval [0, T (ε)], implying the desired bound as soon as

(h− ζ )(q0 + 1) ≥ 1+ ζ + γ T?.

Moreover, by Proposition B.2,

‖opε(Rq0+1(A, Sq))‖L2→L2 . ‖∂q0+1
ξ A‖0,C(d)‖∂q0+1

x Sq‖0,C(d),

and by Assumption D.1,

‖∂
q0+1
ξ A‖C(d) . ε−(q0+1+C(d))ζ , ‖∂

q0+1
x Sq‖C(d) . ε−ζ(1+q+C(d)) exp(γ t`+1).

This gives control of the L2
→ L2 norm of the second term in the right-hand side of

(D.5) by
ε(q0+1)h

∑
0≤q≤q0

εqhε−(q0+1+C(d))ζ−(1+q+C(d))ζ exp(γ t`+1).

We conclude that (D.4) holds if q0 satisfies

(h− ζ )(q0 + 1) ≥ 1+ γ T? + 2C(d)ζ,

which can be achieved since in Assumption D.1 we postulated ζ < h. ut

Theorem D.3. Under Assumption D.1, the initial value problem (D.1) has a unique so-
lution u ∈ C0([0, T (ε)], L2(Rd)), given by

u = opε(6(0; t))u0 +

∫ t

0
opε(6(t

′
; t))(Id+ εR1(t

′))
(
g(t ′)+ εR2(t

′)u0
)
dt ′, (D.6)

where R1 and R2 are bounded: for all v ∈ L2,

‖R1(t)v‖L2 + ‖R2(t)v‖L2 . ‖v‖L2 , (D.7)

uniformly in ε and t ∈ [0, T (ε)].
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Proof. Let h ∈ L∞([0, T (ε)], L2(Rd)). By Lemma D.2, the map u defined by

u := opε(6(0; t))u0 +

∫ t

0
opε(6(t

′
; t))h(t ′) dt ′

solves (D.1) if and only if, for all t ,

((Id+ ρ0)h)(t) = g − ρ(0; t)u0, (D.8)

where ρ0 is the linear integral operator

C0([0, T (ε)], L2) 3 v 7→

(
t 7→

∫ t

0
ρ(τ ; t)v(τ ) dτ

)
∈ C0([0, T (ε)], L2).

By (D.4),
sup

0≤t≤T (ε)
‖(ρ0v)(t)‖L2 . ε sup

0≤t≤T (ε)
‖v(t)‖L2 .

Thus Id + ρ0 is invertible in the Banach algebra of bounded linear operators acting on
C0([0, T (ε)], L2(Rd)). This provides a solution h to (D.8), and we obtain the represen-
tation (D.6) with R1 := ε

−1((Id+ ρ0)
−1
− Id) and R2 = −ρ(0; ·). The bound (D.7) is a

consequence of (D.4). Uniqueness follows from Cauchy–Lipschitz, since A ∈ S0. ut
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