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Abstract. For a triangulated category A with a 2-periodic dg-enhancement and a triangulated ori-
ented marked surface S, we introduce a dg-category F (S,A) parametrizing systems of exact tri-
angles in A labelled by triangles of S. Our main result is that F (S,A) is independent of the choice
of a triangulation of S up to essentially unique Morita equivalence. In particular, it admits a canon-
ical action of the mapping class group. The proof is based on general properties of cyclic 2-Segal
spaces.

In the simplest case, where A is the category of 2-periodic complexes of vector spaces,
F (S,A) turns out to be a purely topological model for the Fukaya category of the surface S.
Therefore, our construction can be seen as implementing a 2-dimensional instance of Kontsevich’s
program of localizing the Fukaya category along a singular Lagrangian spine.
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Introduction

The goal of this paper is to study a certain “2-dimensional symmetry” built into the very
foundations of triangulated categories and thus of homological algebra more generally.
To make it manifest, we represent exact triangles in a triangulated category D, in the dual
fashion:

A C

B

α β

γ

⇐⇒ A
α
→ B

β
→ C

γ
→ A[1]. (0.1)

That is, we assign objects to oriented edges of geometric triangles, and morphisms
to their angles. A morphism of degree 1 is represented by an angle formed by two edges
with different directions (one incoming, one outgoing). The advantage of this dual point
of view is that the most fundamental types of diagrams are now represented by collections
of geometric triangles of the most basic shapes.

Example 0.2. The two halves of an octahedron are represented by two triangulations of
a 4-gon. The octahedral axiom is now interpreted as switching from one triangulation to
the other (flip):

A1

A2

A3

A123

A12
⇐⇒

flip

A1 A2

A123 A3

A12

+1

+1
+1

A1

A2

A3

A123

A23 ⇐⇒

A1 A2

A123 A3

A23

+1

+1

+1

Example 0.3. A Postnikov system in D is a diagram of exact triangles representing an
object A12...n as an iterated extension of (“tower of fibrations” with fibers being) the
given objects A1, . . . , An [GM03, Ch. 4, §2]. Note that there are several possible types of
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Postnikov systems (loc. cit.). In our approach, these correspond to different triangulations
of the (n+ 1)-gon. The octahedral axiom thus allows us to pass from any one type to any
other by a sequence of flips on 4-gons.

. . .

A12...n

A1

A2

A3

A4

An

An−1

A12...n A12...n−1 · · · A12 A1

An

· · · · · ·

A2

+1+1⇐⇒

This 2-dimensional symmetry becomes even more pronounced if D is 2-periodic, i.e., the
shift functor 6 : A 7→ A[1] squares to the identity. In this case we can freely switch
the directions of edges in the geometric triangle representing an exact one as above, by
postulating that such switches amount to applying 6:

A A[1]
⇐⇒

The really important remaining datum is purely 2-dimensional: it is the orientation of the
geometric triangle itself, which determines the directions of the morphisms between the
objects on its edges. We can therefore consider surface Postnikov systems: diagrams of
exact triangles in D, whose associated geometric triangles form a curvilinear triangula-
tion T of an oriented topological surface S, possibly with boundary.

A C

B

Ordinary Postnikov systems are obtained when S is a disk and all the vertices of T
are on ∂S. Standard results of Teichmüller theory imply that any two triangulations of S
with the same underlying set of vertices M are connected by a sequence of flips. This
suggests that an appropriately defined classifying space of surface Postnikov systems
depends, in a very canonical way, only on the oriented surface (S,M) and not on a chosen
triangulation T , in particular, it is acted upon by the mapping class group of (S,M). In the
present paper we make this statement precise and provide a proof. The resulting theory
turns out to be related to subjects such as Fukaya categories, matrix factorizations and
mirror symmetry.

In order to have good classifying spaces of exact diagrams in D, it seems unavoidable
to assume that D comes with an enhancement, a certain refinement of the graded abelian
groups HomD(A,6•B). In this paper we mostly work with dg-enhancements (§1.1),
which allows us to use techniques from the Morita homotopy theory of dg-categories
[Tab07, Toë07] such as model structures, simplicial mapping spaces, homotopy lim-
its, etc.
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In this setting, given any triangulation T of (S,M), we can form the universal Post-
nikov system of type T which is a 2-periodic dg-category LET with the following “uni-
versal property”: Given any perfect 2-periodic dg-category A, enhancing a triangulated
category D, the classifying space of surface Postnikov systems of type T with values in
A is given as the simplicial mapping space

PostT (A) := Map(LET ,A) (0.4)

in the category of 2-periodic dg-categories, localized along Morita equivalences.
Our main result says that, up to Morita equivalence, LET does not depend on T , so

that we obtain an object
F (S,M)

' LET ∈ Hmo(2)

which, up to unique isomorphism, only depends on (S,M). Here, Hmo(2) is the Morita
homotopy category of 2-periodic dg-categories. In particular, the mapping class group of
(S,M) acts on F (S,M) by automorphisms in Hmo(2).

We can refine construction (0.4) to form the classifying dg-category of Postnikov sys-
tems of type T in A

PostT (A) := RHom(LET ,A)

whereRHom denotes Toën’s internal Hom for the category of dg-categories. For the same
reasons as above, this 2-periodic dg-category is acted upon by the mapping class group
of the surface (S,M). In fact, in both cases, the action of the mapping class group is
coherent in the sense of homotopy theory.

As pointed out to us by M. Kontsevich, the dg-category F (S,M) is nothing but a ver-
sion of the Fukaya category of the surface S− (M ∩ S◦) obtained by removing the points
of M lying in the interior of S. The representation of F (S,M) as LET provides a rig-
orous implementation of an instance of his program of “localizing the Fukaya category
along a singular Lagrangian spine” [Kon09, Kon09′]. More generally, he considered a 2d-
dimensional symplectic manifold (U, ω)which can be contracted onto a possibly singular
Lagrangian subvarietyL ⊂ U by the flow along a vector field ξ satisfying Lieξ (ω) = −ω.
In such a situation he suggested to construct a “cosheaf of dg-categories” 8L on L, re-
fining the Fukaya category F(U), which should be recovered as the category of global
sections 8L(L). In particular, different choices of L should lead to different realizations
of F(U).

Our situation corresponds to the simplest case d = 1 when U = S − M , where
(S,M) is a marked surface with ∂S = ∅, which we consider as a symplectic manifold
with respect to some 2-form ω. A triangulation T of (S,M) then gives a 3-valent dual
graph L ⊂ U defined up to isotopy and Lagrangian because dim(L) = 1.

L (0.5)
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Our LET corresponds to 8L(L). Further, the “local” nature of 8L in Kontsevich’s
proposal corresponds to our construction of LET by gluing it out of local data, a certain
system of 2-periodic dg-categories E• = (En)n≥0 such that:

(1) E• is a cocyclic object, in the sense of A. Connes [Con94], in the category dgcat(2) of
2-periodic dg-categories. In particular, the group Z/(n + 1) acts on En by automor-
phisms of dg-categories.

(2) For every n ≥ 0, the dg-category En is Morita equivalent to a dg-enhancement of
D(2)(An -mod), the 2-periodic derived category of representations of the quiver An.
The action of the generator of Z/(n+ 1) corresponds to the Coxeter functor.

(3) The cosimplicial object underlying E• is 2-coSegal in the sense of [DK1].

Property (1) is responsible for the fact that the construction LET only depends on the
orientation of each triangle of T induced from the orientation of the surface S and not on
any particular orientations of its edges. Condition (2) corresponds to the requirement in
[Kon09] that the stalk of 8L at a ramification point of L with valency n + 1 should be
a version of D(An -mod). The 2-coSegal property (3) ensures the coherent independence
of LET from T (or, equivalently, of 8L from L).

We call the dg-category F (S,M) the topological coFukaya category of the marked ori-
ented surface (S,M). Dually, for any perfect 2-periodic dg-category A, the dg-category

RHom(F (S,M),A)

is called the topological Fukaya category of (S,M) with coefficients in A. In the case
where A is the dg-category Perf(2)k of 2-periodic perfect complexes of k-vector spaces,
we introduce the notation

F(S,M) = RHom(F (S,M),Perf(2)k )

and refer to this category as the topological Fukaya category of (S,M). In other words,
the dg-category F(S,M) is the Morita dual of F (S,M). The terminology is chosen to reflect
the descent properties of these constructions: The choice of a spanning ribbon graph 0 of
the surface (S,M) can be regarded as a combinatorial way of encoding an open covering
of the surface. The Morita equivalences

F (S,M)
' LE0 ' holim

−→

dgcat(2)

{3n→30}
En, (0.6)

F(S,M) ' RE0 ' holim
←−

dgcat(2)

{3n→30}
En (0.7)

are immediate by our construction of the topological Fukaya category as a homotopy Kan
extension, and assign a precise meaning to the statement that the topological (co)Fukaya
category is a homotopy (co)sheaf with values in dg-categories. The homotopy limits in
(0.6) and (0.7) are taken with respect to the Morita model structure and can be effectively
computed using standard techniques from the theory of model categories. We illustrate
this in §4.2 where we investigate some examples appearing on Kontsevich’s list [Kon09′,
Pictures].
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For our constructions to work, it is crucial that the system E• of dg-categories
satisfies conditions (1)–(3) above. Note that the most immediate dg-enhancements of
D(2)(An -mod) do not have manifest cyclic symmetry. From the symplectic point of view,
it is known that D(2)(An- mod) is the “Fukaya–Seidel category of the unit disk |z| ≤ 1
equipped with the potential zn+1” (the 1-dimensional An-singularity). However, one does
not obtain a suitable definition of En on this path either. Indeed, the definition of Seidel
[Sei08] requires choosing, first, a deformation of the singularity, i.e., a generic polyno-
mial f (z) = zn+1

+
∑n
i=0 aiz

i and, second, an ordered basis of (0-dimensional) vanishing
cycles of f , which, again, breaks the cyclic symmetry.

Instead, we define En in terms of matrix factorizations of zn+1, in the sense of
D. Eisenbud, slightly modifying the setup of [Tak05]. Our motivation for this approach
is that this matrix factorization category can be interpreted as the homological mirror of
the above mentioned Fukaya–Seidel category, thus mirror symmetry between Landau–
Ginzburg models and matrix factorizations is locally built into our constructions from the
very outset. Our construction uses a new concept of loop factorization in V. Drinfeld’s
Z+-categories and is explained in detail in §2.

The concept of a 2-Segal object was introduced in [DK1] as a unifying concept for
various situations when some object is defined in terms of a choice of a triangulation
but ends up not depending on this choice in a coherent way. In the case of 2-Segal sim-
plicial objects, treated in [DK1], we deal with triangulations of plane polygons and re-
lated instances of associativity, such as, e.g., in the context of Hall algebras. The example
that motivated our study of 2-Segal spaces in [DK1] was the Waldhausen S-construction,
a simplicial space which plays a fundamental role in algebraic K-theory [Gil81]. In [DK1]
we introduced a generalization of the S-construction encompassing arbitrary stable ∞-
categories [Lur06, Lur11]. The present work grew out of our heuristic observation that
for 2-periodic perfect dg-categories, the S-construction has a cyclic, and not just simpli-
cial structure. Passing from simplicial to cyclic objects allows one to extend the polygon
triangulations to triangulations of arbitrary marked oriented surfaces in a nonambiguous
way which, when applied to the S-construction, leads to a precise variant of the surface
Postnikov systems described above. The relevant constructions for the present work are
provided in §3. A more detailed account of the general theory will be given in [DK2].

The starting point of this project was a suggestion of J. Lurie to rigorously estab-
lish the additional cyclic symmetry of the S-construction by constructing a cocyclic dg-
category which corepresents it in dgcat(2). The object E• provides a solution, in the sense
that, given a 2-periodic perfect dg-category A, the simplicial space underlying the cyclic
space Map(E•,A) is weakly equivalent to the Waldhausen S-construction of A. This
relies on a comparison between pre-triangulated dg-categories and stable∞-categories,
which has been carried out by G. Faonte [Fao13]. A more detailed analysis will be given
in [DK2].

In conclusion, we find it remarkable that the observation(
Axioms of homological

algebra

)
←→

(
Flips of

2d triangulations

)
naturally leads to a topological variant of the Fukaya category. This phenomenon seems
to be potentially appealing even to someone with no symplectic motivation whatsoever.
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We would like to point out that there have been various projects addressing Kontse-
vich’s localization program for 2-dimensional symplectic manifolds. We refer the reader
to [STZ11] and the references therein. In higher dimensions, the general problem of lo-
calization on a given spine is treated in [Nad11]. Very recently, a construction similar to
ours has been given in the context of A∞-categories [Nad13]. The main novelty in our
approach is the 2-Segal property which reflects, in a conceptually clear way, the fact that
the category we construct is a topological invariant of the marked surface, coherently
independent of a chosen spine.

More recently, the results of this paper have been used in [HKK14], [KNPS15],
[KNPS17]. In particular, [KNPS15], [KNPS17] suggest a relation to the frameworks of
[GMN13] and [BS15]. Categorical structures that can play the role of coefficients for
forming topological Fukaya categories (similarly to sheaves providing coefficients for
forming cohomology) were introduced in [KS14].

Finally, we have been informed by J. Lurie that, in joint work with A. Preygel, he has
found a coparacyclic version of the cocyclic object E• which is suitable for an analysis
from the point of view of∞-categories and relates to classical concepts from homotopy
theory such as the J-homomorphism. See in this connection [Lur15].

1. Background on the homotopy theory of dg-structures

1.1. Model structures on the category of differential Z-graded categories

Let k be a field and VectZk be the category of Z-graded k-vector spaces. We denote
by 6n, n ∈ Z, the functor of shift of grading: (6nV )i = V i+n. We denote by Modk
the category of cochain complexes of k-vector spaces. The usual tensor product of com-
plexes makes Modk into a symmetric monoidal category, and the shift functor 6 is de-
fined by 6(V •) = 6(k) ⊗ V •, where 6(k) is the vector space k in degree −1 with
zero differential. By a (Z-graded) dg-category we will mean a category A enriched in the
symmetric monoidal category Modk. Note that Modk itself is a dg-category. We denote
by dgcat the category formed by small k-linear dg-categories and their dg-functors. The
category dgcat has a symmetric monoidal structure ⊗ given by the tensor product A⊗B
of dg-categories A and B:

Ob(A⊗ B) = Ob(A)× Ob(B),
Hom•A⊗B

(
(x, y), (x′, y′)

)
= Hom•A(x, x

′)⊗k Hom•B(y, y
′).

Recall that for dg-categories A,B the category Hom(A,B) of dg-functors A → B is
naturally a dg-category so that we have an adjunction

Homdgcat(A,Hom(B, C)) ∼= Homdgcat(A⊗ B, C).

Associated to a dg-category A, there is a graded k-linear category H •(A) with the same
objects as A and, for objects x, y, the graded k-vector space H •(Hom•A(x, y)) as mor-
phism object. This construction is functorial so that a dg-functor f : A → B induces a
functor H •(f ) : H •(A)→ H •(B) of graded k-linear categories.
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Definition 1.1.1. A dg-functor f : A→ B of dg-categories is called:

• fully faithful, resp. quasi-fully faithful, if for any x, y ∈ Ob(A) the morphism of com-
plexes

fx,y : Hom•A(x, y)→ Hom•B(f (x), f (y))

is an isomorphism, resp. a quasi-isomorphism;
• a quasi-isomorphism, resp. quasi-equivalence, if H •(f ) : H •(A) → H •(B) is an

isomorphism, resp. an equivalence of graded k-linear categories.

Dg-functors Aop
→ Modk will be called (right) dg-modules over A, and the dg-category

formed by them will be denoted ModA. We will use the dg-version of the Yoneda embed-
ding

ϒA : A→ ModA, (1.1.2)

which is a fully faithful dg-functor. For background on model categories, see, e.g.,
[Hov99], [DHKS04] and Appendix A to [Lur09a]. The category dgcat carries two
model structures introduced by Tabuada [Tab07]. The first one, which we call the quasi-
equivalence model structure, is characterized as follows:

(QW) Weak equivalences are quasi-equivalences.
(QF) Fibrations are dg-functors f : A→ B such that:

(1) f is surjective on Hom-complexes.
(2) For any x ∈ Ob(A) and any homotopy equivalence v : f (x)→ z in B, there

is a homotopy equivalence u : x → y in A such that f (u) = v (in particular,
f (y) = x).

(QC) Cofibrations are defined by the left lifting property with respect to trivial fibrations.

The initial object in dgcat is the empty dg-category ∅ (no objects). The final object is the
zero dg-category 0 with one object pt and Hom•(pt, pt) = 0. Note that (QF) implies that
every dg-category is fibrant. Let Qe be the class of quasi-equivalences in dgcat, and let

Hqe = dgcat[Qe−1
]

denote the homotopy category of the quasi-equivalence model structure.
It follows from the results of Toën [Toë07] that ⊗ defines a closed symmetric

monoidal structure on Hqe, so that we have dg-categories RHom(A,B) together with
natural isomorphisms (in Hqe)

HomHqe(A⊗ B, C) ∼= HomHqe(A, RHom(B, C)). (1.1.3)

More precisely, Toën considers the situation when k is allowed to be an arbitrary com-
mutative ring and uses⊗L, the derived functor of⊗. In our case when k is a field,⊗ pre-
serves quasi-equivalences and hence does not need to be derived. Note that the internal
Hom is not obtained as a derived functor, in the sense of model categories, of the bifunctor
Hom(A,B), since the latter does not take quasi-equivalences of cofibrant dg-categories
into quasi-equivalences [Toë07, p. 631]. By the main result of [Toë07], the dg-category
RHom(A,B) can be explicitly described as the full dg-subcategory of ModAop⊗B formed
by those dg-modules M satisfying:
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(1) M is cofibrant.
(2) M is right quasi-representable, i.e., for each x ∈ Ob(A) the right dg-module

M(x,−) : Bop
→ Modk, y 7→ M(x, y),

is quasi-isomorphic to a representable dg-module ϒB(f (x)) for some object
f (x) ∈ B.

Recall that, as any category with weak equivalences, dgcat is equipped with simplicial
mapping spaces Map(A,B), obtained by Dwyer–Kan localization. However, as dgcat is
not known to carry a simplicial model structure in the sense of [Hov99], the computation
of Map(A,B) is nontrivial. It was shown in [Toë07] that the mapping spaces can be
computed via simplicial framings, leading to the explicit formula

Map(A,B) ' N(Modrqr
Aop⊗B,W),

the nerve of the category formed by all right quasi-representable Aop
⊗ B-modules and

their weak equivalences. The isomorphisms (1.1.3) can then be refined to the adjunction

Map(A⊗ B, C) ' Map(A, RHom(B, C)) (1.1.4)

of simplicial mapping spaces [Toë07].
Let x, z be objects of a dg-category A, and m ∈ Z. We say that z is realized as an

m-fold shift of x, and write z ' 6mx, if we are given an isomorphism of dg-functors

Hom•(−, z)→ 6m Hom•(−, x), Aop
→ Ck.

Note that 6mx, if exists, is defined uniquely up to a unique isomorphism.
We recall (see e.g. [TV07]) that ModA, equipped with the projective model structure,

is a Modk-enriched model category in which weak equivalences are quasi-isomorphisms
of dg-modules, and all objects are fibrant. We denote by Mod◦A ⊂ ModA the full dg-
subcategory of cofibrant (and automatically fibrant) objects. We also denote by

D(A) = H 0(ModA) = ModA[Qis−1
]

the homotopy category of ModA, which is commonly called the derived category of A.
Thus, we have an equivalence

D(A) ' H 0(Mod◦A).

This can be rephrased by saying that we have natural complexes RHom•A(M,N), given
for each M,N ∈ ModA and satisfying

H iRHom•A(M,N) ∼= HomD(A)(M,6
iN).

We further recall that a dg-moduleM ∈ ModA is called perfect ifM is compact inD(A)
in the categorical sense, i.e., the functor HomD(A)(M,−) commutes with infinite direct
sums. We denote by PerfA the dg-category whose objects are perfect dg-modules and

Hom•PerfA(M,N) = RHom•A(M,N).
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Any dg-functor A→ B gives rise to a Quillen adjunction

f! : ModA←→ ModB : f ∗

where f ∗ is obtained by composing dg-functors Bop
→ Modk with f op. This induces a

dg-functor
f! : PerfA→ PerfB

and a triangulated functor
f ∗ : D(B)→ D(A).

The dg-Yoneda embedding factors through a faithful dg-embedding

βA : A→ PerfA .

Definition 1.1.5. A dg-category A is called perfect if βA is a quasi-equivalence.

It is known that for a perfect A, H 0(A) is an idempotent-complete triangulated category.
We now define a second model structure on dgcat, which we call the Morita model

structure. First, we recall that a dg-functor f : A → B with A 6= ∅ is called a Morita
equivalence if the following equivalent conditions are satisfied:

(1) f! : PerfA→ PerfB is a dg-equivalence of dg-categories.
(2) f ∗ : D(B)→ D(A) is an equivalence of triangulated categories.

See [Kel94] and [Tab07, §2.5] for details, including the treatment of the case when A is
empty. The Morita model structure on dgcat is defined by [Tab07, Th. 0.7]:

(MW) Weak equivalences are Morita equivalences.
(MC) Cofibrations are the same as for the quasi-equivalence model structure.
(MF) Fibrations are determined by the right lifting property with respect to trivial cofi-

brations.

We denote by Mo the class of Morita equivalences and by Hmo = dgcat[Mo−1
] the

homotopy category of the Morita model structure. There is a Quillen adjunction

id : (dgcat,Qe)←→ (dgcat,Mo) : id

which exhibits the Morita model structure on dgcat as a left Bousfield localization (see
[Hir03]) of the quasi-equivalence model structure and hence induces an adjunction of
homotopy categories

F : Hqe←→ Hmo : G

where G is fully faithful.

Proposition 1.1.6. (a) A dg-category is fibrant for the Morita model structure if and only
if it is perfect.

(b) For any dg-category A the canonical dg-functor

βPerfA : PerfA→ PerfPerfA

is a quasi-equivalence. In particular, PerfA is perfect, and βA : A → PerfA is a
Morita equivalence.

Proof. (a) is [Tab07, Prop. 0.9], and (b) is [Toë07, Lemma 7.5]. ut
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Note that, as a consequence, the Yoneda embedding βA : A→ PerfA exhibits PerfA as
a fibrant replacement of A in the Morita model structure.

Example 1.1.7 (Morita duality). Considering k as a 1-object dg-category, we see that
Perfk ⊂ Modk is the full dg-subcategory of complexes with total cohomology space
finite-dimensional. By the above, it is a Morita fibrant replacement of k. The derived
tensor product ⊗L makes Hmo into a symmetric monoidal category with unit object k.
This monoidal structure is closed, with internal Hom objects given by

RHomHmo(A,B) = RHom(A,PerfB)

(fibrant replacement of the second argument) [Tab07, Cor. 0.12]. Accordingly, for a dg-
category A, we will call

A∨ = RHom(A,Perfk)

the Morita dual of A. By the computation of RHom in [Toë07], the dg-category A∨ is
identified with the full dg-subcategory in ModAop formed by the dg-modules M which
are cofibrant and pseudo-perfect, i.e., each M(x) is a perfect complex.

Note that passing to the dual object is a contravariant functor

(−)∨ : Hmoop
→ Hmo. (1.1.8)

As in any closed monoidal category, we say that a dg-category A is dualizable in Hmo if
the canonical dg-functor

A∨ ⊗ B→ RHomHmo(A,B)

is a Morita equivalence for any B.

Definition 1.1.9. A dg-category A is called

• proper if each complex Hom•A(x, y) belongs to Perfk;
• smooth if the diagonal Aop

⊗A-module

A : (x, y) 7→ Hom•A(x, y)

belongs to PerfAop⊗A.

We recall the following result from [TV07].

Proposition 1.1.10 ([TV07, Lemma 2.8]). A dg-category A is dualizable in Hmo if and
only if it is smooth and proper. In this case a dg-module over A is perfect if and only if it
is pseudo-perfect, and so A∨ ' PerfAop is Morita equivalent to Aop.

1.2. The 2-periodic case

Let Vect(2)k , resp. Mod(2)k , be the category of Z/2Z-graded k-vector spaces, resp. cochain
complexes, equipped with the Z/2Z-graded tensor product. The functor 6 of shift of
grading on these categories satisfies 62

= Id.
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We have an obvious Z/2Z-graded analogue of the concept of a dg-category: a small
category enriched over Mod(2)k . We refer to these structures as 2-periodic, or Z/2Z-
graded, dg-categories and will leave out the extra adjective when it is obvious from the
context. We will denote by dgcat(2) the category of Z/2Z-graded dg-categories and their
dg-functors.

All the aspects of the homotopy theory of dg-categories and their dg-modules, as re-
called in §1.1, can be extended to the Z/2Z-graded case without any substantial changes.
A convenient way to compare to the Z-graded theory of §1.1 is as follows [Dyc11, §5.1].
Note that objects of Mod(2)k can be seen as 2-periodic Z-graded cochain complexes over k,
i.e., dg-modules over the commutative dg-algebra

k[u, u−1
], deg(u) = 2, du = 0.

Under this identification, the Z/2Z-graded tensor product corresponds to ⊗k[u±1]. We
have an adjunction

P : Modk ←→ Modk[u±1] = Mod(2)k : F (1.2.1)

where F is the forgetful functor, and P is the functor of 2-periodization given by

P(V •) = V • ⊗k k[u±1
], P (V •)ī =

⊕
i≡īmod 2

V i, ī ∈ Z/2Z.

As explained in [Dyc11], this is a Quillen adjunction of model categories. Applying this
adjunction on the level of Hom-complexes, we get an adjunction

P : dgcat←→ dgcat(2) : F. (1.2.2)

The quasi-equivalence model structure on dgcat(2) is defined by:

(QW(2)) Weak equivalences are quasi-equivalences, i.e., morphisms taken by F into
quasi-equivalences in dgcat.

(QF(2)) Fibrations are defined by the right lifting property with respect to the set of
generating trivial cofibrations that is obtained by applying P to the generating
set in [Tab07]. This leads to the description of fibrations which is the Z/2Z-
graded version of (QF).

(QC(2)) Cofibrations are defined by the left lifting property with respect to trivial fibra-
tions.

As observed in [Dyc11, §5.1], this indeed defines a model structure such that (1.2.2)
becomes a Quillen adjunction. We denote by Hqe(2) the homotopy category of this model
structure.

All results and definitions recalled in §1.1 have obvious 2-periodic analogues. In par-
ticular, we will denote by Hmo(2) the Morita homotopy category of dgcat(2) and will refer
to 2-periodic versions of other statements in §1.1 without further explanation.
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2. Loop factorizations

2.1. Z+-categories and the cyclic category

Definition 2.1.1. By a Z+-category we mean a pair (C, w), where C is a category and
w : IdC ⇒ IdC is a natural transformation. Thusw is a system of morphismswx : x → x

for each x ∈ Ob(C) with fwx = wyf for each morphism f : x → y. If w is clear from
the context, we will omit it from the notation.

This definition is due to Drinfeld [Dr04]. Here are two reformulations. First, let us denote
by Z+ = {0, 1, 2, . . . } the additive monoid of nonnegative integers, and let BZ+ be
the category with one object corresponding to Z+. Since Z+ is commutative, BZ+ is
a symmetric monoidal category. A Z+-category is the same as a category with action
of BZ+.

Second, let Z+-Set be the category of Z+-sets, i.e., sets with a Z+-action. Given
Z+-sets A and B, we define the Z+-set

A⊗Z+ B = A× B/{(n+ a, b) ∼ (a, n+ b), n ∈ Z+}.

This operation makes Z+-Set into a symmetric monoidal category, with unit object Z+
(considered as a Z+-set). Thus a morphism of Z+-sets A ⊗Z+ B → C is the same as a
Z+-bilinear map A× B → C.

Proposition 2.1.2. Let C be a small category. The following two sets of data are in bijec-
tion:

(1) Structures of a Z+-category on C, i.e., natural transformations w : IdC ⇒ IdC.
(2) Enrichments of C in Z+-Set , i.e., ways of defining a Z+-action on each HomC(x, y)

so that the composition is Z+-bilinear.

Proof. Given w, we define, for any f : x → y, the morphism n + f as fwnx = wnyf .
Given an enrichment, i.e., a system of actions of Z+ on each HomC(x, y), we define
wx = 1+ Idx . The details are left to the reader. ut

Example 2.1.3. Let n ≥ 0 and consider the circular quiver Qn with set of vertices given
by Z/(n + 1) and, for every i ∈ Z/(n + 1), an arrow from i to i + 1. Let Qn be the
category freely generated by Qn. Thus Q0

= B(Z+). The category Qn admits a natural
Z+-category structure where wi : i → i is the cycle of degree 1 at i.

We define a Z+-functor between Z+-categories as an enriched functor. Explicitly, if we
write our Z+-categories as (C, w) and (C′, w′), then a Z+-functor between them is an
ordinary functor F : C → C′ such that F(wx) = w′F(x) for each x ∈ Ob(C). The set of
Z+-functors between Z+-categories C and C′ is denoted by FunZ+(C,C

′). We denote by
Z+-Cat the category of Z+-categories with morphisms given by Z+-functors.

Further, FunZ+(C,C
′) is the set of objects of a category FunZ+(C,C

′) whose mor-
phisms are natural transformations η : F → G of Z+-functors. Note that FunZ+(C,C

′)

itself carries a structure of a Z+-category: for η as above we define (n+ η)x = n+ ηx :
F(x)→ G(x) for x ∈ Ob(C) and n ∈ Z+.
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Given Z+-categories C and C′, we define a Z+-category C⊗Z+ C′ with set of objects
Ob(C)× Ob(C) and morphisms given by

HomC⊗Z+C
′((x, x′), (y, y′)) := HomC(x, y)⊗Z+ HomC′(x

′, y′)

where x, y and x′, y′ are objects of C and C′, respectively. This operation provides a
monoidal structure on Z+-Cat with unit given by the Z+-category Q0. We have an ad-
junction

FunZ+(C⊗Z+ C′,D) ∼= FunZ+(C,FunZ+(C
′,D)),

which shows that the monoidal structure on Z+-Cat is closed.

(2.1.4) The cyclic category, cyclic ordinals and cyclic objects. We recall Connes’ def-
inition of the cyclic category 3 [Con94]. The objects of 3 are given by nonnegative
integers where we denote the object corresponding to n ≥ 0 by 〈n〉. We use the map

Z/(n+ 1)→ C, k 7→ exp
(

2πik
n+ 1

)
, (2.1.5)

to identify the elements of Z/(n + 1) with the set of (n + 1)st roots of unity contained
in the unit circle S1

⊂ C. A map f : 〈m〉 → 〈n〉 in 3 is given by a homotopy class of
continuous monotone maps f : S1

→ S1 of degree 1, mapping Z/(m+1) into Z/(n+1).
Following Drinfeld [Dr04], we provide an alternative description of 3.

Proposition 2.1.6. There is a fully faithful functor

FC : 3→ Z+-Cat, 〈n〉 7→ Qn,

which embeds 3 into the category of Z+-categories. ut

More generally, by a (total) cyclic order on a finite set I with |I | = n + 1 > 0, we
mean a class of total orders up to the action of the group Z/(n + 1) of cyclic rotations.
Alternatively, a cyclic order can be defined as a ternary relation of a certain kind [Hun16,
STZ11]. A finite set with a cyclic order will be called a finite cyclic ordinal. Each finite
cyclic ordinal I is isomorphic to some Z/(n+1) and so gives rise to a Z+-category QI as
in Example 2.1.3. We will sometimes replace3 by an equivalent large category3 whose
objects are all finite cyclic ordinals and

Hom3(I, J ) := HomZ+-Cat (Q
I ,QJ ). (2.1.7)

By a cyclic (resp. cocyclic) object in a category C, we mean a contravariant (resp. covari-
ant) functor X : 3 → C. Note that such a functor canonically extends to 3, so we can
talk about objects X(I) ∈ C for any finite cyclic ordinal I .
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2.2. Loop factorizations in Z+-categories

Let (C, w) (or simply C) be an Z+-category. We define a loop factorization in C to be a
functor of Z+-categories F : Q1

→ C. Explicitly, a loop factorization can be viewed a
datum

F =
{
x1

ϕ
33 x0

ψ
ss }

of objects and morphisms in C such that ϕψ = wx0 and ψϕ = wx1 .

Example 2.2.1. Let R be an associative ring, and w ∈ R be a central element. Let PerfR
be the category of finitely generated projective leftR-modules. Multiplication bywmakes
PerfR into a Z+-category. A loop factorization in PerfR is the same as a matrix factor-
ization of w in the standard sense [Eis80]. Further, the construction of dg-categories of
matrix factorizations extends to our context as follows.

Let k be a field and C be a Z+-category. Denote by k[C] the k-linear envelope of C,
i.e., the category with the same objects as C and Homk[C](x, y) being the k-vector space
spanned by the set HomC(x, y). For any two loop factorizations: F as above and F ′ ={
x′1

ϕ′
33 x′0

ψ ′

ss }
in C, we define the Z/2Z-graded k-module Hom•(F, F ′) by

Hom0(F, F ′) = Homk[C](x0, x
′

0)⊕ Homk[C](x1, x
′

1),

Hom1(F, F ′) = Homk[C](x1, x
′

0)⊕ Homk[C](x0, x
′

1).
(2.2.2)

Any element of Hom•(F, F ′) can be represented by a matrix(
α γ

δ β

)
=

(
α 0
0 β

)
+

(
0 γ

δ 0

)
with (α, β) ∈ Hom0(F, F ′) and (γ, δ) ∈ Hom1(F, F ′). We define the differential on
Hom•(F, F ′) by the formulas(

α 0
0 β

)
7→

(
0 ϕ′

ψ ′ 0

)(
α 0
0 β

)
−

(
α 0
0 β

)(
0 ϕ

ψ 0

)
,(

0 γ

δ 0

)
7→

(
0 ϕ′

ψ ′ 0

)(
0 γ

δ 0

)
+

(
0 γ

δ 0

)(
0 ϕ

ψ 0

)
,

(2.2.3)

In this way we get a Z/2Z-graded dg-category, denoted LF(C), whose objects are loop
factorizations in C and the Hom-complexes are given by Hom•(F, F ′).

Theorem 2.2.4. Associating to a Z+-category C the dg-category LF(C) gives a functor

LF : Z+-Cat → dgcat(2).

Proof. This follows directly from the definitions, since the formulas (2.2.2) and (2.2.3)
are intrinsically functorial. ut
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2.3. The cyclic model for D(2)(An- mod) via matrix factorizations

(2.3.1) The root category and its cyclic symmetry. Consider the Dynkin quiver of type
An with its standard orientation:

An =
{1
• →

2
• → · · · →

n
•
}
.

Denote by An -mod the category of finite-dimensional representations of An over k, i.e.,
diagrams V1 → · · · → Vn of finite-dimensional k-vector spaces, and let D(2)(An -mod)
be the derived category of 2-periodic complexes over An -mod. The latter category is
known as the root category for An because its indecomposable objects are in bijection
with roots of the root system of type An [Hap87]. More precisely, for each 1 ≤ i ≤ j ≤ n
we denote by k[i,j ] ∈ An -mod the indecomposable object having k in positions from the
interval [i, j ] and 0 elsewhere. Then indecomposable objects in D(2)(An -mod) are

eij =

{
k[n−j+1,n−i] if i < j,

6k[n−i+1,n−j ] if i > j,
i, j ∈ {0, 1, . . . , n}, i 6= j, (2.3.2)

so that 6eij ' eji in all cases. The Grothendieck group K(D(2)(An -mod)) is identified
with the root lattice for An, and the class of eij is the standard root eij .

Further, D(2)(An -mod) carries a self-equivalence known as the (derived) Coxeter
functor

Cn : D
(2)(An -mod)→ D(2)(An -mod), Cn+1

n ' Id .

It can be defined either as the composition of derived reflection functors [GM03], or char-
acterized intrinsically by the condition that6◦C−1

n is the Serre functor ofD(2)(An -mod),
i.e., we have natural isomorphisms

HomD(2)(An -mod)(V
•,W •)∗ ' HomD(2)(An -mod)(W

•, 6C−1
n (V •)).

The automorphism of K(D(2)(An -mod)) induced by Cn is the Coxeter transformation
cn from the Weyl group WAn = Sn+1. This transformation is the (n + 1)-cycle: cn =
(01 · · · n). Being an equivalence, Cn preserves indecomposable objects and the action
on such objects corresponds to the action of cn on the roots. In particular, the action on
simple modules is

k[n,n] 7→ k[n−1,n−1] 7→ · · · 7→ k[1,1] 7→ 6 k[1,n]. (2.3.3)

Example 2.3.4. Let Pn+1 be the convex plane (n + 1)-gon with vertices labelled by
0, 1, . . . , n in counterclockwise order. We can represent eij as an oriented arc (side or
diagonal) in Pn going from vertex i to vertex j , so applying 6 corresponds to change of
orientation. We say that a triple (i, j, k) ∈ 〈n〉 ' Z/(n + 1) of distinct elements is in
counterclockwise cyclic order if it can be brought by a cyclic rotation to a triple (i′, j ′, k′)
with 0 ≤ i′ < j ′ < k′ ≤ n. For any such triple we have a distinguished triangle in
D(2)(An -mod):

eij → eik → ejk → 6eij ,
which can be depicted as a triangle inscribed into Pn+1, similarly to (0.1):
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0
1

n
n− 1

i

j

k
eik

eij ejk

(2.3.5) Graded matrix factorizations. Let L be an abelian group, andR =
⊕

a∈L Ra be
an L-graded associative k-algebra (with k ⊂ R0). Let w ∈ R0 be a central element, and
ProjLR be the category of finitely generated projective L-graded left R-modules (and their
morphisms of degree 0). As in Example 2.2.1, ProjLR is then a k-linear Z+-category. We
define the dg-category MFL(R,w) to have, as objects, loop factorizations in ProjLR and
Hom-complexes defined analogously to (2.2.2) but with Homk[C] replaced by HomProjLR

.

We call MFL(R,w) the dg-category of L-graded matrix factorizations of w. As with any
category of matrix factorizations, the dg-category MFL(R,w) is perfect. In particular, the
category H 0 MFL(R,w) is triangulated. For i ∈ L, and M ∈ ProjLR , we denote by M(i)
the graded R-module with M(i)n = Mi+n.

Let L = Z/(n + 1) where n ≥ 0. We consider the polynomial ring R = k[z] as an
L-graded k-algebra with deg(z) = 1, and take w = zn+1. We introduce the notation

Tn = MFZ/(n+1)(k[z], zn+1).

The rank of an object F =
{
M1

ϕ
33 M0

ψ
ss }

∈ Tn is, by definition, the rank ofM0 andM1

as free k[z]-modules (these ranks are equal). The shift of grading gives an equivalence of
dg-categories

5n : T
n
→ Tn, 5n

{
M1

ϕ
33 M0

ψ
ss }

=
{
M1(1)

ϕ(1)
11 M0(1)

ψ(1)qq }
, 5n+1

n = Id .

The following is an adaptation of the main result of [Tak05]. We omit the proof as
well as the proofs of the next few followup statements, as they are similar to loc. cit.

Theorem 2.3.6. (a) The triangulated category H 0Tn is equivalent to D(2)(An -mod).
(b) Under this equivalence, the functor induced by 5n corresponds to the derived Cox-

eter functor Cn. ut

The rank one objects of Tn have the form

[i, j ] =
{
R(i)

zj−i //
R(j)

zi−j
oo

}
, i 6= j,

[i, i] =
{
R(i)

Id //
R(i)

zn+1
oo

}
, [i, i]′ =

{
R(i)

zn+1
//
R(i)

Id
oo

}
, i ∈ Z/(n+ 1),

(2.3.7)
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where the exponents are to be interpreted via the identification Z/(n+1) ∼= {0, 1, . . . , n}.
It is clear that

6[i, j ] = [j, i], i 6= j, 6[i, i] = [i, i]′.

One verifies by computing Hom-complexes that [i, i] ' [i, i′] are zero objects in H 0Tn.

Proposition 2.3.8. The [i, j ] exhaust all isomorphism classes of indecomposable objects
in H 0Tn ut

Proposition 2.3.9. Let i, j, k ∈ Z/(n+1) be distinct elements in counterclockwise cyclic
order. Then the degree 0 morphisms

αijk =

(
1 0
0 zk−j

)
∈ Hom0([i, j ], [i, k]), βijk =

(
zj−i 0

0 1

)
∈ Hom0([i, k], [j, k]),

γijk =

(
0 zi−k

1 0

)
∈ Hom0([j, k], [k, i]),

are closed and induce a distinguished triangle in H 0Tn:

[i, j ]
αijk
−−→ [i, k]

βijk
−−→ [j, k]

γijk
−−→ [k, i] = 6[i, k]. ut

The equivalence of Theorem 2.3.6 can be chosen so that

eij 7→ [i, j ], i 6= j, (2.3.10)

and the triangles of Example 2.3.4 correspond to those of Proposition 2.3.9. For this, note
that each of the two diagrams

RGn =
{
[0, 1]

α012
−−→ [0, 2]

α023
−−→ · · ·

α0,n−1,n
−−−−→ [0, n]

}
,

RFn =
{
[0, n]

β01n
→ [1, n]

β12n
−−→ · · ·

βn−2,n−1,n
−−−−−−→ [n− 1, n]

} (2.3.11)

can be considered as a representation of An in Tn. The dg-functor

8Gn : C
(2)(An -mod)→ Tn, V • 7→ RHomAn(R

G
n, V

•),

establishes an equivalence satisfying (2.3.10). A different equivalence 8Fn can be con-
structed using RFn.

2.4. The dg-categories En and their cocyclic structure

We denote by En = LF(Qn) the dg-category of loop factorizations of the Z+-category Qn

from Example 2.1.3. Because the construction C 7→ LF(C) is covariantly functorial in the
Z+-category C, we immediately obtain:

Proposition 2.4.1. The collection E• = (En)n≥0 forms a cocyclic object in dgcat(2). ut
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For i, j ∈ Z/(n + 1), i 6= j , let ϕij be the shortest oriented path from i to j in the
circular quiver Qn. Recall that wi denotes the full circle path beginning and ending at i.
The objects of En are exhausted by the following:

Eij =
{
i

ϕij

55 j
ϕji
uu }

, i 6= j,

Eii =
{
i

wi

55 i
Iduu }

, E′ii =
{
i

Id
55 i

wiuu }
, i ∈ Z/(n+ 1).

(2.4.2)

Proposition 2.4.3. The correspondence

Eij 7→ [i, j ], E′ii 7→ [i, i]
′

extends to a fully faithful dg-functor εn : En→ Tn.

Proof. The definitions imply at once the identifications of the Hom-complexes. ut

Let D(2)ind(An -mod) be the full subcategory in D(2)(An -mod) formed by all indecompos-
able objects, including the zero object. The above proposition, together with Theorem
2.3.6(a), implies an equivalence of categories

H 0(En) ' D
(2)
ind(An -mod). (2.4.4)

Let An be the k-linear envelope of the quiver An, considered as a differential Z/2-
graded category concentrated in even degree with zero differential. The diagrams (2.3.11)
can be considered as dg-functors

rGn , r
F
n : A

n
→ En. (2.4.5)

Proposition 2.4.6. The dg-functors rGn , r
F
n , εn are Morita equivalences.

Proof. For εn, which is an embedding of a full dg-category, the statement follows from
Proposition 2.3.8: each object of H 0Tn is isomorphic to a direct sum of objects from
Im(εn). To prove the statement for rGn , we note that it is quasi-fully faithful: it induces
quasi-isomorphisms on Hom-complexes. By the above, it is enough to prove that εn ◦ rGn
is a Morita equivalence. This follows because, by Proposition 2.3.9, each object of
H 0εn(E

n), and therefore, by the above, each object of H 0Tn, is obtained from objects
in Im(εn ◦ rGn ) by taking iterated cones of morphisms. The case of rFn is similar. ut

2.4.1. E2 and distinguished triangles. In Section 5 below, we provide a thorough analysis
of the universal property of the cyclic object E• in terms of Waldhausen’s S-construction.
Here, we use a more explicit approach identifying the dg-category E2 as a universal dis-
tinguished triangle category.

Let T be a triangulated category equipped with a 2-periodic dg-enhancement. Due to
the 2-periodicity, a triangle

A // B

��
C

+1

__
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in T can be depicted more symmetrically via the diagram

A
+1 // 6B

+1}}
C

+1

__

We will refer to the latter diagram as a symmetric triangle in T. A symmetric triangle in
T is called distinguished if the corresponding asymmetric triangle is distinguished. We
denote by F the 2-periodic dg-category with three objects 0, 1, and 2, freely generated
by closed morphisms p10 : 0 → 1, p21 : 1 → 2, and p02 : 2 → 0 of degree 1. Given
2-periodic dg-categories A, B, we denote by [A,B] the set of morphisms from A to B in
the homotopy category Ho(dgcat(2)).

Proposition 2.4.7. Let T be a triangulated category with 2-periodic dg-enhancement A.
Then the set [F ,A] of morphisms in Ho(dgcat(2)) is in canonical bijection with the set
of isomorphism classes of triangles in T.

Proof. The dg-category F is obtained by iterated pushouts along generating cofibrations
of dgcat(2) and hence cofibrant. By the usual model category formalism, we can therefore
compute the set HomHo(dgcat(2))(F ,A) as homotopy classes of maps from F → A.
Here, two dg-functors f : F → A and g : F → A are homotopic if there exists a
commutative diagram

A

F //

f

<<

g
""

P(A)

p1

OO

p2

��
A

in dgcat(2). Here, P(A) denotes a path object for dgcat(2) which can be explicitly con-
structed as follows (cf. [Tab07]). The objects of P(A) are pairs (x, y) of objects of A
equipped with a closed morphism f : x → y of degree 0 which becomes an isomorphism
in H 0(A). The mapping complex between objects (x, y, f ) and (x′, y′, f ′) is defined as
the suspension of the cone of the map

HomA(x, x
′)⊕ HomA(y, y

′)
(f ′∗,−f

∗)
−−−−−→ HomA(x, y

′).

Now consider the obvious map of sets

Homdgcat(2)(F ,A)→ {symmetric triangles in T = H 0(A)},

which is easily seen to be surjective. Unravelling the definition of the path dg-category, it
is straightforward to verify that two dg-functors from F to A are homotopic if and only
if the corresponding symmetric triangles are isomorphic as diagrams in T. ut
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Remark 2.4.8. Given 2-periodic dg-categories A, B, the set of maps [A,B] can be
canonically identified with the set of connected components of the mapping space
Map(A,B) of the simplicial localization of dgcat(2) along quasi-equivalences. There-
fore, Proposition 2.4.7 provides an interpretation of Map(F ,A) as a classifying space
for triangles in T.

By Proposition 2.3.9, the diagram in H 0(E2)

E01
[f1] // E20

[f2]��
E12

[f3]

YY
(2.4.9)

with

f1 =

(
0 z

1 0

)
, f2 =

(
0 z2

1 0

)
f3 =

(
0 z

1 0

)
is a symmetric distinguished triangle. Analyzing the null homotopies in E2 of the pairwise
composites of the morphisms fi , we can lift (2.4.9) to a diagram in the dg-category E2

E01
f1 //

h21 ,,

E20

h32

��

f2��
E12

f3

YY

h13

UU

with

h21 =

(
0 0
1 0

)
, h32 =

(
0 0
1 0

)
, h13 =

(
0 0
1 0

)
satisfying

d(hij ) = fifj . (2.4.10)

Further, we observe that there are relations in E2

h32f1+f3h21 = idE01 , h13f2+f1h32 = idE20 , h21f3+f2h13 = idE12 , (2.4.11)

and
h13h21 = 0, h32h13 = 0, h21h32 = 0. (2.4.12)

Equivalently, we can reformulate our observation by saying that there exists a dg-functor
f : D → E2 where D is the 2-periodic dg-category with objects 0, 1, 2, generated by
closed morphisms f1 : 0 → 1, f2 : 1 → 2, f3 : 2 → 0 of degree 1, and morphisms
h21 : 0→ 2, h32 : 1→ 0, h13 : 2→ 1 of degree 1 satisfying (2.4.10)–(2.4.12).

Proposition 2.4.13. The functor f : D→ E2 is a Morita equivalence.

Proof. This follows from direct calculation. ut
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We will now give an interpretation of the set of morphisms [E2,A] in Ho(dgcat(2)) in
terms of distinguished triangles in H 0(A). By Proposition 2.4.13, this set is in natural
bijection with the set of morphisms [D,A]. To get a more explicit hold on this morphism
set, we may utilize the model structure on dgcat(2) and pass to a cofibrant replacement
p : D̃→ D.

The dg-category D̃ can be explicitly described as follows. Denote by Q2 the cyclic
quiver with vertices 0, 1, and 2, and arrows 0 → 1, 1 → 2, and 2 → 0. Let D̃ de-
note the 2-periodic dg-category with objects 0, 1, and 2, obtained by adjoining, for every
path γ in Q2, a (not necessarily closed) morphism pγ : s(γ ) → t (γ ) of degree 1, with
differential given by

d(pγ ) =


∑
β◦α=γ pβpα − idi if γ is a degree 1 cycle centered at i,

0 if γ has length 1,∑
β◦α=γ pβpα in all other cases.

Since the category F is freely generated by paths in Q2 of length 1, we have a natural
embedding i : F → D̃. The functor i is a cofibration, since it can be obtained by iterated
pushouts along generating cofibrations. In particular, the dg-category D̃ is cofibrant. The
functor p : D̃→ D is simply obtained by sending all morphisms corresponding to paths
of length ≥ 3 to 0.

Proposition 2.4.14. The functor p : D̃→ D is a quasi-equivalence.
Proof. We may lift the definition of the category D̃ to a Z-graded k[u]-linear category D̃Z

so that the Z/2Z-graded (or equivalently k[u, u−1
]-linear) category D̃ is obtained by

inverting the variable u of degree 2. The only difference lies in the formula

d(pγ ) =
∑
β◦α=γ

pβpα − u idi

when pγ is a degree 1 cycle. The category D admits a similar k[u]-linear lift DZ where we
replace the right-hand sides of (2.4.11) by u id. We have a lifted functor pZ : D̃Z

→ DZ

of k[u]-linear dg-categories and it suffices to show that it is a quasi-equivalence. Using
the filtration of the mapping complexes by powers of u and a standard spectral sequence
argument, it suffices to show that pZ induces a quasi-equivalence on the corresponding
associated graded dg-categories. We have reduced the problem to showing that the functor
p′ : D̃′ → D′ is a quasi-equivalence where the categories D̃′ (resp. D′) are defined like
D̃ (resp. D) but using the formula

d(pγ ) =
∑
β◦α=γ

pβpα

for a degree 1 cycle pγ (resp. replacing the right-hand sides of (2.4.11) by 0). Further,
there is an apparent quasi-equivalence D′ → D′0 where the latter dg-category has three
objects 0, 1, and 2, and three cycles f1 : 0→ 1, f2 : 1→ 2, f3 : 2→ 0 of degree 1 sub-
ject to the relations f2f1 = 0, f3f2 = 0, and f1f3 = 0. Now it can be explicitly verified
that the functor D̃′ → D′0 is the reduced bar-cobar construction of D′0 (cf. [Fao13]) and
hence a quasi-equivalence. Thus D̃′→ D′ is a quasi-equivalence as well. ut
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In summary, we have dg-functors

F
i
−→ D̃

p
−→ D

f
−→ E2

with F and D̃ cofibrant, p a quasi-equivalence, and f a Morita equivalence.

Proposition 2.4.15. Let T be a triangulated category with 2-periodic dg-enhancement A.
(1) A dg-functor F → A representing a triangle in T lifts to a dg-functor D̃→ A if and

only if the triangle is distinguished.
(2) The pullback map [D̃,A] → [F ,A] is an inclusion with image given by the subset

of isomorphism classes of distinguished symmetric triangles in T.
Proof. By definition, a distinguished symmetric triangle in T is a symmetric triangle in T

that is isomorphic as a diagram in T to a cone triangle of the form

A
+1 // 6B

+1��
cone(f )

+1

[[

where f : A→ B is a closed degree 0 morphism in A and cone(f ) denotes the mapping
cone construction in A (which is pre-triangulated in the sense of [BK91]). Therefore,
by the argument of Proposition 2.4.7, a symmetric triangle, represented by a dg-functor
F : F → A, is distinguished if and only if there exists a commutative diagram

A

F
H //

F

<<

G ""

P(A)

p1

OO

p2

��
A

in dgcat(2) where the symmetric triangle represented by G is a cone triangle. We explic-
itly verify that any cone triangle in T can be lifted to a dg-functor D̃ → A as follows.
By construction of the object cone(f ) as a twisted complex, it comes equipped with mor-
phisms in A as depicted in the diagram

A

r
))

f1 // 6B

f2��
cone(f )

f3

[[

s

RR

with f1, f2, f3 closed morphisms of degree 1, satisfying f2f1= dr , f1f3= ds, f3f2= 0,
rf3 + f2s = idcone(f ), f3r = idA, sf2 = id6B . Comparing these formulas with the
defining formulas (2.4.10) and (2.4.11) of D shows that there is an apparent dg-functor
D→ A representing this triangle which can be precomposed with p : D̃→ D to obtain
a dg-functor D̃→ A.
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Hence, we obtain a commutative diagram

F
H //

i
��

P(A)

p2

��
D̃

<<

G̃

// A

in dgcat(2). Since i is a cofibration and p2 a trivial fibration, we can fill in the indicated
functor D̃ → P(A). Composing this functor with p1, we obtain a functor F̃ : D̃ → A

lifting F . On the other hand, an easy calculation shows that any functor F → A which
is a restriction of a functor D̃ → A represents a distinguished symmetric triangle. We
have shown that the map [D̃,A] → [F ,A] surjects onto those functors which repre-
sent distinguished triangles in T. It remains to show that the map is injective. We have a
commutative diagram in dgcat(2)

[F ,A]

j∗

%%
[E2,A] ∼= [D̃,A]

i∗
77

∼= // [A2,A]

where the horizontal map is a bijection by Proposition 2.4.6. In particular, i∗ must be
injective, which concludes the argument. ut

Remark 2.4.16. In analogy with Remark 2.4.8, Proposition 2.4.15 implies that the con-
nected components of the mapping space Map(E2,A) ' Map(D,A) ' Map(D̃,A) are
in bijective correspondence with isomorphism classes of distinguished triangles in T.

Remark 2.4.17. The analogue of statement (1) in Proposition 2.4.15 for A∞-categories
is a result due to M. Kontsevich [Sei08, Prop. 3.8]. While in the context of dg-categories
we are forced to work with the (rather large) cofibrant replacement D̃ of D, using A∞-
categories and A∞-functors, one does not have to replace D. On the contrary, one can
pass to an even more economic minimal model of D: a simple homological perturbation
calculation shows that a minimal model D is given by the A∞-category with objects 0,
1, 2, obtained by adjoining closed morphisms f1 : 0 → 1, f2 : 1 → 2, f3 : 2 → 1 of
degree 1 whose pairwise compositions equal 0, equipped with triple operations

m3(f3, f2, f1) = id0, m3(f1, f3, f2) = id1, m3(f2, f1, f3) = id2 .

The natural morphism F → D has the property that, given a 2-periodic A∞-category A,
a (symmetric) triangle in H 0(A) represented by an A∞-functor F → A is exact if and
only if this functor admits a lift to an A∞-functor D → A. Of course, the simplicity of
the category D, when compared with D̃, comes at a price: the complexity is now hidden
in the amount of data needed to specify an A∞-functor.



Triangulated surfaces in triangulated categories 1497

2.5. Cyclic duality and Morita duality

Given a Z+-category C, the dual Z+-category is defined as C∨ := FunZ+(C,Q
0) [Dr04].

The duality operation provides a functor

(−)∨ : Z+-Catop
→ Z+-Cat.

It is not a perfect duality, i.e., the canonical functor C → C∨∨ need not be an isomor-
phism, nor an equivalence of Z+-categories. However, it induces a perfect duality functor
on cyclic ordinals

(−)∗ : 3op
→ 3, I 7→ I ∗, I ∗∗ = I, QI

∗

' (QI )∨.

Explicitly, for a cyclic ordinal I , the dual cyclic ordinal I ∗ is the set of interstices, i.e., of
minimal cyclic intervals in I :

i′

i

•

•

•

an interstice

another interstice

On the other hand, as we have seen in §1.1, the Morita homotopy category
Ho(dgcat(2)) admits a duality functor

(−)∨ : Ho(dgcat(2))op
→ Ho(dgcat(2)), A 7→ A∨ = RHom(A,Perf(2)k ).

The goal of this section is to understand how the functor

MF : Z+-Cat → dgcat(2)

relates these duality functors.
To this end, for a Z+-category C we define a dg-category L̃F(C) completely analogous

to LF(C) but with the substitutions (ϕ, ψ) 7→ (ψ,−ϕ) and (ϕ′, ψ ′) 7→ (ψ ′,−ϕ′) in the
formulas (2.2.3) for the differentials on the mapping complexes. To indicate this sign
change in a suggestive way, we denote the objects of L̃F(C) by

x1
ψ

33 x0

−ϕ
ss

.

Remark 2.5.1. Assume that C itself has a “duality” functor which is a Z+-equivalence
Cop
→ C∨, x 7→ x∨. Then dualizing an object

x1
ϕ
33 x0

ψ
ss

of LF(C) using the Koszul sign rule yields the object

x∨1
ψ∨
33 x∨0

−ϕ∨

ss

of L̃F(C∨). In such a case, this association extends to an isomorphism of dg-categories
LF(C)op ∼= L̃F(C∨).
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Given a Z+-category C, there is a natural functor of categories

C∨ × C→ Vectk, (F, x) 7→ F ⊗ x, (2.5.2)

where we define F ⊗ x to be the free k-vector space on the set HomQ0(0, F (x)).

Definition 2.5.3. Let C be a Z+-category. We define a dg-functor

ηC : L̃F(C∨)⊗ LF(C)→ Mod(2)k

by the formula

(
F1

ξ

33 F0

−θss
, x1

ϕ
33 x0

ψ
ss )

7→
(
F1

ξ

33 F0

−θss )
⊗
(
x1

ϕ
33 x0

ψ
ss )

where the tensor product is given by (2.5.2) and the differential is determined by the
Koszul rule where F0 and x0 are considered of even degree, while F1 and x1 are consid-
ered of odd degree.

Proposition 2.5.4. For any Z+-functor F : C → D of Z+-categories, the diagram of
dg-categories

L̃F(D∨)⊗ LF(C)

(F∨,id)
��

(id,F ) // L̃F(D∨)⊗ LF(D)

ηD
��

L̃F(C∨)⊗ LF(C)
ηC // Mod(2)k

commutes.

Proof. This follows immediately from the fact that the diagram of categories

D∨ × C
(id,F ) //

(F∨,id)
��

D∨ ×D

⊗

��
C∨ × C

⊗ // Vectk

commutes. ut

Proposition 2.5.5. Let C = Qn. Then the Yoneda embedding

Cop
→ FunZ+(C,Z+-Set)

factors over the canonical embedding C∨ = FunZ+(C, 〈0〉) → FunZ+(C,Z+-Set) and
induces a Z+-equivalence between Cop and the dual Z+-category C∨, and hence, by
Remark 2.5.1, an isomorphism of dg-categories

LF(C)op ∼= L̃F(C∨). ut
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Proposition 2.5.6. Let C = Qn. Then there is a commutative diagram

L̃F(C∨)⊗ LF(C)
ηC // Mod(2)k

LF(C)op
⊗ LF(C)

HomLF(C)(−,−) //

∼=

OO

Mod(2)k

OO

In particular, the functor

L̃F(C∨)→ Fun(LF(C),Mod(2)k ),

adjoint to ηC, factors over RHom(LF(C),Perfk) ⊂ Fun(LF(C),Mod(2)k ). The induced
functor

LF(C∨)→ RHom(LF(C),Mod(2)k )

is a Morita equivalence which exhibits the dg-category L̃F(C∨) as the Morita dual of
LF(C).

Corollary 2.5.7. We have a commutative diagram

3op LF //

∗

��

Ho(dgcat(2))op

∨

��
3

LFop
// Ho(dgcat(2))

relating the duality functors on 3 and Ho(dgcat(2)).

3. Cyclic 2-Segal objects

3.1. The 1- and 2-Segal conditions

We denote by 1 the category of finite nonempty ordinals [n] = {0, 1, . . . , n} and mono-
tone maps. For a category C, a simplicial object X in C is defined to be a functor
X : 1op

→ C and we denote by C1 the category of simplicial objects in C. Simi-
larly, a cyclic object X in C is defined to be a functor X : 3 → C, where 3 denotes
Connes’ cyclic category. We denote by C3 the category of cyclic objects in C. There is
an embedding

ς : 1→ 3

which associates to a finite ordinal the cyclic ordinal corresponding to it by cyclic closure,
that is, ς([n]) = 〈n〉. Thus a cyclic object X in C gives rise to a simplicial object ς∗X
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(often also denoted X) together with endomorphisms (cyclic rotations) tn : Xn → Xn,
satisfying the well known identities [Con94, Ch. III, App. A]

tn+1
n = Id,

∂i tn = tn−1∂i−1 for 1 ≤ i ≤ n, while ∂0tn = ∂n,

si tn = tn+1si−1 for 1 ≤ i ≤ n, while s0tn = t
2
n+1sn.

Suppose now that C has limits. For a simplicial setK and a simplicial object X ∈ C1
we define, following [DK1], the space of K-membranes in X as the object

(K,X) = lim
←−

C
{1p→K}Xp ∈ C. (3.1.1)

Here the limit is taken over all simplices of K . The functor

ϒ∗X : Setop
1 → C, K 7→ (K,X),

is the right Kan extension of X : 1op
→ C along the Yoneda embedding ϒ : 1op

→

Setop
1 .
Suppose now that C carries a model structure. Then we can define derived functors of

the projective limit of C-valued diagrams [DHKS04], and will refer to them as homotopy
limit functors. We will use the notation holim

←−

C
a∈A Za for the homotopy limit of a diagram

(Za)a∈A, and similarly for the derived functors of Yoneda extension functors (loc. cit.).
In particular, we define the derived space of K-membranes in X, denoted (K,X)R , as

(K,X)R ' holim
←−

C
{1p→K}Xp ∈ Ho(C). (3.1.2)

See [DK1, §5.1] for more details. We will need two particular examples of simplicial sets.

Examples 3.1.3. (a) We denote by I [n] ⊂ 1n be the simplicial set (“subdivided inter-
val”) corresponding to the oriented graph

0
• →

1
• → · · · →

n
•.

(b) Let Pn+1 be the standard plane (n + 1)-gon with the set of vertices M =

{0, 1, . . . , n}, as in Example 2.3.4. Let T be any triangulation of Pn+1. By lifting any
triangle σ ∈ T with vertices i, j, k to the triangle 1σ ⊂ 1n with vertices {i}, {j}, {k},
we associate to T a 2-dimensional simplicial subset 1T

⊂ 1n homeomorphic to Pn+1.

We now recall the main definitions of [DK1], the first one being a modification of that of
Rezk [Rez01].

Definition 3.1.4. Let C be a combinatorial model category, and let X ∈ C1 be a simpli-
cial object.

(1) We say that X is 1-Segal if, for every n ≥ 1, the morphism

fn : Xn→ (I [n], X)R = X1 ×
R
X0
· · · ×

R
X0
X1

induced by the embedding I [n] ↪→ 1n is a weak equivalence in C.
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(2) We say that X is 2-Segal if, for every n ≥ 2 and every triangulation T of Pn+1, the
morphism

fT : Xn→ (1T , X)R,

induced by the embedding 1T ↪→ 1n is a weak equivalence in C.
(3) We say that X is unital 2-Segal if it is 2-Segal and, for every n ≥ 2, 0 ≤ i ≤ n − 1,

the square
Xn−1 //

��

X0

��
Xn // X1

is a homotopy pullback square. Here the maps in the square are induced by the ith
degeneracy σi : [n] → [n − 1], the face map ∂1 : [0] → [1], the inclusion [0] →
[n− 1] of the ith vertex, and the inclusion [1] → [n] of the edge {i, i + 1}.

Here, the assumption that C is combinatorial can be relaxed (the concept of homotopy
limits can be defined in much greater generality [DHKS04]). We retain this assumption
for convenience of comparison with [DK1]; working with combinatorial model categories
will be certainly sufficient for our purposes.

Note the particular case when C is an ordinary category with trivial model structure.
In this case the conditions involve underived membrane spaces and say that the corre-
sponding morphisms fn, resp. fT , are isomorphisms.

We now recall the path space criterion, a result from [DK1] which is useful to estab-
lish the 2-Segal property in many cases. For ordinals I and J their join is the set I t J
ordered so that each element of I precedes each element of J . For a simplicial object X
its initial and final path spaces are the simplicial objects P GX and P FX induced from X

by pullback along the endofunctors

i, f : 1→ 1, i(I ) = [0] ∗ I, f (I ) = I ∗ [0].

Theorem 3.1.5 ([DK1, 6.3.2]). A simplicial object X is 2-Segal if and only if both P GX
and P FX are 1-Segal. ut

Let p = 1, 2. A cyclic objectX in C will be called p-Segal if ς∗X is a p-Segal simplicial
object. We will say that a covariant functor 1 → C or 3 → C is p-coSegal if the
corresponding contravariant functor with values in Cop is p-Segal.

3.2. Examples of cyclic 2-Segal objects

Example 3.2.1 (The cyclic nerve and the Z+-nerve). For a small category C its cyclic
nerve NC(C) is the cyclic set defined by

NCn(C) = Fun(Qn,C)

where Qn denotes the underlying category of the Z+-category from Example 2.1.3. In
other words, NCn(C) is the set of cyclic chains of morphisms

x0 → x1 → · · · → xn→ x0
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in C. Similarly, for a small Z+-category C = (C, w) its Z+-nerve NZ+(C) is the cyclic set
defined by

NZ+
n (C) = FunZ+(Q

n,C).

In other words, NZ+
n (C) is the set of cyclic chains of morphisms as above, which form

a factorization of w, i.e., each composition xi → · · · → xi around the circle is equal
to wxi .

Proposition 3.2.2. (a) For any small category C the cyclic set NCC is unital 2-Segal.
(b) For any small Z+-category C the cyclic set NZ+(C) is unital 2-Segal.

Proof. The first statement is proved in [DK1, Th. 3.2.3]. To show that NZ+ C is 2-Segal,
it suffices to show that, for any 0 ≤ i < j ≤ n such that {i, j} is a diagonal of the convex
polygon with vertices 0, 1, . . . , n, we have a corresponding pushout square

Q1

��

// Qj−i

��
Qn−j+i+1 // Qn

of Z+-categories. This follows from the definition of Z+-functors by directly verifying
the universal property. An analogous argument shows unitality. ut

We can now state the main result of this section. Consider the cocyclic object E• in
dgcat(2) from Proposition 2.4.1. We equip dgcat(2) with the Morita model structure in-
troduced in §1.1, so that weak equivalences are Morita equivalences. We define a cyclic
object E• by the formula

E• : 3
op
→ dgcat(2), 〈n〉 7→ (E〈n〉

∗

)op,

where 〈n〉 7→ 〈n〉∗ denotes the cyclic duality from §2.5. Note that, by the compatibility
of cyclic and Morita duality established in Corollary 2.5.7, we have a levelwise Morita
equivalence

E• ' RHom(E•,Perf(2)k ) (3.2.3)

of cyclic objects in dgcat(2).

Theorem 3.2.4. (a) The cocyclic object E• in (dgcat(2),Mo) is 2-coSegal.
(b) The cyclic object E• in (dgcat(2),Mo) is 2-Segal.

Proof. From the adjunction (1.1.4), we deduce that RHom(−,−) maps homotopy col-
imits in the first variable to homotopy limits. Therefore, in light of (3.2.3), (b) follows
immediately from (a). To show (a), we use Theorem 3.1.5 to reduce the task to prov-
ing that the cosimplicial objects P G(E•), P F(E•) are 1-coSegal. We consider the case
of P G(E•); the argument for the other path space is dual. By definition, we have

(P G(E•))n = En+1.
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The key point is now that the Morita equivalences

rGn+1 : A
n+1 '
→ En+1

from Proposition 2.4.6 assemble to give a weak equivalence of cosimplicial objects

A•+1 '
→ P G(E•)

in (dgcat(2),Mo). Here, the cosimplicial structure of A•+1 is obtained in an obvious
way with coface maps given by composing morphisms and codegeneracies by filling in
identity morphisms. Therefore, it suffices to show that the cosimplicial object A•+1 is
1-Segal. Since homotopy fiber products in (dgcat(2))op translate to homotopy pushouts in
dgcat(2), this amounts to verifying that, for every n ≥ 1, the 1-coSegal map

holim
−→

{
A2
← A1

→ A2
← A1

→ · · · ← A1
→ A2}

→ An

is a Morita equivalence. Since the maps A1
→ A2 appearing in the homotopy colimit are

cofibrations in (dgcat(2),Qe) (and hence in (dgcat(2),Mo)), we may replace the homo-
topy colimit by an ordinary colimit. The resulting statement is clearly true. ut

3.3. Background on triangulated surfaces and ribbon graphs

Here we collect some well-known material on surfaces and their triangulations. More
details can be found in [FG06, FST08] and references therein.

3.3.1. Marked oriented surfaces. By a surface we mean a compact, connected, oriented
2-dimensional smooth manifold S with boundary, denoted ∂S. We denote by T 2, S2 and
D2 the 2-dimensional torus, sphere, and disk, respectively.

Definition 3.3.1. A stable marked surface is a pair (S,M) where S is a surface and
M ⊂ S is a nonempty finite subset of points such that:

(1) Each component of ∂S contains at least one point from M .
(2) The following unstable cases are excluded:

(a) S is diffeomorphic to S2, |M| ≤ 2,
(b) S is diffeomorphic to D2, |M| = 1, or |M| = 2 and M ⊂ ∂S.

In what follows, all marked surfaces will be assumed stable, unless indicated otherwise.
For a marked surface (S,M) we have the groups

Diffeo+(S,M), G(S,M) = π0 Diffeo+(S,M)

of orientation preserving diffeomorphisms S → S preserving M as a set, and of isotopy
classes of such diffeomorphisms. The group G(S,M) is known as the mapping class
group of (S,M).
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Remark 3.3.2. It is often convenient to view interior marked points x ∈ M − ∂S as
punctures, by removing them to form the noncompact surface S − (M − ∂S).

Further, when representing surfaces by ribbon graphs (see §3.3.4), it will be conve-
nient to transform (S,M) into a new compact surface where

(1) the interior marked points become closed boundary components,
(2) the marked points on ∂S become closed intervals on the boundary.

The construction which naturally performs the modifications (1) and (2) is called the real
blowup SM of S along M [An12, §2.1], obtained by adding the set of inward tangent
directions at each x ∈ M . It is further convenient to form a noncompact surface by
removing the open boundary intervals in the complement of the preimage of the blown up
marked boundary points creating open ends of the surface. For example, Figure 1 displays
the marked surface given by a disk with one interior and one boundary marked point, as
well as its real blowup which is an annulus with an open end on one of its boundary
components.

⇒

Fig. 1. Disk with two marked points and corresponding real blowup.

Example 3.3.3. As a simple but important case, our definition of a marked surface in-
cludes (Pn+1,M) where Pn+1, n ≥ 2, is a convex (n + 1)-gon in the plane, and M is
its set of vertices. Via a homeomorphism with the closed disk, this is a smooth manifold
with boundary. We have G(Pn+1,M) = Z/(n+ 1).

Definition 3.3.4. A simple curve on a marked surface (S,M) is a continuous map γ :
[0, 1] → M with the following properties:

(1) The endpoints γ (0), γ (1) lie in M . They can coincide.
(2) Except for possible coincidence of the endpoints, γ does not intersect itself, nor M .
(3) If the endpoints coincide, γ (0) = γ (1) = x, then γ gives a nontrivial element of the

fundamental group π1(S −M ∪ {x}, x).

A (simple) arc on (S,M) is an equivalence class of simple curves under isotopies and
reversal of parametrization. We denote by A(S,M) the set of arcs. An oriented arc on
(S,M) is an equivalence class of simple curves under isotopies. We denote by 1(S,M)
the set of oriented arcs.

This definition differs from [FST08, Def. 2.2] in that we allow, as arcs, segments joining
adjacent marked points on the same boundary component. This does not affect the validity
of the results we need, while allowing for a more suggestive interpretation of 1(S,M),
as the following examples show.

Examples 3.3.5. (a) In the situation of Example 3.3.3,1(Pn+1,M) is identified with the
root system of type An.
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(b) Let S = T 2 be a torus and M consist of one point, denoted 0. An oriented arc
γ has a homology class [γ ] ∈ H2(T

2,Z) = Z2 which must be a primitive vector of the
lattice Z2. Thus1(S,M) is identified with the set of primitive vectors in Z2, and A(S,M)
is identified with P1(Q).

3.3.2. Triangulations as systems of arcs. Two arcs are called compatible if there are
simple curves representing them which do not intersect in S −M . It is known [FST08,
Prop. 2.5] that any collection of pairwise compatible arcs can be represented by a collec-
tion of simple curves which pairwise do not intersect in S−M . An ideal triangulation of
(S,M) is defined as a maximal collection of pairwise compatible arcs.

Pairwise nonintersecting curves from a maximal collection cut S into “ideal triangles
with vertices in M”, which are regions σ diffeomorphic to the interior of the standard
plane triangle P3. Each such σ comes with a canonical 3-element set Vert(σ ) of “intrinsic
vertices” (or “corners”) which is equipped with a cyclic order via the orientation of S.
Note that different elements of Vert(σ ) may correspond to the same element of M , i.e.,
the vertices (and even edges) of a triangle can become identified (see Fig. 2). Similarly,
each arc a comes with a 2-element set Vert(a) of intrinsic vertices (“half-edges”), which
can become identified in S if a is a loop.

A

C

B
σ

C

A

B

σ
BC

A

σ

Fig. 2. Vert(σ ) = {A,B,C} in all cases.

3.3.3. Triangulations, tesselations, and spanning graphs. An ideal triangulation T can
be encoded by its dual graph 0T obtained by putting one vertex vσ inside each triangle σ
and joining the vσ by edges corresponding to common edges of the triangles (see (0.5)).
As this construction allows a uniform treatment of all degenerate cases, we recall precise
definitions.

Definition 3.3.6. (a) A graph 0 is a finite, 1-dimensional CW-complex without isolated
points. For a vertex v ∈ Vert(0) we denote by Ed(v) the set of germs of edges
at v (a loop beginning and ending at v gives rise to two germs of edges at v). The
cardinality of Ed(v) is called the valency of v. The set of 1-valent vertices is denoted
by ∂0. A graph is called 3-valent if all vertices have valence 1 or 3.

(b) Let (S,M) be a marked surface. A spanning graph for (S,M) is an embedded graph
0 ⊂ S −M such that ∂0 ⊂ ∂S and both maps

0→ S −M, ∂0→ ∂S −M

are homotopy equivalences.
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Proposition 3.3.7. Let (S,M) be a marked surface. Forming the dual graph defines a
bijection T 7→ 0T between ideal triangulations of (S,M) and isotopy classes of 3-valent
spanning graphs for (S,M). ut

We will further call an isotopy class of (not necessarily 3-valent) spanning graphs 0 for
(S,M) a tessellation of (S,M). Each such 0 encodes a decomposition of S into curvilin-
ear polygons with vertices in M , one polygon for each vertex v ∈ 0 of valence ≥ 3.

3.3.4. Ribbon graphs, Stasheff polytopes, and the tessellation complex. A ribbon graph
is a graph 0 together with a choice of a total cyclic order on each set Ed(v), v ∈ Vert(0).
As any graph embedded into an oriented surface, a spanning graph for (S,M) has a
natural ribbon structure.

Conversely, a ribbon graph 0 gives rise to an oriented surface with boundary 60 as
follows. Each vertex v of 0 corresponds to a ribbon corolla as illustrated in Figure 3.
Further, each edge e of 0 corresponds to a ribbon strip as illustrated in Figure 4. The
ribbon strips are then glued to the ribbon corollas according to the incidence relations
provided by 0. As a result of this procedure, we obtain an oriented surface with boundary
which we denote by 60 . See, e.g., [Pen10, Ch. 1, §1.3] for the case of graphs without
1-valent vertices. If 0 does have 1-valent vertices, they give rise to open ends at the
boundary of 60 . If 0 is a spanning graph for a stable marked surface (S,M), then 60 is
diffeomorphic to the real blowup S̃M from Remark 3.3.2.

v

b0

b1

b2
b3

b4

Fig. 3. Ribbon corolla corresponding to a vertex
v of 0 of valency 5

e

a0

a1

Fig. 4. Ribbon strip corresponding to an
edge e of 0

Note that for a ribbon tree T we have a canonical cyclic order on ∂T , since in this case
the ribbon structure gives an isotopy class of embeddings into R2. Let 0,0′ be ribbon
graphs. A contraction p : 0 → 0′ is a surjective cellular map such that for any vertex
v′ ∈ 0′ the preimage p−1(v′) is a subtree in 0, and the induced map ∂(p−1(v′)) →

Ed(v′) is a bijection preserving the cyclic order.
We denote by Kn the nth Stasheff polytope [Sta63]. Thus, the vertices of Kn are in

bijection with the following three canonically identified sets:

(S) Bracketings of a product of n factors.
(S′) Triangulations of the (n+ 1)-gon Pn+1.
(S′′) Planar 3-valent trees with (n+1) “tails” (1-valent vertices) labelled cyclically from 0

to n.

The bijection between (S′) and (S′′) is a particular case of Proposition 3.3.7. More gen-
erally, faces of Kn of arbitrary dimension are labelled by planar trees with the same tails
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as in (S′) but not necessarily 3-valent. For instance, edges correspond to trees with one 4-
valent vertex, the rest being 3- (or 1-)valent. The maximal face corresponds to a “corolla”
(tree with one vertex of valency n+1). Note that both (S′) and (S′′) allow for the definition
of KI for any finite cyclic ordinal I , with Kn corresponding to I = 〈n〉. We set KI = pt
for |I | ≤ 3.

For a ribbon graph 0, we define its Stasheff polytope as

K0 =
∏

v∈Vert(0)

KEd(v).

A contraction p : 0 → 0′ gives rise to an embedding kp : K0 ↪→ K0′ which realizes
K0 as a face of K0′ .

Let now (S,M) be an arbitrary marked surface and denote by 6(S,M) the set of
isotopy classes of all, not necessarily 3-valent, spanning graphs for (S,M). This set is
partially ordered by degeneration: we say that 0 ≤ 0′ if 0′ can be obtained from 0 by
collapsing some edges to points. In this case, the subgraph shrunk to each vertex of 0′

is a tree, so that we have a contraction 0 → 0′ and the corresponding face embedding
K0 ↪→ K0′ .

Definition 3.3.8. The tessellation complex KS,M is a CW-complex glued from the cells
K0 , 0 ∈ 6(S,M), using the face identifications induced by degenerations.

In particular, vertices of KS,M correspond to ideal triangulations of (S,M), edges corre-
spond to “flips” on 4-gons, as in Example 0.2, and so on. More precisely, a cell of KS,M ,
i.e., an isotopy class of spanning graphs 0, can be seen as encoding a tessellation of
(S,M), i.e., a decomposition of S into curvilinear polygons with vertices in M [Pen10,
Ch.1, Th. 1.25].

The mapping class group G(S,M) acts on KS,M by automorphisms. Crucial for us
will be the following result due to Harer [Har86, Ths. 1.1 and 2.1]).

Proposition 3.3.9. The CW-complex KS,M is contractible. ut

3.4. Cyclic membrane spaces

Let C be a combinatorial model category. Given a cyclic object X ∈ C3 we define, for
every cyclic set D ∈ Set3, the cyclic membrane space to be

((D,X)) = lim
←−

C
{3n→D}Xn.

Here the symbol 3n denotes a cyclic n-simplex, i.e., the cyclic set given by the repre-
sentable functor

3op
→ Set, 〈m〉 7→ Hom3(〈m〉, 〈n〉).

As in the simplicial case, this construction can be expressed in terms of the right Kan
extension ϒ∗ : C3 → CSet3 along the Yoneda embedding ϒ : 3 → Set3, so that we
have a natural isomorphism

((D,X)) ∼= (ϒ∗X)(D).
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Again, we can derive these constructions, defining the derived cyclic membrane space to
be

((D,X))R = holim
←−

C
{3n→D}Xn,

obtaining the description
((D,X))R ' (Rϒ∗X)(D)

in terms of the right homotopy Kan extension along the Yoneda embedding. In particular,
we have ((D,X))R ' ((D, X̃)), where X→ X̃ is an injectively fibrant replacement of X.

3.4.1. From a triangulated surface to a cyclic membrane. Let (S,M) be a stable marked
surface, and let T be a triangulation of (S,M). We denote by T1 and T2 the set of arcs and
triangles of T . Recall from §3.3.2 that each arc a ∈ T1 has a 2-element set Vert(a) of “in-
trinsic endpoints”, which, as any 2-element set, can be canonically considered as a cyclic
ordinal. Recall further that each triangle σ ∈ T2 has a 3-element set Vert(σ ) of “intrinsic
vertices” which is made into a cyclic ordinal by the orientation of S. Whenever an arc a is
a side of a triangle σ (notation a ⊂ σ ), we have an embedding ua,σ : Vert(a)→ Vert(σ )
which can be considered as a morphism in the category 3. In particular, we have an
embedding of the cyclic simplices

(ua,σ )∗ : 3
Vert(a)

→ 3Vert(σ ).

Let T[1,2] be the incidence category of T , with the set of objects being T1 t T2, and
nonidentity morphisms given by inclusions a ⊂ σ . Let UT : T[1,2] → Set3 be the
functor sending:

• an object a to 3Vert(a),
• an object σ to 3Vert(σ ),
• a morphism a ⊂ σ to the morphism (ua,σ )∗.

The cyclic membrane corresponding to T is defined as the colimit

3T
= lim
−→

Set3 UT (3.4.1)

mimicking the way S itself is glued from triangles σ ∈ T2 identified along arcs a ∈ T1.

Remark 3.4.2. The geometric realization |3T
| of (the simplicial set corresponding to)

the cyclic set 3T is a 3-dimensional manifold with boundary. As showed in [DHK85],
the realization of any cyclic set has a natural S1-action. In our case |3T

| is an S1-bundle
over S which is obtained from the tangent circle bundle by performing a surgery at each
point of M (in particular, if S is a compact surface of genus g, then the degree of the
bundle is 2− 2g − |M|). Among other things, this means that |3T

| is independent of T ,
up to homeomorphism. If S is equipped with a holomorphic structure, then |3T

| can be
identified with the circle bundle corresponding to the holomorphic line bundle

TS(logM) = (�1
S(logM))∗

whose sections are holomorphic vector fields on S vanishing on M . This fact can be
obtained by carefully analyzing the case when S is a triangle (with a complex structure)
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and M is the set of its three vertices. In this case by [Dr04], the interior of |3M | =
|32
| is the space of cyclically monotone embeddings M → S1. The Riemann Mapping

Theorem identifies this space with the space of biholomorphisms f from S to the unit
disk D = {|z| ≤ 1} (such an f is uniquely determined by the images of three points on
the boundary). Another way of determining f is by prescribing an interior point s ∈ S
(sent by f to 0) and a tangent direction at s (sent by dsf to the tangent direction of R+ at
0). This provides an identification of the interior of |3M | with the tangent circle bundle
of the interior of S. We omit further details.

3.4.2. From a ribbon graph to a cyclic membrane. We provide a dual description of the
association T 7→ 3T in terms of ribbon graphs which easily allows us to generalize it to
more general polygonal subdivisions.

Let 0 be a ribbon graph. For a vertex v of 0 let B(v) be the set of oriented arcs
comprising the local boundary of the ribbon corolla of v. See Figure 3 where this set is
denoted {b0, . . . , bn}. Note that B(v) has a natural cyclic order inherited from that on
Ed(v), the set of half-edges incident to v. More precisely, B(v) = Ed(v)∗ is the set of
interstices in Ed(v). We denote by 3B(v) the cyclic simplex corresponding to B(v).

For an edge e of0, letB(e) be the 2-element set of boundary components of the ribbon
strip corresponding to e. See Figure 4 where this set is denoted {a0, a1}. In more formal
terms, B(e) = Vert(e)∗, where Vert(e) is the 2-element set of endpoints of e (considered
distinct even if e is a loop). As any 2-element set, B(e) has a unique total cyclic order. We
associate to e the cyclic 1-simplex 3B(e).

For a flag (v, e) consisting of a vertex and an edge of 0, we have an inclusion of cyclic
ordinals uv,e : B(e)→ B(v) and the corresponding embedding of the cyclic simplexes

(uv,e)∗ : 3
B(e)
→ 3B(v).

Let 0[0,1]be the incidence category of 0 with the set of objects being Vert(0)tEd(0) and
morphisms being incidence inclusions. As before, we get a functor U0 : 0

op
[0,1] → Set3

sending e to 3B(e), v to 3B(v) and an incidence v ⊂ e to uv,e∗. We define the cyclic
membrane corresponding to 0 as

30 = lim
−→

Set3 U0.

Example 3.4.3. If T is a triangulation of (S,M) and 0 is its dual ribbon graph, then
Vert(0) = T2, Ed(0) = T1, the functor U0 is identified with UT , and 30 with 3T .

Let p : 0 → 0′ be a contraction of ribbon graphs. For any vertex v′ of 0, we have a
canonical map ∐

v∈p−1(v′)

3B(v)→ 3B(v
′)

of cyclic sets. These maps induce an inclusion of cyclic membranes 30 → 30
′

. Since
this association is functorial, we obtain the following result.
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Proposition 3.4.4. The cyclic membrane construction

Rib→ Set3, 0 7→ 30,

extends to a functor on the category of ribbon graphs with contractions as morphisms.
ut

3.4.3. Mapping class group actions. Let X ∈ C3 be a cyclic object and 0 a ribbon
graph. We define

RX0 := ((3
0, X))R,

where 30 denotes the cyclic membrane corresponding to 0.
Similarly, given a marked surface (S,M) and a triangulation T of S with set of ver-

tices M , we denote by RXT = ((30, X))R the corresponding derived membrane space.

Theorem 3.4.5. Let X be a cyclic 2-Segal object in C3. Then the functor

RX : Rib→ C, 0 7→ RX0,

maps contractions of ribbon graphs to weak equivalences in C.

Proof. It suffices to show that a contraction p : 0 → 0′ of a single edge e of 0 to
a vertex v of 0′ induces a weak equivalence. Without restriction we assume that X is
injectively fibrant. Assume that the edge e is incident to vertices of valency m + 1 and
n + 1, respectively. Then the map of cyclic membranes 30 → 30

′

induced by p is a
pushout of the map

3{0,n,...,n+m} t3{0,n} 3
{0,1,...,n}

→ 3{0,1,...,n+m}.

Evaluating X on this map, we obtain

X{0,1,...,n+m}→ X{0,n,...,n+m} ×X{0,n} X{0,1,...,n}

which is the 2-Segal map corresponding to the subdivision of an (n + m + 1)-gon into
an (n + 1)-gon and an (m + 1)-gon along the edge {0, n}. Consequently, it is a weak
equivalence, and hence, due to the fibrancy assumption, a trivial fibration in C. Since the
map RX0 → RX0′ induced by p is a pullback of the above 2-Segal map, it is a weak
equivalence as well. ut

Let (S,M) be a marked surface and let 6(S,M) be the partially ordered set of isotopy
classes of spanning graphs for (S,M) where, as in §3.3, the order is given by degenera-
tion. The geometric realization |6(S,M)| of the poset 6(S,M) is homeomorphic to the
tessellation complex KS,M from §3.3.4, and hence contractible by Proposition 3.3.9. We
obtain the following immediate consequences.

Corollary 3.4.6. LetX be a cyclic 2-Segal object in C and let (S,M) be a stable marked
surface. Then the object RX0 , 0 ∈ 6(S,M), is, up to weak equivalence, independent of
the choice of 0, and therefore defines a unique isomorphism class of objects in Ho(C)
depending only on (S,M).

Proof. This follows from Theorem 3.4.5, since |6(S,M)| is connected. ut
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Corollary 3.4.7. LetX be a cyclic 2-Segal object in C and let (S,M) be a stable marked
surface. The diagram

6(S,M)→ Ho(C), 0 7→ RX0,

admits a colimit, denoted by RX(S,M), which is, for every 0 ∈ 6(S,M), equipped with a
canonical isomorphism RX0 ∼= RX(S,M) in Ho(C). The mapping class group G(S,M)
acts on RX(S,M) by automorphisms in Ho(C).

Proof. This follows from Theorem 3.4.5 and the fact that |6(S,M)| is connected and
simply connected. ut

Definition 3.4.8. We call the object RX(S,M) the derived membrane space of the surface
(S,M) in X.

Remark 3.4.9. In the above results, we have only used the 1-connectedness of
|6(S,M)|. The contractibility of |6(S,M)| amounts to the statement that there exists
a coherent action of the mapping class group. One way to make this precise for closed
surfaces is to consider the full subcategory Rib3 of Rib spanned by stable, connected
ribbon graphs with each vertex of valence ≥ 3. It is well-known (see, e.g., [Igu02]) that
we have a weak equivalence of topological spaces

|N(Rib3)| '
∐
(S,M)

BG(S,M)

where (S,M) ranges over stable closed marked surfaces. Theorem 3.4.5 implies that the
functor

Rib→ C, 0 7→ RX0,

maps all morphisms in Rib to weak equivalences. Passing to nerves, we obtain a map

|N(Rib)| → |N(W)|

where W denotes the subcategory of weak equivalences in C. This map encodes, for
each stable marked surface (S,M), the choice of an object of C together with a coherent
action of the mapping class group G(S,M). A more refined analysis in the context of
∞-categories will be given in [DK2].

4. Application: Fukaya categories

4.1. Topological Fukaya categories

We apply the theory of cyclic membrane spaces to the cocyclic 2-coSegal object E = E•

from Theorem 3.2.4, considered as a cyclic 2-Segal object in (dgcat(2),Mo)op. We use
the upper index notation LE0 to denote R(Eop)0 , and similarly for other types of derived
membrane spaces. In particular, we write LE(S,M) for R(Eop)(S,M) from Definition 3.4.8.
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Definition 4.1.1. Let (S,M) be a stable marked oriented surface. We call the derived
membrane object

F (S,M)
= LE(S,M)

the topological coFukaya category of (S,M). Given a 2-periodic perfect dg-category A,
we call

RHom(F (S,M),A)

the topological Fukaya category of (S,M) with coefficients in A. We introduce a special
notation for the Morita dual

F(S,M) = RHom(F (S,M),Perf(2)k ),

which is simply called the topological Fukaya category of (S,M).

As immediate consequences of the general theory of derived cyclic membranes, we
obtain the following main results.

Theorem 4.1.2. Let (S,M) be a stable marked oriented surface, and let 0 be a spanning
graph for (S,M). Then we have canonical isomorphisms in Hmo(2)

F (S,M)
' LE0 ' holim

−→ {3
n→30} E

n, F(S,M) ' RE0 ' holim
←−{3

n→30} En,

where the homotopy limits are taken in (dgcat(2),Mo).

Proof. See Corollary 3.4.7. ut

Therefore, while the definition of the topological (co)Fukaya category does not depend
on any choice of a triangulation of (S,M), we may choose a triangulation to compute it
via the descent isomorphisms of Theorem 4.1.2.

Theorem 4.1.3. Let (S,M) be a stable marked oriented surface. The topological
(co)Fukaya categories F (S,M) and F(S,M) admit a canonical action of the mapping
class group of (S,M) via automorphisms in Hmo(2).

Proof. See Corollary 3.4.7. ut

The name “topological Fukaya category” for F(S,M) is justified as follows. First, if
(S,M) = (σ,Vert(σ )) is a triangle, then elements of the cyclic set M∗ are identified
with edges of the triangle σ . For two such edges i, j ∈ M∗ the indecomposable object
Eij ∈ EM = EM

∗

is then visualized by an oriented simple arc α beginning at an inte-
rior point of the edge i and ending at an interior point of the edge j (such arcs form one
isotopy class). Let us denote this object Eα .

i j

α
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Next, let T be a triangulation of a stable marked surface (S,M), and 0 be the corre-
sponding spanning graph. The homotopy limit defining RET = RE0 can be computed
by reducing it to a homotopy fiber product which is then computed by using the concept
of the path object P(A) → A × A of a dg-category A from [Tab07] (see the proof of
Proposition 2.4.7). Explicitly, this means that local arcs in individual triangles as above
can be combined, in the homotopy limit, yielding a large supply of aggregate objects:
(1) Open Lagrangians: isotopy classes of oriented immersed arcs β which begin and end

on ∂S and avoidM . In the real blowup picture they correspond to arcs beginning and
ending on open ends of the blown up surface.

(2) Closed Lagrangians: isotopy classes of oriented closed immersed curves β avoiding
∂S ∪ M and equipped with a flat k∗-principal bundle (completely classified by its
monodromy). In the real blowup picture β is a closed oriented curve inside the blown
up surface.

More precisely, the object Eβ corresponding to an arc or curve β as above is obtained by
gluing together the objects Eα ∈ Eσ for σ being a triangle of T and α being a component
of β ∩ σ . The monodromy for closed curves appears because of the k∗-freedom in iden-
tifying the images of Eα and Eα′ in EVert(b) for adjacent parts α, α′ of β cut by adjacent
triangles with common edge b.

4.2. Examples

As an illustration, we show how our construction relates to some examples from Kontse-
vich’s list [Kon09′, Pictures]. In each case we first exhibit the surface Postnikov system
generating the coFukaya category F (S,M), then refine this to a homotopy colimit presen-
tation via Theorem 4.1.2, and finally explain how to identify F (S,M) or F(S,M) with an
algebro-geometric derived category. We assume the ground field k is algebraically closed.

4.2.1. The affine line. Let (S,M) be a disk with one interior and one boundary marked
point. The ribbon graph 0 displayed in Figure 5 is a spanning graph in (S,M) whose
corresponding real blowup is given by an annulus with an open end on one of its boundary
components.

0 =

Fig. 5. Ribbon graph 0 with corresponding real blowup.

Surface Postnikov system:

A
α
−→ A→ C → 6A (4.2.1)

(one distinguished triangle with two terms being the same).
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Homotopy colimit presentation:

F (S,M)
' E2

t
h
E1tE1 E

1
' A2

t
h
A1tA1 A

1
' A2

tA1tA1 A1
=: L

where we use the Morita equivalences An → En to simplify the homotopy pushout and
then identify it with the usual pushout using the fact that the map A1

t A1
→ A2 is a

Morita cofibration. The usual pushout, denoted L, is the Z/2Z-graded k-linear category
freely generated by the quiver with one vertex and one loop. It corresponds to the part
{A

α
→ A} in (4.2.1).

Algebro-geometric picture: Passing to the perfect envelope we obtain

F (S,M)
' Perf(2)L ' Perf(2)(A1

k),

the Z/2Z-folded category of perfect complexes on the affine line. Dually, we obtain the
category

F(S,M) ' RHom(Perf(2)L ,Perf(2)k ) ' RHom(L,Perf(2)k ),

which can be identified with the full subcategory of Perf(2)(A1
k) consisting of those com-

plexes whose cohomology is compactly supported.
The indecomposable objects of F(S,M) are given by shifts of skyscraper sheaves

on A1. The corresponding Lagrangians can be explicitly visualized in the annulus. The
skyscraper sheaf of length n with support at the origin in A1 corresponds to the curve
which starts at the open end, wraps n times around the annulus and ends at the open end.
A skyscraper sheaf of length n with support at a point λ ∈ A1 with λ 6= 0, corresponds
to a closed curve which wraps around the annulus n times and is equipped with the flat
k∗-principal bundle with monodromy λ. Shifting an indecomposable object amounts to
changing the orientation of the corresponding object.

Dually, we can visualize the generator of the category F (S,M) corresponding to the
vertex of the quiver L. It corresponds to an arc which connects boundary components of
the annulus.

4.2.2. The projective line. Let (S,M) be an annulus with one marked point on each
boundary component. Figure 6 depicts two spanning ribbon graphs and the real blowup.

' P Q

Fig. 6. Spanning ribbon graphs and real blowup.
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Surface Postnikov system:

A

α′

��

α

��

C

+1
??

C′

+1
``

B

__ >> (4.2.2)

(two distinguished triangles with two vertices in common).

Homotopy colimit presentation:

F (S,M)
' (E2

t
h
E1 E

2) th
E1tE1 E

1
' (A2

tA1 A2) tA1tA1 A1
=: K

where we use a similar argument to simplify the homotopy colimit. The Z/2Z-graded
k-linear category K is freely generated by the Kronecker quiver with two vertices and

two parallel arrows. It corresponds to the part
{
A

α //
α′
// B
}

in (4.2.2).

Algebro-geometric picture: Using the classical equivalence b of Beilinson [Bei78], we
identify F (S,M):

F (S,M)
' Perf(2)K = D

(2)(K)
b
−→ Perf(2)(P1

k) = D
(2)(P1

k),{
V •A

α //
α′
// V •B

} b
7→ P• := Cone

{
V •A ⊗OP1(−1)

αt0+α
′t1

−−−−−→ V •B ⊗OP1
} (4.2.3)

with the Z/2Z-folding of the dg-category of perfect complexes on the projective line
P1

k = Proj k[t0, t1]. Since this category is smooth and proper, and hence dualizable with
respect to Morita duality, we obtain

F(S,M) ' RHom(Perf(2)K ,Perf(2)k ) ' Perf(2)Kop ' Perf(2)K ' F (S,M).

Again, we exhibit all indecomposable objects of Perf(2)(P1
k) explicitly as objects of

F(S,M), visualized as immersed Lagrangians in the annulus. The line bundle O(n), n ∈ Z,
corresponds to an oriented arc starting at the open end P , wrapping n times counterclock-
wise around the annulus and ending at the open end Q. The skyscraper sheaf of length n
supported at a finite nonzero point λ in P1

k corresponds to a closed oriented curve wrap-
ping around the annulus n times, equipped with the flat k∗-principal bundle corresponding
to λ. Skyscraper sheaves of length n supported at 0 respectively∞ correspond to oriented
curves beginning and ending at P respectively Q wrapping around the annulus n times.

Dually, we can visualize the generators of F (S,M) corresponding to the vertices of
the Kronecker quiver.
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0 =

Fig. 7. Ribbon graph 0 and real blowup.

4.2.3. The nodal cubic curve. Let (S,M) be the torus with one marked point. We use the
spanning ribbon graph 0 displayed in Figure 7.

Surface Postnikov system:

A
α //
α′
// B

β //
β ′
// C

γ //
γ ′
// 6A (4.2.4)

(two distinguished triangles on the same three objects, having arrows in the same direc-
tion). It differs from (4.2.2) in that C ' Cone(α) is identified with C′ ' Cone(α′).

Homotopy colimit presentation:

F(S,M) ' Perf(2)(P1
k)×

h
Perf(2)k ×Perf(2)k

Perf(2)k . (4.2.5)

Algebro-geometric picture: In the Beilinson equivalence (4.2.3), the dg-vector spaces
given by the cones of α and α′ are the fibers of the perfect complex P• at 0 and ∞.
So an identification of these cones is a datum of descent to the nodal cubic curve C =
P1

k/(0 ∼ ∞). This can be extended to a Morita equivalence

F(S,M) ' Perf(2)(C)

(see [Sib12]). Theorem 4.1.3 implies the existence of an action of SL(2,Z) on Perf(2)(C).
Using the methods of [Sib12], the topological Fukaya categories associated to the ribbon
graph

. . .

with n vertices can be identified with the Z/2Z-folding of the category of perfect com-
plexes on a cycle of n projective lines which, by Theorem 4.1.3, comes equipped with an
action of the mapping class group of the n-punctured torus. Note that, in [BK05, Sib12],
actions of central extensions of these mapping class groups have been constructed on the
Z-graded variants of the above categories. When passing to 2-periodizations of the re-
spective categories, these actions factor through the mapping class group actions which
we construct.
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0 =

0′ =

Fig. 8. Ribbon graphs 0,0′ with corresponding real blowup.

4.2.4. The union of two lines. Let (S,M) be a sphere with three marked points. Two
(equivalent) spanning ribbon graphs 0,0′ of (S,M) are displayed in Figure 8 with the
corresponding real blowup given by a disk with two open interior disks removed.

Using the ribbon graph 0′ we obtain the following.

Surface Postnikov system:

A
α //

B
α′
oo

β //
C

β ′
oo

γ //
6A

γ ′
oo (4.2.6)

(two distinguished triangles on the same three objects, with arrows going in the opposite
directions).

Homotopy colimit presentation:

F (S,M)
' E2

t
h
E1tE1tE1 E

2. (4.2.7)

Algebro-geometric picture: In (4.2.6), the endomorphisms

yB = αα
′, xB = β

′β ∈ End(B)

satisfy xByB = yBxB = 0 and so make B into a module (in F (S,M)) over the algebra
R = k[x, y]/(xy). Further, defining

yA = α
′α, xA = (6γ )(6γ

′) ∈ End(A), yC = γ
′γ, xC = ββ

′
∈ End(C),

we make B and C into R-modules as well, so that the arrows in (4.2.6) commute with
the R-action. Using (4.2.6) as a tilting object and analyzing more carefully the mor-
phisms of complexes, we construct a Morita equivalence F (S,M)

' D
(2)
fg (R) with the

2-periodification of the bounded derived category of finitely generated R-modules. On
the level of objects, the equivalence takes A 7→ R/(x), B 7→ R, and C 7→ R/(y), and
the surface Postnikov system (4.2.6) in F (S,M) corresponds to the system in D(R) given
by

R/(x)
y //

R
pr
oo

pr //
R/(y)

x
oo //

6R/(x).oo (4.2.8)
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The mapping class group of a sphere with three marked points is the symmetric group S3

[FM11]. Therefore, S3 acts on D(2)fg (R) by equivalences of triangulated categories. The
action on objects is given by

(12) : (R/(x), R,R/(y)) 7→ (6R/(x), R/(y), R),

(23) : (R/(x), R,R/(y)) 7→ (R,R/(x),6R/(y)).

For example, the cycle (123) induces a two-step rotation of the above distinguished tri-
angles. Note that all three terms of the surface Postnikov system (4.2.8) have the same
endomorphism ring

HomR(R,R) ∼= Ext•R(R/(x), R/(x)) ∼= Ext•R(R/(y), R/(y)) ∼= R,

in D(2)(R) due to the 2-periodic folding.

5. Application: Waldhausen S-construction

In [DK1], we showed that the Waldhausen S-construction of a stable ∞-category is a
2-Segal space. Generalizing results of [Lur11], it is shown in [Fao13] that the differential
graded nerve Ndg(A) of a perfect dg-category A is a stable∞-category.

In this section, we show that, given a 2-periodic perfect dg-category A, the Wald-
hausen S-construction of the stable∞-category Ndg(A) is weakly equivalent to the sim-
plicial space Map(E•,A). An immediate consequence is the following result, predicted
on a heuristic basis in [DK1].

Theorem 5.1. The Waldhausen S-construction of a 2-periodic perfect dg-category ad-
mits a canonical cyclic structure.

We recall the variant of the Waldhausen S-construction given in [DK1]. For n ≥ 0, let Jn

be the nerve of the category Fun([1], [n]) corresponding to the poset formed by ordered
pairs (i, j) (0 ≤ i ≤ j ≤ n), with (i, j) ≤ (k, l) iff i ≤ k and j ≤ l.

Definition 5.2. Let C be a stable∞-category. We define

SnC ⊂ Fun(Jn,C)Kan

to be the simplicial subset given by those simplices whose vertices are Jn-diagrams F
satisfying the following conditions:

(1) For all 0 ≤ i ≤ n, the object F(i, i) is a zero object in C.
(2) For any 0 ≤ j ≤ k ≤ n, the square

F(0, j) //

��

F(0, k)

��
F(j, j) // F(j, k)

in C is coCartesian.
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By construction, SnC is functorial in [n] and defines a simplicial space SC, which we call
the Waldhausen S-construction or Waldhausen space of C.

To bridge dg-categories and∞-categories, we use the Quillen adjunction

dg : (Set1, Joyal)←→ (dgcat,Qe) : Ndg (5.3)

as introduced in [Lur11]. Here, dgcat is equipped with the quasi-equivalence model struc-
ture of Tabuada and Set1 is equipped with the quasi-category model structure of Joyal.
Further, we have the Quillen adjunction

P : (dgcat,Qe)←→ (dgcat(2),Qe) : F (5.4)

from (1.2.2), where P is given by folding the mapping complexes 2-periodically and F
is the functor which forgets 2-periodicity. In what follows, we leave the F implicit.

There is a canonical dg-functor Un : dg(Jn)→ En extending the assignment

(i, j) 7→ Eij ,

which, under (5.3), is adjoint to the functor Jn → Ndg(E
n) which is nontrivial only on

the 1-skeleton of Jn and sends the edge (i, j) ≤ (k, l) of Jn to the edge of Ndg(E
n) given

by the closed morphism of degree 0(
zk−i 0

0 zl−j

)
: Eij→Ekl . (5.5)

By [Hir03, 17.4.15], the above Quillen adjunctions induce weak equivalences of mapping
spaces

Map
(dgcat(2),Qe)(P (dg(Jn)),A) ' Map(dgcat,Qe)(dg(Jn),A)

' Map(Set1,Joyal)(J
n,Ndg(A)).

Further, we have the formula

Map(Set1,Joyal)(J
n,Ndg(A)) ' Fun(Jn,Ndg(A))Kan

for the mapping spaces with respect to the Joyal model structure on Set1. Hence, pull-
back along the functor Un gives a natural map of simplicial sets

(Un)∗ : Map(2)(En,A)→ Fun(Jn,Ndg(A))Kan.

The following proposition shows that the functor Un is the universal Waldhausen n-
simplex.



1520 Tobias Dyckerhoff, Mikhail Kapranov

Proposition 5.6. For every n ≥ 0, the pullback map (Un)∗ factors into

Map(2)(En,A)

fn ''

(Un)∗ // Fun(Jn,Ndg(A))Kan

Sn Ndg(A)
) 	

66

where fn is a weak equivalence. In other words, the functor (Un)∗ is a weak equivalence
onto the union of those connected components Fun(Jn,Ndg(A))Kan which satisfy condi-
tions (1) and (2) of Definition 5.2. Further, the resulting weak equivalences {fn} assemble
to provide a weak equivalence of simplicial spaces

Map(2)(E•,A)
'
→ S• Ndg(A).

Proof. We utilize the∞-categorical theory of Kan extensions as developed in [Lur09a].
Consider the functor i : 1n−1

→ Jn given by the apparent extension of the association
k 7→ [0, k] on objects. Consider the commutative diagram of simplicial sets

Sn Ndg(A)
� � //

q ''

Fun(Jn,Ndg(A))Kan

i∗

��

Map(dg(Jn),A)'oo

��

Map(2)(En,A)oo

pww

yy

(Un)∗

tt

Fun(1n−1,Ndg(A))Kan Map(dg(1n−1),A)
'oo

(5.7)

The map q is a weak equivalence by [DK1, Prop. 7.3.6(1)]. The map p is a weak equiva-
lence, since it is given by pulling back along the composite

dg(1n−1)
p1
→ An

rGn
→ En

where p1 is a quasi-equivalence and rGn is the Morita equivalence from Proposition 2.4.6.
We claim that the map (Un)∗ factors as indicated by the dashed arrow in (5.7). Assuming
the existence of this factorization, we obtain a commutative diagram

Sn Ndg(A)

'

��

Map(2)(En,A)
fnoo

'uu
Fun(1n−1,Ndg(A))Kan

(5.8)

which shows that fn is a weak equivalence.
To show the claimed factorization, note that, since Sn Ndg(A) is a union of connected

components of Fun(Jn,Ndg(A))Kan, it suffices to show that the factorization exists after
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passing to π0, i.e., to morphism sets in the respective homotopy categories. Pulling back
along Un we obtain

[En,A] → [dg(Jn),A] ∼= [Jn,Ndg(A)] (5.9)

and have to verify that all diagrams in the image of the composite satisfy conditions (1)
and (2). By (a Z/2Z-graded version of) [Toë07, 4.8], we may represent every element
of [En,A] by a dg-functor En → PerfA and hence, by replacing the perfect dg-category
A with the quasi-equivalent category PerfA, by a dg-functor f : En → A. We obtain a
corresponding Quillen adjunction

f! : ModEn ←→ ModA : f ∗.

We now claim that

(i) for every 0 ≤ i ≤ n, the image of the object Eii ∈ En in the model category ModEn
is a homotopy zero object,

(ii) for every 0 ≤ i ≤ j ≤ k ≤ n, there is a commutative diagram

Eij
a //

b

��

Eik

b′

��
Ejj

a′ // Ejk

(5.10)

of degree 0 cycles a, b, c, d in En defined by (5.5). The image of (5.10) under the
Yoneda embedding is a homotopy pushout diagram in the model category ModEn .

Statement (i) follows since the endomorphism ofEii of degree 1 represented by the matrix

h =

(
0 0
1 0

)
satisfies d(h) = id. Therefore, every mapping complex into Eii is contractible, which
implies that hEii ∈ ModEn is a homotopy zero object. Statement (ii) follows from the ob-
servation that the image of the diagram (5.10) in ModEn consists of cofibrant objects, and
the morphism b is a (generating) cofibration given precisely by adjoining the contracting
homotopy h. Further, one explicitly computes that the diagram is a strict pushout diagram
in ModEn so that it is also a homotopy pushout.

Applying the left Quillen functor f!, we deduce that the image of Eii in ModA is
a homotopy zero object and the image of each diagram (5.10) is a homotopy pushout
in ModA. By [Lur11, 1.3.4.24], we deduce that the coherent diagram Jn → Ndg(A)

obtained by pulling back f along Un satisfies conditions (1) and (2) of Definition 5.2.
Here we note that, by arguments similar to [Lur11, 1.3.4.5], the∞-category Ndg(Mod◦A)
is the ∞-category obtained by inverting the quasi-isomorphisms in the model category
ModA. ut
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[Toë07] Toën, B.: The homotopy theory of dg-categories and derived Morita theory. Invent.
Math. 167, 615–667 (2007) Zbl 1118.18010 MR 2276263
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