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Abstract. We show that every finite algebra which is finitely related and lies in a congruence
modular variety has few subpowers. This result, combined with other theorems, has interesting
consequences for the complexity of several computational problems associated to finite relational
structures: the constraint satisfaction problem, the primitive positive formula comparison problem,
and the learnability problem for primitive positive formulas. Another corollary is that it is decidable
whether an algebra given by a set of relations has few subpowers.
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1. Introduction

By an algebra A we mean a nonempty set, called the universe of A, together with a
set (possibly indexed) of finitary operations on it, called the basic operations of A. An
algebra is finite if its universe is finite. The main result of this paper shows that two
important properties of finite algebras are equivalent under a certain additional finiteness
assumption.

Finitely related algebras

We first discuss the required finiteness condition.
Most interesting properties of an algebra, like its subuniverses, congruences, automor-

phisms, etc., depend on its term operations rather than on the particular choice of basic
operations. Therefore, the clone of an algebra, i.e., the set of all its term operations, is an
invariant of the algebra which is sufficient for most purposes. Every clone C on a finite
set A is determined by a set R of relations on A in the sense that C is equal to the set of
all operations which are compatible with every relation in R [15, 29] (see Section 2 for
definitions). If R can be chosen finite, we call C finitely related. We call a finite algebra
finitely related if its clone is. Informally, an algebra is finitely related if it has a finite de-
scription in terms of relations. Finitely related algebras have also been called predicately
describable, finitely definable, of finite relational degree, or of finite degree.
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A classical result of Baker and Pixley [2] implies that every finite algebra with a near-
unanimity term operation (that is, an operation t of arity at least 3 such that

t (a, . . . , a, b, a, . . . , a) = a

for any a, b and any position of b) is finitely related. This includes all finite lattices and
their expansions, i.e., algebras obtained from lattices by adding operations. A recent result
of Aichinger, Mayr, and McKenzie [1] is another source of examples: it implies that
all finite quasigroups and their expansions (like finite groups, rings and modules) are
finitely related. There are both finitely related and non-finitely related (expansions of)
semigroups [24, 25, 40]. The simplest example of a non-finitely related algebra is the
two-element implication algebra ((0, 1); {→}), where→ is the implication regarded as
a binary operation (see [24] for an elementary proof).

Finitely related algebras play an important role in several computational problems
parametrized by finite sets of relations, including the fixed-template constraint satisfaction
problem (CSP).

Congruence modularity and few subpowers

A variety is a class of algebras of the same signature defined by a set of identities, where
an identity is a universally quantified equation. We say that a variety V is congruence
modular if the congruence lattice of every algebra in V is modular. We denote by CM the
class of all algebras which are members of a congruence modular variety.

Congruence modular varieties (and algebras therein) are among the most studied ob-
jects in universal algebra. On the one hand, they are in a sense manageable since strong
results are applicable to all algebras in CM, in particular, the commutator theory [27]. On
the other hand, the class CM contains most of the classical types of algebras: groups, rings,
modules, lattices (but not all semigroups or semilattices). In fact, the above mentioned
examples belong to one of two important subclasses of CM: CD and CP. An algebra is
in CD [CP] if it belongs to a congruence distributive [permutable] variety, where a variety
V is congruence distributive [congruence permutable] if the congruence lattice of every
algebra in V is distributive [congruences of each algebra in V permute with respect to the
relational product]. Examples of algebras in CD include all algebras with a near-unanimity
term operation (e.g., lattices) and also the two-element implication algebra. Expansions
of quasigroups are in the class CP.

The property of having few subpowers is of much more recent origin. A finite algebra
A has few subpowers if, for some polynomial p, the number of subalgebras of An is
less than 2p(n). This notion was introduced by Berman, Idziak, Marković, McKenzie,
Valeriote, and Willard [13] (building on earlier work by Bulatov, Chen and Dalmau [18,
19, 23]). A number of characterizations were given in this influential paper, among them
the following: A has few subpowers iff, for some polynomial q, each subalgebra of An has
a generating set of size q(n). Such “compact” representations of subalgebras of powers
were used to devise a polynomial algorithm for solving a large class of CSPs [32]. Another
remarkable result based on compact representations is that each finite algebra with few
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subpowers is finitely related [1]. (In fact, by [37], a finite idempotent algebra A has few
subpowers iff each expansion of A is finitely related.)

Interestingly, an equivalent concept to having few subpowers was independently
found by Kearnes and Szendrei [35] in connection with the study of relational clones.

The class FS of algebras with few subpowers contains the classes CP and NU (the class
of algebras with a near unanimity term operation), and is contained in CM [13] as shown
in Figure 1, left (note that our definition of the few subpowers property applies only to
finite algebras, but some of the equivalent characterizations, as item (iii) in Theorem 2.8,
make sense in general, and the aforementioned inclusions are true for general algebras
with such alternative definitions).

CP NU

FS CD

CM

(a) General algebras

CP NU = CD

FS = CM

(b) Finitely related algebras

Fig. 1. Comparison of some classes of algebras; arrows depict inclusions.

Main result

The main result of the paper affirmatively answers the Edinburgh conjecture [17], also
known as the Valeriote conjecture.

Theorem 1.1. If A is a finitely related finite algebra in CM, then A has few subpowers.

The proof of Theorem 1.1 covers Sections 3 and 4. This theorem generalizes the main
result of [3] that every finitely related finite algebra in CD has a near-unanimity term
operation (known as the Zádori conjecture). Indeed, if an algebra has few subpowers and
is in CD, then it necessarily has a near-unanimity term operation by [13, 38]. In Figure 1
(right), the classes NU, CP, FS, CD, CM are compared within the class of finitely related
algebras.

A combination of Theorem 1.1 with the already mentioned results gives:

Corollary 1.2. The following are equivalent for a finite algebra A:

(i) A is finitely related and is in the class CM.
(ii) A has few subpowers.

Theorem 1.1 can be viewed from several perspectives. One way to read it is that a finite
algebra A in CM can be approximated by algebras with few subpowers. Indeed, if R =
{R1, R2, . . . } is a set of relations that determines the clone C of the algebra A, and Ci is the
clone determined by {R1, . . . , Ri}, then C is equal to the intersection of the descending
chain C1 ⊇ C2 ⊇ · · · and each Ci in the chain has few subpowers (this follows from
Theorem 1.1 since the class CM is closed under expansions).
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Another interpretation of Theorem 1.1 is that it gives a nontrivial implication between
two Maltsev conditions under a finiteness assumption. A Maltsev condition is, roughly,
a condition stipulating the existence of terms satisfying certain identities. Many classes
of algebras (e.g., CP, CD, CM, NU, FS) can be characterized by Maltsev conditions and the
corresponding terms serve as a useful technical tool for studying these classes.

Recent development has added numerous interesting implications between Maltsev
conditions on four finiteness levels: finitely related algebras, finite algebras, algebras in
locally finite varieties, and general algebras. Theorem 1.1 can be formulated as “Gumm
terms⇒ cube term” for finitely related algebras, and its consequence from [3] as ”Jónsson
terms ⇒ near-unanimity term”. For finite algebras we have, for instance, “Taylor term
⇒ cyclic term” [8]. Notable recent examples for algebras in locally finite varieties in-
clude “Taylor terms⇒ weak near-unanimity term” [39], “Taylor term⇒ Siggers term”
[41, 34]. The implications “Jónsson/Gumm terms ⇒ directed Jónsson/Gumm terms”,
which was very recently shown to hold for general algebras [33], serves as a useful tool
in this paper. See also [36] for further interesting implications.

Finally, Theorem 1.1 can be regarded as a source of examples for non-finitely related
algebras. Indeed, every finite algebra in CM which does not have few subpowers is non-
finitely related.

Consequences

Theorem 1.1, combined with other results, has interesting consequences for several com-
putational problems associated to a finite relational structure A. Theorem 1.1 together
with [32] implies that the CSP over A is solvable in polynomial time whenever the cor-
responding algebra A is in CM; together with [16, 17], it gives a P/coNP-complete di-
chotomy for comparison of primitive positive formulas over A; together with [32, 22], it
classifies learnability of the relation defined by a primitive positive formula over A. The
role of Theorem 1.1 in the last two results is to show that there is no gap between pos-
itive (tractability) results for the case that A has few subpowers and negative (hardness)
results for the case that A is not in CM. The main result also implies that it is decidable
(given A on input) whether A has few subpowers. The consequences and open problems
are discussed in Section 5.

2. Preliminaries

In this section we collect necessary definitions and results. We refer to [12, 21, 42] for the
basics of universal algebra, and to [43] for graph theory. Throughout the paper, we use
the notation

[n] = {1, . . . , n}.
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2.1. Algebras and varieties

An n-ary operation on a set A is a mapping f : An → A. We only consider finitary
operations, i.e., n is a natural number. For subsets A1, . . . , An ⊆ A, we write

f (A1, . . . , An) = {f (a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}.

An operation is idempotent if it satisfies the identity f (a, . . . , a) = a.
An algebra is a pair A = (A;F), whereA is a nonempty set, called the universe of A,

and F is a set (possibly indexed) of operations on A, called the basic operations of A. We
use a boldface letter to denote an algebra and the same letter in the plain type to denote its
universe. An algebra is idempotent if all of its operations are idempotent. Two algebras
have the same signature if their operations are indexed by the same set and corresponding
operations have the same arities.

A clone onA is a set of operations onAwhich contains the projections (the operations
πni defined by πni (a1, . . . , an) = ai , where 1 ≤ i ≤ n) and is closed under composition.
The smallest clone containing all the basic operations of an algebra A is denoted Clo(A)
and its elements are called term operations of A. A formal expression defining a term
operation from the basic operations is called a term. If t is a term, then we denote by tA

the corresponding term operation in A, or we just write t if no ambiguity is imminent.
The full idempotent reduct of an algebra A is the algebra with the same universe

whose operations are all the idempotent term operations of A.
A subset B of the universe of an algebra A is called a subuniverse if it is closed under

all operations (equivalently term operations) of A. Given a nonempty subuniverse B of
A we can form an algebra B by restricting all the operations of A to the set B. In this
situation, we say that B is a subalgebra of A and we write B ≤ A or B ≤ A.

The product of algebras A1, . . . ,An of the same signature is the algebra A1×· · ·×An
whose universe is A1 × · · · × An on which the basic operations are computed coordi-
natewise. The product of n copies of an algebra A is the n-th power of A and is de-
noted An. A subalgebra, or a subuniverse, of a product of A is called a subpower of A. If
R ≤ A1 × · · · × An and, for each i, the projection of R onto the i-th coordinate is equal
to Ai , then we say that R is subdirect in the product and write R ≤sd A1 × · · · × An.

An equivalence relation ∼ on the universe of an algebra A is a congruence if it is
a subuniverse of A2. The corresponding quotient algebra A/∼ has, as its universe, the
set of ∼-blocks, which are denoted [a]∼, a ∈ A, and the basic operations of A/∼ are
defined using arbitrarily chosen representatives. The set of congruences of A forms a
lattice, called the congruence lattice of A.

A variety is a class of algebras of the same signature closed under forming subal-
gebras, products (possibly infinite), quotient algebras and isomorphic copies. A funda-
mental theorem of universal algebra, due to Birkhoff [14], states that a class of similar
algebras is a variety if and only if this class can be defined via a set of identities. The
smallest variety containing A is denoted HSP(A).
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2.2. Relational structures

An n-ary relation on a set A is a subset of An, where n is a natural number. Alternatively,
a relation can be represented as a mapping An → {true, false}. We will use both
formalisms, e.g. (1, 2, 3) ∈ R and R(1, 2, 3) both mean that the triple (1, 2, 3) is in the
ternary relation R.

A relational structure is a pair A = (A;R), where A is the universe of A and R is
a set of relations on A. We say that relation S on A is primitively positively definable, or
pp-definable, from A if it can be defined from the relations in A by a pp-formula, that
is, a first order formula that uses conjunction, existential quantification, and the equality
relation. For example,

S(x, y, z) iff (∃u, v) R(x, u) ∧ R(u, v) ∧ R(v, y) ∧ (y = z)

is a pp-definition of a ternary relation S from a binary relation R. In accordance with the
CSP terminology, clauses of a pp-formula will be called constraints.

The equality relation on A is denoted 1A = {(a, a) : a ∈ A}; it is pp-definable from
every relational structure on A. The projection of a relation R ⊆ An onto coordinates
i1, . . . , ik (not necessarily distinct) is denoted

πi1,...,ik (R) = {(ai1 , . . . , aik ) : a = (a1, . . . , an) ∈ R};

it is pp-definable from R (more precisely, from any relational structure containing R). If
R ⊆ An, B ⊆ A, i ∈ [n], then by fixing the coordinate i of R to B we mean forming the
relation

{(a1, . . . , an) ∈ R : ai ∈ B}.

This relation is pp-definable from R and the unary relation B. If S, T ⊆ A2, then the
relational composition of S and T is defined by

S ◦ T = {(a, c) ∈ A2
: (∃b ∈ A) (a, b) ∈ S, (b, c) ∈ T },

it is pp-definable from S and T . Projection, coordinate fixing, and relational composition
will be performed more generally on setsR ⊆ A1×· · ·×An, S ⊆ A1×A2, T ⊆ A2×A3.

We say that an operation f : An → A is compatible with a relation R ⊆ Am if, for
any a1, . . . , an ∈ R, the tuple f (a1, . . . , an) (where f is applied coordinatewise) is in R.
In other words, f is compatible with R if R is a subpower of the algebra (A; {f }). Notice
that f is idempotent iff it is compatible with every singleton unary relation on A.

An operation compatible with all relations of a relational structure A is a polymor-
phism of A. The set of all polymorphisms of A is denoted Pol(A). This set of operations
is always a clone on A. More interestingly, every clone on a finite set can be obtained in
this way by the following theorem.

Theorem 2.1 ([15, 29]). For every finite algebra A there exists a relational structure A
(with the same universe) such that Pol(A) = Clo(A). In this situation, R ≤ An iff R is
pp-definable from A (assuming R 6= ∅).
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A finite algebra is called finitely related if finitely many relations suffice to determine
Clo(A):

Definition 2.2. A finite algebra A is said to be finitely related if there exists a relational
structure A with finitely many relations such that Pol(A) = Clo(A).

2.3. Congruence modularity

Definition 2.3. A variety is called congruence modular if all algebras in it have modular
congruence lattices. We define CM to be the class of all algebras that belong to some
congruence modular variety.

Gumm [30] characterized the class CM by a useful Maltsev condition. The terms involved
in the condition are now called Gumm terms. A stronger Maltsev condition was given
in [33] by means of directed Gumm terms.

Theorem 2.4 ([33]). The following are equivalent for an algebra A:

• A is in CM.
• There exists a natural number m and a sequence of ternary terms p1, . . . , pm, q in

Clo(A), called directed Gumm terms of A, such that the following identities are satis-
fied:

p1(a, a, b) = a,

pi(a, b, a) = a for all i ∈ [m],
pi(a, b, b) = pi+1(a, a, b) for all i ∈ [m− 1],
pm(a, b, b) = q(a, b, b),

q(a, a, b) = b.

Note that from the second and the fifth identity it follows that directed Gumm terms of A
are necessarily idempotent.

2.4. Few subpowers

Definition 2.5. A finite algebra A is said to have few subpowers if there exists a polyno-
mial p such that, for every n, the number of subuniverses of An is less than 2p(n).

Theorem 2.8 gives some of the many equivalent characterizations of the few subpowers
property. To state the theorem we require the following definitions.

Definition 2.6. A cube term of an algebra A is an n-ary term t ∈ Clo(A) such that for
each 1 ≤ i ≤ n, A satisfies an identity of the form t (x1, . . . , xi, . . . , xn) = y where
xi = x, {x1, . . . , xn} ⊆ {x, y}, and x and y are different variables.

Definition 2.7. A pair (E,D) is a cube term blocker for A if E � D ≤ A and for every
t ∈ Clo(A) there exists a coordinate i such that

t (D, . . . ,D,E,D, . . . ,D) ⊆ E,

where E is at the i-th coordinate.
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Theorem 2.8 ([13, 37]). The following are equivalent for a finite algebra A:

(i) A has few subpowers.
(ii) There are no cube term blockers for the full idempotent reduct of A.

(iii) A has a cube term.

Proof. The equivalence of (i) and (iii) was proved in [13]. The equivalence of (ii) and
(iii) was first proved in [37] and an alternative proof was given in [11]. ut

The following easy relational translation of cube term blockers will be particularly useful.

Lemma 2.9 ([37]). Let A be a finite algebra and (E,D) a pair of subalgebras of A with
E ≤ D. Then the following are equivalent:

• (E,D) is a cube term blocker for A.
• For each n, the relation Dn \ (D \ E)n is a subuniverse of An.

2.5. Graphs and digraphs

By a graph we mean an undirected graph with a finite vertex set, where loops and mul-
tiple edges are allowed. A cut vertex is a vertex whose removal increases the number of
connected components. A graph is biconnected if it is connected and has no cut vertices.
A block of a graph is a maximal biconnected (induced) subgraph. Note that the intersec-
tion of the set of vertices of two different blocks is either empty or equal to {v} for a cut
vertex v. An example is shown in Figure 2. Notice that a connected graph in which every
block is a single edge is a tree.

Fig. 2. A graph, its cut vertices (filled-in) and blocks (encircled).

A walk in a graph S, or an S-walk, from a to b is a sequence of vertices a = a1, a2,
. . . , ak = b such that ai and ai+1 are joined by an edge for each i ∈ [k − 1].

A subset S ⊆ B × C can be regarded as a bipartite graph without multiple edges
whose partite sets are disjoint copies B ′ (the left partite set) and C′ (the right partite set)
of π1(S) and π2(S), and {a, b} (where a ∈ B ′ and b ∈ C′) is an edge iff (a, b) ∈ S. In
this context, S is called linked if the associated bipartite graph is connected.

A subset S ⊆ A× A will be sometimes regarded as a directed graph with edge set S.
A directed walk in S, or a directed S-walk, of length k − 1 from a to b is a sequence of
vertices a = a1, a2, . . . , ak = b such that (ai, ai+1) ∈ S for each i ∈ [k − 1]. It is closed
if a = b. A vertex a ∈ A is a source (sink, respectively) if it has no incoming (outgoing,
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resp.) edge. The smooth part of S is the largest B ⊆ A such that S ∩ (B × B) has no
sources or sinks in B. It can be described as the set of vertices with a directed S-walk of
length |A| from them and a directed S-walk of the same length to them. In particular, the
unary relation B is pp-definable from S.

3. Proof of the main theorem

3.1. Reduction to binary structures

In this subsection we show that in order to prove Theorem 1.1 it is enough to consider
idempotent algebras determined by binary relational structures, i.e., relational structures
with at most binary relations. This will make the presentation technically easier. The
reduction is based on the following fact (see [3]).

Proposition 3.1. Let A be a relational structure whose relations all have arity at most k.
Then there exists a binary relational structure Ā with universe Ā = Ak such that

Pol(Ā) = {f̄ : f ∈ Pol(A)},

where f̄ is defined (if f is n-ary) by

f̄ ((a1
1, . . . , a

1
k ), (a

2
1, . . . , a

2
k ), . . . , (a

n
1 , . . . , a

n
k ))

= (f (a1
1, . . . , a

n
1 ), f (a

1
2, . . . , a

n
2 ), . . . , f (a

1
k , . . . , a

n
k )).

Using this proposition we can reduce the main theorem to the following:

Theorem 3.2. If A is a finite binary relational structure containing all the singleton
unary relations such that the algebra A = (A,Pol(A)) is in CM, then A has few sub-
powers.

Proof of Theorem 1.1 assuming Theorem 3.2. Let A be a finite, finitely related algebra
in CM and let A be a relational structure with finitely many relations (say all of them
have arity at most k) such that Pol(A) = Clo(A). Let Ā be the relational structure from
Proposition 3.1. By Theorem 2.4, Ā = (Ā,Pol(Ā)) is in CM since p̄0, . . . , p̄m, q̄ are
directed Gumm terms of Ā whenever p0, . . . , pm, q are directed Gumm terms of A.

Now we add to Ā all the singleton unary relations, call this structure Ā′, and define
Ā′ = (Ā,Pol(Ā′)). The algebra Ā′ is still in CM since directed Gumm terms are idempo-
tent. By Theorem 3.2, Ā′ has few subpowers. Therefore, by Theorem 2.8(iii), this algebra
has a cube term h, and so does the algebra Ā. By Proposition 3.1, h = t̄ for some polymor-
phism t of A. The operation t is clearly a cube term of A, and thus A has few subpowers,
as required. ut
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3.2. Proof-sketch of Theorem 3.2

The proof is by contradiction. Let A be a finite binary relational structure containing all
the singleton unary relations, and let A = (A;Pol(A)) be its algebra of polymorphisms.
We assume that A is in CM and it does not have few subpowers. Notice that A is idem-
potent. For convenience, we add to A all the unary and binary relations which are pp-
definable from A. By Theorem 2.1, this change does not affect Clo(A). We fix a sequence
p1, . . . , pm, q of directed Gumm terms of A (see Theorem 2.4) and a cube term blocker
(E,D) for A (see Theorem 2.9) such that |D| is minimal. Let F = D \ E (this does not
need to be a subuniverse of A). All the objects defined in this paragraph will stay fixed
throughout the proof.

Since (E,D) is a cube term blocker of A, the relation Dn \ F n is, by Theorem 2.9, a
subpower of A for every positive integer n. It follows from Theorem 2.1 that this relation
can be defined by a pp-formula 8 from the structure A. The proof now goes roughly as
follows: We choose a large enough arity n and use Zhuk’s technique [44] to obtain a nicer
(tree) pp-formula 8′ defining a similar relation (so called CTB-relation as defined in the
next subsection) of the same arity n; then we get an even nicer (comb) pp-formula �
defining a CTB-relation of arity log2(n−1); finally, we reach a contradiction by showing
that a CTB-relation of a sufficiently large arity defined by a comb-formula cannot be
compatible with directed Gumm terms.

The following subsections give details of the proof using three core technical lemmas
which are proved in Section 4.

3.3. CTB-relation

We start with the definition of a CTB-relation (CTB stands for Cube Term Blocking).

Definition 3.3. A relation R ≤ Dn is a CTB-relation if F n ∩R = ∅ and for every i ∈ [n]
there exists ei ∈ E such that Di−1

× {ei} ×D
n−i
⊆ R.

We set n = 43|A|
+1 and take an n-ary CTB-relation U ≤ An, say U = Dn \F n. We take

a pp-formula defining U from A, denote by 8 the quantifier-free part and by x1, . . . , xn
the free variables of this pp-formula. For an arbitrary sequence y1, . . . , yi of variables
in 8, we denote 8[y1, . . . , yi] the formula obtained by existentially quantifying over the
remaining variables, and 8(y1, . . . , yi) the i-ary relation defined by 8[y1, . . . , yi]. In
particular, we have U = 8(x1, . . . , xn).

Next we modify 8 and get a slightly nicer formula without changing 8(x1, . . . , xn).
(This procedure can be applied to any quantifier-free formula 4 such that 4(x1, . . . , xn)

is a CTB-relation.) We define a graph Graph(8) in the following way. Vertices are the
variables in8 and the edges joining x and y are the binary constraints of the form S(x, y)

or S(y, x) in 8. (In the same way, a graph Graph(4) is associated to any pp-formula 4
over A.) For the following definition, we introduce auxiliary notation: Let x 6= y be
vertices of Graph(8) and let Gx be the graph obtained from Graph(8) by removing the
vertex x (and incident edges). We denote Cut(x, y) the set of vertices in the component
of Gx which contains y.
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A pp-formula will be called simple (with respect to x1, . . . , xn) if

(a) the associated graph is connected, without loops or multiple edges,
(b) the set of vertices of degree 1 is equal to {x1, . . . , xn},
(c) if x 6= y are vertices, then Cut(x, y) ∩ {x1, . . . , xn} 6= ∅,
(d) if x 6= y are vertices such that Cut(x, y) ∩ Cut(y, x) ∩ {x1, . . . , xn} = ∅, then

Cut(x, y) ∩ Cut(y, x) = ∅, and
(e) the formula has no unary constraints.

Note that (b), (c) and (d) imply that each block of Graph(8) with more than one edge
contains at least three cut vertices of Graph(8).

8 can be transformed to a simple quantifier-free pp-formula (over A) which defines
the same relation 8(x1, . . . , xn) in the following way. First we ensure that x1, . . . , xn
have degree 1 by renaming xi as x′i , adding xi , and adding the constraint xi = x′i . Next
observe that if two variables xi and xj are in different components of Graph(8), then
8(x1, . . . , xn) is a product of two relations of smaller arity. Since a CTB-relation is not
a product of two relations of smaller arity, all the variables x1, . . . , xn must belong to
the same component. Thus we can make Graph(8) connected by removing all the vari-
ables (and constraints) in different components. A binary constraint of the form S(x, x)

can be replaced by the unary constraint T (x) (where T is defined by T (x) iff S(x, x);
recall that A is closed under pp-definitions of unary and binary relations) and constraints
S1(x, y), . . . , Sk(x, y), S′1(y, x), . . . , S′

k′
(y, x) can be replaced by a single constraint

T (x, y) (where T is again defined in the obvious way). Similarly, if x, y are different
vertices such that Cut(x, y) ∩ Cut(y, x) ∩ {x1, . . . , xn} = ∅, then we can replace all
the constraints that use variables in Cut(x, y) ∩ Cut(y, x) by a single constraint T (x, y).
Moreover, if Cut(x, y) ∩ {x1, . . . , xn} = ∅, then we can replace all the constraints that
use variables in Cut(x, y) by a single unary constraint T (x). Repeating these modifica-
tions results in a formula satisfying (a)–(d). Finally, unary constraints can be hidden in
binary constraints, for example, constraints T (x) and S(x, y) can be replaced by a single
constraint S′(x, y) (with S′ = S ∩ (T × A), a pp-definable relation). This ensures (e).

The resulting pp-formula will be called a simplified form of the original formula. In
the next subsection we assume that 8 was already simplified.

3.4. Tree definition

We describe a construction which transforms the simple formula 8 into a new quantifier-
free simple pp-formula 8′ such that 8′(x1, . . . , xn) is still a CTB-relation, possibly dif-
ferent from U = 8(x1, . . . , xn). The construction depends on a variable y and a binary
constraint in 8 whose scope contains y, say T (y, z), such that y, z 6∈ {x1, . . . , xn} (the
case where the constraint is of the form T (z, y) is completely analogous).

The construction is divided into three steps. In the first step, we build from 8 a new
formula 9 by adding the constraints D(x1), . . . ,D(xn), adding a new variable y∗, re-
moving the constraint T (y, z), adding the constraint T (y∗, z), and adding the constraints
C(y) and C(y∗), where C = 8(y). See Figure 3.
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(a) Original formula 8

y C
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y∗
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(b) Resulting formula 9

Fig. 3. The first step for n = 3.

In the second step, we define a new formula 2 as follows. For each i ∈ [l], where
l = |A|, we take a copy 9i of the formula 9 by renaming each variable w in 9 as wi .
Then we take the conjunction of 91, . . . , 9 l and identify variables yi∗ and yi+1 for each
i ∈ [l − 1]. The resulting formula is shown in Figure 4.
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T
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y2
∗ = y

3 C

z3

y3
∗

T

C

x3
1

D
x3

2

D
x3

3

D

Fig. 4. The second step: formula 2 for n = l = 3.

Before describing the third step, we prove a claim which says that if we added to 2
the equality constraints x1

i = x
2
i = · · · = x

l
i for each i ∈ [n] and existentially quantified

the remaining variables, then the resulting formula would define a CTB-relation. The
argument is based on the following lemma, proved in Subsection 4.2.

Lemma 3.4. Let C ≤ A, let R ≤ C2
× Dn be such that 1C ⊆ π1,2(R) and suppose

that there exists f = (f1, . . . , fn) ∈ F
n such that the smooth part of the digraph Q =

{(a1, a2) : (a1, a2, f1, . . . , fn) ∈ R} is nonempty. Then (1C × F n) ∩ R 6= ∅.

Let
V = 2(x1

1 , . . . , x
l
1, x

1
2 , . . . , x

l
2, . . . , x

1
n, , . . . , x

l
n)

and let W be the n-ary relation defined by

W(a1, . . . , an) iff V (a1, . . . , a1︸ ︷︷ ︸
l

, . . . , an, . . . , an︸ ︷︷ ︸
l

).
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Claim. W is a CTB-relation.

Proof. By construction, W ≤ Dn and also U ⊆ W , since any satisfying evaluation of
variables in 8 gives a satisfying evaluation of variables in 2. It is thus enough to check
that W ∩ F n = ∅. Suppose otherwise, that is, there exists (f1, . . . , fn) ∈ W ∩ F

n.
Let R = 9(y, y∗, x1, . . . , xn). By construction of 9, we see that 1C ⊆ π1,2(R)

and the projection of (1C × An) ∩ R onto the coordinates 3, 4, . . . , n + 2 is
equal to U = 8(x1, . . . , xn). Since U ∩ F n = ∅ by the definition of a CTB-
relation, we have (1C × F n) ∩ R = ∅. From the construction of 2 and from
(f1, . . . , f1, f2, . . . , f2, fn, . . . , fn) ∈ V it follows that there exist b1, . . . , bl+1 ∈ C

such that (bi, bi+1, f1, . . . , fn) ∈ R for every i ∈ [l]. Therefore, the digraph Q =
{(a1, a2) : (a1, a2, f1, . . . , fn) ∈ R} contains a walk of length l = |A|, which implies
that Q contains a closed walk. Hence the smooth part of Q is nonempty. Lemma 3.4 now
implies (1C × F n) ∩ R 6= ∅, a contradiction. ut

In the third step, we modify 2 using the data provided by the following lemma, which is
proved in Subsection 4.3.

Lemma 3.5. Let V ≤ Dln be such that

W = {(a1, . . . , an) : (a1, . . . , a1︸ ︷︷ ︸
l

, a2, . . . , a2︸ ︷︷ ︸
l

, . . . , an, . . . , an︸ ︷︷ ︸
l

) ∈ V }

is a CTB-relation. Then for each i ∈ [n] there exist mi ∈ [l] and Cji ≤ A, j ∈ [l] \ {mi},
such that

U ′ = {(a
m1
1 , . . . , amnn ) : (a1

1, . . . , a
l
1, a

1
2, . . . , a

l
2, . . . , a

1
n, . . . , a

l
n) ∈ R,

(∀i ∈ [n])(∀j ∈ [l], j 6= mi) a
j
i ∈ C

j
i }

is a CTB-relation.

Note that we can apply this lemma in our situation, since W is a CTB-relation by the
previous claim. The formula 8′ is obtained from 2 as follows. For each i ∈ [n], we
rename the variable xmii as xi and, for each i ∈ [n] and j ∈ [l], j 6= mi , we add the
constraint Cji (x

j
i ). Finally, we replace the resulting formula 8′ by its simplified form. It

follows from Lemma 3.5 that U ′ = 8′(x1, . . . , xn) is a CTB-relation.
The above construction is used repeatedly in the following claim (with suitable

choices of variables and constraints) to obtain a tree-formula defining a CTB-relation.

Definition 3.6. A tree-formula is a pp-formula whose associated graph is a tree.

Claim. There exists a tree-formula defining a CTB-relation of arity n.

Proof. The reasoning follows [44, proof of Theorem 5.2].
To the original formula8 we assign a triple (α, n−β, γ ) of nonnegative integers that

depend on Graph(8). The first parameter, α, is the greatest number of edges in a block. To
define β, we need to introduce further notation. Let B be a block and w ∈ B a cut vertex.
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When we remove B \ {w} from Graph(8), we get a disconnected graph, one component
of which contains w. We denote the set of vertices in this component by Cut(B,w) and
define

δ(B,w) = |Cut(B,w) ∩ {x1, . . . , xn}|.

Let δ(B) be the maximum of δ(B,w) among all cut vertices w ∈ B. Now β is the
minimum δ(B) among blocks B with α edges. Finally, γ is the number of blocks B with
α edges and β = δ(B).

If α = 1, then 8[x1, . . . , xn] is a tree-formula defining a CTB-relation and we are
done. Otherwise, we take a block B with α edges and δ(B) = β, we take a variable y
in B and an incident constraint T (y, z) or T (z, y) (where z is in B), and we perform
the construction described above. We claim that the triple (α′, n − β ′, γ ′) assigned to
8′ is strictly smaller than (α, n − β, γ ) in the lexicographic ordering. We denote by 8′′

the formula obtained by the three-step construction before simplification (thus 8′ is a
simplified form of 8′′) and we use the notation δ′′(. . . ) analogously to δ(. . . ).

The construction removes an edge from B, thus all the blocks of 8′′ coming from B

have fewer edges. Every block of Graph(8) different from B has l isomorphic copies in
Graph(8′′) and each remaining block of Graph(8′′) consists of a single edge. Since the
simplification procedure only removes blocks or shrinks blocks to edges, we get α′ ≤ α
and every block of Graph(8′) with α edges comes from a block of Graph(8) different
from B with α edges.

Consider a block C 6= B of Graph(8) with α edges and its isomorphic copies
C1, . . . , Cl in Graph(8′′). Let t1 ∈ C denote the cut vertex of Graph(8) such that
B ⊆ Cut(C, t1), let t2, . . . , tk denote the remaining cut vertices in C, let t ij be the cor-
responding cut vertices of Graph(8′′) in Ci , and let s ∈ B be the cut vertex such that
C ⊆ Cut(B, s).

By the simplicity of 8, min{δ(C, t1), . . . , δ(C, tk)} ≥ 1 and k ≥ 3 (see the note after
the definition of a simple formula). Since Cut(B, s) ⊇ Cut(C, t2) ∪̇ · · · ∪̇Cut(C, tk), we
get

β = δ(B) ≥ δ(B, s) ≥ δ(C, t2)+ · · · + δ(C, tk) > max{δ(C, t2), . . . , δ(C, tk)}.

But δ(C) ≥ β by the definition of β, so δ(C) = δ(C, t1).
By construction,

l∑
i=1

δ′′(Ci, t ij ) = δ(C, tj ) for every j ∈ {2, . . . , k},

in particular δ′′(Ci, t ij ) ≤ δ(C, tj ) for every i ∈ [l] and j ∈ {2, . . . , k}. Therefore, since∑k
j=1 δ

′′(Ci, t ij ) = n =
∑k
j=1 δ(C, tj ), we have δ′′(Ci, t i1) ≥ δ(C, t1). Consequently,

δ′′(Ci, t i1) ≥ δ(C, t1) > max{δ(C, t2), . . . , δ(C, tk)} ≥ max{δ′′(Ci, t2), . . . , δ′′(Ci, tk)},

and thus
δ′′(Ci) = δ′′(Ci, t i1) ≥ δ(C, t1) = δ(C) ≥ β.

It follows that (α′, n− β ′) ≤ (α, n− β) in the lexicographic ordering.
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Moreover, if δ′′(Ci) = β for some i ∈ [l], then necessarily δ′′(Ci, t i1) = δ(C, t1),
whence δ′′(Ci, t ij ) = δ(C, tj ) for every j ∈ {2, . . . , k}, which implies that δ′′(Ci

′

, t i
′

j ) = 0

for every i 6= i′ ∈ [l] and every j ∈ {2, . . . , k}. But then each block Ci
′

, i′ 6= i, will
be removed during the simplification procedure. In summary, if some copy Ci of C in
Graph(8′′) achieves the minimum δ′′(Ci) = β, then necessarily δ(C) = β and all the
other copies of C in Graph(8′′) will be eventually removed. Therefore (α′, n− β ′, γ ′) is
strictly smaller than (α, n− β, γ ), as claimed.

It follows that in finitely many steps we get a (quantifier-free) tree-formula 8 such
that 8[x1, . . . , xn] is a CTB-relation. ut

3.5. Comb definition

Our goal is to find a comb-formula of sufficiently large arity that represents a CTB-
relation. This can be achieved by transforming the resulting tree-formula into a comb-
formula in exchange for an exponential loss in arity.

Definition 3.7. A pp-formula over the set {x′1, . . . , x
′

n′
, w1, . . . , wn′} of variables is a

comb-formula if the set of edges of its associated graph is equal to

{x′1w1, x
′

2w2, . . . , x
′

n′wn′ , w1w2, w2w3, . . . , wn′−1wn′}

(see Figure 5).

x′1 x′2 x′3 x′4

w1 w2 w3 w4

Fig. 5. Graph of a comb-formula for n′ = 4.

Claim. There exists a quantifier-free comb-formula � with n′ ≥ log2(n − 1) such that
�(x′1, . . . , x

′

n′
) is a CTB-relation.

Proof. Let 8 be a simple quantifier-free tree-formula such that 8(x1, . . . , xn) is a CTB-
relation. Note that Graph(8) has no vertex of degree 2 and the set of its leaves is equal
to {x1, . . . , xn} (both facts follow from simplicity). We can modify 8 to ensure that each
vertex of Graph(8) has degree 1 or 3 by repeated application of the following procedure:
take a variable v of degree d > 3; split it into two variables v1, v2 so that in bd/2c of the
incident constraints the variable v is replaced by v1 and in the remaining dd/2e constraints
v is replaced by v2; finally, add the equality constraint v1 = v2.

Let i = 0. Starting from an arbitrary leaf we will follow a path (nonintersecting walk),
defining x′is andwis on the way. If we are at the beginning, then we continue in the unique
direction. If we are at a vertex of degree 3, then we have two options to continue. We select
the one with more leaves ahead (if both options have the same number of leaves ahead,
we decide arbitrarily) and before we continue to walk we increment i, define wi to be
the vertex we are at, define x′i to be any of the leaves in the direction we did not choose
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(note that x′i ∈ {x1, . . . , xn}). When we arrive at a leaf we stop and set n′ = i. A simple
computation shows that n′ ≥ log2(n− 1).

Choose f ∈ F arbitrarily and set S = {f }. Let �′ be the formula obtained from 8

by adding the unary constraint S(xi) for each xi 6∈ {x′1, . . . , x
′

n′
}. Observe that the rela-

tion �′(x′1, . . . , x
′

n′
) is obtained from the CTB-relation 8(x1, . . . , xn) by fixing several

coordinates to {f } and projecting onto the remaining coordinates, therefore it is a CTB-
relation. It is easy to see that the simplified form of �′ (with respect to x′1, . . . , x

′

n′
) is a

comb-formula. This can be visualized as follows: straighten the resulting path and shake
the tree; after the simplification, the path becomesw1, . . . , wn′ and the tree below eachwi
becomes the edge x′iwi . ut

3.6. Contradiction

The proof of Theorem 3.2 is concluded using the following lemma, proved in Subsec-
tion 4.4.

Lemma 3.8. If �(x′1, . . . , x
′

n′
) is a CTB-relation, where � is a quantifier-free comb-

formula, then n′ < 2 · 3|A|.

Recall that we have chosen n = 43|A|
+ 1, thus log2(n− 1) = 2 · 3|A|, so that this lemma

and the last claim contradict each other.

3.7. Remarks on the proof

The structure of the proof is, to some level of detail, the same as in the previous proofs
[3, 44] of special cases:

1. obtain a tree definition of a “bad” relation,
2. obtain a comb definition of a “bad” relation,
3. prove that a “bad” relation defined by a comb-formula cannot have large arity.

This approach was used in [3] to prove that a finitely related algebra in CD is in NU.
Independently, Zhuk [44] proved a slightly weaker result that a finitely related algebra
in NU has a near-unanimity term of “small” arity. As for the proofs, the difference in
generality is inessential and only concerns the third item (slightly more work is needed to
get the stronger result).

The main difference between [3] and [44] is in carrying out the first item. In [3], this
item is quite easily derived from an existing result on the CSP [6]. Zhuk, on the other hand,
introduces the construction presented in Subsection 3.4 and uses variants of Lemmas 3.4
and 3.5. The first approach is not yet applicable for the main result in this paper because
a corresponding result on the CSP is not available. In fact, we do not even know what the
CSP result should be.
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4. Technical core

In this section, we fill in the gaps in the proof of Theorem 1.1. We keep some of the
assumptions made in the last section: A is a finite idempotent algebra in CM with directed
Gumm terms p1, . . . , pm, q, (E,D) is a cube term blocker for A with |D| minimal, and
F = D \ E.

4.1. Tools

Recall from Subsection 2.5 that a set S ⊆ B × C can be regarded as a bipartite graph
with “left” part π1(S) and “right” part π2(S), and that we call S linked if this graph is
connected.

We call two elements a ∈ B (or a ∈ C) and a′ ∈ B (or a′ ∈ C) S-linked if there
is an S-walk from a to a′. Note that it must be clear from the context whether a and a′

are from the copy of π1(S) or π2(S) because it is often the case that B and C are not
disjoint (sometimes even B = C = A). With this agreement, we define the left (right,
resp.) connectivity equivalences on π1(S) (π2(S), resp.):

λS = {(b, b
′) ∈ B2

: b ∈ B and b′ ∈ B are S-linked},

ρS = {(c, c
′) ∈ C2

: c ∈ C and c′ ∈ C are S-linked}.

The neighborhood of a subset B ′ ⊂ B (C′ ⊆ C, resp.) is denoted by (B ′)+S ((C′)−S ,
resp.):

(B ′)+S = {c ∈ C : (∃b ∈ B ′) (b, c) ∈ S},

(C′)−S = {b ∈ B : (∃c ∈ C′) (b, c) ∈ S}.

The set S is called rectangular if it is a disjoint union of sets of the form B ′ × C′ where
B ′ ⊆ B and C′ ⊆ C. Observe that S is rectangular iff (b, c), (b′, c), (b′, c′) ∈ S implies
(b, c′) ∈ S for every b, b′ ∈ B and c, c′ ∈ C.

Almost all objects in the proofs will be subuniverses of algebras in HSP(A), with the
inconvenient exception of the set F . Several constructions which produce subuniverses
are summarized in the following lemma. It will be used extensively but silently. Also, we
will always tacitly assume that all the algebras we talk about are finite, although it is
not always necessary.

Lemma 4.1. Let C1, . . . ,Ck ∈ HSP(A).

• Every block of a congruence of C1 is a subuniverse of C1.
• The projection of a subuniverse R ≤ C1 × · · · × Ck onto coordinates i1, . . . , ij is a

subuniverse of Ci1 × · · · × Cij .
• The set obtained by fixing the i-th coordinate of R ≤ C1 × · · · × Ck to B ≤ Ci is a

subuniverse of R (and thus also a subuniverse of C1 × · · · × Ck).
• If S ≤ C1×C2, then λS (ρS , resp.) is a congruence of π1(S) (π2(S), resp.). Moreover,

if C′1 ≤ C1 (C
′

2 ≤ C2, resp.), then (C′1)
+S
≤ C2 ((C

′

2)
−S
≤ C1, resp.).

• If S1 ≤ C1 × C2 and S2 ≤ C2 × C3, then S1 ◦ S2 ≤ C1 × C3.
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Proof. Proofs are straightforward and are omitted. We just note that the first item requires
idempotency and that, in the remaining items, if C1 = · · · = Ck , then the constructions
are pp-definitions, and thus the claims follow from an (easy) part of Theorem 2.1. ut

The next lemmas are consequences of the definition of a blocker, minimality of |D|, and
directed Gumm identities. We give them names for easier referencing.

Lemma 4.2 (DDE Lemma). q(D,D,E) ⊆ E.

Proof. By the definition of a cube term blocker, we must have q(E,D,D) ⊆ E, or
q(D,E,D) ⊆ E, or q(D,D,E) ⊆ E. But the first two inclusions are impossible because
of the identity q(a, a, b) = b applied to a ∈ E and b ∈ F . ut

Lemma 4.3 (Minimality Lemma). If C ≤ D and C ∩ E 6= ∅ 6= C ∩ F , then C = D.

Proof. Under the assumptions, (C ∩ E,C ∩D) is a cube term blocker. Therefore C = D
by the minimality of |D|. ut

Recall that a Maltsev operation on a set B is a ternary operation t on B such that t (b, b, a)
= a = t (a, b, b) for every a, b ∈ B. Note that the term q in any algebra in HSP(A)
automatically satisfies the first identity.

Lemma 4.4 (Rectangularity Lemma). Let S ≤ B × C where B,C ∈ HSP(A). If q is a
Maltsev term in B, then S is rectangular.

Proof. If (b, c), (b′, c), (b′, c′) ∈ Q, then

Q 3 q((b, c), (b′, c), (b′, c′)) = (q(b, b′, b′), q(c, c, c′)) = (b, c′). ut

An important tool for the proofs are Gumm-absorbing subuniverses and their properties
stated below.

Definition 4.5. Let B ∈ HSP(A). A nonempty subuniverse C of B is a Gumm-absorbing
subuniverse, written C GG B, if pi(C, B,C) ⊆ C for every i ∈ [m].

By the definition of directed Gumm terms and idempotency of B, every singleton {b},
b ∈ B, is a Gumm-absorbing subuniverse of B. A trivial Gumm-absorbing subuniverse
of B is B. Further Gumm-absorbing subuniverses can be obtained from the following
lemma.

Lemma 4.6 (Forced Absorption Lemma). Let C1, . . . ,Ck ∈ HSP(A).

• Every block of a congruence of C1 is a Gumm-absorbing subuniverse of C1. (In par-
ticular, singletons are Gumm-absorbing subuniverses.)
• If S GG R ≤ C1 × · · · × Ck , then πi1,...,ij (S) GG πi1,...,ij (R) for any i1, . . . , ij ∈ [k].
• The set obtained by fixing the i-th coordinate of R ≤ C1 × · · · × Ck to B GG πi(R) is

a Gumm-absorbing subuniverse of R.
• If S ≤sd C1 × C2 and B GG C1, then B+S GG C2.

Proof. Straightforward. ut
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The importance of (Gumm-)absorption stems from the fact that it absorbs some connec-
tivity properties. Two such properties are stated in the following “walking lemmas”.

Lemma 4.7 (Bipartite Walking Lemma). Let B,C ∈ HSP(A), Q GG S ≤ B × C, and
b, b′ ∈ π1(Q). If b and b′ are S-linked, then b and q(b, b′, b′) are Q-linked. (A similar
claim holds for c, c′ ∈ π2(Q).)

Proof. Take c, c′ ∈ C such that (b, c), (b′, c′) ∈ Q and take an S-walk

b = b1, c1, b2, c2, . . . , ck−1, bk = b
′.

Since Q is a Gumm-absorbing subuniverse of S, the pairs pi((b, c), (bj , cj ), (b′, c′)) =
(pi(b, bj , b

′), pi(c, cj , c
′)) and (pi(b, bj+1, b

′), pi(c, cj , c
′)) are in Q for each i, j .

Therefore

b = p1(b, b, b
′) = p1(b, b1, b

′), p1(c, c1, c
′), p1(b, b2, b

′), . . . , p1(c, ck−1, c
′),

p1(b, bk, b
′) = p1(b, b

′, b′) = p2(b, b, b
′), . . . , p2(b, b

′, b′) = p3(b, b, b
′), . . . ,

pm(b, b
′, b′) = q(b, b′, b′)

is a Q-walk from b to q(b, b′, b′). ut

Lemma 4.8 (Directed Walking Lemma). Let B ∈ HSP(A), Q GG S ≤ B × B, and
a, b ∈ B. If (a, a), (b, b) ∈ Q and (a, b) ∈ S, then there are directed Q-walks from a to
q(a, b, b) and from q(b, a, a) to b.

Proof. The sequences

a = p1(a, a, b), p1(a, b, b) = p2(a, a, b) = · · · = pm(a, b, b) = q(a, b, b),

q(b, a, a) = pm(b, a, a), pm(b, b, a) = pm−1(b, a, a), . . . , p1(b, b, a) = b

are directed Q-walks. ut

Lemma 4.9 (Edge Absorption Lemma). Let B,C ∈ HSP(A), and Q GG S ≤ B × C. If
S is linked, then q is a Maltsev term in π1(Q)/λQ and in π2(Q)/ρQ.

Proof. By the Bipartite Walking Lemma, a is Q-linked to q(a, b, b) for every a, b ∈
π1(Q). This implies that a and q(a, b, b) are in the same λQ-block, therefore

qπ1(Q)/λQ([a]λQ , [b]λQ , [b]λQ) = [a]λQ .

The other Maltsev identity qπ1(Q)/λQ([b]λQ , [b]λQ , [a]λQ) = [a]λQ follows trivially from
q(b, b, a) = a. Similarly, q is a Maltsev term in π2(Q)/ρQ. ut

Lemma 4.10 (Vertex Absorption Lemma). Let B,C ∈ HSP(A), S ≤sd B×C, B ′ GG B,
and assume S is linked. Then S ∩ (B ′ × (B ′)+S) is linked.

Proof. For a contradiction, assume that S ∩ (B ′ × (B ′)+S) is not linked. We inductively
define G1 = B ′, G2i = (G2i−1)

+S and G2i+1 = (G2i)
−S . By the Forced Absorption

Lemma, all these sets are Gumm-absorbing subuniverses of either B (for odd k) or C (for
even k).
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Since S is linked and subdirect in B × C, we have G2i = B and G2i+1 = C for
all sufficiently large i. Therefore we can take the largest k such that S intersected with
Gk × Gk+1 (for odd k) or Gk+1 × Gk (for even k) is not linked. For simplicity assume
that k is odd; the other case is symmetric. Let Q = S ∩ (Gk × Gk+1). By the Forced
Absorption Lemma, Q GG S and then the Edge Absorption Lemma implies that q is a
Maltsev term of Gk+1/ρQ.

By the choice of k, the intersection S ∩ (Gk+2×Gk+1) is linked. It follows that there
are b ∈ Gk+2 and c, c′ ∈ Gk+1 such that (b, c), (b, c′) ∈ S and [c]ρQ 6= [c

′
]ρQ . There

exists b′ ∈ Gk with (b′, c′) ∈ S as c′ ∈ Gk+1 = G
+S
k . Now

S 3 q((b, c), (b, c′), (b′, c′)) = (q(b, b, b′), q(c, c′, c′)) = (b′, q(c, c′, c′)).

The Q-walk q(c, c′, c′), b′, c′ shows that [c′]ρQ = [q(c, c
′, c′)]ρQ . But q is a Maltsev

term of Gk+1/ρQ, thus [q(c, c′, c′)]ρQ = [c]ρQ , contradicting [c]ρQ 6= [c
′
]ρQ . ut

The last tool is Theorem 8.1 from [10] (a shorter and cleaner proof is in [8, Theorem 3.5]),
which is now usually referred to as the “Loop Lemma”. We will use the following special
case.

Lemma 4.11 (Loop Lemma). Let B ∈ HSP(A) and S ≤sd B × B. If S is linked, then
there exists b ∈ B such that (b, b) ∈ S.

4.2. Proof of Lemma 3.4

We require one more technical lemma.

Lemma 4.12. Let T ≤ Dn and f = (f1, . . . , fn) ∈ F
n
∩ T . Then there exist Fi GG πi(T)

with fi ∈ Fi ⊆ F (for each i ∈ [n]) such that the following holds. If ∼ is a congruence
of T such that q is a Maltsev term of T/∼, then every ∼-block intersects F1 × · · · × Fn.

Proof. We define F1, . . . , Fn inductively by F1 = {f1}, and

Fi =

{
πi(T ∩ (F1 × · · · × Fi−1 ×D

n−i+1)) if this set is a subset of F,
{fi} otherwise.

Each Fi is a Gumm-absorbing subuniverse of πi(T) by the Forced Absorption Lemma.
By induction on i = 0, 1, . . . , n, we show that each ∼-block intersects F1 × · · · ×

Fi ×D
n−i . This claim is trivial for i = 0, so let i > 0 and suppose that the claim is true

for i − 1. For any a ∈ T we set

C([a]∼) = πi([a]∼ ∩ (F1 × · · · × Fi−1 ×D
n−i+1)).

By the induction hypothesis, C([a]∼) is nonempty for every a ∈ T . We need to show that
each C([a]∼) intersects Fi .
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If C([a]∼) ⊆ F for all a, then C([a]∼) ⊆ Fi by the choice of Fi and we are done.
Otherwise pick a ∼-block [b]∼ and e ∈ E ∩ C([b]∼). We show that each C([a]∼) inter-
sects E. Indeed, take any c ∈ C([a]∼) and consider

E 3 qA(c, e, e) ∈ qA(C([a]∼), C([b]∼), C([b]∼))

⊆ C(qT/∼([a]∼, [b]∼, [b]∼)) = C([a]∼).

Here q(c, e, e) ∈ E follows from the DDE Lemma, the inclusion follows from the com-
patibility of q with T , and the last equality from the assumption that q is a Maltsev term
of T/∼.

Now C([f]∼)∩E 6= ∅ and of course fi ∈ C([f ]∼)∩F , therefore, by the Minimality
Lemma, C([f]∼) = D. This allows us to show that each C([a]∼) even contains F : Take
any f ∈ F , any a and any d ∈ C([a]∼). We have

f = q(d, d, f ) ∈ q(C([a]∼), C([f]∼), C([f]∼)) ⊆ C(q([a]∼, [f]∼, [f]∼)) = C([a]∼).
ut

We are ready to prove Lemma 3.4. Recall the assumptions:

• R ≤ C2
× Dn, where C ≤ A,

• 1C ⊆ S, where S = π1,2(R), and
• there exists f = (f1, . . . , fn) ∈ F

n such that the smooth part of the digraph Q =
{(a1, a2) : (a1, a2, f1, . . . , fn) ∈ R} is nonempty.

We aim to show that (1C × F n) ∩ R 6= ∅.
First we make two adjustments to R and C so that we can make the following addi-

tional assumptions:

• Q,S ≤sd C× C, and
• S is linked.

The smooth part C′ of Q is a subuniverse of C since, as noted in Subsection 2.5, it is
pp-definable from Q. Thus we can redefine C := C′ and R := R ∩ ((C′)2 ×Dn) (and S,
Q accordingly) to satisfy the first of the additional assumptions. From 1C ⊆ S it follows
that λS = ρS . Then we can take any λS-block C′ and redefine C and R as before to satisfy
the second assumption.

Let T = π3,4,...,n+2(R) and

Rb = {((a1, a2), (a3, . . . , an+2)) : (a1, . . . , an+2) ∈ R} ≤sd S× T,

thus Rb is essentially R regarded as a subset of S × T .
Clearly, f ∈ F n ∩ T , so we can apply Lemma 4.12 and obtain F1, . . . , Fn ⊆ F with

fi ∈ Fi GG πi(T) for each i ∈ [n]. Let

Q′ = (T ∩ (F1 × · · · × Fn))
−Rb .

This is a superset of Q ≤sd C × C, in particular, Q′ ≤sd C × C. Moreover, we have
T ∩ (F1×· · ·×Fn)GGT, soQ′ GG S by the Forced Absorption Lemma. According to the
Edge Absorption Lemma, the term q is Maltsev in C/λQ′ and C/ρQ′ . Figure 6 depicts
Q′, S, and Rb.
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a1

a′1

b1

a2

a′2

b2

C

[a1]λQ′

[b1]λQ′

C

[a2]ρQ′

[b2]ρQ′

(a) Q′ (thick) and S

S

Q′

T

T ∩ (F1 × · · · × Fn)

(b) Rb

Fig. 6. The proof of Lemma 3.4.

Now we consider Q′, S, and Rb modulo λQ′ in the first coordinate and ρQ′ in the
second coordinate:

Q′q = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ Q
′
},

Sq = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ S},

Rbq = {(([a1]λQ′ , [a2]ρQ′ ), (a3, . . . , an+2)) : (a1, . . . , an+2) ∈ R}.

Since q is Maltsev in C/λQ′ and C/ρQ′ , it is also Maltsev in Sq ≤ C/λQ′ × C/ρQ′ . By
the Rectangularity Lemma, Rbq is rectangular. Moreover, Rbq induces an isomorphism
between π1(Rbq)/λRbq = Sq/λRbq and π2(Rbq)/ρRbq = T/ρRbq . Therefore, since q
is a Maltsev term in Sq/λRbq , q is also a Maltsev term in T/ρRbq . By the conclusion of
Lemma 4.12, every block of ρRbq intersects F1×· · ·×Fn. From this fact and rectangularity
of Rbq it follows that Q′q = Sq . Indeed, any a ∈ Sq is Rbq -adjacent to some b ∈ T and
then to every element in [b]ρ

Rbq
, in particular, to some element of F1 × · · · × Fn. But

Q′q = (F1 × · · · × Fn)
−Rbq by definitions.

The proof will now be concluded using the Loop Lemma. As1C ⊆ S andQ′q = Sq ,
we have ([a]λQ′ × [a]ρQ′ )∩Q

′
6= ∅ for each a ∈ C. It follows that λQ′ = ρQ′ . The Loop

Lemma applied to Q′ ∩ (B × B) for an arbitrarily chosen λQ′ -block B produces a pair
(a, a) ∈ Q′ = (F1 × · · · × Fn)

−Rb . This witnesses (1C × F n) ∩ R 6= ∅, as required.

4.3. Proof of Lemma 3.5

Lemma 3.5 will be proved by induction. The induction step will be based on the following
lemma.

Lemma 4.13. Let R ≤ Dn+1 be a relation such that

R1=2
= {(a1, . . . , an) : (a1, a1, a2, a3, . . . , an) ∈ R}

is a CTB-relation. Then either π1,3,4,...,n+1(R) or π2,3,...,n+1(R ∩ ({f } × D
n)) for some

f ∈ F is a CTB-relation.
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Proof. Let S = π1,2(R). Since R1=2 is a CTB-relation, there exist e1, . . . , en ∈ E such
that (d1, d1, d2, . . . , dn) ∈ D

n+1 is in R whenever di = ei for at least one i. We fix such
elements e1, . . . , en. Notice that 1D ⊆ S.

The first step is to show that R ∩ F n+1
= ∅. Assume the converse and take

(f1, . . . , fn+1) ∈ R ∩ F
n+1.

As in the last subsection, let

Q = {(a1, a2) : (a1, a2, f3, . . . , fn+1) ∈ R}.

We will show thatQ contains (f, f ) with f ∈ F . This will contradict the assumption that
R1=2 is a CTB-relation.

Since π1(Q) contains f1 and e1, we have π1(Q) = D by the Minimality Lemma.
Similarly, π2(Q) = D, therefore Q ≤sd D × D. Also notice that Q GG S by the Forced
Absorption Lemma.

We distinguish two cases.

Case 1. S ⊆ E2
∪ F 2.

From 1D ⊆ S it follows that [a]λS = [a]ρS for each a ∈ D. We restrict S and Q to the
λS-block of f1:

F ′ = [f1]λS (= [f2]λS ), S′ = S ∩ (F ′ × F ′), Q′ = Q ∩ (F ′ × F ′)

Observe that F ′ ⊆ F (since S ⊆ E2
∪ F 2), Q′ GG S′ (since Q GG S), S′ ≤sd F′ × F′,

Q′ ≤sd F′ × F′ (since Q ≤sd D× D), and S′ is linked. By the Edge Absorption Lemma,
q is a Maltsev term in F′/λQ′ and in F′/ρQ′ .

Let

Rb = {((a1, a2), (a3, . . . , an+2)) : (a1, . . . , an+2) ∈ R} ≤sd S× π3,...,n+1(R),

R′b = Rb ∩ (S′ × (S′)+R
b

),

Q′q = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ Q
′
},

S′q = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ S
′
},

R′bq = {(([a1]λQ′ , [a2]ρQ′ ), (a3, . . . , an+2)) : ((a1, a2), (a3, . . . , an+2)) ∈ R
′b
}.

From {(e1, e1)}
+Rb
= π3,...,n+1(R) (see the first paragraph of this proof) it follows that

Rb is linked. By the Forced Absorption Lemma, F ′ GG D, and using the same lemma
again, S′ GG S. The Vertex Absorption Lemma now implies that R′b is linked, thus R′bq

is linked.
The term q is Maltsev in the projections of S′q , therefore it is a Maltsev term in S′q .

Then, by the Rectangularity Lemma, R′bq is rectangular, and since it is also linked, we
get R′bq = S′q × π3,...,n(R

′bq). In particular, Q′q = {(f3, . . . , fn)}
−R′bq

= S′q . Now we
apply the Loop Lemma in the same way as in the last paragraph of the last subsection and
get f ∈ F ′ with (f, f ) ∈ Q′ ⊆ Q ⊆ F × F , a contradiction.
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Case 2. S 6⊆ E2
∪ F 2.

In this case S contains (f, e) (or (e, f )) for some e ∈ E, f ∈ F and also (e, e) ∈ S,
therefore e, f ∈ {e}−S (or e, f ∈ {e}+S) and then {e}−S = D (or {e}+S = D) by the
Minimality Lemma. It follows that S is linked. Recall that Q ≤sd D×D and Q GG S, so,
by the Edge Absorption Lemma, q is a Maltsev term of D/λQ.

If λQ ⊆ E2
∪ F 2, then qD([f ]λQ , [e]λQ , [e]λQ) ⊆ [f ]λQ ⊆ F for some (actually

all) e ∈ E and f ∈ F , contrary to the DDE Lemma. Thus λQ 6⊆ E2
∪ F 2. But then a

λQ-block intersecting E and F must be the whole D by the Minimality Lemma, hence
λQ = D

2. In other words, Q is linked.
Since (f1, f2) ∈ Q and there is a Q-walk from f2 to an element of E, we can find

f, f ′ ∈ F and e ∈ E such that (f, e), (f, f ′) ∈ Q (or (e, f ), (f ′, f ) ∈ Q). But then
{f }+Q = D (or {f }−Q = D) by the Minimality Lemma. In particular, (f, f ) ∈ Q, a
contradiction.

In both cases, we have proved that R ∩ F n+1
= ∅. It may happen that π1,3,...,n+1(R)

is a CTB-relation, in which case we are done. So, assume the converse, that is,
π1,3,...,n+1(R) ∩ F

n
6= ∅. Take f ′1, f

′

3, . . . , f
′
n ∈ F and e′2 ∈ D witnessing this, i.e.

(f ′1, e
′

2, f
′

3, . . . , f
′

n+1) ∈ R. Since R ∩ F n+1
= ∅, we have e′2 ∈ E. We will show that

Z = π2,3,...,n+1(R ∩ ({f
′

1} ×D
n)) = {(d2, . . . , dn+1) : (f

′

1, d2, . . . , dn+1) ∈ R}

is a CTB-relation by showing that (d2, . . . , dn+1) ∈ Z whenever d2 = e
′

2 or di = ei for
some i ∈ {3, . . . , n+ 1}.

Let (d3, . . . , dn+1) ∈ D
n−1 be any tuple such that di = ei for some i ∈ {3, . . . , n+1}.

Let
Q′′ = {(a1, a2) : (a1, a2, d3, d4, . . . , dn+1) ∈ R}.

Clearly Q′′ GG S and 1D ⊆ Q′′. Since also (f ′1, e
′

2) ∈ S, by the Directed Walking
Lemma there is a directed Q′′-walk from f ′1 to q(f ′1, e

′

2, e
′

2). As q(f ′1, e
′

2, e
′

2) ∈ E by the
DDE Lemma, it follows that there exist f ∈ F and e ∈ E such that (f, e) ∈ Q′′. Now,
repeated application of the Minimality Lemma gives F ×D ⊆ Q′′: First, the set {f }+Q

′′

contains e and f , so {f }+Q
′′

= D. Then, for every e′ ∈ E, {e′}−Q
′′

contains f and e′,
thus {e′}−Q

′′

= D. Finally, for every f ′ ∈ F , {f ′}+Q
′′

contains f ′ and (every) e′ ∈ E,
therefore {f ′}+Q

′′

= D.
The last paragraph proves that (d2, . . . , dn+1) ∈ Z whenever di = ei for some

i ∈ {3, . . . , n + 1}. To finish the proof it is enough to show that each tuple of the form
(e′2, d3, . . . , dn+1) (where di ∈ D) is in Z, equivalently (f ′1, e

′

2, d3, . . . , dn+1) is in R.
Let (d3, . . . , dn+1) ∈ D

n−1 be arbitrary. The subuniverse

{a : (f ′1, e
′

2, a, f
′

4, . . . , f
′

n+1) ∈ R} ≤ D

contains e3 and f ′3, therefore it is equal to D by the Minimality Lemma. In particular, it
contains d3. Then, the subuniverse

{a : (f ′1, e
′

2, d3, a, f
′

5, . . . , f
′

n+1) ∈ R}
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contains e4 and f ′4, so it contains d4. In this way, eventually (f ′1, e
′

2, d3, . . . , dn+1) ∈ R.
This finishes the proof of Lemma 4.13. ut

We are ready to prove a slightly stronger version of Lemma 3.5: Let l1, . . . , ln be positive
integers and V ≤ Dl1+···+ln be such that

W = {(a1, . . . , an) : (a1, . . . , a1︸ ︷︷ ︸
l1

, a2, . . . , a2︸ ︷︷ ︸
l2

, . . . , an, . . . , an︸ ︷︷ ︸
ln

) ∈ V }

is a CTB-relation. Then for each i ∈ [n] there existmi ∈ [li] and Cji ≤ A, j ∈ [li] \ {mi},
such that

U ′ = {(a
m1
1 , . . . , amnn ) : (a1

1, . . . , a
l1
1 , a

1
2, . . . , a

l2
2 , . . . , a

1
n, . . . , a

ln
n ) ∈ V,

(∀i ∈ [n])(∀j ∈ [li], j 6= mi) a
j
i ∈ C

j
i }

is a CTB-relation.
The claim is proved by induction on l1+· · ·+ ln. If l1 = · · · = ln = 1, then the claim

is trivially true. Assume that li > 1 for some i, for simplicity, l1 > 1. Let

R = {(a′1, a1, a2, . . . , an) : (a1, a
′

1, . . . , a
′

1︸ ︷︷ ︸
l1−1

, a2, . . . , a2︸ ︷︷ ︸
l2

, . . . , an, . . . , an︸ ︷︷ ︸
ln

) ∈ V }.

Clearly R1=2
= W , so we can apply Lemma 4.13. If π1,3,...,n+1(R) is a CTB-relation,

then we set C1
1 = D, l′1 = l1 − 1, and V ′ = π2,3,...,l1+···+ln(V ). If π2,3,...,n+1(R ∩

({f } × Dn)) is a CTB-relation, then we set C2
1 = C3

1 = · · · = C
l1
1 = {f }, l

′

1 = 1 and
V ′ = π1,l1+1,l1+2,...,l1+···+ln(V ∩ (D × {f }

l1−1
×Dl2+···+ln)). In both cases, the mis and

the remaining Cji s are obtained by applying the induction hypothesis to l′1, l2, . . . , ln and
the relation V ′. It is easy to see that U ′ is then a CTB-relation, as required.

4.4. Proof of Lemma 3.8

Assume that a CTB-relation R is defined by

R(x1, . . . , xn) iff (∃w1, . . . , wn) S1(x1, w1) ∧ · · · ∧ Sn(xn, wn)

∧ T1(w1, w2) ∧ T2(w2, w3) ∧ · · · ∧ Tn−1(wn−1, wn),

where Si ≤ A2 for each i ∈ [n] and Ti ≤ A2 for each i ∈ [n − 1]. Figure 7 shows an
example of such a definition. We need to prove that n < 2·3|A|. Striving for a contradiction
we assume the converse.

We will need only a part from the properties of the CTB-relation R, namely R ≤ Dn
and there are f ∈ F, e1, . . . , en ∈ E such that

(f, f, . . . , f ) 6∈ R and (f, . . . , f, ei, f, . . . , f ) ∈ R,

where ei is at the i-th position. We fix such elements f, e1, . . . , en.
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a1

b1

a2

b2

c2

an−1

bn−1

cn−1

an

bn

f

e

f

e

f

e

f

e

x1 x2 xn−1 xn

w1 wn

w2 wn−1

. . .

Fig. 7. A comb-formula defining {e, f }n \ {(f, . . . , f )}.

The following terminology will be useful. An (i, j)-path from a to a′, where i ≤ j
∈ [n] and a, a′ ∈ A, is a tuple (a = ai, ai+1, . . . , aj = a′) of elements of A such
that (ak, ak+1) ∈ Tk for every k ∈ {i, . . . , j − 1}. Such an (i, j)-path is supported by
(bi, . . . , bj ) if (bk, ak) ∈ Sk for every k ∈ {i, . . . , j}. Observe that a tuple (d1, . . . , dn) is
in R iff there exists a (1, n)-path supported by (d1, . . . , dn). In Figure 7, the (1, n)-path
(b1, c2, a3, a4, . . . , an) is supported by any tuple from {e, f } × {e} × {e, f }n−2.

For each i ∈ {2, . . . , n − 1} we define two subuniverses Gi, Hi of A: a ∈ Gi
iff there exists a (1, i)-path to a supported by (f, . . . , f ), and a ∈ Hi iff there exists
an (i, n)-path from a supported by (f, . . . , f ). The sets Gi and Hi are indeed subuni-
verses of A, because they can be pp-defined from Sj s, Tj s and singletons. For every i ∈
{2, . . . , n − 1}, these subuniverses are nonempty (since (f, . . . , f, ei+1, f, . . . , f ) ∈ R

and (f, . . . , f, ei−1, f, . . . , f ) ∈ R) and disjoint (since (f, . . . , f ) 6∈ R). In Figure 7, we
have Gi = {bi}, Hi = {ai}.

Now we use the fact that the arity ofR is large. There are 3|A|−2|A|+1
+1 ordered pairs

of disjoint nonempty subsets of A and at least n/2 − 1 even integers i ∈ {2, . . . , n − 1},
so, since n/2− 1 ≥ 3|A| − 1 > (3|A| − 2|A|+1

+ 1), there must be two different even k, l
such that (Gk, Hk) = (Gl, Hl). In particular, there exist k, l, 1 < k < l − 1 < n, such
that Gk = Gl and Hk = Hl . We fix such k, l and denote

e = ek+1, G = Gk = Gl, H = Hk = Hl .

For each d ∈ D we define a subuniverse Q(d) ≤ A2 so that (a, b) ∈ Q(d) iff
there exists a (k, l)-path from a to b supported by (f, d, f, f, . . . , f ). In Figure 7, if
a2 = an−1 = a and b2 = bn−1 = b, then we can take k = 2, l = n− 1 and get G = {b},
H = {a}, Q(f ) = {(a, a), (b, b)}, Q(e) = Q(f ) ∪ {(b, a)}.

Let Q ≤ A2 be the union of Q(d) over d ∈ D. The sets Q(d) and Q are indeed
subuniverses of A2 since they can be pp-defined from subuniverses of A. Moreover, they
have the following algebraic properties:

(Alg 1) Q(d) GG Q for every d ∈ D.
(Alg 2) For any term t , say of arity z, and any d1, . . . , dz ∈ D,

tA
2
(Q(d1), . . . ,Q(dz)) ⊆ Q(t

A(d1, . . . , dz)).
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(Alg 3) If (a, b) ∈ Q(d1) ∩Q(d2), then (a, b) ∈ Q(d) for any d in the subuniverse of D
generated by d1, d2.

All three properties are consequences of a simple observation: If t is a z-ary term and, for
each i ∈ [z], (aik, . . . , a

i
l ) is a (k, l)-path supported by (d ik, . . . , d

i
l ), then the sequence

(t (a1
k , . . . , a

z
k), . . . , t (a

1
l , . . . , a

z
l ))

is a (k, l)-path supported by (t (d1
k , . . . , d

z
k ), . . . , t (d

1
l , . . . , d

z
l )).

We regardQ andQ(d)s as digraphs (not as bipartite graphs). They satisfy the follow-
ing:

(Dig 1) Q(e) contains an edge from G to H .
(Dig 2) Q(f ) ∩ (G×G) has no sources in G, Q(f ) ∩ (H ×H) has no sinks in H .
(Dig 3) Q(f ) has no edge from G to outside of G and no edge from outside of H to H .

There exists a (1, n)-path (a1, . . . , an) supported by (f, . . . , f, ek+1 = e, f, . . . , f ).
Then ak ∈ G, al ∈ H , and (ak, al) ∈ Q(e) by definitions, and (Dig 1) is proved. To prove
the first part of (Dig 2), consider a vertex a ∈ G = Gl . By the definition of Gl , there
exists a (1, l)-path (a1, . . . , al−1, al = a) supported by (f, . . . , f ), thus ak ∈ Gk = G

and (ak, a) ∈ Q(f ). This shows that Q(f ) ∩ (G × G) has no sources in G. Similarly,
Q(f ) ∩ (H × H) has no sinks in H . Finally, if a ∈ G = Gk and (a, b) ∈ Q(f ),
then there exists a (1, k)-path (a1, . . . , ak = a) supported by (f, . . . , f ) and a (k, l)-path
(a = ak, ak+1, . . . , al = b) supported by (f, . . . , f ). Then (a1, . . . , al) is a (1, l)-path
supported by (f, . . . , f ), hence al = b ∈ Gl = G. This proves the first part of (Dig 3);
the second part is analogous.

Let r1, r2 be integers such that

r1, r2 ≥ |A|, r1 + r2 + 1 = r3|A|!, where r3 ≥ |A|.

For d ∈ D, set

Q′(d) = Q(f ) ◦ · · · ◦Q(f )︸ ︷︷ ︸
r1

◦Q(d) ◦Q(f ) ◦ · · · ◦Q(f )︸ ︷︷ ︸
r2

and similarly

Q′ = Q(f ) ◦ · · · ◦Q(f )︸ ︷︷ ︸
r1

◦Q ◦Q(f ) ◦ · · · ◦Q(f )︸ ︷︷ ︸
r2

=

⋃
d∈D

Q′(d).

It is easily seen that the primed versions of properties (Alg 1–3) and (Dig 3) are
satisfied. Moreover,

(Dig 1′) Q′(e) contains an “f -looped edge” from G to H , that is, there exist g ∈ G and
h ∈ H such that (g, h) ∈ Q′(e) and (g, g), (h, h) ∈ Q′(f ), and

(Dig 4) Q′(f ) is transitive.
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To prove these properties, consider the |A|!-fold composition of Q(f ) with itself:

Q′′ = Q(f ) ◦ · · · ◦Q(f )︸ ︷︷ ︸
|A|!

.

Clearly,Q′(f ) is the r3-fold composition ofQ′′ with itself. From the Dirichlet principle it
follows that every vertex a ∈ A which is contained in a closed Q(f )-walk (equivalently,
in a closed Q′′-walk) is contained in a closed Q(f )-walk of length at most |A|, and so
(a, a) ∈ Q′′. For the same reason, every Q′′-walk from a to b of length at least |A| con-
tains an element in a closed Q′′-walk. Since this element has a Q′′-loop, we can modify
the walk so as to get a Q′′-walk from a to b of any length greater than or equal to |A|. In
particular, if two elements a and b are connected by a Q′′-walk of length 2r3, then they
are connected by a Q′′-walk of length r3. Therefore, Q′(f ) is transitive.

To prove (Dig 1′), take (g′, h′) ∈ Q(e), g′ ∈ G and h′ ∈ H guaranteed by (Dig 1). By
(Dig 2) and the Dirichlet principle, we can find a Q(f )-walk of length r1 from a vertex
g ∈ G contained in a closed Q(f )-walk to the vertex g′. Similarly, there exists a Q(f )-
walk of length r2 from h′ to a vertex h ∈ H which is contained in a closed Q(f )-walk. It
follows that (g, h) ∈ Q′(e) and (g, g), (h, h) ∈ Q′(f ).

Armed with all these digraphs and their properties, we are ready to finish the proof.
We would like to have the situation shown in Figure 8.

g

h

a

b

f

f

f

e

f, e

f

f

Fig. 8. The final argument for the proof of Lemma 3.8. Label d means that the edge is in Q′(d).

We start by fixing g ∈ G and h ∈ H as in (Dig 1′) and setting

a = q(g, h, h), b = q(h, a, a).

Since (g, g), (h, h) ∈ Q′(f ), (g, h) ∈ Q′(e) ⊆ Q′, and Q′(f ) GGQ′ (see (Alg 1)), there
is a directed walk in Q′(f ) from g to q(g, h, h) = a by the Directed Walking Lemma.
From (Dig 4) it follows that (g, a) ∈ Q′(f ). The edge (g, a) = q((g, g), (g, h), (g, h))
also lies in Q′(q(f, e, e)) by (Alg 2). According to (Alg 3), (g, a) is in Q(d) for any d in
the subuniverse D′ of D generated by f and q(f, e, e). Since q(f, e, e) ∈ E by the DDE
Lemma, we get D′ = D by the Minimality Lemma. In particular (g, a) ∈ Q′(e).

Using (Alg 2), (g, h) ∈ Q′(e), (g, a) ∈ Q′(e) ∩Q′(f ), and q(e, e, f ) = f , we get

(g, b) = (g, q(h, a, a)) = q((g, h), (g, a), (g, a)) ∈ Q′(q(e, e, f )) = Q′(f ).

Thus b ∈ G by (Dig 3).
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On the other hand,Q′(f )GGQ′ by (Alg 1), (a, a)= q((g, g), (h, h), (h, h)) ∈Q′(f ),
(h, h) ∈ Q′(f ), and (a, h) = q((g, h), (h, h), (h, h)) ∈ Q′, so we can apply the second
part of the Directed Walking Lemma to obtain a Q′(f )-walk from b = q(h, a, a) to h.
Then b ∈ H by (Dig 3). We have proved b ∈ G ∩H = ∅, a contradiction.

5. Consequences and open problems

CSP

Let A be a relational structure with a finite universe. The constraint satisfaction prob-
lem over A, denoted CSP(A), is the decision problem asking whether a given input pp-
sentence over A is true. The main open problem in the area is the dichotomy conjec-
ture [26] stating that, for every A, CSP(A) is tractable (i.e., solvable in polynomial time)
or NP-complete. It is known [20] that the computational complexity of CSP(A) depends
only on the variety generated by the algebra A = (A;Pol(A)). A precise borderline
between polynomial solvability and NP-completeness was conjectured and the hardness
part proved in [20]. What remains is to show that CSP(A) is tractable whenever A sat-
isfies a nontrivial idempotent Maltsev condition. This was verified for algebras in meet
semi-distributive varieties [9] and for algebras A with few subpowers [32]. The next nat-
ural step was to concentrate on the class CM. However, Theorem 1.1 shows that there are
no new relational structures to consider and we can use the “few subpowers algorithm”
whenever A ∈ CM.

This does not mean that the CSPs with A ∈ CM are solved in a satisfactory way.
For instance, the few subpowers algorithm heavily uses algebraic operations similar to
cube terms. It could be useful to have a different algorithm based on (directed) Gumm
terms, or even an algorithm which does not use any operations at all. One reason is that
it could make the proof of Theorem 1.1 shorter and cleaner—see Subsection 3.7. More
importantly, it could lead to more general tractability results: an algorithm for A ∈ CD

from [7], which is different from algorithm for A ∈ NU from [26], was an important step
toward the general result for algebras in meet semi-distributive varieties from [9].

Open Problem 5.1. Find a different algorithm for solving CSP(A), where (A;Pol(A))
∈ CM.

A natural next step is to consider algebras in varieties omitting types 1 and 5 from tame
congruence theory [31]. Indeed, A ∈ CM iff A is in a variety which omits types 1 and 5
and has “no tails”.

Primitive positive formula comparison

Let again A be a relational structure and A = (A;Pol(A)) the corresponding algebra.
The pp-formula equivalence problem over A asks whether two given pp-formulas over A
define the same relations. A similar problem is the pp-formula containment problem over
A that asks whether the first formula defines a subrelation of the relation defined by the
second formula.



1468 Libor Barto

In [17], the computational complexity of these problems is completely resolved,
showing a P/coNP-complete/5p2 -complete trichotomy, modulo the conjectured border-
line for CSPs and the Edinburgh conjecture: If A does not satisfy any nontrivial idem-
potent Maltsev condition, then the problems are 5p2 -complete. If this is not the case and
CSP(A) is tractable, then the problems are in coNP. If A is not in CM, then these prob-
lems are coNP-hard. Finally, if A has few subpowers, then both problems are solvable
in polynomial time (this was already proved in [16]). Therefore, Theorem 1.1 gives the
P/coNP-hard dichotomy.

Learnability

The aim of the learning problem for pp-formulas over A is to learn (in some sense) the
relation defined by an unknown pp-formula, given access to an oracle which can answer
simple queries like “is the tuple a in the relation?” (see [32, 22] for precise definitions of
the learning models). A positive learnability result for A with few subpowers was given
in [32] and a negative learnability result for A outside the class CM was proved in [22]
(under some standard cryptographic assumptions). Theorem 1.1 thus closes the gap.

Deciding few subpowers for relational structures

By Theorem 1.1, the problem FEWSUB of deciding whether a given relational structure
A determines an algebra A with few subpowers is equivalent to the problem of deciding
whether A is in CM (for a givenA). It is quite easy to see that the latter problem is decidable
in exponential time: we can search among the ternary operations for (directed) Gumm
terms (see [28] for details). Recently, Kazda (personal communication) has observed that
FEWSUB is in NP since local characterizations of congruence modularity (as in [28]) can
be encoded as CSP instances. However, the exact complexity is open:

Open Problem 5.2. Determine the computational complexity of FEWSUB.

We remark that Kazda’s idea and [28] place the corresponding problem for NU (or CD) in
the class P.

Algebraic questions

The results in [3, 44] give upper bounds for the least arity of a near-unanimity operation of
A ∈ NU depending on |A| and the maximum arity of a relation inA (the bounds in [44] are
tighter for nonbinary structures; this is caused by using the reduction to binary structures
via [3, Proposition 3.1]). Examples essentially achieving these bounds were given in [44].
It is not clear how to obtain reasonable bounds for arities of cube terms from the results
in this paper.

Open Problem 5.3. Find a reasonable (or even essentially optimal) upper bound for the
least arity of a cube term of A = (A;Pol(A)) depending on |A| and the maximum arity
of a relation in A.
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Corollary 1.2 says, schematically, “CM + finitely related ⇔ FS”, and we also know that
“CD + finitely related⇔ NU” [3]. Are there other instances of this phenomenon?

Open Problem 5.4. For which (important) Maltsev conditions P is there a Maltsev con-
dition Q such that “P + finitely related⇔ Q”, or at least a condition Q stronger than P
such that “P + finitely related⇒ Q”?

The equivalence “NU⇔ CD” for finitely related finite algebras is generalized to “absorp-
tion⇔ Jónsson-absorption” for finitely related finite algebras in [4]. Moreover, the dif-
ference between Jónsson-absorption and absorption for general finite algebras is captured
in the main result of [5] which roughly says “absorption⇔ Jónsson-absorption + no bad
cube term blockers”. Are there analogues of these results for (directed) Gumm-absorption
instead of Jónsson-absorption?

Open Problem 5.5. Does there exist a useful notion of “cube-absorption” so that “cube-
absorption⇔ Gumm-absorption” is true for all finitely related finite algebras? Is there
an analogue to “absorption ⇔ Jónsson-absorption + no bad cube term blockers” for
cube-absorption?
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