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Abstract. We study the behavior of zeros and mass of holomorphic Hecke cusp forms on
SL2(Z)\H at small scales. In particular, we examine the distribution of the zeros within hyper-
bolic balls whose radii shrink sufficiently slowly as k→∞. We show that the zeros equidistribute
within such balls as k → ∞ as long as the radii shrink at a rate at most a small power of 1/log k.
This relies on a new, effective proof of Rudnick’s theorem on equidistribution of the zeros and on an
effective version of equidistribution of mass for holomorphic forms, which we obtain in this paper.

We also examine the distribution of the zeros near the cusp of SL2(Z)\H. Ghosh and Sarnak
conjectured that almost all the zeros here lie on two vertical geodesics. We show that for almost all
forms a positive proportion of zeros high in the cusp do lie on these geodesics. For all forms, we
assume the Generalized Lindelöf Hypothesis and establish a lower bound on the number of zeros
that lie on these geodesics, which is significantly stronger than the previous unconditional results.

Keywords. Zeros of modular forms, mass equidistribution, automorphic forms

1. Introduction

Let f be a modular form of weight k for SL2(Z), where k is an even integer. A classical
result in the theory of modular forms states that the number of properly weighted zeros
of f in SL2(Z)\H equals k/12. Inside the fundamental domain F = {z ∈ H : −1/2 ≤
Re(z) < 1/2, |z| ≥ 1} the distribution of the zeros of different modular forms of weight
k can vary drastically. For instance, F. K. C. Rankin and H. P. F. Swinnerton-Dyer [20]
have proved that all the zeros of the holomorphic Eisenstein series

Ek(z) =
1
2

∑
(c,d)=1

1
(cz+ d)k
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that lie inside F lie on the arc {|z| = 1}. Moreover, the zeros of Ek(z) are uniformly dis-
tributed on this arc as k→∞. In contrast, consider powers of the modular discriminant,
that is, 1(z)k/12 with 12 | k. This function is a weight k cusp form and has one distinct
zero at∞ with multiplicity k/12.

The weight k Hecke cusp forms constitute a natural basis for the space of weight k
modular forms and the distribution of their zeros differs from the previous two examples.
Using methods from potential theory, Rudnick [21] showed that the zeros of Hecke cusp
forms equidistribute in the fundamental domain F with respect to hyperbolic measure
in the limit as the weight tends to infinity. Rudnick’s result originally relied on the then
unproven mass equidistribution conjecture for holomorphic Hecke cusp forms of Rudnick
and Sarnak. However, this is now a theorem proved by Holowinsky and Soundararajan
[9] and so Rudnick’s result on the equidistribution of zeros holds unconditionally.

It is natural to study what happens beyond equidistribution, and to investigate the
distribution of zeros and mass of Hecke cusp forms at smaller scales, that is, to examine
the behavior of the zeros and mass within sets whose hyperbolic area tends to zero at a
quantitative rate as the weight k tends to infinity. For the zeros, we consider the following
two different aspects of this problem:

1) The distribution of zeros of Hecke cusp forms within hyperbolic balls B(z0, rk) ⊂ F
with rk → 0 sufficiently slowly as k→∞.

2) The distribution of the zeros of Hecke cusp forms in the domain

FY = {z ∈ F : Im(z) > Y }, Y ≥
√
k log k.

The second problem also examines the zeros of f at a small scale since the hyperbolic
area of FY equals 1/Y and tends to zero as the weight tends to infinity. This problem was
originally studied by Ghosh and Sarnak [3] who proved that many of the zeros of f that
lie inside FY lie on each of the vertical geodesics Re(z) = −1/2 and Re(z) = 0.

Additionally, building on the techniques developed by Holowinsky and Soundararajan
we prove an effective form of mass equidistribution. Our result also applies to the small
scale setting and we show that the L2-mass of a weight k Hecke cusp equidistributes in-
side a rectangle whose hyperbolic area shrinks sufficiently slowly as k →∞. This com-
plements recent work of Young [27] who studied mass equidistribution of holomorphic
Hecke cusp forms at even smaller scales under the assumption of the Generalized Lin-
delöf Hypothesis. Notably, Young’s work also applies to Hecke–Maass forms, whereas
the analog of our result for Hecke–Maass forms is open.

1.1. Zeros of Hecke cusp forms in shrinking hyperbolic balls and effective mass
equidistribution

Two immediate difficulties appear when attempting to understand the distribution of zeros
of Hecke cusp forms in shrinking hyperbolic balls: First of all, it is not clear if it is
possible to adapt Rudnick’s argument since it relies on a compactness argument, which is
not effective and does not apply to the small scale setting. Secondly, the current results on
mass equidistribution of holomorphic Hecke cusp forms do not give an effective rate of
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convergence. We remedy the first difficulty by finding a new proof of Rudnick’s theorem,
which is effective. We address the second difficulty by revisiting the work of Holowinsky
and Soundararajan and extracting a rate of convergence from their result. This leads to
the following theorem.

Theorem 1.1. Let fk be a sequence of Hecke cusp forms of weight k. Also, let B(z0, r) ⊂

{z ∈ F : Im(z) ≤ B} be the hyperbolic ball centered at z0 and of radius r , with B > 0
fixed and r ≥ (log k)−δ0/2+ε where δ0 =

1
4 (31/2 − 4

√
15) = 0.002016 . . . . Then as

k→∞, we have
#{%f ∈ B(z0, r) : fk(%f ) = 0}

#{%f ∈ F : fk(%f ) = 0}
=

3
π

∫∫
B(z0,r)

dx dy

y2 +OB(r(log k)−δ0/2+ε).

Conditionally, under the Lindelöf Hypothesis we are able to show that the zeros of Hecke
cusp forms equidistribute within much smaller balls.

Theorem 1.2. Assume the Generalized Lindelöf Hypothesis. Let fk be a sequence of
Hecke cusp forms of weight k. Also, let B(z0, r) ⊂ {z ∈ F : Im(z) ≤ B} be the hy-
perbolic ball centered at z0 and of radius r , with B > 0 fixed and r ≥ k−1/8+ε. Then as
k→∞, we have

#{%f ∈ B(z0, r) : fk(%f ) = 0}
#{%f ∈ F : fk(%f ) = 0}

=
3
π

∫∫
B(z0,r)

dx dy

y2 +OB(rk
−1/8+ε).

We expect the zeros of Hecke cusp forms to equidistribute nearly all the way down to
the Planck scale. That is, the zeros of these forms should equidistribute with respect to
hyperbolic measure within hyperbolic balls with area as small as k−1+ε. Our method
for proving small scale equidistribution of zeros of Hecke cusp forms uses small scale
mass equidistribution (however, what we actually require is much weaker, see the dis-
cussion below) and even under the Generalized Lindelöf Hypothesis proving small scale
mass equidistribution all the way down to the Planck scale remains open. Assuming small
scale mass equidistribution holds all the way down to nearly the Planck scale, our argu-
ments would give small scale equidistribution of zeros within balls with area as small as
k−1/2+ε. Misha Sodin has informed us of recent unpublished work of his and Borichev
which should allow one to obtain equidistribution of zeros at the Planck scale, given the
equidistribution of mass at the Planck scale.

While mass equidistribution of holomorphic Hecke cusp forms establishes that the
mass of yk|f (z)|2 equidistributes as the weight k of f grows, our proof of Theorem 2.1
shows that the equidistribution of the zeros follows from the much weaker condition: For
any fixed ε > 0 and for any fixed domain R, we have∫∫

R
yk|f (z)|2

dx dy

y2 �ε,R e−εk

(for our asymptotic notation conventions, see Subection 1.3). We have not been able to
make use of this weaker condition, but remain hopeful that it will be useful in later works
(see Theorem 2.1 for precise results).

To understand the mass of f in shrinking sets we obtain the following effective ver-
sion of mass equidistribution for holomorphic Hecke cusp forms.
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Theorem 1.3 (Effective mass equidistribution). Let f be a Hecke cusp form of weight k.
Let φ be a smooth function, supported in the fundamental domain F , with

sup
z∈F

∣∣∣∣y ∂a∂xa ∂b

∂yb
φ(z)

∣∣∣∣�a,b M
a+b, z = x + iy, (1.1)

for all a, b ≥ 1 and some M ≥ 1. Then∣∣∣∣∫∫
F
yk|f (z)|2φ(z)

dx dy

y2 −

∫∫
F
φ(z)

dx dy

y2

∣∣∣∣�ε M
2(log k)−η0+ε (1.2)

for all ε > 0 fixed and with η0 = 31/2− 4
√

15 = 0.008066 . . . .

Our arguments also provide a bound on the discrepancy between the measure
yk|f (z)|2

dx dy

y2 and the hyperbolic measure on SL2(Z)\H: for any weight k Hecke cusp
form f , we get

sup
R⊂F

∣∣∣∣∫∫
R
yk|f (z)|2

dx dy

y2 −
3
π

∫∫
R

dx dy

y2

∣∣∣∣� (log k)−η
′

0

for some η′0 > 0, where the supremum is taken over all rectangles R lying inside the
fundamental domain with sides parallel to the coordinate axes. We leave this deduction to
an interested reader.

Unconditionally we cannot extract from the argument of Holowinsky and Soundarara-
jan a saving exceeding a small power of log k. However, assuming the Generalized Lin-
delöf Hypothesis, Watson [25] and Young [27] have established a power saving bound,
which is an important ingredient in the proof of Theorem 1.2. On the unconditional front,
it was proven by Luo and Sarnak [15, 16] that one can obtain comparable results on av-
erage, obtaining a power saving bound for most forms f . Combining this input with our
new proof of Rudnick’s theorem gives the following variant of Theorem 1.1.

Theorem 1.4. Let B ≥ 1. Let Hk be a Hecke basis for the set of weight k cusp forms. Let
δ > 0. Then, for all but at most� k20/21+4δ forms f ∈ Hk , for any r ≥ k−δ/2 and any
z0 ∈ {z ∈ F : Im(z) ≤ B} we have

#{%f ∈ B(z0, r) : fk(%f ) = 0}
#{%f ∈ F : fk(%f ) = 0}

=
3
π

∫∫
B(z0,r)

dx dy

y2 +OB(rk
−δ/2 log k).

1.2. Zeros of Hecke cusp forms in shrinking Siegel domains

We also consider the distribution of the zeros of Hecke cusp forms within the set FY =
{z ∈ F : Im(z) > Y } with Y >

√
k log k. The hyperbolic area of FY equals 1/Y , and

Ghosh and Sarnak [3] proved for a weight k Hecke cusp form, fk , that

k/Y � #{%f ∈ FY } � k/Y . (1.3)
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They also observed that equidistribution should not happen here and conjectured that
almost all the zeros of fk in FY lie on the vertical geodesics Re(z) = −1/2 and Re(z) = 0
with one half lying on each line.

In support of their conjecture Ghosh and Sarnak showed that many of the zeros of fk
in FY lie on segments of the vertical lines Re(z) = 0 and Re(z) = −1/2. They proved
that, for any ε > 0,

#{%f ∈ FY : Re(%f ) = 0 or Re(%f ) = −1/2} �ε (k/Y )
1/2−1/40−ε. (1.4)

The term 1/40 in their result was subsequently removed in [17] by the second named
author.

In support of Ghosh and Sarnak’s conjecture, we establish the following result.

Theorem 1.5. Let ε > 0 be fixed. There exists a subset Sk ⊂ Hk , containing more than
(1− ε)|Hk| elements, such that for every f ∈ Sk we have

#{%f ∈ FY : Re(%f ) = 0} ≥ c(ε) · #{%f ∈ FY }

and
#{%f ∈ FY : Re(%f ) = −1/2} ≥ c(ε) · #{%f ∈ FY }

provided that δ(ε)k > Y >
√
k log k and k → ∞. The constants δ(ε) and c(ε) are

positive and depend only on ε.

The proof of Theorem 1.5 relies on a very recent result on multiplicative functions by the
second and third authors [18]. For individual forms f we cannot do as well, even on the
assumption of the Lindelöf or Riemann Hypothesis. The reason is the following: In order
to produce sign changes of f we look at sign changes of the coefficients λf (n). In order to
obtain a positive proportion of the zeros on the line we need a positive proportion of sign
changes between the coefficients of λf (n), in appropriate ranges of n. However, we cannot
have a positive proportion of sign changes if for example, for all primes p ≤ (log k)2−ε,
we have λf (p) = 0. Unfortunately, even on the Riemann Hypothesis we cannot currently
rule out this scenario.

Nonetheless, on the Lindelöf Hypothesis we can still obtain the following result,
which is significantly stronger than the previous unconditional result.

Theorem 1.6. Let δ, ε > 0. Assume the Generalized Lindelöf Hypothesis. Then

#{%f ∈ FY : Re(%f ) = 0} �δ,ε (k/Y )
1−ε (1.5)

and
#{%f ∈ FY : Re(%f ) = −1/2} �δ,ε (k/Y )

1−ε (1.6)

provided that
√
k log k < Y < k1−δ .

The paper is organized as follows: In Section 2 we investigate the results related to
equidistribution in shrinking sets. In Section 3 we prove the results on zeros high in the
cusp. Finally, in Section 4 we establish the effective version of mass equidistribution for
holomorphic Hecke cusp forms.
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1.3. Notation

Throughout we use the notation f (x) � g(x) to indicate that f (x) = O(g(x)). If the
implied constants depend on some additional parameter, say A, we write f (x) �A g(x)

or f (x) = OA(g(x)). Also, if for all x under consideration there exists c > 0 such that
f (x) ≥ cg(x) > 0 we write f (x) � g(x), and if one has both f (x) � g(x) and
f (x)� g(x) we write f (x) � g(x).

If there are implied constants in the assumptions of a lemma, proposition or theorem,
then the implied constants in the claim are allowed to depend on those, without mention-
ing. For instance Theorem 1.3 means that for every ε there is A(ε) such that the implied
constant in (1.2) depends only on ε and on the implied constants in (1.1) for a, b ≤ A.

2. Zeros of cusp forms in shrinking geodesic balls

In this section we will prove Theorems 1.1, 1.2 and 1.4. Let φ be a smooth function that
is compactly supported within F . Let Dr(z) be the Euclidean disk of radius r centered
at z, and recall that B(z, r) denotes the hyperbolic ball of radius r centered at z. Also, let
1 = −y2( ∂2

∂x2 +
∂2

∂y2

)
denote the hyperbolic Laplacian. Our main result is the following

theorem.

Theorem 2.1. Let B ≥ 1 and let f be a holomorphic Hecke cusp form of weight k ≥ 2,
normalized so that ∫∫

F
yk|f (z)|2

dx dy

y2 = 1.

Let R ⊂ {z ∈ F : Im(z) ≤ B}, let hk > (log k)/k and φ be a smooth compactly
supported function in R such that 1φ � h−Ak for some A ≥ 0. Suppose that, for every
z0 ∈ R, there exists a point z1 = x1 + iy1 ∈ Dhk (z0) satisfying

yk1 |f (z1)|
2
� e−khk . (2.1)

Then ∑
%f

φ(%f ) =
k

12
·

3
π

∫∫
F
φ(z)

dx dy

y2 +OB(kh
2
k)

+OA,B

(
khk log(1/hk)

∫∫
F
|1φ(z)|

dx dy

y2

)
. (2.2)

By the mass equidistribution theorem of Holowinsky and Soundararajan, (2.1) holds
for fixed, but arbitrarily small hk . This reproduces the main result of Rudnick [21].
Additionally, Theorem 1.3 implies that (2.1) holds for hk � (log k)−δ0+ε with δ0 =
1
4 · (31/2 − 4

√
15) = 0.002016 . . . . Assuming the Generalized Lindelöf Hypothesis it

follows from an argument of Young [27] that (2.1) holds for hk ≥ k−1/4+ε. 1

We will now use Theorem 2.1 to deduce Theorems 1.1, 1.2 and 1.4.

1 In [27, Proposition 5.1] Young establishes the analog of this for Hecke–Maass cusp forms. The
proof for holomorphic case follows in much the same way.
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Proof of Theorems 1.1 and 1.2. Let B(z0, r) ⊂ {z ∈ F : Im(z) ≤ B} with B > 0 fixed.
Also, let φ± ∈ C∞0 (F) with 0 ≤ φ± ≤ 1 be such that φ±(z) = 1 for z ∈ B(z0, r)

and z ∈ B(z0, r −M
−1), respectively, and φ±(z) = 0 for z /∈ B(z0, r +M

−1) and z /∈
B(z0, r), respectively, where M satisfies Mr > 2, and will be chosen later. Additionally,
we assume that

sup
x+iy∈H

∣∣∣∣ ∂a+b∂xa∂yb
φ±(x + iy)

∣∣∣∣�a,b M
a+b

for all non-negative integers a, b. By construction we have

k

12
·

3
π

∫∫
F
|φ+(z)− φ−(z)|

dx dy

y2 � kAreaH(B(z0, r +M
−1) \ B(z0, r −M

−1))

� krM−1. (2.3)

Additionally,∫∫
F
|1φ±(z)|

dx dy

y2 � M2 AreaH(B(z0, r+M
−1)\B(z0, r−M

−1))� rM. (2.4)

We shall later specify hk which tends to zero with k such that (2.1) holds. Let us take
M = h

−1/2
k , and note we may apply Theorem 2.1 to φ± and also use (2.4) to get∑

%f

φ±(%f ) =
k

12
·

3
π

∫∫
F
φ±(z)

dx dy

y2 +O(krh
1/2
k log(1/hk))

=
k

12
·

AreaH(B(z0, r))

Area(F)
+OB

(
k ·

∫∫
F
|φ+(z)− φ−(z)|

dx dy

y2

)
+OB(krh

1/2
k log(1/hk)). (2.5)

The first error term above is estimated as O(krh1/2
k ) by (2.3). Also, note that∑

%f

φ−(%f ) ≤ #{%f ∈ B(z0, r)} ≤
∑
%f

φ+(%f ).

Thus, for r ≥ 2h1/2
k we have

#{%f ∈ B(z0, r)} =
k

12
·

AreaH(B(z0, r))

Area(F)
+OB(krh

1/2
k log(1/hk)).

To complete the proof we note that by Theorem 1.3 condition (2.1) holds for hk =
(log k)−δ0+ε/4. Assuming the Generalized Lindelöf Hypothesis it follows from [27] that
(2.1) holds for hk = k−1/4+ε/4. ut

For the proof of Theorem 1.4 we recall the work of Luo and Sarnak [15]. Define the
probability measures

ν :=
3
π

dx dy

y2 and µf := y
k
|f (z)|2

dx dy

y2 .
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where the Hecke cusp form f is assumed to be normalized withµf (F) = 1. Additionally,
denote by Hk the space of Hecke cusp forms for the full modular group SL2(Z). Then
Luo and Sarnak [15, Corollary 1.2]) showed that

1
#Hk

∑
f∈Hk

sup
S

|µf (S)− ν(S)|
2
� k−1/21 (2.6)

where the supremum is taken over all geodesic balls S ⊂ F .

Proof of Theorem 1.4. For r1 ≥ k−1/2, which also tends to zero as k→∞, let

Ek(r1) := {f ∈ Hk : ∃z0 ∈
{
z ∈ F : Im(z) ≤ B} ∀z ∈ Dr1(z0), y

k
|f (z)|2 ≤ k−2}.

If f ∈ Hk \ Ek(r1) and z0 ∈ {z ∈ F : Im(z) ≤ B}, then there exists a point z1 =

x1 + iy1 ∈ Dr1(z0) with yk1 |f (z1)|
2
≥ k−2. Let φ± be as in the previous proof, that is a

smooth approximation of B(z0, r), with M = h−1/2
k = r

−1/2
1 . We argue as in (2.5) to see

that by Theorem 2.1, (2.3), and (2.4), for f ∈ Hk \ Ek(r1), whenever r ≥ 2
√
r1 we have

∑
%f

φ±(%f ) =
k

12
·

AreaH(B(z0, r))

Area(F)
+OB(kr

√
r1 log(1/r1)).

Since φ−(z) ≤ 1B(z0,r)(z) ≤ φ+(z), it follows that

#{%f ∈ B(z0, r)} =
k

12
·

AreaH(B(z0, r))

AreaH(F)
+OB(rk

√
r1 log(1/r1))

for f ∈ Hk \ Ek(r1) whenever r ≥ 2
√
r1.

We now bound the size of Ek(r1). By construction, for f ∈ Ek(r1) there exists z′ ∈
{z ∈ F : Im(z) ≤ B} such that k−2

� µf (B(z
′, r1)) � k−2. Since r1 ≥ k−1/2, this

implies, for f ∈ Ek(r1), that

sup
z0∈F
|µf (B(z0, r1))− ν(B(z0, r1)| �B r

2
1 .

Using this and (2.6) we see that

r4
1 · #Ek(r1)�B

∑
f∈Ek(r1)

sup
z0∈F
|µf (B(z0, r1))− ν(B(z0, r1))|

2

�B

∑
f∈Hk

sup |µf (S)− ν(S)|2 �B k
20/21,

where the supremum in the second line is over all hyperbolic balls S = B(z0, r) ⊂ F .
The claim follows upon taking r1 = k−δ/4. ut
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2.1. Proof of Theorem 2.1

Let k be an even integer and let f be a weight k holomorphic Hecke cusp form for SL2(Z),
which is normalized with ∫∫

F
yk|f (z)|2

dx dy

y2 = 1.

We can assume that k is large enough since otherwise the claim is trivial. Also, let B > 1
and

R = {z = x + iy : −1/2 ≤ x < 1/2, 1/2 ≤ y ≤ B}.
Let φ be a smooth function that is compactly supported on R∩F . Our starting point is the
following formula of Rudnick (see [21, Lemma 2.1]; note that we assume φ is supported
in F):∑
%f

φ(%f ) =
k

12
·

3
π

∫∫
F
φ(z)

dx dy

y2 −
1

2π

∫∫
F

log(yk/2|f (z)|)1φ(z)
dx dy

y2 . (2.7)

To prove Theorem 2.1 we need to bound the second term in the above formula. The
difficulty here comes from estimating the contribution of the integral over the set where
f is exceptionally small.

Let D be the convex hull of suppφ. Also, let δk, ηk, εk > 0 be sufficiently small. We
cover D withN disks of radius εk centered at a1, . . . , aN ∈ R, where the disks are chosen
so that N �B Area(D)/ε2

k . Define

T = T (δk, εk; f ) = {z ∈ F : |f (z)yk/2| < e−δkk},

Tj = Tj (δk, εk, aj ; f ) = T ∩Dεk (aj ).

Also, let nj = nj (εk, aj ) = #{%f : %f ∈ D8εk (aj )} and set

Sj = S(ηk, εk, aj ; f ) =
{
z ∈ Dεk (aj ) :

∏
%f ∈D8εk (aj )

|z− %f | <

(
ηkεk

e

)nj}
.

For w 6= %f define

Mr(w) := max
z∈Dr (w)

∣∣∣∣ f (z)f (w)

∣∣∣∣+ 3.

We will bound the second term in (2.7) by showing that the size of T is very small. To
accomplish this we bound the area of Tj in terms of the area of Sj . The latter can be
estimated using Cartan’s lemma, which we now state.

Lemma 2.2 ([13, Theorem 9]). Given any number H > 0 and complex numbers
w1, . . . , wn, there is a system of circles in the complex plane, with the sum of the radii
equal to 2H , such that for each point z lying outside these circles,

|z− w1| · · · |z− wn| > (H/e)n.

Observe that by Cartan’s lemma,

Area(Sj ) ≤ 4πη2
kε

2
k for each j = 1, . . . , N; (2.8)

we will use this fact later.
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The next lemma is from Titchmarsh [24] (see Lemma α of Section 3.9, especially
formula (3.9.1)).

Lemma 2.3. Let g(z) be a holomorphic function on Dr(w) with g(w) 6= 0. Then there
is an absolute constant A > 1 such that for z ∈ Dr/4(w),∣∣∣∣log

∣∣∣∣ g(z)g(w)

∣∣∣∣− ∑
|ρ−w|≤r/2

log
∣∣∣∣ z− ρw − ρ

∣∣∣∣∣∣∣∣ < A logMr(w),

where the summation runs over all zeros ρ of g.

In the next lemma we give the following simple, but useful bound for Mεk (w).

Lemma 2.4. Let w = u+ iv ∈ R. Suppose that εk > (log k)/k and f (w)vk/2 � e−εkk .
Then

Mεk (w)� e5εkk.

Proof. There is a point zmax = xmax + iymax such that

max
z∈Dεk (w)

∣∣∣∣ f (z)f (w)

∣∣∣∣ = ∣∣∣∣f (zmax)

f (w)

∣∣∣∣ = ( v

ymax

)k/2∣∣∣∣yk/2maxf (zmax)

vk/2f (w)

∣∣∣∣.
From the main result of Xia [26] we have |yk/2maxf (zmax)| �ε k

1/4+ε (Xia’s theorem
implies this holds for every z ∈ H). Also, vk/2f (w)� e−εkk and(

v

ymax

)k/2
≤

(
v

v − εk

)k/2
≤ e2εkk.

Combining these bounds we see that Mεk (w)� k1/2eεkk · e2εkk � e5εkk . ut

The next lemma allows us to bound the size of the exceptional set T in terms of the size
of the sets Sj .

Lemma 2.5. Suppose εk > (log k)/(32k) and that for each w ∈ R there exists a point
w∗ = u∗ + iv∗ ∈ Dεk (w) such that vk∗|f (w∗)|

2
� e−εkk . Then there is an absolute con-

stant 0 < c0 < 1/4 such that for δk ≥ (1/c0)εk we have, whenever ηk ≥ exp(−c0δk/εk),

Tj (δk, εk, aj ; f ) ⊂ Sj (ηk, δk, aj ; f ) for each j = 1, . . . , N .

Proof. By assumption, for each j = 1, . . . , N there exists a point zj ∈ Dεk (aj ) such that
|f (zj )| � e−εkk/2y

−k/2
j . If z ∈ Tj then∣∣∣∣ f (z)f (zj )

∣∣∣∣� (
yj

y

)k/2
e−δkk+εkk/2 ≤

(
y + 2εk
y

)k/2
e−δkk+εkk/2 ≤ e−δkk+3εkk ≤ e−δkk/4.

(2.9)
By Lemma 2.3, if w 6= %f there is a constant A > 1 such that for |z− w| ≤ 1

4 r ,∣∣∣∣log
∣∣∣∣ f (z)f (w)

∣∣∣∣+ ∑
%f ∈Dr/2(w)

log
∣∣∣∣w − %fz− %f

∣∣∣∣∣∣∣∣ < A logMr(w).
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Using this with w = zj and r = 8εk along with (2.9) we see that for z ∈ Tj ,

−A logM8εk (zj ) < −δkk/5+
∑

%f ∈D4εk (zj )

log
∣∣∣∣zj − %fz− %f

∣∣∣∣+O(1). (2.10)

We now bound the second term on the right-hand side of (2.10). First note that for
%f ∈ D8εk (aj ) \D4εk (zj ) and z ∈ Dεk (aj ),

1
100
≤

∣∣∣∣zj − %fz− %f

∣∣∣∣ ≤ 100,

so that ∑
%f ∈D4εk (zj )

log
∣∣∣∣zj − %fz− %f

∣∣∣∣ ≤ ∑
%f ∈D8εk (aj )

log
∣∣∣∣zj − %fz− %f

∣∣∣∣+ 10nj . (2.11)

Also by definition, for z ∈ Dεk (aj ) \ Sj ,

∏
%f ∈D8εk (aj )

|z− %f | ≥

(
ηkεk

e

)nj
.

Hence, ∑
%f ∈D8εk (aj )

log
∣∣∣∣zj − %fz− %f

∣∣∣∣ ≤ nj log
8e
ηk
. (2.12)

To bound nj , apply Jensen’s formula to get

nj log 2 = nj

∫ 16εk

8εk

dt

t
≤

∫ 16εk

0
#{%f : |%f − zj | ≤ 2t}

dt

t

=
1

2π

∫ 2π

0
log

∣∣∣∣f (32εkeiθ + zj )
f (zj )

∣∣∣∣ dθ ≤ logM32εk (zj ). (2.13)

Using (2.11)–(2.13) we deduce that for z ∈ Dε(aj ) \ Sj ,

∑
%f ∈D4εk (zj )

log
∣∣∣∣zj − %fz− %f

∣∣∣∣ ≤ (10+ log
8e
ηk

)
1
2

logM32ε(zj ). (2.14)

For the sake of contradiction, suppose that Tj is not contained in Sj . Then combining
(2.10) and (2.14) shows that

logM32εk (zj ) >
δkk

5
(
A+ 1

2 (10+ log(8e/ηk))
) −O(1).

However, by Lemma 2.4 we have logM32εk (zj ) ≤ 5εkk + O(1), so that a contradiction
is reached when c0 is sufficiently small and k is sufficiently large. ut
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A simple consequence of the previous lemma is a bound on the size of our exceptional
set T . This is one of the main ingredients in the proof of Theorem 2.1. Applying (2.8),
observe that under the hypotheses of the previous lemma,

Area(T ∩D) ≤
N∑
j=1

Area(Tj ) ≤
N∑
j=1

Area(Sj ) ≤ N4πη2
kε

2
k �B η

2
k . (2.15)

We also require the following crude, yet sufficient bound on the mean square of
log(yk/2|f (z)|).

Lemma 2.6. We have ∫∫
D
(log(yk/2|f (z)|))2 dx dy �B k

2.

Proof. Let ε > 0 be a sufficiently small absolute constant. Also, let c0 be as in
Lemma 2.5. We take εk = ε, δk = (1/c0)ε and ηk = exp(−c0δk/ε) = 1/e. For each
j = 1, . . . , N , (2.8) implies that Area(Sj ) ≤ (4/e2)πε2. Hence, there exists cj ∈ Dε(aj )
such that cj /∈ Sj . Applying Lemma 2.3 with w = cj gives, for |z− cj | ≤ 2ε,

log
∣∣∣∣ f (z)f (cj )

∣∣∣∣ = ∑
%f ∈D4ε(cj )

log
∣∣∣∣ z− %fcj − %f

∣∣∣∣+O(logM8ε(cj )). (2.16)

Since cj ∈ Dε(aj ) \ Sj ,∏
%f ∈D4ε(cj )

|cj − %f | ≥
∏

%f ∈D8ε(aj )

|cj − %f | ≥ (ε/e
2)nj .

Also, Lemma 2.5 implies that cj /∈ Tj so that |f (cj )| ≥ e−(1/c0)εk(Im(cj ))−k/2. Addi-
tionally, observe that Lemma 2.4 implies that logM8ε(cj ) �B k, and we trivially have
nj < k. Combining these observations in (2.16) gives, for |z− cj | ≤ 2ε,

log |f (z)| =
∑

%f ∈D4ε(cj )

log
∣∣z− %f ∣∣+OB(k).

Since Dε(aj ) ⊂ D2ε(cj ), this implies that∫∫
Dε(aj )

(log |f (z)|)2 dx dy �B

∫∫
Dε(aj )

( ∑
%f ∈D4ε(cj )

log |z− %f |
)2
dx dy + k2

�B k
∑

%f ∈D4ε(cj )

∫∫
Dε(aj )

(log |z− %f |)2 dx dy + k2
�B k

2,
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where in the second to last step we have used Cauchy–Schwarz and the trivial bound
#{%f ∈ D4ε(cj )} < k. Using this bound we get∫∫

D
(log(yk/2|f (z)|))2

dx dy

y2

� k2
∫∫

D
(log y)2

dx dy

y2 +

N∑
j=1

∫∫
Dε(aj )

(log |f (z)|)2
dx dy

y2 �B Nk
2.

To complete the proof, recall N � Area(D)/ε2
�B 1. ut

Proof of Theorem 2.1. By (2.7) it suffices to show that∫∫
F

log(yk/2|f (z)|)1φ(z)
dx dy

y2

= OA,B

(
khk log(1/hk)

∫∫
F
|1φ(z)|

dx dy

y2

)
+OB(k · h

2
k). (2.17)

First, notice that for δk > (log k)/k,∣∣∣∣∫∫
F\T

log(yk/2|f (z)|)1φ(z)
dx dy

y2

∣∣∣∣� kδk

∫∫
F
|1φ(z)|

dx dy

y2 . (2.18)

Next, observe that Cauchy–Schwarz gives∣∣∣∣∫∫
T

log(yk/2|f (z)|)1φ(z)
dx dy

y2

∣∣∣∣ ≤ (∫∫
T
|1φ(z)|2

dx dy

y2

)1/2

·

×

(∫∫
F
(log(yk/2|f (z)|))2

dx dy

y2

)1/2

. (2.19)

Recall our assumption (2.1), which states that for every w ∈ R there exists a point w∗ =
u∗ + iv∗ ∈ Dhk (z0) with vk∗|f (w∗)| � e−khk . Hence, the conditions of Lemma 2.5 are
satisfied for εk ≥ hk . So (2.15) implies that∫∫

T
|1φ(z)|2

dx dy

y2 �B h
−2A
k Area(T ∩D)�B η

2
kh
−2A
k

for ηk ≥ exp(−c0δk/εk), where c0 is a sufficiently small absolute constant. To bound the
second term on the right-hand side of (2.19) we apply Lemma 2.6 to see that it is�B k.
Combining this with the previous estimate gives∣∣∣∣∫∫

T
log(yk/2|f (z)|)1φ(z)

dx dy

y2

∣∣∣∣�B kηkh
−A
k .

Therefore, (2.18) yields∣∣∣∣∫∫
F

log(yk/2|f (z)|)1φ(z)
dx dy

y2

∣∣∣∣�B kδk

∫∫
F
|1φ(z)|

dx dy

y2 + kηkh
−A
k .

Taking εk = hk , δk = ((A + 2)/c0) · εk log(1/εk) and ηk = exp(−c0δk/εk) establishes
(2.17) and completes the proof. ut
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3. Zeros of cusp forms high in the cusp

To detect zeros of f high in the cusp we use the following special case of a result of
Ghosh and Sarnak [3, Theorem 3.1] that shows that for certain values of Im(z) the Hecke
cusp form f (z) is essentially determined by one term in its Fourier expansion. In this
section we normalize f so that the first term in its Fourier expansion equals one.

Lemma 3.1 ([17, Proposition 2.1]). There are positive constants c2, c3 and δ such that,
for all integers ` ∈ (c2, c3

√
k/log k) and f ∈ Hk ,

(e/`)(k−1)/2f (x + iy`) = λf (`)e(x`)+O(k
−δ), where y` =

k − 1
4π`

.

This essentially tells us that on the vertical geodesic Re(z) = 0 a sign change of λf (`)
yields a zero of f . More precisely, to detect a zero on Re(z) = 0 it suffices to find
`1 and `2 in (c2, c3

√
k/log k) such that

λf (`1) < −k
−ε < k−ε < λf (`2)

where ε > δ. A similar analysis holds on the geodesic Re(z) = −1/2, but here one also
needs `1 and `2 to be odd.

3.1. Proof of Theorem 1.5

We detect sign changes for almost all forms using a very recent theorem of the last two
authors [18, Theorem 1 with δ = (log y)−1/200].

Lemma 3.2. Let h : N→ [−1, 1] be a multiplicative function. There exists an absolute
constant C > 1 such that, for any 2 ≤ y ≤ X,∣∣∣∣ 1y ∑

x≤n≤x+y

h(n)−
1
X

∑
X≤n≤2X

h(n)

∣∣∣∣ ≤ 2(log y)−1/200

for almost all X ≤ x ≤ 2X with at most CX(log y)−1/100 exceptions.

To benefit from this, we need to control the number of n for which |λf (n)| < n−δ and
the number of p for which λf (p) < 0. For this we quote two lemmas. The first one is an
immediate consequence of [19, Theorem 2].

Lemma 3.3. Let p be a prime. Then

#{f ∈ Hk : |λf (p)| < p−δ}

#Hk

� p−δ +
logp
log k

,

where the implied constant is absolute and effectively computable.

The second lemma is a large sieve inequality for the Fourier coefficients λf (n). The ver-
sion we use is the following special case of a more general theorem [12, Theorem 1] due
to Lau and Wu.
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Lemma 3.4. Let ν ≥ 1 be a fixed integer and 2 ≤ P < Q ≤ 2P . Then

∑
f∈Hk

∣∣∣∣ ∑
P<p≤Q

λf (p
ν)

p

∣∣∣∣2 �ν k
1

P logP
+ k10/11 Qν/5

(logP)2
.

Let δ > 0 and define the multiplicative function

gf (p
ν) =

{
sgn(λf (pν)) if |λf (pν)| ≥ p−δν and p > 2,
0 otherwise.

We will now show that for most f ∈ Hk averages of gf (n) and |gf (n)| over long intervals
do not coincide, which shows the existence of a sign change in such an interval. A key
ingredient in the proof is Halász’s theorem for real valued functions (see for example [4]),
which states that for a multiplicative function h such that −1 ≤ h(n) ≤ 1,

1
X

∑
n≤X

h(n)� X exp
(
−

1
4

∑
p≤X

1− h(p)
p

)
, (3.1)

where the implicit constant is absolute.

Lemma 3.5. Let ε > 0. Then there exists X0(ε) > 0 such that for X0 < X < k we have,
for all but at most ε · #Hk forms f ∈ Hk ,∣∣∣∣ 1

X

∑
X≤n≤2X

|gf (n)| −
1
X

∣∣∣∣ ∑
X≤n≤2X

gf (n)

∣∣∣∣∣∣∣∣�ε 1,

where the implicit constant depends on ε (but not on f ).

Proof. By Lemma 3.3,∑
f∈Hk

∑
p≤X

|λf (p)|<p
−δ

1
p
� #Hk ·

∑
p≤X

(
p−1−δ

+
logp
p log k

)
= Oδ(#Hk).

Hence there is a positive constant C depending only on δ such that for any given ε > 0,∑
p≤X

gf (p)=0

1
p
≤
C

ε
(3.2)

for all but at most (ε/2) · #Hk forms f ∈ Hk . Consequently, it follows by a standard
argument, or, alternatively by [6, Theorem 2], that with at most this many exceptions,

1
X

∑
X≤n≤2X

|gf (n)| �δ,ε 1, (3.3)

where the implicit constant depends on δ and ε (but not on f ).
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On the other hand, we will see that the mean value of gf tends to zero. Notice that
(t2 − 2t)/8 ≤ 1[−2,0)(t) for |t | ≤ 2 and recall that Deligne’s bound gives |λf (p)| ≤ 2
This gives, for any Q ≥ P ≥ 2,∑
P≤p≤Q

1[−2,0)(λf (p))

p
≥

∑
P≤p≤Q

λf (p)
2
− 2λf (p)
8p

=
1
8

∑
P≤p≤Q

λf (p
2)− 2λf (p)+ 1

p
,

where in the last step we have used the Hecke relation λf (p)2 = λf (p2)+ 1. Hence,

∑
p≤X

λf (p)<0

1
p
≥

∑
logX≤p≤X1/1000

λf (p)<0

1
p
≥

1
8

∑
logX≤p≤X1/1000

λf (p
2)− 2λf (p)+ 1

p

=
1+ o(1)

8
log logX +

∑
logX≤p≤X1/1000

λf (p
2)− 2λf (p)
p

. (3.4)

Let J = d(logX)/1000e and apply Minkowski’s inequality and then Lemma 3.4 to see
that for ν = 1, 2, and X < k(∑
f∈Hk

∣∣∣∣ ∑
logX≤p≤X1/1000

λf (p
ν)

p

∣∣∣∣2)1/2

≤

J∑
j=1

(∑
f∈Hk

∣∣∣∣ ∑
ej−1 logX≤p≤ej logX

λf (p
ν)

p

∣∣∣∣2)1/2

� #H1/2
k ·

J∑
j=1

(
1

ej/2 logX
+
ejν/10(logX)ν/10

k1/22

)

�

(
#Hk

logX

)1/2

.

Using Chebyshev’s inequality along with the previous estimate gives

1
#Hk

#
{
f ∈ Hk :

∣∣∣∣ ∑
logX≤p≤X1/1000

λf (p
ν)

p

∣∣∣∣ ≥ 1
}
�

1
logX

for ν = 1, 2. Hence the sum on the right-hand side in (3.4) contributes o(log logX) for
almost all forms f . So, recalling (3.2) and the definition of gf (n),∑

p≤X
gf (p)=−1

1
p
=

∑
p≤X

λf (p)<0

1
p
−

∑
p≤X

−p−δ<λf (p)<0

1
p
≥

1+ o(1)
8

log logX

for all but (ε/2) · #Hk forms f ∈ Hk . By Halász’s theorem (3.1), this implies

1
X

∑
n≤X

gf (n) = o(1).

Hence the lemma follows from (3.3) for all X sufficiently large. ut
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Proof of Theorem 1.5. Notice that if gf (n) 6= 0, then n is odd, |λf (n)| ≥ n−δ and
gf (n) = sgn(λf (n)). Hence by Lemma 3.1, if gf (n) changes sign in the interval I =
[a, b] ⊂ (c2, c3

√
k/log k) (i.e. there exist n± ∈ I such that gf (n±) = ±1) then f (z) has

zeros %f , %′f with Re(%f ) = −1/2, Re(%′f ) = 0 and Im(%f ), Im(%′f ) ∈
[
k−1
4πb ,

k−1
4πa

]
.

Suppose y = y(δ, ε) is sufficiently large and X > X0(δ, ε). Applying Lemmas 3.2
and 3.5 it follows that for all but at most ε · #Hk forms f ∈ Hk

1
y

∑
x≤n≤x+y

|gf (n)| −
1
y

∣∣∣ ∑
x≤n≤x+y

gf (n)

∣∣∣
=

1
X

∑
X≤n≤2X

|gf (n)| −
1
X

∣∣∣ ∑
X≤n≤2X

gf (n)

∣∣∣+O((log y)−1/200)�δ,ε 1

for all X ≤ x ≤ 2X outside an exceptional set of size at most CX(log y)−1/100. This
implies that for each such form f ∈ Hk there exist X ≤ x1 < · · · < xN ≤ 2X with
xj+1 − xj > y and N ≥ 1

10 ·
X
y

such that∣∣∣∣1y ∑
xj≤n≤xj+y

|gf (n)| −
1
y

∣∣∣ ∑
xj≤n≤xj+y

gf (n)

∣∣∣∣∣∣∣� 1

for each j = 1, . . . , N . Taking X = k/Y we conclude that each interval [xj , xj + y]
yields a sign change of gf (n), and by (1.3) this produces

�δ,ε

X

y
=

k

Yy
�

1
y
· #{%f ∈ FY }

zeros of f (z) on each of the geodesics Re(z) = −1/2, 0 for all but at most ε · #Hk forms
f ∈ Hk . ut

3.2. Proof of Theorem 1.6

Our main proposition for the proof of Theorem 1.6 shows that the Lindelöf hypothesis
implies many sign changes of λf (`).

Proposition 3.6. Assume the Generalized Lindelöf Hypothesis, let ε, η > 0 and X ≥ kη.
Then, for all X ≤ x ≤ 2X with Oε,η(X1−ε/4) exceptions, the interval [x, x + y(x)]
with y(x) = x/X1−ε

� Xε contains integers m± such that λf (m−) < −X−ε and
λf (m+) > X−ε.

Observe that the first part of Theorem 1.6 (namely the lower bound (1.5)) follows from
Proposition 3.6 with X = k/Y and Lemma 3.1. The second part of Theorem 1.6 (namely
the lower bound (1.6)) follows from a small variant of Proposition 3.6 and Lemma 3.1.
We delay the proof of the variant until the end of the section.

To prove Proposition 3.6 we study the first and second moments of λf (n) in short
intervals.
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Lemma 3.7. Assume the Generalized Lindelöf Hypothesis. Let ε, η > 0, X ≥ kη, and
2 ≤ L ≤ X. Then ∣∣∣ ∑

x<n≤x+x/L

λf (n)

∣∣∣�ε,η X
ε

(
X

L

)1/2

for all X ≤ x ≤ 2X with at most X1−ε exceptions.

Proof. This follows once we have shown that for any ε > 0,

1
X

∫ 2X

X

∣∣∣ ∑
x<n≤x+x/L

λf (n)

∣∣∣2dx �ε k
ε X

L1−ε . (3.5)

We follow an argument of Selberg [22] on primes in short intervals. Let δL = log(1 +
1/L) � 1/L. Applying Perron’s formula and shifting contours to Re(s) = 1/2 we see
that for x, x + x/L /∈ Z,

∑
x<n≤x+x/L

λf (n) =
1

2πi

∫ 1/2+i∞

1/2−i∞
L(s, f )

(x + x/L)s − xs

s
ds

= x1/2
·

1
2π

∫
∞

−∞

L(1/2+ it, f )wδL(1/2+ it) · e
it log x dt,

where wδL(s) = (e
sδL − 1)/s. This expresses the left-hand side as a Fourier transform.

Thus, making a change of variable and applying Plancherel we see that

1
X2

∫ 2X

X

∣∣∣ ∑
x<n≤x+x/L

λf (n)

∣∣∣2 dx ≤ ∫ ∞
0

∣∣∣ ∑
x<n≤x+x/L

λf (n)

∣∣∣2 dx
x2

=

∫
∞

−∞

∣∣∣ ∑
eτ<n≤eτ+δL

λf (n)

∣∣∣2 dτ
eτ
=

1
4π2

∫
∞

−∞

|L(1/2+ it, f )|2|wδL(1/2+ it)|
2 dt.

Using the bound |wδL(1/2+ it)| � min(δL, 1/|t |), we find that the above is

�ε k
ε

(∫ 1/δL

−1/δL
δ2
L|t |

ε dt +

∫
|t |>1/δL

1
|t |2−ε

dt

)
�ε k

εδ1−ε
L �

kε

L1−ε .

This establishes (3.5), and the claim follows. ut

Lemma 3.8. Assume the Generalized Lindelöf Hypothesis. Let ε, η > 0, X ≥ kη and
2 ≤ L ≤ X. Then

∑
x<n≤x+x/L

λf (n)
2
=

6
π2L(1, sym2 f )

x

L
+Oε,η

(
Xε
(
X

L

)1/2)

for all X ≤ x ≤ 2X with at most X1−ε exceptions.
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Proof. One has∑
n≥1

λf (n)
2

ns
= ζ(2s)−1L(s, f ⊗ f ) =

ζ(s)

ζ(2s)
L(s, sym2 f ).

WritingwδL(s) = (e
sδL−1)/s and arguing as in the proof of Lemma 3.7, only now noting

the pole at s = 1, we obtain

1
X2

∫ 2X

X

∣∣∣∣ ∑
x<n≤x+x/L

λf (n)
2
−
x

L
Ress=1

ζ(s)L(s, sym2 f )

ζ(2s)

∣∣∣∣2 dx
�

∫
∞

−∞

∣∣∣∣ζ(1/2+ it)ζ(1+ 2it)
L(1/2, sym2 f )

∣∣∣∣2|wδL(1/2+ it)|2 dt � kε

L1−ε ,

and the claim follows. ut

Proof of Proposition 3.6. Let ε > 0. Also, let L = X1−ε, y = y(x) = x/L and ε = ε/4.
By Lemma 3.7 we have, for all X ≤ x ≤ 2X with at most X1−ε exceptions,∣∣∣ ∑

x<n≤x+y

λf (n)

∣∣∣�ε,η X
ε

(
X

L

)1/2

� X5ε/6. (3.6)

Similarly, Lemma 3.8 implies that for all X ≤ x ≤ 2X with at most X1−ε exceptions,∑
x<n≤x+y

λf (n)
2
=

6
π2L(1, sym2 f )

x

L
+Oε,η(X

5ε/6). (3.7)

Recall that for any ν > 0,

L(1, sym2 f )�ν k
−ν,

and Deligne’s bound gives |λf (n)| ≤
∑
d|n 1 �ν n

ν . Using these two facts in (3.7) im-
plies that for ν(ε, η) sufficiently small for allX ≤ x ≤ 2X with at mostX1−ε exceptions,∑

x<n≤x+y

|λf (n)| �ε,η X
9ε/10.

Applying this along with (3.6) we see that for all X ≤ x ≤ 2X with at most 2X1−ε

exceptions, ∣∣∣ ∑
x<n≤x+y

|λf (n)| ±
∑

x<n≤x+y

λf (n)

∣∣∣�ε,η X
9ε/10.

Also, the contribution from the terms with |λf (n)| ≤ X−ε can be bounded trivially:∑
x<n≤x+y

|λf (n)|<X
−ε

|λf (n)| ≤ 2yX−ε ≤ 4.
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Therefore, we conclude that, for almost all X ≤ x ≤ 2X,∣∣∣ ∑
x<n≤x+y

|λf (n)|≥X
−ε

|λf (n)| ±
∑

x<n≤x+y

|λf (n)|≥X
−ε

λf (n)

∣∣∣�ε,η X
9ε/10.

This implies that for almost all X ≤ x ≤ 2X there exist m± ∈ [x, x + y] such that
λf (m−) ≤ −X

−ε and λf (m+) ≥ X−ε, as claimed. ut

Proposition 3.9. Assume the Generalized Lindelöf Hypothesis. Let ε, η > 0 andX ≥ kη.
Then, for almost all X ≤ x ≤ 2X, the interval [x, x + y(x)], where y(x) = x/X1−ε

� Xε, contains odd integers m± such that λf (m−) < −X−ε and λf (m+) > X−ε.

Proof. The proof goes similarly to the proof of Proposition 3.6. Here we have the extra
conditions (n, 2) = 1 in the sums. To account for this condition first note that, for
Re(s) > 1, L(s, f ) and L(s, sym2 f ) have Euler product representations given in terms
of a product of local factors at each prime:

L(s, f ) =
∏
p

Lp(s, f ) and L(s, sym2 f ) =
∏
p

Lp(s, sym2 f ).

The argument goes along the same lines as before, except that in place of L(s, f ) and
L(s, sym2 f ) one uses

L(s, f ) · (L2(s, f ))
−1 and L(s, f ) · (L2(s, sym2 f ))−1.

The contribution from the local factor at p = 2 is bounded. ut

4. Effective mass equidistribution for holomorphic Hecke cusp forms

For two smooth, bounded functions h, g the Petersson inner product is given by

〈h, g〉 =

∫∫
F
h(z)g(z)

dx dy

y2 .

Let Fk(z) = yk/2f (z) with f a weight k holomorphic Hecke cusp form, and assume
that Fk is normalized so that ‖Fk‖2 := 〈Fk, Fk〉 = 1. In this section we establish mass
equidistribution for holomorphic Hecke cusp forms with an unconditional, effective er-
ror term. Under the assumption of the Generalized Lindelöf Hypothesis effective error
terms have been obtained by Watson [25] and Young [27]. For the unconditional result
our arguments essentially follow those of Holowinsky and Soundararajan [8, 23, 9], ex-
cept for one modification which we have borrowed from Iwaniec’s course notes on mass
equidistribution for holomorphic Hecke cusp forms. We have also used some ideas of
Matt Young [27], and the final optimization uses a trick from Iwaniec’s course.

As in Holowinsky’s and Soundararajan’s [9] proof of mass equidistribution, we shall
estimate the inner product 〈|Fk|2, φ〉 of |Fk|2 with a smooth function φ in two ways. In
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the first approach, applying Soundararajan’s work [23], we use the spectral decomposi-
tion of φ. Here a formula of Watson [25] for 〈|Fk|2, u〉, where u is a Hecke–Maass cusp
form, plays a crucial role. In the second approach, based on Holowinsky’s paper [8], we
expand φ into a linear combination of Poincaré series, and estimate the inner product of
|Fk|

2 against a Poincaré series. One of the key inputs is a sieve bound for a shifted con-
volution problem. Each approach alone fails if the Fourier coefficients of Fk misbehave
in a certain way, but as noticed in [9], the misbehavior is of different nature, and at least
one of the approaches always works.

4.1. Soundararajan’s approach

The following treatment of the inner product of |Fk|2 and a Hecke–Maass cusp form is
taken from Iwaniec’s notes on mass equidistribution of holomorphic Hecke cusp forms.

Lemma 4.1. Let ε > 0. Let uj be an L2-normalized Hecke–Maass cusp form with spec-
tral parameter tj with |tj | ≤ k. Then

|〈|Fk|
2, uj 〉| �ε |tj |

1/2+ε(log k)ε
∏
p≤k

(
1−

n(p)

p

)
,

where n(p) = λf (p2)+ 1
4 (1− λ

2
f (p

2)).

Proof. By Watson’s formula [25],

|〈ujFk, Fk〉|
2
�

3(1/2, uj × f × f )
3(1, sym2uj )3(1, sym2f )2

.

The ratio of the Gamma factors is� 1/k, and therefore

|〈ujFk, Fk〉| �
|L(1/2, uj × sym2f )|1/2 · |L(1/2, uj )|1/2
√
k |L(1, sym2f )| · |L(1, sym2uj )|1/2

.

For the L-functions depending only on uj we note that the convexity bound gives
|L(1/2, uj )| �ε t

1/2+ε
j , while the work of Hoffstein and Lockhart [7] implies that

t−εj �ε |L(1, sym2uj )|. Next we note that Lemma 2 of Holowinsky and Soundarara-
jan [9] implies

|L(1, sym2f )|−1
� (log log k)3

∏
p≤k

(
1−

λf (p
2)

p

)
. (4.1)

Therefore,

|〈ujFk, Fk〉| �ε (log log k)3
t
1/4+ε
j
√
k

∏
p≤k

(
1−

λf (p
2)

p

)
|L(1/2, uj × sym2f )|1/2. (4.2)

It suffices to bound the L-function L(1/2, uj × sym2f ). The analytic conductor C of
L(1/2, uj×sym2f ) satisfies C � (k+|tj |)4|tj |2. Therefore, by the approximate functional
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equation (see for instance of Harcos [5, Theorem 2.1]), and then by Cauchy–Schwarz,

|L(1/2, uj × sym2f )|2 �

(∑
n≥1

|λuj (n)λf (n
2)|

√
n

∣∣∣∣V( n
√
C

)∣∣∣∣)2

�

∑
n≥1

|λuj (n)|
2

√
n

∣∣∣∣V( n
√
C

)∣∣∣∣×∑
n≥1

λf (n
2)2
√
n

∣∣∣∣V( n
√
C

)∣∣∣∣, (4.3)

where V is a smooth function satisfying |V (x)| �A min(1, x−A) for any A ≥ 1. To
bound the second term in (4.3) we use general bounds for multiplicative functions to see∑

n≤C1/2(logC)ε

λf (n
2)2
√
n
� C1/4(logC)ε

∏
p≤C1/2(logC)ε

(
1+

λf (p
2)2 − 1
p

)
. (4.4)

Next we use Deligne’s bound |λf (n)| ≤ d(n), the elementary estimate
∑
n≤X d

2(n2) �

X(logX)8, and partial summation to see that, for any A ≥ 1,∑
n≥C1/2(logC)ε

λf (n
2)2
√
n

∣∣∣∣V( n
√
C

)∣∣∣∣�A,ε

C1/4

(logC)A
,

which is bounded above by the right-hand side of (4.4).
Next observe that for X ≥ 2,

∑
n≥1

|λuj (n)|
2

√
n

e−n/X =
1

2πi

∫
(2)

L(1/2+ s, uj ⊗ uj )
ζ(2s + 1)

0(s)Xs ds. (4.5)

The convexity bound gives

|L(1/2+ it, uj ⊗ uj )| �ε |tj |
1/2+ε(1+ |t |)1+ε.

By convexity we also have |L(σ + it, uj ⊗ uj )| �ε |tj |
1/2+ε(1 + |t |)1+ε uniformly in

σ ≥ 1/2. In addition, from the works Hoffstein and Lockhart [7] and Li [14] we have
|tj |
−ε
�ε L(1, sym2uj )�ε |tj |

ε. Combining these ingredients shows that (4.5) equals

6
π3/2X

1/2L(1, sym2 uj )+Oε(X
ε
|tj |

1/2+ε).

Using this and partial summation we see that the first term on the right-hand side of (4.3)
is �ε C1/4L(1, sym2uj ) + Cε|tj |

1/2+ε. Applying this bound along with (4.4) in (4.3)
yields

|L(1/2, uj × sym2f )|1/2

�ε (logC)ε
( ∏
p≤C1/2(logC)ε

(
1+

λf (p
2)2 − 1
4p

))
(C1/8
|tj |

ε
+ C1/16+ε

|tj |
1/8+ε).
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Using this in (4.2), doing some minor manipulations in the Euler products, and simplify-
ing error terms we conclude that

|〈ujFk, Fk〉| �ε |tj |
1/2+ε(log k)ε

∏
p≤k

(
1−

n(p)

p

)

as claimed. ut

In order to perform a spectral expansion of 〈|Fk|2, φ〉 we also need estimates for 〈u, φ〉
with u a Maass cusp form, and for 〈E(·, 1/2+ it), φ〉 with

E(z, s) :=
∑

γ∈0∞\0

(Im(γ z))s, Re(s) > 1.

Note that E(z, s) is defined in Re(s) ≤ 1 by analytic continuation. In order to control
〈E(·, 1/2+ it, φ〉 we require a simple pointwise bound for E(z, 1/2+ it).

Lemma 4.2. For x, y, t ∈ R,

E(x + iy, 1/2+ it)�
√
y(1+ |t |).

Proof. The Eisenstein series has the Fourier expansion (see [10, (3.29)])

E(z, s) = ys +
θ(1− s)
θ(s)

y1−s
+

2
√
y

θ(s)

∑
n6=0

τs−1/2(n)e(nx)Ks−1/2(2π |n|y), (4.6)

where θ(s) = π−s0(s)ζ(2s) and τs−1/2(n) =
∑
ab=|n|(a/b)

s−1/2. Using the following
uniform estimates for theK-Bessel function due to Balogh [1] (see Ghosh, Reznikov, and
Sarnak [2, Corollary 3.2]):

Kit (u)� min((t2 − u2)−1/4e−πt/2, u−1/2e−u, t−1/3e−πt/2) (4.7)

along with Stirling’s formula and the bound |ζ(1+ it)|−1
� log(|t | + 1) one gets

E(z, 1/2+ it)�
√
y(1+ |t |). (4.8)

ut

Combining the above pointwise bound and integration by parts we obtain the following
estimate for the inner product of E(z, s) with φ(z).

Lemma 4.3. Let φ be a smooth compactly supported function with 1`φ �` M
2` for all

` ≥ 1. Then, for all A ≥ 1,

|〈uj , φ〉| �A

M2A

1+ |tj |2A
and |〈E(·, 1/2+ it), φ〉| �A

M2A

1+ |t |2A−1 .
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Proof. The hyperbolic Laplacian is symmetric with respect to the Petersson inner prod-
uct, that is, 〈1g, h〉 = 〈g,1h〉. Therefore since uj is an eigenfunction of 1 with eigen-
value 1/4+ t2j , we get

(1/4+ t2j )
`
〈uj , φ〉 = 〈1

`uj , φ〉 = 〈uj ,1
`φ〉 �` 〈|uj |, 1〉M2`.

Since F has finite hyperbolic area, we can bound the L1-norm of uj by its L2-norm,
which is 1. This gives the first claim. For the second claim we proceed similarly, except
that now in the last step we use (4.8), finding that

(1/4+ t2)`〈E(·, 1/2+ it), φ〉 = 〈E(·, 1/2+ it),1`φ〉

�` M
2`(1+ |t |)

∫
F

dx dy

y3/2 . ut

We are now ready to prove the main result of this subsection.

Lemma 4.4. Let φ be as in Lemma 4.3 with M ≤ log k.
If f is a Hecke cusp form of weight k then, for any A ≥ 1 and ε > 0,

〈|Fk|
2, φ〉

=
3
π
〈1, φ〉 +Oε

(
M3/2+ε(log k)ε

(∏
p≤k

(
1−

n(p)

p

)
+

∏
p≤k

(
1−

λf (p
2)+ 1
p

))
‖φ‖2

)
+OA((log k)−A),

where n(p) = λf (p2)+ 1
4 (1− λf (p

2)2).

Proof. Starting with the spectral decomposition we have (see e.g. [11, Theorem 15.5])

〈|Fk|
2, φ〉 =

3
π
〈1, φ〉 +

∑
j≥1

〈|Fk|
2, uj 〉〈uj , φ〉

+
1

4π

∫
R
〈|Fk|

2, E(·, 1/2+ it)〉〈E(·, 1/2+ it), φ〉 dt. (4.9)

By the previous lemma,

|〈uj , φ〉| �A

M2A

1+ |tj |2A
and |〈E(·, 1/2+ it), φ〉| �A

M2A

1+ |t |2A−1

for any fixed A > 0.
Combining [23, Corollary 1] with (4.1) we get

|〈|Fk|
2, E(·, 1/2+ it)〉| �ε (1+ |t |) exp

(
−

∑
p≤k

λf (p
2)+ 1
p

)
(log k)ε. (4.10)

(Note that here we have used a slightly stronger form of [23, Corollary 1], which is easily
seen to follow from the proof.) Using the above bounds together with Lemma 4.1 shows
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that the terms with |tj | > M(log k)ε and |t | > M(log k)ε in (4.9) contribute, for any
A ≥ 1, an amount at most Oε,A((log k)−A). Recalling Weyl’s law,

∑
|tj |≤T

1 ∼ T 2/12,
established by Selberg, and applying Lemma 4.1 and Bessel’s inequality, we see that the
contribution of the remaining cusp forms is bounded by

( ∑
|tj |≤M(log k)ε

|〈|Fk|
2, uj 〉|

2
)1/2(∑

j

|〈uj , φ〉|
2
)1/2

�ε M
3/2+ε(log k)ε

∏
p≤k

(
1−

n(p)

p

)
· ‖φ‖2. (4.11)

The remaining Eisenstein series contribution is bounded by

( ∫
|t |≤M(log k)ε

|〈|Fk|
2, E(·, 1/2+ it)〉|2 dt

)1/2(∫
R

|〈E(·, 1/2+ it), φ〉|2 dt
)1/2

�ε M
3/2(log k)ε

∏
p≤k

(
1−

λf (p
2)+ 1
p

)
· ‖φ‖2, (4.12)

by (4.10) and Bessel’s inequality. Using (4.11) and (4.12) in (4.9) gives the claim. ut

4.2. Holowinsky’s approach

The general strategy of Holowinsky’s approach is to expand φ into a linear combination
of incomplete Poincaré series,

Ph,m(z) =
∑

γ∈0∞\0

h(Im γ z)e(mRe γ z),

with h some smooth function depending on φ. This reduces the problem to bounding
〈|Fk|

2, Ph,m〉 with m 6= 0 and estimating 〈|Fk|2, Ph,0〉.

Lemma 4.5. Let ε > 0. Let h be a smooth, positive-valued function such that h(`)(y)�
M` for all integers ` ≥ 0, and assumeM � log k. Suppose in addition that h is supported
in [1/2,∞). Then for 0 < |m| ≤ log k,

〈|Fk|
2, Ph,m〉 �ε (log k)ε

∏
p≤k

(
1−

(|λf (p)| − 1)2

p

)
. (4.13)

Proof. Using the standard unfolding method, we get

〈|Fk|
2, Ph,m〉 =

∫
∞

0

∫ 1/2

−1/2
|Fk(z)|

2h(y)e(mx)
dx dy

y2 . (4.14)
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Applying [15, Proposition 2.1], which follows from expanding |Fk|2, and keeping track
of the dependencies on m and h one has

〈|Fk|
2, Ph,m(z)〉 =

2π2

(k − 1)L(1, sym2f )

∑
r≥1

λf (r)λf (r +m)h

(
k − 1

4π(r +m/2)

)

+Oε

(
(|m| +M)B

k1/2−ε

)
, (4.15)

where B is a sufficiently large absolute constant. We now use a version of Shiu’s bound
(as in Holowinsky’s work, [8, Theorem 1.2]). This gives∑
r≥1

|λf (r)λf (r+m)|h

(
k − 1

4π(r +m/2)

)
� k(log k)ε

∏
p≤k

(
1+

2|λf (p)| − 2
p

)
. (4.16)

The claim now follows from (4.1). ut

We now turn our attention to the case m = 0. Note that Ph,0(z) = E(z|h), where

E(z|h) =
∑

γ∈0∞\0

h(Im γ z)

is an incomplete Eisenstein series. We will use its Fourier expansion

E(z|h) = ah,0(y)+
∑
|`|≥1

ah,`(y)e(`x).

Before proceeding further we record the following lemma.

Lemma 4.6. Let h be a smooth function with h(k)(y) �k M
k for some M ≥ 1, all

integers k ≥ 0 and all y > 0. Then

ah,0(y) =
3
π

∫
∞

0
h(v)

dv

v2 +O(M
2√y),

while, for ` 6= 0,

ah,`(y)�A,ε
√
y d(|`|)min

(
M,

MA

|`y|A−2/3−ε

)
for any A > 0 and ε > 0, where d(·) denotes the divisor function.

Proof. The Fourier coefficients are obtained from those of E(z, s) (see (4.6)). Writing H
for the Mellin transform of h and noting E(z|h) = 1

2πi

∫
(2)H(−s)E(z, s) ds one has, by

shifting contours, for ` 6= 0,

ah,`(y) =
1

2πi

(
y

π

)1/2 ∫
R

π itH(−1/2− it)
0(1/2+ it)ζ(1+ 2it)

τit (|`|)Kit (2π |`|y) dt.
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Observe that by repeatedly integrating by parts,H(−s)�A
MA

1+|t |A for any integer A ≥ 1.
Applying (4.7) we see that for any integer A ≥ 1,

ah,`(y)�A,ε y
1/2d(|`|)min

(
M,

MA

|`y|A−2/3−ε

)
. (4.17)

Additionally, by shifting contours we get

ah,0(y) =
1

2πi

∫
(2)
H(−s)

(
ys +

θ(1− s)
θ(s)

y1−s
)
ds

=
3
π
H(−1)+O(M2√y). (4.18)

which gives the claim since H(−1) =
∫
∞

0 h(v)v−2 dv. ut

Lemma 4.7. Let h be a smooth function with h(`)(y) �` M
` for all integers ` ≥ 0 and

with h(y)
√
y � 1 for all y > 1. Then

〈|Fk|
2, Ph,0〉 =

3
π

∫
∞

0
h(y)

dy

y2 +Oε

(
M2(log k)ε

∏
p≤k

(
1−

1
2 (|λf (p)| − 1)2

p

))
.

Proof. The proof closely follows the work of Holowinsky [8], whose main analytic tool
is the smoothed incomplete Eisenstein series

EY (z|g) =
∑

γ∈0∞\0

g(Y Im γ z),

where g is a fixed smooth function that is compactly supported on the positive reals.
Writing G for the Mellin transform of g and shifting contours we see that

〈EY (z|g)E(z|h)Fk, Fk〉 =
1

2πi

∫
(2)
G(−s)Y s〈E(z, s)E(z|h)Fk, Fk〉 ds

= Y
3
π
G(−1)〈E(z|h)Fk, Fk〉

+
1

2πi

∫
( 1

2 )
G(−s)Y s〈E(z, s)E(z|h)Fk, Fk〉 ds.

We bound the inner product in the last integral by applying (4.8) to get by unfolding

〈E(z, s)E(z|h)Fk, Fk〉 =

∫
∞

0

∫ 1/2

−1/2
h(y)E(z, s)|Fk(z)|

2 dx dy

y2

� (1+|s|)
∫
∞

1/2

∫ 1/2

−1/2
h(y)
√
y |Fk(z)|

2 dx dy

y2 � (1+|s|)‖Fk‖2,

where we have used the bound h(y)
√
y � 1 that is true by assumption. This gives

〈EY (z|g)E(z|h)Fk, Fk〉 = Y
3
π
G(−1)〈E(z|h)Fk, Fk〉 +O(

√
Y ). (4.19)
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The Hecke cusp form f has a Fourier expansion

f (z) =
∑
n≥1

af (n)e(nz).

Since we have normalized with 〈f, f 〉 = 1, the eigenvalues λf (n) of the Hecke operators
are related to the Fourier coefficients af (n) by the relation

λf (n)n
(k−1)/2af (1) = af (n) with |af (1)|2 =

2π2(4π)k−1

0(k)L(1, sym2 f )
.

We now use the unfolding method to get

〈EY (z|g)E(z|h)Fk, Fk〉 =

∫
∞

0

∫ 1/2

−1/2
g(Yy)E(z|h)|Fk(z)|

2 dx dy

y2

=
2π2(4π)k−1

0(k)L(1, sym2 f )

∑
`

∑
n≥1

λf (n)λf (n+ `)(n(n+ `))
(k−1)/2

×

∫
∞

0
ykg(Yy)ah,`(y)e

−2π(2n+`)y dy

y2 . (4.20)

Using Mellin inversion, Stirling’s formula and an argument of Luo and Sarnak [15] gives

(4π)k−1

0(k)
(n(n+`))(k−1)/2

∫
∞

0
ykg(Yy)e−2π(2n+`)y dy

y2

=
1
k−1

g

(
Y (k−1)

4π(n+`/2)

)(
1+O

(
1
k1−ε

))
+Oε

(
1

k1/2−ε(n+`/2+1/2)3/2

)
(4.21)

(see [15, proof of Proposition 2.1] or [8, the argument leading to (20)]).
To bound the terms with ` 6= 0 in (4.20) we first use (4.17) and (4.21). Then we apply

a variant of Shiu’s bound as in the proof of the previous lemma. Thus, the terms with
` 6= 0 are

�ε

∑
|`|≥1

d(|`|)min
(
M, M2

|`Y−1|4/3−ε

)
k
√
Y L(1, sym2 f )

∑
n≥1

|λf (n)λf (n+ `)|g

(
Y (k − 1)

4π(n+ `/2)

)

�ε

√
Y (log k)ε

L(1, sym2 f )

∏
p≤k

(
1+

2|λf (p)| − 2
p

) ∑
|`|≥1

min
(
M,

M2

|`Y−1|4/3−ε

)
d(|`|)2

�ε (log k)εM7/4Y 3/2+ε
∏
p≤k

(
1−

λf (p
2)− 2|λf (p)| + 2

p

)
, (4.22)

where we have used (4.1).
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It remains to estimate the contribution from the zeroth Fourier coefficient of E(z|h)
in (4.20). Assuming Y ≤ log k and using (4.18) and (4.21), we see that the term with
` = 0 on the right-hand side of (4.20) equals

2π2

(k − 1)L(1, sym2f )

∑
n≥1

|λf (n)|
2nk−1

∫
∞

0
ykg(Yy)a0,h(y)e

−4πny dy

y2

=

(
3
π
〈E(z|h), 1〉 +O

(
M2
√
Y

))
2π2

(k − 1)L(1, sym2f )

∑
n≥1

|λf (n)|
2g

(
Y (k − 1)

4πn

)
(4.23)

To evaluate the last sum we employ Soundararajan’s [23] weak subconvexity estimate.
Let G denote the Mellin transform of g and observe that G(s) �A (1 + |s|)−A for any
fixed A in any vertical strip −3 ≤ a ≤ Re(s) ≤ b ≤ 3. Then∑

r≥1

|λf (r)|
2g

(
Y (k − 1)

4πr

)
=

1
2πi

∫
(2)

(
Y (k − 1)

4π

)s
L(s, f ⊗ f )

ζ(2s)
G(−s) ds.

Shifting contours to Re(s) = 1/2 we collect a pole at s = 1 with residue

Y (k − 1)
4π

·
6
π2G(−1)L(1, sym2f ).

To bound the integral on the line Re(s) = 1/2 we use the estimate

|L(1/2+ it, sym2f )| �ε

k1/2(1+ |t |)
(log k)1−ε

due to Soundararajan [23, Example (1.1)]). We conclude that

∑
r≥1

|λf (r)|
2g

(
Y (k − 1)

4πr

)
=
Y (k − 1)

4π
·

6
π2G(−1)L(1, sym2f )+O

( √
Y k

(log k)1−ε

)
.

(4.24)
Now use the estimates (4.22)–(4.24) in (4.20); next combine the resulting formula

with (4.19); and finally, use the bound L(1, sym2f ) � (log k)−1 (which follows from
the work of Hoffstein and Lockhart [7]) to get

〈E(z|h)Fk, Fk〉 =
3
π
〈E(z|h), 1〉 +Oε

(
M2(log k)ε
√
Y

)
+Oε

(
(log k)εM7/4Y 1/2+ε

∏
p≤k

(
1−

(|λf (p)| − 1)2

p

))
.

To complete the proof take Y =
∏
p≤k

(
1+ (|λf (p)|−1)2

p

)
. ut

We are now ready to collect the previous lemma into the main result of this subsection.
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Lemma 4.8. Let 1 ≤ M ≤ log k. Let φ be a smooth function compactly supported in the
fundamental domain F , and such that

sup
z∈F

∣∣∣∣y ∂a∂xa ∂b∂yb φ(z)
∣∣∣∣�a,b M

a+b

for all non-negative integers a, b. Then

〈|Fk|
2, φ〉 =

3
π
〈φ, 1〉 +Oε

(
M2(log k)ε

∏
p≤k

(
1−

1
2 (|λf (p)| − 1)2

p

))
.

Proof. Let 8 be the extension of φ to H by 0∞ periodicity. Define

8m(y) :=

∫ 1

0
8(x + iy)e(−mx) dx.

Then

φ(x + iy) =
∑
m∈Z

P8m,m(z) where P8m,m(z) :=
∑

γ∈0∞\0

8m(Im γ z)e(mRe γ z).

Now

〈|Fk|
2, φ〉 =

∑
m∈Z
〈|Fk|

2, P8m,m〉. (4.25)

Note that by integration by parts, 8m(y) �A (M/|m|)A. Therefore, by unfolding, for
m 6= 0,

〈|Fk|
2, P8m,m〉 =

∫
∞

0

∫ 1

0
|yk/2fk(z)|

2e(−mx)8m(y)
dx dy

y2 �A

(
M

|m|

)A
.

It follows that in the sum (4.25) we can truncate at |m| > M(log k)ε at the price of an error
term which is�ε,A (log k)−A. On the remaining terms withm 6= 0 we apply Lemma 4.5,
while on the term with m = 0 we use Lemma 4.7. Altogether this leads to

〈|Fk|
2, φ〉 =

3
π

∫
∞

0
80(y)

dy

y2 +Oε

(
M2(log k)ε

∏
p≤k

(
1−

1
2 (|λf (p)| − 1)2

p

))

+Oε

(
M2(log k)ε

∏
p≤k

(
1−

(|λf (p)| − 1)2

p

))
.

Finally, note that ∫
∞

0
80(y)

dy

y2 =

∫
F
φ(z)

dx dy

y2 . ut
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4.3. Proof of effective mass equidistribution

Proof of Theorem 1.3. Combining Lemmas 4.4 and 4.8 we obtain

〈|Fk|
2, φ〉 =

3
π
〈1, φ〉 +Oε(M2(log k)εP(k)), (4.26)

where

P(k) := min
(∏
p≤k

(
1−

1
2 (|λf (p)| − 1)2

p

)
,
∏
p≤k

(
1−

n(p)

p

)
+

∏
p≤k

(
1−

λf (p
2)+ 1
p

))
.

For a, b, c ≥ 0 we have

min(a, b + c) ≤ min(a, b)+min(a, c)� aαb1−α
+ aβc1−β .

Therefore it is enough to choose α and β so as to minimize separately aαc1−α and bβc1−β

for a, b, c corresponding to the Euler products above. To shorten notation write λ =
|λf (p)|. This leads us to looking for an 0 ≤ α ≤ 1 which minimizes

max
0≤λ≤2

(
−

1
2α(λ− 1)2 − (1− α)

(
λ2
− 1− 1

4 (λ
2
− 1)2 + 1

4

))
.

We also need to find a 0 ≤ β ≤ 1 which will minimize

max
0≤λ≤2

(
−

1
2β(λ− 1)2 − (1− β)λ2).

This is minimized by taking β = 2 −
√

2 and under this choice the maximum is less
than −1/12. For the first condition, let us first restrict to α ≥ 1/3. We note that we can
then restrict to λ ≤ 1, because for λ ≥ 1 the max is always bounded by −1/12. In the
range 0 ≤ λ ≤ 1, we have 1

4 (λ
2
− 1)2 ≤ 1

4 (λ− 1)2. Thus it is enough to optimize

max
0≤λ≤1

(
−

1
2α(λ− 1)2 − (1− α)

(
λ2
− 1− 1

4 (λ− 1)2 + 1
4

))
.

For 1/3 ≤ α ≤ 1 this maximum is equal to

(1− α)(13− 15α)
4(3− α)

.

This is smallest when α = 3− 8/
√

15 and the minimum is then

−κ := −31/2+ 4
√

15 = −0.008066615 . . . .

Thus, the error term in (4.26) is Oε(M2(log k)−κ+ε). ut
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