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Abstract. Let C be a proper, integral, locally planar curve, and consider its Hilbert schemes of
points C[n]. We define four creation/annihilation operators acting on the rational homology groups
of these Hilbert schemes and show that the operators satisfy the relations of a Weyl algebra. The
action of this algebra is similar to that defined by Grojnowski and Nakajima for a smooth surface.

As a corollary, we compute the cohomology of C[n] in terms of the cohomology of the com-
pactified Jacobian of C together with an auxiliary grading on the latter. This recovers and slightly
strenghtens a formula recently obtained in a different way by Maulik and Yun and independently
Migliorini and Shende.

Keywords. Locally planar curves, Hilbert scheme, compactified Jacobian, Gopakumar–Vafa in-
variants, Weyl algebra

1. Introduction

Let C be a proper, integral, complex curve with planar singularities. Denote by C[n] the
Hilbert scheme of length n subschemes of C. Let J be the compactified Jacobian, i.e. the
space of torsion free sheaves on C with rank 1 and degree 0. These spaces are related by
the Abel–Jacobi morphism AJ : C[n] → J , which sends a subscheme Z to the sheaf
IZ ⊗O(x)⊗n, where x ∈ C is a chosen nonsingular point. Under our assumptions on C,
both C[n] and J are reduced and irreducible with l.c.i. singularities [AIK77, BGS81].

Let g be the arithmetic genus of C. For n ≥ 2g−1 the map AJ is a Pn−g-bundle (see
[AK80]), so the rational homology group H∗(C[n]) is determined up to isomorphism by
H∗(J ). The formula below extends this by expressing H∗(C[n]) in terms of H∗(J ) even
for n < 2g − 1.

In order to state the result, we will define a new grading on H∗(J ), with the m-th
graded piece denotedDmH∗(J ). ThisD-grading combines with the homological grading
to give a bigrading, and we have DmH∗(J ) = 0 unless 0 ≤ m ≤ 2g. We then have the
following formula.
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Proposition 1.1. There is an isomorphism of homologically graded vector spaces

H∗(C
[n]) ∼=

⊕
m≤n

DmH∗(J )⊗ Symn−m(Q⊕Q[2]).

Here Q[2] denotes the space Q with homological degree 2. A very similar statement
was recently shown by Maulik and Yun [MY14] and Migliorini and Shende [MS13]. See
Section 1.5 for a discussion of how these papers relate to this one.

1.1. Algebra action

Proposition 1.1 will be obtained as a corollary of our main result, which we now describe.
Consider the vector space

V (C) :=
⊕
n≥0

H∗(C
[n]).

We shall define two pairs of creation and annihilation operators acting on V (C).
The first pair is denoted µ±[pt] : H∗(C[n]) → H∗−1±1(C

[n±1]) and corresponds to
adding or removing a fixed nonsingular point x ∈ C. Indeed, any such x induces an
inclusion i : C[n] ↪→ C[n+1] by letting Ii(Z) = IZ · Ix for every Z ∈ C[n]. We then take
µ+[pt] = i∗ and µ−[pt] = i!, where i! is the intersection pullback map.

The second pair is denoted µ±[C] : H∗(C[n]) → H∗+1±1(C
[n±1]). Let C[n,n+1] be

the flag Hilbert scheme parametrising pairs (Z,Z′) ∈ C[n] × C[n+1] such that Z ⊂ Z′.
The operators µ±[C] are correspondences induced by the diagram

C[n,n+1]

p

zz

q

%%

C[n] C[n+1]

In Section 2.3, we define Gysin maps p! and q !, and we then let µ+[C] = q∗p
! and

µ−[C] = p∗q
!. Since the schemes in the above diagram are singular, the fact that we

can define such Gysin maps is nontrivial and depends on the assumption that C is locally
planar.

The main result of this paper is the following.

Theorem 1.2.
(i) The operators µ±[pt], µ±[C] ∈ End(V (C)) satisfy the commutation relations

[µ−[pt], µ+[C]] = [µ−[C], µ+[pt]] = id,

and all other pairs of operators commute.
(ii) Let W = kerµ−[pt] ∩ kerµ−[C]. Then the natural map

W ⊗Q[µ+[pt], µ+[C]] → V (C)

is an isomorphism.
(iii) The Abel–Jacobi pushforward map AJ∗ : V (C)→ H∗(J ) induces an isomorphism

W ∼= H∗(J ).
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Point (i) can be rephrased as saying that the subalgebra of End(V (C)) generated by
µ±[pt], µ±[C] is isomorphic to the Weyl algebra Q[x1, x2, ∂1, ∂2].

Note that V (C) is naturally bigraded by taking the (i, n)-th homogeneous piece to be
Hi(C

[n]). The four operators are bihomogeneous, so the space W in the theorem inherits
a bigrading, and so by part (iii) we get an induced bigrading on H∗(J ). We let DnHi(J )
denote the (i, n)-th homogeneous part of H∗(J ). Restricting the isomorphism of (ii) to a
single H∗(C[n]) then gives Proposition 1.1.

1.2. On the proof

Assuming the commutation relations of Theorem 1.2(i), the proof of part (ii) is a matter
of elementary algebra. The proof of (iii) is then quite easy, using the fact that for large n
the map C[n]→ J is a projective space bundle [AK80].

Finally, for checking the commutation relations of (i), the idea is the following. The
operators can all be thought of as correspondences. If the C[n] were smooth, we could
apply the usual composition formula for correspondences, and so reduce the calcula-
tion of each commutator to computing a specific class in H∗(C[n] × C[n

′
]) with n′ ∈

{n− 2, n, n+ 2}.
The idea for circumventing the nonsmoothness of the C[n] is to embed C in an al-

gebraic family C → B over a smooth base B such that the relative Hilbert schemes
C[n] → B are nonsingular for all n. That this is possible follows from the fact that C is
locally planar, as was shown by Shende [She12, Cor. 15]. Given such a family, we may
compose correspondences in the family, compute the commutators (this is possible by the
nonsingularity of C[n]), and finally restrict to the fibre C[n].

1.3. Variants

The main theorem has natural variants in cohomology and Chow homology:

1.3.1. Cohomology. Since we are working with Q-coefficients, we may dualise every
vector space and consider cohomology instead of homology. Let

V c(C) =
⊕
i,n≥0

H i(C[n],Q).

We let the operators µc
± acting on cohomology be defined by dualising, i.e. µc

±[pt] =
µ∓[pt]∗ and µc

±[C] = µ∓[C]
∗.

Then from Theorem 1.2 we easily get the following cohomological version.

Theorem 1.3.

(i) The operators µc
±[pt], µc

±[C] ∈ End(V c(C)) satisfy the commutation relations

[µc
−[pt], µc

+[C]] = [µ
c
−[C], µ

c
+[pt]] = id,

and all other pairs of operators commute.
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(ii) Let W c
= V c(C)/(imµc

+[pt] + imµc
+[C]). Then the natural maps

kerµc
−[pt] ∩ kerµc

−[C] → W c

and
(kerµc

−[pt] ∩ kerµc
−[C])⊗Q[µc

+[pt], µc
+[C]] → V c(C)

are isomorphisms.
(iii) The Abel–Jacobi pullback map AJ ∗ : H ∗(J )→ H ∗(C[n]) induces an isomorphism

H∗(J ) ∼= W
c.

The natural bigrading on V c(C) induces a bigrading on W c, and hence a bigrading
on H ∗(J ), which we write as H ∗(J ) =

⊕
i,nDnH

i(J ). As in the case of homology,
we recover every H ∗(C[n]) from the data of H ∗(J ) with this D-grading, i.e.

H ∗(C[n]) ∼=
⊕
m≤n

DmH
∗(J )⊗ Symn−m (Q⊕Q[−2]) . (1.1)

The following question seems natural.

Question 1.4. Is the cup product onH ∗(J ) homogeneous with respect to theD-grading?

1.3.2. Chow homology. Instead of the homology groups H∗(C[n]) and H∗(J ) we may
work with the Chow homology groups A∗(C[n]) and A∗(J ) (with rational coefficients).
The operators µ±[pt] and µ±[C] can still be defined in this setting, and Theorem 1.2
then holds. The proof is the same as in the case of singular homology, and we shall only
indicate the changes necessary at the few places where these occur.

Note that in this setting the operators µ±[pt] will in general depend on the particular
point x ∈ C chosen for the definition of C[n] ↪→ C[n+1].

1.4. Applications to curve counting and BPS numbers

The present work is related to curve counting on Calabi–Yau 3-folds. See also the intro-
duction to [MS13] or the survey paper [PT14] for background on these curve counting
theories.

Under our assumptions on the curve C, Pandharipande and Thomas [PT10, App. B]
show that there are integers ng such that

q1−g(C)
∞∑
n=0

χ(C[n])qn =

g(C)∑
g=g(C̃)

ng

(
q

(1− q)2

)1−g(C)

. (1.2)

Here g(C) and g(C̃) are the arithmetic and geometric genera of C, respectively. If C lies
in a Calabi–Yau 3-foldX, then one may in certain cases interpret the ng as the contribution
of C to the BPS invariant ng,[C] of Gopakumar and Vafa [PT10].

In Gopakumar and Vafa’s original proposal [GV98a, GV98b] the BPS invariants
ng,[C] of a Calabi–Yau 3-fold X are computed from the cohomology of the space of pure
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1-dimensional sheaves on X. For a single curve C, this computation suggests the follow-
ing alternative way of defining the contribution of C to ng,[C]: The cohomology H ∗(J )
should in some sense split as the direct sum of cohomologies H ∗(T 2g) for different g,
where T 2g is the real 2g-dimensional torus. The contribution of C to ng,[C] should then
be the number of copies of H ∗(T 2g) appearing in the decomposition.

Formula (1.1) gives one way of making this precise, as follows. The right hand side
of (1.2) is a rational function invariant under q 7→ q−1, hence the left hand side is as
well. Let χ(DnH ∗(J )) = dimDnH

even(J ) − dimDnH
odd(J ). Applying (1.1) one can

then check that the Laurent polynomial

q−g(C)
2g(C)∑
n=0

χ(DnH
∗(J ))qn

is invariant under q 7→ q−1 as well.1

Thinking of (q−1
− 2 + q)g as the shifted Poincaré polynomial of T 2g , it is then

reasonable to define the contribution n′g of C to ng,[C] by

q−g(C)
2g(C)∑
n=0

χ(DnH
∗(J ))qn =

2g(C)∑
g=0

n′g(q
−1
− 2+ q)g.

From (1.1) we then easily get the following proposition.

Proposition 1.5. The two definitions of the contribution of C to the BPS number ng,[C]
agree, i.e. ng = n′g for all g.

1.5. Relation to existing work

The results in this paper are motivated by the recent work of Maulik and Yun [MY14] and
Migliorini and Shende [MS13]. In those papersH ∗(J ) is endowed with a certain perverse
filtration P , and the P -graded space grP∗ H

∗(J ) then recovers H ∗(C[n]) in the same way
as our D-graded H ∗(J ) recovers H ∗(C[n]). In Section 7, we show that the grading D is
in fact a splitting of the filtration P .

This filtration P arises in a completely different way to our D-grading. Consider a
deformation family C → B such that the relative compactified Jacobian f : J → B is
nonsingular. Then Rf∗(QJ ) ∈ Dbc (B) has a filtration induced by the perverse t-structure
on Dbc (B), which restricts to give the filtration P on H ∗(J ). The main result of [MY14,
MS13] is a description of the object Rf∗(QJ ), with the formula for H ∗(C[n]) then ap-
pearing as a corollary.

In contrast, we restrict ourselves to the study of the single curve C. This paper grew
out of an attempt to prove Proposition 1.1 without the technology of perverse sheaves

1 The symmetry of this polynomial can be refined to an isomorphism DnH
k(J ) ∼=

D2g(C)−nH
k+2g(C)−2n(J ). This follows from the relation between the D-grading and the per-

verse filtration onH∗(J ) (Prop. 7.1) and the relative hard Lefschetz theorem applied to the perverse
filtration [MY14, 2.16].
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and the decomposition theorem. That such a proof should exist was suggested to us by
Richard Thomas.

The approach we take is inspired by Nakajima’s [Nak97] and Grojnowski’s [Gro96]
construction of an action of an infinite-dimensional Heisenberg algebra on the homologies
of the Hilbert schemes of a smooth surface. Both the definition of our operators and the
strategy for proving their commutation relations are analogous to the corresponding parts
of Nakajima’s paper. The main technical contribution of this paper lies in defining the
operators and proving the commutation relations in the context of the singular spacesC[n].

For a curve C which is smooth over a quasi-projective smooth base variety S, Moo-
nen and Polishchuk [MP10] have computed

⊕
n≥0A∗(C

[n]) in terms of A∗(J ), using a
similar strategy to that of this paper. Their computation holds in Chow groups with inte-
gral coefficients. Specialising to S = SpecC and tensoring the Chow groups with Q, we
recover the Chow version of Proposition 1.1 for a smooth C.

1.6. Outline of the paper

The paper is laid out as follows. In Section 2 we give the precise definitions of the four op-
erators. In Section 3 we assume the commutation relations of Theorem 1.2(i) and deduce
parts (ii) and (iii).

For the proof of the commutation relations, it will be convenient to use the language
of bivariant homology theory, as laid out in [FM81]. In Section 4 we give a summary of
the relevant parts of this theory, and in Section 5 we prove Theorem 1.2(i). In Section 6
we collect a few lemmas on the incidence schemes C[n,n+1] which we need elsewhere.
Finally, in Section 7 we show that the grading D is a splitting of the perverse filtration of
[MY14, MS13].

2. Definition of the four operators

2.1. The deformation family of C

The following construction is essential for the definition of the operators µ±[C] and for
proving the commutation relations.

Choose an algebraic family f : C→B, where B is nonsingular, such that f−1(0)∼=C
for some 0 ∈ B. Let C[n] → B be the relative Hilbert scheme, that is, the scheme such
that the fibre over b ∈ B is (Cb)[n]. By [She12, Cor. 15] we may choose the family so
that the scheme C[n] is nonsingular for all n. Possibly after an étale base change, we may
assume that the family admits a section s : B → C whose image is disjoint from the
discriminant locus of f . Restricting the base further, we may assume that every curve in
the family is reduced and irreducible.

For the remainder of the paper, we fix the data of the family C → B, the section
s : B → C and the nonsingular point x = s(0) ∈ C. We will use this family to construct
the operators µ±[C], but note that the operators do not depend on the choice of the family
(see Section 4.5).
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2.2. Definition of µ±[pt]

Let i : C[n]→ C[n+1] be the morphism defined at the level of points by

Ii(Z) = Ix · IZ ∀Z ∈ C[n].

In other words, the map i is defined by adding a point at x.

Lemma 2.1. The embedding i : C[n] ↪→ C[n+1] is regular.

Proof. The property of being regular is analytic local [ACG11, Lemma 2.6]. LetZ ∈ C[n]

be a point such that Z has length k at x. Choose an analytic open U around x such that
the only component of Z contained in U is the one at x. Then locally around Z the
morphism i is isomorphic to

U [k] × (C \ U)[n−k]
(j,id)
↪−−−→ U [k+1]

× (C \ U)[n−k],

where j : U [k] ↪→ U [k+1] is the morphism which adds a point at x. SinceU [k] andU [k+1]

are smooth, j is a regular embedding, and hence so is i. ut

As a consequence of Lemma 2.1, there is a Gysin map i! : H∗(C[n])→ H∗−2(C
[n−1]).

Definition 2.2. We let µ+[pt] = i∗ and µ−[pt] = i!.

2.3. Definition of µ±[C]

The operatorsµ±[C] are defined as correspondences in the following way. LetC[n,n+1]
⊂

C[n] × C[n+1] be the flag Hilbert scheme parametrising pairs (Z,Z′) such that Z ⊂ Z′.
Let C[n,n+1] be its relative version, that is, the scheme over B such that for every b ∈ B,
the fibre over b is (Cb)[n,n+1]. We then have the diagram

C[n,n+1]

p

zz

q

%%

C[n] C[n+1]

We now define maps p! :H∗(C[n])→H∗+2(C
[n,n+1]) and q ! :H∗(C[n+1])→H∗(C

[n,n+1]).
Consider the Cartesian square

C[n,n+1]

p

��

� � // C[n,n+1]

��

C[n]
� � // C[n]

Let d = dim C[n]. By Lemma 6.5, C[n,n+1] is irreducible of dimension d + 1.
Since C[n] is nonsingular, we have H∗(C[n]) ∼= H ∗(C[n], C[n] \ C[n]). It then follows

from [Ful98, Ex. 19.1.10] that there exists a refined intersection product

−×− : Hk(C
[n])⊗HBM

l (C[n,n+1])→ Hk+l−2d(C
[n,n+1]).
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Now let α ∈ Hk(C[n]), and let [C[n,n+1]
] ∈ HBM

2d+2(C
[n,n+1]) be the fundamental class.

We then define p!(α) = α × [C[n,n+1]
] ∈ Hk+2(C

[n,n+1]). The definition of q ! is similar.

Definition 2.3. We let µ+[C] = q∗p! and µ−[C] = p∗q !.

3. Proof of the main theorem from the commutation relations

In this section, we take the commutation relations of Theorem 1.2(i) for granted and show
how parts (ii) and (iii) of the theorem follow from this. Part (ii) is a formal consequence
of the commutation relations and the fact that µ−[pt] and µ−[C] are locally nilpotent.

Lemma 3.1. Let V be a vector space over a field k with char(k) = 0, and let µ−, µ+ ∈
End(V ) satisfy [µ−, µ+] = id. Assume further that for every v ∈ V there is an integer
n ≥ 0 such that µn−v = 0. Then the natural map

(kerµ−)⊗ k[µ+] → V

is an isomorphism.

Proof. Note first of all that if v ∈ kerµ−, the commutation relation implies that µ−µn+v
= nµn−1

+ v.
Let φ : (kerµ−)⊗ k[µ+] → V be the natural map. We first show that φ is injective.

Suppose not; then there is some relation

n∑
i=0

µi+vi = 0, vi ∈ kerµ−,

with vn nonzero. Acting on this relation by µn− and using the commutation relation gives
n!vn = 0, which is a contradiction.

We next show that φ is surjective. For any v ∈ V , we define the nilpotency of v to be
the smallest n ≥ 0 such that µn−v = 0. Suppose φ is not surjective, and let v ∈ V be an
element of minimal nilpotency among those such that v 6∈ imφ. The nilpotency of µ−v
is less than that of v, so µ−v ∈ imφ. Hence

µ−v =

n∑
i=0

µi+vi, vi ∈ kerµ−.

Now write

v =

n∑
i=0

1
i + 1

µi+1
+ vi + v

′ (3.1)

for some v′ ∈ V . Applying µ− to (3.1) shows that v′ ∈ kerµ−. The right hand side
of (3.1) then clearly belongs to imφ, hence v does. ut
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Proof of Theorem 1.2(ii). Since µ−[pt] commutes with µ−[C] and µ+[pt], the action
of µ−[C] and µ+[pt] preserves kerµ−[pt]. Applying Lemma 3.1 with V = kerµ−[pt],
µ− = µ−[C], and µ+ = µ+[pt], we see that the natural map

W ⊗Q[µ+[pt]] = (kerµ−[pt] ∩ kerµ−[C])⊗Q[µ+[pt]] → kerµ−[pt]

is an isomorphism. Similarly we find that the map kerµ−[pt] ⊗ Q[µ+[C]] → V (C) is
an isomorphism. Combining these two isomorphisms and the fact that µ+[C] and µ+[pt]
commute gives the result. ut

Let g be the arithmetic genus of C.

Lemma 3.2. The map

AJ∗ : kerµ−[pt] ∩H∗(C[n])→ H∗(J )

is injective for any n, and is an isomorphism for n ≥ 2g.

Proof. Since the map µ+[pt] : kerµ−[pt] ∩ H ∗(C[n]) → kerµ−[pt] ∩ H ∗(C[n+1]) is
injective by Theorem 1.2(ii) and AJ∗ = AJ∗ ◦µ+[pt], it suffices to prove the claim when
n ≥ 2g.

For n ≥ 2g − 1 the morphism AJ : C[n] → J is a Pn−g-bundle [AK80]. Let ω =
[i(C[n−1])] ∈ H 2(C[n]), where i is the inclusion map i : C[n−1] ↪→ C[n], and let r =
n − g be the fibre dimension of C[n] → J . The divisor i(C[n−1]) ⊂ C[n] is a projective
subbundle, hence we may express every α ∈ H∗(C[n]) uniquely as

α =

r∑
i=0

ωi ∩ AJ !(αi), αi ∈ H∗(J ), (3.2)

whereAJ ! is the Gysin pullback associated to a projective bundle. (See [Ful98, Thm. 3.3]
for a proof of this in the case of Chow groups.) Note that AJ∗(α) = αr .

We first prove injectivity of AJ∗. By part (ii) of the main theorem, µ+[pt] is injective.
Hence kerµ−[pt] = ker(µ+[pt]µ−[pt]). By definition of the operators we have

µ+[pt]µ−[pt](α) = i∗i!(α) = ω ∩ α ∀α ∈ H∗(C
[n]).

Suppose AJ∗(α) = 0 and µ−[pt](α) = 0. If we write α as above, this means αr = 0, and
further ω ∩ α = 0. This implies αi = 0 for all i, hence α = 0.

To prove surjectivity when n ≥ 2g, we note first that r = n − g ≥ g = dim J .
Let 0 6= β ∈ Hk(J ), and let α = ωr+1

∩ AJ !(β). Write α in terms of αi as in (3.2).
Since β 6= 0, we have k ≤ 2 dim J ≤ 2r , and then the homological degree of α0 is
k − 2− 2r ≤ −2, so we have α0 = 0. We now take

γ = ωr ∩ AJ !(β)−

r−1∑
i=0

ωi ∩ AJ !(αi+1).

We see that AJ∗(γ ) = β and µ+[pt]µ−[pt](γ ) = ω ∩ γ = 0, hence µ−[pt](γ ) = 0. ut
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Proof of Theorem 1.2(iii). The inclusion map i : C[n] → C[n+1] commutes with the
Abel–Jacobi map, in the sense that AJ ◦ i = AJ . It follows that AJ∗ = AJ∗ ◦ µ+[pt].

We first show AJ∗ : W → H∗(J ) is surjective. Let α ∈ H∗(J ). By Lemma 3.2 there
exists some class α ∈ kerµ−[pt] such that AJ∗(α) = α. But by Theorem 1.2(ii) we may
write

α =
∑
i

µ+[pt]iαi

with αi ∈ W , which implies α = AJ∗(
∑
αi). Using Theorem 1.2(ii) and the fact that

C[n] → J is a Pn−g-bundle, one checks that dimW = dimH∗(J ), hence AJ∗ is an
isomorphism.

If we want to prove the version of Theorem 1.2(iii) for Chow groups, the dimensions
of W and A∗(J ) may be infinite. In this case we can prove injectivity directly as follows.

Let α ∈ W be such that AJ∗(α) = 0. If α ∈ W ∩ A∗(C
[n]) for some n, then

Lemma 3.2 shows α = 0. If this is not the case, then we can write α =
∑n
i=m αi with

αi ∈ A∗(C
[i])∩W and αm, αn 6= 0. Let β =

∑
µ+[pt]n−i(αi). Then µ−[pt](β) = 0 and

AJ∗(β) = 0, hence by Lemma 3.2 we have β = 0. But µ−[C](β) =
∑
(n − i)αi 6= 0,

which gives a contradiction. ut

4. Bivariant homology formalism

In order to be precise about which Gysin pullback maps we are using and what the com-
patibilities between them are, we use the formalism of bivariant homology as presented
by Fulton and MacPherson [FM81]. As the scope of the general theory is quite broad, we
give here a recap of the parts of the theory we need. See [FM81] for the full story and in
particular Section I.3 there for details on the topological case.

4.1. Description of the bivariant theory

The bivariant Borel–Moore homology theory assigns to each map f : X → Y of rea-

sonable2 topological spaces a graded abelian groupH ∗(X
f
−→ Y ). The theory is equipped

with three operations.

• Product: Given maps X
f
−→ Y and Y

g
−→ Z, there is a product homomorphism

H i(X
f
−→ Y )⊗H j (Y

g
−→ Z)→ H i+j (X

g◦f
−−→ Z).

For α ∈ H i(X
f
−→ Y ) and β ∈ H j (Y

g
−→ Z) we thus get a product α · β ∈

H i+j (X
g◦f
−−→ Z).

• Pushforward: For any proper mapX
f
−→ Y and any map Y

g
−→ Z there is a pushforward

homomorphism f∗ : H
∗(X

g◦f
−−→ Z)→ H ∗(Y

g
−→ Z).

2 We require that X and Y can be written as closed subspaces of Rn for some n [FM81, I.3.1.1].
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• Pullback: For any Cartesian square

X′ //

g

��

X

f

��

Y ′
p
// Y

there is a pullback homomorphism p∗ : H ∗(X
f
−→ Y )→ H ∗(X′

g
−→ Y ′).

These operations satisfy various compatibility axioms [FM81, Sec. I.2.2].

4.2. Relation to homology

For any space X, the groups H i(X→ pt) and H i(X
id
−→ X) are identified with HBM

−i (X)

and H i(X), respectively. Note that the three bivariant operations recover the usual homo-
logical operations of cup and cap product, proper pushforwards in homology and arbitrary
pullbacks in cohomology.

4.3. Nonsingular targets

The following observation will be crucial. If Y is a nonsingular variety and f : X → Y

is any morphism, the induced homomorphism

H ∗(X
f
−→ Y )→ H ∗−2 dimY (X→ pt) = HBM

2 dimY−∗(X) (4.1)

given by taking the product with [Y ] ∈ H−2 dimY (Y → pt) is an isomorphism. In such a
situation we will frequently identify H ∗(X→ Y ) with HBM

2 dimY−∗(X).
In particular, if X has a fundamental class [X] ∈ HBM

2 dimX(X), this induces a class
[X] ∈ H 2(dimY−dimX)(X→ Y ).

Lemma 4.1. Suppose we are given a Cartesian diagram of schemes

X′

��

// X

f

��

Y ′
g
// Y

where Y is nonsingular and each component of X′ is generically reduced of expected
dimension. For Z = X, Y ′ or X′, let [Z] ∈ H 2(dimY−dimZ)(Z → Y ) denote the funda-
mental class. We then have equalities of classes in H ∗(X′→ Y ):

g∗([X]) · [Y ′] = [X′] = f ∗([Y ′]) · [X].

Proof. Let [Y ] ∈ H∗(Y ) be the fundamental class. We have

f ∗([X]) · [Y ′] · [Y ] = g∗([Y ′]) · [X] · [Y ] = [X] ×Y [Y
′
],

where [X] ×Y [Y ′] ∈ H∗(X′) is the refined intersection product. Since X′ is reduced of
expected dimension, we have [X′] = [X] ×Y [Y ′], and by the isomorphism (4.1), the
claim of the lemma follows. ut
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4.4. Gysin maps

Any class α ∈ H i(X
f
−→ Y ) defines a Gysin pullback map f ! : HBM

∗ (Y )→ HBM
∗−i (Y ) by

f !(β) = α · β ∀β ∈ HBM
∗ (Y ).

This relates to the Gysin maps p! and q ! defined in Section 2.3 as follows. Consider
the Cartesian square

C[n,n+1]

p

��

� � // C[n,n+1]

��

C[n]
� � // C[n]

as in Section 2.3. The fundamental class [C[n,n+1]
] ∈ HBM

∗ (C[n,n+1]) is identified with an
element [C[n,n+1]

] ∈ H−2(C[n,n+1]
→ C[n]), since C[n] is nonsingular. Cartesian pullback

defines an element ˜[C[n,n+1]] ∈ H−2(C[n,n+1]
→ C[n]), and the Gysin pullback map

associated with ˜[C[n,n+1]] coincides with p!. A similar description can be given for q !.

4.5. Independence from the deformation family

We can now explain why the Gysin maps p!, q ! do not depend on which deformation
family C → B we choose. Let Cver → Bver be a versal deformation family of C, which
we may assume to be such that C[n]ver is nonsingular. By versality, we may then find a
complex analytic neighbourhood U ⊂ B of 0 and a morphism U → Bver such that
C|U = Cver ×Bver U . We get a pair of Cartesian squares

C[n,n+1]

p

��

� � // C[n,n+1]
|U

��

// C[n,n+1]
ver

��

C[n]
� � j1 // C[n]|U

j2 // C[n]ver

Now [C̃[n,n+1]] = j∗1 [C
[n,n+1]

|U ] = (j2◦j1)
∗
[C[n,n+1]

ver ], since j∗2 [C
[n,n+1]
ver ] = [C[n,n+1]

|U ]

by a complex analytic version of Lemma 4.1. In particular, [C̃[n,n+1]] is independent of
the choice of the deformation family C → B, and it follows that p! does not depend on
this choice either. The same argument works for q !.

4.6. Notation

In a commutative diagram a Latin letter next to an arrow denotes the morphism, while a
Greek letter denotes a bivariant homology class, so that e.g. the α in X

α
−→
f
Y denotes an

element α ∈ H ∗(X
f
−→ Y ).
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4.7. Chow theory

There is a bivariant operational Chow theory assigning to every morphism of varieties
X→ Y an abelian group A∗(X→ Y ) [FM81, Sec. I.9]. In this case A∗(X→ pt) equals
the ordinary Chow group A∗(X) of X. This bivariant theory is equipped with the same
operations as the Borel–Moore theory satisfying the same compatibilities. It also has the
property that A∗(X→ Y )

·[Y ]
−−→ A∗−dimY (X→ pt) is an isomorphism for nonsingular Y

[FM81, I.9.1.3]. Because of this, the proof of the commutation relations goes through
verbatim upon replacing every H with an A.

5. Proof of the commutation relations

We now show that the operators obey the commutation relations of Theorem 1.2(i).

5.1. Proof of [µ−[pt], µ+[C]] = [µ−[C], µ+[pt]] = id

Consider the diagrams

C[n,n+1]

p

θ

{{

κ q

��

X?
_ι̃

ĩ

oo

κ̃ q̃
��

C[n] C[n+1] C[n]? _ι

i
oo

and
C[n−1,n]

θ ′

p′yy

κ ′

q ′ ##

C[n] C[n−1]? _ι′

i′
oo C[n]

where in the first diagram X = C[n,n+1]
×C[n+1] C[n] and the square containing X is

Cartesian. The morphisms i, i′ correspond to adding a point at the section s : B → C
(see Sections 2.1, 2.2). The bivariant classes θ, ι, κ and their primed versions are the ones
defined by fundamental classes, as in Section 4.3. The classes ι̃ and κ̃ are the Cartesian
pullbacks of ι and κ , respectively.

Both of these diagrams are defined over the base B of the family C. For any scheme,
morphism or bivariant class we denote the result of performing the base change to 0 ∈ B
by appending a subscript 0 to the object in question.

We first treat the case of [µ−[pt], µ+[C]]. For any α ∈ H∗(C[n]), we have

µ−[pt]µ+[C](α) = ι0 · (q0)∗(θ0 · α) = (̃q0)∗(̃ι0 · θ0 · α),

µ+[C]µ−[pt](α) = (q ′0)∗(θ
′

0 · ι
′

0 · α).

Lemma 5.1. Under the identification of H ∗(X
p◦̃i
−−→ C[n]) with HBM

∗+2 dimC[n](X), we have

ι̃ · θ = [X].
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Proof. The class ι̃ is the same as the class induced by X ↪→ C[n,n+1], being the embed-
ding of a Cartier divisor. It follows that

ι̃ · θ · [C[n]] = ι̃ · [C[n,n+1]
] = [X]. ut

We will now compute [X] by describing the irreducible components of X. In order to
do this, we define certain maps f : C[n−1,n]

→ X and g : C[n] → X. Since X =
C[n,n+1]

×C[n+1] C[n], we can describe f and g as products of suitable maps to C[n,n+1]

and C[n].
Namely, we let f be the product of the map C[n−1,n]

→ C[n,n+1] sending (Z,Z′) to
(i(Z), i(Z′)) with the map q ′ : C[n−1,n]

→ C[n], and we let g be the product of the map
C[n]→ C[n,n+1] sending Z to (Z, i(Z)) with the identity map on C[n].

Lemma 5.2. In HBM
∗ (X), we have

[X] = f∗[C[n−1,n]
] + g∗[C[n]].

Proof. It is easy to check at the level of points that X = f (C[n−1,n]) ∪ g(C[n]), and that
f and g are both injective. As C[n] and C[n−1,n] are both irreducible by Lemma 6.5, we
find that X = f (C[n−1,n]) ∪ g(C[n]) is the decomposition of X into irreducible compo-
nents. It is now enough to show that each component of X is generically reduced.

Let b ∈ B be such that Cb is nonsingular. Choose a point

p = ((i(Z), i(Z′)), Z′) ∈ f (C[n−1,n]
b ) ⊂ X ⊂ C[n,n+1]

× C[n],

where Z ∈ C[n−1]
b and Z′ ∈ C[n]b are reduced schemes, and where we assume p 6∈ g(C[n]).

Recall that we have chosen a section s : B → C in order to define the map i, and let
y = s(b) ∈ Cb. Let Z =

⊔n−1
i=1 yi and Z′ =

⊔n
i=1 yi . It follows from p 6∈ g(C[n]) that

y 6∈ {y1, . . . , yn}.
For each i, let Ui ⊂ C be a small analytic open neighbourhood of yi , and let Uy be a

neighbourhood of y. Let

U ∼=

n∏
i=1

Ui × Uy ×

n∏
i=1

Ui = {xi ∈ Ui, z ∈ Uy, x
′

i ∈ Ui},

considered as an open neighbourhood of p ∈ C[n,n+1]
× C[n] via the map

((xi), z, (x
′

i)) 7→
((⋃

xi, z ∪
⋃
xi

)
,
⋃
x′i

)
.

Let π : C → B be the projection. Within U , the scheme X is cut out by the equations
xi = x′i , π(xi) = π(z) = π(x′i), and z = s(π(z)). Hence X is smooth at p, and thus
f (C[n,n+1]) is generically reduced.

A similar argument taking p = (Z, i(Z), Z) ∈ g(C[n]b ) with Z reduced and such that
p 6∈ f (C[n−1,n]) shows that the component g(C[n]) is generically reduced. ut

It follows from Lemma 5.2 that

ι̃ · θ = [X] = f∗([C[n−1,n]
])+ g∗([C[n]]) = f∗(θ ′ · ι′)+ g∗(1),
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where 1 is the unit element in H 0(C[n] id
−→ C[n]). Using this we now compute

µ−[p]µ+[C](α) = (̃q0)∗(̃ι0 · θ0 · α) = (̃q0)∗(f∗(θ
′
· ι′)0 · α)+ (̃q0)∗(g∗(1)0 · α)

= (̃q0 ◦ f0)∗(θ
′

0 · ι
′

0 · α)+ (̃q0 ◦ g0)∗(α)

= (q ′0)∗(θ
′

0 · ι
′

0 · α)+ id∗(α) = µ+[C]µ−[p](α)+ α, (5.1)

which is what we wanted to show.
The proof of [µ−[C], µ+[pt]] = id is similar. Here

µ−[C]µ+[pt](α) = (p0)∗(κ0 · (i0)∗(α)) = (p0 ◦ ĩ0)∗(̃κ0 · α),

µ+[pt]µ−[C](α) = (i′0 ◦ p
′

0)∗(κ
′

0 · α).

Under the identification of H ∗(X
q̃
−→ C[n]) with HBM

∗+2 dimC[n](X) we have κ̃ = [X]. This
follows from

κ̃ · [C[n]] = κ̃ · ι · [C[n+1]
] = ι̃ · κ[C[n+1]

] = ι̃ · [C[n,n+1]
] = [X],

where the last equality is obtained as in the proof of Lemma 5.1. By Lemma 5.2 we get

κ̃ = [X] = f∗[C[n−1,n]
] + g∗[C[n]] = f∗(κ ′)+ g∗(1). (5.2)

Using (5.2) and the projection formula [FM81, p. 21] we now compute

µ−[C]µ+[pt](α) = (p0)∗(κ0 · (i0)∗(α)) = (p0 ◦ ĩ0)∗(̃κ0 · α)

= (p0 ◦ ĩ0)∗
(
((f0)∗(κ

′

0)+ (g0)∗(1)) · α
)
. (5.3)

Further, using p ◦ ĩ ◦ f = p′ ◦ i′ and p ◦ ĩ ◦ g = idC[n] we find

(p0 ◦ ĩ0 ◦ f0)∗(κ
′

0 · α) = (p
′

0 ◦ i
′

0)∗(κ
′

0 · α) = µ+[pt]µ−[C](α). (5.4)

(p0 ◦ ĩ0 ◦ g0)∗(1 · α) = α. (5.5)

Combining (5.3)–(5.5), we obtain [µ−[C], µ+[pt]] = id.

5.2. Proof of [µ+[C], µ−[C]] = 0

The relevant diagrams are

X

κ̃

yy q̃ %%

C[n,n+1]

θ

{{
q

$$

C[n,n+1]

κ

zz
p

##

C[n] C[n+1] C[n]

(5.6)
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and
Y

θ̃

yy p̃ %%

C[n−1,n]

κ ′

{{ p′ $$

C[n−1,n]

θ ′

zz q ′ ##

C[n] C[n−1] C[n]

(5.7)

Here X = C[n,n+1]
×C[n+1] C[n,n+1], Y = C[n−1,n]

×C[n−1] C[n−1,n], and the squares con-
taining X and Y are Cartesian. The bivariant classes θ, κ, θ ′, κ ′ are the ones induced by
fundamental classes, while θ̃ and κ̃ are the Cartesian pullbacks of θ ′ and κ , respectively.
As in Section 5.1, a base change to the central fibre C = C0 is denoted by a subscript 0.

Let α ∈ H∗(C[n]). We then have

µ−[C]µ+[C](α) = (p0)∗(κ0 · (q0)∗(θ0 · α)) = (p0 ◦ q̃0)∗(̃κ0 · θ0 · α),

µ+[C]µ−[C](α) = (q
′

0)∗(θ
′

0 · (p
′

0)∗(κ
′

0 · α)) = (q
′

0 ◦ p̃0)∗(θ̃0 · κ
′

0 · α).

Lemma 5.3. The scheme X is equidimensional, and the scheme Y is irreducible. Both
are generically reduced, and

dimX = dimY = dim C[n+1].

Proof. As X = C[n,n+1]
×C[n+1] C[n,n+1], every irreducible component has dimension at

least
2 dim C[n,n+1]

− dim C[n+1]
= dim C[n+1].

Let 1 ⊂ B be the discriminant locus, i.e. the set of b ∈ B such that Cb is singular. By
Lemma 6.3(iii) we have

dimX1 = dim1+ n+ 1 ≤ (dimB − 1)+ n+ 1 < dim C[n+1].

It follows that X \X1 is dense in X.
Write

X = {(Z1, Z2, Z3) ∈ C[n] ×B C[n+1]
×B C[n] | Z1, Z3 ⊂ Z2}.

Let X1 ⊂ X be the locus where Z1 = Z3, and let X2 = X \ X1. It is then easy to check
that X1 ∩ (X \ X1) and X2 ∩ (X \ X1) are irreducible, generically nonsingular, and of
dimension equal to dim C[n+1]. This proves the claims for X.

Arguing similarly for Y , using Lemma 6.3(iv) we find that Y \ Y1 is dense in Y .
There is a morphism C[n−1,n]

→ C taking a pair (Z,Z′) to the point where Z and Z′

differ. Using this we get a map

Y = C[n−1,n]
×C[n−1] C[n−1,n]

→ C ×B C[n−1]
×B C.



Homology of Hilbert schemes of points on a locally planar curve 1645

One checks that after restricting both source and target to the locus of nonsingular curves,
this map is an isomorphism, hence Y \ Y1 is isomorphic to

(C ×B C[n−1]
×B C) \ (C ×B C[n−1]

×B C)1.

In particular Y \Y1 is nonsingular and irreducible of dimension dim C[n+1], and the claims
for Y follow. ut

Let π : X → C[n] and π ′ : Y → C[n] be the natural maps going down the left hand side
of diagrams (5.6) and (5.7), respectively.

Lemma 5.4. Identifying H(X
π
−→ C[n]) with HBM

∗ (X) gives κ̃ · θ = [X]. Identifying
H(Y

π ′

−→ C[n]) with HBM
∗ (Y ) gives θ̃ · κ ′ = [Y ].

Proof. We treat the case of X; the case of Y is similar. We must show κ̃ · θ · [C[n]] = [X],
and as θ ·[C[n]] = [C[n,n+1]

], it suffices to show κ̃ ·[C[n,n+1]
] = [X]. The class κ̃ ·[C[n,n+1]

]

can be identified with the refined intersection product

[C[n,n+1]
× C[n,n+1]

] ∩1 ∈ HBM
∗ (X),

where we intersect the classes inside C[n+1]
× C[n+1], and 1 denotes the diagonal in this

space. As X is generically reduced, the intersection multiplicity at each component is 1,
by [Ful98, Prop. 8.2], and so this intersection product equals [X]. ut

Let f : X→ C[n] ×B C[n] and g : Y → C[n] ×B C[n] be the maps induced by composing
down both sides of diagrams (5.6) and (5.7), respectively.

Lemma 5.5. In HBM
∗ (C[n] ×B C[n]), we have

f∗[X] = g∗[Y ].

Proof. Let X = X1 ∪X2 be the decomposition of X into irreducible components, where
X1 and X2 are as in the proof of Lemma 5.3. By definition of X1 the image f (X1) is
contained in the diagonal C[n] ⊂ C[n]×B C[n]. Hence dim f (X1) < dim C[n+1]

= dimX1,
and so f∗[X1] = 0.

Let U = (C[n]×B C[n])\C[n]. We claim that over U the maps f |X2 and g are injective
with the same image. To see this, note that if (Z1, Z3) ∈ U , then Z1 6= Z3, and so

(Z1, Z3) ∈ f (X2) ⇔ (Z1, Z1 ∪ Z3, Z3) ∈ X2 ⇔ l(Z1 ∪ Z3) = n+ 1
⇔ l(Z1 ∩ Z3) = n− 1 ⇔ (Z1, Z1 ∩ Z3, Z3) ∈ Y

⇔ (Z1, Z3) ∈ g(Y ).

As both X2 and Y are generically reduced, it follows that f∗[X] = f∗[X2] = g∗[Y ]. ut

Let π1, π2 : C[n] ×B C[n] → C[n] be the projections. Combining Lemmas 5.4 and 5.5
shows that in H(C[n]×B C[n] π1

−→ C[n]) we have f∗(̃κ · θ) = g∗(θ̃ · κ ′). Let α ∈ H∗(C[n]),
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and compute

µ−[C]µ+[C](α) = (p0 ◦ q̃0)∗(̃κ0 · θ0 · α) = ((π2)0 ◦ f0)∗(̃κ0 · θ0 · α)

= ((π2)0)∗((f0)∗(̃κ0 · θ0) · α) = ((π2)0)∗((g0)∗(θ̃0 · κ
′

0) · α)

= ((π2)0 ◦ g0)∗(θ̃0 · κ
′

0 · α) = (q
′

0 ◦ p̃0)∗(θ̃0 · κ
′

0 · α)

= µ+[C]µ−[C](α),

which is what we wanted.

5.3. Proof of [µ±[pt], µ±[C]] = 0

Consider the diagram

C[n,n+1]

p

θ
zz

q

κ
%%

� �

ι′′

i′′ // C[n+1,n+2]

θ ′

p′

yy

q ′

κ ′ %%

C[n]
i

ι // C[n+1]
i′

ι′ // C[n+2]

(5.8)

Here the schemes in the bottom row are nonsingular, and with the exception of ι′′, the
bivariant classes are the ones induced by the fundamental classes as in (4.1). The paral-
lelogram spanned by i and p′ is Cartesian, and we let ι′′ = (p′)∗(ι).

Lemma 5.6. We have κ · ι′ = ι′′ · κ .

Proof. Consider the fundamental class [C[n+2]
] ∈ HBM

∗ (C[n+2]). By (4.1), it suffices to
show κ · ι′ · [C[n+2]

] = ι′′ · κ ′ · [C[n+2]
]. We have

κ ′ · [C[n+2]
] = [C[n+1,n+2]

] = θ ′ · [C[n+1]
] = θ ′ · ι′ · [C[n+2]

],

hence κ ′ = θ ′ · ι′. We then get

ι′′ · κ ′ = ι′′ · θ ′ · ι′ = κ · ι′,

where the last step uses Lemma 4.1. ut

By Lemma 4.1, we have θ = i∗(θ ′). It follows that for any α ∈ H∗(C[n]),

µ+[pt]µ+[C](α) = (i′0)∗((q0)∗(θ0 · α)) = (i
′

0 ◦ q0)∗(θ0 · α) = (q
′

0 ◦ i
′′

0 )∗(θ0 · α)

= (q ′0)∗((i
′′

0 )∗(θ0 · α)) = (q
′

0)∗(θ
′

0 · (i0)∗(α))

= µ+[C]µ+[pt](α),

where the equality (i′′0 )∗(θ0 · α) = θ
′

0 · (i0)∗(α) is the projection formula [FM81, p. 21].
Next, applying Lemma 5.6 we find that for α ∈ H∗(C[n+2]) we have

µ−[C]µ−[pt](α) = (p0)∗(κ0 · ι
′

0 · α) = (p0)∗(ι
′′

0 · κ
′

0 · α) = ι0 · (p
′

0)∗(κ
′

0 · α)

= µ−[pt]µ−[C](α).
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5.4. Proof of [µ−[pt], µ+[pt]] = 0

For α ∈ H∗(C[n]), we have

µ+[pt]µ−[pt](α) = i∗(i!(α)) = [i(C[n−1])] ∩ α,

where [i(C[n−1])] ∈ H 2(C[n]) is the class of the Cartier divisor C[n−1]. On the other
hand,

µ−[pt]µ+[pt](α) = i!(i∗(α)) = i∗[i(C[n])] ∩ α.

It thus suffices to show the equality [i(C[n−1])] = i∗[i(C[n])] in H 2(C[n]).
For any nonsingular point y ∈ C, let iy : C[n]→ C[n+1] be defined by adding a point

at y, so that we have i = ix for our chosen point x. For any y 6= x we have

[i(C[n−1])] = i∗y [i(C
[n])]

in H 2(C[n]), which follows from the corresponding equality of Cartier divisors. As
i∗y = i

∗, the claim follows.3

6. Flag Hilbert schemes

In this section we prove some dimension estimates for the flag Hilbert schemes C[n,n+1]

and related schemes.
Let Hn ⊂ (A2)[n] be the set of Z ∈ (A2)[n] such that Z is supported at 0 ∈ A2.

Similarly, letHn,n+1 ⊂ (A2)[n,n+1] be the set of pairs (Z,Z′) ∈ (A2)[n]× (A2)[n+1] such
that Z ⊂ Z′ and both are supported at 0. We follow the convention that dim∅ = −1.

Lemma 6.1. We have dimHn,n+1 = n for all n ≥ 0.

Proof. For any Z ∈ Hn, let d−(Z) = dim{Z′ ∈ Hn−1 | Z
′
⊂ Z} and let d+(Z) =

dim{Z′ ∈ Hn+1 | Z ⊂ Z
′
}. We then have

d+(Z) = d−(Z)+ 1 (6.1)

for all Z [ES98, Sec. 3].
Let Vn,k ⊆ Hn be the set of Z ∈ Hn such that d−(Z) = k. Using (6.1) we find

max
k
{dimVn,k + k + 1} = dimHn,n+1 = max

k
{dimVn+1,k + k}. (6.2)

From (6.2) we find Hn+1,n+2 = Hn,n+1 + 1, hence the claim of the lemma follows by
induction from dimH0,1 = 0. ut

Lemma 6.2. For all n ≥ 0, we have

(i) dimHn,n+1 ×Hn+1 Hn,n+1 = n.
(ii) dimHn,n+1×HnHn,n+1 = n+1, unless n = 0, in which case dimH0,1×H0H0,1 = 0.

3 For the case of Chow homology we need the equality [i(C[n−1])] = i∗[i(C[n])] in Pic(C[n]).
At the level of rational equivalence, it is no longer true that i∗y = i

∗, but the relation still holds by
noting the equality of Cartier divisors [i(C[n−1])] = i∗y [i(C

[n])] and then letting y tend to x.
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Proof. For P = i, ii and n ≥ 0, let (P)n denote the claim that (P) holds for the given
value of n. We will prove the claims by induction, starting from the trivial cases (i)0
and (ii)0. Let Xn and Yn denote the schemes appearing on the left hand side of (i) and
(ii), respectively.

(ii)n−1⇒(i)n: The diagonal map defines an inclusion Hn,n+1 ↪→ Xn, whence by
Lemma 6.1 we have dimXn ≥ n, and it suffices to show that dim(Xn \Hn,n+1) ≤ n.

The set of points of Xn is

{(Z1, Z2, Z3) ∈ Hn ×Hn+1 ×Hn | Z1, Z3 ⊂ Z2},

and Xn \Hn,n+1 is the locus of triples (Z1, Z2, Z3) where Z1 6= Z3. For such triples we
must have Z2 = Z1∪Z3. Let l(Z) denote the length of Z. Using the relation l(Z1∪Z3) =

l(Z1)+ l(Z3)− l(Z1 ∩ Z3) we get bijections

Xn \Hn,n+1 = {(Z1, Z3) ∈ Hn ×Hn | l(Z1 ∪ Z3) = n+ 1}
= {(Z1, Z3) ∈ Hn ×Hn | l(Z1 ∩ Z3) = n− 1}
= {Z1, Z1 ∩ Z3, Z3} ⊆ Yn−1,

hence dim(Xn \Hn,n+1) ≤ dimYn−1 ≤ n, by our assumption (ii)n−1.
(i)n−1⇒(ii)n: Let d−, d+ : Hn → Z and Vn,k = d−1

− (k) ⊆ Hn be as in the proof of
Lemma 6.1. We write as above

Xn−1 = {(Z1, Z2, Z3) ∈ Hn−1 ×Hn ×Hn−1 | Z1, Z3 ⊂ Z2}.

For any Z ∈ Hn, the fibre over Z under the projection Xn−1 → Hn has dimension
2d−(Z). It follows that the locus inXn−1 such thatZ2∈Vn,k has dimension dimVn,k+2k.

Similarly

Yn = {(Z
′

1, Z
′

2, Z
′

3) ∈ Hn+1 ×Hn ×Hn+1 | Z
′

2 ⊂ Z
′

1, Z
′

3},

and the fibre over Z ∈ Hn under the projection Yn → Hn has dimension 2d+(Z) =
2d−(Z) + 2, by (6.1). Hence the locus in Yn where Z′2 ∈ Vn,k has dimension
dimVn,k + 2k + 2.

We get

dimXn−1 = max
k
{dimVn,k + 2k} = max

k
{dimVn,k + 2k + 2} − 2 = dimYn − 2,

hence by the induction assumption (i)n−1 we get dimYn = dimXn−1 + 2 = n+ 1. This
concludes the induction procedure. ut

Lemma 6.3. LetC be a locally planar reduced curve, and letCsm ⊆ C be its nonsingular
locus. For all n ≥ 0, we have

(i) dimC[n,n+1]
= n+ 1.

(ii) dim(C[n,n+1]
\ (Csm)

[n,n+1]) < n+ 1.
(iii) dimC[n,n+1]

×C[n+1] C[n,n+1]
= n+ 1.

(iv) dimC[n,n+1]
×C[n] C

[n,n+1]
= n+ 2.
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Proof. For points (i), (iii) and (iv) the claim LHS ≥ RHS is straightforward to see by
replacing C with Csm, hence it suffices to prove LHS ≤ RHS. We shall only prove (iv);
the other three claims can be handled by similar arguments.

Let X = C[n,n+1]
×C[n] C

[n,n+1], and write

X = {(Z1, Z2, Z3) ∈ C
[n+1]
× C[n] × C[n+1]

| Z2 ⊂ Z1, Z3}.

Let {x1, . . . , xk} be the set of singular points of C. We partition X into disjoint subsets
X(a0, . . . , ak, r, s), where the ai are nonnegative integers whose sum is n, and where
r, s are integers such that 0 ≤ r, s ≤ k. The subset X(a0, . . . , ak, r, s) parametrises
(Z1, Z2, Z3) satisfying the two conditions

(i) Z2 has support of length a0 over the smooth locus of C and of length ai at the point
xi for i > 0;

(ii) the scheme Z1 (resp. Z3) differs from Z2 at xr if r > 0 (resp. xs if s > 0), and differs
at a smooth point of C if r = 0 (resp. s = 0).

Let Csm ⊂ C be the nonsingular locus. Using the local planarity of C we see that
X(a0, . . . , ak, r, s) is isomorphic to a subset of one of the following schemes, depending
on r and s:

• r = s = 0: ((Csm)
[a0,a0+1]

×(Csm)
[a0] (Csm)

[a0,a0+1])×Ha1 × · · · ×Hak ;
• r = s 6= 0: (Csm)

[a0] ×Ha1 × · · · × (Har ,ar+1 ×Har Har ,ar+1)× · · · ×Hak ;
• r 6= s = 0: (Csm)

[a0,a0+1]
×Ha1 × · · · ×Har ,ar+1 × · · · ×Hak ;

• 0 6= r 6= s 6= 0: (Csm)
[a0] ×Ha1 × · · · ×Har ,ar+1 × · · · ×Has ,as+1 × · · · ×Hak .

Using Lemmas 6.1, 6.2 and the fact that dimHm = max(0, m − 1) [Iar72], we find that
each of the above listed schemes has dimension ≤ a0 + · · · + ak + 2 = n+ 1. The claim
of the lemma follows. ut

Lemma 6.4. Let C be a locally planar reduced curve. Then (Csm)
[n,n+1] is dense

in C[n,n+1].

Proof. Kleiman and Altman [KA79] have shown that we may embed C in a nonsingular
quasiprojective surface S. By work of Cheah and Tikhomirov [Che98, Tik97], the scheme
S[n,n+1] is nonsingular of dimension 2n+ 2. Because of the Cartesian diagram

C[n,n+1] //

��

S[n,n+1]

��

C[n+1] // S[n+1]

every irreducible component of C[n,n+1] has dimension at least

dimC[n+1]
+ dim S[n,n+1]

− dim S[n+1]
= n+ 1.

By Lemma 6.3(ii) we have dim(C[n,n+1]
\ (Csm)

[n,n+1]) < n+ 1. It follows that the open
subset (Csm)

[n,n+1] intersects every irreducible component in C[n,n+1], hence it is dense
as claimed. ut
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Let C → B be a family of curves satisfying the hypotheses of Section 2.1, that is, C[n] is
nonsingular and every curve in the family is irreducible and reduced.

Lemma 6.5. The relative flag Hilbert scheme C[n,n+1] is irreducible of dimension equal
to dim C[n+1].

Proof. Let U ⊆ C be the locus of q ∈ C such that q ∈ Cb with Cb smooth at q. As every
curve in the family is irreducible, we see that U [n,n+1]

⊂ C[n,n+1] is irreducible. Now for
every fibre Cb, we find that C[n,n+1]

b ∩U [n,n+1] is dense in C[n,n+1]
b , by Lemma 6.4. Hence

U [n,n+1] is dense in C[n,n+1], and the claim follows. ut

Using the techniques of [She12] and the fact that for a smooth surface S the variety
S[n,n+1] is nonsingular (see [Che98, Tik97]) one can show that C[n,n+1] is nonsingular.
As we do not need this stronger statement, we omit the proof.

7. The D-grading splits the perverse filtration

In this section we relate the D-grading on H ∗(J ) to the perverse filtration appearing in
[MY14, MS13]. We use the notation of Section 1.3.1, namely V c(C) =

⊕
n≥0H

∗(C[n]),
the operatorsµc

±[pt] andµc
±[C] act on V c(C), andW c

=V c(C)/(imµc
+[pt]+imµc

+[C]).
The space V c(C) is equipped with a grading D by letting

DnV
c(C) = H ∗(C[n]),

and the spaces W c and H ∗(J ) inherit this grading using the isomorphisms of Theo-
rem 1.3. Recall also the formula

H ∗(C[n]) ∼=
⊕
m≤n

DmH
∗(J )⊗ Symn−m (Q⊕Q[−2]) . (7.1)

We fix as usual the deformation family C → B and let 0 ∈ B be the point such
that C0 = C. Following [MY14], we define the perverse filtration P≤j on H ∗(J ) as
follows. The deformation family f : C → B induces a family of compactified Jacobians
fJ : J → B. The object RfJ ∗QJ ∈ Dbc (B) has a filtration τp

≤jRfJ ∗QJ induced by
the perverse t-structure on Dbc (B). We have fJ −1(0) = J , and so if g is the inclusion
0 ↪→ B, we naturally have g∗(RfJ ∗QJ ) = H ∗(J ). We may now define the perverse
filtration by

P≤jH
∗(J ) = Im

(
g∗(τ

p
≤jRfJ ∗QJ )→ g∗(RfJ ∗QJ ) = H

∗(J )
)
.

Replacing J and J with C[n] and C[n] in the above construction we get a filtration P≤j
on H ∗(C[n]) as well.

For X = J or X = C[n] we normalise the indices of the perverse filtration by letting
P≤−1H

∗(X) = 0 and letting 1 ∈ H 0(X) be contained in P≤0H
∗(X). It follows that

grPi (H
∗(X)) = 0 unless 0 ≤ i ≤ 2 dimX.
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Comparing the formula of [MY14, Thm. 1.1] with (7.1) we find an isomorphism
grP• H

∗(J ) ∼= D•H
∗(J ) of bigraded vector spaces. In other words the filtrations P≤n and

D≤n on H ∗(J ) have isomorphic associated graded objects. The remainder of this section
is devoted to showing that the filtrations are in fact equal.

Proposition 7.1. D≤nH ∗(J ) = P≤nH ∗(J ).

Let X = C[n] or X = J . We define the filtration Q≤j on H ∗(X) by

Q≤jH
i(X) = P≤i+jH

i(X).

Lemma 7.2. The maps µc
±[pt], µc

±[C] and AJ ∗ all preserve the Q-filtration.

Proof. The statement follows from the fact that each of the maps is the restriction to 0 of
a map of complexes on B. We will give the details for µc

+[pt] and µc
+[C]; the remaining

cases are similar and left to the reader.
For µc

+[pt], we have the diagram

C[n] �
� i //

f [n] !!

C[n+1]

f [n+1]
||

B

Since C[n] and C[n+1] are nonsingular, we have i!(QC[n+1]) = QC[n] [−2]. By adjunction
we get a map i∗QC[n] → QC[n+1] [2], which we push down to get a map

Rf [n]∗ QC[n] = R(f
[n+1]i)∗QC[n] → Rf [n+1]

∗ QC[n+1] [2].

One can check that the restriction of this map to 0 ∈ B agrees with µc
+[pt].

Now, the composed map

τ
p
≤jRf

[n]
∗ QC[n] → Rf [n]∗ QC[n] → Rf [n+1]

∗ QC[n+1] [2]

factors through τp
≤j (Rf

[n+1]
∗ QC[n+1] [2]) → Rf

[n+1]
∗ QC[n+1] [2]. It follows that µc

+[pt]
sends P≤jH ∗(C[n]) to P≤j+2H

∗+2(C[n+1]), which is the same as saying µc
+[pt] preserves

the Q-filtration.
For the case of µc

+[C], we have the diagram

C[n,n+1]

p

{{

q

$$

C[n]

f [n]
$$

C[n+1]

f [n+1]
yy

B
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Under the identification of HBM
∗ (C[n,n+1]) with

R−∗0(Q∨C[n,n+1]) = HomD(C[n,n+1])(QC[n,n+1] ,Q∨C[n,n+1] [−∗]),

the fundamental class of C[n,n+1] induces a map

QC[n,n+1] → Q∨C[n,n+1] [−2 dim C[n,n+1]
] = q !QC[n+1] .

Hence we get a map Rq∗QC[n,n+1] → QC[n+1] , and thus a composed map

Rf [n]∗ QC[n] → R(f [n]p)∗QC[n,n+1] = R(f
[n+1]q)∗QC[n,n+1] → Rf [n+1]

∗ QC[n+1] .

Again one can check that the restriction of this map to 0 ∈ B equals µc
+[C]. By the same

argument as for µc
+[pt], we then conclude that µc

+[C] preserves the Q-filtration. ut

As a consequence of the above lemma, the operators µc
±[pt] and µc

±[C] act on grQV c(C).
Since they still obey the Weyl algebra commutation relations when acting on this space,
the proof of the implication (i)⇒(ii) in Theorem 1.2 applies to show that

grQW c
⊗Q[µc

+[pt], µc
+[C]]

∼= grQV c(C). (7.2)

This is an isomorphism of (H,Q,D)-graded spaces, where µc
+[pt] and µc

+[C] have de-
grees (2, 0, 1) and (0, 0, 1), respectively.

Let DnH iW c be the image of H i(C[n]) under the map V c(C) → W c. Define three
generating functions

FV (x, y, z) =
∑
i,j,n

dim grQj H
i(C[n])xiyjzn,

FW (x, y, z) =
∑
i,j,n

dim grQj DnH
iW cxiyjzn,

FJ (x, y, z) =
∑
i,j

dim grQj H
i(J )xiyjzi+j .

The isomorphism (7.2) implies

FW · (1− z)−1(1− x2z)−1
= FV .

It follows from [MS13, Cor. 2] that

FJ · (1− z)−1(1− x2z)−1
= FV ,

and hence FJ = FW . As a consequence, the coefficient of xiyjzn in FW is 0 unless
n = i + j , and it follows that

D≤i+jH
iW c
= Q≤jH

iW c. (7.3)

From FJ = FW we deduce that dim grQj H
∗(J ) = dim grQj W

c for all j . Since
AJ ∗ : H ∗(J ) → W c is an isomorphism and preserves the Q-filtration, it must be an
isomorphism of Q-filtered spaces. Obviously AJ ∗ preserves the cohomological grading.
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The D-grading on H ∗(J ) is defined via AJ ∗ and so is preserved by definition, hence by
(7.3) we have

D≤i+jH
i(J ) = Q≤jH

i(J ) = P≤i+jH
i(J ),

and the proof of Proposition 7.1 is complete.
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