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Abstract. The aim of this article is to develop an explicit procedure that enables one to reconstruct
any C1 path (at natural parametrization) from its signature. We also explicitly quantify the distance
between the reconstructed path and the original path in terms of the number of terms in the signa-
ture that are used for the construction and the modulus of continuity of the derivative of the path.
A key ingredient in the construction is the use of a procedure of symmetrization that separates the
behaviour of the path at small and large scales.
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1. Introduction

1.1. The signature of a path

Given an integer d ≥ 1, a d-dimensional path γ is a continuous function mapping a closed
interval [0, T ] into Rd . Throughout the article, we equip Rd with the `1 norm. The length
of γ under this norm is then

‖γ ‖ := sup
P

∑
j

|γuj − γuj−1 |,

where the supremum is taken over all partitions of the interval [0, T ], and |x| :=
∑d
i=1 |xi |

for x = (x1, . . . , xd) ∈ Rd . We say γ is a path of finite length if ‖γ ‖ <∞.
Given two paths α : [0, S] → Rd and β : [0, T ] → Rd , their concatenation α ∗ β is

a new path defined on the interval [0, S + T ] by

α ∗ β(u) :=

{
α(u), u ∈ [0, S],
β(u− S)+ α(S)− β(0), u ∈ [S, S + T ].

(1.1)
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If γ has finite length, then its derivative γ̇ exists for almost every t ∈ [0, T ]. We can
re-parametrize γ in the fixed time interval [0, 1] in such a way that

|γ̇t | =

d∑
i=1

|γ̇ it | ≡ L,

where γ̇ i’s are the components of γ̇ , and L is the length of γ under `1 norm. We call such
a parametrization the natural parametrization of γ .

Remark 1.1. The notion of natural parametrization used here is slightly different from
the standard one in the literature, as we parametrize γ in the unit interval rather than
[0, L]. As a consequence, the constant speed is L instead of 1. The reason of using this
parametrization is that later on we will compare paths with different lengths, so it will be
convenient for us to parametrize all of them in the same interval.

If γ has finite length, then one can define a sequence of iterated integrals of it, called the
signature of γ . We first introduce the notion of words before giving a precise definition
of signature.

Let {e1, . . . , ed} denote the standard basis of Rd . For every integer n ≥ 0, a word
of length n is an ordered sequence of n letters from the set {e1, . . . , ed} (with repetition
allowed), and we use |w| to denote the length of w. For two words w1 = ei1 . . . ein and
w2 = ej1 . . . ejm , their concatenation w1 ∗ w2 is a word of length n+m given by

w1 ∗ w2 = ei1 . . . einej1 . . . ejm .

We also use ∅ to denote the empty word, which is the unique word of length 0. The
signature of a finite length path can now be defined as follows.

Definition 1.2. Let γ : [0, T ] → Rd be a path of finite length. For every integer n and
every word w = ei1 . . . ein , define

Cγ (w) :=

∫
0<u1<···<un<T

dγ i1u1
· · · dγ inun ,

where γ i is the component of γ in the direction ei . The signature of γ is the formal power
series

X(γ ) =

∞∑
n=0

∑
|w|=n

Cγ (w)w,

where we have set Cγ (∅) = 1.

The signature of γ is a definite integral over a fixed time interval where γ is defined.
Re-parametrizing γ does not change its signature. One reason to look at the signatures
is that they contain important information about the paths. For example, the first level
coefficients {Cγ (w) : |w| = 1} reproduce the increment of the path, and the second level
collection {Cγ (w) : |w| = 2} represents the area enclosed by the projections of the path
on the ei-ej planes.
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The study of the signature dates back to K. T. Chen in the 1950’s. In a series of papers
([Che54], [Che57], [Che58]), he showed that the map γ 7→ X(γ ) is a homomorphism
from the monoid of paths with concatenation to the tensor algebra over Rd , and proved
that two piecewise regular paths without backtracks have the same signatures if and only
if they differ by a re-parametrization and translation. This uniqueness result, modulo tree-
like equivalence, was extended to all finite length paths (in [HL10]) and finally to all ge-
ometric rough paths1 (in [BGLY16]). However, all the proofs there are non-constructive,
and a natural question that arises after these works is how one can reconstruct a path from
its signature. In this article, we consider the inversion problem when γ is C1 at natural
parametrization, which automatically implies that γ has finite length and does not have
any backtracks in its trajectory.

Remark 1.3. In the case d = 1, all back-forth movements of the path are cancelled out
and only the total increment counts. The signature X takes the form exp(ae1), where
a = γT −γ0, and the reduced path with signatureX is simply the straight line going from
0 to a. The inversion problem is then interesting only when d ≥ 2, where evolutions of
the path are in general non-commutative.

The key to the reconstruction problem in d ≥ 2 is then to recover these non-commutative
evolutions of the path in their correct orders based on the signature. To appreciate the
difficulty of the problem, we note from Definition 1.2 that each term Cγ (w) represents
some global effect of the path γ , and a priori there is no obvious way of recovering local
information on the path from these global representations.

A naive approach to the reconstruction problem can be to try to reproduce the path
from the interpretation of each term in the signature, as the explanation of the meanings of
{Cγ (w) : |w| ≤ 2} above. However, these intuitive interpretations break down when |w|
gets large, and it is essentially impossible to proceed this way to recover much finer infor-
mation on the path beyond the increment and area. Thus, certain operations on signatures
that can reveal local information on the path will be necessary for the reconstruction.

There have been recent attempts at the reconstruction. In establishing the uniqueness
of signature for Brownian motion sample paths, Le Jan and Qian [LJQ13] constructed
polygonal approximations to the Brownian paths by using the information in their signa-
tures only. This approximation scheme has been further extended to diffusions [GQ16]
and a large class of Gaussian processes [BG15]. These works all used a fixed approxi-
mation scheme that relies on the law of the underlying random paths which gives certain
almost sure non-degeneracy property of the sample paths. However, this non-degeneracy
property is not available for all deterministic rough paths, so one would not expect any
fixed approximation scheme to work in the deterministic setting without further assump-
tions on the paths. This obstacle was overcome by Geng [Gen17], who allowed flexibility
in the scheme used depending on the signature of the path under consideration, and gave
a construction of any deterministic geometric rough path from its signature.

However, all the approximation schemes used in those works are indirect—they re-
quire a sophisticated transform of the signature via smooth one-forms which involves

1 See [BGLY16] or [Lyo98] for the definition of the signature of a rough path.
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various limiting processes. In addition, even for approximation at any fixed scale and in
the setting of smooth paths, these constructions require the use of the whole signature
sequence rather than any truncation of it. Thus, it is hard to turn them into an effective
algorithm.

In the recent article [LX17], by using a construction from hyperbolic geometry, the
authors gave an explicit inversion scheme together with stability properties for piecewise
linear paths. But this scheme makes an essential use of the piecewise linearity of the path,
and it is not clear how it can be extended to more general situations.

1.2. Main result and strategy

The main goal of this article is to develop an explicit and implementable procedure that
enables one to reconstruct any C1 path (at natural parametrization) from its signature,
together with detailed stability estimates of the procedure.

As mentioned in the previous subsection (Remark 1.3), the key to establish an effec-
tive reconstruction algorithm is to recover the non-commutative evolution of the path in
its correct order. For example, the following three paths in R2 have the same increments.
Their signatures agree on level |w| = 1, but start to differ when |w| ≥ 2:

Let x and y denote the standard basis of R2; then the signatures of the above three paths
are the formal series exey , eyex and ex+y , respectively.

As one can see, the order of the evolution of the paths is captured in the signatures
through the ordered letters that form the words w (see Definition 1.2 above). Our main
result is that, by symmetrizing the signatures at high level (|w| large), we can average
out the non-commutativities of the path at small scales but still preserve the order of its
evolution at larger scales. Thus, for any given k, we produce from the truncated signature
a piecewise linear path that approximates the original path at scale 1/k, and the error of
the approximation can be explicitly quantified in terms of the modulus of continuity of
the derivative of the path. The main theorem could be loosely stated as follows.

Theorem 1.4. Let γ be a C1 path in Rd at natural parametrization, and assume we know
its signature X = {Cγ (w) : |w| ≥ 0}. For large enough k (depending on the dimension
and the path, to be quantified explicitly below), by using the terms in the truncated sig-
nature up to level |w| = 2dk3 log k + k, we construct a piecewise linear path γ̃ with k
linear pieces such that when both γ and γ̃ are at natural parametrization with respect
to `1 norm, for every t ∈ [0, 1] where ˙̃γt is defined we have

|γ̇t − ˙̃γt | < Cηk, (1.2)

where C > 0 depends on the path γ only, and ηk → 0 as k→∞ with rate depending on
the modulus of continuity of γ̇ .
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Remark 1.5. A precise statement of this main result, including the value of the con-
stant C, can be found in Theorem 4.17 for d = 2 and in Theorem 5.1 for higher dimen-
sions. The definition of ηk is in (1.4) for d = 2 and in (5.2) for general d. As for the decay
of ηk , if γ ∈ C1,α for some α ∈ (0, 1], then ηk = O(k−α2/2) (see (1.4) and Remark 4.1
for more details about the rate). But we expect that both this error bound and the level of
truncation |w| ∼ k3 log k in the signature can be improved.

Remark 1.6. Although many arguments below make an explicit use of the continuity
of γ̇ , we expect most of them still hold (with a different proportionality constant) if γ̇ is
piecewise continuous, and its discontinuities have jumps less than π . The only statement
that essentially relies on the continuity of γ̇ is the existence of a word w∗ with certain
non-degeneracy properties (in Theorem 3.4). This word is used in the symmetrization
procedure (see Section 2) mainly for technical convenience—one would not have the
closed form expression (2.4) for symmetrized signatures without the use of the word to
separate blocks in symmetrization. It will be very interesting, and also convenient for
practice, if one could prove the validity and stability of the symmetrization procedure
without using this word to separate blocks. This would give an inversion scheme for
piecewise C1 paths and possibly all finite length paths.

On the other hand, however, our procedure does make an essential use of the finite
length nature of γ . Any extension of the procedure to rough paths together with detailed
quantitative characterization of its stability would require new ingredients.

We now briefly explain the main steps in the construction of such a piecewise linear path.
Since there is no essential difference between dimension 2 and higher, we will mainly
focus on the 2-dimensional case, and give a description of the procedure in higher dimen-
sions with a brief explanation in Section 5.

Each line segment in a piecewise linear path is determined by its direction (a unit
vector in R2) and length. Thus, for each integer k and each j = 1, . . . , k, our aim is to
find a 2-dimensional unit vector (in `1 norm)

θj = (a
x
j ρj , a

y
j (1− ρj )),

where ρj ∈ [0, 1] and axj , a
y
j ∈ {±1}, and L̃ ∈ R+ such that

sup
1≤j≤k

sup
u∈[(j−1)/k,j/k]

|γ̇u − L̃θj | < Cηk.

Thus, if we let γ̃ be the path that is the concatenation of the line segments (L̃/k)θj , this
will automatically imply that γ̃ is close to the original path γ in Lipschitz norm.

It is clear that the parameter ρj ∈ [0, 1] represents the unsigned direction of the j -th
line segment, axj , a

y
j represent the signs of x and y directions (in R2) in that segment, and

L̃ is an approximation to the `1 length of the original path.
In order to get a rough idea how these parameters can be obtained from the signature

of γ , we first briefly recall from [LX17] the inversion scheme for integer lattice paths.
This can be decomposed into two steps:
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1. Identify the unique longest square free word2 w such that C(w) 6= 0. The order of the
letters in w gives the directions (up to sign) of each piece of the lattice path.

2. Move one level up in the signature to recover the sign as well as the length of each
piece.

The reconstruction scheme developed in this article is close in spirit to that for lattice
paths. In what follows, we will recover these parameters in the order of ρj , axj , ayj and
then finally L̃. Among these parameters, the most difficult one to recover is the unsigned
direction ρj . Ideally, one would like to implement the strategy for integer lattice paths to
recover these ρj ’s. However, at first glance, that procedure seems to crucially depend on
the very special structure of the integer lattice, and does not generalize directly to other
situations. In particular, the vanishing/non-vanishing property of coefficients of square
free words does not carry over to more general cases where the path can move along any
direction in the plane. In order to recover the directions that are not necessarily parallel
to the Euclidean axes, we use a symmetrization procedure together with a more robust
notion of non-degeneracy that replaces the strict non-zero criterion in Step 1 above.

Once the directions ρj are recovered, one can (similar to the lattice path case) move
one level up in the signature to recover the signs axj and ayj . Finally, the approximated
length L̃ is obtained by a simple scaling argument.

1.3. Assumptions and notations

We now summarize the assumptions on our path γ as well as the notations we will be
using. We will mainly work in dimension d = 2. We equip R2 with the `1 norm, and let
x and y denotes the standard basis elements of R2.

The notation | · | will have different meanings in various contexts. If α ∈ R, then |α|
is the absolute value of α. If α = (α1, α2) ∈ R2 is a vector, then |α| = |α1| + |α2| is its
`1 norm. Finally, if w is a word, then |w| denote the length of w.

Throughout, we fix our path γ that is C1 under natural parametrization and has
length L. More precisely, the path

γ : [0, 1] → R2, γu = (xu, yu),

has continuous derivative γ̇u = (ẋu, ẏu) on [0, 1], and satisfies |ẋu| + |ẏu| ≡ L for all
u ∈ [0, 1]. We let δ denote the modulus of continuity of γ̇ , so

δ(ε) := sup
|s−t |<ε

|γ̇s − γ̇t |. (1.3)

For each integer k, we define

εk :=
√

2
(√

δ(1/k)
L
+

1
√
k

)
, ηk := δ(3εk)+

L
√
k
. (1.4)

2 A word w = ei1 . . . ein is square free if ij 6= ij+1 for all j = 1, . . . , n− 1.
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The definitions (1.4) are for the 2-dimensional case; for general dimension d see (5.2).
For any integer k, let 1k−1 be the standard simplex

1k−1 := {(u1, . . . , uk−1) : 0 = u0 < u1 < · · · < uk−1 < uk = 1}. (1.5)

In situations where there might be confusion, we use boldface letters to denote vectors
and normal letters for their components; for example we write

u = (u1, . . . , uk−1).

On the other hand, we write the path as γ = (γ 1, γ 2) as no confusion can arise in this
case.

Given the path γ and u ∈ 1k−1, for every j = 1, . . . , k we let

1u,jx := xuj − xuj−1 , 1u,jy := yuj − yuj−1 (1.6)

denote the increments in the relevant directions in the time interval [uj−1, uj ], and

|1u,jγ | := |1u,jx| + |1u,jy| (1.7)

be the magnitude of total increments. Similarly, we denote the increments of the j -th
piece under standard subdivision sk = {j/k}kj=0 by

1jx := xj/k − x(j−1)/k, 1jy := yj/k − y(j−1)/k, (1.8)

and let |1jγ | := |1jx| + |1jy|.

1.4. Organization of the article

This article is organized as follows. In Section 2, we introduce and set up the symmetriza-
tion procedure on signatures. Section 3 is devoted to the proof of a concentration property
of the symmetrized signatures with explicit quantitative estimates. These estimates will
then be used in Section 4 where we give a detailed description of the reconstruction pro-
cedure of the path from the signatures. Finally, in Section 5, we give an outline of the
reconstruction procedure for paths in higher dimensions.

2. Symmetrization

As mentioned in the introduction, the first step in the reconstruction is to obtain the un-
signed direction ρj ∈ [0, 1] of the j -th line segment in our piecewise linear path approxi-
mation, and the key to the accurate recovery of this parameter is the use of symmetrization
procedure together with a robust notion of non-degeneracy. We first give a simple example
to illustrate this.
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Example 2.1. Let X be the signature of some bounded variation path γt = (xt , yt ), t ∈
[0, 1], and we would like to recover from X the increments

1x := x1 − x0 and 1y := y1 − y0,

where (x0, y0) and (x1, y1) are the beginning and end points of γ . One could of course get
the exact values of the pair (1x,1y) directly from the first level signatureX1, but cannot
proceed much further. The symmetrization method given below is more complicated, but
has the advantage that it can be generalized to recover much more information beyond
the increments.

The symmetrization procedure to recover the increments is as follows. For every (pos-
itive) integer n and every ` = 0, 1, . . . , n, let

Sn(`) := n!
∑

C(w),

where the sum is taken over all words w with length n that contain ` x’s and n − ` y’s.
Hence, Sn(`) has the expression

Sn(`) =
(
n

`

)
(1x)`(1y)n−`.

Note that for each n and `, the left hand side above is the information available to us
(from the signature), and the right hand side is its expression. It is standard that for fixed
large n, the quantity |Sn(`)| is maximized near the value `∗ such that

`∗

n− `∗
≈
|1x|

|1y|
.

We can then asymptotically recover the ratio |1x| : |1y| by finding the maximizer `∗

of Sn(`), and this gives us the unsigned direction of the increment.
To recover the signs of1x and1y, one repeats the same trick as in the case of integer

lattice paths: moving one level up and comparing the signs. Finally, the magnitude of the
increment will be obtained via scaling.

The example above illustrates the case of single-piece approximation to the path (that
is, k = 1). In order to recover finer information about the path (for large k), instead of
symmetrizing the whole signature, we divide high level signatures into k equal blocks, and
symmetrize each block. We first introduce some notations before we set up the procedure.

For any positive integers k and n, we let Lnk denote the set of multi-indices

Lnk :=
{
` = (`1, . . . , `k) : 0 ≤ j̀ ≤ n,

k∑
j=1

j̀ = n
}
. (2.1)

For every word w, we let |w|x and |w|y denote the number of letters x and y in w,
respectively. For every w of length k − 1 of the form w = ei1 . . . eik−1 and every multi-
index ` ∈ Lnk , we let W2n

k (w, `) be the set of words

W2n
k (w, `) = {w

′
= w1 ∗ ei1 ∗ · · · ∗ eik−1 ∗wk : |wj |x = 2 j̀ , |wj |y = 2n−2 j̀ }. (2.2)
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A typical word w′ ∈W2n
k (w, `) where w = ei1 . . . eik−1 has the form

∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
w1

ei1 ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
w2

ei2 . . . eik−2 ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
wk−1

eik−1 ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
wk

.

Here, each wj is a subword of length 2n with 2 j̀ letters x and 2n−2 j̀ letters y. The two
consecutive subwords (blocks) wj and wj+1 are separated by the letter eij from w. For
example, for n = 2 and k = 1, we have L2

1 = {0, 1, 2}, so

W4
1 (∅, (0)) = {yyyy}, W4

1 (∅, (2)) = {xxxx},

W4
1 (∅, (1)) = {xxyy, xyxy, xyyx, yxxy, yxyx, yyxx}.

For n = k = 2, the set W4
2 (x, (1, 0)) is

{xxyyxyyyy, xyxyxyyyy, xyyxxyyyy, yxxyxyyyy, yxyxxyyyy, yyxxxyyyy}.

The set W4
2 (x, (1, 2)) is similar except that one replaces the last four y’s by four x’s. With

this definition, we introduce the symmetrized signatures

S2n
k (w, `) := ((2n)!)

k
∑

w′∈W2n
k (w,`)

C(w′). (2.3)

Recalling the definitions of1k−1,1u,jx and1uj y in (1.5) and (1.6), we have the follow-
ing proposition.

Proposition 2.2. Fix integers k and n. Let w = ei1 . . . eik−1 and ` = {`1, . . . , `k} ∈ Lnk .
Then the quantity S2n

k (w, `) defined above has the expression

S2n
k (w, `) =

∫
1k−1

k−1∏
j=1

γ̇
ij
uj ·

k∏
j=1

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ du. (2.4)

Proof. By the definition of W2n
k (w, `) in (2.2), we have∑

w′∈W2n
k (w,`)

C(w′)

=

∫
u∈1k−1

k∏
j=1

(
1

(2 j̀ )!(2n− 2 j̀ )!

∫
uj−1<v

j

1 ,...,v
j

2n<uj

dγ
i
j

1

v
j

1
· · · dγ

i
j

2n

v
j

2n

)
dγ i1u1
· · · dγ

ik−1
uk−1 ,

where u = (u1, . . . , uk−1), u0 = 0, uk = 1, and for each j , the word wj = eij1
. . . e

i
j

2n
consists of 2 j̀ letters x and 2n− 2 j̀ letters y. Thus, we have∫

uj−1<v
j

1 ,...,v
j

2n<uj

dγ
i
j

1

v
j

1
· · · dγ

i
j

2n

v
j

2n
= (1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ ,

and (2.4) follows immediately. ut
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We will see below that these S2n
k (w, `)’s are the only quantities we will use to recover the

unsigned directions of each piece in our piecewise linear approximation. It is the recovery
of the sign of each direction that requires more information on the signature other than
the S2n

k ’s. We will introduce those additional quantities only when it becomes necessary.

Remark 2.3. We emphasize that (2.3) is the definition of the symmetrized signature;
this information is available to us from the signature X. On the other hand, (2.4) is an
expression of this quantity, and we will make use of this expression later to prove a priori
bounds of the symmetrized signature.

Remark 2.4. The reason why we insert a letter eij between any two consecutive sym-
metrized blocks is to let S2n

k (w, `) have a closed form expression as in (2.4). This is
mainly for technical convenience, and we expect results in the next section still hold true
when the symmetrization is taken without using these eij to separate blocks. Also, the
symmetrization is taken only over even numbers of x’s and y’s in each block. This is to
avoid cancellations of different signs inside the integration on the right hand side of (2.4).

Before we proceed, we first give a heuristic explanation how the quantities S2n
k (w, `)

can help recover the unsigned directions of each segment of the path. For a fixed word
w = ei1 . . . eik−1 , using Proposition 2.2 and then summing over ` ∈ Lnk we get

∑
`∈Lnk

S2n
k (w, `) =

1
2k

∫
1k−1

k−1∏
j=1

γ̇
ij
uj ·

k∏
j=1

((1u,jx +1u,jy)
2n
+ (1u,jx −1u,jy)

2n) du.
(2.5)

If n � k, it is natural to expect that the above integrand has magnitude of order
Ck
∏k
j=1 |1u,jγ |

2n, where |1u,jγ | = |1u,jx| + |1u,jy| is defined in (1.7). This sug-
gests ∑

w: |w|=k−1

∑
`∈Lnk

S2n
k (w, `) ∼ Ck

∫
1k−1

k∏
j=1

|1u,jγ |
2n du. (2.6)

By the concentration properties of the integral
∫
1k−1

∏
j |1u,jγ |

2n du (which will be
proven and quantified in the next section) as well as the normal approximation to bi-
nomials, it turns out that as long as we sum the S2n

k (w, `)’s over a very small range of
` ∈ Lnk such that

j̀

n− j̀

∼
|1jx|

|1jy|
, j = 1, . . . , k, (2.7)

the sum will also be “close” to its possible maximum—the right hand side of (2.6). On the
other hand, if any j̀ is away from the range in (2.7), then the sum of the S2n

k (w, `)’s will
be negligible compared to (2.6). Then, similar to Example 2.1, “observing” which range
of j̀ maximizes the sum of the S2n

k (w, `)’s will recover asymptotically the unsigned
directions of each piece. We will precisely formulate and prove this heuristic in the next
sections.
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3. Concentration of symmetrized signatures

The aim of this section is to prove a quantitative statement about the concentration prop-
erty of the integral ∫

1k−1

k∏
j=1

|1u,jγ |
n du (3.1)

when n � k, where |1u,jγ | is the magnitude of the increment of γ in [uj−1, uj ] as
defined in (1.7). This concentration property roughly states that although the integration
is taken over the whole simplex, when n is large, almost all the contribution comes from
a very small subset of 1k−1. In fact, the domain of concentration is around the points
u ∈ 1k−1 such that the product

∏
j |1u,jγ | is maximized, and these maximizers cannot

be far away from the standard dissection sk = {j/k}k−1
j=1 . A quantitative statement will

be given in Proposition 3.3 below. As a consequence, we will obtain in Theorem 3.4
a precise quantitative characterization of the “heuristic” (2.6). Throughout, we assume
γ : [0, 1] → R2 is at natural parametrization with respect to `1 norm, γ ∈ C1, and δ is
the modulus of continuity of γ̇ .

Lemma 3.1. Let k be an integer such that δ(1/k) < L/2, where L is the `1 length of γ .
Then, for every j = 1, . . . , k, we have

L− δ(1/k)
k

≤ |1jγ | ≤
L

k
,

where |1jγ | = |1jx|+|1jy| is the magnitude of the increment of γ in [(j − 1)/k, j/k],
as defined in (1.8).

Proof. The inequality |1jγ | ≤ L/k follows immediately from the assumption that γ is
at natural parametrization.

For the lower bound, for each j = 1, . . . , k, we let Ij = [(j − 1)/k, j/k]. If both ẋu
and ẏu keep their signs unchanged in the interval Ij , then we have∣∣∣∣∫

Ij

ẋu du

∣∣∣∣ = ∫
Ij

|ẋu| du,

∣∣∣∣∫
Ij

ẏu du

∣∣∣∣ = ∫
Ij

|ẏu| du,

and it follows immediately that |1jγ | = L/k. If not, then either ẋ or ẏ is 0 at some
point u in the interval Ij . Suppose without loss of generality that ẏu = 0 for some u ∈ Ij ;
then we have

sup
u∈Ij

|ẏu| ≤ δ(1/k),

which in turn gives
|ẋu| ≥ L− δ(1/k) ≥ L/2

for all u ∈ Ij . In particular, the continuity of ẋu implies that it does not change sign in Ij .
Thus, we have

|1jγ | ≥

∣∣∣∣∫
Ij

ẋu du

∣∣∣∣ = ∫
Ij

|ẋu| du ≥
L− δ(1/k)

k
. ut
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Lemma 3.1 says that at u = sk = {j/k}, the product
∏
j |1jγ | is close to its largest

possible value. On the other hand, if any uj is far away from j/k, then
∏
j |1u,jγ | must

be small. This is the content of the following lemma.

Lemma 3.2. Let k be an integer such that δ(1/k) < L/2, and let u = {u1 < · · · < uk−1}

∈ 1k−1. Recall from (1.4) that

εk =
√

2
(√

δ(1/k)
L
+

1
√
k

)
.

If |uj − j/k| ≥ εk for some 1 ≤ j ≤ k, then

k∏
i=1

(|1u,iγ |/|1iγ |) <
1
e
. (3.2)

Proof. Since the left hand side of (3.2) is invariant under rescaling of length, we can
assume without loss of generality that L = 1. Suppose

uj − j/k = ε

for some j and some ε. Then uj = j/k + ε, and the sums of all increments before and
after time t = uj satisfy

j∑
i=1

|1u,iγ | ≤
j

k
+ ε,

k∑
i=j+1

|1u,iγ | ≤
k − j

k
− ε. (3.3)

Note that here we do not require ε to be positive. By the bound (3.3), the best possible
maximum one can hope for

∏
i |1u,iγ | is when

|1u,iγ | =
1
k
+
ε

j
, ∀i ≤ j and |1u,iγ | =

1
k
−

ε

k − j
, ∀i ≥ j + 1,

which gives
k∏
i=1

|1u,iγ | ≤

(
1
k
+
ε

j

)j(1
k
−

ε

k − j

)k−j
.

Since δ(1/k) < L/2, we can apply Lemma 3.1 to get

k∏
i=1

(|1u,iγ |/|1iγ |) ≤

(
(1+ pε)1/p(1− qε)1/q

1− δ(1/k)

)k
, (3.4)

where p = k/j and q = k/(k − j). Now, let

f (x) := (1+ px)1/p(1− qx)1/q;

then f is defined on the interval [−1/p, 1/q] = [−j/k, 1− j/k], and has derivative

f ′(x) = −(p + q)(1+ px)−1/q(1− qx)−1/px.
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For x ∈ [0, 1/q], f ′(x) is negative and satisfies

|f ′(x)| ≥ (p + q)(1+ p/q)−1/qx = (p + q)1/pq1/qx ≥ x.

Similarly, for x ∈ [−1/p, 0], f ′(x) is positive and satisfies f ′(x) ≥ |x|. Noting that
f (0) = 1, we then deduce

f (x) ≤ 1− x2/2, x ∈ [−1/p, 1/q].

Plugging this bound into (3.4) with x = ε (noting that ε could be negative), we get

k∏
i=1

(|1u,iγ |/|1iγ |) ≤

(
1− ε2/2

1− δ(1/k)

)k
.

It is then clear that if ε2/2 > δ(1/k)+ 1/k, we will necessarily have

k∏
i=1

(|1u,iγ |/|1iγ |) ≤

(
1−

1
k

)k
<

1
e
.

The case of general length L is essentially the same except one replaces δ(1/k) by
δ(1/k)/L. ut

In view of Lemma 3.2, we set

Ek−1 := {(u1, . . . , uk−1) : |uj − j/k| < εk, j = 1, . . . , k − 1}. (3.5)

We can now prove the following concentration property.

Proposition 3.3. For every integer k such that δ(1/k) < L/2 and every integer n, we
have ∫

1k−1∩Ek−1

k∏
j=1

|1u,jγ |
n du ≥ (1− e3k log k−n/2)

∫
1k−1

k∏
j=1

|1u,jγ |
n du. (3.6)

Proof. Let k ≥ K , and set

Ek−1 =

{
v = (v1, . . . , vk−1) : |vj − j/k| <

1
12k2 , j = 1, . . . , k − 1

}
.

Then, for any v ∈ Ek−1 and j = 1, . . . , k, we have∣∣|1v,jγ | − |1jγ |
∣∣ ≤ |γvj − γj/k| + |γvj−1 − γ(j−1)/k| <

L

6k2 . (3.7)

Since δ(1/k) < L/2, we have L ≤ 2(L − δ(1/k)), so it follows from (3.7) and then
Lemma 3.1 that

|1v,jγ | ≥ |1jγ | −
L− δ(1/k)

3k2 ≥

(
1−

1
3k

)
|1jγ |.
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Since
(
1− 1

3k

)k is increasing in k, multiplying over j from 1 to k we get

k∏
j=1

|1v,jγ | ≥
2
3

k∏
j=1

|1jγ | > e−1/2
k∏

j=1

|1jγ | (3.8)

for all v ∈ Ek−1. Now, raising both sides of (3.8) to power n and using Lemma 3.2, we
get

k∏
j=1

|1u,jγ |
n < e−n/2

k∏
j=1

|1v,jγ |
n, ∀u ∈ 1k−1 ∩ E

c
k−1, v ∈ Ek−1.

Averaging both sides above in their respective domains, and noting Ek−1 ⊂ 1k−1, we
deduce that ∫

1k−1∩E
c
k−1

k∏
j=1

|1u,jγ |
n du < Cke

−n/2
∫
1k−1

k∏
j=1

|1u,jγ |
n du, (3.9)

where

Ck =
|1k−1 ∩ E

c
k−1|

|Ek−1|
,

and | · | denotes the volume of a set. Since |1k−1 ∩ E
c
k−1| < |1k−1| = 1/((k − 1)!) and

|Ek−1| = (6k2)−(k−1), using the bound

log(k!) >
∫ k

1
log x dx = k log k − (k − 1)

and the fact that
(
1+ 1

k−1

)k−1
< e for all k, we obtain the estimate

Ck < (6ek)k−1.

The conclusion of the theorem follows by plugging this estimate into (3.9) and noting that
(k − 1) log(6ek) < 3k log k. ut

Proposition 3.3 (and also Theorem 3.4 below) will be useful when n� k log k, in which
case the integral

∫
1k−1

∏k
j=1 |1u,jγ |

k is concentrated on the subdomain1k−1∩Ek−1. As
a consequence, the sum of the symmetrized signatures S2n(w, `) cannot be too far away
from its maximal possible value as n→∞. This is the content of the following theorem.

Theorem 3.4. For every k such that δ(2εk) < L/6, there exists a wordw∗ of length k−1
such that for every n, we have

∑
`∈Lnk

|S2n
k (w

∗, `)| ≥

(
3
6k
−

(
1+

3
6k

)
e3k log k−n

)
Lk−1

∫
1k−1

k∏
j=1

|1u,jγ |
2n du, (3.10)

where Lnk is the set of multi-indices as defined in (2.1).



Inverting the signature of a path 1669

Proof. For any word w of length k − 1, by (2.4), we have

∑
`∈Lnk

|S2n
k (w, `)| ≥

∣∣∣∣∫
1k−1

k−1∏
j=1

γ̇
ij
uj ·

k∏
j=1

n∑
j̀=0

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ du

∣∣∣∣, (3.11)

where we have interchanged the sum over ` and the product over j since different com-
ponents of ` are summed up independently. The integrand of the right hand side of
(3.11) can be split into two parts: the product of pointwise derivatives γ̇

ij
uj , whose “di-

rection” ij is given by the j -th letter in the word w, and the product of the increments∑
j̀

( 2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ . For the latter, since

n∑
j̀=0

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ =

1
2

(
(1u,jx +1u,jy)

2n
+ (1u,jx −1u,jy)

2n),
which is bounded from above by |1u,jγ |

2n and from below by 1
2 |1u,jγ |

2n, we have the
bound

1
2k

k∏
j=1

|1u,jγ |
2n
≤

k∏
j=1

n∑
j̀=0

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ ≤

k∏
j=1

|1u,jγ |
2n. (3.12)

Now we look at the first part of the integrand,
∏k−1
j=1 γ̇

ij
uj . Since we hope the whole integral

on the right hand side of (3.11) to be concentrated on the domain1k−1∩Ek−1, we choose
a word w∗ = ei1 . . . eik−1 such that

|γ̇
ij
uj | ≥ L/3 (3.13)

for all j and all u ∈ Ek−1. This also guarantees that none of the γ̇
ij
uj ’s changes its sign

in this domain. The main purpose of choosing w∗ in this way is to ensure that the term∏
j γ̇

ij
uj does not cause any degeneracy or cancellations of the integral in its domain of

concentration 1k−1 ∩ Ek−1. The continuity of γ̇ ensures that we can always find such a
word as long as δ(2εk) < L/6.

We now decompose the integral on the right hand side of (3.11) into two disjoint
domains:1k−1 ∩Ek−1 and1k−1 ∩E

c
k−1. For the first one, since the product

∏k−1
j=1 γ̇

ij
uj is

bounded away from 0 by (L/3)k−1 and does not change its sign in Ek−1, and the rest of
the integrand is always positive as it only contains even powers, we can move the absolute
value into the integral to get∣∣∣∣∫
1k−1∩Ek−1

k−1∏
j=1

γ̇
ij
uj ·

k∏
j=1

n∑
j̀=0

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ du

∣∣∣∣
≥

1
2k

(
L

3

)k−1

(1− e3k log k−n)

∫
1k−1

k∏
j=1

|1u,jγ |
2n du, (3.14)
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where we have used the lower bound in (3.12) to reduce the integrand to
2−k

∏
j |1u,jγ |

2n, the bound (3.13) to replace
∏
j |γ̇

ij
uj | by (L/3)k−1, and Proposi-

tion 3.3 to enlarge the domain of integration to 1k−1 with a compensation of the factor
1− e3k log k−n. Note that the exponent here is 3k log k− n instead of 3k log k− n/2 since
the power of |1u,jγ | is 2n.

For the integration over the domain1k−1∩E
c
k−1, it follows from |γ̇

ij
uj | ≤ L, the upper

bound in (3.12) and Proposition 3.3 that it is bounded by

e3k log k−nLk−1
∫
1k−1

k∏
j=1

|1u,jγ |
2n du. (3.15)

Combining (3.14) and (3.15), we obtain (3.10). ut

4. Reconstructing the path

We are now ready to reconstruct the path from its signature. Recall from (1.4) that

ηk = δ(3εk)+ L/
√
k.

Our aim is to find parameters ρj ∈ [0, 1], axj , a
y
j ∈ {±1} and L̃ ∈ R+ such that

sup
1≤j≤k

sup
u∈[(j−1)/k,j/k]

|L̃(axj ρj , a
y
j (1− ρj ))− γ̇u| < Cηk (4.1)

for all large enough k, whereC is some constant depending on γ only. In what follows, we
will recover these parameters in the order of ρj , axj , a

y
j , and finally L̃. We will also give

in Theorem 4.17 the precise value of the constant C and a quantitative characterization of
how large k has to be.

Remark 4.1. As for the magnitude of ηk , if γ̇ ∈ Cα for some α ∈ (0, 1), then

εk .

√
δ(1/k)
L
+

1
√
k
. k−α/2,

and consequently
ηk = δ(3εk)+ L/

√
k . k−α

2/2.

The readers might wonder why we add the additional term L/
√
k to the definition of ηk .

In fact, as long as γ is not a straight line, there exists λ > 0 such that

δ(3εk) > 3λεk ≥ 3λ/
√
k.

Thus, L/
√
k < Cδ(3εk), and adding L/

√
k does not change the magnitude of ηk for

large k. Since we will need a lower bound for ηk in Theorem 4.4 below, this additional
term will save us from introducing the new constant λ.
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4.1. The unsigned directions

We start with the recovery of the unsigned directions ρj . At this stage, we only use the
quantities S2n

k (w, `) which can be obtained from symmetrization of the signature as in
(2.3) and have an expression as in (2.4). Recall from Section 1.3 that

1jx = xj/k − x(j−1)/k, 1jy = yj/k − y(j−1)/k, |1jγ | = |1jx| + |1jy|.

Since we expect ρj to be close to the increment ofγ |[(j−1)/k,j/k], it is natural to introduce
for each j the unique real number rj ∈ [0, 1] such that

|1jx| : |1jy| = rj : (1− rj ).

Also recall from (3.5) the definition of Ek−1, which we will be frequently using through-
out this section. The following two elementary lemmas will be useful.

Lemma 4.2. For every k such that δ(3εk) < L/2 and every u ∈ 1k−1 ∩ Ek−1, we have

sup
1≤j≤k

∣∣∣∣ |1u,jx|

|1u,jγ |
− rj

∣∣∣∣ < ηk

L
. (4.2)

Proof. Fix u ∈ 1k−1 ∩ Ek−1 and 1 ≤ j ≤ k. Let

Qj :=

[
j − 1
k
− εk,

j

k
+ εk

]
∩ [0, 1].

Then Qj ⊃ ([(j − 1)/k, j/k] ∪ [uj−1, uj ]) and |Qj | < 3εk . It suffices to prove (4.2) in
the case when |ẋv| ≥ L/2 for some v ∈ Qj , for otherwise we would have |ẏv| ≥ L/2 for
some v ∈ Qj and can get (4.2) through∣∣∣∣ |1u,jx|

|1u,jγ |
− rj

∣∣∣∣ = ∣∣∣∣ |1u,jy|

|1u,jγ |
− (1− rj )

∣∣∣∣.
Since |ẋv| ≥ L/2 for some v ∈ Qj , and since |Qj | < 3εk and δ(3εk) < L/2, we have

inf
t∈Qj
|ẋt | > 0.

In particular, x is monotone in Qj and ẋ does not change its sign. If y is also monotone
in Qj , then |1u,jγ | = L(uj − uj−1) and |1jγ | = L/k. Thus, there exist v, ṽ ∈ Qj such
that

|1u,jx|

|1u,jγ |
=
|ẋv|

L
, rj =

|ẋṽ|

L
,

and (4.2) follows since |v − ṽ| < |Qj | < 3εk . If y is not monotone in Qj , then there
exists s ∈ Qj such that ẏs = 0, and we have the bound

inf
t∈Qj
|ẋt | ≥ L− δ(3εk).

This implies that

L− δ(3εk)
L

≤
|1u,jx|

|1u,jγ |
≤ 1,

L− δ(3εk)
L

≤ rj ≤ 1,

and the bound (4.2) follows immediately. ut
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Lemma 4.3. Let m ≥ 1. For every ` = 0, . . . , m and p ∈ [0, 1] we have(
m

`

)
p`(1− p)m−` ≤ me−mx

2/2,

where x := `/m− p ∈ [−p, 1− p].

Proof. The conclusion is clearly true if p = 0 or 1. For p ∈ (0, 1), using the estimate

` log `− (`− 1) =
∫ `

1
log x dx < log(`!) <

∫ `+1

1
log x dx = (`+ 1) log(`+ 1)− `

as well as those for (m− `)! and m!, we obtain the bound

f (x) :=

(
m

`

)
p`qm−` < m

[(
p

p + x

)p+x(
q

q − x

)q−x]m
,

where x = `/m− p ∈ [−p, q] and q = 1− p. Let

g(x) := (p + x)
(
logp − log(p + x)

)
+ (q − x)

(
log q − log(q − x)

)
.

It is straightforward to check that

g′(x) = log
(

1−
x

q(p + x)

)
satisfies g′(x) ≤ −x for x ∈ [0, q] and g′(x) ≥ |x| for x ∈ [−p, 0]. As a consequence,
we have

g(x) ≤ −x2/2, x ∈ [−p, q],

f (x) = memg(x) ≤ me−mx
2/2. ut

We are now ready to prove the following main theorem about the unsigned directions.

Theorem 4.4. For any k ≥ 2 such that ηk < L/6, n = 4k2 log k and j = 1, . . . , k, we
have( ∑
|w|=k−1

∑
`: | j̀ /n−rj |≥2ηk/L

|S2n
k (w, `)|

)/( ∑
|w|=k−1

∑
`∈Lnk

|S2n
k (w, `)|

)
< 16k5

(
12
k4

)k
, (4.3)

where the sum for w is taken over all words with length k − 1, and in the numerator, the
sum for multi-indices ` is taken over all ` ∈ Lnk such that | j̀/n− rj | ≥ 2ηk/L.
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Proof. Since both the numerator and denominator on the left hand side of (4.3) scale like
L2n+k−1, we can assume that L = 1. Now fix n and large k whose values will be chosen
later, and also fix 1 ≤ j ≤ k. Since |γ̇ | ≡ 1, for any word w of length k − 1 we have

∑
`: | j̀ /n−rj |>2ηk

|S2n
k (w, `)| ≤ e

3k log k−n
∫
1k−1

k∏
i=1

|1u,iγ |
2n du

+

∫
1k−1∩Ek−1

∑
| j̀ /n−rj |>2ηk

(
2n
2 j̀

)(
|1u,jx|

|1u,jγ |

)2 j̀
(
|1u,jy|

|1u,jγ |

)2n−2 j̀ k∏
i=1

|1u,iγ |
2n du,

(4.4)

where we have split the integral into two disjoint domains and applied Proposition 3.3 to
bound the one on1k−1 ∩E

c
k−1. The range of the sum is | j̀/n− rj | > 2ηk since we have

assumed L = 1.
Now we need to bound the integrand for the second term on the right hand side of

(4.4). Fix u ∈ 1k−1 ∩ Ek−1, and let

p =
|1u,jx|

|1u,jγ |
.

Lemma 4.2 implies that if | j̀/n− rj | > 2ηk , then we must have | j̀/n− p| > ηk . Thus,
using Lemma 4.3, we obtain the pointwise bound(

2n
2 j̀

)
p2 j̀ (1− p)2n−2 j̀ ≤ 2n exp

(
−n

∣∣∣∣ j̀n − p
∣∣∣∣2) < 2ne−nη

2
k .

Since this bound holds for all u ∈ 1k−1 ∩ Ek−1 (recall that p depends on u) and all j̀

such that | j̀/n− rj | > 2ηk , we get∑
| j̀ /n−rj |>2ηk

(
2n
2 j̀

)(
|1u,jx|

|1u,jγ |

)2 j̀
(
|1u,jy|

|1u,jγ |

)2n−2 j̀

≤ 2n2e−nη
2
k , ∀u ∈ 1k−1 ∩Ek−1.

Now, plugging the above pointwise bound into (4.4) and summing over all words w with
length k − 1, we obtain an upper bound for the numerator in (4.3):

∑
w

∑
`: | j̀ /n−rj |≥2ηk/L

|S2n
k (w, `)| < Cn,k

∫
1k−1

k∏
i=1

|1u,iγ |
2n du, (4.5)

where
Cn,k := 2k−1(e3k log k−n

+ 2n2e−nη
2
k ). (4.6)

Applying Theorem 3.4, we have a lower bound for the denominator
∑
w

∑
` |S2n

k (w, `)|

in (4.3), which, when combined with (4.5) and (4.6), implies that the left hand side of
(4.3) is bounded by

2k−1(e3k log k−n
+ 2n2e−nη

2
k )

3/6k − (1+ 3/6k)e3k log k−n .

The theorem then follows by taking n = 4k2 log k and noting that η2
k ≥ 1/k (recall we

have set L = 1). ut
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Remark 4.5. Note that the left hand side of (4.3) is always smaller than 1, so the theorem
is meaningful when the right hand side also falls below 1, which is the case when k ≥ 4
(in fact it is already smaller than 1/8 when k = 4).

The following easy corollary enables one to select the directions ρj (up to sign) for our
piecewise linear approximation.

Corollary 4.6 (Choosing directions). Let k ≥ 4 be such that ηk < L/6. For each 0 ≤
j ≤ k, there exists ρj ∈ [0, 1] such that( ∑

|w|=k−1

∑
`: | j̀ /n−ρj |≤2ηk/L

|S2n
k (w, `)|

)/( ∑
|w|=k−1

∑
`∈Lnk

|S2n
k (w, `)|

)
>

1
2
, (4.7)

where in the numerator, the sum over ` in the appropriate subset of Lnk is implicit. More-
over, if {ρj }kj=1 is any set that satisfies (4.7), then we must have

|ρj − rj | < 4ηk/L for all j = 1, . . . , k.

Proof. The existence of the set {ρj } that satisfies (4.7) follows directly by setting ρj = rj
and applying Theorem 4.4. Conversely, if |ρj−rj | ≥ 4ηk/L for some j , then | j̀/n−ρj | <
2ηk/L implies that

| j̀/n− rj | > 2ηk/L.

By Theorem 4.4, this set of {ρj } must violate (4.7). This completes the proof. ut

Remark 4.7. Note that on the left hand side of (4.7), there is only information that is
available from the signature of γ . If we choose {ρj } according to (4.7), then Corollary
4.6 guarantees that the unsigned directions we recover from the signature must be close
to the true directions {rj }.

Remark 4.8. The readers might have noticed that the criterion of choosing the ρj ’s above
involves the knowledge of ηk . This is of course not a problem if we know the modulus of
continuity of γ̇ in advance, as in this case

ηk/L = δ(3εk)/L+ 1/
√
k

is explicitly known. But even if that information is not available, we can always choose a
sequence αk which decreases to 0 slowly enough such that αk > 2ηk/L, and replace the
range of the sum in the numerator of (4.7) by

` : | j̀/n− ρj | ≤ αk.

The directions {ρj } chosen in this way satisfy

|ρj − rj | < αk + 2ηk/L,

which still goes to 0 as k→∞, but at a slower rate than ηk .

4.2. The signs

We now turn to the recovery of the sign of the direction of each piece. For this, we
need to move one level up in the signatures, which requires more information than the
S2n
k (w, `)’s.
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We look at the signature at level 2nk+ k (in addition to the level 2nk+ k− 1 before),
and divide it into k blocks of size 2n except one of them which has size 2n+ 1, still with
one letter separating consecutive blocks. More precisely, for any word w = ei1 . . . eik−1 ,
any multi-index ` ∈ Lnk , and any 1 ≤ i ≤ k, we let W2n

k,i,x(w, `) denote the set of words

w′ = w1 ∗ ei1 ∗ · · · ∗ eik−1 ∗ wk

such that |wj |y = 2n − 2 j̀ for every 1 ≤ j ≤ k, |wj |x = 2 j̀ for every j 6= i,
but |wi |x = 2`i + 1. The set W2n

k,i,x(w, `) is different from W2n
k (w, `) defined in (2.2)

in that the i-th block has size 2n + 1 instead of 2n, and contains 2`i + 1 x’s instead
of 2`i . We define the set W2n

k,i,y(w, `) in the same way except that |wi |x = 2`i and
|wi |y = 2n− 2`i + 1.

We then define

S2n
k,i,x(w, `) := (2n+ 1)((2n)!)k

∑
w′∈W2n

k,i,x (w,`)

C(w′),

S2n
k,i,y(w, `) := (2n+ 1)((2n)!)k

∑
w′∈W2n

k,i,y (w,`)

C(w′).
(4.8)

The aim of introducing these quantities is to recover the sign of x and y directions in the
i-th piece of the path via comparison with S2n

k (w, `). Similar to (2.4), we have

S2n
k,i,x(w, `) =

∫
1k−1

k−1∏
j=1

γ̇
ij
uj ·

(
2n+ 1
2`i + 1

)
(1u,ix)

2`i+1(1u,iy)
2n−2`i

·

∏
j 6=i

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ du, (4.9)

and

S2n
k,i,y(w, `) =

∫
1k−1

k−1∏
j=1

γ̇
ij
uj ·

(
2n+ 1

2`i

)
(1u,ix)

2`i (1u,iy)
2n+1−2`i

·

∏
j 6=i

(
2n
2 j̀

)
(1u,jx)

2 j̀ (1u,jy)
2n−2 j̀ du. (4.10)

Again, we emphasize that (4.8) is the information available from the signature, while (4.9)
and (4.10) are expressions for these quantities.

Unlike in choosing unsigned directions where we sum up the S2n
k (w, `)’s over all

words w that have length k − 1 (see Corollary 4.6), in what follows we will use the
quantities (4.8) with only one particular word w∗. We choose this word as follows. Let
{ρj } be the set of unsigned directions chosen according to Corollary 4.6; then for each
j = 1, . . . , k − 1, we let

eij =

{
x if ρj ≥ 1/2,
y if ρj < 1/2,

(4.11)
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and we set
w∗ = ei1 . . . eik−1 . (4.12)

The word w∗ chosen above guarantees that
∏
j γ̇

ij
uj is bounded away from 0 in the region

1k−1 ∩ Ek−1. This is the content of the following proposition.

Proposition 4.9. Let k be large enough that ηk < L/32, and let w∗ be the word chosen
according to (4.11) and (4.12). Then, for all u ∈ Ek−1 and all j = 1, . . . , k− 1, we have

|γ̇
ij
uj | > L/3

and γ̇
ij
uj does not change its sign in the domain Ek−1.

Proof. Fix k as in the assumption and 1 ≤ j ≤ k − 1. If ρj ≥ 1/2, then eij = x, and
Corollary 4.6 implies

rj ≥ 1/2− 4ηk/L > 3/8.

Thus, there exist v, ṽ ∈ [(j − 1)/k, j/k] such that |ẋv| > 3
8 (|ẋv| + |ẏṽ|). Using |ẏṽ| =

L−|ẋṽ|, we see that either |ẋv| or |ẋṽ| is bigger than 3L/8. If u ∈ Ek−1, then both |u−v|
and |u− ṽ| are smaller than 2εk , so it follows that (recall ηk > δ(3εk))

|ẋuj | > 3L/8− ηk > 3L/8− L/32 > L/3.

Similarly, |ẏuj | > L/3 for all u ∈ Ek−1 if ρj < 1/2. In particular, the continuity of the
derivatives ensures these ẋuj ’s and ẏuj ’s do not change their signs in Ek−1. ut

Note that the word w∗ chosen above has all the properties we have used in Theorem 3.4.
Theorem 3.4 only gives the existence of such a word, but here we choose it explicitly,
making use of the recovery of the unsigned directions. We now determine the signs of the
i-th piece as follows.

Definition 4.10 (Determining the signs). Fix k ≥ 4 such that δ(1/k) < L/6, and let
n = 4k2 log k. Let w∗ be the word chosen according to (4.11) and (4.12). We then choose
the signs axi , a

y
i ∈ {±1} for the i-th linear piece by setting

axi =


1 if

∑
`∈Lnk

S2n
k (w

∗, `)∑
`∈Lnk

S2n
k,i,x(w

∗, `)
≥ 0,

−1 if

∑
`∈Lnk

S2n
k (w

∗, `)∑
`∈Lnk

S2n
k,i,x(w

∗, `)
< 0;

the choice for ayi is the same except that one replaces S2n
k,i,x(w

∗, `) by S2n
k,i,y(w

∗, `).

It appears that the above choices of the signs depend on k, and the choices may be different
if k changes. But it turns out that the choices above remain stable for all sufficiently
large k, and they indeed give the correct signs as long as the directions are not close to
degenerate. The rest of this subsection will be devoted to the verification of this stability.
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Theorem 4.11. Let k ≥ 4 be so large that ηk < L/32, and n = 4k2 log k. If ri ≥ 2ηk/L,
then ∑

` S2n
k (w

∗, `)∑
` S2n

k,i,x(w
∗, `)


≥

1
6εkL

if 1ix > 0,

≤ −
1

6εkL
if 1ix < 0.

Similarly, if ri ≤ 1− 2ηk/L, then

∑
` S2n

k (w
∗, `)∑

` S2n
k,i,y(w

∗, `)


≥

1
6εkL

if 1iy > 0,

< −
1

6εkL
if 1iy < 0.

All the sums above are taken over ` ∈ Lnk , and 1ix and 1iy are defined in (1.8).

Remark 4.12. The above theorem guarantees that as long as the i-th piece of γ is not
too horizontal or vertical (which corresponds to the assumptions ri ≥ 2ηk/L and ri ≤
1−2ηk/L), then the choices in Definition 4.10 do give the correct signs for all sufficiently
large k. The cases ri < 2ηk/L and ri > 1 − 2ηk/L are not covered, but since the i-th
piece would then be almost horizontal or vertical, the choice of the sign would not affect
accuracy.

Proof of Theorem 4.11. We only prove the first case when ri ≥ 2ηk/L and 1ix > 0;
the other three cases are essentially the same. By the expressions (2.4) and (4.9), we can
write ∑

`∈Lnk

S2n
k (w

∗, `) =

∫
1k−1

N (u) du,
∑
`∈Lnk

S2n
k,i,x(w

∗, `) =

∫
1k−1

D(u) du.

Here,

N (u) :=
1
2k

k−1∏
j=1

γ̇
ij
uj ·

k∏
j=1

(
(1u,jx +1u,jy)

2n
+ (1u,jx −1u,jy)

2n),
D(u) :=

1
2k

k−1∏
j=1

γ̇
ij
uj ·

k∏
j=1

(
(1u,jx +1u,jy)

2n+δi,j + (1u,jx −1u,jy)
2n+δi,j

)
,

(4.13)

where δi,j = 1 if j = i and 0 otherwise. We now need to estimate the ratio of two
integrals, both over1k−1. As before, we decompose both integrals into1k−1∩Ek−1 and
1k−1 ∩E

c
k−1. We postpone the estimate of the latter to the next lemma, and first consider

the quantity ∫
1k−1∩Ek−1

N (u) du∫
1k−1∩Ek−1

D(u) du
. (4.14)

We hope to control this ratio by means of a pointwise bound on

N (u)
D(u)

=
(1u,ix +1u,iy)

2n
+ (1u,ix −1u,iy)

2n

(1u,ix +1u,iy)2n+1 + (1u,ix −1u,iy)2n+1 , u ∈ 1k−1 ∩Ek−1. (4.15)
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For this, we first note that as in Proposition 4.9, the assumption ri ≥ 2ηk/L implies that
|ẋv| ≥ 2ηk for some v ∈ [(i − 1)/k, i/k]. Also, since 1ix > 0 and 2ηk > δ(1/k), we
actually have ẋv ≥ 2ηk . If u ∈ Ek−1, we will have |ui − v| < 2εk and hence

ẋui > 2ηk − δ(2εk) > ηk. (4.16)

In particular, this implies 1u,ix is positive and so is N (u)/D(u) for all u ∈ Ek−1. Since

max{|1u,ix +1u,iy|, |1u,ix −1u,iy|} = |1u,iγ |,

we then have the bound
N (u)
D(u)

≥
1

|1u,iγ |
≥

1
3εkL

for all u ∈ Ek−1. Note that the choice of the word w∗ guarantees both N (u) and D(u)
keep their signs unchanged in the domain Ek−1, so the pointwise bound carries over to
the ratio of the integrals, which gives∫

1k−1∩Ek−1
N (u) du∫

1k−1∩Ek−1
D(u) du

≥
1

3εkL
. (4.17)

The proof will be complete by combining (4.17) with Lemma 4.13 below. ut

We now give a lemma which allows us to replace
∫
1k−1

N (u) du/
∫
1k−1

D(u) du by the
integrations over 1k−1 ∩ Ek−1 as in (4.14).

Lemma 4.13. Let N (u) and D(u) be as given above. Then

|
∫
1k−1∩E

c
k−1

N (u) du|

|
∫
1k−1∩Ek−1

N (u) du|
<

1
3
,
|
∫
1k−1∩E

c
k−1

D(u) du|

|
∫
1k−1∩Ek−1

D(u) du|
<

1
3
. (4.18)

Proof. Since the word w∗ chosen above has all the properties we have used in Theorem
3.4, the first inequality in (4.18) follows as a direct consequence of Proposition 3.3 and
Theorem 3.4. For the second inequality, since it involves one more power of |1u,iγ |, we
first need a modified version of Proposition 3.3.

Let Ek−1 be the same set as defined in Proposition 3.3, so we have

k∏
j=1

|1u,jγ |
2n < e−n

k∏
j=1

|1v,j |
2n, ∀u ∈ 1k−1 ∩ E

c
k−1, v ∈ Ek−1.

On the other hand, as in Lemma 3.1, if δ(2/k) < L/2 and v ∈ Ek−1, we will have

|1v,iγ | ≥
L− δ(2/k)

2k
≥
L

4k
≥
|1u,iγ |

4k
.

This then implies

|1u,iγ |
k∏

j=1

|1u,jγ |
2n < 4ke−n|1v,iγ |

k∏
j=1

|1v,jγ |
2n (4.19)
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for all u ∈ 1k−1 ∩E
c
k−1 and v ∈ Ek−1. We now arrive at the same situation as in Proposi-

tion 3.3 except that there is one more factor of 4k on the right hand side. Integrating both
sides above in their respective domains and then enlarging Ek−1 to 1k−1, we get∫
1k−1∩E

c
k−1

k∏
j=1

|1u,jγ |
2n+δi,j du < 4ke3k log k−n

∫
1k−1

k∏
j=1

|1u,jγ |
2n+δi,j du. (4.20)

We are now ready to prove the second inequality in (4.18). By the expression (4.13), we
have the pointwise bound

|D(u)| ≤ Lk−1
k∏

j=1

|1u,jγ |
2n+δi,j , ∀u ∈ 1k−1,

so it follows from (4.20) that∫
1k−1∩E

c
k−1

D(u) du < 4kLk−1e3k log k−n
∫
1k−1

k∏
j=1

|1u,jγ |
2n+δi,j du. (4.21)

As for the integration of D(u) in 1k−1 ∩ Ek−1, we first note from (4.16) that 1u,ix is
positive with the lower bound

1u,ix ≥ ηk(ui − ui−1) ≥
ηk

L
|1u,iγ |,

and hence

(1u,ix +1u,iy)
2n+1
+ (1u,ix −1u,iy)

2n+1
≥ (1u,ix)|1u,iγ |

2n
≥
ηk

L
|1u,iγ |

2n+1.

Thus, by the choice of w∗ and Proposition 4.9, we have

|D(u)| ≥
Lk−1

6k
√
k

k∏
j=1

|1u,jγ |
2n+δi,j , ∀u ∈ 1k−1 ∩ Ek−1,

where we have used ηk ≥ L/
√
k. Also, since the choice of w∗ and the positivity of

1u,ix guarantee that D(u) does not change its sign in the domain 1k−1 ∩ Ek−1, we can
interchange taking the absolute value and integration to get∣∣∣∣∫

1k−1∩Ek−1

D(u) du
∣∣∣∣ ≥ Lk−1

6k
√
k

∫
1k−1∩Ek−1

k∏
j=1

|1u,jγ |
2n+δi,j du.

Applying (4.20), we can enlarge the domain of integration on the right hand side above
to 1k−1 and obtain∣∣∣∣∫
1k−1∩Ek−1

D(u) du
∣∣∣∣ ≥ Lk−1

6k
√
k
(1− 4ke3k log k−n)

∫
1k−1

k∏
j=1

|1u,jγ |
2n+δi,j du. (4.22)
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Combining (4.21) and (4.22), and taking n = 4k2 log k, we conclude the proof of the
lemma, as well as of Theorem 4.11. ut

So far, we have recovered the unsigned directions {ρj } as well the signs axj , ayj . This
already gives us a unit-length piecewise linear path

ζ =
1
k
(θ1 ∗ · · · ∗ θk), (4.23)

where θj = (axj ρj , a
y
j (1 − ρj )) for every j = 1, . . . , k. Note that we have an abuse of

notation here as the j -th piece of θ should really be the path θj t for t ∈ [(j − 1)/k, j/k]
instead of the direction (1/k)θj . But we choose to stay with (4.23) for notational simplic-
ity. We now end this subsection by showing that the piecewise linear ζ is close to γ when
the latter is normalized to have length 1.

Corollary 4.14. Fix an integer k ≥ 4 such that ηk < L/32. For each j = 1, . . . , k, let
ρj , axj and ayj be as in Corollary 4.6 and Definition 4.10. For each j = 1, . . . , k, let

θj = (a
x
j ρj , a

y
j (1− ρj )).

Then the signed directions θj satisfy∣∣∣∣θj − ( 1jx

|1jγ |
,
1jy

|1jγ |

)∣∣∣∣ < 12ηk
L

(4.24)

for every j = 1, . . . , k. As a consequence,

sup
1≤j≤k

sup
u∈[(j−1)/k,j/k]

∣∣∣∣θj − γ̇uL
∣∣∣∣ < 16ηk

L
.

Proof. Since for each j , we have

sup
u∈[(j−1)/k,j/k]

∣∣∣∣ γ̇uL −
(
1jx

|1jγ |
,
1jy

|1jγ |

)∣∣∣∣ < 4ηk
L
,

it suffices to prove (4.24). If rj ∈ [2ηk/L, 1− 2ηk/L], then by Definition 4.10 and Theo-
rem 4.11, axj and ayj have the same signs as1jx and1jy, respectively. Thus, by Corollary
4.6, we have ∣∣∣∣axj ρj − 1jx

|1jγ |

∣∣∣∣ = |ρj − rj | < 4ηk
L
, (4.25)

and the same bound is true for
∣∣ayj (1 − ρj ) − 1j y

|1j γ |

∣∣. This proves (4.24) when rj ∈
[2ηk/L, 1− 2ηk/L].

If rj > 1− 2ηk/L, the bound (4.25) for the x-direction is still true, but the bound for
the y-direction becomes∣∣∣∣ayj (1− ρj )− 1jy

|1jγ |

∣∣∣∣ ≤ (1− ρj )+ (1− rj ) < 8ηk
L
,

since Corollary 4.6 forces ρj to be bigger than 1 − 6ηk/L. Combining this bound with
(4.25), we get (4.24) when rj > 1 − 2ηk/L. The case when rj < 2ηk/L follows in the
same way. ut
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4.3. Length

We have now recovered from the signature the piecewise linear path ζ with unit length,
which is shown in Corollary 4.14 to be close to the “normalized” γ . Thus, the only re-
maining quantity to be determined is L̃, which is expected to approximate the `1 length
of γ . We can achieve this by a simple scaling argument.

Let ζ be the unit piecewise linear path as in (4.23). Let m be the smallest integer such
that Cγ (w̃) 6= 0 for some |w̃| = m, where Cγ (w̃) is the coefficient of the word w̃ in the
signature of γ . Fix that word w̃, and set

L̃ :=

(
Cγ (w̃)

Cζ (w̃)

)1/m

. (4.26)

Note that it is not obvious from the above expression that L̃ is always well defined, as the
denominator might just be 0, or Cζ (w̃) has a different sign with Cγ (w̃) and m is even.
However, it turns out that for all sufficiently large k, L̃ defined by (4.26) does make sense,
and is in fact close to the true length L. This is the content of the following theorem.

Theorem 4.15. Let k be large enough that

ηk <
(m− 1)!
32Lm−1 |Cγ (w̃)|. (4.27)

Then L̃ introduced in (4.26) is well defined, and satisfies

|L̃− L| <
32Lmηk

(m− 1)!|Cγ (w̃)|
. (4.28)

Proof. If θ is at natural parametrization, then

ζ̇v = θj , v ∈

(
j − 1
k

,
j

k

)
.

If γ is also at natural parametrization, then for almost every u = (u1, . . . , um) ∈ 1m,∣∣∣∣ 1
Lm

m∏
j=1

γ̇
ij
uj −

m∏
j=1

ζ̇uj

∣∣∣∣ ≤ 16mηk
L

,

where we have used Corollary 4.14 and the fact that both |γ̇ |/L and |ζ̇ | are uniformly
bounded by 1. Thus, the difference between the signatures (1/Lm)Cγ (w̃) and Cζ (w̃) can
be bounded by ∣∣∣∣ 1

Lm
Cγ (w̃)− Cζ (w̃)

∣∣∣∣ ≤ 16ηk
(m− 1)!L

. (4.29)

Note that (4.27) and (4.29) together imply Cζ (w̃) has the same sign as Cγ (w̃), and
|Cζ (w̃)| > |Cγ (w̃)|/(2Lm). In particular, this shows L̃ in (4.26) is well defined and
positive, so we have

|L̃m − Lm| ≥ Lm−1
|L̃− L|. (4.30)
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On the other hand, the lower bound |Cζ (w̃)| > |Cγ (w̃)|/(2Lm) implies

|L̃m − Lm| =

∣∣∣∣Cγ (w̃)Cζ (w̃)
− Lm

∣∣∣∣ ≤ 16Lm−1ηk

(m− 1)!|Cθ (w̃)|
<

32L2m−1ηk

(m− 1)!|Cγ (w̃)|
. (4.31)

Combining (4.30) and (4.31), we obtain the conclusion of the theorem. ut

Remark 4.16. Note that both the assumption (4.27) and the bound (4.28) give the correct
scaling in length, since ηk scales linearly in L, and |Cγ (w̃)| scales as Lm.

4.4. Summary of the procedure

We now summarize the inversion procedure developed in this section, and give its validity
as well as stability properties. Let k be a fixed large number whose value will be specified
in Theorem 4.17 below, and let n = 4k2 log k. Recall the definition of ηk from (1.4).
Also recall the definitions of the set Lnk from (2.1) and the symmetrized signatures S2n

k ,
S2n
k,j,x , S2n

k,j,y from (2.3) and (4.8). The inversion procedure includes choosing for each
j = 1, . . . , k a real number ρj ∈ [0, 1], axj , a

y
j ∈ {−1, 1} and L̃ ∈ R+ in the following

way.

1. For each j = 1, . . . , k, choose ρj ∈ [0, 1] according to Corollary 4.6 such that( ∑
|w|=k−1

∑
`: | j̀ /n−ρj |≤2ηk/L

|S2n
k (w, `)|

)/( ∑
|w|=k−1

∑
`∈Lnk

|S2n
k (w, `)|

)
>

1
2
, (4.32)

where in the numerator the sum over ` is restricted to the indicated subset of Lnk . Any
set {ρj } satisfying (4.32) can be used.3

2. Now we choose a word w∗ = ei1 . . . eik−1 by setting

eij =

{
x if ρj ≥ 1/2,
y if ρj < 1/2,

and determine the signs axj by

axj =


1 if

∑
`∈Lnk

S2n
k (w

∗, `)∑
`∈Lnk

S2n
k,j,x(w

∗, `)
≥ 0,

−1 if

∑
`∈Lnk

S2n
k (w

∗, `)∑
`∈Lnk

S2n
k,j,x(w

∗, `)
< 0,

3 Note that this step uses the knowledge of ηk/L, which is not directly available from the signa-
ture. However, we can still circumvent the problem even if we do not know ηk/L, at the cost of a
lower accuracy of the inversion procedure—see Remark 4.8.



Inverting the signature of a path 1683

where w∗ is the word chosen above. The signs ayj are determined in the same way
except one replaces S2n

k,j,x(w
∗, `) by S2n

k,j,y(w
∗, `). These two steps already produce a

piecewise linear path

ζ =
1
k
(θ1 ∗ · · · ∗ θk) (4.33)

as in (4.23), where θj = (axj ρj , a
y
j (1− ρj )) for each j = 1, . . . , k.

3. Let m be the smallest integer such that Cγ (w̃) 6= 0 for some |w̃| = m, and we deter-
mine the length L̃ by setting

L̃ :=

(
Cγ (w̃)

Cζ (w̃)

)1/m

, (4.34)

where θ is the path chosen in (4.33) above, and Cγ (w̃) and Cζ (w̃) are the coefficients
of w̃ in the signature of γ and θ , respectively.

The above three steps produce a piecewise linear path γ̃ of the form

γ̃ = L̃ζ =
L̃

k
(θ1 ∗ · · · ∗ θk).

Note that given any set ρj ∈ [0, 1], the choices for axj and ayj are always well defined. For

large enough k, the choices for the parameters {ρj } and L̃ are also well defined, and the
path γ̃ will turn out to be close to the original path γ in Lipschitz norm.

We first quantify how large k needs to be. All the statements before Section 4.3 (re-
covery of length) hold true when ηk < L/32. In order for L̃ to be well defined (Theorem
4.15), one needs ηk to satisfy the condition (4.27). But since

|Cγ (w)| ≤ L
m/m!

for every m and every |w| = m, the assumption (4.27) implies ηk < L/32.
We are now ready to state our main theorem.

Theorem 4.17. Letm be the smallest integer such that Cγ (w̃) 6= 0 for some word w̃ with
|w̃| = m, and we fix that word. Let k ≥ 4 be large enough that

ηk <
(m− 1)!
32Lm−1 |Cγ (w̃)|,

and let n = 4k2 log k. Then the above choices of parameters are well defined. In addition,
when γ is at natural parametrization, we have the bound

sup
1≤j≤k

sup
u∈[(j−1)/k,j/k]

|γ̇u − L̃θj | < 16ηk

(
1+

2Lm

(m− 1)!|Cγ (w̃)|

)
,

where θj = (axj ρj , a
y
j (1− ρj )).
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Proof. By Corollary 4.14, for every j = 1, . . . , k we have

sup
u∈[(j−1)/k,j/k]

|γ̇u − Lθj | < 16ηk.

By the bound on |L̃− L| from Theorem 4.15, and |θj | = 1, we get

|γ̇u − L̃θj | < 16ηk

(
1+

2Lm

(m− 1)!|Cγ (w̃)|

)
for all u ∈ [(j − 1)/k, j/k] and all j = 1, . . . , k. ut

5. Higher dimensions

We now give a brief explanation of how the symmetrization procedure extends to the re-
covery of C1 paths in dimension higher than 2 from their signatures. Let γ =(γ 1, . . . , γ d)

be a d-dimensional C1 path at natural parametrization. For large enough integer k and
each 1 ≤ j ≤ k, we need to reconstruct from the signature of γ a non-negative vector
ρj = (ρ

1
j , . . . , ρ

d
j ) such that

∑
i ρ

i
j = 1, the signs aij ∈ {±1} for 1 ≤ i ≤ d , and L̃ ∈ R+

that approximates the `1 length L of γ .
As in the 2-dimensional case, we still symmetrize k blocks of size 2n with one letter

separating consecutive blocks. For any positive integers k and n, we let Lnk be the set of
multi-component multi-indices

Lnk :=
{
` = (`1, . . . , `k) : j̀ = (`

1
j , . . . , `

d
j ),

d∑
i=1

`ij = n, ∀j = 1, . . . , k
}
.

For every word w = ei1 . . . eik−1 and every ` ∈ Lnk , we define

W2n
k (w, `) := {w

′
= w1 ∗ ei1 ∗ · · · ∗ eik−1 ∗ wk : |wj |ei = 2`ij , ∀i, j},

where e1, . . . , ed are the standard basis elements of Rd . Note that the assumption ` ∈ Lnk
together with |wj |ei = 2`ij implies |wj | = 2n for every j . Also, for any integers 1 ≤
p ≤ k and 1 ≤ q ≤ d, we let W2n

k,p,q(w, `) be the set of words

w′ = w1 ∗ ei1 ∗ · · · ∗ eik−1 ∗ wk

such that |wj |ei = 2`ij if j 6= p or i 6= q, but |wp|eq = 2`qp + 1. In other words, the
definition for W2n

k,p,q(w, `) is the same as W2n
k (w, `) except that |wp|eq = 2`qp + 1, and

as a consequence |wp| = 2n+ 1.
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Similar to (2.3) and (4.8), we define the symmetrized signatures S2n
k (w, `) and

S2n
k,p,q(w, `) by

S2n
k (w, `) := ((2n)!)

k
∑

w′∈W2n
k (w,`)

C(w′),

S2n
k,p,q(w, `) := (2n+ 1)((2n)!)k

∑
w′∈W2n

k,p,q (w,`)

C(w′).
(5.1)

Finally, for every integer k, we define

εk :=
√

2
(√

(d − 1)δ(1/k)
L

+
1
√
k

)
, ηk := δ(3εk)+

L
√
k
, (5.2)

where L is the `1 length of γ , and δ is the modulus of continuity of γ̇ . Now, we let k be
a fixed integer whose value will be specified later, and let n = 2dk2 log k. Similar to the
2-dimensional case, we have the following inversion algorithm to reconstruct γ from its
signature.

1. For each 1 ≤ j ≤ k, we choose the unsigned direction

ρj = (ρ
1
j , . . . , ρ

d
j ) such that ρij ≥ 0,

d∑
i=1

ρij = 1

according to the criterion( ∑
w: |w|=k−1

∑
`: supi |`

i
j /n−ρ

i
j |<3dηk/L

|S2n
k (w, `)|

)/( ∑
w: |w|=k−1

∑
`∈Lnk

|S2n
k (w, `)|

)
>

1
2
.

Any element ρj satisfying the above will suffice.
2. We choose the word w∗ = ei1 . . . eik−1 by setting

eij = ei if ρij ≥ ρ
q
j , ∀q 6= i.

If there are two or more maximizers, then any of them is suitable. We then determine
the signs aij ∈ {±1} by

aij =


1 if

∑
` S2n

k (w
∗, `)∑

` S2n
k,j,i(w

∗, `)
≥ 0,

−1 if
∑
` S2n

k (w
∗, `)∑

` S2n
k,j,i(w

∗, `)
< 0,

where all the sums are taken over ` ∈ Lnk .
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3. The recovery of length is exactly the same as in the 2-dimensional case. Let

θj = (a
1
j ρ

1
j , . . . , a

d
j ρ

d
j )

be the unit vector (in `1 sense) obtained from the previous two steps, and let

ζ :=
1
k
(θ1 ∗ · · · ∗ θk).

In other words, ζ is a piecewise linear path whose j -th piece is in the direction θj and
has length 1/k. We also let m be the smallest integer such that Cγ (w̃) 6= 0 for some
|w̃| = m, and determine L̃ by

L̃ :=

(
Cγ (w̃)

Cζ (w̃)

)1/m

,

where w̃ can be any word with length m such that Cγ (w̃) 6= 0.

Following the arguments for the 2-dimensional case, we can get the following theorem,
which gives the stability of the inversion algorithm for C1 paths in Rd .

Theorem 5.1. Let m be the smallest integer such that Cγ (w̃) 6= 0 for some w̃ with
|w̃| = m. Let k ≥ 2d be large enough that

ηk <
(m− 1)!|Cγ (w̃)|
16(d + 1)Lm−1 ,

and let n = 2dk2 log k. Then for every 1 ≤ j ≤ k, the above choices of the parameters ρj ,
{aij }

d
i=1 and L̃ are all well defined, and when γ is at natural parametrization, we have

sup
1≤i≤d

sup
1≤j≤k

sup
u∈[(j−1)/k,j/k]

|γ̇ iu − L̃a
i
jρ
i
j | < 8(d + 1)

(
1+

2Lm

(m− 1)!|Cγ (w̃)|

)
ηk.

In other words, the reconstructed path

L̃ζ =
L̃

k
(θ1 ∗ · · · ∗ θk)

is ηk-close to the original path γ in Lipschitz norm.

Remark 5.2. The proportionality constants in Theorem 4.17 for the 2-dimensional case
are better than the ones in Theorem 5.1 by simply setting d = 2. This is because when
d = 2, the assumption |ẋ| + |ẏ| ≡ L implies that in many cases (for example, in
Lemma 4.2), the same optimal estimates hold for both x and y directions, while this
is not true in general when d ≥ 3.
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