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Abstract. Given a family H of graphs, the extremal number ex(n,H) is the largest m for which
there exists a graph with n vertices and m edges containing no graph from the family H as a
subgraph. We show that for every rational number r between 1 and 2, there is a family Hr of
graphs such that ex(n,Hr ) = 2(n

r ). This solves a longstanding problem in extremal graph theory.
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1. Introduction

Given a family H of graphs, a graphG is said to be H-free if it contains no graph from the
family H as a subgraph. The extremal number ex(n,H) is then defined to be the largest
number of edges in an H-free graph on n vertices. If H consists of a single graph H , the
classical Erdős–Stone–Simonovits theorem [9, 10] gives a satisfactory first estimate for
this function:

ex(n,H) =
(

1−
1

χ(H)− 1
+ o(1)

)(
n

2

)
,

where χ(H) is the chromatic number of H .
When H is bipartite, the estimate above shows that ex(n,H) = o(n2). This bound

is easily improved to show that for every bipartite graph H there is some positive δ such
that ex(n,H) = O(n2−δ). However, there are very few bipartite graphs for which we
have matching upper and lower bounds.

The most closely studied case is when H = Ks,t , the complete bipartite graph with
parts of order s and t . In this case, a famous result of Kővári, Sós and Turán [15] shows
that ex(n,Ks,t ) = Os,t (n

2−1/s) whenever s ≤ t . This bound was shown to be tight for
s = 2 by Esther Klein [6] (see also [3, 8]) and for s = 3 by Brown [3]. For higher values
of s, it is only known that the bound is tight when t is sufficiently large in terms of s.
This was first shown by Kollár, Rónyai and Szabó [14], though their construction was
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improved slightly by Alon, Rónyai and Szabó [1], who showed that there are graphs with
n vertices and �s(n2−1/s) edges containing no copy of Ks,t with t = (s − 1)! + 1.

Alternative proofs showing that ex(n,Ks,t ) = �s(n
2−1/s) when t is significantly

larger than s were later found by Blagojević, Bukh and Karasev [2] and by Bukh [4].
In both cases, the basic idea behind the construction is to take a random polynomial
f : Fsq × Fsq → Fq and then to consider the graph G between two copies of Fsq whose
edges are all those pairs (x, y) such that f (x, y) = 0. A further application of this random
algebraic technique was recently given by Conlon [5], who showed that for every natural
number k ≥ 2 there exists a natural number ` such that, for every n, there is a graph on
n vertices with �k(n1+1/k) edges for which there are at most ` paths of length k between
any two vertices. By a result of Faudree and Simonovits [11], this is sharp up to the
implied constant. We refer the interested reader to [5] for further background and details.

In this paper, we give yet another application of the random algebraic method, proving
that for every rational number between 1 and 2, there is a family Hr of graphs for which
ex(n,Hr) = 2(n

r). This solves a longstanding open problem in extremal graph theory
that has been reiterated by a number of authors, including Frankl [12] and Füredi and
Simonovits [13].

Theorem 1.1. For every rational number r between 1 and 2, there exists a family Hr of
graphs such that ex(n,Hr) = 2(n

r).

Prior to our work, the main result in this direction was due to Frankl [12], who showed
that for any rational number r ≥ 1 there exists a family of k-uniform hypergraphs whose
extremal function is 2(nr). However, in Frankl’s work, the uniformity k depends on the
desired exponent r , whereas we can always take k = 2.

In order to define the relevant families Hr , we need some preliminary definitions.

Definition 1.1. A rooted tree (T , R) consists of a tree T together with an independent set
R ⊂ V (T ), which we refer to as the roots. When the set of roots is understood, we will
simply write T .

Each of our families Hr will be of the following form.

Definition 1.2. Given a rooted tree (T , R), we define the pth power T p
R of (T , R) to be

the family of graphs consisting of all possible unions of p distinct labelled copies of T , all
of which agree on the set of roots R. Again, we will usually omit R, denoting the family
by T p and referring to it as the pth power of T .

We note that T p consists of more than one graph because we allow the unrooted vertices
V (T ) \ R to meet in every possible way. For example, if T is a path of length 3 whose
endpoints are rooted, the family T 2 contains a cycle of length 6 and the various degenerate
configurations shown in Figure 1.

The following parameter will be critical in studying the extremal number of the fam-
ily T p.
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Fig. 1. Some of the graphs in T 2 when (T , R) is a path of length 3 with rooted endpoints. The
remaining graphs in T 2 are obtained by swapping the two roots, which are labelled 1 and 2.

Definition 1.3. Given a rooted tree (T , R), we define the density ρT of (T , R) to be

e(T )

v(T )− |R|
.

The upper bound in Theorem 1.1 will follow from an application of the next lemma.

Lemma 1.1. For any rooted tree (T , R) with at least one root, the family T p satisfies

ex(n, T p) = Op(n
2−1/ρT ).

It would be wonderful if there were also a matching lower bound for ex(n, T p). However,
this is in general too much to expect. If, for example, (T , R) is the star K1,3 with two
rooted leaves, T 2 will contain the graph shown in Figure 2 where the two central vertices
agree. However, this graph is a tree, so it is easy to show that ex(n, T 2) = O(n), whereas,
since ρT = 3/2, Lemma 1.1 only gives ex(n, T 2) = O(n4/3). Luckily, we may avoid
these difficulties by restricting attention to so-called balanced trees.

Fig. 2. An unbalanced rooted tree T and two elements of T 2.

Definition 1.4. Given a subset S of the unrooted vertices V (T )\R in a rooted tree (T , R),
we define the density ρS of S to be e(S)/|S|, where e(S) is the number of edges in T with
at least one endpoint in S. Note that when S = V (T ) \ R, this agrees with the definition
above. We say that the rooted tree (T , R) is balanced if, for every subset S of V (T ) \ R,
the density of S is at least the density of T , that is, ρS ≥ ρT . In particular, if |R| ≥ 2, then
this condition guarantees that every leaf in the tree is a root.

With the caveat that our rooted trees must be balanced, we may now prove a lower bound
matching Lemma 1.1 by using the random algebraic method.
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Lemma 1.2. For any balanced rooted tree (T , R), there exists a positive integer p such
that the family T p satisfies

ex(n, T p) = �(n2−1/ρT ).

Therefore, given a rational number r between 1 and 2, it only remains to identify a bal-
anced rooted tree (T , R) for which 2− 1/ρT is equal to r .

Definition 1.5. Suppose that a and b are natural numbers satisfying a − 1 ≤ b < 2a − 1
and set i = b− a. We define a rooted tree Ta,b by taking a path with a vertices, which are
labelled in order as 1, 2, . . . , a, and then adding an additional rooted leaf to each of the
i + 1 vertices

1, b1+ a/ic, b1+ 2 · a/ic, . . . , b1+ (i − 1) · a/ic, a.

For b ≥ 2a − 1, we define Ta,b recursively to be the tree obtained by attaching a rooted
leaf to each unrooted vertex of Ta,b−a .

Note that the tree Ta,b has a unrooted vertices and b edges, so that ρT = b/a. Now, given
a rational number r with 1 < r < 2, let a/b = 2 − r and let T p

a,b be the pth power of
Ta,b. To prove Theorem 1.1, it will suffice to prove that Ta,b is balanced, since we may
then apply Lemmas 1.1 and 1.2 to T p

a,b, for p sufficiently large, to conclude that

ex(n, T p
a,b) = 2(n

2−a/b) = 2(nr).

Therefore, the following lemma completes the proof of Theorem 1.1.

Lemma 1.3. The tree Ta,b is balanced.

Fig. 3. The rooted trees T4,9 and T4,10.

All of the proofs will be given in the next section: we will prove the easy Lemma 1.1 in
Section 2.1; Lemma 1.3 and another useful fact about balanced trees will be proved in
Section 2.2; and Lemma 1.2 will be proved in Section 2.3. We conclude, in Section 3,
with some brief remarks.

2. Proofs

2.1. The upper bound

We will use the following folklore lemma.

Lemma 2.1. A graph G with average degree d has a subgraph G′ of minimum degree at
least d/2.
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With this mild preliminary, we are ready to prove Lemma 1.1, that ex(n, T p) =

Op(n
2−1/ρT ) for any rooted tree (T , R).

Proof of Lemma 1.1. Suppose that G is a graph on n vertices with cn2−α edges, where
α = 1/ρT and c ≥ 2 max(|T |, p). We wish to show that G contains an element of T p.
Since the average degree of G is 2cn1−α , Lemma 2.1 implies that G has a subgraph G′

with minimum degree at least cn1−α . Suppose that this subgraph has s ≤ n vertices.
By embedding greedily one vertex at a time, the minimum degree condition allows us to
conclude that G′ contains at least

s · cn1−α
· (cn1−α

− 1) · · · (cn1−α
− |T | + 2) ≥ (c/2)|T |−1sn(|T |−1)(1−α)

labelled copies of the (unrooted) tree T . Since there are at most s|R| possible choices for
the root vertices R, there must be some choice R0 for these vertices in at least

(c/2)|T |−1sn(|T |−1)(1−α)

s|R|
≥
(c/2)|T |−1n(|T |−1)(1−α)

n|R|−1 = (c/2)|T |−1

distinct labelled copies of T , where we have used the fact that s ≤ n and α = 1/ρT =
(|T | − |R|)/(|T | − 1). Since (c/2)|T |−1

≥ p, this gives the required element of T p. ut

2.2. Balanced trees

We will begin by proving Lemma 1.3, that Ta,b is balanced.

Proof of Lemma 1.3. Suppose that S is a proper subset of the unrooted vertices of Ta,b.
We wish to show that e(S), the number of edges in T with at least one endpoint in S, is
at least ρT |S|, where ρT = b/a. We may make two simplifying assumptions. First, we
may assume that a − 1 ≤ b < 2a − 1. Indeed, if b ≥ 2a − 1, then the bound for Ta,b
follows from the bound for Ta,b−a , which we may assume by induction. Second, we may
assume that the vertices in S form a subpath of the base path of length a. Indeed, given
the result in this case, we may write any S as the disjoint union of subpaths S1, . . . , Sp
with no edges between them, so that

e(S) = e(S1 ∪ · · · ∪ Sp) = e(S1)+ · · · + e(Sp) ≥ ρT (|S1| + · · · + |Sp|) = ρT |S|.

Suppose, therefore, that S = {l, l + 1, . . . , r} is a proper subpath of the base path
{1, . . . , a} and b − a = i.

As the desired claim is trivially true if i = −1, we will assume that i ≥ 0. In particular,
it follows from this assumption that vertex 1 of the base path is adjacent to a rooted vertex.

Let R be the number of rooted vertices adjacent to S. For 0 ≤ j ≤ i − 1, the j th
rooted vertex is adjacent to S precisely when l ≤ 1+ j a

i
< r + 1, which is equivalent to

(l − 1)i/a ≤ j < ri/a.

Therefore, if a is not contained in S, it follows that R ≥ b|S|i/ac = b|S|(b − a)/ac.
Furthermore, if l = 1, then R = d|S|(b − a)/ae. Finally, if r = a and i > 0, then, since

a − b1+ j · a/ic ≤ (i − j)a/i,
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it follows that S is adjacent to the j th root whenever i|S|/a > i − j , and so R ≥
d|S|(b − a)/ae.

Case 1: i = 0. Since S is a proper subpath, it is adjacent to at least |S| = (b/a)|S|
edges.

Case 2: R ≥ d|S|(b − a)/ae. Then the total number of edges adjacent to S is at least
R + |S| ≥ (b/a)|S|.

Case 3: i > 0 and R < d|S|(b − a)/ae. Then S is adjacent to |S| + 1 edges in the
base path, for a total of b|S|(b − a)/ac + |S| + 1 ≥ (b/a)|S| adjacent edges. ut

Before moving on to the proof of Lemma 1.2, it will be useful to note that if T is balanced
then every graph in T p is at least as dense as T .

Lemma 2.2. If (T , R) is a balanced rooted tree, then every graph H in T s satisfies

e(H) ≥ ρT (|H | − |R|).

Proof. We use induction on s. The result is clearly true when s = 1, so we will assume
that it holds for any H ∈ T s and prove it when H ∈ T s+1.

Suppose, therefore, thatH is the union of s+1 labelled copies of T , say T1, . . . , Ts+1,
all of which agree on the set of roots R. If we letH ′ be the union of the first s copies of T ,
the induction hypothesis tells us that e(H ′) ≥ ρT (|H ′| − |R|). Let S be the set of vertices
in Ts+1 which are not contained in H ′. Then, since T is balanced, we know that e(S), the
number of edges in Ts+1 (and therefore in H ) with at least one endpoint in S, is at least
ρT |S|. It follows that

e(H) ≥ e(H ′)+ e(S) ≥ ρT (|H
′
| − |R|)+ ρT |S| = ρT (|H | − |R|). ut

2.3. The lower bound

The proof of the lower bound will follow [4] and [5] quite closely. We begin by describing
the basic setup and stating a number of lemmas which we will require in the proof. We
will omit the proofs of these lemmas, referring the reader instead to [4] and [5].

Let q be a prime power and let Fq be the finite field of order q. We will consider
polynomials in t variables over Fq , writing any such polynomial as f (X), where X =
(X1, . . . , Xt ). We let Pd be the set of polynomials inX of degree at most d , that is, the set
of linear combinations over Fq of monomials of the form X

a1
1 · · ·X

at
t with

∑t
i=1 ai ≤ d.

By a random polynomial, we just mean a polynomial chosen uniformly at random from
the set Pd . One may produce such a random polynomial by choosing the coefficients of
the monomials above to be random elements of Fq .

The first result we will need says that once q and d are sufficiently large, the proba-
bility that a randomly chosen polynomial from Pd contains each of m distinct points is
exactly 1/qm.

Lemma 2.3. Suppose that q >
(
m
2

)
and d ≥ m − 1. If f is a random polynomial from

Pd and x1, . . . , xm are m distinct points in Ftq , then

P[f (xi) = 0 for all i = 1, . . . , m] = 1/qm.
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We also need to note some basic facts about affine varieties over finite fields. If we
write Fq for the algebraic closure of Fq , a variety over Fq is a set of the form

W = {x ∈ Ftq : f1(x) = · · · = fs(x) = 0}

for some collection of polynomials f1, . . . , fs : F
t

q → Fq . We say that W is defined over
Fq if the coefficients of these polynomials are in Fq , and we write W(Fq) = W ∩ Ftq .
We say that W has complexity at most M if s, t and the degrees of the fi are all bounded
by M . Finally, we say that a variety is absolutely irreducible if it is irreducible over Fq ,
reserving the term irreducible for irreducibility over Fq of varieties defined over Fq .

The next result we will need is the Lang–Weil bound [16] relating the dimension of
a variety W to the number of points in W(Fq). It will not be necessary to give a formal
definition for the dimension of a variety, though some intuition may be gained by noting
that if f1, . . . , fs : F

t

q → Fq are generic polynomials then the dimension of the variety
they define is t − s.

Lemma 2.4. Suppose that W is a variety over Fq of complexity at most M . Then

|W(Fq)| = OM(qdimW ).

Moreover, if W is defined over Fq and absolutely irreducible, then

|W(Fq)| = qdimW (1+OM(q−1/2)).

We will also need the following standard result from algebraic geometry, which says that
if W is an absolutely irreducible variety and D is a variety intersecting W , then either W
is contained in D or its intersection with D has smaller dimension.

Lemma 2.5. Suppose thatW is an absolutely irreducible variety over Fq and dimW ≥1.
Then, for any variety D, either W ⊆ D, or W ∩ D is a variety of dimension less than
dimW .

The final ingredient we require says that if W is a variety which is defined over Fq , then
there is a bounded collection of absolutely irreducible varieties Y1, . . . , Yt , each of which
is defined over Fq , such that

⋃t
i=1 Yi(Fq) = W(Fq).

Lemma 2.6. Suppose that W is a variety over Fq of complexity at most M which is
defined over Fq . Then there are OM(1) absolutely irreducible varieties Y1, . . . , Yt , each
of which is defined over Fq and has complexityOM(1), such that

⋃t
i=1 Yi(Fq) = W(Fq).

We can combine the preceding three lemmas into a single result as follows:

Lemma 2.7. SupposeW andD are varieties over Fq of complexity at mostM which are
defined over Fq . Then one of the following holds for all q sufficiently large in terms ofM:

• |W(Fq) \D(Fq)| ≥ q/2, or
• |W(Fq) \D(Fq)| ≤ c, where c = cM depends only on M .
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Proof. By Lemma 2.6, there is a decomposition W(Fq) =
⋃t
i=1 Yi(Fq) for some

bounded-complexity absolutely irreducible varieties Yi defined over Fq . If dimYi ≥ 1,
Lemma 2.5 tells us that either Yi ⊂ D, or the dimension of Yi ∩ D is smaller than
the dimension of Yi . If Yi ⊂ D, then the component does not contribute any point to
W(Fq) \D(Fq) and may be discarded. If instead the dimension of Yi ∩D is smaller than
the dimension of Yi , the Lang–Weil bound (Lemma 2.4) tells us that for q sufficiently
large,

|W(Fq) \D(Fq)| ≥ |Yi(Fq)| − |Yi(Fq) ∩D|

≥ qdimYi −O(qdimYi−1/2)−O(qdimYi−1) ≥ q/2.

On the other hand, if dimYi = 0 for every Yi which is not contained in D, Lemma 2.4
tells us that |W(Fq) \ D(Fq)| ≤

∑
|Yi(Fq)| = O(1), where the sum is taken over all i

for which dimYi = 0. ut

We are now ready to prove Lemma 1.2, that for any balanced rooted tree (T , R) there
exists a positive integer p such that ex(n, T p) = �(n2−1/ρT ).

Proof of Lemma 1.2. Let (T , R) be a balanced rooted tree with a unrooted vertices and
b edges, where R = {u1, . . . , ur} and V (T ) \ R = {v1, . . . , va}. Let s = 2br , d = sb,
N = qb and suppose that q is sufficiently large. Let f1, . . . , fa : Fbq × Fbq → Fq be
independent random polynomials in Pd . We will consider the bipartite graph G between
two copies U and V of Fbq , each of order N = qb, where (u, v) is an edge of G if and
only if

f1(u, v) = · · · = fa(u, v) = 0.

Since f1, . . . , fa were chosen independently, Lemma 2.3 with m = 1 tells us that the
probability a given edge (u, v) is in G is q−a . Therefore, the expected number of edges
in G is q−aN2

= N2−a/b.
Suppose now that w1, . . . , wr are fixed vertices in G and let C be the collection of

copies of T in G such that wi corresponds to ui for all 1 ≤ i ≤ r . We will be interested
in estimating the sth moment of |C|. To begin, we note that |C|s counts the number of
ordered collections of s (possibly overlapping or identical) copies of T in G such that
wi corresponds to ui for all 1 ≤ i ≤ r . Since the total number of edges m in a given
collection of s rooted copies of T is at most sb, and q is sufficiently large, Lemma 2.3
tells us that the probability this particular collection of copies of T is inG is q−am, where
we again use the fact that f1, . . . , fa are chosen independently.

Suppose that H is an element of T s
≤ := T 1

∪ · · · ∪ T s . Within the complete bipartite
graph from U to V , letNs(H) be the number of ordered collections of s copies of T , each
rooted at w1, . . . , wr in the same way, whose union is a copy of H . Then

E[|C|s] =
∑
H∈T s

≤

Ns(H)q
−ae(H),

while Ns(H) = Os(N |H |−|R|). Since the tree (T , R) is balanced, Lemma 2.2 shows that
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e(H)/(|H | − |R|) ≥ ρT = b/a for every H ∈ T s
≤. It follows that

E[|C|s] =
∑
H∈T s

≤

Ns(H)q
−ae(H)

=

∑
H∈T s

≤

Os(N
|H |−|R|)q−ae(H)

= Os

( ∑
H∈T s

≤

qb(|H |−|R|)q−ae(H)
)
= Os(1).

By Markov’s inequality, we may conclude that

P[|C| ≥ c] = P[|C|s ≥ cs] ≤ E[|C|s]/cs = Os(1)/cs .

Our aim now is to show that |C| is either quite small or very large. To begin, note that
the set C is a subset of X(Fq), where X is the algebraic variety defined as the set of

(x1, . . . , xa) ∈ Fbaq satisfying the equations

• fi(wk, x`) = 0 for all k and ` such that (uk, v`) ∈ T ,
• fi(xk, x`) = 0 for all k and ` such that (vk, v`) ∈ T ,

for all i = 1, . . . , a. For each i 6= j such that vi and vj are on the same side of the natural
bipartition of T , we let

Dij = X ∩ {(x1, . . . , xa) : xi = xj },

and, for each k, ` such that vk and u` are on the same side of the bipartition, we let

D′k` = X ∩ {(x1, . . . , xa) : xk = w`}.

We set
D :=

⋃
i,j

Dij ∪
⋃
k,`

D′k`.

The sets Dij and D′k` capture those elements of X which are degenerate and so not el-
ements of C. As a union of varieties is a variety, the set D is a variety that captures all
degenerate elements ofX. Furthermore, the complexity ofD is bounded since the number
and complexity of the Dij and D′k` is bounded.

By Lemma 2.7, we see that there exists a constant cT , depending only on T , such that
either |C| ≤ cT or |C| ≥ q/2. Therefore, by the consequence of Markov’s inequality
noted earlier,

P[|C| > cT ] = P[|C| ≥ q/2] =
Os(1)
(q/2)s

.

We call a sequence of vertices (w1, . . . , wr) bad if there are more than cT copies of T
in G such that wi corresponds to ui for all 1 ≤ i ≤ r . If we let B be the random variable
counting the number of bad sequences, we have, since s = 2br and q is sufficiently large,

E[B] ≤ 2N r
·
Os(1)
(q/2)s

= Os(q
br−s) = o(1).
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We now remove a vertex from each bad sequence to form a new graph G′. Since each
vertex has degree at most N , the total number of edges removed is at most BN . Hence,
the expected number of edges in G′ is

N2−a/b
− E[B]N = �(N2−a/b).

Therefore, there is a graph with at most 2N vertices and �(N2−a/b) edges such that no
sequence of r vertices has more than cT labelled copies of T rooted on these vertices.
Finally, we note that this result was only shown to hold when q is a prime power and
N = qb. However, an application of Bertrand’s postulate shows that the same conclusion
holds for all N . ut

3. Concluding remarks

We have shown that for any rational number r between 1 and 2, there exists a family Hr

of graphs such that ex(n,Hr) = 2(nr). However, Erdős and Simonovits (see, for ex-
ample, [7]) asked whether there exists a single graph Hr such that ex(n,Hr) = 2(nr).
Our methods give some hope of a positive solution to this question, but the difficulties
now lie in determining accurate upper bounds for the extremal number of certain graphs.

To be more precise, given a rooted tree (T , R), we define T p to be the graph consisting
of the union of p distinct labelled copies of T , all of which agree on the set of roots R but
are otherwise disjoint. Lemma 1.2 clearly shows that ex(n, T p) = �(n2−1/ρT ) when T
is a balanced rooted tree. We believe that a corresponding upper bound should also hold.

Conjecture 3.1. For any balanced rooted tree (T , R), the graph T p satisfies

ex(n, T p) = Op(n2−1/ρT ).

The condition that (T , R) be balanced is necessary here, as may be seen by considering
the graph in Figure 2, namely, a starK1,3 with two rooted leaves. Then T 2 contains a cycle
of length 4, so the extremal number is�(n3/2), whereas the conjecture would suggest that
it is O(n4/3).

In order to solve the Erdős–Simonovits conjecture, it would be sufficient to solve the
conjecture for the collection of rooted trees Ta,b with a < b and (a, b) = 1. However,
even this seems surprisingly difficult, and the only known cases are when a = 1, in which
case T is a star with rooted leaves and T p is a complete bipartite graph, or b − a = 1,
when T is a path with rooted endpoints and T p is a theta graph.
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