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Abstract. A convolution representation of continuous translation-invariant and SO(n)-equivariant
Minkowski valuations is established. This is based on a new classification of translation-invariant
generalized spherical valuations. As applications, Crofton and kinematic formulas for Minkowski
valuations are obtained.
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1. Introduction

A valuation on convex bodies (non-empty compact convex sets) is a finitely additive func-
tion. More precisely, let Kn denote the space of convex bodies in Rn endowed with the
Hausdorff metric. A map φ : Kn → A with values in an Abelian semigroup A is a
valuation if

φ(K)+ φ(L) = φ(K ∪ L)+ φ(K ∩ L)

wheneverK∪L is convex. As a generalization of the notion of measure and as the crucial
ingredient in Dehn’s solution of Hilbert’s third problem, scalar valuations (where A = R
or C) have long played a central role in convex and discrete geometry (see [39] or [56,
Chapter 6]). The most famous classical result on valuations is the celebrated characteriza-
tion of rigid-motion-invariant valuations by Hadwiger [33] (which was slightly improved
later by Klain [37]).

Theorem 1 ([33, 37]). The intrinsic volumes V0, V1, . . . , Vn form a basis of the vec-
tor space of all continuous scalar valuations on Kn which are translation- and SO(n)-
invariant.

Hadwiger’s characterization theorem had a transformative effect on integral geometry. It
not only allowed for almost effortless proofs of the principal and more general kinematic
formulas (see, e.g., [39]) but also made the importance of precise descriptions of classes
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of invariant valuations evident. Still to this day, Theorem 1 often serves as a starting point
for the classification of invariant scalar valuations (see, e.g., [4, 10, 13, 31, 43]) and, more
generally, equivariant tensor valued valuations, where A = Symk Rn (see [3, 9, 35, 67]).
These results in turn were critical for the tremendous progress in integral geometry of
recent years (see [5, 16, 17, 20, 35, 66] and the references therein).

In 1974 Schneider [54, 55] first investigated valuations where A = Kn, and addi-
tion on Kn is the usual Minkowski addition. In a more recent influential article, Ludwig
[41] coined the name Minkowski valuations for such maps and started a line of research
concerned with the classification of Minkowski valuations intertwining linear transfor-
mations [1, 2, 30, 40, 42, 61, 65].

The recent results on Minkowski valuations which are equi- or contravariant with
respect to linear transformations show that they often form convex cones generated by
finitely many valuations, such as the projection or difference body operators. In contrast,
the cone of translation-invariant and SO(n)-equivariant Minkowski valuations is infinite-
dimensional. This is one reason why no full analogue of Theorem 1 for Minkowski valu-
ations has been obtained yet, except for dimension n = 2, where Schneider [55] already
established such a result. We therefore assume throughout that n ≥ 3.

About a decade ago, Kiderlen [36] and the first author [59] were the first to ob-
tain convolution representations of translation-invariant and SO(n)-equivariant contin-
uous Minkowski valuations. However, their results were limited to valuations of degree
1 and n − 1, respectively, where a map 8 from Kn to Kn (or R) is said to have degree i
if 8(λK) = λi8K for K ∈ Kn and λ > 0. The convolution of measures on Sn−1 used
in [36] and [59] is induced from the group SO(n) by identifying Sn−1 with the homoge-
neous space SO(n)/SO(n− 1) (see Section 2).

Under additional smoothness assumptions, the first author [60] and both the present
authors [62] extended the results from [36] and [59] to the remaining (non-trivial) degrees
i ∈ {2, . . . , n−2} when the Minkowski valuations are even. (McMullen [47] showed that
only integer degrees 0 ≤ i ≤ n can occur.) However, the techniques employed in [60] or
[62] were not suited to describe merely continuous Minkowski valuations, which is the
goal since the 1970s.

In this article we establish a precise description of all continuous Minkowski valua-
tions which are translation-invariant and SO(n)-equivariant without any further assump-
tions on the parity or degree of the valuations. As we explain in Section 5, our main
theorem generalizes and implies all previously obtained convolution representations of
Minkowski valuations intertwining rigid motions.

In order to state our main result, recall that a convex body K ∈ Kn is uniquely de-
termined by its support function hK(u) = max{u · x : x ∈ K} for u ∈ Sn−1, and let
Mo(Sn−1) and Co(Sn−1) denote the spaces of signed finite Borel measures and continu-
ous functions on Sn−1, respectively, having their center of mass at the origin. IfG denotes
a group acting on a setX, then as usual XG denotes the set of all elements inX which are
G-invariant. We also emphasize that throughout the article we use the spherical Lebesgue
measure to identify functions on Sn−1 (whether smooth or continuous) with absolutely
continuous measures on the sphere. In particular, equation (1.1) below has to be under-
stood in this sense.
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Theorem 2. If 8 : Kn→ Kn is a continuous Minkowski valuation which is translation-
invariant and SO(n)-equivariant, then there exist unique constants c0, cn ≥ 0, measures
µi ∈ Mo(Sn−1)SO(n−1), 1 ≤ i ≤ n − 2, and a function fn−1 ∈ Co(Sn−1)SO(n−1) such
that

h8K = c0 +

n−2∑
i=1

Si(K, ·) ∗ µi + Sn−1(K, ·) ∗ fn−1 + cnVn(K) (1.1)

for every K ∈ Kn.

The Borel measures Si(K, ·), 1 ≤ i ≤ n − 1, on Sn−1 are Aleksandrov’s area measures
(see, e.g., [56]) associated with K ∈ Kn. If K is sufficiently smooth and has positive
curvature, then each Si(K, ·) is absolutely continuous with respect to spherical Lebesgue
measure and its density is (up to a constant) given by the ith elementary symmetric func-
tion of the principal radii of curvature of K .

For n ≤ 4, we show in Section 5 that if 8 has degree 1 or 2, then the measures µ1
orµ2, respectively, are in fact absolutely continuous with a density inL2(Sn−1). However,
this is no longer true in general when n > 4.

The proof of Theorem 2 is based on new techniques involving translation-invariant
generalized valuations which were only recently introduced by Alesker and Faifman
[10] (see also [15]). Generalized valuations are related to smooth valuations in the same
way as generalized functions are related to smooth functions. More precisely, let Val∞i ,
0 ≤ i ≤ n, denote the space of smooth translation-invariant scalar valuations of degree i
endowed with the Gårding topology which makes it a Fréchet space (see Section 3 for
details). The space Val−∞i of (translation-invariant) generalized valuations of degree i is
defined by

Val−∞i := (Val∞n−i)
∗
⊗ Dens(Rn) (1.2)

endowed with the weak topology. Here, Dens(Rn) denotes the 1-dimensional space of
densities on Rn. However, since throughout the article we fix a Euclidean structure on Rn,
and thus a choice of Lebesgue measure, we obtain an isomorphism Dens(Rn) ∼= R which
we use to identify Val−∞i with the topological dual (Val∞n−i)

∗.
As part of his far reaching reconceptualization of integral geometry, Alesker [6] dis-

covered a continuous non-degenerate bilinear pairing

〈 · , · 〉 : Val∞i × Val∞n−i → R

for 0 ≤ i ≤ n (see also Section 3). The induced Poincaré duality map

pd : Val∞i → (Val∞n−i)
∗
= Val−∞i

is therefore continuous, injective and has dense image with respect to the weak topol-
ogy. This was the motivation for definition (1.2) and shows that Val−∞i can be seen as a
completion of Val∞i with respect to the weak topology. Alesker [8] also proved that the
Poincaré duality map admits a unique continuous extension to the space Vali of contin-
uous translation-invariant valuations of degree i. Thus, just like smooth and continuous
functions or, more generally, signed Borel measures can be identified with subclasses of
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generalized functions (compare Section 2), we can use the Poincaré duality map in the
following to identify the spaces Val∞i or Vali , respectively, with certain dense subspaces
of Val−∞i .

It was first observed in [60] that a translation-invariant and SO(n)-equivariant continu-
ous Minkowski valuation8 is uniquely determined by a scalar valuation ϕ ∈ ValSO(n−1)

i .
In turn, the space ValSO(n−1)

i consists of spherical valuations.
Spherical (generalized) valuations correspond to spherical representations of SO(n)

(see Section 3 for details). Let Val∞,sph
i and Val−∞,sph

i denote the subspaces of smooth
and generalized spherical valuations, respectively, and let C−∞o (Sn−1) denote the space
of generalized functions on Sn−1 which vanish on restrictions of linear functions to Sn−1.
Our second main result, which is critical for the proof of Theorem 2 but also of indepen-
dent interest, is the following classification of (generalized) spherical valuations.

Theorem 3. Suppose that 1 ≤ i ≤ n− 1.

(a) The map Ei : C∞o (Sn−1)→ Val∞,sph
i defined by

(Eif )(K) =
∫
Sn−1

f (u) dSi(K, u)

is an SO(n)-equivariant isomorphism of topological vector spaces which admits a
unique extension by continuity in the weak topologies to an isomorphism

Ẽi : C−∞o (Sn−1)→ Val−∞,sph
i .

(b) The space ValSO(n−1)
i is contained in Ẽi(Mo(Sn−1)) if i ≤ n−2 and in Ẽi(Co(Sn−1))

if i = n− 1.

Theorem 3(a) for i = 1 was recently proved by Alesker [11, Appendix]. Theorem 3(b)
for i = n− 1 follows from a classical result of McMullen [48].

Characterizations of Minkowski valuations, in particular, earlier versions of Theo-
rem 2, have had far reaching implications for isoperimetric type inequalities (see, e.g., [2,
11, 32, 44–46, 61]). Motivated by a recent important Crofton type formula for the identity
map of Goodey and Weil [26], we show in the final section of this paper how Theorem 2
can be applied to obtain a general Crofton formula for continuous Minkowski valuations
which generalizes the result from [26] and an earlier result of this type from [62]. Using
our new Crofton formula and Hadwiger’s general integral geometric theorem, a conse-
quence of Theorem 1 (cf. [58, p. 173]), we can then also state a kinematic formula for
Minkowski valuations.

2. Preliminaries

In this section we first recall basic notions from Riemannian geometry and compute sev-
eral quantities in cylindrical coordinates on Sn−1 which will be needed in the proof of
Theorem 3(b). Next, we collect background material from representation theory and har-
monic analysis, in particular, about the convolution of measures on Sn−1 and its relation
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to the theory of spherical harmonics. We also recall some well known facts about gener-
alized functions on Sn−1 and the definition of Berg’s functions used in the solution of the
classical Christoffel problem.

Although in this article we are mainly concerned with the Euclidean unit sphere Sn−1

in Rn and the Lie group SO(n) of proper rotations of Rn, let us first consider a gen-
eral smooth manifold M . We denote by C∞(M) the space of all smooth functions on M
equipped with the Fréchet space topology of uniform convergence of any finite num-
ber of derivatives on each compact subset of M . For a Banach space X, the Fréchet
space C∞(M,X) of all infinitely differentiable functions on M with values in X is de-
fined similarly.

If in addition M is compact and endowed with a Riemannian metric, then the Ck

norm ‖f ‖Ck of a function f ∈ Ck(M) is defined by (see, e.g., [52, p. 301])

‖f ‖Ck =

k∑
j=0

max
M
|∇
jf |, (2.1)

where ∇ denotes the covariant derivative with respect to the given Riemannian metric and
|∇
jf | is the (Euclidean) norm of the tensor field ∇jf .
Among other quantities, we compute in the following example the C2 norm of an

SO(n− 1)-invariant function on Sn−1 more explicitly. This will be useful later on for the
proof of Theorem 3(b).

Example 2.1. In this article we use ē ∈ Sn−1 to denote an arbitrary but fixed point (the
pole) of the sphere and we write SO(n− 1) for the stabilizer of ē in SO(n). Clearly, every
u ∈ Sn−1

\ {−ē, ē} can be uniquely written in the form

u = t ē +
√

1− t2 v (2.2)

for some t ∈ (−1, 1) and v ∈ Sn−2
ē = {w ∈ Sn−1

: ē · w = 0}. In the cylindrical
coordinates (2.2), the (standard) metric tensor % on Sn−1 is given by

% =
1

1− t2
dt ⊗ dt + (1− t2) dv ⊗ dv, (2.3)

where dv ⊗ dv is the metric tensor on Sn−2
ē .

Let 1S denote the Laplacian (or Laplace–Beltrami operator) on Sn−1; recall that, for
f, g ∈ C2(Sn−1), we have∫

Sn−1
f (u)1Sg(u) du =

∫
Sn−1

g(u)1Sf (u) du. (2.4)

Using (2.3), one can easily obtain the following expression for the Laplacian in cylindrical
coordinates (cf. [12, Proposition 2.6]):

1S =
1
√
|%|
∂i
(√
|%| %ij∂j

)
= (1− t2)

∂2

∂t2
− (n− 1)t

∂

∂t
+

1
1− t2

1̄S, (2.5)

where 1̄S denotes the Laplacian on Sn−2
ē .
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Now let f ∈ C2(Sn−1) be SO(n− 1)-invariant, that is, in the cylindrical coordinates
(2.2) the function f depends only on t . Then, by (2.5), we have

1Sf = (1− t2)
∂2f

∂t2
− (n− 1)t

∂f

∂t
. (2.6)

Moreover, a straightforward computation, using (2.3) again, yields

|∇f |2 = (1− t2)
(
∂f

∂t

)2

, (2.7)

|∇
2f |2 = (n− 2)

(
t
∂f

∂t

)2

+

(
(1− t2)

∂2f

∂t2
− t

∂f

∂t

)2

. (2.8)

We turn now to representations of Lie groups. First recall that since SO(n) is compact,
all its irreducible representations are finite-dimensional, and the equivalence classes of
irreducible complex representations of SO(n) are uniquely determined by their highest
weights (see, e.g., [18]). These highest weights, in turn, can be indexed by bn/2c-tuples
(λ1, . . . , λbn/2c) of integers such that{

λ1 ≥ · · · ≥ λbn/2c ≥ 0 for odd n,
λ1 ≥ · · · ≥ λn/2−1 ≥ |λn/2| for even n.

(2.9)

A notion of particular importance for our purposes is that of smooth vectors of an
infinite-dimensional representation of a Lie group.

Definition. Let ρ be a continuous representation of a Lie group G on a Banach space X.
An element x ∈ X is called a smooth vector if the map zx : G→ X defined by zx(ϑ) =
ρ(ϑ)x is infinitely differentiable. The subspace of all smooth vectors in X is denoted
by X∞.

It is well known (cf. [68, Section 4.4]) that the subspace X∞ is a G-invariant and dense
subset of X. Moreover, the map X∞ → C∞(G,X) given by x 7→ zx leads to an iden-
tification of X∞ with a closed subspace of C∞(G,X). Hence, we can endow X∞ with
the relative topology induced by C∞(G,X). This topology on X∞ is called the Gårding
topology and turns X∞ into a Fréchet space. An important property of the Gårding topol-
ogy on X∞ is that the restriction of the representation of G to X∞ is continuous.

Two more basic facts about smooth vectors are contained in the next lemma.

Lemma 2.2. Let G be a Lie group.

(a) If ρ and τ are continuous representations of G on Banach spaces X and Y and
T : X → Y is a continuous and G-equivariant linear map, then T (X∞) ⊆ Y∞ and
the restriction T : X∞→ Y∞ is continuous.

(b) If H is a closed subgroup of G, then the smooth vectors of the left regular rep-
resentation of G on C(G/H) are precisely the smooth functions on G/H , that is,
(C(G/H))∞ = C∞(G/H).
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In this article, we are specifically interested in spherical representations of SO(n) with
respect to SO(n− 1).

Definition. Let G be a compact Lie group and H a closed subgroup of G. A represen-
tation ρ of G on a vector space X is called spherical with respect to H if there exists an
H -invariant non-zero x ∈ X, that is, ρ(ϑ)x = x for every ϑ ∈ H .

For the following two important facts about spherical representations (see, e.g., [64,
p. 17]), we consider the left regular representation ofG on the Hilbert space L2(G/H) of
square-integrable functions on the homogeneous space G/H .

Theorem 2.3. Let G be a compact Lie group and H a closed subgroup of G.

(i) Every subrepresentation of L2(G/H) is spherical with respect to H .
(ii) Every irreducible representation ofG which is spherical with respect toH is isomor-

phic to a subrepresentation of L2(G/H).

Example 2.4. The space L2(Sn−1) is an orthogonal sum of SO(n) irreducible subspaces,

L2(Sn−1) =
⊕
k≥0

Hn
k ,

where Hn
k is the space of spherical harmonics of dimension n and degree k. It is well

known that the highest weights corresponding to the spaces Hn
k are the bn/2c-tuples

(k, 0, . . . , 0). Since Sn−1 is diffeomorphic to the homogeneous space SO(n)/SO(n−1), it
follows from Theorem 2.3 that every irreducible representation of SO(n) which is spheri-
cal with respect to SO(n−1) is isomorphic to one of the spaces Hn

k , and thus their highest
weights are of the form (k, 0, . . . , 0), k ≥ 0.

For the discussion of Theorem 2 and its applications to integral geometry, we need
some more background from the theory of spherical harmonics (see, e.g., [28]). Let
N(n, k) denote the dimension of the space Hn

k and recall that

N(n, k) =
n+ 2k − 2
n+ k − 2

(
n+ k − 2
n− 2

)
= O(kn−2) as k→∞. (2.10)

Using πk : L2(Sn−1)→ Hn
k to denote the orthogonal projection, we can write

f ∼

∞∑
k=0

πkf (2.11)

for the (condensed) Fourier expansion of f ∈ L2(Sn−1). Recall that the Fourier series in
(2.11) converges to f in the L2 norm.

In the theory of spherical harmonics, a function or measure on Sn−1 which is
SO(n − 1)-invariant is often called zonal. The subspace of zonal functions in Hn

k is
1-dimensional for every k ≥ 0 and spanned by the function u 7→ P nk (u · ē), where
P nk ∈ C([−1, 1]) denotes the Legendre polynomial of dimension n and degree k. Since the
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spaces Hn
k are orthogonal, it is not difficult to show that any zonal function f ∈ L2(Sn−1)

admits a series expansion of the form

f ∼

∞∑
k=0

N(n, k)

ωn
ank [f ]P

n
k (. · ē), (2.12)

where ωn denotes the surface area of the n-dimensional Euclidean unit ball and

ank [f ] = ωn−1

∫ 1

−1
f (t)P nk (t)(1− t

2)(n−3)/2 dt. (2.13)

Here, we have again used the cylindrical coordinates (2.2) to identify the zonal function f
with a function on [−1, 1].

Now we turn to (formal) Fourier expansions of measures and, more generally, distribu-
tions on Sn−1. To this end, first recall that a distribution on Sn−1 is a continuous linear
functional on C∞(Sn−1). Since Sn−1 is compact, every distribution ν on Sn−1 is of finite
order, that is, there exist k ≥ 0 and C > 0 such that

|ν(f )| ≤ C‖f ‖Ck (2.14)

for every f ∈ C∞(Sn−1). The order of ν is the smallest k such that (2.14) holds.
Distributions on a general smooth manifold M are often also called generalized den-

sities, and C−∞(|3|(M)) is used to denote the space of distributions on M . However,
the choice of a Riemannian metric on M induces an isomorphism between the space of
distributions and the space of generalized functions on M , usually denoted by C−∞(M)
(cf. [29]). Throughout this article, whenM = Sn−1, we always make use of this identifica-
tion, and writeC−∞(Sn−1) for the space of distributions on Sn−1 equipped with the topol-
ogy of weak convergence. The canonical bilinear pairing onC∞(Sn−1)×C−∞(Sn−1)will
be denoted by 〈·, ·〉.

Since every (signed) Borel measure µ on Sn−1 defines a distribution νµ by

〈f, νµ〉 =

∫
Sn−1

f (u) dµ(u), f ∈ C∞(Sn−1),

we will use the continuous linear injection µ 7→ νµ to identify M(Sn−1) with a subspace
of C−∞(Sn−1). Clearly, this subspace consists precisely of the distributions of order 0.
In the same way, the spaces C∞(Sn−1), C(Sn−1), and L2(Sn−1) can be identified with
(dense) subspaces of C−∞(Sn−1) and we have

C∞(Sn−1) ⊆ C(Sn−1) ⊆ L2(Sn−1) ⊆M(Sn−1) ⊆ C−∞(Sn−1). (2.15)

A natural action of SO(n) on C−∞(Sn−1) is defined as follows: For ϑ ∈ SO(n) and
ν ∈ C−∞(Sn−1), we set

〈f, ϑν〉 = 〈ϑ−1f, ν〉, f ∈ C∞(Sn−1). (2.16)
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Note that if ν is a measure on Sn−1, then ϑν is just the image measure of ν under the
rotation ϑ ; moreover, (2.16) is also consistent with the left regular representation of SO(n)
on the spaces C∞(Sn−1), C(Sn−1), and L2(Sn−1).

In order to extend the orthogonal projection πk : L2(Sn−1) → Hn
k to C−∞(Sn−1),

note that πk is self-adjoint. In particular, 〈f, πkg〉 = 〈πkf, g〉 for all f ∈ C∞(Sn−1)

and g ∈ L2(Sn−1). In view of (2.15), it is therefore consistent to define πkν for ν in
C−∞(Sn−1) as the distribution given by

〈f, πkν〉 = 〈πkf, ν〉, f ∈ C∞(Sn−1).

From this, it follows (cf. [49, p. 38]) that indeed πkν ∈ Hn
k for every k ∈ N.

Next let us discuss the convolution of measures and distributions on Sn−1. Recall that
the convolution σ ∗ µ of signed measures σ,µ on SO(n) can be defined by∫

SO(n)
f (ϑ) d(σ ∗ µ)(ϑ) =

∫
SO(n)

∫
SO(n)

f (ηθ) dσ(η) dµ(θ), f ∈ C(SO(n)).

In other words, σ ∗ µ is the pushforward of the product measure σ ⊗ µ by the group
multiplicationm : SO(n)×SO(n)→ SO(n), that is, σ ∗µ = m∗(σ ⊗µ). Since SO(n) is
compact, this definition can be readily extended to distributions by replacing the product
measure with the tensor product of distributions (see, e.g., [34, p. 128]).

The identification of Sn−1 with the homogeneous space SO(n)/SO(n−1) can now be
used to identify C−∞(Sn−1) with the right SO(n − 1)-invariant distributions on SO(n).
Via this correspondence, the convolution of distributions on SO(n) induces a convolution
product on C−∞(Sn−1) as follows: Let π : SO(n)→ Sn−1, π(η) = ηē, be the canonical
projection. Then the convolution of distributions δ, ν ∈ C−∞(Sn−1) is defined by

δ ∗ ν = π∗m∗(π
∗δ ⊗ π∗ν),

where π∗ and π∗ denote the pushforward and pullback by π , respectively.
The convolution product defined in this way has the following well-known continuity

property (see, e.g., [34, Chapter 6]).

Lemma 2.5. If νj ∈ C−∞(Sn−1), j ∈ N, converge weakly to ν ∈ C−∞(Sn−1), then
limj→∞ δ ∗ νj = δ ∗ ν weakly for every δ ∈ C−∞(Sn−1).

Zonal measures play an essential role for spherical convolution. For later use we state
here the explicit expressions for the convolution of a function h ∈ C(Sn−1) and a measure
σ ∈M(Sn−1) with a zonal measure µ ∈M(Sn−1) and a zonal function f ∈ C(Sn−1),
respectively:

(h ∗ µ)(η̄) =

∫
Sn−1

h(ηu) dµ(u) and (σ ∗ f )(η̄) =

∫
Sn−1

f (η−1u) dσ(u), (2.17)

where for η ∈ SO(n), we write π(η) = η̄ ∈ Sn−1.
Note that for signed measures σ,µ on Sn−1 and every ϑ ∈ SO(n), we have (ϑσ) ∗ µ

= ϑ(σ ∗ µ); further, by (2.17), the convolution of zonal measures on Sn−1 is Abelian.
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Moreover, from the identification of a zonal measureµ on Sn−1 with a measure on [−1, 1]
and the well-known Funk–Hecke Theorem, it follows (cf. [59]) that the Fourier expansion
of σ ∗ µ is given by

σ ∗ µ ∼

∞∑
k=0

ank [µ]πkσ, (2.18)

where the numbers ank [µ] are defined by (2.13).
Like convolution on Rn, spherical convolution can be used to approximate a given

measure or distribution on Sn−1 by smooth functions. To this end, letBj (ē), j ∈ N, denote
the open geodesic ball of radius 1/j centered at ē ∈ Sn−1. A sequence of non-negative
zonal functions ζj ∈ C∞(Sn−1), j ∈ N, is called a spherical approximate identity if for
each j , ∫

Sn−1
ζj (u) du = 1 and supp ζj ⊆ Bj (ē). (2.19)

For a proof of the following auxiliary result, we refer to [27] or [53, Chapter 6].

Lemma 2.6. If ζj ∈ C∞(Sn−1), j ∈ N, is a spherical approximate identity, then

(i) limj→∞ g ∗ ζj = g uniformly for every g ∈ C(Sn−1);
(ii) limj→∞ ν ∗ ζj = ν weakly for every ν ∈ C−∞(Sn−1).

In the final part of this section, we turn to the Christoffel problem and its solution by Berg
[12]. First recall that spherical harmonics are eigenfunctions of the Laplacian 1S, more
precisely, for Yk ∈ Hn

k ,
1SYk = −k(k + n− 2)Yk. (2.20)

Like the orthogonal projection πk , the Laplacian 1S is self-adjoint. Thus, it is consistent
to define 1Sν for ν ∈ C−∞(Sn−1) as the distribution given by

〈f,1Sν〉 = 〈1Sf, ν〉, f ∈ C∞(Sn−1).

In particular, by (2.15), 1S can now be applied to support functions of not necessarily
smooth convex bodies. This is important for us, since the first-order area measure S1(K, ·)

of K ∈ Kn and its support function hK are related by a linear differential operator �n:

S1(K, ·) = hK +
1

n− 1
1ShK =: �nhK . (2.21)

From (2.20) and the definition of �n, it follows that for f ∈ C∞(Sn−1), the spherical
harmonic expansion of �nf is given by

�nf ∼
∞∑
k=0

(1− k)(k + n− 1)
n− 1

πkf. (2.22)

Hence, the kernel of �n : C∞(Sn−1) → C∞(Sn−1) is given by Hn
1 , that is, it consists

precisely of the restrictions of linear functions on Rn to Sn−1. Let

C∞o (S
n−1) = {f ∈ C∞(Sn−1) : π1f = 0}
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and define C−∞o (Sn−1) in the same way. Then �n : C∞o (Sn−1) → C∞o (Sn−1) is an
SO(n)-equivariant isomorphism of topological vector spaces.

The classical Christoffel problem consists in finding necessary and sufficient condi-
tions for a Borel measure on Sn−1 to be the first-order area measure of a convex body.
A solution was obtained by Berg [12] by providing an explicit inversion formula for the
operator �n. In order to state this result, we define for a function g on [−1, 1], an associ-
ated zonal function ğ on Sn−1 by

ğ(u) = g(u · ē), u ∈ Sn−1.

Theorem 2.7 ([12]). For every n ≥ 2 there exists a unique C∞ function gn on (−1, 1)
such that the associated zonal function ğn is in L1(Sn−1) and

an1 [gn] = 0, ank [gn] =
n− 1

(1− k)(k + n− 1)
, k 6= 1. (2.23)

It follows from (2.22), (2.18), and (2.23) that for every f ∈ C∞o (Sn−1),

f = (�nf ) ∗ ğn. (2.24)

In the final section, we need a generalization of (2.24) that can be deduced from [26,
Theorem 4.3] and was independently proved in [11]:

Proposition 2.8. For every j ∈ {2, . . . , n}, the integral transform

Tgj : C
∞
o (S

n−1)→ C∞o (S
n−1), f 7→ f ∗ ğj ,

is an isomorphism.

Proposition 2.8 and (2.24) give rise to the following:

Definition. For j ∈ {2, . . . , n}, let �j : C∞o (Sn−1) → C∞o (Sn−1) denote the linear
operator which is inverse to the integral transform Tgj .

3. Smooth and generalized valuations

We now turn to the background material on translation-invariant scalar and convex body
valued valuations. In particular, we recall the definitions of smooth and generalized
(spherical) valuations as well as the Alesker–Poincaré duality map.

If G is a group of affine transformations on Rn, a valuation φ is called G-invariant
if φ(gK) = φ(K) for all K ∈ Kn and every g ∈ G. Let Val denote the vector space
of continuous translation-invariant scalar valued valuations on Rn. It was first proved by
McMullen [47] that

Val =
⊕

0≤i≤n

Vali, (3.1)

where Vali ⊆ Val denotes the subspace of valuations (homogeneous) of degree i.
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Recall that a map 8 : Kn→ Kn is called a Minkowski valuation if

8K +8L = 8(K ∪ L)+8(K ∩ L)

wheneverK∪L is convex and addition on Kn is Minkowski addition. We denote by MVal
the set of continuous translation-invariant Minkowski valuations, and we write MVali ,
0 ≤ i ≤ n, for its subset of Minkowski valuations of degree i.

More general than Minkowski valuations, we also consider valuations with values
in C(Sn−1), that is, maps F : Kn→ C(Sn−1), K 7→ FK , such that

FK + FL = FK∪L + FK∩L

wheneverK ∪L is convex. Let CVal denote the vector space of all such valuations which
are continuous and translation-invariant and, as before, let CVali , 0 ≤ i ≤ n, denote its
subspace of valuations of degree i.

Note that any Minkowski valuation 8 ∈ MVal induces a valuation F8 ∈ CVal by
F8K = h8K , and 8 is SO(n)-equivariant if and only if F8 is SO(n)-equivariant. Via the
map 8 7→ F8, the set MVal can be identified with an infinite-dimensional convex cone
in CVal.

Clearly, a valuation F ∈ CVal is uniquely determined by the family of valuations
ϕu ∈ Val, u ∈ Sn−1, defined by ϕu(K) = FK(u) for K ∈ Kn. If in addition F is
SO(n)-equivariant, then for η ∈ SO(n) and η̄ = ηē ∈ Sn−1,

ϕη̄(K) = FK(ηē) = (η
−1FK)(ē) = Fη−1K(ē) = ϕē(η

−1K).

Thus, an SO(n)-equivariant F ∈ CVal is uniquely determined by a single SO(n − 1)-
invariant valuation ϕē ∈ Val. In fact, there is a one-to-one correspondence between the
subspace of SO(n− 1)-invariant valuations in Val and the subspace of SO(n)-equivariant
valuations in CVal. This observation leads to the following:

Definition. Suppose that F ∈ CVal is SO(n)-equivariant. The SO(n − 1)-invariant val-
uation ϕ ∈ Val defined by

ϕ(K) = FK(ē), K ∈ Kn,

is called the associated real valued valuation of F ∈ CVal.

The following collection of examples and results on homogeneous valuations will be use-
ful for later reference.

Examples 3.1. (a) It is a trivial fact that Val0 is 1-dimensional and spanned by the Euler
characteristic V0. (Recall that V0(K) = 1 for every K ∈ Kn.) From this observation, it
follows that 80 ∈ MVal0 if and only if there exists an L0 ∈ Kn such that 80K = L0
for every K ∈ Kn. If 80 is also SO(n)-equivariant, then L0 = c0B, where B denotes the
Euclidean unit ball in Rn and c0 ≥ 0.

Hadwiger [33, p. 79] proved that also Valn is 1-dimensional and spanned by the or-
dinary volume Vn. From this one can easily deduce that 8n ∈ MValn if and only if
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there exists an Ln ∈ Kn such that 8nK = LnV (K) for every K ∈ Kn. If 8n is also
SO(n)-equivariant, then Ln = cnB for some cn ≥ 0.

(b) It was first proved by Spiegel [63] that if ψ ∈ Val1, then

ψ(K + L) = ψ(K)+ ψ(L)

for all K,L ∈ Kn. Using this Minkowski additivity, Goodey and Weil [24] obtained a
description of valuations in Val1, refined by Kiderlen [36]. In order to state their result,
recall that any f ∈ C∞(Sn−1) can be written as a difference of two support functions
f = hKf − hrfB , where rf ≥ 0 (see, e.g., [56, Lemma 1.7.8]). Now for ψ ∈ Val1, let
νψ ∈ C

−∞
o (Sn−1) be given by

〈f, νψ 〉 = ψ(Kf )− ψ(rfB), f ∈ C∞(Sn−1), (3.2)

which is well defined by the Minkowski additivity of ψ . Moreover, since rf depends
continuously on f in the C2 norm, the distribution νψ ∈ C−∞o (Sn−1) is of order at
most 2.

This allows one to conclude that if ψ ∈ Val1, then there exists a unique νψ in
C−∞o (Sn−1) of order at most 2, which can be extended to the vector space spanned by
support functions, such that

ψ(K) = 〈hK , νψ 〉

for every K ∈ Kn. Also observe that ψ 7→ νψ is continuous as a map from Val1 to
C−∞o (Sn−1). Using this description of valuations in Val1, Kiderlen [36] proved that if
81 ∈ MVal1 is SO(n)-equivariant, then there exists a unique zonal ν1 ∈ C

−∞
o (Sn−1) of

order at most 2 such that
h81K = hK ∗ ν1 (3.3)

for every K ∈ Kn. From (3.3) and a straightforward generalization of (2.18), it follows
that for every SO(n)-equivariant 81 ∈ MVal1, there exists a uniquely determined se-
quence of real numbers ank [81], k ≥ 0, such that an1 [81] = 0 and

πkh81K = a
n
k [81]πkhK (3.4)

for everyK ∈ Kn and k ≥ 0. In fact, (3.4) was already proved in 1974 by Schneider [54],
who also showed that for every k 6= 1,

|ank [81]| ≤ a
n
0 [81]. (3.5)

We note that a precise description of the cone of zonal distributions in C−∞o (Sn−1)

which generate a Minkowski valuation by (3.3) is still open. However, Kiderlen [36]
showed that this cone contains all non-negative zonal measures on Sn−1. More precisely,
if µ1 ∈Mo(Sn−1) is zonal and non-negative, then

h91K = hK ∗ µ1, K ∈ Kn,

defines an SO(n)-equivariant Minkowski valuation in MVal1.
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(c) A classification of continuous translation-invariant scalar valued valuations of de-
gree n− 1 was obtained by McMullen [48]. It states that φ ∈ Valn−1 if and only if there
exists a unique f ∈ Co(Sn−1) such that

φ(K) =

∫
Sn−1

f (u) dSn−1(K, u)

for every K ∈ Kn. Applying McMullen’s result to associated real valued valuations,
the first author [59] obtained the following description of SO(n)-equivariant Minkowski
valuations of degree n− 1: If 8n−1 ∈ MValn−1 is SO(n)-equivariant, then there exists a
unique zonal function fn−1 ∈ Co(Sn−1) such that

h8n−1K = Sn−1(K, ·) ∗ fn−1 (3.6)

for every K ∈ Kn. As in the case of Minkowski valuations of degree 1, a precise descrip-
tion of the cone of zonal functions in Co(Sn−1) which generate a Minkowski valuation by
(3.6) is still open (see [59] for more information).

(d) Several important Minkowski valuations arise from data about sections or pro-
jections of convex bodies and are therefore objects of intensive research in geometric
tomography (see, e.g., [21, 30, 36, 40, 41]). Of particular interest for us are the normal-
ized mean section operators Mj ∈ MValn+1−j , 2 ≤ j ≤ n, introduced by Goodey and
Weil [25]. In [26, Theorem 4.4], they showed that for K ∈ Kn,

hMjK = qn,jSn+1−j (K, ·) ∗ ğj , (3.7)

where gj is the j th Berg function and the constant qn,j is given by

qn,j =
j − 1

2π(n+ 1− j)
κj−1κj−2κn−j

κj−3κn−2
.

Here, κi is the i-dimensional volume of the i-dimensional Euclidean unit ball.

A simple consequence of (3.1) is that the space Val becomes a Banach space when en-
dowed with the norm

‖φ‖ = sup{|φ(K)| : K ⊆ B}.

The natural continuous action of the general linear group GL(n) on the Banach space Val
is for A ∈ GL(n) given by

(Aφ)(K) = φ(A−1K), φ ∈ Val, K ∈ Kn.

The notion of smooth vectors of a continuous representation now gives rise to the
notion of smooth valuations, first introduced by Alesker [5].

Definition. A valuation φ ∈ Val is called smooth if the map GL(n) → Val defined by
A 7→ Aφ is infinitely differentiable.

Note that smooth valuations are precisely the smooth vectors of the natural representation
of GL(n) on Val. We therefore write Val∞ for the Fréchet space of smooth translation-
invariant valuations endowed with the Gårding topology (see Section 2). We denote by
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Val∞i the subspace of smooth valuations of degree i. By the general properties of smooth
vectors discussed in Section 2, Val∞i is a dense GL(n)-invariant subspace of Vali , and
from (3.1) one can deduce that

Val∞ =
⊕

0≤i≤n

Val∞i .

The one-to-one correspondence between SO(n)-equivariant valuations in CVal and
SO(n− 1)-invariant valuations in Val now motivates the following.

Definition. Let F ∈ CVal be SO(n)-equivariant and let ϕ ∈ Val be the associated real
valued valuation of F . We define the norm of F by

‖F‖ = sup{|ϕ(K)| : K ⊆ B}. (3.8)

Furthermore, we call F smooth if ϕ is smooth.

While it is easy to see that McMullen’s decomposition result (3.1) implies that

CVal =
⊕

0≤i≤n

CVali, (3.9)

it was recently proved by Parapatits and the second author [51] that, in general, a Min-
kowski valuation 8 ∈ MVal need not be a sum of homogeneous Minkowski valua-
tions 8i ∈ MVali . However, from (3.9) one can still deduce a decomposition result
for translation-invariant Minkowski valuations (cf. [57]), which we state here under the
additional assumption of SO(n)-equivariance.

Lemma 3.2. If 8 ∈ MVal is SO(n)-equivariant, then there exist unique c0, cn ≥ 0 and
SO(n)-equivariant valuations Fi ∈ CVali , 1 ≤ i ≤ n− 1, such that

h8K = c0 +

n−1∑
i=1

Fi,K + cnV (K)

for every K ∈ Kn. Moreover, if 8 is smooth, then each Fi is also smooth.

The space of SO(n)-equivariant valuations in CVal endowed with the norm (3.8) becomes
a Banach space in which smooth valuations form a dense subspace. However, it is a priori
not clear that an SO(n)-equivariant Minkowski valuation in MVal can be approximated
by smooth ones. We will prove this in Section 5.

It is well known that for any φ ∈ Val and K ∈ Kn, McMullen’s decomposition (3.1)
implies that the function t 7→ φ(K + tB) is a polynomial of degree at most n. This, in
turn, gives rise to a derivation operator 3 : Val→ Val, defined by

(3φ)(K) =
d

dt

∣∣∣∣
t=0
φ(K + tB). (3.10)

Using (3.10) it is not difficult to show that if φ ∈ Vali , then 3φ ∈ Vali−1, that 3 is
continuous, SO(n)-equivariant, and that 3 maps smooth valuations to smooth ones.
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The advantage of working with smooth translation-invariant valuations instead of
merely continuous ones is that the space Val∞ admits more algebraic structure. For
example, the following hard Lefschetz type theorem for the operator 3 was proved by
Alesker [5] for even valuations and by Bernig and Bröcker [14] for general valuations.

Theorem 3.3 ( [5, 14]). Suppose that n/2 < i ≤ n. Then32i−n
: Val∞i → Val∞n−i is an

isomorphism.

Recently, Parapatits and the first author [50] proved that for any 8 ∈ MVal, there exist
8(j) ∈MVal, 0 ≤ j ≤ n, such that

8(K + tB) =

n∑
j=0

tn−j8(j)(K)

for every K ∈ Kn and t ≥ 0. This Steiner type formula shows that the operator 3 from
(3.10) has a natural analogue for Minkowski valuations 3 : MVal → MVal.

Definition. For 8 ∈MVal, define 38 ∈MVal by

h(38)(K)(u) =
d

dt

∣∣∣∣
t=0

h8(K+tB)(u), u ∈ Sn−1.

Note that if 8 ∈ MVali is SO(n)-equivariant, then so is 38 ∈ MVali−1. Moreover, if
ϕ ∈ Vali is the associated real valued valuation of 8, then 3ϕ ∈ Vali−1 is associated
with 38. In particular, if 8 is smooth, then so is 38.

Another important structural property of smooth valuations is the existence of a con-
tinuous bilinear product, discovered by Alesker [6],

· : Val∞ × Val∞→ Val∞, (φ, ψ) 7→ φ · ψ.

Endowed with the Alesker product, Val∞ becomes an associative and commutative alge-
bra with unit given by the Euler characteristic, which is graded by the degree of homo-
geneity, that is,

Val∞i · Val∞j ⊆ Val∞i+j . (3.11)

Recall that Valn is 1-dimensional and spanned by Vn, our fixed Lebesgue measure
on Rn. If V ∗n ∈ Val∗n is the unique element such that 〈Vn, V ∗n 〉 = 1, then it follows from
(3.11) that for every 0 ≤ i ≤ n,

〈·, ·〉 : Val∞i × Val∞n−i → R, (φ, ψ) 7→ 〈φ · ψ,V ∗n 〉, (3.12)

defines a continuous bilinear pairing between smooth valuations of complementary de-
gree. Moreover, Alesker [6] proved that this pairing is non-degenerate.

Definition. The space of translation-invariant generalized valuations of degree i with
0 ≤ i ≤ n is defined as the topological dual

Val−∞i = (Val∞n−i)
∗

endowed with the weak topology.
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Since the pairing (3.12) is non-degenerate, the Poincaré duality map defined by

pd : Val∞i → Val−∞i , 〈pdφ,ψ〉 = 〈φ,ψ〉, (3.13)

is continuous, injective and has dense image with respect to the weak topology. Moreover,
a result of Alesker [8, Proposition 8.1.2] directly implies another property which will be
crucial for our purposes:

Proposition 3.4. For 0 ≤ i ≤ n, the Poincaré duality map pd : Val∞i → Val−∞i admits
a unique continuous extension to Vali .

In the following, we will use the Poincaré duality map to identify the spaces Val∞i and
Vali with dense subspaces of Val−∞i . Hence, we have the inclusions

Val∞i ⊆ Vali ⊆ Val−∞i .

Next we recall a recent result of Alesker, Bernig and the first author [9] on the de-
composition of the vector spaces of translation invariant (generalized) valuations into
SO(n)-irreducible subspaces.

Theorem 3.5 ([9]). For 0 ≤ i ≤ n, the spaces Val∞i , Vali , and Val−∞i are multiplicity
free under the action of SO(n). Moreover, the highest weights of the SO(n)-irreducible
subspaces in either of them are precisely given by the tuples (λ1, . . . , λbn/2c) satisfying
(2.9) and the following additional conditions:

(i) λj = 0 for j > min{i, n− i}; (ii) |λj | 6= 1 for 1 ≤ j ≤ bn/2c; (iii) |λ2| ≤ 2.

We now use the notion of spherical representations (see Section 2) to define spherical
valuations.

Definition. For 0 ≤ i ≤ n, the subspaces Valsph
i , Val∞,sph

i , and Val−∞,sph
i of translation

invariant continuous, smooth, and generalized spherical valuations of degree i are defined
as the closures (in the respective topologies) of the direct sum of all SO(n)-irreducible
subspaces in Vali , Val∞i , and Val−∞i , respectively, which are spherical with respect to
SO(n− 1).

By Theorems 3.5 and 2.3 (see also Example 2.4), Val−∞,sph
i is the annihilator of the clo-

sure of the direct sum of all SO(n)-irreducible subspaces in Val∞n−i with highest weights
not of the form (k, 0, . . . , 0), k ≥ 0. Consequently, Theorem 2.3(b) implies the following
critical fact:

Proposition 3.6. Every SO(n − 1)-invariant (generalized) valuation in Vali , Val∞i , or
Val−∞i , where 0 ≤ i ≤ n, is spherical.

Examples 3.7. (a) It follows from Theorem 3.5 or Example 3.1(b) that

Val1 = Valsph
1 , Val∞1 = Val∞,sph

1 , Val−∞1 = Val−∞,sph
1 .

(b) It follows from Theorem 3.5 or Example 3.1(c) that

Valn−1 = Valsph
n−1, Val∞n−1 = Val∞,sph

n−1 , Val−∞n−1 = Val−∞,sph
n−1 .
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4. Auxiliary results about smooth valuations

In this section we begin with the proof of Theorem 3(a). As a corollary, we obtain a
version of Theorem 2 for smooth Minkowski valuations. We also determine an explicit
expression for the pairing (3.12) when one of the valuations is spherical. This will be
needed in the next section to complete the proof of Theorem 3(a).

Theorem 4.1. For 1 ≤ i ≤ n− 1, the map Ei : C∞o (Sn−1)→ Val∞,sph
i defined by

(Eif )(K) =
∫
Sn−1

f (u) dSi(K, u) (4.1)

is an SO(n)-equivariant isomorphism of topological vector spaces.
Proof. Clearly, the maps Ei : Co(Sn−1) → Vali given by (4.1) are linear and SO(n)-
equivariant for every i ∈ {1, . . . , n − 1}. If N(K) denotes the normal cycle of a convex
body K , then

Eif (K) = ci

∫
N(K)

f (y)
∑
π

sgn(π)yπ1dyπ2 ∧ · · · ∧ dyπn−i ∧ dxπn−i+1 ∧ · · · ∧ dxπn ,

where ci is a constant and the sum ranges over all permutations of {1, . . . , n} [17]. This
shows that the maps Ei : C∞o (Sn−1)→ Val∞i are well defined and continuous.

Since differences of area measures of order i of convex bodies in Kn are dense in
the set of all signed finite Borel measures on Sn−1 with centroid at the origin (see, e.g.,
[56, p. 477]), the maps Ei are also injective. Consequently, by Schur’s lemma and Ex-
ample 2.4, Ei(Hn

k ), k 6= 1, is an SO(n)-irreducible subspace of Val∞i of highest weight
(k, 0, . . . , 0). By Theorem 3.5 and the definition of the spaces Val∞,sph

i , it follows that
Ui := Ei(C∞o (Sn−1)) is a dense subspace of Val∞,sph

i . By the open mapping theorem, it
remains to show that Ui is closed.

First, let i = n − 1. In this case, En−1 can be rewritten as a GL(n)-equivariant map
9 : C(P∨+(Rn),L) → Valn−1 mapping continuous sections of a certain line bundle
over the manifold of cooriented linear hyperplanes of Rn to valuations (see [8, Section 2]
for details). As an immediate consequence of Lemma 2.2 and the Casselman–Wallach
theorem [19], the image of 9 : C∞(P∨+(Rn),L) → Val∞n−1, which coincides with the
image of En−1 : C

∞
o (Sn−1)→ Val∞n−1, is closed.

Next, recall that the area measures satisfy the Steiner type formula

Si(K + tB, ·) =

i∑
j=0

t i−j
(
i

j

)
Sj (K, ·)

for every K ∈ Kn and t ≥ 0. Thus, for f ∈ Co(Sn−1) and i ≥ 2, we have

(3Eif )(K) =
d

dt

∣∣∣∣
t=0

∫
Sn−1

f (u) dSi(K + tB, u) = i(Ei−1f )(K). (4.2)

In particular, the restriction of the derivation operator3 to Ui is injective for 2 ≤ i ≤ n−1
and3(Ui) = Ui−1. Since3 is a linear SO(n)-equivariant operator, its kernel is an SO(n)-
invariant subspace. Consequently, the restriction of 3 to cl Ui = Val∞,sph

i is injective as
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well. By Theorem 3.3, 3n−2
: Val∞n−1 → Val∞1 is an SO(n)-equivariant isomorphism.

But Un−1 = Val∞n−1 by what we have proved above. Therefore,

U1 = 3
n−2(Un−1) = Val∞1 .

In particular, U1 = 3
i−1(Ui) is closed. Hence,

Ui = (3i−1)−1U1 ∩ Val∞i

is closed, and therefore Ui = Val∞,sph
i . ut

Using Theorem 4.1, we can now prove the following Hadwiger type result for smooth
SO(n)-equivariant valuations with values in C(Sn−1).

Theorem 4.2. A map F : Kn → C(Sn−1) is a smooth translation-invariant and SO(n)-
equivariant valuation if and only if there exist unique c0, cn ∈ R and SO(n−1)-invariant
fi ∈ C

∞
o (Sn−1), 1 ≤ i ≤ n− 1, such that

FK = c0 +

n−1∑
i=1

Si(K, ·) ∗ fi + cnVn(K) (4.3)

for every K ∈ Kn.

Proof. Let F ∈ CVal be SO(n)-equivariant and smooth. From (3.9), we deduce that there
exist smooth and SO(n)-equivariant valuations Fi ∈ CVali , 0 ≤ i ≤ n, such that

F = F0 + · · · + Fn.

The classifications of valuations from Val0 and Valn described in Example 3.1(a) imply
that there exist unique c0, cn ∈ R such that F0,K = c0 and Fn,K = cnV (K) for every
K ∈ Kn. It remains to show that for every SO(n)-equivariant smooth Fi ∈ CVali , 1 ≤
i ≤ n− 1, there exists a unique SO(n− 1)-invariant fi ∈ C∞o (Sn−1) such that for every
K ∈ Kn,

Fi,K = Si(K, ·) ∗ fi . (4.4)

To this end, let ϕi ∈ Val∞i denote the associated real valued valuation of Fi and recall
that, by definition, ϕi is SO(n−1)-invariant. Therefore, by Proposition 3.6, ϕi ∈ Val∞,sph

i .
Consequently, by Theorem 4.1, there exists a unique fi ∈ C∞o (Sn−1) such that

ϕi(K) =

∫
Sn−1

fi(u) dSi(K, u). (4.5)

Moreover, the SO(n − 1)-invariance of ϕi implies that fi is also SO(n − 1)-invariant.
Hence, by the definition of ϕi and (2.17), we obtain

Fi,K(η̄) = ϕi(η
−1K) =

∫
Sn−1

fi(η
−1u) dSi(K, u) = (Si(K, ·) ∗ fi)(η̄),

where for η ∈ SO(n) we set, as before, η̄ = ηē ∈ Sn−1.
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Conversely, let F ∈ CVal be defined by (4.3). Then, by the properties of spherical
convolution, F is SO(n)-equivariant and the associated real valued valuation ϕi of its
homogeneous component of degree i ∈ {1, . . . , n−1} is given by (4.5). By Theorem 4.1,
ϕi is smooth, and thus F is smooth. ut

Since any smooth SO(n)-equivariant Minkowski valuation 8 ∈ MVal induces a smooth
SO(n)-equivariant valuation F8 ∈ CVal, as a direct consequence of Lemma 3.2 and
Theorem 4.2 we obtain the following:

Corollary 4.3. If 8 : Kn → Kn is a smooth Minkowski valuation which is translation-
invariant and SO(n)-equivariant, then there exist unique c0, cn ≥ 0 and SO(n − 1)-
invariant fi ∈ C∞o (Sn−1), 1 ≤ i ≤ n− 1, such that

h8K = c0 +

n−1∑
i=1

Si(K, ·) ∗ fi + cnVn(K) (4.6)

for every K ∈ Kn.

Corollary 4.3 under the additional assumption that the Minkowski valuation 8 is even
was recently obtained by the authors [62] using a different approach.

Finally, we require a generalization of a formula of Bernig and Hug [17] for the pair-
ing (3.12) of spherical valuations. To this end, let a : Sn−1

→ Sn−1 denote the antipodal
map given by a(u) = −u, u ∈ Sn−1, and recall from Example 3.1(b) that any ψ ∈ Val1
determines a unique νψ ∈ C−∞o (Sn−1), defined by (3.2).

Proposition 4.4. Let 1 ≤ i ≤ n− 1. For φi ∈ Vali and f ∈ C∞o (Sn−1), we have

〈φi,En−if 〉 =
(n− i)!

(n− 1)!
〈f ◦ a, ν3i−1φi

〉. (4.7)

Proof. Since both pairings in (4.7) are jointly continuous and bilinear, we may assume
that f ∈ Hn

k for some k ≥ 0, k 6= 1, and that φi belongs to an SO(n)-irreducible subspace
0λ ⊆ Vali of highest weight λ = (λ1, . . . , λbn/2c). In particular, φi is smooth.

Next, note that 3i−1φi ∈ Val∞1 = Val∞,sph
1 (cf. Examples 3.7). Therefore, by Theo-

rem 4.1, there exists a smooth function h ∈ C∞o (Sn−1) (in fact, h ∈ Hn
m for somem ∈ N)

such that

(3i−1φi)(K) = i!

∫
Sn−1

h(u) dS1(K, u). (4.8)

The normalizing coefficient i! is chosen for convenience, as will become clear below.
From (2.21), the fact that �n is self-adjoint, and definition (3.2), it follows that (4.8) can
be rewritten in the following way:

(3i−1φi)(K) = i!

∫
Sn−1

hK(u)�nh(u) du = 〈hK , ν3i−1φi
〉.

In particular, ν3i−1φi
= i!�nh.
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Since the pairing (3.12) is biinvariant under the (simultaneous) action of SO(n), and
the spaces Hn

k are self-dual as SO(n)-modules, the restriction of the Poincaré duality map
to 0λ defines a linear SO(n)-equivariant map from 0λ to Hn

k , that is,

pd |0λ ∈ HomSO(n)(0λ,Hn
k ).

Since both 0λ and Hn
k are SO(n)-irreducible, it follows from Schur’s lemma that pd |0λ

and thus the left hand side of (4.7), can only be non-zero when 0λ and Hn
k are isomorphic,

that is, when (λ1, . . . , λbn/2c) = (k, 0, . . . , 0). Similarly, the right hand side of (4.7) can
only be non-zero if (λ1, . . . , λbn/2c) = (k, 0, . . . , 0). We may therefore assume that φi is
spherical. But if φi ∈ Val∞,sph

i , then, by (4.8) and (4.2), we have

φi(K) =

∫
Sn−1

h(u) dSi(K, u) = Eih.

In this case, it follows from [17, Proposition 4.11] that

〈Eih,En−if 〉 =
(n− i)!i!

(n− 1)!

∫
Sn−1

h(u)�nf (−u) du. (4.9)

Using again the fact that �n is self-adjoint and ν3i−1φi
= i!�nh, we obtain

〈φi,En−if 〉 =
(n− i)!

(n− 1)!
〈f ◦ a, ν3i−1φi

〉,

which is the desired relation. ut

5. Proof of the main results

We also discuss a more precise version of Theorem 2 for homogeneous Minkowski valua-
tions in dimensions n ≤ 4. At the end of the section we include a result on approximation
of continuous Minkowski valuations by smooth ones.

We begin with the following slightly more precise version of Theorem 3(a).

Theorem 5.1. For 1 ≤ i ≤ n − 1, the isomorphism Ei : C∞o (Sn−1)→ Val∞,sph
i admits

a unique extension by continuity in the weak topologies to an isomorphism

Ẽi : C−∞o (Sn−1)→ Val−∞,sph
i .

That is, the diagram

C∞o (Sn−1)
Ei //

��

_�

�

Val∞,sph
i

��

_�

pd
�

C−∞o (Sn−1)
Ẽi // Val−∞,sph

i

commutes and the vertical maps have dense image.
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Proof. First recall that Val−∞,sph
i is the annihilator of the subspace spanned by all SO(n)-

irreducible subspaces of Val∞n−i which are non-spherical. Hence, using Theorem 4.1, we

can define a map Ẽi : C−∞o (Sn−1)→ Val−∞,sph
i by

〈̃Eiν, φn−i〉 =
i!

(n− 1)!
〈ν, (�n ◦ a

∗
◦ E−1

1 ◦3
n−i−1)φn−i〉, (5.1)

where φn−i ∈ Val∞n−i and a∗ denotes the pullback by the antipodal map. Since �n and a∗

are self-adjoint, (4.9) shows that Ẽi continuously extends Ei .
Since Ei is SO(n)-equivariant and injective, Ẽi is also injective. To prove that Ẽi is

surjective, let ξ ∈ Val−∞,sph
i be given and note that ξ ◦ En−i ∈ C−∞o (Sn−1). If we set

ν =
(n− 1)!
(n− i)!i!

ξ ◦ En−i ◦ a∗ ◦�−1
n ∈ C

−∞
o (Sn−1)

and use the fact that, by (4.2),

(E−1
1 ◦3

n−i−1)En−if = (n− i)!f,

then, by (5.1),
〈̃Eiν,En−if 〉 = 〈ξ,En−if 〉

for all f ∈ C∞o (Sn−1), that is, Ẽiν = ξ . Clearly, the map Ẽ−1
i thus defined is continuous.

ut

In the next lemma, which is crucial for the proof of Theorem 3(b), and in all that follows,
the letter C will denote a constant that can be different from one line to the next and that
depends only on the dimension n.

Lemma 5.2. There exists a constant C > 0 such that

‖f ‖C2 ≤ C‖�nf ‖C0

for every SO(n− 1)-invariant f ∈ C2
o(Sn−1).

Proof. For q ∈ R, we consider the linear differential operator Dq : C2(Sn−1) →

C(Sn−1) defined by
Dqf = 1Sf + qf.

Note that Dq is SO(n)-equivariant and Dn−1 = (n − 1)�n. Moreover, by (2.20), the
operator Dq is injective and has dense image for every q 6= k(k + n − 2), k ≥ 0. If
q = k(k + n− 2) for some k ≥ 0, then the kernel of Dq is Hn

k .
First, we show that there exists a constant C > 0 such that for k = 1, 2,

|∇
kf |0 := max

Sn−1
|∇
kf | ≤ C(‖f ‖C0 + ‖Dqf ‖C0) (5.2)

for every SO(n− 1)-invariant f ∈ C2(Sn−1), and therefore, by (2.1),

‖f ‖C2 ≤ C(‖f ‖C0 + ‖Dqf ‖C0). (5.3)
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Using the cylindrical coordinates (2.2) and expressions (2.7) and (2.8), we see that in
order to prove (5.2), it suffices to prove that

|∂tf |0 := sup
(−1,1)

∣∣∣∣∂f∂t
∣∣∣∣ ≤ C(‖f ‖C0 + ‖Dqf ‖C0), (5.4)

|(1− t2)∂t tf |0 := sup
(−1,1)

∣∣∣∣∣(1− t2)∂2f

∂t2

∣∣∣∣∣ ≤ C(‖f ‖C0 + ‖Dqf ‖C0), (5.5)

for every SO(n−1)-invariant f ∈ C2(Sn−1). Since (1− t2)∂t tf = 1Sf +(n−1)t∂tf by
(2.6), it follows that (5.5) is actually an immediate consequence of (5.4) and the definition
of Dq . Thus, to prove (5.2), we only have to show that (5.4) holds for every SO(n − 1)-
invariant f ∈ C2(Sn−1).

Let f ∈ C2(Sn−1) be SO(n − 1)-invariant. Since |∇f | and |∇2f | are bounded
on Sn−1, it follows from (2.8) that ∂tf is bounded on (−1, 1). Assume that |∂tf | attains
its maximum at t0 ∈ (−1, 1). Since, by (2.6),

1Sf = (1− t2)∂t tf − (n− 1)t∂tf = (1− t2)1−(n−1)/2∂t
(
(1− t2)(n−1)/2∂tf

)
,

it follows from the definition of Dq that

(1− t20 )
(n−1)/2∂tf (t0) =

∫ t0

−1
∂t ((1− t2)(n−1)/2∂tf (t)) dt

=

∫ t0

−1
(1− t2)(n−1)/2−1(Dqf (t)− qf (t)) dt,

and hence
|(1− t20 )

(n−1)/2∂tf (t0)| ≤ C(‖f ‖C0 + ‖Dqf ‖C0). (5.6)

This shows that we may assume that |t0| ≥ α for some fixed α > 0, as otherwise (5.6)
implies (5.4). But since ∂t tf (t0) = 0, we conclude from (2.6) that

−(n− 1)t0∂tf (t0) = Dqf (t0)− qf (t0),

which also yields |∂tf (t0)| ≤ C(‖f ‖C0 + ‖Dqf ‖C0). Hence, we have shown that

|∂tf |0 ≤ max
{
C(‖f ‖C0 + ‖Dqf ‖C0), lim sup

t→±1
|∂tf (t)|

}
(5.7)

and it remains to bound lim supt→±1 |∂tf (t)| in terms of ‖f ‖C0 and ‖Dqf ‖C0 . To do
this, note that, by (2.6), ∂tf is a bounded solution on (−1, 1) of the differential equation

y′(t)−
(n− 1)t
1− t2

y(t) =
Dqf (t)− qf (t)

1− t2
.

All solutions of this equation are given by

y(t) = (1− t2)−(n−1)/2
(∫ t

−1

Dqf (s)− qf (s)
(1− s2)1−(n−1)/2 ds + c

)
,



1874 Franz E. Schuster, Thomas Wannerer

where c ∈ R. Since ∂tf is bounded, we must have

∂tf (t) = (1− t2)−(n−1)/2
∫ t

−1

Dqf (s)− qf (s)
(1− s2)1−(n−1)/2 ds, (5.8)

and ∫ 1

−1

Dqf (s)− qf (s)
(1− s2)1−(n−1)/2 ds = 0. (5.9)

Consequently,

lim sup
t→1

|∂tf (t)| = lim sup
t→1

(1− t2)−(n−1)/2
∣∣∣∣∫ 1

t

Dqf (s)− qf (s)
(1− s2)1−(n−1)/2 ds

∣∣∣∣
≤ lim sup

t→1

1− t
1− t2

‖Dqf − qf ‖C0 ≤ C(‖f ‖C0 + ‖Dqf ‖C0).

Similarly, lim supt→−1 |∂tf (t)| ≤ C(‖f ‖C0 +‖Dqf ‖C0), which, by (5.7), completes the
proof of (5.4), and thus of (5.2) and (5.3).

Next, assume that q < 0 and note that at a point x0 where |f (x0)| is maximal, we
have signf (x0) = −sign1Sf (x0). Therefore, there exists a C > 0 such that

‖f ‖C0 ≤ C‖Dqf ‖C0

for every f ∈ C2(Sn−1). Consequently, we deduce from (5.3) that

‖f ‖C2 ≤ C‖Dqf ‖C0

for every SO(n − 1)-invariant f ∈ C2(Sn−1). From this, together with the fact that
Dq : C2(Sn−1)→ C(Sn−1) is injective and has dense image, we conclude that

D−1
q : C(S

n−1)SO(n−1)
→ C2(Sn−1)SO(n−1) ↪→ C(Sn−1)SO(n−1)

exists and is bounded. Recall that C(Sn−1)SO(n−1) denotes the Banach subspace of all
SO(n − 1)-invariant functions in C(Sn−1), and C2(Sn−1)SO(n−1) is defined similarly.
Moreover, the Arzelà–Ascoli theorem implies that D−1

q is compact.
Now, choosem > n−1 and set q = n−m−1 < 0. Applying the Fredholm alternative

(see, e.g., [22, Theorem 5.3]) to D−1
q : Co(Sn−1)SO(n−1)

→ Co(Sn−1)SO(n−1) shows that
either

f +mD−1
q f = 0 (5.10)

has a non-trivial solution f ∈ Co(Sn−1)SO(n−1), or

f +mD−1
q f = D−1

q h (5.11)

has a solution for every h ∈ Co(Sn−1)SO(n−1). In the latter case, the operator
(Id+mD−1

q )−1 is bounded. However, since

Dq(f +mD−1
q f ) = 1Sf + (n− 1)f = 0
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for f ∈ Co(Sn−1)SO(n−1) implies that f = 0, equation (5.10) has no non-trivial solution
in Co(Sn−1)SO(n−1), and thus (5.11) is solvable for every h ∈ Co(Sn−1)SO(n−1), that is,
h = 1Sf + (n− 1)f is solvable for every h ∈ Co(Sn−1)SO(n−1) and

‖f ‖C0 = ‖(Id+mD−1
q )−1D−1

q h‖C0 ≤ C‖D−1
q h‖C0 ≤ C‖h‖C0 = C‖Dn−1f ‖C0 .

Combining this with (5.3) for q = n− 1 and recalling that Dn−1 = (n− 1)�n completes
the proof of the lemma. ut

We remark that Lemma 5.2 without the assumption of SO(n−1)-invariance does not hold
in general.

Using Lemma 5.2 and Proposition 4.4, we can now complete the proof of Theo-
rem 3(b).

Proof of Theorem 3(b). Let φi ∈ ValSO(n−1)
i , 1 ≤ i ≤ n − 1, and recall that, by Propo-

sition 3.6, every SO(n − 1)-invariant valuation is spherical. Hence, by Proposition 3.4,
we can use the Poincaré duality map to identify φi with a generalized valuation from
Val−∞,sph

i . By Proposition 4.4,

〈φi,En−if 〉 =
(n− i)!

(n− 1)!
〈f ◦ a, ν3i−1φi

〉

for f ∈ C∞o (Sn−1). Since 3i−1φi is 1-homogeneous, ν3i−1φi
∈ C−∞o (Sn−1) is of order

at most 2 (cf. Example 3.1(b)). Hence, φi ◦ En−i ∈ C−∞o (Sn−1) defines an SO(n − 1)-
invariant distribution of order at most 2.

At the same time, by Theorem 5.1, φi = Ẽiγ for a unique γ ∈ C−∞o (Sn−1), and since
φi is SO(n − 1)-invariant, so is γ . We want to show that γ is of order 0, and thus in fact
a measure. To this end, first note that, by (5.1),

φi ◦ En−i =
(n− i)!i!

(n− 1)!
γ ◦�n ◦ a

∗.

Now, for f ∈ C∞o (Sn−1), let

f̄ =

∫
SO(n−1)

ϑf dϑ = δē ∗ f

denote the SO(n − 1)-rotational symmetrization of f . Clearly, ‖f̄ ‖C0 ≤ ‖f ‖C0 . More-
over, it is not difficult to show (cf. [53, Theorem 6.30]) that the SO(n−1)-invariance of γ
implies γ (f ) = γ (f̄ ). Consequently, using Lemma 5.2, we obtain

|γ (f )| = |γ (f̄ )| = C|(φi ◦ En−i ◦ a∗)(�−1
n f̄ )| ≤ C‖�−1

n f̄ ‖C2 ≤ C‖f̄ ‖C0 ≤ C‖f ‖C0 ,

that is, γ is of order 0 and therefore a measure.
In the case i = n − 1, it follows from the result of McMullen [48] described in

Example 3.1(c) that in fact φi ∈ Ẽi(Co(Sn−1)). ut

In the same way as Theorem 4.1 implies Corollary 4.3, we can now use Theorem 3(b)
and an approximation argument to deduce Theorem 2.



1876 Franz E. Schuster, Thomas Wannerer

Proof of Theorem 2. By Lemma 3.2, we have to show that for every SO(n)-equivariant
Fi ∈ CVali , 1 ≤ i ≤ n − 1, there exist unique SO(n − 1)-invariant measures µi in
Mo(Sn−1), 1 ≤ i ≤ n− 2, and an SO(n− 1)-invariant function fn−1 ∈ Co(Sn−1), such
that for 1 ≤ i ≤ n− 2,

Fi,K = Si(K, ·) ∗ µi, (5.12)
Fn−1,K = Sn−1(K, ·) ∗ fn−1, (5.13)

for every K ∈ Kn.
Since (5.13) can be proved, using Theorem 3(b), in exactly the same way as (4.4) was

deduced from Theorem 4.1, we only explain the proof of (5.12) here. First, letK ∈ Kn be
such that hK ∈ C∞(Sn−1) and K has positive curvature. Then the area measure Si(K, ·)
of K is absolutely continuous with respect to spherical Lebesgue measure with a smooth
density function si(K, ·) ∈ C∞o (Sn−1) (see, e.g., [56, Chapter 2.5]). We want to show
that if ϕi ∈ Valsph

i denotes the SO(n− 1)-invariant associated real valued valuation of Fi ,
1 ≤ i ≤ n− 2, then there exists a unique SO(n− 1)-invariant µi ∈Mo(Sn−1) such that

ϕi(K) =

∫
Sn−1

si(K, u) dµi(u). (5.14)

To this end, note that, by Theorem 3, there exists a unique SO(n − 1)-invariant µi in
Mo(Sn−1) such that ϕi = Ẽiµi . Moreover, a result of Bernig and Faifman [15, p. 11]
implies that

ϕi(K) = 〈ϕi, ψ
K
n−i〉, (5.15)

where ψKn−i ∈ Val∞n−i is given by the mixed volume

ψKn−i(L) =

(
n

i

)
V (L[n− i],−K[i]).

Now, let fi,j ∈ C∞o (Sn−1), j ∈ N, be a sequence of smooth functions which converges
weakly to µi . Then, by (5.15) and Proposition 4.4, we have

ϕi(K) = lim
j→∞
〈̃Eifi,j , ψKn−i〉 =

i!

(n− 1)!
lim
j→∞
〈fi,j ◦ a, ν3n−i−1ψKn−i

〉.

Using the definitions of ψKn−i and 3 it is not difficult to show that

(3n−i−1ψKn−i)(L) =
n!

i!
V (L,B[n− i−1],−K[i]) =

(n− 1)!
i!

∫
Sn−1

hL(u)dSi(−K, u).

Thus, using dSi(−K, u) = si(K,−u) du and the definition of ν3n−i−1ψKn−i
, we obtain

ϕi(K) = lim
j→∞

∫
Sn−1

si(K, u)fi,j (u) du =

∫
Sn−1

si(K, u) dµi(u),

which completes the proof of (5.14).
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From the definition of ϕi , (5.14), and (2.17), we now obtain

Fi,K(η̄) = ϕi(η
−1K) =

∫
Sn−1

si(K, ηu) dµi(u) = (si(K, ·) ∗ µi)(η̄).

Since both sides depend continuously on K , (5.12) follows from the fact that convex
bodies with smooth support functions and positive curvature are dense in Kn. ut

The following consequence of Theorem 2 for homogeneous Minkowski valuations in-
cludes a slight improvement for dimensions n ≤ 4 which we deduce from the existence
of the derivation operator 3 :MVal→MVal and the estimate (3.5).

Corollary 5.3. Let 8i : Kn → Kn be a continuous, translation-invariant, and SO(n)-
equivariant Minkowski valuation of degree i ∈ {0, . . . , n}.

(i) If i = 0, then 80K = c0B for some c0 ≥ 0 and every K ∈ Kn.
(ii) If 1 ≤ i ≤ n − 2, then there exists a unique SO(n − 1)-invariant µi ∈Mo(Sn−1)

such that h8iK = Si(K, ·) ∗ µi for every K ∈ Kn.
(iii) If i = n− 1, then there exists a unique SO(n− 1)-invariant fn−1 ∈ Co(Sn−1) such

that h8n−1K = Sn−1(K, ·) ∗ fn−1 for every K ∈ Kn.
(iv) If i = n, then 8nK = cnVn(K)B for some cn ≥ 0 and every K ∈ Kn.
Moreover, if n = 3 or n = 4, then the measures µi , i = 1, 2, from (ii) are absolutely
continuous with respect to spherical Lebesgue measure with densities in L2

o(Sn−1).
Proof. (i)–(iv) are direct consequences of Theorem 2, so we only have to prove the ab-
solute continuity of µi , i = 1, 2, for n ≤ 4. To this end, first note that 3i−18i ∈ MVal1
is SO(n)-equivariant, and if ϕi ∈ Vali is the associated real valued valuation of 8i , then
3i−1ϕi ∈ Val1 is associated with 3i−18i . Thus, it follows easily from (ii), (4.2), (2.21)
and the fact that multiplier transformations commute that for every K ∈ Kn,

h3i−18iK
= i!S1(K, ·) ∗ µi = i!hK ∗�nµi . (5.16)

Hence, the distribution determined by 3i−1ϕi ∈ Val1 (cf. Example 3.1(b)) is given by
i!�nµi . Since µi is SO(n − 1)-invariant, so is i!�nµi , and it follows from (2.12) and
(2.22) that the Fourier expansion of i!�nµi is given by

i!�nµi ∼ i!
∞∑
k=0

N(n, k)

ωn

(1− k)(k + n− 1)
n− 1

ank [µi]P
n
k (. · ē).

Therefore, using (5.16), (2.18), and (3.5), we deduce that there exists an absolute constant
C > 0 such that for every k ≥ 2,

|ank [µi]| ≤ C
i!(n− 1)

(k − 1)(k + n− 1)
. (5.17)

But since (N(n, k)/ωn)1/2P nk (.· ē) forms an orthonormal sequence in L2(Sn−1) (see, e.g.,
[28, p. 84]) and, by (2.10), N(n, k) = O(kn−2) as k→∞, we see that

µi ∼

∞∑
k=0

N(n, k)

ωn
ank [µi]P

n
k (. · ē)

converges in L2(Sn−1) as long as n ≤ 4. ut
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Corollary 5.3(iii) was previously obtained by the first author [59], as already explained in
Example 3.1(c). The case i = 1 of Corollary 5.3(ii) can be reformulated as follows (cf.
(5.16)): There exists a unique SO(n − 1)-invariant µ1 ∈ Mo(Sn−1) such that for every
K ∈ Kn,

h81K = hK ∗�nµ1. (5.18)

Comparing (5.18) with the corresponding result (3.3) of Kiderlen [36] shows that we
have slightly improved the latter by proving that the SO(n − 1)-invariant distribution
ν1 ∈ C

−∞
o (Sn−1) of order at most 2 determined by 81 is always of the form ν1 = �nµ1

for some SO(n− 1)-invariant µ1 ∈Mo(Sn−1).
Note that the estimate (5.17) is not strong enough to deduce that µi is absolutely

continuous in higher dimensions, as can be seen for example from the spherical Radon
(or Minkowski–Funk) transform R : C(Sn−1)→ C(Sn−1) defined by

Rf = f ∗ µSn−2 ,

where µSn−2 ∈ M(Sn−1) is uniformly concentrated on Sn−1
∩ ē⊥. Clearly, µSn−2 is

SO(n − 1)-invariant but not absolutely continuous with respect to spherical Lebesgue
measure. However, |ank [µSn−2 ]| = O(k1−n/2) as k→∞ [28, Lemma 3.4.8].

Finally, we remark that Corollary 5.3(ii) does not leave much room for improvement
since the zonal functions ğj associated with Berg’s functions are not continuous on Sn−1

for n, j ≥ 3 and they do not lie in L2
o(Sn−1) but merely in L1

o(Sn−1) for n, j ≥ 5.
However, they are generating functions of the normalized mean section operators Mj as
described in Example 3.1(d).

We conclude this section with a result on approximation of continuous Minkowski
valuations by smooth ones which generalizes a corresponding result for even Minkowski
valuations of the first author [60] and will be useful in the last section.

Corollary 5.4. Every continuous, translation-invariant, and SO(n)-equivariant Min-
kowski valuation can be approximated uniformly on compact subsets of Kn by smooth,
translation-invariant, and SO(n)-equivariant Minkowski valuations.

Proof. Let 8 ∈MVal be SO(n)-equivariant and let

h8K = c0 +

n−2∑
i=1

Si(K, ·) ∗ µi + Sn−1(K, ·) ∗ fn−1 + cnVn(K) (5.19)

be the convolution representation of 8 according to Theorem 2. We define a sequence
8j ∈MVal, j ∈ N, of SO(n)-equivariant Minkowski valuations by

h8jK = h8K ∗ ζj , K ∈ Kn,

where ζj , m ∈ N, is a spherical approximate identity. Note that since ζj ≥ 0, 8j is well
defined by the result of Kiderlen [36] described at the end of Example 3.1(b). Using (2.19)
and the SO(n)-equivariance of 8, it is easy to show that 8j converges to 8 on compact
subsets (cf. the proof of [60, Theorem 6.5]).
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It remains to show that the Minkowski valuations 8j are smooth, that is, the associ-
ated real valued valuations ϕj ∈ Valsph are smooth. To this end note that by the linearity
of convolution, the fact that µi ∗ ζj , fn−1 ∗ ζj ∈ C

∞(Sn−1), and (2.17), we have

ϕj (K) = c0 +

n−2∑
i=1

∫
Sn−1

(µi ∗ ζj )(u) dSi(K, u)

+

∫
Sn−1

(fn−1 ∗ ζj )(u) dSn−1(K, u)+ cnVn(K).

Thus, an application of Theorem 4.1 completes the proof. ut

6. Integral geometry of Minkowski valuations

In this final section we apply Theorem 2 to establish a Crofton formula for continuous,
translation-invariant, and SO(n)-equivariant Minkowski valuations. Combining this with
Hadwiger’s general kinematic formula allows us also to deduce a kinematic formula for
such Minkowski valuations.

We begin by recalling the classical Crofton formula (see, e.g., [39, p. 124]) for intrin-
sic volumes: For 0 ≤ i, j ≤ n and K ∈ Kn, we have∫

AGrn−i,n
Vj (K ∩ E) dσn−i(E) =

[
i + j

j

]
Vi+j (K). (6.1)

Here, AGri,n denotes the affine Grassmannian of i planes in Rn, and σi is the rigid-
motion-invariant measure on AGri,n normalized in such a way that the set of planes having
non-empty intersection with the Euclidean unit ball in Rn has measure[

n

i

]
κn−i :=

(
n

i

)
κn

κi
.

The Crofton formula (6.1) is intimately related to the general kinematic formula: For
0 ≤ j ≤ n and K,L ∈ Kn, we have∫

SO(n)
Vj (K ∩ gL) dg =

n−j∑
i=0

[
i + j

j

][
n

i

]−1

Vi+j (K)Vn−i(L), (6.2)

where SO(n) = SO(n)nRn (see [39, 58] for more information).
The obvious connection between (6.1) and (6.2) is just a special case of Hadwiger’s

general integral geometric theorem [58, p. 173], which states in the translation-invariant
case that for every φ ∈ Val and K,L ∈ Kn, we have∫

SO(n)
φ(K ∩ gL) dg =

n∑
i=0

Vn−i(L)

[
n

i

]−1 ∫
AGrn−i,n

φ(K ∩ E) dσn−i(E). (6.3)

Applying (6.3) to the real valued associated valuation of an SO(n)-equivariant Min-
kowski valuation8 ∈MVal immediately yields the following kinematic formula for such
Minkowski valuations.
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Corollary 6.1. If 8 ∈MVal is SO(n)-equivariant, then∫
SO(n)

h8(K∩gL)(u) dg =

n∑
i=0

Vn−i(L)

[
n

i

]−1 ∫
AGrn−i,n

h8(K∩E)(u) dσn−i(E) (6.4)

for every K,L ∈ Kn and u ∈ Sn−1.

Note that the sum on the right hand side of (6.4) is again the support function of a convex
body. Thus, it remains to determine the Crofton integral in (6.4). In view of Lemma 3.2
and Theorem 2, this is accomplished by our final result.

Theorem 6.2. Suppose that 1 ≤ j ≤ n − 2 and 1 ≤ i ≤ n − j − 1. If Fj ∈ CValj is
SO(n)-equivariant and, for K ∈ Kn, given by

Fj,K = Sj (K, ·) ∗ µ

for some (uniquely determined) SO(n− 1)-invariant measure µ ∈Mo(Sn−1), then∫
AGrn−i,n

Fj,K∩E dσn−i(E) = qn,i,jSi+j (K, ·) ∗ (µ ∗�n−j+1ğn−i−j+1), (6.5)

where qn,i,j = 2i
i!κi

∏i+j−1
k=j cn,k with

cn,k =
k(n− k − 1)(n− k + 1)κ2

n−k−2κn−k+1κk

2(n− k)(k + 1)κn−k−3κ
2
n−kκk−1

.

Proof. Consider the isomorphism 2j : C
∞
o (Sn−1)→ C∞o (Sn−1) defined by

2jf = cn,j�n−j+1f ∗ ğn−j = cn,jf ∗�n−j+1ğn−j .

Here and in (6.5), �k ğl is to be understood in the sense of distributions, where we use the
canonical extension of the self-adjoint operator �k to C−∞o (Sn−1).

Now, let us first assume that Fj is smooth, that is, µ is absolutely continuous with
respect to spherical Lebesgue measure with density f ∈ C∞o (Sn−1). In this case it was
proved by the authors [62, Theorem 6.3] that∫

AGrn−1,n

Fj,K∩E dσn−1(E) = Sj+1(K, ·) ∗2jf. (6.6)

In order to obtain from this the more general formula (6.5), we use the following well
known relation (which can be proved by induction using Crofton’s formula; see, e.g., [39,
p. 124]):∫

AGrn−i,n
f (E) dσn−i(E)

=
2i

i!κi

∫
AGrn−1,n

· · ·

∫
AGrn−1,n

f (E1 ∩ · · · ∩ Ei) dσn−1(E1) · · · dσn−1(Ei)
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for every Borel measurable f ∈ L1(AGrn−i,n). Comparing this with (6.6), we obtain∫
AGrn−i,n

Fj,K∩E dσn−i(E) =
2i

i!κi
Si+j (K, ·) ∗2i+j−1 · · ·2j+12jf. (6.7)

Next, note that if τē = δē−π1δē ∈Mo(Sn−1), where δē is the Dirac measure at ē ∈ Sn−1,
then, by (2.18), f ∗ τē = f for every f ∈ C∞o (Sn−1). But since �k ğk = τē, (6.5) follows
from (6.7) and the definition of 2j .

In order to establish (6.5) in the general case, where Fj is merely continuous, we
use a spherical approximate identity ζk , k ∈ N, (instead of repeating the arguments from
the proof of [62, Theorem 6.3]) to define F kj,K = Fj,K ∗ ζk for every K ∈ Kn. Then
F kj ∈ CValj is SO(n)-equivariant and smooth, and by what we have already shown and
the fact that multiplier transformations commute,∫

AGrn−i,n
F kj,K∩E dσn−i(E) = qn,i,jSi+j (K, ·) ∗ (µ ∗�n−j+1ğn−i−j+1) ∗ ζk.

Letting now k→∞, we obtain (6.5) from Lemmas 2.5 and 2.6. ut

We conclude with the remark that equivalent forms of Theorem 6.2 were obtained very
recently, independently, and using different approaches by Bernig and Hug [17] and
Goodey, Hug, and Weil [23].
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