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Abstract. Let M(χ) denote the maximum of |
∑
n≤N χ(n)| for a given non-principal Dirichlet

character χ modulo q, and let Nχ denote a point at which the maximum is attained. In this article
we study the distribution of M(χ)/

√
q as one varies over characters modulo q, where q is prime,

and investigate the location of Nχ . We show that the distribution of M(χ)/
√
q converges weakly

to a universal distribution 8, uniformly throughout most of the possible range, and get (doubly
exponential decay) estimates for 8’s tail. Almost all χ for which M(χ) is large are odd characters
that are 1-pretentious. Now, M(χ) ≥ |

∑
n≤q/2 χ(n)| = (|2 − χ(2)|/π)

√
q |L(1, χ)|, and one

knows how often the latter expression is large, which has been how earlier lower bounds on8 were
mostly proved. We show, though, that for most χ with M(χ) large, Nχ is bounded away from q/2,
and the value of M(χ) is little larger than (

√
q/π)|L(1, χ)|.

Keywords. Distribution of character sums, distribution of Dirichlet L-functions, pretentious mul-
tiplicative functions, random multiplicative functions
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1. Introduction

For a given non-principal Dirichlet character χ modulo q, where q is an odd prime, let

M(χ) := max
1≤x≤q

∣∣∣∑
n≤x

χ(n)

∣∣∣.
This quantity plays a fundamental role in many areas of number theory, from modular
arithmetic to L-functions. Our goal in this paper is to understand how often M(χ) is
large, and to gain insight into the structure of those characters χ modulo q for which
M(χ) is large.

It makes sense to renormalize M(χ) by defining

m(χ) =
M(χ)

eγ
√
q/π

,

and we believe that
m(χ) ≤ (1+ oq→∞(1)) log log q, (1.1)

where γ is the Euler–Mascheroni constant. Rényi [Rén47] observed that m(χ) ≥ c +

oq→∞(1) with c = e−γπ/
√

12 = 0.509 . . .
Upper bounds on M(χ) (and hence on m(χ)) have a rich history. The 1919 Pólya–

Vinogradov Theorem states that
m(χ)� log q

for all non-principal characters χ modulo q. Apart from some improvements on the im-
plicit constant [Hil88, GS07], this remains the state-of-the-art for the general non-princi-
pal character, and any improvement of this bound would have immediate consequences
for other number-theoretic questions (see e.g. [BG16]). Montgomery and Vaughan
[MV77] (as improved in [GS07]) have shown that the Generalized Riemann Hypothe-
sis implies

m(χ) ≤ (2+ oq→∞(1)) log log q;

whereas, for every prime q, there are characters χ modulo q for which

m(χ) ≥ (1+ oq→∞(1)) log log q

(see [BC50, GS07], which improve on Paley [Pal32]), so the conjectured upper bound
(1.1) is the best one could hope for. However, for the vast majority of the characters
χ modulo q, M(χ) is somewhat smaller, and so we study the distribution function

8q(τ ) :=
1

ϕ(q)
#{χ (mod q) : m(χ) > τ }.

Montgomery and Vaughan [MV79] showed that 8q(τ ) �C τ−C for all τ ≥ 1 for
any fixed C ≥ 1 (they equivalently phrase this in terms of the moments of M(χ)). This
was recently improved by Bober and Goldmakher [BG13], who proved that, for τ fixed
and as q →∞ through the primes,

exp
{
−
eτ+A

τ
(1+O(1/

√
τ))

}
≤ 8q(τ ) ≤ exp

{
−Be

√
τ/(log τ)1/4}, (1.2)
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where B is some positive constant and

A = log 2− 1−
∫ 2

0

log I0(t)

t2
dt −

∫
∞

2
(log I0(t)− t)

dt

t2
= 0.088546 . . . , (1.3)

and I0(t) is the modified Bessel function of the first kind given by

I0(t) =
∑
n≥0

(t2/4)n

n!2
. (1.4)

We improve upon these results and demonstrate that8q(τ ) decays in a double exponential
fashion:

Theorem 1.1. Let η = e−γ log 2. If q is a prime number, and 1 ≤ τ ≤ log log q −M for
some M ≥ 4, then

exp
{
−
eτ+A−η

τ
(1+O(ε1))

}
≤ 8q(τ ) ≤ exp

{
−
eτ−2−η

τ
(1+O(ε2))

}
,

where
ε1 = (log τ)2/

√
τ + e−M/2 and ε2 = (log τ)/τ.

The proof implies that 1+ oτ→∞(1) of the characters for which m(χ) > τ are odd, so it
makes sense to consider odd and even characters separately. Hence we define

8±q (τ ) =
1

φ(q)/2
#{χ (mod q) : χ(−1) = ±1 and m(χ) > τ }. (1.5)

We outline the proof of Theorem 1.1 in Section 4, and fill in the details in subsequent
sections. The range of uniformity barely misses implying the upper bound in (1.1); even
so, it does show that m(χ) is rarely large. Calculations reveal that 8q ,8+q ,8

−
q each tend

to a universal distribution function 8,8+,8−, and we will show this for 8q later on. In
Figure 1 we graph 8q(τ ) for a typical q.

Notice that 8q(τ ) = 1 for all τ ≤ .7227, and then it decays quickly: 8q(1) ≈ .697,
8q(2) ≈ 0.0474 and 8q(3) ≈ .000538. For more computational data, the reader is
invited to consult Table 1 in Section 10.

The distribution of |L(1, χ)|, for q prime, decays similarly [GS06]:

8Lq (τ ) :=
1

φ(q)
#{χ (mod q) : |L(1, χ)| > eγ τ } = exp

{
−
eτ+A

τ
(1+O(ε3))

}
(1.6)

with ε3 = τ
−1/2
+ e−M/2, uniformly for 1 ≤ τ ≤ log log q −M , M ≥ 1. This similarity

is no accident, since for an odd, non-primitive character χ modulo q, the average of the
character sum is

E1≤N≤q

(∑
n≤N

χ(n)
)
=

G(χ)
iπ

L(1, χ),
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Fig. 1. 8q , 8+q , and 8−q for q = 12000017.

where G(χ) is the Gauss sum, so that |G(χ)| = √q. In particular, if L(1, χ) is large, then
so is m(χ). Moreover, for χ as above, we have the pointwise formula∑

n≤q/2

χ(n) = (2− χ(2))
G(χ)
iπ

L(1, χ),

which implies that

m(χ) ≥ 2e−γ
∣∣∣∣∏
p>2

(
1−

χ(p)

p

)−1∣∣∣∣,
a little larger than |L(1, χ)| if |1−χ(2)| � 1. The distribution of 2|

∏
p>2(1−χ(p)/p)

−1
|

can be analyzed in the same way as the distribution of |L(1, χ)|. However, even if
χ(2) = 1, then we can show that the average of our character sum up to N is slightly
larger than |L(1, χ)| when N is close to q/2. This builds on ideas in [Bob14].

Theorem 1.2. Let q be an odd prime, 1 ≤ τ ≤ log log q − C for a sufficiently large
absolute constant C. There exists a subset CLq (τ ) ⊂ {χ (mod q) : χ(−1) = −1,
|L(1, χ)| > eγ τ } of cardinality

#CLq (τ ) = (1+O(e−e
τ /τ )) · #{χ (mod q) : χ(−1) = −1, |L(1, χ)| > eγ τ } (1.7)

such that if χ ∈ CLq (τ ) and c > 0 is sufficiently large, then

Eq/2−q/τ c≤N≤q/2+q/τ c
[∣∣∣∣∑
n≤N

χ(n)−
G(χ)
iπ

(L(1, χ)+ log 2)
∣∣∣∣]� √q (log τ)2

√
τ

. (1.8)

We can deduce that

m(χ) ≥ τ + e−γ log 2+O((log τ)2/
√
τ).
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This result, together with (1.6), suggests that the lower bound in Theorem 1.1 should
be sharp, and that m(χ) ≈ e−γ (|L(1, χ)| + log 2) when these quantities are “large”.
However, the numerical evidence indicates that m(χ) is perhaps typically a little bigger
(see Figure 2).

4.0 4.1 4.2 4.3 4.4
4.0

4.1

4.2

4.3

4.4

Fig. 2. Scatter plot ofm(χ) (vertical axis) and e−γ (|L(1, χ)|+ log 2) for the 13617 odd characters
with |L(1, χ)| > 6.4, and q prime, 109

≤ q ≤ 109
+ 75543.

The numerical comparison between 8q and 8L−q (the |L(1, χ)|-distribution for odd
characters χ ) is given in Figure 3.
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4

5

Fig. 3. log(− log8L
−

q (τ )) − log(− log8−q (τ )), q = 12000017, with a dashed line indicating
e−γ log 2.

Even characters. The focus above has been on odd characters since almost all characters
with m(χ) > τ are odd. However, we can obtain analogous results for even characters.

Theorem 1.3. There exists an absolute constant c ≥ 1 such that if q is an odd prime and
1 ≤ τ ≤ (log log q −M)/

√
3 for some M ≥ 1, then

exp
{
−
e
√

3 τ+A
√

3 τ
(1+O(τ−1/2

+ e−M/2))

}
≤ 8+q (τ )� exp

{
−
e
√

3 τ

τ c

}
.
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Fig. 4. log(− log8L
−

3q (τ ))− log(− log8+q (τ )), q = 12000017.

The lower bound in the above theorem has the same shape as (1.6) and it might be close
to the truth, unlike the corresponding result for 8q (as explained by Theorem 1.2). This
is supported by computations, as can be seen in Figure 4.

The distribution function. Classically, the statistical behaviour of χ(n) as χ varies over
all non-principal characters modulo q is modelled by Xn, where the {Xp : p prime}
are independent random variables, each uniformly distributed on the unit circle U :=
{z ∈ C : |z| = 1}, and Xn = X

e1
p1 · · ·X

ek
pk for n = p

e1
1 · · ·p

ek
k . This suggests mod-

elling L(1, χ), χ modulo q, by L(1, X) =
∑
n≥1Xn/n. Indeed, in [GS03] this was

shown to be a very successful model. Similarly, one might guess that the distribution
of {

∑
n≤N χ(n)}χ (mod q), χ 6=χ0 could be accurately modelled by

∑
n≤N X(n) (and thus

M(χ) by M(X)), but this seems unlikely since, for fixed α ∈ (0, 1), we have

E
[∣∣∣∑
n≤αq

Xn

∣∣∣2] ∼ αq whereas
1

φ(q)

∑
χ (mod q)
χ 6=χ0

∣∣∣∑
n≤αq

χ(n)

∣∣∣2 ∼ α(1− α)q
as q →∞. Moreover Harper [Har13] recently showed that

∑
n≤N X(n) is not normally

distributed, and we have no idea what its distribution should be (though [CS12] shows
that

∑
N<n≤N+y X(n) is normally distributed provided y is not too large).

So, what is the right way to model M(χ)? One reason the above model failed is that
it does not take account of characters’ periodicity. The periodicity of χ , via the formula

q∑
n=1

χ(n)e(an/q) = χ(a)G(χ),

where e(x) = e2πix , leads to Pólya’s formula [MV07, (9.19), p. 311]:∑
n≤αq

χ(n) =
G(χ)
2πi

∑
1≤|n|≤z

χ(n)(1− e(−nα))
n

+O

(
1+

q log q
z

)
(1.9)

(which is periodic for α modulo 1). Since |G(χ)| = √q, this suggests modelling
M(χ)/(

√
q/2π) = 2eγm(χ) by the random variable
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S = max
0≤α≤1

∣∣∣∣∑
n∈Z
n 6=0

Xn(1− e(nα))
n

∣∣∣∣,
whereX−1 is a random variable independent of theXp’s, with probability 1/2 of being−1
or 1, and we have setX−n = X−1Xn. The infinite sum here converges with probability 1,1

so that S is well defined, and we can consider its distribution function,

8(τ) := Prob(S > 2eγ τ).

The following result confirms our intuition that S serves as a good model for 2eγm(χ).

Theorem 1.4. If b ≥ a > 0 and 8 is continuous at every point of [a, b], then the
sequence {8q}q prime of functions converges to 8 uniformly on [a, b]. In particular, the
sequence {8q}q prime of distributions converges weakly to 8.

Theorem 1.4 will be shown in Section 6. Since 8 is a decreasing function, it has at most
countably many discontinuities, and so Theorem 1.4 implies that limq→∞, q prime8q(τ )

= 8(τ) for almost all τ > 0. We conjecture that 8 is a continuous function.
We can prove that, for any τ ≥ 1,

exp
{
−
eτ−η+A

τ

(
1+O

(
(log τ)2
√
τ

))}
≤ 8(τ) ≤ exp

{
−
eτ−η−2

τ

(
1+O

(
log τ
τ

))}
by considering two points τ1 and τ2 where 8 is continuous, with τ1 < τ < τ2 so that
8(τ2) ≤ 8(τ) ≤ 8(τ1). We can bound 8(τ1) and 8(τ2) by Theorems 1.4 and 1.1, and
then the result follows by letting τ1 → τ− and τ2 → τ+.

Notation. Given a positive integer n, we let P+(n) and P−(n) be the largest and smallest
prime divisors of n, with the notational convention that P+(1) = 1 and P−(1) = ∞.
Furthermore, we write P(y, z) for the set of integers all of whose prime factors lie in
(y, z]. The symbol dk(n) denotes the number of ways n can be written as a product of k
positive integers. We denote by ω(n) the number of distinct primes that divide n, and by
�(n) the total number of prime factors of n, counting multiplicity. Finally, we use 1A for
the characteristic function of the set A. For example, 1(n,a)=1 equals 1 if (n, a) = 1 and
0 otherwise.

2. The structure of characters with large M(χ)

We now determine more precise information about the structure of characters with
large M(χ). We define Nχ < q/2 to be a positive integer such that M(χ) =
|
∑
n<Nχ

χ(n)|. (There is some ambiguity in the choice of Nχ ; our theorems apply to
any such integer.)

1 This follows by the methods of Section 5 applied to Xn in place of χ(n).
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Theorem 2.1. Let q be an odd prime and 1 ≤ τ ≤ log log q − C for a sufficiently large
absolute constant C. There exists a set Cq(τ ) ⊂ {χ (mod q) : m(χ) > τ } of cardinality

#Cq(τ ) = (1+O(e−e
τ /τ )) · #{χ (mod q) : m(χ) > τ } (2.1)

such that the following holds for every χ ∈ Cq(τ ):

(1) χ is an odd character.
(2) Let α = Nχ/q ∈ [0, 1], and a/b be the reduced fraction for which |α − a/b| ≤

1/(bτ 10) with b ≤ τ 10. Let b0 = b if b is prime, and b0 = 1 otherwise. Then∑
p≤eτ

p 6=b0

|1− χ(p)|
p

�
(log τ)3/4

τ 1/4 , (2.2)

m(χ) = e−γ
b0

φ(b0)

∣∣∣∣ ∏
p 6=b0

(
1−

χ(p)

p

)−1∣∣∣∣+O(√τ log τ). (2.3)

Granville and Soundararajan [GS07] showed that ifM(χ) is large then χ must pretend to
be a character ψ of small conductor and of opposite parity (that is, χ is “ψ-pretentious”).
Building on the techniques of [GS07], Theorem 2.2 shows that, for the vast majority of
characters with large M(χ), the character ψ is the trivial character, and χ must be odd
(and so 1-pretentious as in (2.2)).

The discrepancy between Theorem 1.1 and (1.6) means that the error term in (2.3)
cannot be made o(1).

Inequality (2.2) allows us to establish accurate estimates for
∑
n≤N χ(n) for all N .

Here and for the rest of the paper, for u ≥ 0 we set

P(u) = e−γ ·

∫ u

0
ρ(t) dt, (2.4)

where ρ is the Dickman–de Bruijn function, defined by ρ(u) = 1 for u ∈ [0, 1] and
via the differential-delay equation uρ′(u) = −ρ(u − 1) for u > 1. Then we have the
following estimate:

Theorem 2.2. Let q, τ, α, a, b, b0 and χ ∈ Cq(τ ) be as in Theorem 2.1. Given β ∈ [0, 1],
let k/` be the reduced fraction for which |β−k/`| ≤ 1/(`τ 10) with ` ≤ τ 10. Define u > 0
by |β − k/`| = 1/(`eτu).

(a) If b0 = 1, then

e−γπi

G(χ)
∑
n≤βq

χ(n) =

{
τ(1− P(u))+O((τ log τ)3/4) if ` = 1,
τ +O((τ log τ)3/4) if ` > 1.

(b) If b0 = b, then

e−γπi

G(χ)
∑
n≤βq

χ(n) = τ
1− 1/b

1− χ(b)/b
λ+O((τ log τ)3/4),
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where

λ =


1− P(u) if ` = 1,

1+ P(u)
(
χ(b)

b

)v−1 1− χ(b)
b − 1

if ` = bv , v ≥ 1,

1 otherwise.

Moreover, if we take α = β and write |α − a/b| = 1/(beτu0), then

(1− P(u0))
|1− χ(b)|2

b2 �
(log τ)3/4

τ 1/4 .

Notice that if β = k/` then P(u) = 1, so 1− P(u) is a measure of the distance between
β and k/`.

Theorems 2.1 and 2.2 will be proved in Section 9. Analogous results can also be
proven for even characters:

Theorem 2.3. Let q be an odd prime and 1 ≤ τ ≤ (1/
√

3) log log q−C for a sufficiently
large constant C. There exists a set C+q (τ ) ⊂ {χ (mod q) : χ(−1) = 1, m(χ) > τ } of
cardinality

#C+q (τ ) = (1+O(e−e
τ /τ )) · #{χ (mod q) : χ(−1) = 1, m(χ) > τ } (2.5)

such that the following statements hold for every χ ∈ C+q (τ ):

(1) If α = Nχ/q ∈ [0, 1], and a/b is the reduced fraction for which |α−a/b| ≤ 1/(bτ 10)

with b ≤ τ 10, then b = 3.
(2) We have

∑
p≤eτ

p 6=3

∣∣(p
3

)
− χ(p)

∣∣
p

�

√
log τ
τ
, (2.6)

m(χ) =
e−γ
√

3
2

∣∣∣∣L(1, χ
(
·

3

))∣∣∣∣+O(log τ). (2.7)

(3) Given β ∈ [0, 1], let k/` be the reduced fraction for which |β−k/`| ≤ 1/(`τ 10) with
` ≤ τ 10. Define u > 0 by |β − k/`| = 1/(`e

√
3 τu). Then

e−γπ

G(χ)
∑
n≤αq

χ(n) =

τP (u)
(
k

3

)
χ(3v−1)

3v−1 +O(
√
τ log τ) if ` = 3v for some v ≥ 1,

O(
√
τ log τ) otherwise.

The proof of Theorem 2.3 will be given in Section 8.
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3. Auxiliary results about smooth numbers

Before we get started with the proofs of our main results, we state and prove some facts
about smooth numbers. As usual, we set

9(x, y) = #{n ≤ x : P+(n) ≤ y}.

We begin with the following simple estimates.

Lemma 3.1. For u ≥ 1, we have

ρ(u), |ρ′(u)| ≤

(
eO(1)

u log u

)u
.

Proof. The estimates follow from [HT93, Corollary 2.3] and [Ten95, Section III.5, Corol-
lary 8.3]. ut

Lemma 3.2. For y ≥ 2 and u ≥ 1, we have∑
n>yu

P+(n)≤y

1
n
�

log y
uu
+ e−
√

log y .

Proof. Without loss of generality, we may assume that y ≥ 100. When v ∈ [1,
√

log y],
de Bruijn [dB51] showed that

9(yv, y) = yvρ(v)

(
1+O

(
log(v + 1)

log y

))
. (3.1)

Therefore, Lemma 3.1 yields

9(yv, y)� (y/v)v (1 ≤ v ≤
√

log y ). (3.2)

Together with partial summation, this implies that∑
yu<n≤exp{(log y)3/2}

P+(n)≤y

1
n
�

log y
uu

.

Finally, if ε = 2/log y, then we note that

∑
n>exp{(log y)3/2}

P+(n)≤y

1
n
≤ e−2

√
log y

∑
P+(n)≤y

1
n1−ε ≤ e

−2
√

log y
∏
p≤y

(
1−

1
p1−ε

)−1

.

Since pε = 1+O(logp/log y) for p ≤ y, the product over the primes is� log y, which
completes the proof of the lemma. ut

We also need the following result, where P is defined by (2.4).
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Lemma 3.3. If y ≥ 2 and u > 0, then∑
n≤yu

P+(n)≤y

1
n
= P(u)eγ log y +O(1).

In particular, limu→∞ P(u) = 1.

Proof. If u ≤ 1, then the lemma follows from the estimate
∑
n≤x 1/n = log x + O(1).

Assume now that u ≥ 1, and set v = min{u,
√

log y}. Lemma 3.2 implies that∑
n≤yu

P+(n)≤y

1
n
=

∑
n≤yv

P+(n)≤y

1
n
+O(e−

√
log y).

We use de Bruijn’s estimate (3.1) and partial summation to deduce that∑
n≤yv

P+(n)≤y

1
n
= log y +O(1)+

∑
y<n≤yu

P+(n)≤y

1
n
= log y +O(1)+

∫ yv

y

d9(yt , y)

yt

= log y +O(1)+ (log y)
∫ v

1
ρ(t) dt = (log y)

∫ v

0
ρ(t) dt +O(1)

= (log y)
∫ u

0
ρ(t) dt +O(1),

thus completing the proof of the lemma. ut

Remark 3.1. Using the slightly more accurate approximation

9(x, y) = xρ(u)+
(γ − 1)xρ′(u)

log y
+Oε

(
xe−u

(log y)2

)
for u ∈ [ε, 1] ∪ [1 + ε,

√
log y] (see [Sai89]), one can similarly deduce the stronger

estimate ∑
n≤yu

P+(n)≤y

1
n
= P(u) · eγ log y + γρ(u)+ oy→∞(1) for all u > 0.

Finally, we have the following key estimate. Its second part is a strengthening of [FT91,
Theorem 11].

Lemma 3.4. Let y ≥ 10 and α ∈ [−1/2, 1/2).

(a) We have ∑
P+(n)≤y

e(nα)

n
=

∑
n≤1/|α|
P+(n)≤y

1
n
+O(1).
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(b) There is an absolute constant c0 ≥ 2 such that if c1 ≥ 2, a/b is a reduced fraction
with b ≤ (log y)c1 and |α − a/b| ≤ min{1/(b(log y)c1), |α|/(log y)c0}, then∑

P+(n)≤y

e(nα)

n
= log

1
1− e(a/b)

+
3(b)

φ(b)
(1− ρ(u))+Oc1

(
log log y

log y

)
,

where u is defined by y−u = |α − a/b| and 3 is von Mangoldt’s function.

Proof. (a) If n ≤ 1/|α|, then e(nα) = 1+O(n|α|), and so∑
n≤1/|α|
P+(n)≤y

e(nα)

n
−

∑
n≤1/|α|
P+(n)≤y

1
n
�

∑
n≤1/|α|

|α| � 1.

Hence it suffices to show that ∑
n>1/|α|
P+(n)≤y

e(nα)

n
� 1. (3.3)

Note that if y > 1/|α|, then ∑
1/|α|<n≤y

e(nα)

n
� 1

using partial summation on the estimate
∑
n≤x e(nα) � 1/|α|. Therefore, in order to

complete the proof of (3.3), it suffices to show that∑
n>w

P+(n)≤y

e(nα)

n
� 1,

where w := max{y, 1/|α|}. Moreover, Lemma 3.2 reduces the task to showing∑
w<n≤w′

P+(n)≤y

e(nα)

n
� 1, (3.4)

where w′ = y2 log log y/log log log y . In particular, we may assume that |α| ≥ 1/w′. If x =
yu ∈ [w,w′], then [FT91, Theorem 10] and (3.2) imply that∑

n≤x
P+(n)≤y

e(nα)� 9(x, y)
log(u+ 1)

log y
�

x

eu log y

provided that |α| > (log y)C/x for C sufficiently large. (This lower bound on |α| guaran-
tees that the parameter q in [FT91, Theorem 10] is ≥ 2, as required.) Consequently, if we
set w′′ = max{y, (log y)C/|α|}, then partial summation implies that∑

w′′<n≤w′

P+(n)≤y

e(nα)

n
� 1.
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Then (3.4) follows from ∑
w<n≤w′′

P+(n)≤y

e(nα)

n
� 1, (3.5)

which is trivial unless |α| ≤ (log y)C/y, so that w′′ = (log y)C/|α|.
Let ym = w · (1+1/(log y)C+1)m form ≥ −1. LetM be the largest integer for which

yM ≤ w
′′. Then M � (log y)C+1 log log y. If x ∈ (ym−1, ym] for some m ∈ {1, . . . ,M},

and u = log x/log y, then [Hil86, Theorem 3] implies that

9(x, y) = 9(ym−2, y)+ (x − ym−2)ρ(u)

(
1+O

(
log(u+ 1)

log y

))
= 9(ym−2, y)+ (x − ym−2)ρ(u)+O

(
x

(log y)C+2

)
.

Therefore, partial summation and Lemma 3.1 imply that

∑
ym−1<n≤ym
P+(n)≤y

e(nα)

n

=

∫ ym

ym−1

e(xα)

x

(
ρ(u)+

x − ym−1

x log y
ρ′(u)

)
dx +O

(
1+ |α|(ym − ym−1)

(log y)C+2

)
=

∫ ym

ym−1

e(xα)

x
ρ(u) dx +O

(
1+ |α|(ym − ym−1)

(log y)C+2

)
.

Summing the above relation overm ∈ {1, . . . ,M} and bounding trivially the contribution
of n ∈ (yM , w′′] implies that

∑
w<n≤w′′

P+(n)≤y

e(nα)

n
=

∫ w′′

w

e(xα)

x
ρ(u) dx +O

(
log log y

log y

)
.

Finally, integration by parts gives

∫ w′′

w

e(xα)

x
ρ(u) dx =

∫ w′′

w

d

dx

(
e(xα)

2πiα

)
ρ(u)

x
dx

=
e(xα)

2πiαx
ρ(u)

∣∣∣∣w′′
x=w

+

∫ w′′

w

e(xα)

2πiα

(
ρ(u)

x2 −
ρ′(u)

x2 log y

)
dx �

1
|α|w

≤ 1,

by the definition of w and Lemma 3.1. This completes the proof of (3.5) and thus the
proof of part (a) of the lemma.

(b) Write α = a/b+δ and setN=1/(|δ| log y). We note that since |δ|≤|α|/(log y)c0

< |α|, by assumption, we must have b ≥ 2.
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We start by estimating the part of the sum with n > N . We claim that∑
P+(n)≤y
n>N

e(nα)

n
�

log log y
log y

. (3.6)

Note that if y > N , then∑
N<n≤y

e(nα)

n
�

1
|α|N

=
|δ| log y
|α|

≤
1

log y

by partial summation and the estimate
∑
n≤x e(nα) � 1/|α|. Therefore, it suffices to

prove that ∑
P+(n)≤y

n>N ′

e(nα)

n
�

log log y
log y

,

where N ′ := max{N, y}. Furthermore, Lemma 3.2 reduces the task to showing that∑
P+(n)≤y

N ′<n≤N ′′

e(nα)

n
�

log log y
log y

, (3.7)

where N ′′ = y2 log log y/log log log y . For this sum to have any summands we need N ≤ N ′′.
Next, we fix X ∈ [N ′, N ′′/2] and estimate

∑
P+(n)≤y, n≤x e(nα) for x ∈ [X, 2X]. Let

B be the constant in [FT91, Theorem 10] when the parameters A and δ there equal 100
and 1/10, respectively, and set c0 = B+1 andQ = 2X/(log y)B . There is some reduced
fraction r/s = r(X)/s(X) with |α − r/s| ≤ 1/(sQ) and s ≤ Q. Note that

|α| ≥ (log y)c0 |δ| =
(log y)B

N
≥
(log y)B

X
≥

2
Q
.

In particular, we must have s ≥ 2. If, in addition, s ≥ (log y)2/2, then [FT91, Theorem
11] and (3.2) imply that∑

P+(n)≤y
n≤x

e(nα)� 9(x, y)

(
1

(log y)1.9
·

log(u+ 1)
log y

+
1

(log y)100

)
�

x

(log y)2.9
,

where u = log x/log y. Therefore∑
P+(n)≤y

X<n≤min{2X,N ′′}

e(nα)

n
�

1
(log y)2.9

(3.8)

if s ≥ (log y)2/2.
Consider now X such that 2 ≤ s < (log y)2/2 and set η = α − r/s. We claim that

X ≤ N(log y)B+1. We argue by contradiction: assume, instead, that X > N(log y)B+1.
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ThenQ > 2N log y = 2/|δ| and thus |δ| > 1/(sQ) andQ > 2b. In particular, r/s 6= a/b
and thus 1/(bs) ≤ |a/b − r/s| ≤ |δ| + 1/(sQ) ≤ |δ| + 1/(2bs), which implies that
s ≥ 1/(2b|δ|) ≥ (log y)c1/2 ≥ (log y)2/2, a contradiction.

Using the above information, we are going to show that∑
P+(n)≤y

X<n≤min{2X,N ′′}

e(nα)

n
�

1
log y

(3.9)

when 2 ≤ s < (log y)2/2. If this relation holds, then (3.7) follows by a straightforward
dyadic decomposition argument. We use the stronger relation (3.8) for the O(logN ′′) =
O((log y)1.1) dyadic intervals corresponding to X ∈ [N(log y)B+1/2, N ′′], and we use
(3.9) for the O(log log y) dyadic intervals with X ∈ [N ′,min{N(log y)B+1/2, N ′′}].

It remains to prove (3.9) when 2 ≤ s < (log y)2/2, in which case X lies in the
interval [N ′,min{N(log y)B+1, N ′′}]. In addition, note that |η| ≤ 1/(sQ) ≤ (log y)B/X.
Let Xm = X(1 + 1/(log y)B+1)m for m ≥ −1. Let M be the largest integer for which
XM ≤ min{2X,N ′′}. Then M � (log y)B+1. Consider x ∈ (Xm−1, Xm] for some m ∈
{1, . . . ,M} and set u = log x/log y. Since s ≤ (log y)2/2, [FT91, Theorems 2 and 5]
imply that∑

P+(n)≤y
n≤x

e(nr/s) =
∑
s=cd

∑
P+(n)≤y
m≤x/d
(m,c)=1

e(mr/c)

=

∑
s=cd

∑
1≤j≤c
(j,c)=1

e(rj/c)

φ(c)

∑
P+(n)≤y
m≤x/d
(m,c)=1

1+O
(

x

(log y)B+100

)

=

∑
s=cd

µ(c)

φ(c)

∑
g|c

µ(g)9(x/(gd), y)+O

(
x

(log y)B+100

)
,

since
∑

1≤j≤c, (j,c)=1 e(rj/c) = µ(c) (see, for example, Lemma 7.6 below). Note that∑
s=cd

µ(c)

φ(c)

∑
g|c

µ(g) ·
1
gd
= 0

for s > 1. Therefore∑
P+(n)≤y
n≤x

e(nr/s) =
∑
s=cd

µ(c)

φ(c)

∑
g|c

µ(g)

(
9

(
x

gd
, y

)
−
9(x, y)

gd

)
+O

(
x

(log y)B+100

)
.

(3.10)
We apply [Hil86, Theorem 3] to find that

9

(
x

k
, y

)
−
9(x, y)

k
= 9

(
Xm−2

k
, y

)
−
9(Xm−2, y)

k

+
x −Xm−2

k

(
ρ

(
u−

log k
log y

)
− ρ(u)

)
+O

(
X

k(log y)B+2

)
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for x ∈ [Xm−1, Xm] and k | s. Consequently,∑
P+(n)≤y
n≤x

e(nr/s) =
∑
s=cd

∑
g|c

µ(c)µ(g)(x −Xm−2)

dgφ(c)

(
ρ

(
u−

log k
log y

)
− ρ(u)

)

+ c +O

(
X

(log y)B+2

)
for some constant c = c(X, y,m, r, s) ∈ R. Since e(nα) = e(nη)e(nr/s), applying
partial summation as in the proof of part (a) we deduce that∑
Xm−1<n≤Xm
P+(n)≤y

e(nα)

n
=

∑
s=cd

µ(c)

dφ(c)

∑
g|c

µ(g)

g

∫ Xm

Xm−1

e(ηx)

x

(
ρ

(
u−

log(dg)
log y

)
− ρ(u)

)
dx

+O

(
1+ |η|(Xm −Xm−1)

(log y)B+2

)
.

SettingX′ = min{2X,N ′′}, summing the above relation overm ∈ {1, . . . ,M} and bound-
ing trivially the contribution of n ∈ (XM , X′] implies that∑

X<n≤X′

P+(n)≤y

e(nα)

n
=

∑
s=cd

µ(c)

dφ(c)

∑
g|c

µ(g)

g

∫ X′

X

e(ηx)

x

(
ρ

(
u−

log(dg)
log y

)
− ρ(u)

)
dx

+O

(
1

log y

)
.

Finally, we have∫ X′

X

e(ηx)

x

(
ρ

(
u−

log(dg)
log y

)
− ρ(u)

)
dx �

log(dg)
log y

∫ 2X

X

dx

x
=
(log 2) log(dg)

log y
,

whence ∑
X<n≤X′

P+(n)≤y

e(nα)

n
�

1
log y

(
1+

∑
s=cd

∑
g|c

c log(dg)
dφ(c)2

)
�

1
log y

,

which completes the proof of (3.9) and thus of (3.6).
To conclude, we have shown that∑

P+(n)≤y

e(nα)

n
=

∑
P+(n)≤y
n≤N

e(nα)

n
+O

(
log log y

log y

)
.

Since e(nα) = e(nα)+O(n|δ|), we further deduce that∑
P+(n)≤y

e(nα)

n
=

∑
P+(n)≤y
n≤N

e(an/b)

n
+O

(
log log y

log y

)
.
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Observe that∑
n≤min{N,y}

e(na/b)

n
= log

1
1− e(a/b)

−

∑
n>min{N,y}

e(an/b)

n

= log
1

1− e(a/b)
+O

(
1

min{N, y}‖a/b‖

)
, (3.11)

where ‖x‖ denotes the distance from x to its nearest integer. Note that ‖a/b‖ ≥ |α|−|δ| ≥
|α|/2 ≥ |δ|(log y)c0/2 by our assumption that |δ| ≤ |α|/(log y)c0 . Since we also have
|α| ≥ 1/(2(log y)c1), a consequence of b ≥ 2, the error term in (3.11) is

�
1

N |α|
+

1
y|α|
≤

1
(log y)c0−1 +

2(log y)c1

y
�c1

1
log y

by our assumption that |δ| ≤ |α|/(log y)c0 . Hence, the problem is reduced to showing
that ∑

P+(n)≤y
y<n≤N

e(an/b)

n
=
3(b)

φ(b)
(1− ρ(u))+Oc1

(
log log y

log y

)
.

By Lemma 3.2, it suffices to show that

∑
P+(n)≤y
y<n≤yv

e(an/b)

n
=
3(b)

φ(b)
(1− ρ(u))+Oc1

(
log log y

log y

)
, (3.12)

where yv := min{N, y2 log log y/log log log y
}. Since 2 ≤ b ≤ (log y)c1 , the argument leading

to (3.10) implies that

∑
P+(n)≤y
n≤x

e(an/b) =
∑
b=cd

∑
g|c

µ(c)µ(g)

φ(c)

(
9

(
x

gd
, y

)
−
9(x, y)

gd

)
+Oc1

(
x

(log y)100

)

for x ∈ [y, yv]. Therefore partial summation yields

∑
P+(n)≤y
y<n≤yv

e(an/b)

n

=

∑
b=cd

∑
g|c

µ(c)µ(g)

dgφ(c)

( ∑
y/(dg)<n≤yv/(dg)

P+(n)≤y

1
n
−

∑
y<n≤yv

P+(n)≤y

1
n

)
+Oc1

(
1

(log y)98

)

=

∑
b=cd

∑
g|c

µ(c)µ(g)

dgφ(c)

(
log(dg)−

∑
yv/(dg)<n≤yv

P+(n)≤y

1
n

)
+Oc1

(
1

(log y)98

)
.
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Arguing as in Lemma 3.3, we apply partial summation on (3.1) to deduce that∑
yv/(dg)<n≤yv

P+(n)≤y

1
n
= ρ(v) log(dg)+O

(
(1+ log(dg))2

log y

)
.

Consequently,∑
P+(n)≤y
y<n≤yv

e(an/b)

n
= (1− ρ(v))

∑
b=cd

∑
g|c

µ(c)µ(g) log(dg)
dgφ(c)

+Oc1

(
1

log y

)

=
3(b)

φ(b)
(1− ρ(v))+O

(
1

log y

)
=
3(b)

φ(b)
(1− ρ(u))+O

(
log log y

log y

)
,

since v = min{u− log log y/log y, 2 log log y/log log log y} and ρ(u)� u−u by Lemma
3.1. This completes the proof of (3.12) and thus the proof of the lemma. ut

Corollary 3.5. Let χ be a Dirichlet character modulo q and α ∈ R. For all z, y ≥ 1,∣∣∣ ∑
1≤|n|≤z
P+(n)≤y

χ(n)(1− e(nα))
n

∣∣∣ ≤ 2eγ log y + 2 log 2+O
(

log log y
log y

)
.

Proof. If χ is an even character, then χ(n)/n+ χ(−n)/(−n) = 0, so that∣∣∣∣ ∑
1≤|n|≤z
P+(n)≤y

χ(n)(1− e(nα))
n

∣∣∣∣ = 2
∣∣∣∣ ∑

n≤z
P+(n)≤y

χ(n)e(nα)

n

∣∣∣∣
≤ 2

∑
P+(n)≤y

1
n
= 2eγ log y +O

(
1

log y

)
,

by the Prime Number Theorem, as desired. We may therefore assume that χ is an odd
character, so that∣∣∣∣ ∑

1≤|n|≤z
P+(n)≤y

χ(n)(1− e(nα))
n

∣∣∣∣ = 2
∣∣∣∣ ∑

n≤z
P+(n)≤y

χ(n)(1− cos(2πnα))
n

∣∣∣∣
≤ 2

∑
n≥1

P+(n)≤y

1− cos(2πnα)
n

.

If |α| ≤ 1/(log y)c0 , where c0 is the constant from Lemma 3.4(b), then Lemma 3.4(a)
implies that∑

n≥1
P+(n)≤y

1− cos(2πnα)
n

=

∑
n>1/|α|
P+(n)≤y

1
n
+O(1) ≤

∑
P+(n)≤y

1
n
−

∑
n≤(log y)c0

1
n
+O(1)

≤ eγ log y − log log y +O(1),
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which is admissible. Finally, assume that |α| > 1/(log y)c0 , and consider a reduced frac-
tion a/b with b ≤ (log y)2c0 and |α − a/b| ≤ 1/(b(log y0)

2c0) ≤ |α|/(log y)c0 . Then
Lemma 3.4(b) and the Prime Number Theorem imply that∑
n≥1

P+(n)≤y

1− cos(2πnα)
n

= eγ log y+log |1−e(a/b)|−
3(b)

φ(b)
(1−ρ(u))+O

(
log log y

log y

)
,

where |α − a/b| = y−u. Since ρ(u) ≤ 1 and |1− e(a/b)| ≤ 2, we deduce that∑
n≥1

P+(n)≤y

1− cos(2πnα)
n

≤ eγ log y + log 2+O
(

log log y
log y

)
,

which concludes the proof. ut

4. Outline of the proofs of Theorems 1.1 and 1.3 and proof of Theorem 1.2

We first deal with Theorem 1.3. For the lower bound, note that if χ is even and q > 3,
then [MV07, (9.18), p. 310] yields

M(χ) ≥

∣∣∣ ∑
n≤q/3

χ(n)

∣∣∣ = √q
2π

∣∣∣∣ ∞∑
n=1

χ(n)(e(n/3)− e(−n/3))
n

∣∣∣∣.
Since also

e(n/3)− e(−n/3) = i
√

3
(
n

3

)
, (4.1)

we deduce that

M(χ) ≥

√
3q

2π

∣∣∣∣ ∞∑
n=1

χ(n)
(
n
3

)
n

∣∣∣∣ = √3q
2π

∣∣∣∣L(1, χ
(
·

3

))∣∣∣∣
for all even characters χ . The lower bound in Theorem 1.3 is a direct consequence of the
above inequality and of the following result, whose proof is a straightforward application
of the methods in [GS07]:

Theorem 4.1 (Granville–Soundararajan). If ψ is a character modulo some b∈{1, 2, 3},
X is the set of odd or of even characters modulo q, and 1 ≤ τ ≤ log log q −M for some
M ≥ 0, then

1
|X |

#
{
χ ∈ X : |L(1, χψ)| >

φ(b)

b
eγ τ

}
= exp

{
−
eτ+A

τ
(1+O(τ−1/2

+ e−M/2))

}
.

Finally, the upper bound in Theorem 1.3 follows from Theorems 4.1 and 2.3. (The proof
of the latter theorem is independent of the proof of the upper bound of Theorem 1.3, as
we will see.)

Next, we turn to Theorem 1.1. Its lower bound is a direct consequence of Theorems
1.2 and 4.1. So it remains to outline the proof of the upper bound in Theorem 1.1, as well
as to prove Theorem 1.2. At the heart of these two proofs lies a moment estimate which
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implies that the bulk of the contribution in Pólya’s Fourier expansion (1.9) comes from
smooth inputs: ∑

1≤|n|≤z

χ(n)(1− e(nα))
n

≈

∑
1≤|n|≤z
P+(n)≤y

χ(n)(1− e(nα))
n

for most χ and any α. To state this more precisely, we need some notation. Given a set A
of positive integers, set

SA(χ) = max
α∈[0,1]

∣∣∣∣∑
n∈A

χ(n)e(nα)

n

∣∣∣∣;
in the special case when A = {n ∈ N : n ≤ z, P+(n) > y}, write Sy,z(χ) in place of
SA(χ). Observe that

max
α∈[0,1]

∣∣∣∣ ∑
1≤|n|≤z

χ(n)(1− e(nα))
n

−

∑
1≤|n|≤z
P+(n)≤y

χ(n)(1− e(nα))
n

∣∣∣∣
= max
α∈[0,1]

∣∣∣∣ ∑
1≤|n|≤z
P+(n)>y

χ(n)(1− e(nα))
n

∣∣∣∣ ≤ ∣∣∣∣ ∑
1≤|n|≤z
P+(n)>y

χ(n)

n

∣∣∣∣+ max
α∈[0,1]

∣∣∣∣ ∑
1≤|n|≤z
P+(n)>y

χ(n)e(nα)

n

∣∣∣∣
≤ 2

∣∣∣∣ ∑
n≤z

P+(n)>y

χ(n)

n

∣∣∣∣+ 2 max
α∈[0,1]

∣∣∣∣ ∑
n≤z

P+(n)>y

χ(n)e(nα)

n

∣∣∣∣ ≤ 4Sy,z(χ). (4.2)

Our next goal is to show that Sy,z(χ) is small for most χ . To do this, we will prove in
Section 5 that high moments of Sy,z(χ) are small. As a straightforward application of our
moment bounds we will get the following theorem.

Theorem 4.2. If q ∈ N, 3 ≤ y ≤ q11/21 and δ ∈ [1/log y, 1], then

#{χ (mod q) : Sy,q11/21(χ) > eγ δ}

φ(q)

� exp
{
−
δ2y

log y

(
1+O

(
log log y

log y

))}
+ q−1/(500 log log q).

We now show how to complete the proof of Theorems 1.1 and 1.2.

Proof of the upper bound in Theorem 1.1. Let α ∈ [0, 1] be such that M(χ) =
|
∑
n≤αq χ(n)|. By Pólya’s expansion (1.9), (4.2) and Lemma 3.5, we find that

m(χ) =
e−γ

2

∣∣∣∣ ∑
1≤|n|≤q11/21

χ(n)(1− e(nα))
n

∣∣∣∣+O(q−1/43)

≤ log y + η + 2e−γ Sy,q11/21(χ)+O

(
log log y

log y

)



The frequency and the structure of large character sums 1779

for all y ≥ 10, where η = e−γ log 2. We set y = eτ−η−2δ for some δ ∈ [1/log y, 1] to be
chosen shortly. Theorem 4.2 then implies that

8q(τ ) ≤ exp
{
−
δ2eτ−η−2δ

τ

(
1+O

(
log τ
τ

))}
+ q−1/(500 log log q).

Taking δ = 1 completes the proof of the upper bound in Theorem 1.1. ut

Proof of Theorem 1.2. The set CLq (τ ) in which we work is defined by

CLq (τ ) = {χ (mod q) : χ(−1) = −1, |L(1, χ)| > eγ τ, |Sy,q11/21(χ)| ≤ 1},

where we have set y = eτ+c for some constant c > 0. If the constant C in the statement
of Theorem 1.2 is large enough, then Theorems 4.2 and 4.1 imply that (1.7) does hold.

Assume now that χ ∈ CLq (τ ). Using partial summation on the Pólya–Vinogradov
inequality, then |Sy,q11/21(χ)| ≤ 1, and finally Lemma 3.2, we obtain

L(1, χ) =
∑

n≤q11/21

χ(n)

n
+O(q−1/43) =

∑
P+(n)≤y

n≤q11/21

χ(n)

n
+O(1)

=

∑
P+(n)≤y

χ(n)

n
+O(1). (4.3)

Given that |L(1, χ)| > eγ τ , we deduce that

eγ τ < |L(1, χ)| =
∣∣∣∣ ∑
P+(n)≤y

χ(n)

n

∣∣∣∣+O(1) ≤ ∑
P+(n)≤y

1
n
+O(1) ≤ eγ τ +O(1), (4.4)

by Mertens’s estimate. Therefore∣∣∣∣∏
p≤y

(
1−

1
p

)−1(
1−

χ(p)

p

)∣∣∣∣ = 1+O
(

1
τ

)
.

Taking logarithms, we find that∑
p≤y

∞∑
j=1

1− Re(χ j (p))
jpj

�
1
τ
,

that is, χ is “1-pretentious”. Since |1−u|2 ≤ 2 Re(1−u) for u ∈ U, the above inequality
and the Cauchy–Schwarz inequality imply that∑

p≤z

∞∑
j=1

|1− χ j (p)|
pj

�

√
log log z
τ

(4.5)

for all z ∈ [10, y]. Moreover, since

|1− χ(n)| ≤
∑
pj ‖n

|1− χ(pj )|,



1780 Jonathan Bober et al.

we find that∑
P+(n)≤z

|1− χ(n)|
n

≤

∑
P+(n)≤z

1
n

∑
pj ‖n

|1− χ(pj )|

≤

∑
p≤z

∑
j≥1

|1− χ(pj )|
pj

∑
P+(m)≤z

1
m
�
(log z)

√
log log z
√
τ

. (4.6)

Now, since χ is odd for χ ∈ CLq (τ ), Pólya’s Fourier expansion (1.9) implies that

∑
n≤αq

χ(n) =
G(χ)
πi

(
L(1, χ)−

q∑
n=1

χ(n) cos(2πnα)
n

)
+O(log q). (4.7)

Set

Rχ (α) =
∑
n≤αq

χ(n)−
G(χ)
πi

(L(1, χ)+ log 2).

If 1/y ≤ |α − 1/2| ≤ 1/τ 2c and c is sufficiently large, then Lemma 3.4 and (4.7) imply
that

Rχ (α) =
∑
n≤αq

χ(n)−
G(χ)
πi

(
L(1, χ)−

∑
P+(n)≤y

cos(2πnα)
n

+O

(
log τ
τ

))

=
G(χ)
πi

( q∑
n=1

χ(n) cos(2πnα)
n

−

∑
P+(n)≤y

cos(2πnα)
n

+O

(
log τ
τ

))
.

Now, Lemma 3.2 and (4.6) yield

q∑
n=1

χ(n) cos(2πnα)
n

−

∑
P+(n)≤y

cos(2πnα)
n

=

q∑
n=1

χ(n) cos(2πnα)
n

−

∑
P+(n)≤y
n≤q

cos(2πnα)
n

+O

(
1
τ

)

=

∑
n≤q

P+(n)>y

χ(n) cos(2πnα)
n

+

∑
τ 2c<n≤q
P+(n)≤y

(χ(n)− 1) cos(2πnα)
n

+O

(
(log τ)2
√
τ

)

=:

∑
τ 2c<n≤q

cn cos(2πnα)
n

+O

(
(log τ)2
√
τ

)
,

for some complex numbers cn of modulus ≤ 2. Finally, if |α − 1/2| ≤ 1/y, then we
simply note the trivial bound Rχ (α) �

√
q τ , which follows by our assumption that
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Sy,q11/21(χ) ≤ 1 for the χ we are working with. So (1.8) will certainly follow if we show
that

τ c

2

∫ 1/2+1/τ c

1/2−1/τ c

∣∣∣∣ ∑
τ 2c<n≤q

cn cos(2πnα)
n

∣∣∣∣ dα � log τ
τ
.

By Cauchy–Schwarz, it suffices to show that

µ2 :=
τ c

2

∫ 1/2+1/τ c

1/2−1/τ c

∣∣∣∣ ∑
τ 2c<n≤q

cn cos(2πnα)
n

∣∣∣∣2 dα � (log τ)2

τ 2 . (4.8)

For convenience, set B = τ c, and note that

B

2

∫ 1/2+1/B

1/2−1/B
cos(2πmα) cos(2πnα) dα =

(−1)m+n

2

(
f

(
m+ n

B

)
+ f

(
m− n

B

))
,

where

f (u) :=

{
sin(2πu)

2πu if u 6= 0,
1 otherwise.

Therefore

µ2 �
∑
k≥0

|f (k/B)|

( ∑
B2<m,n≤q
m+n=k

1
mn
+

∑
B2<m,n≤q
m−n=k

1
mn

)
.

Note that ∑
m+n=k

B2<m,n≤q

1
mn
≤

1k>2B2

k

∑
m+n=k

1≤m,n≤k−1

m+ n

mn
�

1k>2B2 log k
k

,

∑
m−n=k

B2<m,n≤q

1
mn
≤

∑
n>B2

1
n(n+ k)

≤
1
k

∑
B2<n≤k

1
n
+

∑
n>max{k,B2}

1
n2

�
1k>2B2 log k

k
+

1
max{k, B2}

.

Using the bound f (k)� min{1, B/k}, we conclude that

µ2 � (logB)/B.

Since B = τ c ≥ τ 2 for c ≥ 2, (4.8) follows. This completes the proof of (1.8).
Finally, note that (1.8) clearly implies that

m(χ) ≥ |L(1, χ)+ log 2| +O((log τ)2/
√
τ).

Relations (4.3) and (4.6) with z = y imply that

L(1, χ) = eγ τ +O(
√
τ log τ)
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If L(1, χ) = a + ib then

a/|a + ib| = (1+ b2/a2)−1/2
= 1+O(b2/a2) = 1+O((log τ)/τ).

Therefore

|L(1, χ)+ log 2|
|L(1, χ)|

=

(
1+

2a log 2+ (log 2)2

a2 + b2

)1/2

= 1+
a

|a + ib|2
log 2+O(τ−2),

and so |L(1, χ)+ log 2| = |L(1, χ)| + log 2+O((log τ)/τ), which completes the proof
of the theorem. ut

5. Truncating Pólya’s Fourier expansion

In this section we show that for most χ we can limit the Fourier expansion to a sum over
very smooth numbers without much loss, which is the content of Theorem 4.2. We prove
this theorem by showing that high moments of Sy,z are small:

Theorem 5.1. Let q and k be integers with 3 ≤ k ≤ (log q)/(400 log log q). For k log k
≤ y ≤ z ≤ q11/21, we have

1
φ(q)

∑
χ (mod q)

Sy,z(χ)
2k
≤ eO(k log log y/log y)

(
e2γ−1k log y

y

)k
+

eO(k)

(log y)19k .

One consequence of Theorem 5.1 is the desired conclusion that Sy,z(χ) is usually small:

Deduction of Theorem 4.2 from Theorem 5.1. We may assume that y and q are large. Let
ρ be the proportion of characters χ modulo q such that Sy,q11/21(χ) > eγ δ. Moreover, set

k =

⌊
min

{
δ2y

log y
,

log q
400 log log q

}⌋
,

where c is a constant to be determined. Then Theorem 5.1 implies that

ρ ≤
(eγ δ)−2k

φ(q)

∑
χ (mod q)

Sy,q11/21(χ)
2k
≤ eO(k log log y/log y)

(
δ−2k log y

ey

)k
+
δ−2keO(k)

(log y)19k

� e−k+O(k log log y/log y),

which completes the proof. ut

We prove Theorem 5.1 as an application of the following technical estimates.

Proposition 5.2. Let q and k be integers with 3 ≤ k ≤ (log q)/(400 log log q), and let
A ⊂ {n ∈ N : y < n ≤ z, P−(n) > y}, where y and z are positive real numbers such
that k3

≤ y ≤ z ≤ q11/21. Then

1
φ(q)

∑
χ (mod q)

SA(χ)
2k
� y−k/21

+ q−1/10
�

1
(log y)40k .
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Proposition 5.3. Let q and k be integers with 3 ≤ k ≤ (log q)/(400 log log q), and let
A ⊂ {n ∈ N : y < n ≤ z, P−(n) > y}, where y and z are positive real numbers such
that k log k ≤ y ≤ z ≤ klog log k . Then

1
φ(q)

∑
χ (mod q)

SA(χ)
2k
≤
eO(k log log y/log y)kk

(ey log y)k
+

eO(k)

(log y)50k .

Before we proceed to the proof of these propositions, let us see how we can apply them
to deduce Theorem 5.1.

Deduction of Theorem 5.1 from Propositions 5.2 and 5.3. Set Y = max{y, k3
}. Then

∑
n≤z

P+(n)>y

χ(n)e(nα)

n
=

∑
n≤z

y<P+(n)≤Y

χ(n)e(nα)

n
+

∑
n≤z

P+(n)>Y

χ(n)e(nα)

n

=

∑
a≤z

P+(a)≤y

χ(a)

a

∑
1<b≤z/a
b∈P(y,Y )

χ(b)e(abα)

b
+

∑
a≤z

P+(a)≤Y

χ(a)

a

∑
1<b≤z/a
P−(b)>Y

χ(b)e(abα)

b
,

where P(y, Y ) is the set of integers all of whose prime factors lie in (y, Y ]. We let

S(1)w (χ) = max
α∈[0,1]

∣∣∣∣ ∑
y<n≤w
n∈P(y,Y )

χ(n)e(nα)

n

∣∣∣∣, S(2)w (χ) = max
α∈[0,1]

∣∣∣∣ ∑
Y<n≤w
P−(n)>Y

χ(n)e(nα)

n

∣∣∣∣,
so that

Sy,z(χ) ≤
∑

P+(a)≤y

S
(1)
z/a(χ)

a
+

∑
P+(a)≤Y

S
(2)
z/a(χ)

a
. (5.1)

We shall bound the moments of each summand appearing above, individually.
We start with the summand involving S(1)w (χ). Here we may assume that y ≤ k3 (and

thus Y = k3), else P(y, Y ) = {1} and so S(1)w (χ) = 0 for allw. Setw′ = min{w, klog log k
}

and note that

S(1)w (χ) = S
(1)
w′
(χ)+O

( ∑
P+(n)≤k3

n≥klog log k

1
n

)
= S

(1)
w′
(χ)+O

(
1

(log y)100

)

by Lemma 3.2. So Minkowski’s inequality and Proposition 5.3 imply that(
1

φ(q)

∑
χ (mod q)

S(1)w (χ)2k
) 1

2k
≤

(
1

φ(q)

∑
χ (mod q)

S
(1)
w′
(χ)2k

) 1
2k
+O

(
1

(log y)100

)

≤ eO(log log y/log y)

√
k

ey log y
+O

(
1

(log y)25

)
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Hence, applying Hölder’s inequality and Mertens’s estimate
∑
P+(a)≤y 1/a = eγ log y +

O(1), we arrive at the estimate

1
φ(q)

∑
χ (mod q)

( ∑
P+(a)≤y

S
(1)
z/a(χ)

a

)2k

≤
(eγ log y +O(1))2k−1

φ(q)

∑
χ (mod q)

∑
P+(a)≤y

S
(1)
z/a(χ)

2k

a

≤ eO(k log log y/log y)
(√

e2γ k log y
ey

+O

(
1

(log y)24

))2k

. (5.2)

Next, in order to bound the summand in (5.1) involving S(2)w (χ), we observe that

1
φ(q)

∑
χ (mod q)

S
(2)
z/a(χ)

2k
�

1
(logY )40k

for all m ≥ 1 by Proposition 5.2. Therefore Hölder’s inequality implies that

1
φ(q)

∑
χ (mod q)

( ∑
P+(a)≤Y

S
(2)
z/a(χ)

a

)2k

≤
eO(k)(logY )2k−1

φ(q)

∑
P+(a)≤Y

∑
χ (mod q)

S
(2)
z/a(χ)

2k

a

≤
eO(k)

(logY )38k ≤
eO(k)

(log y)38k . (5.3)

Finally, (5.1)–(5.3), together with Minkowski’s inequality, imply that

1
φ(q)

∑
χ (mod q)

Sy,z(χ)
2k
≤ eO(k log log y/log y)

(√
e2γ k log y

ey
+O

(
1

(log y)19

))2k

. (5.4)

We note that, for all ε, δ > 0,

(ε + δ)2k ≤ (ε2k
+ δk)(1+

√
δ)2k ≤ (ε2k

+ δk)e
√
δ/(2k). (5.5)

Indeed, if ε ≤
√
δ, then ε+δ ≤

√
δ(1+

√
δ), whereas if ε >

√
δ, then ε+δ ≤ ε(1+

√
δ).

Combining (5.4) and (5.5) completes the proof of Theorem 5.1. ut

Our next task is to show Proposition 5.2. First, we demonstrate the following auxiliary
lemma.

Lemma 5.4. Let ε ∈ (0, 1] and k ≥ 2 be an integer. Uniformly for σ ≥ (2+ ε)/(2+ 2ε)
and for y ≥ k1+ε , we have ∑

P−(n)>y

dk(n)
2

n2σ ≤ eO(k/log k).
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Proof. [BG13, Lemma 3.1], which is a generalization of [GS06, Lemma 4], implies that

log
( ∞∑
r=0

dk(p
r)2

p2rσ

)
= log I0(2k/pσ )+O(k/p2σ ),

where I0 is defined by (1.4). Note that if p ≥ y ≥ k1+ε , then k/pσ < 1, which implies

1 ≤ I0(2k/pσ ) ≤ 1+
k2

p2σ

∑
m≥1

1
m!2
≤ 1+O

(
k2

p2σ

)
.

So we arrive at the estimate

log
( ∞∑
r=0

dk(p
r)2

p2rσ

)
�

k2

p2σ ,

which in turn yields

log
( ∑
P−(n)>y

dk(n)
2

n2σ

)
�

∑
p>y

k2

p2σ �
k2

y2σ−1 log y
�

k

log k
,

by our assumptions that y ≥ k1+ε and σ ≥ (2+ ε)/(2+ 2ε) ≥ 3/4. ut

Proof of Proposition 5.2. Without loss of generality, we may assume that q is large, else
the result is trivially true. Set A(N) = A ∩ (N/e,N], so that

SA(χ) ≤
∑

log y<j≤log z+1

SA(ej )(χ).

Hölder’s inequality with p = 2k/(2k − 1) and q = 2k implies that

SA(χ)
2k
≤

( ∑
log y<j≤log z+1

1

j
4k

2k−1

)2k−1 ∑
log y<j≤log z+1

j4kSA(ej )(χ)
2k

≤
1

(log y − 1)2k+1

∑
log y<j≤log z+1

j4kSA(ej )(χ)
2k, (5.6)

which reduces the problem to bounding

1
φ(q)

∑
χ (mod q)

SA(N)(χ)
2k

for N ∈ [y, ez]. In order to do this, we first decouple αχ , the point where the maximum
SA(N)(χ) occurs, from the character χ . We accomplish this by noticing that for every
R ∈ N and for every α ∈ (0, 1], there is some r ∈ {1, . . . , R} such that |α− r/R| ≤ 1/R.
Then

SA(N)(χ) =
∑

n∈A(N)

χ(n)e(nα)

n
=

∑
n∈A(N)

χ(n)e(nr/R)

n
+O

(
N

R

)
.
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We choose R = bN21/20
c. Then Minkowski’s inequality implies that

SA(N)(χ)
2k
≤ 22k−1 max

1≤r≤R

∣∣∣∣ ∑
n∈A(N)

χ(n)e(nr/R)

n

∣∣∣∣2k +O( eO(k)Nk/10

)

≤ 22k−1
R∑
r=1

∣∣∣∣ ∑
n∈A(N)

χ(n)e(nr/R)

n

∣∣∣∣2k +O( eO(k)Nk/10

)
, (5.7)

which reduces the proof to bounding

SN,r :=
1

φ(q)

∑
χ (mod q)

∣∣∣∣ ∑
n∈A(N)

χ(n)e(nr/R)

n

∣∣∣∣2k.
Notice that

SN,r =
1

φ(q)

∑
χ (mod q)

∣∣∣∣ ∑
(N/e)k<n≤Nk

P−(n)>y

d̃k(n;N)χ(n)

n

∣∣∣∣2, (5.8)

where

d̃k(n;N) :=
∑

n1···nk=n
n1,...,nk∈A(N)

k∏
j=1

e(nj r/R).

Clearly,
|d̃k(n;N)| ≤ dk(n;N) :=

∑
n1···nk=n

n1,...,nk∈A(N)

1.

So opening the square in (5.8), and summing over χ modulo q, we find that

SN,r ≤
∑

Nk/ek<m≤Nk

(m,q)=1, P−(m)>y

dk(m;N)

m

∑
Nk/ek<n≤Nk

n≡m(mod q), P−(n)>y

dk(n;N)

n
. (5.9)

The right hand side of (5.9) is at most S(1)N,r + 2S(2)N,r , where

S
(1)
N,r :=

∑
Nk/ek<m≤Nk

P−(m)>y

dk(m;N)
2

m2 ,

S
(2)
N,r :=

∑
Nk/ek<m≤Nk

(m,q)=1
P−(m)>y

dk(m;N)

m

∑
m<n≤Nk

n≡m(mod q)
P−(n)>y

dk(n;N)

n
.

We shall bound each of these sums in a different way.
Firstly, note that

S
(1)
N,r ≤

ek/2

Nk/2

∑
P−(m)>y

dk(m)
2

m3/2 �
eO(k)

Nk/2 , (5.10)

by Lemma 5.4 with ε = 1, which is admissible.
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Next, we bound S(2)N,r . Note that n ≥ m+ q > q for n andm in the support of S(2)N,r . In

particular, for S(2)N,r to have any summands, we need Nk > q. We choose j ∈ {2, . . . , k}
such that

N j−1
≤ q < N j . (5.11)

Then

S
(2)
N,r ≤

e2k

N2k

∑
Nk/ek<m≤Nk

(m,q)=1

dk(m;N)
∑

Nk/ek<n≤Nk

n≡m(mod q)

dk(n;N)

=
e2k

N2k

∑
m≤Nk

(m,q)=1

dk(m;N)
∑

g≤Nk−j

(g,q)=1

dk−j (g;N)
∑
h≤Nj

h≡gm (mod q)

dj (h;N). (5.12)

Our goal is to bound
D(a) =

∑
h≤Nj

h≡a (mod q)

dj (h;N)

for every a ∈ {1, . . . , q} that is coprime to q. First, assume that j > 1000. Note that
D(a) is supported on integers h which can be written as a product h = n1 · · · nj with
each n` lying in the interval (N/e,N] and having all its prime factors > y. In particular,
�(n`) ≤ logN/log y for all ` ∈ {1, . . . , j}, and consequently

�(h) ≤
j logN
log y

≤
j

j − 1
·

log q
log y

≤
log q

0.999 log y
,

by (5.11). In particular,

dj (h;N) ≤ j
�(h)
≤ k

log q
0.999 log y = q

log k
0.999 log y ≤ q0.334,

by our assumptions that y ≥ k3 and j ≤ k. This inequality also holds when j ≤ 1000,
since in this case dj (h;N) ≤ dj (h) �δ h

δ for all δ > 0, and h ≤ N j
≤ N1000

≤ q1000

for the numbers h in the range of D(a). So, no matter what j is, we conclude that

D(a)� q0.334
∑
h≤Nj

h≡a (mod q)

1�
N j

q0.666 �
N j

Rq0.116 , (5.13)

since R ≤ N21/20
≤ q11/20. Inserting (5.13) into (5.12), we arrive at the estimate

S
(2)
N,r �

e2k

N2k ·N
k
·Nk−j

·
N j

Rq0.116 =
e2k

Rq0.116 . (5.14)

Combining (5.10) and (5.14) with (5.9), we deduce that

SN,r �
eO(k)

Nk/2 +
e2k

Rq0.116 .
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Together with (5.7), the above estimate implies that

1
φ(q)

∑
χ (mod q)

SA(N)(χ)
2k
�
N21/20eO(k)

Nk/2 +
eO(k)

q0.116 +
eO(k)

Nk/20 �
eO(k)

q0.116 +
eO(k)

Nk/20 ,

since we have assumed that k ≥ 3. Together with (5.6), this implies that

1
φ(q)

∑
χ (mod q)

Sy,z(χ)
2k
�

eO(k)

(log y)2k+1

∑
log y<j≤log z+1

(
j4k

ejk/20 +
j4k

q0.116

)

≤
eO(k)(log y)2k−1

yk/20 +
eO(k)(log z)4k+1

q0.116(log y)2k+1 .

Since z ≤ q11/21 and k ≤ (log q)/(400 log log q), Proposition 5.2 follows. ut

Proof of Proposition 5.3. We may assume that y is large enough. We start in a similar
way to the proof of Proposition 5.2: we set R = bz3

c and note that

SA(χ) = max
1≤r≤R

∣∣∣∣∑
n∈A

χ(n)e(nr/R)

n

∣∣∣∣+O(1/z2).

Therefore, Minkowski’s inequality implies that(
1

φ(q)

∑
χ (mod q)

SA(χ)
2k
) 1

2k

≤

(
1

φ(q)

∑
χ (mod q)

max
1≤r≤R

∣∣∣∣∑
n∈A

χ(n)e(nr/R)

n

∣∣∣∣2k) 1
2k
+O(1/z2)

≤

( R∑
r=1

1
φ(q)

∑
χ (mod q)

∣∣∣∣∑
n∈A

χ(n)e(nr/R)

n

∣∣∣∣2k) 1
2k
+O(1/z2).

We claim that, for all r ∈ {1, . . . , R},

Sr :=
1

φ(q)

∑
χ (mod q)

∣∣∣∣∑
n∈A

χ(n)e(nr/R)

n

∣∣∣∣2k ≤ eO(k log log y/log y)kk

(ey log y)k
+

eO(k)

(log y)100k . (5.15)

Proposition 5.3 follows immediately if we show this relation, since we would then have

1
φ(q)

∑
χ (mod q)

SA(χ)
2k
≤ z3eO(k log log y/log y)

(√
k

ey log y
+O

(
1

(log y)50

))2k

≤
eO(k log log y/log y)kk

(ey log y)k
+

eO(k)

(log y)50k

by our assumption that z ≤ klog log k and (5.5), which establishes Proposition 5.3.
Arguing as in the proof of Proposition 5.2 and setting

d ′k(n) = #{(n1, . . . , nk) ∈ Nk : n = n1 · · · nk, y < nj ≤ z (1 ≤ j ≤ k)},
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we find that

Sr ≤
∑
m>yk

(m,q)=1, P−(m)>y

d ′k(m)

m

∑
n>yk

n≡m(mod q), P−(n)>y

d ′k(n)

n
≤ S(1)r + 2S(2)r , (5.16)

where

S(1)r :=
∑

P−(m)>y

d ′k(m)

m2 , S(2)r :=
∑

(m,q)=1
m∈P(y,z)

d ′k(m)

m

∑
n>m

n≡m(mod q)
P−(n)>y

d ′k(n)

n
.

We shall bound each of these sums in a different way.
We start by bounding S(2)r . Set

ε = min
{

1
2
,

log(y/k)
log k

}
≥

log log k
log k

for large enough k, so that y ≥ k1+ε . Also, let σ = (2 + ε)/(2 + 2ε). Fix m ∈ N with
(m, q) = 1, and note that if n ≡ m (mod q) with n > m, then n ≥ m+ q > q. Therefore

S(2)r (m) :=
∑
n>m

n≡m(mod q)
P−(n)>y

d ′k(n)

n
≤

∑
n1,...,nk∈(y,z]
n1···nk>q

P−(n1···nk)>y
n1···nk≡m(mod q)

1
n1 · · · nk

≤

∑
1≤r1,...,rk≤log(z/y)+1
r1+···+rk>log(q/yk)

∑
yer`−1<n`≤ye

r`

P−(n`)>y (1≤`≤k)
n1···nk≡m(mod q)

1
n1 · · · nk

≤

∑
1≤r1,...,rk≤log(z/y)+1
r1+···+rk>log(q/yk)

ek

yker1+···+rk

∑
yer`−1<n`≤ye

r`

P−(n`)>y (1≤`≤k)
n1···nk≡n (mod q)

1. (5.17)

We fix r1, . . . , rk as above, set y` = yer` for all ` ∈ {1, . . . , k}, and choose j ∈ {2, . . . , k}
such that

y1 · · · yj−1 ≤ q < y1 · · · yj . (5.18)

Then, for any a ∈ N that is coprime to q, the Cauchy–Schwarz inequality implies that∑
y`/e<n`≤y`

P−(n`)>y (1≤`≤j)
n1···nj≡a (mod q)

1 ≤
∑

n≤y1···yj
P−(n)>y
n≡a (mod q)

dj (n) ≤
( ∑
n≤y1···yj
n≡a (mod q)

1
)1/2( ∑

n≤y1···yj
P−(n)>y

dj (n)
2
)1/2

�

√
y1 · · · yj

q

(
(y1 · · · yj )

2σ
∑

n≤y1···yj
P−(n)>y

dj (n)
2

n2σ

)1/2

.
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So, applying Lemma 5.4, we deduce that

∑
y`/e<n`≤y`

P−(n`)>y (1≤`≤j)
n1···nj≡a (mod q)

1 ≤ eO(k)
√
(y1 · · · yj )1+2σ

q
≤
eO(k)y1 · · · yj

q1−σ ,

since yj ≤ ez ≤ eO(k) and y1 · · · yj−1 ≤ q, by (5.18). Inserting this estimate into (5.17),
we deduce that

S(2)r (m) ≤
eO(k)(log z)k

q1−σ ≤
eO(k)(log z)k

qε/3
. (5.19)

Consequently, we immediately deduce that

S(2)r ≤
eO(k)(log z)k

qε/3
·

(
log z
log y

)k
=
eO(k)(log log k)2k(log k)k

qε/3

≤
eO(k)(log log k)2k(log k)k

q(log log k)/(3 log k) ≤
eO(k)

(log y)100k , (5.20)

which is admissible.
It remains to bound S(1)r . This will be done in a very different way. We observe that if

(Xn)n≥1 are the random variables defined in the introduction, then

S(1)r ≤ E
[∣∣∣∣ ∑
n∈P(y,z)
n>1

Xn

n

∣∣∣∣2k].
We have∑
n∈P(y,z)
n>1

Xn

n
= −1+

∏
y<p≤z

(
1−

Xp

p

)−1

= −1+ exp
{ ∑
y<p≤z

Xp

p
+O

(
1

y log y

)}

= −1+ eT +O(1/y), where T :=
∑
y<p≤z

Xp

p
.

Therefore
(S(1)r )

1
2k ≤ E

[
|eT − 1|2k

] 1
2k +O(1/y),

by Minkowski’s inequality. Fix ε ∈ [1/log y, 1]. If |T | ≤ ε, then |eT − 1| ≤ eε |T |,
whereas if |T | ≥ ε, then we use the trivial bound |eT − 1| ≤ 2e|T | ≤ 2e|T |(|T |/ε)`, for
any ` ∈ N. Therefore

(S(1)r )
1

2k ≤ eεE
[
|T |2k

] 1
2k + 2E

[
e2k|T |(|T |/ε)`

] 1
2k +O(1/y).

We have

E
[
|T |2k

]
=

∑
y<p1,...,p2k≤z

p1···pk=pk+1···p2k

1
p1 · · ·p2k

≤ k!
∑

y<p1,...,pk≤z

1
(p1 · · ·pk)2

≤
eO(k/log y)kk

(ey log y)k
,
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since k! � (k/e)k
√
k and

∑
p>y 1/p2

= 1/(y log y) + O(1/(y log2 y)) by the Prime
Number Theorem. Moreover,

E
[
e2k|T |(|T |/ε)`

]
= ε−`

∞∑
m=0

(2k)m

m!
E
[
|T |m+`

]
≤ ε−`

∞∑
m=0

(2k)m

m!
E
[
|T |2m+2`]1/2

≤ ε−`
∞∑
m=0

(2k)m
√
(m+ `)!

m!

(
eO(1)

y log y

)m/2+`/2
≤

(
eO(1)`

ε2y log y

)`/2 ∞∑
m=0

1
(m/2)!

(
eO(1)k2

y log y

)m/2
�

(
eO(1)`

ε2y log y

)`/2
eo(k)

as (m+`)! ≤ m!`!2m+` and
√
m! = (m/2)!eO(m), with y ≥ k. Choosing ` = bcε2y log yc

for an appropriate small constant c > 0 makes the left hand side ≤ eO(k)−4c′ε2y log y for
some c′ > 0. We take ε = log log y/log y to conclude that

E
[
e2k|T |(|T |/ε)`

]
≤ eO(k)−4c′y(log log y)2/log y

≤ e−2kc′(log log y)2 ,

where we have used our assumption that k is large and y ≥ k log k. We thus conclude that

S(1)r ≤ e
O(k log log y/log y)

(√
k

ey log y
+ 2e−c

′(log log y)2
)2k

≤
eO(k log log y/log y)kk

(ey log y)k
+ eO(k)−c

′k(log log y)2 ,

by (5.5). Together with (5.16) and (5.20), this completes the proof of (5.15), and thus of
Proposition 5.3. ut

6. The distribution function

In this section, we prove Theorem 1.4. Throughout this section we fix τ > 0 and
a large odd prime number q such that τ ≤ (log log q)5/9 − 2 log log log q. Set y =
exp{(log log q)5/9} and

my(χ) =
1

2eγ
max
α∈[0,1]

∣∣∣∣ ∑
n∈Z, n6=0
P+(n)≤y

χ(n)(1− e(nα))
n

∣∣∣∣.
Relation (4.2) and Lemma 3.2 imply that

|m(χ)−my(χ)| ≤ 2e−γ Sy,q11/21(χ)+O(q
−1/log y).

Therefore, if q is large enough, then Theorem 4.2 and Lemma 3.2 imply that

1
φ(q)

#{χ (mod q) : |my(χ)−m(χ)| > 2/log y} � exp
{
−

y

2(log y)3

}
= oq→∞(1) ·8q(τ ),
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where the last relation follows by Theorem 1.1 and our assumption that τ ≤
(log log q)5/9 − 2 log log log q. Therefore we conclude that

(1+ oq→∞(1))8q(τ + 2/log y; y) ≤ 8q(τ ) ≤ (1+ oq→∞(1))8q(τ − 2/log y; y),

where
8q(t; y) :=

1
φ(q)

#{χ (mod q) : my(χ) > t}. (6.1)

We perform the same analysis on 8(τ). With a slight abuse of notation, we set

my(X) =
1

2eγ
max
α∈[0,1]

∣∣∣∣ ∑
n∈Z, n6=0
P+(n)≤y

Xn(1− e(nα))
n

∣∣∣∣.
The analogue of Theorem 4.2 for the random variables Xn is (more easily) proven by the
same method with a few simple changes: we proceed exactly as in the proof of Theo-
rem 5.1 but wherever we evaluated a sum (1/φ(q))

∑
χ (mod q) χ(h/k) there (as 0 unless

h ≡ k (mod q), when it equals 1), we now evaluate an expectation E[XhXk]which equals
0 unless h = k, when it equals 1. (In fact, this only happens in the proofs of (5.9) and of
(5.16).) We then conclude that

8(τ+2/log y; y)+oq→∞(8q(τ )) ≤ 8(τ) ≤ 8(τ−2/log y; y)+oq→∞(8q(τ )), (6.2)

where
8(t; y) := Prob(my(X) > t).

(We could have written oq→∞(8(τ)) in place of oq→∞(8q(τ )) in (6.2) but this would
have required proving a lower bound for 8(τ). In order to avoid this technical issue, we
use for comparison 8q(τ ) whose size we already know by Theorem 1.1.) Next, for each
p ≤ y we fix a parameter εp of the form εp = 2π/kp with kp ∈ N to be chosen, and a
partition {Ip,1, . . . , Ip,kp } of the unit circle into arcs of length εp. Moreover, we let wp,j
be the point in the middle of the arc Ip,j and we define Z to be the set of (π(y) + 1)-
tuples z := (z−1, z2, z3, z5, . . . ) with z−1 ∈ {−1, 1} and zp ∈ {wp,j : 1 ≤ j ≤ kp}

for all primes p ≤ y. Given such a choice of z and n ∈ N, we set zn =
∏
pe‖n z

e
p and

z−n = z−1zn. Moreover, similarly to before, we let

my(z) =
1

2eγ
max

0≤α≤1

∣∣∣∣ ∑
n∈Z, n6=0
P+(n)≤y

zn(1− e(nα))
n

∣∣∣∣.
We will show that there exist choices of εp and a constant C > 0 such that if X−1 = z−1
and Xp belongs to the arc Ip,j centred at zp for all p ≤ y, then |my(X) − my(z)| ≤
C/log y. This immediately implies that

8∗(τ + C/log y; y) ≤ 8(y; τ) ≤ 8∗(τ − C/log y; y), (6.3)

where
8∗(t; y) :=

1
|Z|

#{z ∈ Z : my(z) > t}.
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It remains to show that |my(X) − my(z)| ≤ C/log y if εp is chosen appro-
priately. We choose these parameters so that max{(logp)/2, 1}/(log y)3 ≤ εp ≤

max{logp, 2}/(log y)3. Then the condition that |zp − Xp| ≤ εp for each prime p ≤ y
implies that |zn −Xn| � (log |n|)/(log y)3 for all n ∈ Z \ {0} with P+(n) ≤ y. Hence

|my(X)−my(z)| �
∑
n≥1

P+(n)≤y

1
n

log n
(log y)3

=

∑
p≤y
e≥1

logp
pe(log y)3

∑
m≥1

P+(m)≤y

1
m
�

1
log y

,

which proves our claim.
We now prove similar inequalities for 8q , namely

(1+ oq→∞(1))8∗(τ + C/log y; y) ≤ 8q(τ ; y) ≤ (1+ oq→∞(1))8∗(τ − C/log y; y).
(6.4)

[Lam08, Theorem 9.3] states that if Ip is an arc of length εp ≥ 1/(log log q)5/3 for each
p ≤ y, then

1
φ(q)

#{χ (mod q) : χ(p) ∈ Ip for each p ≤ y} ∼
∏
p≤y

εp (q →∞).

The same methods can easily be adapted to also show that

1
φ(q)

#{χ (mod q) : χ(−1) = σ, χ(p) ∈ Ip for each p ≤ y} ∼
1
2

∏
p≤y

εp (q →∞)

for σ ∈ {−1, 1}. Since y = exp{(log log q)5/9}, the inequality εp ≥ 1/(log log q)5/3 is
indeed satisfied for our choice of εp, thus completing the proof of (6.4).

Finally, combining (6.1)–(6.4), we obtain

8(τ + (2C + 2)/log y) ≤ (1+ oq→∞(1))8q(τ ) ≤ 8(τ − (2C + 2)/log y).

If 8 is continuous in [a, b], then it is also uniformly continuous. It then follows imme-
diately from the above estimate that 8q → 8 as q → ∞ over primes, uniformly on
[a, b]. In order to see that 8q converges also weakly to 8, consider a continuous func-
tion f : R → R of bounded support. Fix ε > 0. Since 8 has at most countably many
discontinuity points, we deduce that there is an open set E of Lebesgue measure < ε that
contains all discontinuities of 8. If I is a bounded closed interval containing the support
of f , then the set I \ E is compact and thus it can be written as a finite union of closed
intervals. Since (8q)q prime converges uniformly to 8 on each such interval, it does so on
E \ I as well. Therefore

lim sup
q→∞
q prime

∣∣∣∣∫
R
f (τ)8q(τ ) dτ −

∫
R
f (τ)8(τ) dτ

∣∣∣∣
≤ ‖f ‖∞

(
2 meas(E)+meas(I \ E) lim sup

q→∞
q prime

sup
τ∈I\E

|8q(τ )−8(τ)|
)
< 2ε‖f ‖∞.
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Since ε was arbitrary, we conclude that

lim
q→∞
q prime

∫
R
f (τ)8q(τ ) dτ =

∫
R
f (τ)8(τ) dτ,

thus completing the proof of Theorem 1.4.

7. Some pretentious results

In this section, we develop some general tools we will use to prove Theorems 2.1 and 2.3.
We begin by stating a result that allows us to concentrate on the case when α is a rational
number with a relatively small denominator.

Lemma 7.1. Let y ≥ 2, z ≥ (log y)5, χ be a Dirichlet character, α ∈ R and B ∈
[(log y)5, z]. Let a/b be a reduced fraction with b ≤ B and |α − a/b| ≤ 1/(bB). Then∑

1≤|n|≤z
P+(n)≤y

χ(n)e(nα)

n
=

∑
1≤|n|≤N
P+(n)≤y

χ(n)e(na/b)

n
+O(logB),

where N = min{z, |bα − a|−1
}.

Proof. This follows immediately from [Gol12, second part of Lemma 4.1] (see also
[GS07, Lemma 6.2]). ut

When b is large, we have the following result.

Lemma 7.2. Let |α − a/b| ≤ 1/b2, where (a, b) = 1. For all z, y ≥ 3, we have∑
n≤z

P+(n)≤y

χ(n)e(nα)

n
� log b + log log y +

(log b)5/2
√
b

log y.

Proof. This is [Gol12, Corollary 2.2], which is based on a result due to Montgomery and
Vaughan [MV77]. ut

For smaller b, we shall use the following formula.

Lemma 7.3. Let χ be a Dirichlet character and (a, b) = 1. For z, y ≥ 1 we have∑
1≤|n|≤z
P+(n)≤y

χ(n)e(an/b)

n
=

2
b

∑
d|b

χ(b/d)d

φ(d)

∑
ψ (mod d)
χψ odd

ψ(a)G(ψ)
∑

n≤zd/b

P+(n)≤y

χ(n)ψ(n)

n
.

Proof. If (c, d) = 1, then

e(c/d) =
1

φ(d)

∑
ψ (mod d)

ψ(c)G(ψ).
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So, writing b/d for the greatest common divisor of n and b, we find that∑
1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n
=

∑
d|b

χ(b/d)d

b

∑
1≤|m|≤zd/b

P+(n)≤y, (m,d)=1

χ(m)e(am/d)

m

=

∑
d|b

χ(b/d)d

bφ(d)

∑
ψ (mod d)

ψ(a)G(ψ)
∑

1≤|m|≤zd/b
P+(n)≤y

χ(m)ψ(m)

m
.

Finally, observe that the innermost sum vanishes if χψ is an even character, whereas if
χψ is odd it equals

2
∑
m≤z/d

P+(m)≤y

χ(m)ψ(m)

m
.

This concludes the proof of the lemma. ut

Following Granville and Soundararajan [GS07], we are going to show that all the terms on
the right hand side in Lemma 7.3 are small unless ψ is induced by some fixed character ξ
which depends at most on χ and y. As in [GS07], in order to accomplish this, we define a
certain kind of “distance” between two multiplicative functions f and g of modulus ≤ 1:

D(f, g; y)2 :=
∑
p≤y

1− Re(f (p)g(p))
p

.

Then we let ξ = ξ(χ, y) be a primitive character of conductor D = D(χ, y) ≤ log y
such that

D(χ, ξ ; y) = min
d≤log y
ψ (mod d)
ψ primitive

D(χ, ψ; y). (7.1)

We need a preliminary result on certain sums of multiplicative functions, which is [GS07,
second part of Lemma 4.3].

Lemma 7.4. Let f : N→ U be a multiplicative function. For z, y ≥ 1 we have∑
n≤z

P+(n)≤y

f (n)

n
� (log y) exp{−D(f, 1; y)2/2}.

Then we have the following “repulsion” result.

Lemma 7.5. Let χ , y and ξ be as above. If ψ is a Dirichlet character modulo d ≤ y, of
conductor ≤ log y, that is not induced by ξ , then∑

n≤z
P+(n)≤y

χ(n)ψ(n)

n
� (log y)1/2+

√
2/4+o(1) (y →∞).
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Proof. Let ψ1 be the primitive character modulo d1 inducing ψ . Since

D(χ, ψ; y)2 ≥ D(χ, ψ1; y)
2
−

∑
p|d

2
p
≥ D(χ, ψ1; y)

2
−O(log log log d),

[GS07, Lemma 3.4] and the definition of ξ imply that

D(χ, ψ; y)2 ≥ (1−
√

2/2+ o(1)) log log y (y →∞).

The claimed estimate then follows by Lemma 7.4 above. ut

When applying Lemma 7.3, we will need to evaluate the Gauss sum that arises. In order
to do this, we shall use the following classical result (see, for example, [MV07, Theorem
9.10, p. 289]).

Lemma 7.6. Let ψ be a character modulo d induced by the primitive character ψ1 mod-
ulo d1. Then

G(ψ) = µ(d/d1)ψ1(d/d1)G(ψ1).

We also need the following simple estimate, which we state below for easy reference.

Lemma 7.7. Let f : N→ U be a completely multiplicative function. For all a ∈ N, we
have ∑

n≤z

f (n)

n
=

∏
p|a

(
1−

f (p)

p

)−1 ∑
n≤z

(n,a)=1

f (n)

n
+O

(
a

φ(a)

∑
p|a

logp
p

)
and ∑

n≤z
(n,a)=1

f (n)

n
=

∏
p|a

(
1−

f (p)

p

)∑
n≤z

f (n)

n
+O

(
a

φ(a)

∑
p|a

logp
p

)
.

Proof. We write d | a∞ if p | a for all primes p | d. Then∑
n≤z

f (n)

n
=

∑
d|a∞

f (d)

d

∑
m≤z/d
(m,a)=1

f (m)

m
=

∑
d|a∞

f (d)

d

∑
m≤z

(m,a)=1

f (m)

m
+O

(∑
d|a∞

log d
d

)

=

∏
p|a

(
1−

f (p)

p

)−1 ∑
m≤z

(m,a)=1

f (m)

m
+O

(
a

φ(a)

∑
p|a

logp
p

)
.

The second part is proved similarly, starting from the identity∑
n≤z

(n,a)=1

f (n)

n
=

∑
d|a

µ(d)f (d)

d

∑
m≤z/d

f (m)

m
. ut

Combining the above results, we prove the following simplified version of Lemma 7.3.
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Lemma 7.8. Let χ , y, ξ and D be as above, and consider a real number z ≥ 1 and a
reduced fraction a/b with 1 ≤ b ≤ (log y)1/100 and (b, q) = 1. If either D - b or χξ is
even, then ∑

1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n
� (log y)0.86,

whereas if D | b and χξ is odd, then∣∣∣∣ ∑
1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n

∣∣∣∣ ≤ (log y)min
{

2eγ
√
D
(2/3)ω(b/D), e−D(χ,ξ ;y)

2/2+O(1)
}

+O((log y)0.86).

Proof. By Lemma 7.5, we see that if ψ is a character modulo d that is not induced by ξ ,
then ∑

m≤x
P+(n)≤y

ψ(m)χ(m)

m
� (log y)1/2+

√
2/4+o(1)

≤ (log y)0.854 (x ≥ 1). (7.2)

So the first result follows by Lemma 7.3. Finally, ifD | b and χξ is odd, then Lemmas 7.3
and 7.6, and (7.2), imply that

∑
1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n
=

2ξ(a)G(ξ)
b

∑
d|b

d≡0 (modD)

χ(b/d)dµ(d/D)ξ(d/D)

φ(d)

×

∑
n≤dz/b, (n,d)=1

P+(n)≤y

χ(n)ξ(n)

n
+O((log y)0.86).

Writing d = Dc, noticing that (c,D) = 1 if ξ(c) 6= 0, and using
∑
dz/b<n≤z 1/n �

log(b/d) to extend the sum over n ≤ dz/b to a sum over n ≤ z, we find that

∑
1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n
=

2ξ(a)G(ξ)
b

D

φ(D)

∑
c|b/D
(c,D)=1

χ(b/(Dc))c µ(c)ξ(c)

φ(c)

×

∑
n≤z, P+(n)≤y
(n,cD)=1

χ(n)ξ(n)

n
+O((log y)0.86).

Settingm = b/D and applying Lemma 7.7 with f (n) = χ(n)ξ(n)1(n,cD)=11P+(n)≤y and
m in place of a we deduce that
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∑
1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n
=

2ξ(a)G(ξ)
b

D

φ(D)

∑
c|m

(c,D)=1

χ(m/c)c µ(c)ξ(c)

φ(c)

×

∏
p|m,p-cD

(
1−

χ(p)ξ(p)

p

)−1 ∑
n≤z P+(n)≤y
(n,mD)=1

χ(n)ξ(n)

n
+O((log y)0.86).

Since we have assumed that (b, q) = 1, we have∑
c|m

(c,D)=1

χ(m/c)cµ(c)ξ(c)

φ(c)

∏
p|m,p-cD

(
1−

χ(p)ξ(p)

p

)−1

= χ(m)
∏

p|m,p-D

(
1−

χ(p)ξ(p)

1− 1/p

(
1−

χ(p)ξ(p)

p

))(
1−

χ(p)ξ(p)

p

)−1

= χ(m)
mφ(D)

φ(mD)

∏
p|m,p-D

1− χ(p)ξ(p)
1− χ(p)ξ(p)/p

. (7.3)

If z ∈ C with |z| = 1, then ∣∣∣∣ 1− z
1− z/p

∣∣∣∣ ≤
√

2
1+ 1/p2 .

Therefore the absolute value of the sum in (7.3) is

≤
mφ(D)

φ(mD)

∏
p|m

√
2

1+ 1/p2 .

Since we also have mD = b, we deduce that∣∣∣∣ ∑
1≤|n|≤z
P+(n)≤y

χ(n)e(na/b)

n

∣∣∣∣
≤

2
√
Dm

b

φ(b)

∣∣∣∣ ∑
P+(n)≤y
(n,b)=1

χ(n)ξ(n)

n

∣∣∣∣∏
p|m

√
2

1+ 1/p2 +O((log y)0.86)

≤
2
√
Dm

min
{
eγ log y +O(1),

(
b

φ(b)

)3/2

(log y)e−D(χ,ξ ;y)
2/2+O(1)

}
×

∏
p|m

√
2

1+ 1/p2 +O((log y)0.86)

≤ (log y)min
{

2eγ
√
D
(2/3)ω(m), e−D(χ,ξ ;y)

2/2+O(1)
}
+O((log y)0.86),

where we have used Lemma 7.4 and 1
p

√
2

1+1/p2 ≤
√

2/5 ≤ 2/3 for p ≥ 2. ut
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Finally, if χ pretends to be 1 in a strong way, then we can get a very precise estimate
on the sum of χ(n)e(an/b)/n over smooth numbers using estimates for such numbers in
arithmetic progressions due to Fouvry and Tenenbaum [FT91].

Lemma 7.9. Let z, y ≥ 2, χ be a character modulo q, and a/b be a reduced fraction
with 1 ≤ b ≤ (log y)100. Then∑
n≤z

P+(n)≤y

χ(n)e(na/b)

n
=

∑
b=cd

µ(c)χ(d)

φ(c)d

∑
n≤z, (n,c)=1
P+(n)≤y

χ(n)

n
+O(E)

=
µ(q1)

φ(q1)

χ(b1)

φ(b1)

∏
p|b1

(1− χ(p))
(

1−
χ(p)

p

)−1 ∑
n≤z, (n,b)=1
P+(n)≤y

χ(n)

n
+O(E),

where b1 is the largest divisor of b with (b1, q) = 1 and b = b1q1, with

E =

(
1+

b

φ(b)
(e1 − 1)

)
log log y, 1 =

∑
p≤y

|1− χ(p)|
p − 1

� D(χ, 1; y)
√

log log y.

Proof. First, note that 1 � D(χ, 1; y)
√

log log y by the Cauchy–Schwarz inequality
and the fact that |1− z|2 ≤ 2 Re(1− z) for z ∈ U. We write χ = h ∗ 1. Then |h(pj )| =
|χ(pj )− χ(pj−1)| ≤ |1− χ(p)| ≤ 2 and thus∑

P+(m)≤y

|h(m)|

m
≤ e1 � (log y)2. (7.4)

Moreover, using Lemma 3.2, we may assume that z ≤ ylog log y .
We begin by estimating the sum

S(t) :=
∑
n≤t

P+(n)≤y

χ(n)e(na/b)

for t ∈ [(log y)400, z]. Set `0 = (log y)200 and note that

S(t) =
∑
b=cd

χ(d)
∑
m≤t/d

P+(m)≤y, (m,c)=1

χ(m)e(ma/c)

=

∑
b=cd

χ(d)
∑
k≤t/d

P+(k)≤y, (k,c)=1

h(k)
∑

`≤t/(dk)

P+(`)≤y, (`,c)=1

e(k`a/c)

=

∑
b=cd

χ(d)
∑

k≤t/(d`0)
P+(k)≤y, (k,c)=1

h(k)
∑

1≤j≤c
(j,c)=1

e(kja/c)
∑

`≤t/(dk)

P+(`)≤y, `≡j (mod c)

1

+O

(
tb

φ(b)

∑
t/(log y)300<k≤t

P+(k)≤y

|h(k)|

k

)
(7.5)
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where we have bounded trivially the sum over ` when k > t/(d`0) (note that d`0 ≤

(log y)300 for all d | b).
Next, we need an estimate for the sum∑

`≤t/(dk)

P+(`)≤y, `≡j (mod c)

1

when dk ≤ t/`0. Note that, since b ≤ (log y)100, [FT91, Theorems 2 and 5] imply that∑
`≤t/(dk)

P+(`)≤y, `≡j (mod c)

1 =
1
φ(c)

∑
`≤t/(dk)

P+(`)≤y, (`,c)=1

1+O
(

t

dkφ(c)(log y)5

)

when t/(dk) ≥ y; the same result also holds when t/(dk) ≤ y by elementary techniques
since t/(dkc) ≥ `0/c ≥ (log y)100 for c | b and dk ≤ t/`0. So, using the identity∑

1≤j≤c
(j,c)=1

e(kja/c) = µ(c),

we deduce that

S(t) =
∑
b=cd

µ(c)χ(d)

φ(c)

∑
k≤t/(d`0)

P+(k)≤y, (k,c)=1

h(k)
∑

`≤x/(dk)

P+(`)≤y, (`,c)=1

1

+O

(
t

(log y)2
+

tb

φ(b)

∑
t/(log y)300<k≤t

P+(k)≤y

|h(k)|

k

)
,

where we have used (7.4). We get the same right side no matter what the value of a, as
long as (a, b) = 1. Hence

S(t) =
1

φ(b)

∑
1≤r≤b
(r,b)=1

∑
n≤t

P+(n)≤y

χ(n)e(nr/b)+ R(t)

for some function R(t) satisfying the bound

R(t)�
t

(log y)2
+

tb

φ(b)

∑
t/(log y)300<k≤t

P+(k)≤y

|h(k)|

k
.

Letting d = (n, b), and writing n = md and b = cd so that (m, c) = 1, we deduce that

S(t) =
∑
b=cd

µ(c)χ(d)

φ(c)

∑
m≤x/d

P+(m)≤y, (m,c)=1

χ(m)+ R(t)
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by [Dav00, (7), p. 149], for all t ∈ [(log y)400, z]. Therefore partial summation implies∑
n≤z

P+(n)≤y

χ(n)e(na/b)

n
=

∑
(log y)400<n≤z
P+(n)≤y

χ(n)e(na/b)

n
+O(log log y)

=

∑
b=cd

µ(c)χ(d)

φ(c)d

∑
(log y)400/d<m≤z/d, (m,c)=1

P+(m)≤y

χ(m)

m

+

∫ z

(log y)400

dR(t)

t
+O(log log y).

Integrating by parts and applying (7.4) and our assumption that z ≤ ylog log y we conclude
that ∫ z

(log y)400

dR(t)

t
� 1+

b log log y
φ(b)

∑
k>1

P+(k)≤y

|h(k)|

k
≤ 1+

b log log y
φ(b)

(e1 − 1).

Since we also have∑
b=cd

µ(c)χ(d)

φ(c)d

∑
m∈[1,(log y)400/d]∪(z/d,z]

(m,c)=1, P+(m)≤y

χ(m)

m
�

∑
b=cd

log log y
φ(c)d

� log log y,

we deduce that∑
n≤z

P+(n)≤y

χ(n)e(na/b)

n
=

∑
b=cd

µ(c)χ(d)

φ(c)d

∑
m≤z, (m,c)=1
P+(m)≤y

χ(m)

m
+O(E). (7.6)

Applying Lemma 7.7 with f (n) = χ(n)1(n,c)=11P+(n)≤y and b in place of a implies that

∑
m≤z, (m,c)=1
P+(m)≤y

χ(m)

m
=

∏
p|b, p-c

(
1−

χ(p)

p

)−1 ∑
n≤z, (n,b)=1
P+(n)≤y

χ(n)

n
+O

(
b

φ(b)

∑
p|b

logp
p

)
.

Inserting this formula into (7.6) leads to an error term of size

� E +
∑
b=cd

1
φ(c)d

·
b

φ(b)

∑
p|b

logp
p
� E,

and a main term of ∏
p|b

(
1−

χ(p)

p

)−1 ∑
n≤z, (n,b)=1
P+(n)≤y

χ(n)

n
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times ∑
b=cd

µ(c)χ(d)

φ(c)d

∏
p|c

(
1−

χ(p)

p

)
=
µ(q1)

φ(q1)

χ(b1)

φ(b1)

∏
p|b1

(1− χ(p)),

thus completing the proof of the lemma. ut

Corollary 7.10. Let q be an integer that either equals 1 or is prime. Let z, y ≥ 2, and
a/b be a reduced fraction with 1 < b ≤ (log y)100. Then

∑
n≤z

P+(n)≤y
(n,q)=1

e(na/b)

n
= −

1b=q
φ(q)

∑
n≤z

P+(n)≤y
(n,q)=1

1
n
+O

((
1+

1q>1

q

b

φ(b)

)
log log y

)
.

8. Structure of even characters with large M(χ): proof of Theorem 2.3

The goal of this section is to prove Theorem 2.3. Throughout this section, we set y =
e
√

3 τ+c for some constant c. We will show this theorem with

C+q (τ ) := {χ (mod q) : χ 6= χ0, χ(−1) = 1, Sy,q11/21(χ) ≤ 1, m(χ) > τ },

where the quantity Sy,z(χ) is defined as in Section 4. Theorem 4.2 and the lower bound
in Theorem 1.3, which we already proved at the beginning of Section 4 (independently of
the proof of Theorem 2.3), guarantee that the cardinality of C+q (τ ) satisfies (2.5) provided
that the constant c in the definition of y and the constant C in the statement of Theorem
2.3 are large enough.

We fix a large τ ≤ log log q and we consider a character χ ∈ C+q (τ ). Let α = Nχ/q.
Then

m(χ) =
1

2eγ

∣∣∣∣ ∑
1≤|n|≤q11/21

χ(n)e(nα)

n

∣∣∣∣+O(q−1/43)

=
1

2eγ

∣∣∣∣ ∑
1≤|n|≤q11/21

P+(n)≤y

χ(n)e(nα)

n

∣∣∣∣+O(1) = 1
2eγ

∣∣∣∣ ∑
n∈Z\{0}
P+(n)≤y

χ(n)e(nα)

n

∣∣∣∣+O(1),
by (1.9), our assumption that |Sy,q11/21(χ)| ≤ 1 for χ ∈ C+q (τ ), and Lemma 3.2. As in the
statement of Theorem 2.3, we approximate α by a reduced fraction a/b with b ≤ τ 10 and
|α − a/b| ≤ 1/(bτ 10). We let N = 1/|bα − a| ≥ τ 10 and apply Lemma 7.1 with z = ∞
to find that

m(χ) =
1

2eγ

∣∣∣∣ ∑
1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣+O(log τ). (8.1)
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Since χ ∈ C+q (τ ), we must have m(χ) > τ , which implies that∣∣∣∣ ∑
1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣ ≥ 2eγ τ −O(log τ). (8.2)

We now proceed to show that χ satisfies properties (1) and (2) of Theorem 2.3.

Proof of Theorem 2.3(1). We choose ξ modulo D with D ≤ log y to satisfy (7.1). We
claim that

b = D = 3 and ξ =

(
·

3

)
, (8.3)

the first claim being equivalent to a/b ∈ {1/3, 2/3}.
Firstly, note that Lemma 7.2 in conjunction with (8.2) implies that b � 1. Inequality

(8.2) also tells us that we must be in the second case of Lemma 7.8 (provided that τ is
large enough), that is, D | b and χξ is odd. Since χ is even, we conclude that ξ is odd.
Thus 3 ≤ D ≤ b � 1. Moreover, the last inequality in Lemma 7.8 implies that∣∣∣∣ ∑

1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣ ≤ 2eγ
√

3 τ
√
D
· (2/3)ω(b/D) +O(τ 0.86).

Comparing this inequality with (8.2), we deduce that b = D = 3 and thus ξ = (·/3), the
quadratic character modulo 3, which completes the proof of our claim and hence of the
fact that property (1) holds. ut

Proof of Theorem 2.3(2). We start with the proof of (2.7). Note that

∑
1≤|n|≤N
P+(n)≤y

χ(n)e(an/3)
n

=

∑
n≤N

P+(n)≤y

χ(n)(e(an/3)− e(−an/3))
n

,

where a ∈ {1, 2}. Then using (4.1), we find that

∑
|n|≤N

P+(n)≤y

χ(n)e(an/3)
n

= i
√

3
(
a

3

) ∑
n≤N

P+(n)≤y

χ(n)
(
n
3

)
n

,

so that, by (8.1),

m(χ) =

√
3

2eγ

∣∣∣∣ ∑
n≤N

P+(n)≤y

χ(n)
(
n
3

)
n

∣∣∣∣+O(log τ).
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Hence, we conclude that

2eγ τ −O(log τ) ≤
√

3
∣∣∣∣ ∑
n≤N

P+(n)≤y

χ(n)
(
n
3

)
n

∣∣∣∣ ≤ √3
∑

n≤N, (n,3)=1
P+(n)≤y

1
n

=
√

3
(

2
3
eγ log y +O(1)−

∑
n>N, (n,3)=1
P+(n)≤y

1
n

)
= 2eγ τ +O(1)−

√
3

∑
n>N, (n,3)=1
P+(n)≤y

1
n
.

Therefore ∑
n>N, (n,3)=1
P+(n)≤y

1
n
� log τ,

which in turn implies that

∑
n≤N

P+(n)≤y

χ(n)
(
n
3

)
n

=

∑
P+(n)≤y

χ(n)
(
n
3

)
n

+O(log τ),

so that

m(χ) =

√
3

2eγ

∣∣∣∣ ∑
P+(n)≤y

χ(n)
(
n
3

)
n

∣∣∣∣+O(log τ). (8.4)

Finally, we have

L

(
1, χ

(
·

3

))
=

∑
n≤q11/21

χ(n)
(
n
3

)
n

+O(q−1/43)

=

∑
n≤q11/21

P+(n)≤y

χ(n)
(
n
3

)
n

+
1

i
√

3

∑
n≤q11/21

P+(n)>y

χ(n)(e(n/3)− e(−n/3))
n

+O(q−1/43)

=

∑
P+(n)≤y

χ(n)
(
n
3

)
n

+O(log τ),

by the Pólya–Vinogradov inequality, our assumption that χ ∈ C+q (τ ) and Lemma 3.2.
Inserting the above estimates into (8.4) completes the proof of (2.7).

Finally, we prove (2.6). For convenience, we set ψ(n) = χ(n)
(
n
3

)
. Then (8.4) and our

assumption that M(χ) > (eγ /π)τ
√
q for χ ∈ C+q (τ ) imply that∣∣∣∣ ∑

P+(n)≤y

ψ(n)

n

∣∣∣∣ ≥ 2
3
eγ log y +O(log τ) =

∑
P+(n)≤y
(n,3)=1

1
n
+O(log τ).
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Since this lower bound is also an upper bound, we deduce that∣∣∣∣∏
p≤y
p 6=3

(
1−

ψ(p)

p

)−1(
1−

1
p

)∣∣∣∣ = 1+O
(

log τ
τ

)
.

Then, the argument leading to (4.5) implies that

∑
p≤y
p 6=3

∞∑
j=1

|1− ψj (p)|
pj

�
log τ
√
τ
, (8.5)

thus completing the proof of slightly more than property (2). ut

Proof of Theorem 2.3(3). Define w via the relation |β − k/`| = 1/(`yw). Note that
w = u(1+O(1/τ)) as y = e

√
3 τ+c. So we may show the theorem with w in place of u.

Arguing as at the beginning of Section 8, and applying Lemma 7.1 with z = ∞, we find
that

π

G(χ)
∑
n≤βq

χ(n) =
−1
2i

∑
n∈Z, n6=0
P+(n)≤y

χ(n)e(−βn)

n
+O(1)

=
−1
2i

∑
1≤|n|≤yw

P+(n)≤y

χ(n)e(−kn/`)

n
+O(log τ)

=

∑
n≤yw

P+(n)≤y

χ(n) sin(2πkn/`)
n

+O(log τ).

We note that inequality (8.5) and the argument leading to (4.6) imply that∑
P+(n)≤y
(n,3)=1

|1− ψ(n)|
n

�
√
τ log τ, (8.6)

where we have set ψ(n) = χ(n)
(
n
3

)
. We write n = 3jm with (m, 3) = 1, so that

π

G(χ)
∑
n≤βq

χ(n) =

∞∑
j=0

χ(3j )
3j

∑
P+(m)≤y

m≤yw/3j
(m,3)=1

χ(m) sin(2π3jkm/`)
m

+O(log τ)

=

∞∑
j=0

χ(3j )
3j

∑
P+(m)≤y
m≤yw

(
m
3

)
sin(2π3jkm/`)

m
+O(

√
τ log τ),
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by (8.6) and as
∑
yw/3j<m≤yw 1/m� j . Using the formula 2 sin(2πm/3) =

√
3
(
m
3

)
, we

deduce that

π

G(χ)
∑
n≤βq

χ(n) =
1
√

3

∞∑
j=0

χ(3j )
3j

∑
P+(m)≤y
m≤yw

2 sin(2πm/3) sin(2π3jkm/`)
m

+O(
√
τ log τ)

=
1
√

3

∞∑
j=0

χ(3j )
3j

∑
P+(m)≤y
m≤yw

cos
(
2πm 3j+1k−`

3`

)
− cos

(
2πm 3j+1k+`

3`

)
m

+O(
√
τ log τ).

If ` is not a power of 3, then 3j+1k±`
3` /∈ Z for each j , so Corollary 7.10 implies that

π

G(χ)
∑
n≤βq

χ(n)�
√
τ log τ

as claimed. Finally, if ` = 3v and ε ∈ {−1, 1}, then 3j+1k−ε`
3` /∈ Z, unless j = v − 1 and

k ≡ ε (mod 3), so that ε =
(
k
3

)
. Therefore Corollary 7.10 and Lemma 3.3 imply that

π

G(χ)
∑
n≤βq

χ(n) =

(
k
3

)
√

3

χ(3v−1)

3v−1

∑
P+(m)≤y
m≤yw

1
m
+O(

√
τ log τ)

=

(
k
3

)
χ(3v−1)

3v−1 eγ τP (w)+O(
√
τ log τ).

This completes the proof of Theorem 2.3. ut

9. The structure of characters with large M(χ): proof of Theorems 2.1 and 2.2

The goal of this section is to prove Theorems 2.1 and 2.2. Throughout this section, we
set y = eτ+c for some constant c > 0 (note that this a different value of y than in the
previous section). We will show this theorem with

Cq(τ ) := {χ (mod q) : χ 6= χ0, Sy,q11/21(χ) ≤ 1, m(χ) > τ },

where the quantity Sy,z(χ) is defined as in Section 4. Theorem 4.2 and the lower bound
in Theorem 1.1, which we already proved at the beginning of Section 4, guarantee that
the cardinality of Cq(τ ) satisfies (2.1) provided that the constant c in the definition of y
and the constant C in the statement of Theorem 2.1 are large enough.

We fix a large τ ≤ log log q and we consider a character χ ∈ Cq(τ ). Let α ∈ [0, 1) be
such that

M(χ) =

∣∣∣∑
n≤αq

χ(n)

∣∣∣.
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As in the statement of Theorem 2.1, we pick a reduced fraction a/b such that 1 ≤ b ≤ τ 10

and |α − a/b| ≤ 1/(bτ 10), and we define b0 to equal b if b is prime, and 1 otherwise.
Following the argument leading to (8.1), we deduce that

m(χ) =
1

2eγ

∣∣∣∣ ∑
n∈Z\{0}
P+(n)≤y

χ(n)

n
−

∑
1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣+O(log τ), (9.1)

where N = 1/|bα − a| ≥ τ 10.

Proof of Theorem 2.1(1). We choose ξ modulo D with D ≤ log y to satisfy (7.1). Since
χ ∈ Cq(τ ), we must have m(χ) > τ , which implies that∣∣∣∣ ∑

n∈Z\{0}
P+(n)≤y

χ(n)

n
−

∑
1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣ ≥ 2eγ τ −O(log τ). (9.2)

We claim that

χ is odd, D = 1, ξ = 1, and D(χ, 1; y)� 1, (9.3)

the first relation being property (1). We separate two cases.
First, assume that b ≥ τ 1/100. Then we apply Lemma 7.2 to find that∑

1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n
� τ 1−1/300,

which, together with (9.2), implies that

|1− χ(−1)|
∣∣∣∣ ∑
P+(n)≤y

χ(n)

n

∣∣∣∣ ≥ 2eγ τ −O(τ 299/300). (9.4)

Then we must have χ(−1) = −1. Furthermore, the first part of Lemma 7.8 implies that
D = 1 and thus ξ = 1. Finally, Lemma 7.4 and (9.4) imply that D(χ, 1; y) � 1, which
completes the proof of (9.3) in this case.

Finally, assume that b ≤ τ 1/100. Suppose that either χ is even or ξ 6= 1. Then Lemma
7.8 implies that ∑

n∈Z\{0}
P+(n)≤y

χ(n)

n
� τ 0.86.

So (9.2) becomes ∣∣∣∣ ∑
1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣ ≥ 2eγ τ −O(τ 0.86). (9.5)
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Thus we must be in the second case of Lemma 7.8 as far as the above sum is concerned,
that is, D | b and χξ is odd. Then the second part of Lemma 7.8 implies that∣∣∣∣ ∑

1≤|n|≤N
P+(n)≤y

χ(n)e(an/b)

n

∣∣∣∣ ≤ 2eγ τ
√
D
(2/3)ω(b/D) +O(τ 0.86).

Comparing this inequality with (9.5), we deduce that b = D = 1 and thus ξ = 1,
provided that τ is large enough. But then χ has to be odd, which contradicts our initial
assumption. So we conclude that our initial assumption must be wrong, that is, χ must be
odd and ξ = 1, so that D = 1.

It remains to show that D(χ, 1; y) � 1 when b ≤ τ 1/100. We apply Lemma 7.4 and
the second part of Lemma 7.8 to deduce that∑

1≤|n|≤N
P+(n)≤y

χ(n)

n
−

∑
1≤|n|≤z
P+(n)≤y

χ(n)e(an/b)

n
� τ exp{−D(χ, 1; y)2/2} + τ 0.86.

Combining the above inequality with (9.2) yields the estimate D(χ, 1; y)� 1, thus com-
pleting the proof of our claim (9.3), and consequently of property (1). ut

In order to prove property (2) in Theorem 2.1, we need an intermediate result: We set

Ld(χ) =
∑

n≥1, (n,d)=1
P+(n)≤y

χ(n)

n

for d ∈ N, and

1 =
∑
p≤y

|1− χ(p)|
p − 1

� D(χ, 1; y)
√

log τ �
√

log τ

as in Lemma 7.9, where we have used (9.3). Additionally, we set

E =

(
1+

b

φ(b)
(e1 − 1)

)
log τ = τ o(1) (τ →∞),

and we write Ld(χ) = L
(1)
d (χ)+ L

(2)
d (χ), where

L
(1)
d (χ) =

∑
n≤N, (n,d)=1
P+(n)≤y

χ(n)

n
, L

(2)
d (χ) =

∑
n>N, (n,d)=1
P+(n)≤y

χ(n)

n
.

The intermediate result we need to show is that

m(χ) = e−γ ·


|L1(χ)| +O(E) if b is not a prime power,
|L1(χ)| +O(

√
τE) if b = pe, e ≥ 2,

b

φ(b)
|Lb(χ)| +O(

√
τE) if b is prime.

(9.6)

Before proving this, we show how to use it to complete the proof of Theorem 2.1.
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Proof of Theorem 2.1(2). We argue as in the proof Theorem 2.3(2). For (2.3), note that
our assumption that χ ∈ Cq(τ ) implies, as Sy,q11/21(χ) ≤ 1, that, for all d ≤ τ 10,∑

P+(n)>y
(n,d)=1
n≤q11/21

χ(n)

n
=

∑
g|d

µ(g)χ(g)

g

∑
P+(mg)>y

m≤q11/21/g

χ(m)

m

=

∑
g|d

µ(g)χ(g)

g

∑
P+(m)>y

m≤q11/21

χ(m)

m
+O

(∑
g|d

µ(g)2 log g
g

)

�

∑
g|d

µ(g)2 log(2g)
g

�
d

φ(d)

(
1+

∑
p|d

logp
p

)
� (log log τ)2.

Therefore,∑
(n,d)=1

χ(n)

n
=

∑
(n,d)=1
n≤q11/21

χ(n)

n
+O(q−1/43) =

∑
P+(n)≤y
(n,d)=1
n≤q11/21

χ(n)

n
+O((log log τ)2)

= Ld(χ)+O((log log τ)2)

for all d ≤ τ 10, by the Pólya–Vinogradov inequality, and Lemma 3.2. So (2.3) follows
from (9.6) but with the weaker error term O(E1) in place of O(

√
τ log τ), where E1 =√

Eτ if b = pe, and E1 = E otherwise, so that E1 � τ 1/2+o(1). We argue much like we
did getting to (4.5): We have

m(χ) =
b0

eγφ(b0)

∣∣∣∣ ∏
p 6=b0
p≤y

(
1−

χ(p)

p

)−1

+O(E1)

∣∣∣∣ ≥ e−γ ∏
p≤y

(
1−

1
p

)−1

,

so that ∣∣∣∣ ∏
p 6=b0
p≤y

(
1−

χ(p)

p

)−1(
1−

1
p

)∣∣∣∣ = 1+O(E1/τ)

and therefore ∑
p≤y
p 6=b0

1− Re(χ(p))
p

�
E1

τ
.

This implies that ∑
p≤y
p 6=b0

|1− χ(p)|
p − 1

�

(
E1 log τ
τ

)1/2

In particular,1 =
∑
p≤y |1−χ(p)|/(p−1)� 1, so that we always haveE � b

φ(b)
log τ

and E1 �
√
τ log τ . This completes the proof of Theorem 2.1(2). ut
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Proof of (9.6). We separate two main cases.

Case 1. Assume that b = 1. Then (9.1) and the fact that χ is odd imply that

m(χ) = e−γ
∣∣∣∣ ∑
P+(n)≤y

χ(n)

n
−

∑
n≤N

P+(n)≤y

χ(n)

n

∣∣∣∣+O(log τ)

= e−γ |L
(2)
1 (χ)| +O(log τ). (9.7)

Since m(χ) > τ , we find that

eγ τ +O(log τ) ≤ |L(2)1 (χ)| ≤
∑
n>N

P+(n)≤y

1
n
≤ eγ τ −

∑
n≤N

P+(n)≤y

1
n
+O(log τ).

Consequently,
∑
n≤N,P+(n)≤y 1/n � log τ , which in turn gives L(2)1 (χ) = L1(χ) +

O(log τ). Inserting this estimate into (9.7), we deduce that

m(χ) = e−γ |L1(χ)| +O(log τ),

that is, (9.6) holds (with a stronger error term).

Case 2. Assume that 1 < b ≤ τ 10. Then (9.1) and Lemma 7.9 imply that

m(χ) = e−γ
∣∣∣∣ ∑

n≤z
P+(n)≤y

χ(n)

n
−

∑
n≤N

P+(n)≤y

χ(n)e(na/b)

n

∣∣∣∣+O(log τ)

= e−γ
∣∣∣∣L1(χ)− L

(1)
b (χ)

χ(b)

φ(b)

∏
p|b

(1− χ(p))
(

1−
χ(p)

p

)−1∣∣∣∣+O(E).
Now Lemma 7.7, applied with f (n) = χ(n)1P+(n)≤y and b in place of a, yields

L
(1)
1 (χ) = L

(1)
b (χ)

∏
p|b

(
1−

χ(p)

p

)−1

+O

(
b

φ(b)

∑
p|b

logp
p

)
. (9.8)

So, if we set

Cb =

(
1−

χ(b)

φ(b)

∏
p|b

(1− χ(p))
)∏
p|b

(
1−

χ(p)

p

)−1

, (9.9)

then
m(χ) = e−γ |L

(2)
1 (χ)+ CbL

(1)
b (χ)| +O(E)

= e−γ
∣∣∣∣L1(χ)− L

(1)
1 (χ)

χ(b)

φ(b)

∏
p|b

(1− χ(p))
∣∣∣∣+O(E). (9.10)
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Our goal is to show, using (9.10), that χ(c) ≈ 1 for all c | b. Indeed, if this were true,
then Cb ≈ b/φ(b) ≈

∏
p|b(1− χ(p)/p)

−1. We start by observing that

Cb =
∑
b=cd

χ(d)

d

(
1−

µ(c)

φ(c)

) ∏
p|b, p-c

(
1−

χ(p)

p

)−1

. (9.11)

Indeed, reversing the last steps of the proof of Lemma 7.9, we find that

χ(b)

φ(b)

∏
p|b

(
1−

χ(p)

p

)−1

(1− χ(p)) =
∑
b=cd

χ(d)

d

µ(c)

φ(c)

∏
p|b, p-c

(
1−

χ(p)

p

)−1

.

Moreover,∏
p|b

(
1−

χ(p)

p

)−1

=

∑
p|n⇒p|b

χ(n)

n
=

∑
d|b

∑
p|n⇒p|b
(n,b)=d

χ(n)

n
=

∑
b=cd

χ(d)

d

∑
p|m⇒p|b
(m,c)=1

χ(m)

m

=

∑
b=cd

χ(d)

d

∏
p|b, p-c

(
1−

χ(p)

p

)−1

.

Combining the above two relations, we obtain (9.11).
Using (9.11) and the inequality |1− χ(p)/p|−1

= p/|p − χ(p)| ≤
p
p−1 , we deduce

that

|Cb| ≤
∑
b=cd

1
d

(
1−

µ(c)

φ(c)

)
b/φ(b)

c/φ(c)
=

b

φ(b)
(9.12)

for b > 1. Inserting this into (9.10), and since

m(χ) > τ = e−γ
∑

P+(n)≤y

1
n
+O(1),

we obtain ∑
P+(n)≤y

1
n
≤ |L

(2)
1 (χ)| + |Cb| · |L

(1)
b (χ)| +O(E)

≤ |L
(2)
1 (χ)| +

b

φ(b)
|L
(1)
b (χ)| +O(E). (9.13)

We also have

|L
(1)
b (χ)| ≤

∑
n≤N, (n,b)=1
P+(n)≤y

1
n
=
φ(b)

b

∑
m≤N

P+(m)≤y

1
m
+O

(
b

φ(b)

∑
p|b

logp
p

)

by Lemma 7.7. Together with (9.13), this implies that

|L
(2)
1 (χ)| ≥

∑
N<n≤z
P+(n)≤y

1
n
+O(E) =: S(2) +O(E).
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Since this holds as an upper bound too, we deduce that

|L
(2)
1 (χ)| = S(2) +O(E). (9.14)

Substituting (9.14) into (9.13) we obtain

b

φ(b)
|L
(1)
b (χ)| =

∑
n≤N

P+(n)≤y

1
n
+O(E) =: S(1) +O(E), (9.15)

and then comparing (9.13) with the displayed line above,

φ(b)

b
|Cb| = 1+O(ε1), (9.16)

where we have set εj := E/S(j) for j ∈ {1, 2}.

Case 2a. Assume that b has at least two distinct prime factors. If b 6= 6, then we can
find two distinct primes p and q such that b = peqf b′ with p, q - b′, peqf 6= 6, and
φ(b′) ≥ 2ω(b

′) (which only fails for b′ = 2 or 6). Therefore, taking absolute values in
(9.9), we find that

φ(b)

b
|Cb| ≤

(
1+
|1− χ(p)|
φ(pe)

|1− χ(q)|
φ(qf )

)
·

(
1−

1
p

)∣∣∣∣1−χ(p)p
∣∣∣∣−1

·

(
1−

1
q

)∣∣∣∣1−χ(q)q
∣∣∣∣−1

.

Note that(
1−

1
`

) ∣∣∣∣1− χ(`)`
∣∣∣∣−1

= exp
(
−

∑
k

Re(1− χ(`k))
k`k

)
≤ exp

(
−

Re(1− χ(`))
`

)
. (9.17)

Therefore

ε1 �
Re(1− χ(p))

p
+

Re(1− χ(q))
q

− log
(

1+
|1− χ(p)|
φ(pe)

·
|1− χ(q)|
φ(qf )

)
.

Now φ(peqf ) ≥ (8/7)
√
pq when peqf 6= 6, so that, for α = Re(1 − χ(p)) and

β = Re(1− χ(q)),

log
(

1+
|1− χ(p)|
φ(pe)

|1− χ(q)|
φ(qf )

)
≤
|1− χ(p)| |1− χ(q)|

φ(peqf )
≤

2
√
αβ

(8/7)
√
pq
≤

7
8

(
α

p
+
β

q

)
since |1− χ(p)|2 = 2α and |1− χ(q)|2 = 2β. We therefore deduce that

Re(1− χ(p))
p

,
Re(1− χ(q))

q
� ε1.

Now |1− χ(p)|2 = 2 Re(1− χ(p)), and so

|1− χ(p)| · |1− χ(q)| �
√
pq ε1 ≤

√
b ε1,
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and therefore, by (9.9),

Cb = (1+O(ε1))
∏
p|b

(
1−

χ(p)

p

)−1

.

Substituting this into (9.10), and using (9.8), yields (9.6) in this case, except if b = 6.
When b = 6, we use (9.11) and (9.17) to deduce that

φ(b)

b
|Cb| ≤

1
3

(
1
2
+

3
2

exp
{
−

Re(1− χ(2))
2

}
+ exp

{
−

Re(1− χ(3))
3

})
.

Since the left hand side is ≥ 1+O(ε1) and Re(1− χ(2)),Re(1− χ(3)) ≥ 0, we deduce
that Re(1 − χ(2)),Re(1 − χ(3)) � ε1, as before. Proceeding now as in the case b 6= 6
completes the proof (9.6) when b = 6 too.

Case 2b. Now suppose that b = pe is a prime power with e ≥ 2. Using (9.11), we see
that

φ(b)

b
Cb =

(
1−

1
p

) e−2∑
j=0

χ(pj )

pj
+
χ(pe−1)

pe−1 .

Define λ so that |λ| = 1 and λCb = |Cb|. Then(
1−

1
p

) e−2∑
j=0

1− λχ(pj )
pj

+
1− λχ(pe−1)

pe−1 = 1−
φ(b)

b
|Cb|,

which is ≥ 0 and O(ε1) by (9.12) and (9.16). Taking real parts, and noting that each
Re(1−λχ(pj )) ≥ 0, we deduce that Re(1−λ),Re(1−λχ(p))/p = O(ε1) by considering
the j = 0 and 1 terms. Hence

|1− χ(p)| = |λ(1− χ(p))| ≤ |1− λ| + |1− λχ(p)| �
√
ε1p,

and therefore

Cb = (1+O(ε
1/2
1 ))

(
1−

χ(p)

p

)−1

.

Substituting this into (9.10), and using (9.8), yields the result in this case.

Case 2c. Now suppose that b = p is a prime, so that Cp = p/(p − 1). Hence we cannot
use (9.16) to gain information on χ(p). Now, using Lemma 7.7, we obtain

|L
(2)
1 (χ)| =

∣∣∣∣ p

p − χ(p)
L(2)p (χ)

∣∣∣∣+O( logp
p

)
≤

p

|p − χ(p)|

p − 1
p

S(2) +O

(
logp
p

)
.

Combining this with (9.14) yields (p − 1)/|p − χ(p)| ≥ 1+O(ε2), that is,∣∣∣∣1+ 1− χ(p)
p − 1

∣∣∣∣ ≤ 1+O(ε2).
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Taking real parts, we deduce that

1 ≤ 1+
Re(1− χ(p))

p − 1
≤ 1+O(ε2),

with the lower bound being trivial. This implies that

|1− χ(p)| �
√
ε2p.

Using Lemma 7.7, we then conclude that

L
(2)
1 (χ)+ CbL

(1)
b (χ) = L

(2)
1 (χ)+

p

p − 1
L(1)p (χ)

=
p

p − χ(p)
L(2)p (χ)+

p

p − 1
L(1)p (χ)+O

(
logp
p

)
=

p

p − 1
L(2)p (χ)+

p

p − 1
L(1)p (χ)+O(

√
τE),

which, together with (9.10), completes the proof of (9.6) in this last case too. ut

Remark 9.1. Note that ε2 can be quite big if N is small and if α is not very close to a/b.
So we cannot say more than the last formula without more information on the location
of α.

Proof of Theorem 2.2. Let y = eτ+c for a large enough constant c, as above, and define
w via the relation |β − k/`| = 1/(`yw). Note that w = u(1 + O(1/τ)). So we may
show the theorem with w in place of u. Arguing as at the beginning of this section, and
applying Lemma 7.1 with z = ∞, we find that

πi

G(χ)
∑
n≤βq

χ(n) =
1
2

∑
n∈Z, n6=0
P+(n)≤y

χ(n)

n
−

1
2

∑
P+(n)≤y
1≤|n|≤yw

χ(n)e(−kn/`)

n
+O(log τ)

=

∑
P+(n)≤y

χ(n)

n
−

∑
P+(n)≤y
n≤yw

χ(n) cos(2πkn/`)
n

+O(log τ).

Note that (2.2) and the argument leading to (4.6) imply that∑
P+(n)≤y
(n,b0)=1

|1− χ(n)|
n

� (τ log τ)3/4 (9.18)

for all ε > 0. Hence χ is 1-pretentious.
Now suppose that b0 = 1. Substituting (9.18) in our formula for

∑
n≤βq χ(n), we

obtain

πi

G(χ)
∑
n≤βq

χ(n) =
∑

P+(n)≤y

1
n
−

∑
P+(n)≤y
n≤yw

cos(2πkn/`)
n

+O((τ log τ)3/4).
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If ` > 1, then we bound the second sum using Corollary 7.10. If ` = 1, then the result
follows from Lemma 3.3. This concludes the proof of part (a).

Finally, assume that b is a prime number so that b0 = b. Writing n = bjm with
(m, b) = 1, we find that

πi

G(χ)
∑
n≤βq

χ(n)

=

∞∑
j=0

χ(bj )

bj

( ∑
P+(m)≤y
(m,b)=1

χ(m)

m
−

∑
P+(m)≤y

m≤yw, (m,b)=1

χ(m) cos(2πbjkm/`)
m

)
+O(log τ)

=

∞∑
j=0

χ(bj )

bj

( ∑
P+(m)≤y
(m,b)=1

1
m
−

∑
P+(m)≤y

m≤yw, (m,b)=1

cos(2πbjkm/`)
m

)
+O((τ log τ)3/4)

by (9.18) and the trivial estimate
∑
yw/bj<m≤yw 1/m� j log b � j log τ . If ` = 1, then

πi

G(χ)
∑
n≤βq

χ(n) =

∞∑
j=0

χ(bj )

bj

∑
P+(m)≤y

m>yw, (m,b)=1

1
m
+O(τ 3/4 log τ)

= eγ τ(1− P(w))
1− 1/b

1− χ(b)/b
+O((τ log τ)3/4)

by Lemmas 7.7 and 3.3. Next, if ` 6= bv for all v ≥ 0, then bjk/` /∈ Z for all j ≥ 0. So
Corollary 7.10 implies that

πi

G(χ)
∑
n≤βq

χ(n) =

∞∑
j=0

χ(bj )

bj

∑
P+(m)≤y
(m,b)=1

1
m
+O(τ 3/4 log τ)

=
1− 1/b

1− χ(b)/b
eγ τ +O((τ log τ)3/4)

as claimed. Finally, assume that ` = bv for some v ≥ 1. The terms with j ≥ v contribute
∞∑
j=v

χ(bj )

bj

∑
P+(m)≤y

m>yw, (m,b)=1

1
m
= eγ τ(1− P(w))

1− 1/b
1− χ(b)/b

χ(bv)

bv
+O(1)

by Lemmas 7.7 and 3.3. When j ≤ v−1, we apply Corollary 7.10. The total contribution
of those terms is

v−1∑
j=0

χ(bj )

bj

∑
P+(m)≤y
(m,b)=1

1
m
+
χ(bv−1)

bv−1
1

φ(b)

∑
P+(m)≤y

m≤yw, (m,b)=1

1
m
+O(log τ)

= eγ τ

(
1−

1
b

)(
1− χ(bv)/bv

1− χ(b)/b
+
χ(bv−1)

bv−1
P(w)

b − 1

)
+O(log τ)
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by Lemmas 7.7 and 3.3. Putting the above estimates together yields the estimate

e−γπi

G(χ)
∑
n≤βq

χ(n) = τ
1− χ(b)/b

1− 1/b

(
1+ P(u)

(
χ(b)

b

)v−1 1− χ(b)
b − 1

+O(ε)

)

with ε = (log τ)3/4/τ 1/4. To finish the proof of the theorem, we specialize the above
formula when β = α, in which case k/` = a/b, so that v = 1. Then the modulus of
the left hand side equals m(χ), which is > τ by assumption. On the other hand, if we set
z = (1− χ(b))/(b − 1), then

1− χ(b)/b
1− 1/b

(
1+ P(u0)

1− χ(b)
b − 1

)
=

1+ P(u0)z

1+ z
.

Consequently, ∣∣∣∣1+ P(u0)z

1+ z

∣∣∣∣ ≥ 1+O(ε).

Since 0 ≤ P(u0) ≤ 1 and 2 Re(z) = |z|2 ≥ 0, we have∣∣∣∣1+ P(u0)z

1+ z

∣∣∣∣2 = 1−
|z|2(1− P(u0)

2)+ 2(1− P(u0))Re(z)
|1+ z|2

≤ 1−
(1− P(u0))|z|

2

|1+ z|2
.

Putting together the above inequalities proves the last claim of part (b). Hence the proof
of Theorem 2.2 is now complete. ut

10. Additional tables

Table 1. The minimum, maximum, mean, and .9999-quantile for m(χ) over even, odd, and all
nontrivial χ mod q for some selected values of q.

even odd all

q min mean .9999 max min mean .9999 max mean .9999

10000019 0.728 0.994 1.74 2.11 0.788 1.51 3.35 3.74 1.25 3.25
10000079 0.725 0.994 1.75 2.05 0.795 1.51 3.35 3.81 1.25 3.26
10000103 0.725 0.994 1.75 2 0.793 1.51 3.34 3.83 1.25 3.25
10000121 0.724 0.994 1.75 2.02 0.793 1.51 3.34 3.78 1.25 3.26
10000139 0.726 0.994 1.75 2.01 0.797 1.51 3.35 3.74 1.25 3.25
10000141 0.719 0.994 1.74 2.02 0.79 1.51 3.33 3.82 1.25 3.25
10000169 0.721 0.994 1.75 2.06 0.788 1.51 3.34 3.73 1.25 3.25
10000189 0.709 0.994 1.75 2.01 0.793 1.51 3.35 3.71 1.25 3.25
10000223 0.73 0.994 1.75 2 0.783 1.51 3.34 3.81 1.25 3.25
10000229 0.723 0.994 1.74 2.04 0.784 1.51 3.33 3.79 1.25 3.25
10000247 0.716 0.994 1.74 2.05 0.794 1.51 3.34 3.71 1.25 3.25
10000253 0.724 0.994 1.75 2.05 0.783 1.51 3.34 3.75 1.25 3.25



The frequency and the structure of large character sums 1817

Table 1 (cont.)

even odd all

q min mean .9999 max min mean .9999 max mean .9999

11000027 0.724 0.994 1.75 2.03 0.797 1.51 3.34 3.72 1.25 3.25
11000053 0.733 0.994 1.75 2.07 0.781 1.51 3.34 3.81 1.25 3.25
11000057 0.707 0.994 1.75 2.03 0.79 1.51 3.34 3.74 1.25 3.25
11000081 0.724 0.994 1.75 2.01 0.789 1.51 3.33 3.77 1.25 3.25
11000083 0.724 0.994 1.75 2.05 0.799 1.51 3.34 3.84 1.25 3.25
11000089 0.728 0.994 1.75 2.05 0.794 1.51 3.33 3.77 1.25 3.26
11000111 0.724 0.994 1.75 2.03 0.796 1.51 3.33 3.72 1.25 3.26
11000113 0.719 0.994 1.75 2.01 0.781 1.51 3.34 3.73 1.25 3.25
11000149 0.731 0.994 1.75 2.03 0.805 1.51 3.34 3.72 1.25 3.25
11000159 0.722 0.994 1.75 2 0.797 1.51 3.33 3.83 1.25 3.25
11000179 0.724 0.994 1.74 2.03 0.796 1.51 3.35 3.86 1.25 3.26
11000189 0.728 0.994 1.75 2.1 0.794 1.51 3.34 3.68 1.25 3.26
12000017 0.723 0.994 1.74 2.08 0.8 1.51 3.34 3.8 1.25 3.26
12000029 0.72 0.994 1.74 2.06 0.791 1.51 3.33 3.84 1.25 3.26
12000073 0.735 0.994 1.75 2.05 0.794 1.51 3.34 3.9 1.25 3.26
12000091 0.728 0.994 1.75 2.02 0.794 1.51 3.35 3.73 1.25 3.26
12000097 0.719 0.994 1.75 2.08 0.788 1.51 3.34 3.75 1.25 3.25
12000127 0.724 0.994 1.75 2.09 0.794 1.51 3.34 3.71 1.25 3.25
12000133 0.727 0.994 1.75 2.11 0.785 1.51 3.34 3.73 1.25 3.25
12000239 0.715 0.994 1.75 2.02 0.797 1.51 3.34 3.8 1.25 3.25
12000253 0.713 0.994 1.75 2.02 0.786 1.51 3.34 3.76 1.25 3.26
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