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Abstract. Cameron and Erdős [6] asked whether the number of maximal sum-free sets in
{1, . . . , n} is much smaller than the number of sum-free sets. In the same paper they gave a lower
bound of 2bn/4c for the number of maximal sum-free sets. Here, we prove the following: For
each 1 ≤ i ≤ 4, there is a constant Ci such that, given any n ≡ i mod 4, {1, . . . , n} contains
(Ci + o(1))2n/4 maximal sum-free sets. Our proof makes use of container and removal lemmas of
Green [11, 12], a structural result of Deshouillers, Freiman, Sós and Temkin [7] and a recent bound
on the number of subsets of integers with small sumset by Green and Morris [13]. We also discuss
related results and open problems on the number of maximal sum-free subsets of abelian groups.
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1. Introduction

A triple x, y, z is a Schur triple if x + y = z (note x, y and z may not necessarily be
distinct). A set S is sum-free if S does not contain a Schur triple. Let [n] := {1, . . . , n}.
We say that S ⊆ [n] is a maximal sum-free subset of [n] if it is sum-free and it is not
properly contained in another sum-free subset of [n]. Let f (n) denote the number of sum-
free subsets of [n] and fmax(n) denote the number of maximal sum-free subsets of [n].
The study of sum-free sets of integers has a rich history. Clearly, any set of odd integers
and any subset of {bn/2c + 1, . . . , n} is a sum-free set, hence f (n) ≥ 2n/2. Cameron
and Erdős [5] conjectured that f (n) = O(2n/2). In fact, they conjectured the stronger
statement that f (n)/2n/2 tends to two different constants depending on the parity of n.1

This conjecture was proven independently by Green [11] and Sapozhenko [18]. Indeed,
they showed that there are constants C1 and C2 such that f (n) = (Ci + o(1))2n/2 for all
n ≡ i mod 2.
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In a second paper, Cameron and Erdős [6] observed that fmax(n) ≥ 2bn/4c. Noting
that all the sum-free subsets of [n] described above lie in just two maximal sum-free
sets, they asked whether fmax(n) = o(f (n)) or even fmax(n) ≤ f (n)/2εn for some
constant ε > 0. Łuczak and Schoen [16] answered this question in the affirmative, show-
ing that fmax(n) ≤ 2n/2−2−28n for sufficiently large n. Later, Wolfovitz [20] proved that
fmax(n) ≤ 23n/8+o(n). More recently, the present authors [2] showed that the lower bound
is essentially tight, proving that fmax(n) = 2(1/4+o(1))n.

In this paper we give the following exact solution to the problem.

Theorem 1.1. For each 1 ≤ i ≤ 4, there is a constant Ci such that, given any n ≡
i mod 4, the set [n] contains (Ci + o(1))2n/4 maximal sum-free sets.

We remark that the constants Ci can also be computed up to any additive error (say ε) in
constant time (i.e. depending only on ε). We refer the reader to Section 4.3 (and the re-
marks after Lemma 4.16) for more details. The proof of Theorem 1.1 is given in Section 4,
with the main work arising in Section 4.1. The proof draws on a number of ideas from [2].
In particular, as in [2] we make use of ‘container’ and ‘removal’ lemmas of Green [11, 12]
as well as a result of Deshouillers, Freiman, Sós and Temkin [7] on the structure of sum-
free sets. Our work also has parallels with recent developments on maximal triangle-free
graphs [1, 4] (see the introduction in [1] for a discussion on this).

Despite these connections, the details of these proofs are actually significantly differ-
ent to the proof of Theorem 1.1. In particular, as described in Section 2.1, the container
method is naturally set up to yield an error term in the exponent when computing fmax(n).
Thus, in order to avoid over-counting the number of maximal sum-free subsets of [n], our
present proof develops a number of new ideas, thereby making the argument substantially
more involved. We use a bound on the number of subsets of integers with small sumset
by Green and Morris [13] as well as several new bounds on the number of maximal inde-
pendent sets in various graphs. Further, the proof provides information about the typical
structure of the maximal sum-free subsets of [n]. Indeed, we show that almost all of the
maximal sum-free subsets of [n] look like one of two particular extremal constructions
(see Section 2.3 for more details).

Our main result is an example of an enumeration problem. This area has a long history.
In particular, in the context of graph theory, the study was initiated by Erdős, Kleitman
and Rothschild [9] who (up to an error term in the exponent) determined the number
of Kr -free graphs on n vertices. Since then, a number of tools have been developed for
attacking such problems. However, progress on enumeration problems for sum-free sets
has been slower. Indeed, as mentioned above, it took nearly 15 years for the conjecture
of Cameron and Erdős on the number of sum-free subsets of [n] to be fully resolved. We
believe that our methods are likely to provide insight for attacking related problems. For
example, in Section 5 we state several open problems on the number of maximal sum-free
subsets of abelian groups.

In Section 2 we give an overview of the proof and highlight the new ideas that we
develop. We state some useful results in Section 3 and prove Theorem 1.1 in Section 4.
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2. Background and an overview of the proof of Theorem 1.1

2.1. Independence and container theorems

An exciting recent development has been the emergence of ‘independence’ providing a
framework to study a plethora of problems arising in combinatorics, geometry, number
theory and probability as well as at the interfaces of such areas. To be more precise, let V
be a set and E a collection of subsets of V . We say that a subset I of V is an independent
set if I does not contain any element of E as a subset. For example, if V := [n] and E
is the collection of all Schur triples in [n] then an independent set I is simply a sum-free
set. It is often helpful to think of (V , E) as a hypergraph with vertex set V and edge set E ;
thus an independent set I corresponds to an independent set in the hypergraph.

So-called ‘container results’ have emerged as a powerful tool for attacking many prob-
lems that concern counting independent sets. Roughly speaking, container results state
that the independent sets of a given hypergraph H lie only in a ‘small’ number of sub-
sets of the vertex set of H (referred to as containers), where each of these containers
is an ‘almost independent set’. Balogh, Morris and Samotij [3], and independently Sax-
ton and Thomason [19], proved general container theorems for hypergraphs whose edge
distribution satisfies certain boundedness conditions.

In the proof of Theorem 1.1 we will apply the following container theorem of
Green [11].

Lemma 2.1 ([11, Proposition 6]). There exists a family F of subsets of [n] with the
following properties:

(i) Every member of F has at most o(n2) Schur triples.
(ii) If S ⊆ [n] is sum-free, then S is contained in some member of F .

(iii) |F | = 2o(n).
(iv) Every member of F has size at most (1/2+ o(1))n.

We refer to the sets in F as containers.
In [2] we used Lemma 2.1 to prove that fmax(n) = 2(1+o(1))n/4. Indeed, we showed

that every F ∈ F contains at most 2(1+o(1))n/4 maximal sum-free subsets of [n], which
by (ii) and (iii) yields the desired result. To obtain an exact bound on fmax(n) it is not
sufficient to give a tight general bound on the number of maximal sum-free subsets of [n]
that lie in a container F ∈ F . Indeed, such an F ∈ F could contain O(2n/4) maximal
sum-free subsets of [n], and thus together with (iii) this still gives an error term in the
exponent. In general, since containers may overlap, applications of container results may
lead to ‘over-counting’.

We therefore need to count the number of maximal sum-free subsets of [n] in a more
refined way. To explain our method, we first need to describe the constructions which
imply that fmax(n) ≥ 2bn/4c.

2.2. Lower bound constructions

The following construction of Cameron and Erdős [6] implies that fmax(n) ≥ 2bn/4c. Let
n ∈ N and let m = n or m = n − 1, whichever is even. Let S consist of m together with
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precisely one number from each pair {x,m − x} for odd x < m/2. Then S is sum-free.
Moreover, although S may not be maximal, no further odd numbers less than m can be
added, so distinct S lie in distinct maximal sum-free subsets of [n].

The following construction from [2] also yields the same lower bound on fmax(n).
Suppose that 4 | n and set I1 := {n/2 + 1, . . . , 3n/4} and I2 := {3n/4 + 1, . . . , n}. First
choose the element n/4 and a set S′ ⊆ I2. Then for every x ∈ I2\S

′, choose x−n/4 ∈ I1.
The resulting set S is sum-free but may not be maximal. However, no further element
in I2 can be added, thus distinct S lie in distinct maximal sum-free sets in [n]. There are
2|I2| = 2n/4 ways to choose S.

2.3. Counting maximal sum-free sets

The following result provides structural information about the containers F ∈ F . Lem-
ma 2.2 is implicitly stated in [2] and was essentially proven in [11]. It is an immediate
consequence of a result of Deshouillers, Freiman, Sós and Temkin [7] on the structure of
sum-free sets and a removal lemma of Green [12]. HereO denotes the set of odd numbers
in [n].

Lemma 2.2. If F ⊆ [n] has o(n2) Schur triples then either

(a) |F | ≤ 0.47n;

or one of the following holds for some −o(1) ≤ γ = γ (n) ≤ 0.03:

(b) |F | = (1/2 − γ )n and F = A ∪ B where |A| = o(n) and B ⊆ [(1/2 − γ )n, n] is
sum-free;

(c) |F | = (1/2− γ )n and F = A ∪ B where |A| = o(n) and B ⊆ O.

The crucial idea in the proof of Theorem 1.1 is that we show ‘most’ of the maximal
sum-free subsets of [n] ‘look like’ the examples given in Section 2.2: We first show that
containers of type (a) house only a small (at most 20.249n) number of maximal sum-free
subsets of [n] (see Lemma 4.3). For type (b) containers we split the argument into two
parts. More precisely, we count the number of maximal sum-free subsets S of [n] with
the property that (i) the smallest element of S is n/4 ± o(n) and (ii) the second smallest
element of S is at least n/2−o(n). (For this we use a direct argument rather than counting
such sets within the containers.) We then show that the number of maximal sum-free
subsets of [n] that lie in type (b) containers but that fail to satisfy one of (i) and (ii) is
small (o(2n/4)). We use a similar idea for type (c) containers. Indeed, we show directly
that the number of maximal sum-free subsets of [n] that contain at most one even number
is O(2n/4). We then show that the number of maximal sum-free subsets of [n] that lie in
type (c) containers and which contain two or more even numbers is small (o(2n/4)).

In each of our cases, we give an upper bound on the number of maximal sum-free
sets in a container by counting the number of maximal independent sets in various auxil-
iary graphs. (Similar techniques were used in [20, 2], and in the graph setting in [4].) In
Section 3.3 we collect together a number of results that are useful for this.
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3. Notation and preliminaries

3.1. Notation

For a set F ⊆ [n], denote by MSF(F ) the set of all maximal sum-free subsets of [n]
that are contained in F and let fmax(F ) := |MSF(F )|. Also, denote by min(F ) and
max(F ) the minimum and the maximum element of F respectively. Let min2(F ) denote
the second smallest element of F . Denote by E the set of all even and by O the set of all
odd numbers in [n]. Given sets A,B, we let A+B := {a+ b : a ∈ A, b ∈ B}. We say a
real valued function f (n) is exponentially smaller than another real valued function g(n)
if there exists a constant ε > 0 such that f (n) ≤ g(n)/2εn for n sufficiently large. We use
log to denote the logarithm function of base 2.

Throughout, all graphs considered are simple unless stated otherwise. We say that G
is a graph possibly with loops ifG can be obtained from a simple graph by adding at most
one loop at each vertex. We write e(G) for the number of edges in G. Given a vertex x
in G, we write degG(x) for the degree of x in G. Note that a loop at x contributes two
to the degree of x. We write δ(G) for the minimum degree and 1(G) for the maximum
degree of G. Denote by G[T ] the induced subgraph of G on the vertex set T , and G \ T
the induced subgraph ofG on the vertex set V (G) \T . Given x ∈ V (G), we write NG(x)
for the neighourhood of x in G. Given S ⊆ V (G), we write NG(S) for the set of vertices
y ∈ V (G) such that xy ∈ E(G) for some x ∈ S.

We write Cm for the cycle, and Pm for the path on m vertices. Given graphs G and H
we writeG�H for the cartesian product graph. SoG�H has vertex set V (G)×V (H),
and (x, y) and (x′, y′) are adjacent in G �H if (i) x = x′ and y and y′ are adjacent in H
or (ii) y = y′ and x and x′ are adjacent in G.

Throughout the paper we omit floors and ceilings where the argument is unaffected.
We write 0 < α � β � γ to mean that we can choose the constants α, β, γ from right to
left. More precisely, there are increasing functions f and g such that, given γ , whenever
we choose some β ≤ f (γ ) and α ≤ g(β), all calculations needed in our proof are valid.
Hierarchies of other lengths are defined in the obvious way.

3.2. The number of sets with small sumset

We need the following lemma of Green and Morris [13], which bounds the number of
sets with small sumset.

Lemma 3.1. Fix δ > 0 and R > 0. Then the following hold for all integers s ≥ s0(δ, R).
For any D ∈ N there are at most

2δs
( 1

2Rs

s

)
DbR+δc

sets S ⊆ [D] with |S| = s and |S + S| ≤ R|S|.

3.3. Maximal independent sets in graphs

In this section we collect together results on the number of maximal independent sets in
a graph. Let MIS(G) denote the number of maximal independent sets in a graph G.
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Moon and Moser [17] showed that MIS(G) ≤ 3|G|/3 for any simple graph G. When
a graph is triangle-free, this bound can be improved significantly: A result of Hujter and
Tuza [15] states that for any triangle-free graph G,

MIS(G) ≤ 2|G|/2. (1)

The next result implies that the bound given in (1) can be further lowered if G is addi-
tionally not too sparse.

Lemma 3.2. Let n,D ∈ N and k ∈ R. Suppose that G is a triangle-free graph on n
vertices with 1(G) ≤ D and e(G) ≥ n/2+ k. Then

MIS(G) ≤ 2n/2−k/(100D2).

The following result for ‘almost triangle-free’ graphs follows from Lemma 3.2.

Corollary 3.3. Let n,D ∈ N and k ∈ R. Suppose that G is a graph and T is a set such
thatG′ := G\T is triangle-free. Suppose that1(G) ≤ D, |G′| = n and e(G′) ≥ n/2+k.
Then

MIS(G) ≤ 2n/2−k/(100D2)+101|T |/100.

We defer the proofs of Lemma 3.2 and Corollary 3.3 to the appendix.
The following result gives an improvement on the Moon–Moser bound for graphs that

are not too sparse, almost regular and of large minimum degree. (The result is proven as
equation (3) in [2].)

Lemma 3.4 ([2]). Let k ≥ 1 and let G be a graph on n vertices possibly with loops.
Suppose that 1(G) ≤ kδ(G) and set b :=

√
δ(G). Then

MIS(G) ≤
∑

0≤i≤n/b

(
n

i

)
3

kn
3k+3+

2n
3b .

Fact 3.5. Suppose that G′ is a (simple) graph. If G is a graph obtained from G′ by
adding loops at some vertices x ∈ V (G′) then

MIS(G) ≤ MIS(G′).

The following lemma from [1] gives an improvement on (1) whenG additionally contains
many vertex-disjoint P3s. Its proof is similar to that of Lemma 3.2.

Lemma 3.6 ([1]). Let G be an n-vertex triangle-free graph, possibly with loops. If G
contains k vertex-disjoint P3s, then

MIS(G) ≤ 2n/2−k/25.
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4. Proof of Theorem 1.1

Let 1 ≤ i ≤ 4 and 0 < η < 1. To prove Theorem 1.1, we must show that there is a
constant Ci (depending only on i) such that if n is sufficiently large and n ≡ i mod 4 then

(Ci − η)2n/4 ≤ fmax(n) ≤ (Ci + η)2n/4. (2)

Given η > 0 and sufficiently large n with n ≡ i mod 4, define constants α, δ, ε > 0
so that

0 < 1/n� α � δ � ε � η < 1. (3)

Let F be the family of containers obtained from Lemma 2.1. Since n is sufficiently
large, Lemma 2.2 implies that |F | ≤ 2αn and for every F ∈ F either

(a) |F | ≤ 0.47n;

or one of the following holds for some −α ≤ γ = γ (n) ≤ 0.03:

(b) |F | = (1/2 − γ )n and F = A ∪ B where |A| ≤ αn and B ⊆ [(1/2 − γ )n, n] is
sum-free;

(c) |F | = (1/2− γ )n and F = A ∪ B where |A| ≤ αn and B ⊆ O.

Throughout the rest of the paper we refer to such containers as type (a), type (b) and
type (c), respectively.

For any subsets B, S ⊆ [n], let LS[B] be the link graph of S on B defined as follows.
The vertex set of LS[B] is B. The edge set of LS[B] consists of the following two types
of edges:

(i) two vertices x and y are adjacent if there exists an element z ∈ S such that {x, y, z}
forms a Schur triple;

(ii) there is a loop at a vertex x if {x, x, z} forms a Schur triple for some z ∈ S or if
{x, z, z′} forms a Schur triple for some z, z′ ∈ S.

The following simple lemma from [2] will be applied in many cases throughout the proof.

Lemma 4.1 ([2]). Suppose that B and S are both sum-free subsets of [n]. If I ⊆ B is
such that S ∪ I is a maximal sum-free subset of [n], then I is a maximal independent set
in G := LS[B].

The next lemma will allow us to apply (1) to certain link graphs.

Lemma 4.2. Suppose that B, S ⊆ [n] are such that S is sum-free and max(S) < min(B).
Then G := LS[B] is triangle-free.

Proof. Suppose to the contrary that z > y > x > max(S) form a triangle in G. Then
there exist a, b, c ∈ S such that z − y = a, y − x = b and z − x = c, which implies
a + b = c with a, b, c ∈ S. This contradicts S being sum-free. ut

In the proof we will use the simple fact that if S ⊆ T ⊆ [n] then

fmax(S) ≤ fmax(T ). (4)

The following lemma is a slightly stronger form of [2, Lemma 3.2], which deals with
containers of ‘small’ size. The proof is exactly the same as in [2].
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Lemma 4.3. If F ∈ F has size at most 0.47n, then fmax(F ) ≤ 20.249n.

Thus, to show that (2) holds it suffices to show that there is a constant Ci such that in total,
type (b) and (c) containers house (Ci ± η/2)2n/4 maximal sum-free subsets of [n]. In
Section 4.1 we deal with containers of type (b) and in Section 4.2 we deal with containers
of type (c).

4.1. Type (b) containers

The following lemma allows us to restrict our attention to type (b) containers that have at
most εn elements from [n/2].

Lemma 4.4. Let F ∈ F be a container of type (b) such that |F ∩ [n/2]| ≥ εn. Then
fmax(F ) ≤ 2(1/4−δ)n.
Proof. Define c ≥ ε so that |F ∩ [n/2]| = cn. Since F is of type (b), F = A ∪ B where
|A| ≤ αn and B is sum-free where min(B) ≥ 0.47n. Therefore cn ≤ (0.03+ α)n.

As |F ∩ [n/2]| = cn, |B ∩ [0.47n, n/2]| ≥ (c − α)n and so trivially |(B + B) ∩
[0.94n, n]| ≥ (2c−4α)n. Therefore, since B is sum-free, F is missing at least (2c−4α)n
numbers from [0.94n, n]. Partition F = F1∪F2 where F1 := F ∩[n/2] and F2 := F \F1.
Note that |F2| ≤ (1/2− 2c + 4α)n.

The following observation is a key idea for the proof of this lemma. Every maximal
sum-free subset of [n] in F can be built in the following two steps. First, fix an arbitrary
sum-free set S ⊆ F1. Next, extend S in F2 to a maximal one. Since |F1| = cn, there are
at most 2cn ways to pick S. By Lemma 4.1, the number of choices for the second step is
at most the number of maximal independent sets I in LS[F2].

Claim 4.5. There are at most 2(1/4−ε/20)n maximal sum-free subsets M of [n] in F such
that |M ∩ F1| ≤ cn/4.
Proof. Choose an arbitrary sum-free set S ⊆ F1 such that |S| ≤ cn/4 (there are at most
cn
(
cn
cn/4

)
/4 choices for S). By Lemma 4.2, L := LS[F2] is triangle-free. So MIS(L) ≤

2|F2|/2 ≤ 2(1/4−c+2α)n by (1). Thus, the number of maximal sum-free subsets of [n] in F
with at most cn/4 elements from F1 is at most

cn

4

(
cn
cn
4

)
· 2(1/4−c+2α)n

≤ 2(1/4−c/10+2α)n
≤ 2(1/4−ε/20)n,

where the last inequality follows since α � ε ≤ c. ut

Let S ⊆ F1 be sum-free such that |S| > cn/4. Claim 4.5 together with our earlier observa-
tion implies that to prove the lemma it suffices to show that MIS(LS[F2]) ≤ 2(1/4−c−2δ)n.

By Lemma 4.2, LS[F2] is triangle-free. We may assume that F is missing at
most (2c + 4δ)n numbers from [0.94n, n]. Indeed, otherwise by (1), MIS(LS[F2]) ≤

2(1/4−c−2δ)n, as required.

Claim 4.6. We may assume that (2c − 4α)n ≤ |[n/2+ 1, n] \ F | ≤ (2c + 9δ)n.
Proof. Since we already know that (2c − 4α)n ≤ |[0.94n, n] \ F | ≤ (2c + 4δ)n, to
prove the claim we only need to prove that F is missing at most 5δn elements from
[0.5n, 0.94n]. Suppose to the contrary that F is missing at least 5δn numbers from
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[0.5n, 0.94n]. Then |F2| ≤ (1/2 − 2c + 4α − 5δ)n ≤ (1/2 − 2c − 4δ)n and so by (1),
MIS(LS[F2]) ≤ 2(1/4−c−2δ)n. ut

Claim 4.7. Set m := min(S). Suppose that m < (1/4 − 2c)n or m > (1/4 + ε)n. Then
MIS(LS[F2]) ≤ 2(1/4−c−2δ)n.

Proof. Suppose that m > (1/4 + ε)n. Then in L := LS[F2] a vertex x ∈ [(3/4 − ε)n,
(3/4 + ε)n] =: N is either isolated or adjacent only to itself. Thus MIS(L) = MIS(L′)
where L′ := L \ N . Recall that (2c − 4α)n ≤ |[0.94n, n] \ F |. Hence, (1) implies that
MIS(L) ≤ 2(1/4−c+2α−ε)n

≤ 2(1/4−c−2δ)n.
Now suppose that m < (1/4 − 2c)n. Then L := LS[F2] contains at least

100δn vertex-disjoint copies of P3. Indeed, consider the set of all P3s with vertex set
{n/2+ i, n/2+m+ i, n/2+ 2m+ i} for all 1 ≤ i ≤ n/2− 2m. Since m ≤ (1/4− 2c)n,
we have at least n/2 − 2m ≥ 4cn such P3s. By Claim 4.6, at most (2c + 9δ)n elements
from [n/2 + 1, n] are not in F . Hence, L contains at least (2c − 9δ)n ≥ 700δn of these
copies of P3. Note that these copies of P3 may not be vertex-disjoint, but given one of
these copies P of P3, there are at most six copies of P3 of this type that intersect P in L.
So L contains a collection of 100δn vertex-disjoint copies of P3. Using Lemma 3.6, we
have MIS(L) ≤ 2(1/4−c+2α)n−4δn

≤ 2(1/4−c−2δ)n. ut

By Claim 4.7 we may now assume that (1/4− 2c)n ≤ m ≤ (1/4+ ε)n.

Claim 4.8. Set b := min2(S). If b ≤ (1/2− 4c)n then MIS(LS[F2]) ≤ 2(1/4−c−2δ)n.

Proof. We claim that L := LS[F2] contains at least 100δn vertex-disjoint copies of P3.
Consider the set of all P3s with vertex set {n/2+ i, n/2+ b+ i, n/2+ b−m+ i} for all
1 ≤ i ≤ n/2− b. Since b ≤ n/2− 4cn, we have at least n/2− b ≥ 4cn such P3s. Note
that F might be missing up to (2c+ 9δ)n elements from [n/2+ 1, n]. Hence, L contains
at least (2c − 9δ)n ≥ 700δn of these copies of P3. Note that these copies of P3 may not
be vertex-disjoint, but given one of these copies P of P3, there are at most six copies of
P3 of this type that intersect P in L. So L contains a collection of 100δn vertex-disjoint
copies of P3. Hence, Lemma 3.6 implies that MIS(LS[F2]) ≤ 2(1/4−c−2δ)n. ut

So now we may assume that |S| > cn/4, (1/4 − 2c)n ≤ m ≤ (1/4 + ε)n and b ≥
(1/2 − 4c)n. Thus, at least cn/4 elements from [(3/4 − 6c)n, (3/4 + ε)n] lie in S + m.
Every element of S+m is either missing from F2 or has a loop inLS[F2]. Recall that F2 is
missing (2c−4α)n elements from [0.94n, n]. Thus, altogether at least 2cn−4αn+cn/4 ≥
2cn+4δn elements from [n/2+1, n] are either missing from F2 or have a loop in LS[F2].
Hence,

MIS(LS[F2]) ≤ 2(1/4−c−2δ)n. ut

Lemma 4.9. Let F ∈ F be a container of type (b) such that |F ∩ [n/2]| ≤ εn. Let
f ∗max(F ) denote the number of maximal sum-free subsets M of [n] in F that satisfy at
least one of the following properties:

(i) min(M) > (1/4+ 2ε)n or min(M) < (1/4− 175ε)n;
(ii) min2(M) ≤ (1/2− 350ε)n.

Then f ∗max(F ) ≤ 2(1/4−ε)n.
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Proof. Since F is of type (b), F = A ∪ B for some A,B where |A| ≤ αn and B is
sum-free where min(B) ≥ 0.47n. Partition F = F1 ∪ F2 where F1 := F ∩ [n/2] and
F2 := F \ F1. So |F1| ≤ εn by the hypothesis of the lemma. By (4) we may assume that
F2 = [n/2+ 1, n].

Every maximal sum-free subset of [n] in F that satisfies (i) or (ii) can be built in
the following two steps. First, fix a sum-free set S ⊆ F1. Next, extend S in F2 to a
maximal one. To give an upper bound on the sets M satisfying (i) we choose S ⊆ F1
where m := min(S) is such that m > (1/4 + 2ε)n or m < (1/4 − 175ε)n (there are
at most 2|F1| ≤ 2εn choices for S). Then by arguing similarly to Claim 4.7 we find that
MIS(LS[F2]) ≤ 2(1/4−2ε)n.

To give an upper bound on the sets M satisfying (ii) we choose S ⊆ F1 where b :=
min2(S) is such that b ≤ n/2− 350εn (there are at most 2|F1| ≤ 2εn choices for S). Then
by arguing similarly to Claim 4.8 we conclude that MIS(LS[F2]) ≤ 2(1/4−2ε)n.

Altogether, this implies that f ∗max(F ) ≤ 2(1/4−ε)n as desired. ut

Throughout this subsection, given a maximal sum-free setM we writem := min(M) and
b := min2(M) and define S := (M ∩ [n/2]) \ {m}. Lemmas 4.4 and 4.9 imply that to
count the number of maximal sum-free subsets of [n] lying in type (b) containers, it now
suffices to count the number of maximal sum-free sets M with the following structure:

(α) m ∈ [(1/4− 175ε)n, (1/4+ 175ε)n];
(β) b ≥ (1/2− 350ε)n.

In particular, the next lemma shows that almost all of the maximal sum-free subsets of
[n] that satisfy (α) and (β) lie in type (b) containers only.

Lemma 4.10. There are at most ε2n/4 maximal sum-free subsets of [n] that satisfy (α)
and (β) and that lie in type (a) or (c) containers.

Proof. By Lemma 4.3, at most 20.249n
≤ ε2n/4/2 such maximal sum-free subsets of [n]

lie in type (a) containers.
Suppose that M is a maximal sum-free subset of [n] that satisfies (α) and (β) and

lies in a type (c) container F . Thus, F = A ∪ B where |A| ≤ αn and B ⊆ O. Define
F ′ := B ∩ [n/2 − 350εn, n]. So, |F ′| ≤ (1/4 + 175ε)n. By Lemma 4.1, M = I ∪ S

where min(S) = m for some m ∈ [(1/4− 175ε)n, (1/4+ 175ε)n], S \ {m} ⊆ A and I is
a maximal independent set in G := LS[F ′]. By the Moon–Moser bound,

MIS(G) ≤ 3(1/12+60ε)n
≤ 2(1/4−ε)n.

In total, there are at most 2αn choices for F , at most 350εn choices form and at most 2αn

choices for S \ {m}. Thus, there are at most

2αn × 350εn× 2αn × 2n/4−εn ≤ ε2n/4/2

maximal sum-free subsets of [n] that satisfy (α) and (β) and lie in type (c) containers, as
desired. ut

For the rest of this subsection, we focus on counting the maximal sum-free sets that
satisfy (α) and (β). Fix m, b such that m ∈ [(1/4 − 175ε)n, (1/4 + 175ε)n] and b ≥
(1/2− 350ε)n. Define t := |m− n/4| and D := n/2− b, so t, D ≤ 350εn. (Notice that



Sharp bound on the number of maximal sum-free subsets of integers 1895

if b > n/2, then D is negative.) Let S ⊆ [b, n/2] be such that b ∈ S, S ∪ {m} is sum-free
and set s := |S| ≤ D. When b > n/2, we define S := ∅.

Denote by L := L(n,m, S) the link graph of S ∪ {m} on vertex set [n/2 + 1, n]. So
L is triangle-free by Lemma 4.2. We will need the following two bounds on the number
of maximal independent sets in L.

Lemma 4.11. We have the following two bounds on MIS(L):

(i) MIS(L) ≤ 2n/4−D/25;
(ii) if R is defined so that |S + S| = Rs, then MIS(L) ≤ 2n/4−(R+1)s/2.

Proof. If D ≤ 0 then (i) follows from (1). So assume D > 0. Notice that there are D
vertex-disjoint P3s in L: {n/2+ i, n+ i−D, n+ i−D−m} for each 1 ≤ i ≤ D. (These
paths are vertex-disjoint since D ≤ 350εn and m ∈ [(1/4 − 175ε)n, (1/4 + 175ε)n].)
The bound follows immediately from Lemma 3.6.

For (ii), notice that in L we have loops at all vertices in S + S and S + m (in total
(R + 1)s vertices). Further, MIS(L) = MIS(L′) where L′ is the graph obtained from L

by deleting all the vertices with loops. The bound then follows from (1). ut

The following lemma bounds the number of maximal sum-free sets M satisfying (α) and
(β) and with b sufficiently bounded away from n/2 from above.

Lemma 4.12. There exists a constant K = K(ε) such that the number of maximal sum-
free sets M in [n] that satisfy (α), (β) and b ≤ n/2−K is at most ε2n/4.

Proof. Let K be such that δ � 1/K � ε. Our first claim implies that there are not too
many maximal sum-free subsets of [n] with t or D ‘large’.

Claim 4.13. There are at most ε2n/4/5 maximal sum-free sets M which satisfy (α) and
(β) and with

(a) b ≤ n/2−K;
(b) t ≥ 3D or D ≥ 109s.

Proof. Fix any m, b such that m ∈ [(1/4− 175ε)n, (1/4+ 175ε)n] and n/2− 350εn ≤
b ≤ n/2−K . Define t andD as before. Let S ⊆ [b, n/2] be such that b ∈ S and S ∪ {m}
is sum-free, and set s := |S| ≤ D. Define the link graph L as before.

Suppose that t ≥ 3D. If m = n/4 − t then for each i with D + 1 ≤ i ≤ 2t − D
consider the subgraph Hi of L induced by {n/2 + i, 3n/4 + i − t, n + i − 2t}. Ignoring
loops, Hi spans a P3 component in L and so MIS(Hi) ≤ 2. Indeed, since t, D ≤ 350εn
and min(S) = b = n/2−D, the vertex 3n/4+i−t has no neighbour in L generated by S.
Also, since n/2+ i+ b = n+ i−D > n and n+ i− 2t − b = n/2+ i− 2t +D ≤ n/2,
neither n/2+ i nor n+ i−2t has a neighbour generated by S in L. Recall that L and thus
L′ := L \

⋃2t−D
i=D+1Hi is triangle-free. Thus by (1) we have

MIS(L) ≤ MIS(L′)
∏
i

MIS(Hi) ≤ 2[n/2−3(2t−2D)]/2
·22t−2D

≤ 2n/4−(t−D) ≤ 2n/4−2t/3.

Otherwise m = n/4 + t and then there are 2t isolated vertices {3n/4 − t + 1, . . . ,
3n/4+ t} in L. Then by (1), MIS(L) ≤ 2n/4−t .
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Given fixed t , there are two choices form. There are at most 2t/3 choices for S so that
D ≤ t/3. Further, fixing S determines b and D. Altogether, this implies that the number
of maximal sum-free subsets M of [n] that satisfy (α), (β), (a) and t ≥ 3D is at most

2 ·
∑

t≥3D≥3K

2t/3 · 2n/4−2t/3
≤ 2 ·

∑
t≥3K

2n/4−t/3 ≤
ε

10
· 2n/4, (5)

where the last inequality follows since 1/K � ε and n is sufficiently large.
Suppose now that t ≤ 3D and D/s ≥ 109. For fixed D ≥ K there are 3D choices

for t and so at most 6D ≤ 22 logD choices for m. Given fixed D, there are D = 2logD

choices for s. For fixedD, s there are
(
D
s

)
≤
(
eD
s

)s
≤ 2s log(eD/s) choices for S. Note that

whenD/s ≥ 109, we have 3 logD+s log(eD/s) ≤ D/50. Together with Lemma 4.11(i),
this implies that the number of maximal sum-free subsets M of [n] that satisfy (α), (β),
(a) and with t ≤ 3D and D/s ≥ 109 is at most∑

D≥K

22 logD
· 2logD

· 2s log(eD/s)
· 2n/4−D/25

≤

∑
D≥K

2n/4−D/50
≤

ε

10
· 2n/4. (6)

ut

By Claim 4.13, to complete the proof of the lemma it suffices to count the number of
maximal sum-free subsets M of [n] that satisfy (α), (β) and

(γ1) b ≤ n/2−K;
(γ2) s ≥ D/109

≥ K/109;
(γ3) t < 3D.

Fix anym, b withm ∈ [(1/4−175ε)n, (1/4+175ε)n] and n/2−350εn ≤ b ≤ n/2−K .
Let S ⊆ [b, n/2] be such that b ∈ S and S∪{m} is sum-free, and set s := |S| ≤ D. Define
the link graph L as before.

Choose s andD such that s ≥ D/109. For each fixed s there are at most 109s choices
for D. For a fixed s ≥ D/109, there are at most 6D ≤ 1010s ≤ 22 log s choices for m so
that t < 3D and at most

(109s
s

)
choices for S. So there are at most

109s · 22 log s
·

(
109s

s

)
≤ 109s · 22 log s

· 2s log(e·109)
≤ 249s (7)

choices for the pair S,m given fixed s. Let R be defined so that |S + S| = Rs. We now
distinguish two cases depending on the size of S + S.

The number of maximal sum-free subsetsM in [n] that satisfy (α), (β), (γ1)–(γ3) and
R ≥ 100 is at most∑

s≥K/109

249s
· 2n/4−50s

≤

∑
s≥K/109

2n/4−s ≤
ε

10
· 2n/4. (8)

(Here we have applied (7) and Lemma 4.11(ii).)
Let s0(1/9, 100) be the constant from Lemma 3.1. Since we chose K sufficiently

large, we have s ≥ K/109
≥ s0(1/9, 100).
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Now suppose R ≤ 100. Then by Lemma 3.1 the number of choices for S is at most

2s/9
( 1

2Rs

s

)
DbR+1/9c

≤ 2s/9 · 2Rs/2 · 24R log s
≤ 2Rs/2+2s/9. (9)

Recall that for a fixed s, the number of choices for m is at most 22 log s . Together with
Lemma 4.11(ii) and (9), we see that the number of maximal sum-free subsets M in [n]
that satisfy (α), (β), (γ1)–(γ3) and R ≤ 100 is at most∑

s≥K/109

22 log s
· 2Rs/2+2s/9

· 2n/4−(R+1)s/2
≤

∑
s≥K/109

2n/4−s/2+s/3

≤

∑
s≥K/109

2n/4−s/6 ≤
ε

10
· 2n/4. (10)

Thus by Claim 4.13, (8) and (10), the number of maximal sum-free sets that satisfy (α),
(β) and b ≤ n/2−K is at most ε · 2n/4. ut

The following lemma bounds the number of maximal sum-free sets when t is large.

Lemma 4.14. There are at most ε2n/4 maximal sum-free sets in [n] that satisfy (α)
and (β) and with |m− n/4| = t and b = n/2−D such that D ≤ K and t ≥ 50K .

Proof. First assume that m = n/4 + t . If b ≤ n/2 then let S ⊆ [b, n/2] where b ∈ S.
Otherwise let S = ∅. Then in the link graphL := L(n,m, S), every vertex in {3n/4−t+1,
3n/4+ t} =: N is either isolated or adjacent only to itself. Since D ≤ K , the number of
choices for S is at most 2K . Let L′ := L\N ; then by (1) the number of maximal sum-free
sets in this case is at most∑

t≥50K

2K ·MIS(L′) ≤
∑
t≥50K

2K · 2n/4−t ≤ ε2n/4/2.

Otherwise, suppose m = n/4 − t . If b ≤ n/2 then let S ⊆ [b, n/2] where b ∈ S.
Otherwise let S = ∅. The link graph L := L(n,m, S) contains 2t vertex-disjoint P3s on
the vertex set {n/2+ i, 3n/4− t + i, n− 2t + i} where 1 ≤ i ≤ 2t . Then by Lemma 3.6,
the number of maximal sum-free sets in this case is at most∑

t≥50K

2K ·MIS(L) ≤
∑
t≥50K

2K · 2n/4−2t/25
≤ ε2n/4/2. ut

By Lemmas 4.12 and 4.14, we now need only focus on maximal sum-free sets with

t, D ≤ 50K, i.e. S ⊆ [n/2−50K, n/2] and m ∈ [n/4−50K, n/4+50K], (11)

where D may be negative and S = ∅. Given any m, S satisfying (11) so that 2m 6∈ S,
define C(n,m, S) := |MIS(L(n,m, S))|/2n/4. Notice that not every maximal indepen-
dent set in L(n,m, S) necessarily gives a maximal sum-free set in [n]. This happens
exactly when a set I is a maximal independent set in both L(n,m, S) and L(n,m, S∗)
for some sum-free S∗ ⊃ S such that S∗ ⊆ [n/2] \ {m, 2m}. Let I(n,m, S) be the set of
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all maximal independent sets in L(n,m, S) that do not correspond to maximal sum-free
sets in [n]. For each I ∈ I(n,m, S), define S∗(I ) to be a largest sum-free set such that
S ⊆ S∗(I ) ⊆ [n/2] \ {m, 2m} and I is also a maximal independent set in L(n,m, S∗(I )).
Further partition I(n,m, S) := I1(n,m, S) ∪ I2(n,m, S), where I1(n,m, S) consists of
all those I ∈ I(n,m, S) with S∗(I ) ⊆ [n/2− 50K, n/2]. Let MSF(n,m, S) be the num-
ber of maximal sum-free sets M in [n] that satisfy (α) and (β) with min(M) = m and
(M ∩ [n/2]) \ {m} = S. For i = 1, 2, further define Ci(n,m, S) := |Ii(n,m, S)|/2n/4.
Then clearly by the definition we have

MSF(n,m, S) = [C(n,m, S)− C1(n,m, S)− C2(n,m, S)]2n/4.

Notice that every I ∈ I2(n,m, S) is a maximal independent set in L(n,m, S∗(I )) with
min(S∗(I )) ≤ n/2− 50K . Then Lemma 4.12 yields

∑
m,S: t,D≤50K C2(n,m, S) ≤ ε.

Thus, the number of maximal sum-free sets M in [n] that satisfy (α) and (β) is at
least∑
m,S: t,D≤50K

MSF(n,m, S) =
∑

m,S: t,D≤50K

[C(n,m, S)−C1(n,m, S)−C2(n,m, S)]2n/4

≥

∑
m,S: t,D≤50K

[C(n,m, S)−C1(n,m, S)]2n/4− ε2n/4.

On the other hand, by Lemmas 4.12 and 4.14, the number of maximal sum-free sets M
in [n] that satisfy (α) and (β) is at most∑

m,S

MSF(n,m, S) =
∑

m,S: t,D≤50K

MSF(n,m, S)+
∑

m,S:max{t,D}>50K

MSF(n,m, S)

≤

∑
m,S: t,D≤50K

[C(n,m, S)− C1(n,m, S)]2n/4 + 2ε2n/4.

By defining C(n) :=
∑
m,S: t,D≤50K [C(n,m, S) − C1(n,m, S)], and applying Lem-

mas 4.4, 4.9 and 4.10, we deduce that the number of maximal sum-free sets of [n] con-
tained in type (b) containers is (C(n)± 4ε)2n/4.

We now proceed to prove that C(n′) = C(n) for any n′ ≡ n mod 4. We need the
following lemma, which roughly states that for any “fixed” choice of m and S, the link
graphs on [n/2+ 1, n] and [n′/2+ 1, n′] differ by a component consisting of an induced
matching of size (n′− n)/4. To be formal, fix t ∈ [−50K, 50K], S0 ⊆ [50K] and ` ∈ N.
Define

n′ := n+4`, m := n/4−t, m′ := n′/4−t, S := n/2−S0, S′ := n′/2−S0. (12)

The proof of the following lemma for m = n/4+ t and m′ = n′/4+ t is almost identical
but simpler, so we omit it here.

Lemma 4.15. Let n′, m,m′, S, S′ be as in (12). Then L(n′, m′, S′) is isomorphic to the
disjoint union of L(n,m, S) and a matching of size `.
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Proof. Let I1 := [n
′/2+200K+1, 3n′/4−200K+ t] and I2 := [3n′/4+200K+1− t,

n′ − 200K]. Notice first that the induced subgraph of L′ := L(n′, m′, S′) on I1 ∪ I2 is a
matching: {n′/2+200K+1, 3n′/4+200K+1−t}, . . . , {3n′/4−200K+t, n′−200K}. Let
M be the first `matching edges inL′[I1∪I2], i.e. {n′/2+200K+1, 3n′/4+200K+1−t},
. . . , {n′/2+200K+`, 3n′/4+200K+`−t}. Define L′′ := L′\M. It is a straightforward
but tedious task to see that L′′ is isomorphic to L := L(n,m, S). We give here only the
mapping f : V (L)→ V (L′′) that defines an isomorphism:

• [n/2+ 1, n/2+ 200K] → [n′/2+ 1, n′/2+ 200K];
• [n/2+ 200K + 1, 3n/4+ 200K − t] → [n′/2+ 200K + `+ 1, 3n′/4+ 200K − t];
• [3n/4+ 200K − t + 1, n− 200K] → [3n′/4+ 200K + `− t + 1, n′ − 200K];
• [n− 200K + 1, n] → [n′ − 200K + 1, n′]. ut

Fix n′, m,m′, S, S′ satisfying (11) and (12). By the definition of C(n), to show that
C(n) = C(n′), it suffices to show that C(n,m, S) = C(n′, m′, S′) and C1(n,m, S) =

C1(n,m, S). Let M and f be the matching of size ` and the mapping from Lemma 4.15.
As an immediate consequence of Lemma 4.15, we have

C(n′, m′, S′) =
|MIS(L(n′, m′, S′))|

2n′/4
=
|MIS(L(n,m, S))| ·MIS(M)

2n/4 · 2`
= C(n,m, S).

As forC1(n,m, S), it suffices to show that every I ∈ I1(n,m, S) corresponds to precisely
2` sets in I1(n

′, m′, S′). Fix I ∈I1(n,m, S) and recall that S⊆S∗(I )⊆[n/2−50K, n/2].
Let S∗∗ be the “counterpart” (as in S′ to S in (12)) of S∗(I ) in [n′], i.e. S∗∗ :=
n′/2− (n/2− S∗(I )) ⊆ [n′/2− 50K, n′/2]. By the definition of M, edges generated by
S′, S∗∗ ⊆ [n′/2− 50K, n′/2] on [n′/2, n′] are not incident to any vertex in M. Hence by
adding any maximal independent set of M to f (I), we obtain |MIS(M)| = 2` maximal
independent sets I ′ in I1(n

′, m′, S′) with S∗(I ′) = S∗∗ as required. We have concluded
the following main result of this subsection.

Lemma 4.16. For each 1 ≤ i ≤ 4, there is a constant Di such that if n ≡ i mod 4 then
the number of maximal sum-free subsets of [n] in type (b) containers is (Di ± 4ε)2n/4.

We remark that the constants Di can be efficiently computed. Indeed, from the above
argument, we deduce that Di = C(n0) for sufficiently large n0 with n0 ≡ i mod 4.
Note that C(n0) is determined by O(1) link graphs (the number of such graphs is at most
the number of choices for (m, S), which is at most 100K · 250K due to (11)). Fix one
such graph, say HS , notice crucially that HS is the disjoint union of some constant-order
(OK(1) vertices) graph FS and a matching M of size |M| = n/4+OK(1). Then by defi-
nition, C(n0) is determined solely by {FS}S⊆[n/2−50K,n/2]. We explain the consequences
of this regarding computing the constants Ci in Section 4.3.

4.2. Type (c) containers

The next result implies that the number of maximal sum-free subsets of [n] that contain
at least two even numbers and that lie in type (c) containers is ‘small’.
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Lemma 4.17. Let F ∈ F be a container of type (c). Then F contains at most 2(1/4−ε/2)n

maximal sum-free subsets of [n] that contain at least two even numbers.

Proof. Let F ∈ F be as in the statement of the lemma. Let K be a sufficiently large
constant so that ∑

0≤i≤n/K

(
n

i

)
3

5n
36+

n
3K ≤ 20.249n. (13)

Since 1/n � ε � 1, we have ε � 1/K2. By (4), we may assume that F = O ∪ C with
C ⊆ E and |C| ≤ αn. Much as before, every maximal sum-free subset of [n] in F can
be built by choosing a sum-free set S ⊆ C (at most 2|C| ≤ 2αn choices) and extending
S in O to a maximal one. Fix an arbitrary sum-free set S in C where |S| ≥ 2 and let
G := LS[O] be the link graph of S on vertex set O. Since O is sum-free and α � ε,
Lemma 4.1 implies that, to prove the lemma, it suffices to show that MIS(G) ≤ 2(1/4−ε)n.
We will achieve this in two cases depending on the size of S.

Case 1: |S| ≥ 2K2. In this case, we will show that G is ‘not too sparse and almost
regular’. Then we apply Lemma 3.4.

We first show that δ(G) ≥ |S|/2 and 1(G) ≤ 2|S| + 2, thus 1(G) ≤ 5δ(G). Let x
be any vertex in O. If s ∈ S is such that s < max{x, n − x} then at least one of x − s
and x + s is adjacent to x in G. If s ∈ S is such that s ≥ max{x, n − x} then s − x is
adjacent to x inG. By considering all s ∈ S this implies that degG(x) ≥ |S|/2 (we divide
by 2 here as an edge xy may arise from two different elements of S). For the upper bound
consider x ∈ O. If xy ∈ E(G) then y = x + s, x − s or s − x for some s ∈ S, and only
two of these terms are positive. Further, there may be a loop at x in G (contributing 2 to
the degree of x in G). Thus, degG(x) ≤ 2|S| + 2, as desired.

Note that δ(G)1/2 ≥ K . Thus, applying Lemma 3.4 to G with k = 5 we obtain

MIS(G) ≤
∑

0≤i≤n/K

(
n

i

)
3

5n
36+

n
3K

(13)
≤ 20.249n.

Case 2: 2 ≤ |S| ≤ 2K2. As in Case 1, we have 1(G) ≤ 2|S| + 2 ≤ 5K2. Additionally,
we need to count triangles in G.

Claim 4.18. G contains at most 24|S|3 triangles.

The claim is shown in [2, proof of Lemma 3.4], so we omit the proof here. Let T ⊆ V (G)
be such that |T | ≤ 24|S|3 and G \ T is triangle-free.

Let G1 denote the graph obtained from G by removing all loops. Given any x ∈ O
and s ∈ S, one of x − s, s − x is adjacent to x in G. In particular, if 2x 6= s, then one of
x− s, s−x is adjacent to x inG1. Therefore each s ∈ S gives arise to at least (|O|−1)/2
edges in G1. Given distinct s, s′ ∈ S, there is at most one pair x, y ∈ O such that s, x, y
and s′, x, y are both Schur triples. Thus, since |S| ≥ 2, this implies that e(G1) ≥ |O|−2.
SetG′ := G1 \T . Note that1(G1) ≤ 5K2, |G′| ≤ |O| and e(G′) ≥ |O|−2−|T |5K2

≥

3|O|/4. Thus Corollary 3.3 implies that MIS(G1) ≤ 2(1/4−ε)n. Fact 3.5 therefore implies
that MIS(G) ≤ 2(1/4−ε)n, as desired. ut

Note that the argument in Case 2 of Lemma 4.17 immediately implies the following result.
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Lemma 4.19. Given any distinct x, x′ ∈ E,

MIS(L{x,x′}[O]) ≤ 2(1/4−ε)n.

Given n ∈ N, let f ′max(n) denote the number of maximal sum-free subsets of [n] that
contain precisely one even number. The next result implies that f ′max(n) is approximately
equal to the number of maximal independent sets in the link graphs Lx[O] where x ∈ E.

Lemma 4.20.∑
x∈E

MIS(Lx[O])− 2 ·
∑

x 6=x′∈E

MIS(L{x,x′}[O]) ≤ f ′max(n) ≤
∑
x∈E

MIS(Lx[O]). (14)

In particular,∑
x∈E

MIS(Lx[O])− 2(1/4−ε/2)n ≤ f ′max(n) ≤
∑
x∈E

MIS(Lx[O]). (15)

Proof. Given any maximal sum-free subset M of [n] that contains precisely one even
number x, M \ {x} is a maximal independent set in Lx[O]. So the upper bound in (14)
follows.

Claim 4.21. Suppose x ∈ E and S is a maximal independent set in Lx[O]. LetM denote
the maximal sum-free subset of [n] that contains S ∪ {x}. Then M \ S ⊆ E.

Proof. Suppose not. Then there exists S′ ⊆ M such that S ⊂ S′ ⊆ O. But as M is sum-
free, S′ is an independent set in Lx[O], contradicting the maximality of S. ut

Suppose y ∈ E and S is a maximal independent set in Ly[O]. If S ∪ {y} is not a maximal
sum-free subset of [n] then Claim 4.21 implies that there exists y′ ∈ E \ {y} such that
S∪{y, y′} is sum-free. In particular, S is a maximal independent set in L{y,y′}[O]. In total
there are at most

2 ·
∑

x 6=x′∈E

MIS(L{x,x′}[O])

such pairs S, y. Thus, the lower bound in (14) follows.
The lower bound in (15) follows since, by Lemma 4.19,

2 ·
∑

x 6=x′∈E

MIS(L{x,x′}[O]) ≤ 2n2
· 2(1/4−ε)n ≤ 2(1/4−ε/2)n,

where the last inequality follows since n is sufficiently large. ut

The next result determines
∑
x∈E MIS(Lx[O]) asymptotically, and thus, together with

Lemma 4.20, determines f ′max(n) asymptotically.

Lemma 4.22. Given 1 ≤ i ≤ 4, there exists a constant D′i such that if n ≡ i mod 4,

(D′i − ε)2
n/4
≤

∑
x∈E

MIS(Lx[O]) ≤ (D′i + ε)2
n/4.



1902 József Balogh et al.

Proof. Suppose that n ≡ 0 mod 4; the proofs for the other cases are essentially identical,
so we omit them. Let 2n/3 < m ≤ n be even. Consider G := Lm[O]. The edge set of G
consists of precisely the following edges:

• an edge between i and m− i for every odd i < m/2;
• a loop at m/2 if m/2 is odd;
• an edge between i and m+ i for all odd i ≤ n−m < n/3.

In particular, since m > 2n/3, if i < m/2 is odd then in G, m − i is only adjacent to i.
Altogether this implies that if m/2 is even then G is the disjoint union of

• (n−m)/2 copies of P3;
• a matching containing (3m− 2n)/4 edges.

In this case MIS(G) = 2(n−m)/2×2(3m−2n)/4
= 2m/4. Ifm/2 is odd thenG is the disjoint

union of

• (n−m)/2 copies of P3;
• a single loop;
• a matching containing (3m− 2n− 2)/4 edges.

In this case MIS(G) = 2(m−2)/4.
Thus, ∑

m∈E:m>2n/3

MIS(Lm[O]) ≤
n∑

m=4:m≡0 mod 4

2m/4 +
n∑

m=2:m≡2 mod 4

2(m−2)/4

=

n/4∑
m=1

2m +
n/4−1∑
m=0

2m ≤ (3+ ε/2)2n/4. (16)

Further,

∑
m∈E:m>2n/3

MIS(Lm[O]) ≥ (3− ε/2)2n/4 −
2n/3∑
m=1

2m/4 ≥ (3− ε)2n/4. (17)

Consider m ∈ E where m ≤ 2n/3 and set G := Lm[O]. It is easy to see that G is
the disjoint union of paths that contain at least three vertices, and when m/2 is odd, an
additional path of length at least 2 which contains a vertex (namely m/2) with a loop.
Every such graph on n/2 vertices contains at least n/10− 1 vertex-disjoint copies of P3.
Therefore, by Lemma 3.6,∑

m∈E:m≤2n/3

MIS(Lm[O]) ≤ n2n/4−n/250+1. (18)

Overall,

(3− ε)2n/4
(17)
≤

∑
x∈E

MIS(Lx[O])
(16),(18)
≤ (3+ ε/2)2n/4 + n2n/4−n/250+1

≤ (3+ ε)2n/4,

as desired. ut
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We have shown that the constant D′4 in Lemma 4.22 is equal to 3. By following the
argument given in the proof, it is easy to see that

D′1 = 3 · 2−1/4, D′2 = 23/2, D′3 = 25/4, D′4 = 3. (19)

The next lemma shows that almost all of the maximal sum-free subsets of [n] that
contain precisely one even number lie in type (c) containers only.

Lemma 4.23. There are at most ε2n/4 maximal sum-free subsets of [n] that contain pre-
cisely one even number and lie in type (a) or (b) containers.

Proof. By Lemma 4.3, at most 20.249n
≤ ε2n/4/2 such maximal sum-free subsets of [n]

lie in type (a) containers.
Suppose thatM is a maximal sum-free subset of [n] that lies in a type (b) container F

and only contains one even number. Define F ′ := F ∩O. Since F is of type (b), |F ′| ≤
(0.53n)/2 + αn ≤ 0.27n. By Lemma 4.1, M = I ∪ {m} where m is even and I is a
maximal independent set in G := Lm[F ′]. By the Moon–Moser bound,

MIS(G) ≤ 30.09n
≤ 2(1/4−ε)n.

In total, there are at most 2αn choices for F and at most n/2 choices for m. Thus, there
are at most

2αn ×
n

2
× 2n/4−εn ≤ ε2n/4/2

maximal sum-free subsets of [n] that that lie in type (b) containers and only contain one
even number, as desired. ut

Notice that this completes the proof of Theorem 1.1. Indeed, for each 1 ≤ i ≤ 4, set
Ci := Di + D

′

i . Lemmas 4.3, 4.16, 4.17, 4.20, 4.22 and 4.23 together imply that if
n ≡ i mod 4, then

(Ci − η)2n/4 ≤ fmax(n) ≤ (Ci + η)2n/4,

as desired.

4.3. Bounds on the constants Ci in Theorem 1.1

In the proof of Theorem 1.1 we hid one slight subtlety: indeed, in (2) the constant Ci
actually depends on η as well as i. So in the proof of Theorem 1.1 what we have shown
is that given any η > 0, there is a constant Ci,η (i.e. depending on i and η) such that if n
is sufficiently large and n ≡ i mod 4 then

(Ci,η − η)2n/4 ≤ fmax(n) ≤ (Ci,η + η)2n/4.

This immediately implies the existence of the desired Ci in the statement of the theorem
(i.e. Ci is the limit of the Ci,η as η→ 0).

In the proof we find that Ci,η = Di,η +D′i,η where now Di,η is playing the role of Di
and D′i,η plays the role of D′i . Equation (19) gives the precise values of the D′i,η (these
only depend on i not η). As mentioned after Lemma 4.16, one can efficiently determine
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the value of Di,η. The time taken depends on K , which itself depends on ε and thus η
(recall that the definition of ε depends only on η).

Altogether this implies one can determine Ci,η in constant time (i.e. only depending
on η). Since Ci is the limit of the Ci,η as η→ 0, this implies Ci can also be computed up
to any additive error (say η′) in constant time (i.e. depending only on η′).

5. Maximal sum-free sets in abelian groups

Throughout this section, unless otherwise specified, G will be an abelian group of order
n and we denote by µ(G) the size of the largest sum-free subset of G. Denote by f (G)
the number of sum-free subsets of G and by fmax(G) the number of maximal sum-free
subsets of G. Given a set F ⊆ G, we write fmax(F ) for the number of maximal sum-free
subsets of G that lie in F .

The study of sum-free sets in abelian groups dates back to the 1960s. Although Di-
ananda and Yap [8] determinedµ(G) for a large class of abelian groupsG, it was not until
2005 that Green and Ruzsa [14] determined µ(G) for all such G. In particular, for every
finite abelian group G, 2n/7 ≤ µ(G) ≤ n/2. Further, Green and Ruzsa [14] determined
f (G) up to an error term in the exponent for all G, showing that f (G) = 2(1+o(1))µ(G).

GivenG, what can we say about fmax(G)? Is it also the case that fmax(G) is exponen-
tially smaller than f (G)? Wolfovitz [20] proved that fmax(G) ≤ 20.406n+o(n) for every
finite group G. For even order abelian groups G this answers the second question in the
affirmative since µ(G) = n/2 for such groups.

Our next result strengthens the result of Wolfovitz for abelian groups, and implies
that indeed fmax(G) is exponentially smaller than f (G) for all finite abelian groups G.
Let G be fixed. By a container lemma [14, Proposition 2.1] and a removal lemma [12,
Theorem 1.4] for abelian groups, there exists a collection F of containers such that

(i) |F | = 2o(n) and F ⊆ G for all F ∈ F ;
(ii) given any F ∈ F , F = B ∪ C where B is sum-free with size |B| ≤ µ(G) and
|C| = o(n);

(iii) given any sum-free subset S of G, there is an F ∈ F such that S ⊆ F .

Given sets S, T ⊆ G, we can define the link graph LS[T ] analogously to the integer case.
In particular, it is easy to check that an analogue of Lemma 4.1 holds for such link graphs.

Let F ∈ F be fixed. Every maximal sum-free subset of G contained in F can be
chosen by picking a sum-free set S in C (at most 2o(n) choices by (ii)), and extending it
in B (at most MIS(LS[B]) ≤ 3|B|/3 ≤ 3µ(G)/3 choices by Lemma 4.1 for abelian groups
and the Moon–Moser theorem). Therefore, altogether this implies the following result.

Proposition 5.1. Let G be an abelian group of order n. Then

fmax(G) ≤ 3µ(G)/3+o(n). (20)

We do not know how far from tight the bound in Proposition 5.1 is. In particular, it would
be interesting to establish whether the following bound holds.
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Question 5.2. Given an abelian group G of order n, is it true that fmax(G) ≤

2µ(G)/2+o(n)?

Let Zkp := Zp ⊗ · · · ⊗Zp (k factors). For the group Zk2 , the answer to the above question
is affirmative and the upper bound is essentially tight.

Proposition 5.3. The number of maximal sum-free subsets of Zk2 is 2(1+o(1))µ(Z
k
2)/2.

Proof. Let n := |Zk2 |. It is known that µ(Zk2) = n/2. We first give a lower bound:
fmax(Z

k
2) ≥ 2n/4. Write Zk2 = Z2⊗Z2⊗H , where H := Zk−2

2 . Let x := (0, 1, 0H ) and
U := {1} ⊗ Z2 ⊗H . Notice that the link graph Lx[U ] is a perfect matching. Indeed, for
any vertex y = (1, a, h) ∈ U , all of its possible neighbours inU are x+y = (1, 1+a, h),
x− y = (1, 1− a,−h) and y− x = (1, a− 1, h), and these elements of Zk2 are identical.
To build a collection of sum-free subsets, we first pick x and then pick exactly one of the
endpoints of each edge in Lx[U ]. Since |U | = n/2, we obtain 2n/4 sum-free subsets S in
this way. These sets might not be maximal, but no further elements from U can be added
to any of these sets. Hence distinct S lie in distinct maximal sum-free subsets. Therefore

fmax(Z
k
2) ≥ 2n/4.

We now proceed with the proof of the upper bound. Let F be the family of 2o(n)

containers defined before Proposition 5.1. It suffices to show that fmax(F ) ≤ 2(1/4+o(1))n

for every container F ∈ F . Fix F ∈ F . We have F = B ∪ C with B sum-free, |B| ≤
µ(Zk2) = n/2 and |C| = o(n). Every maximal sum-free subset of Zk2 in F can be built by
choosing a sum-free set S in C and extending S in B to a maximal one. The number of
choices for S is at most 2|C| = 2o(n). For a fixed S, let 0 := LS[B] be the link graph of S
on B. Then Lemma 4.1 (for abelian groups) implies that the number of extensions is at
most MIS(0). Observe that 0 is triangle-free. Indeed, suppose there exists a triangle on
vertices a, b, c ∈ B ⊆ Zk2 . Since for any x ∈ Zk2 , x = −x, we may assume that a+b = s1,
b + c = s2 and a + c = s3 for some s1, s2, s3 ∈ S. Furthermore, s1, s2, s3 are distinct
elements in S since a, b, c are distinct in B. Then s1 + s2 = a + 2b + c = a + c = s3,
contradicting S being sum-free. Thus by (1),

MIS(0) ≤ 2|B|/2 ≤ 2n/4,

and so
fmax(F ) ≤ 2|C| · 2n/4 = 2(1/4+o(1))n,

as desired. ut

The following construction gives a lower bound fmax(Zn) ≥ 6(1/18−o(1))n. Let n = 9k+ i
for some 0 ≤ i ≤ 8 and M := [3k + 1, 6k]. Set 0 := L{k,−2k}[M]. Then |M|/6 − o(n)
components of 0 are copies ofK3 �K2 as there are at most a constant number of compo-
nents of 0 that are not copies ofK3�K2. Observe thatK3�K2 contains maximal indepen-
dent sets. Thus, MIS(0) ≥ 6(1/18−o(1))n, yielding the desired lower bound on fmax(Zn).
It is known that µ(Zp) = (1/3 + o(1))p if p is prime, so together with (20), we obtain
the following result.
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Proposition 5.4. If p is prime then

1.1p−o(p) ≤ 6(1/18−o(1))p
≤ fmax(Zp) ≤ 3(1/9+o(1))p ≤ 1.13p+o(p).

It would be interesting to close the gap in Proposition 5.4.
We end this section with two more constructions that would match the upper bound

in Question 5.2 if it is true. For this, we need the following simple fact.

Fact 5.5. SupposeG is an abelian group of odd order. Then given a fixed x ∈ G, there is
a unique solution in G to the equation 2y = x.

Notice that Fact 5.5 is false for abelian groups of even order.

Proposition 5.6. Suppose that 3 | n where n is not divisible by a prime p with p ≡
2 mod 3. Then fmax(G) ≥ 2(n−9)/6

= 2(µ(G)−3)/2.

Proof. First note that µ(G) = n/3 for such groups (see [14]). Let H ≤ G be a subgroup
of index 3. Then there are three cosets 0+H, 1+H, 2+H . Pick some x ∈ 2+H . Then
consider the link graph 0 := Lx[1 + H ] on n/3 vertices. There is a loop at 2x ∈ V (0).
For every y ∈ 1+H , we have x + y ∈ 0+H , y − x ∈ 2+H and x − y ∈ 1+H . So y
has only one neighbour x − y in 1 + H (unless y = 2x, which has a loop). By Fact 5.5,
there is a unique y ∈ 1 + H such that x − y = y. Overall this implies that 0 consists of
the disjoint union of a matching M of size (n − 3)/6, with a loop at no more than one
vertex in M , together with an additional vertex with a loop. Clearly MIS(0) ≥ 2(n−9)/6

and so fmax(G) ≥ 2(n−9)/6. ut

Proposition 5.7. Let G = Zk7 . Then fmax(G) ≥ 2n/7−1
= 2µ(G)/2−1.

Proof. First note that µ(G) = 2n/7 for such groups (see [14]). LetH ≤ G be a subgroup
of index 7. Then pick some x ∈ 1+H . Consider the link graph 0 := Lx[(2+H)∪(3+H)]
on 2n/7 vertices. There is a loop at 2x ∈ 2 + H in 0. The remaining edges of 0 form
a perfect matching between 2 + H and 3 + H . Therefore MIS(0) = 2n/7−1 and so
fmax(G) ≥ 2n/7−1. ut

We conclude the section with two conjectures.

Conjecture 5.8. For every abelian group G of order n,

2n/7 ≤ fmax(G) ≤ 2n/4+o(n),

where the bounds, if true, are best possible.

We also suspect that there is an infinite class of finite abelian groups for which the upper
bounds in Conjecture 5.8 and Question 5.2 are far from tight.

Conjecture 5.9. There is a sequence {Gi} of finite abelian groups of increasing order
such that for all i,

fmax(Gi) ≤ 2µ(Gi )/2.01.
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Appendix

Here we give the proofs of Lemma 3.2 and Corollary 3.3. The following simple facts will
be used in the proof of Lemma 3.2.

Fact A.1. Suppose that G is a graph. For any maximal independent set I in G that con-
tains x, I \ {x} is a maximal independent set in G \ (NG(x) ∪ {x}).

Given x ∈ V (G), let MISG(x) denote the number of maximal independent sets in G that
contain x.

Fact A.2. Suppose that G is a graph. Given any x ∈ V (G),

MIS(G) ≤ MISG(x)+
∑

v∈NG(x)

MISG(v).

Notice that Fact A.2 is not true in general if G is a graph with loops.

Lemma A.3 (Füredi [10]). For m ≥ 6, MIS(Cm) = MIS(Cm−2)+MIS(Cm−3).

Lemma A.3 implies the following simple result.

Lemma A.4. For all m ≥ 4, MIS(Cm) < 20.49m.

Proof. It is easy to check that the conclusion holds for m = 4, 5, 6. For m ≥ 7, by
induction, Lemma A.3 implies that

MIS(Cm) = MIS(Cm−2)+MIS(Cm−3) < 20.49m(2−0.98
+ 2−1.47) < 20.49m. ut

Corollary A.5. IfG is the vertex-disjoint union of cycles of length at least 4 then MIS(G)
< 20.49|G|.

We now combine the previous results to prove Lemma 3.2.

Proof of Lemma 3.2. We proceed by induction on n. The case when n ≤ 4 is an easy
calculation. We split the argument into several cases.

Case 1: There is a vertex x ∈ V (G) of degree 0. By induction G′ := G \ {x} is such
that MIS(G′) ≤ 2(n−1)/2−k/(100D2) and clearly MIS(G) = MIS(G′).

Case 2: There is a vertex x ∈ V (G) of degree 1. First suppose that x is adjacent to a
vertex y of degree 1. Then consider G′ := G \ {x, y}. Note that MIS(G) = 2 ·MIS(G′).
Further, |G′| = n− 2, e(G′) ≥ (n− 2)/2+ k and 1(G′) ≤ D. Thus, by induction,

MIS(G) = 2 ·MIS(G′) ≤ 2× 2(n−2)/2−k/(100D2)
= 2n/2−k/(100D2),

as desired.
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Otherwise x is adjacent to a vertex y of degree d ≥ 2. Consider G′ := G \ {x, y}. So
|G′| = n − 2, e(G′) ≥ (n − 2)/2 + k − d + 1 and 1(G′) ≤ D. Therefore by induction
and Fact A.1,

MISG(x) ≤ MIS(G′) ≤ 2(n−2)/2−(k−d+1)/(100D2)

≤ 2n/2−k/(100D2)(2−1+d/(100D2)). (21)

ConsiderG′′ := G\(NG(y)∪{y}). So |G′′| = n−d−1, e(G′′) ≥ n/2+k−(d−1)D−1 ≥
(n− d − 1)/2+ (k − (d − 1)D) and 1(G′′) ≤ D. Thus, by induction and Fact A.1,

MISG(y) ≤ MIS(G′′) ≤ 2(n−d−1)/2−(k−(d−1)D)/(100D2)

= 2n/2−k/(100D2)(2−(d+1)/2+(d−1)/(100D)). (22)

Now as 2 ≤ d ≤ D, we have

2−1+d/(100D2)
+ 2−(d+1)/2+(d−1)/(100D)

≤ 2−1+1/100
+ 2−3/2+1/100 < 1.

So (21) and (22) together with Fact A.2 imply that

MIS(G) ≤ MISG(x)+MISG(y) < 2n/2−k/(100D2),

as desired.

Case 3: δ(G) ≥ 4. Let v ∈ V (G) be the vertex of smallest degree in G and write
degG(v) = i − 1 ≥ 4. Given any w ∈ NG(v) ∪ {v} let G′ := G \ (NG(w) ∪ {w}). So
|G′| = n− degG(w)− 1, e(G′) ≥ n/2+ (k− degG(w)D) ≥ |G

′
|/2+ (k− degG(w)D)

and 1(G′) ≤ D. Hence by induction and Fact A.1,

MISG(w) ≤ MIS(G′) ≤ 2(n−degG(w)−1)/2−(k−degG(w)D)/(100D2)

≤ 2(n−i)/2−(k−iD)/(100D2).

Thus by Fact A.2,

MIS(G) ≤ i × 2(n−i)/2−(k−iD)/(100D2)
≤ (i2−i/2+i/100)2n/2−k/(100D2) < 2n/2−k/(100D2),

as desired. (Here we have used i2−i/2+i/100 < 1 for i ≥ 5.)

Case 4: δ(G) = 2 and there exist v,w ∈ V (G) such that degG(v) = 2, degG(w) ≥ 3
and vw ∈ E(G). By arguing as before (using induction and Facts A.1 and A.2) we
deduce that

MIS(G) ≤ MISG(v)+
∑

u∈NG(v)

MISG(u)

≤ 2× 2(n−3)/2−(k−2D)/(100D2)
+ 2(n−4)/2−(k−3D)/(100D2)

< 2n/2−k/(100D2),

as desired. (Here we have used 2 · 2−3/2+1/50
+ 2−2+3/100 < 1.)
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Cases 1–4 imply that we may now assume thatG consists precisely of 2-regular com-
ponents and components of minimum degree at least 3.

Case 5: There exist v,w ∈ V (G) such that degG(v) = 3, degG(w) ≥ 4 and vw ∈ E(G).
By arguing similarly to before (using induction and Facts A.1 and A.2) we find that

MIS(G) ≤ MISG(v)+
∑

u∈NG(v)

MISG(u)

≤ 3× 2(n−4)/2−(k−3D)/(100D2)
+ 2(n−5)/2−(k−4D)/(100D2)

< 2n/2−k/(100D2),

as desired. (Here we have used 3 · 2−2+3/100
+ 2−5/2+1/25 < 1.)

We may now assume thatG consists only of 2- and 3-regular components and compo-
nents of minimum degree at least 4. However, if there is a component of minimum degree
at least 4 then by arguing precisely as in Case 3, we obtain MIS(G) ≤ 2n/2−k/(100D2). So
we may now assume G consists of 2- and 3-regular components only.

Case 6: G contains a 3-regular component. Here we use the fact that MIS(G) ≤
MIS(G\{v})+MIS(G\ (NG(v)∪{v})) for any v ∈ V (G). Indeed, by induction we have

MIS(G) ≤ 2(n−1)/2−(k−5/2)/(100D2)
+ 2(n−4)/2−(k−7)/(100D2) < 2n/2−k/(100D2),

as desired. (Here we have used 2−1/2+1/40
+ 2−2+7/100 < 1.)

Case 7: G is 2-regular. Since G is triangle-free, Corollary A.5 implies that MIS(G) ≤
20.49n

≤ 2n/2−k/(100D2), as desired. ut

Finally, we show that Corollary 3.3 follows from Lemma 3.2.

Proof of Corollary 3.3. Every maximal independent set in G can be obtained in the fol-
lowing two steps:

(1) Choose an independent set S ⊆ T .
(2) Extend S in V (G) \ T = V (G′), i.e. choose a set R ⊆ V (G′) such that R ∪ S is a

maximal independent set in G.

Note that although every maximal independent set in G can be obtained in this way, it
is not necessarily the case that given an arbitrary independent set S ⊆ T , there exists
a set R ⊆ V (G′) such that R ∪ S is a maximal independent set in G. Notice that if
R ∪ S is maximal, R is also a maximal independent set in G′′ := G \ (T ∪ NG(S)). The
number of choices for S in (1) is at most 2|T |. Note that G′′ is triangle-free, 1(G′′) ≤ D
and e(G′′) ≥ e(G′) − |T |D2

≥ |G′′|/2 + (k − |T |D2). Thus, Lemma 3.2 implies that
the number of extensions in (2) is at most 2n/2−(k−|T |D

2)/(100D2). Therefore, we have
MIS(G) ≤ 2|T | · 2n/2−(k−|T |D

2)/(100D2), as desired. ut
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[18] Sapozhenko, A. A.: The Cameron–Erdős conjecture. Dokl. Akad. Nauk 393, 749–752 (2003)
(in Russian) MR 2088503

[19] Saxton, D., Thomason, A.: Hypergraph containers. Invent. Math. 201, 925–992 (2015)
Zbl 1320.05085 MR 3385638

[20] Wolfovitz, G.: Bounds on the number of maximal sum-free sets. Eur. J. Combin. 30, 1718–
1723 (2009) Zbl 1189.05025 MR 2548662

http://www.ams.org/mathscinet-getitem?mr=2088503
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1320.05085&format=complete
http://www.ams.org/mathscinet-getitem?mr=3385638
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1189.05025&format=complete
http://www.ams.org/mathscinet-getitem?mr=2548662

	1. Introduction
	2. Background and an overview of the proof of Theorem 1.1
	3. Notation and preliminaries
	4. Proof of Theorem 1.1
	5. Maximal sum-free sets in abelian groups
	Appendix
	References

