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Abstract. It is well known that the weak Bruhat order on the symmetric group on a finite number n
of letters is a lattice, denoted by P(n) and often called the permutohedron on n letters, of which the
Tamari lattice A(n) is a lattice retract. The equational theory (or word problem) of a class of lattices
is the set of all lattice identities satisfied by all members of that class. Our main results imply, as
particular cases, the following.

Theorem I. The equational theories of all P(n) and of all A(n) are both decidable.

Theorem I. There exists a lattice identity that holds in all P(n), but fails in a certain 3,338-element
lattice.

Theorem III. The equational theory of all extended permutohedra, on arbitrary (possibly infinite)
posets, is trivial.

The proofs of Theorems I and II involve reductions of algebraic statements to certain tiling proper-
ties of finite chains.

Keywords. Lattice, identity, weak order, permutohedron, Cambrian lattice, Tamari lattice, monadic
second-order logic, decidability, score, bounded homomorphic image, subdirectly irreducible, split-
ting lattice, splitting identity, polarized measure, sub-tensor product, box product, dismantlable
lattice

1. Introduction

1.1. Motivation

The last two decades have seen a surge in the investigation of the interactions between the
combinatorial structure of Coxeter groups, hyperplane arrangements, and related struc-
tures, and their lattice-theoretical properties (Reading [60]; for a survey and many addi-
tional references, see Reading [61, 62]).
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Finite symmetric groups with their weak Bruhat ordering (also called Coxeter lat-
tices of type A) are the permutohedra introduced by Guilbaud and Rosenstiehl [27]. Their
subdirectly irreducible quotients are the Cambrian lattices of type A, particular cases of
which are the Tamari lattices (Friedman and Tamari [17]), and which all have geometric
realizations as associahedra (Hohlweg, Lange, and Thomas [32]). One of the most natu-
ral problems arising when considering a given class of algebraic structures is to determine
its word problem, or, using the universal algebraic equivalent formulation, its equational
theory (see Sections 1.2–1.4).

The aim of the present paper is to solve that problem completely (first stated in our
paper [64]) for Coxeter lattices, and Cambrian lattices, of type A. This is achieved by
Theorems I (decidability) and II (existence of a nontrivial identity) stated in the Abstract.
An attempt to generalize those results to “extended permutohedra” on arbitrary posets
(i.e., partially ordered sets) has led us to Theorem III.

In order to prove Theorems I and II, we reduce the satisfaction of a given lattice
identity in a Cambrian lattice of type A to a certain tiling problem on a finite chain.
Theorem I then follows from Büchi’s decidability theorem for the monadic second-order
theory MSO of the successor function on the natural numbers. It can be extended to any
class of Cambrian lattices of type A with MSO-definable set of orientations.

Although a general formalization of the above-mentioned tiling properties may appear
cumbersome (see Section 5), some special cases turn out with rather appealing combina-
torial descriptions (see Appendix A).

1.2. Some background

For a positive integer n, the permutohedron on n letters, denoted by P(n) throughout
the paper, is the set Sn of all permutations of the finite set [n] = {1, . . . , n} endowed
with the weak Bruhat ordering (Guilbaud and Rosenstiehl [27], Björner [3]): comparing
two permutations amounts to comparing their inversion sets. This ordering turns out to
be a lattice (see Section 3 for more details and generalizations), meaning that any two
permutations x, y ∈ Sn have a least upper bound x∨y and a greatest lower bound x∧y.

Lattice terms are formed by starting with a set of “variables” and closing under the
binary operations ∨ and ∧. A lattice identity is a formula of the form p = q for lattice
terms p and q. The equational theory of a class K of lattices is the set of all lattice identi-
ties that hold in every member of K. A lattice variety is the class of all lattices satisfying
a given set of identities (Grätzer [21], Jipsen and Rose [37, 38]). In our paper [64] we
stated the following problem.

Problem. Is the equational theory of all permutohedra decidable? Is there a nontrivial
lattice identity holding in all permutohedra?

By “nontrivial” we mean not satisfied in all lattices (or, equivalently, in all free lattices). It
has been known since Skolem [71] (reprinted in [72], see also Whitman [76], Freese and
Nation [16, p. 30], Freese, Ježek, and Nation [14, Ch. I]) that the equational theory of all
lattices, or equivalently the word problem in free lattices, is decidable. In our paper [64]
we could settle the analogue, for Tamari lattices (known since Björner and Wachs [4] to
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be lattice retracts of permutohedra), of the second part of the problem above, by con-
structing an infinite sequence of lattice identities, the Gazpacho identities, holding in all
Tamari lattices. Furthermore, we proved there that the permutohedron P(4) fails at least
one Gazpacho identity, thus proving that the equational theory of all Tamari lattices prop-
erly contains that of all permutohedra. Nevertheless we could, at that time, neither achieve
decidability of the equational theory of all Tamari lattices (or permutohedra), nor find a
nontrivial identity holding in all permutohedra (that last part proving the trickiest of all).

As a side remark, let us mention that the group-theoretical analogue of the problem
above has a well known solution, established in Iwasawa [36], using a result from Mag-
nus [49]: every free group embeds into a product of finite symmetric groups. Consequently,
a nontrivial group word cannot vanish identically on all finite symmetric groups.

1.3. Cousins of Theorem I: word problems in lattice-based structures

Most of the known decidability results for the word problem (or equational theory) in
lattice-based structures are formulated for varieties. As mentioned above, the word prob-
lem in lattices is decidable. The decidability of the word problem in distributive lattices
goes back to Dedekind [10] and Skolem [70]. Freese [13] proved that the word problem
in the free modular lattice on five generators is undecidable; Herrmann [31] improved
this result to four generators. Precursors of those works can be found in Hutchinson [33],
Lipshitz [48], Hutchinson and Czédli [34] (the latter dealing with submodule lattices of
modules). For a more complete discussion, with many additional references, we refer the
reader to Jipsen and Rose [38, §1.3].

Adding a unary operation symbol ′ for orthocomplementation, we get ortholattices,
for which the decidability of the uniform word problem was established by Goldblatt [20]
(see also Bruns [5, (4.1)]). Adding a binary operation symbol for the Heyting implication,
Gentzen [18] established the decidability of the word problem for the structures nowadays
known as Heyting algebras and widely studied.

Decidability results and existence of nontrivial identities are related by McKinsey’s
classical argument [54]: for instance, if a variety is defined by finitely many identities and
generated by its finite members, then its equational theory is decidable. Nonetheless, as
we shall briefly demonstrate in our next section, nontrivial identities enjoy a life of their
own.

1.4. Cousins of Theorem II: hidden identities in lattice-based structures

Let us present a small sample of situations where a class of (often lattice-based) algebraic
structures satisfies new unexpected identities, leading to important subsequent develop-
ments in the study of those structures.

Starting with lattice structures, the best known example is probably given by the Ar-
guesian identity, originating in Schützenberger [68]. A statement of that identity can be
found in any textbook of lattice theory: see for example Grätzer [21, p. 368]. This identity
is stronger than the modular identity, and it is a lattice-theoretical form of a statement
of classical geometry, namely Desargues’ Theorem. It gave rise to huge developments in
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lattice theory, establishing connections with other topics such as combinatorics, represen-
tation theory, and logic. In all the situations encountered, the satisfaction of an identity
was shown to be equivalent to a combinatorial, or geometrical, statement. Lattices of
submodules of modules, or, more generally, lattices of commuting equivalence relations,
often called linear lattices, were proved by Jónsson [39] to satisfy the Arguesian identity.
Freese and Jónsson [15] extended that result to arbitrary congruence-modular varieties.

Jónsson [40] proved a partial converse of his result of [39], namely that every comple-
mented Arguesian lattice is linear. The case of noncomplemented lattices was settled with
the construction of nonlinear Arguesian lattices by Haiman [29, 30]. Haiman [28] also
proved that the class of all linear lattices is not finitely axiomatizable. For an overview
of related results and problems, see Kung and Yan [47]. Freese [12] found an identity
holding in all finite modular lattices but not in all modular lattices.

Moving again to ortholattices, it was realized long ago that the lattice SubH of all
closed subspaces of an infinite-dimensional Hilbert spaceH , although failing modularity,
satisfies the orthomodular identity x∨y = x∨((x∨y)∧x′) (Kalmbach [42]). The question
whether SubH satisfies any further identity not following from orthomodularity was set-
tled in 1975 by Alan Day with his orthoarguesian identity (Greechie [26] and Godowski
and Greechie [19]). Since then many other identities have been found for SubH : see, in
particular, Megill and Pavičić [55] and their subsequent papers.

Straying off lattices and moving to rings, we enter the huge subject of rings with poly-
nomial identities, of which a fundamental prototype is the Amitsur–Levitzki Theorem [1],
stating an identity holding in all matrix rings of given order over any field.

If we decree (somewhat arbitrarily) that properties like modularity stand on the bright
side of the moon, then the lattices dealt with in the present paper, mainly permutohedra,
would rather fit on the dark side. (A collection of results concerning identities in non-
modular varieties appears in Jipsen and Rose [37, Ch. 4].) An important highlight in that
direction was Caspard’s result [7] that permutohedra are all bounded homomorphic im-
ages of free lattices, so they belong to the class Bfin of Section 2.4, whose modular (or or-
thomodular) members are all distributive. Caspard’s result was later extended to all finite
Coxeter lattices (i.e., finite Coxeter groups with the weak order) by Caspard, Le Conte de
Poly-Barbut, and Morvan [8]; then to further lattices of regions arising from hyperplane
arrangements by Reading [59]; and also to “extended permutohedra” arising from posets,
graphs, semilattices, and various classes of closure spaces in our works [65, 66, 67].

To our knowledge, the present paper is the first extensive (and complete) scrutiny of
hidden identities in a combinatorially defined class of lattices on the dark side.

For a fascinating, though a bit outdated, survey on equational logic, see Tay-
lor [73]. An elementary exposition of hidden identities, presented to high school stu-
dents in March 2014 (Coutances, France) and undergraduate students in December 2017
at Garware College (Pune, India), can be found on the second author’s Web page at
https://wehrungf.users.lmno.cnrs.fr/fichiers/GAR17 Fred.pdf.

1.5. Organization of the paper

Let us recall the statements of our main theorems one by one.

https://wehrungf.users.lmno.cnrs.fr/fichiers/GAR17_Fred.pdf
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Theorem I. The equational theories of all permutohedra P(n) and of all Tamari lat-
tices A(n) are both decidable.

A far more general version of Theorem I is stated in Theorem 7.8. This statement involves
Reading’s Cambrian lattices of type A (Reading [60]), which turn out to be the quotients
of the permutohedra by their minimal meet-irreducible congruences (Santocanale and
Wehrung [64, Corollary 6.10]) and thus they generate the same lattice variety as the per-
mutohedra (Lemma 3.1). The statement of Theorem 7.8 is sufficiently general to imply
Theorem I trivially.

The first key ingredient of the proof of Theorem 7.8 originates in Reading’s [60,
Theorem 3.5], implying that the dual of a Cambrian lattice is Cambrian, and stated for
Cambrian lattices of type A by Santocanale and Wehrung [64, Corollary 6.11]. In Sec-
tion 4 we describe that duality via an “orthogonality relation”⊥U between intervals of the
original chain. In Section 5 (culminating in Lemma 5.5) we relate the evaluation of lattice
polynomials in Cambrian lattices to new combinatorial objects that we call half-scores,
which encode certain tilings of finite chains. By combining that result with the duality
from Section 4, we are thus able to relate, in Lemma 6.3, the failure of a lattice identity
in a Cambrian lattice to new combinatorial objects called scores. Finally, in Section 7, we
translate the statements about scores to monadic second-order logic of one successor MSO.
By using a famous decidability theorem due to Büchi (Theorem 7.1), we are able to reach
the desired conclusion, namely Theorem 7.8.

However, the algorithm given by Büchi’s Theorem, although theoretically sound, is at
least one exponential away from any even remote hope for implementation, even for such
uncomplicated lattices as the B(m, n) (Section 2.5). In particular, this algorithm is of no
help for deciding even simple lattice identities. We show, in Appendix A, a combinatorial
statement, involving objects called (m, n)-scores, describing the membership problem of
the lattice B(m, n) in the variety generated by a Cambrian lattice AU (E) (where E is a
finite chain andU ⊆ E). This description involves certain tiling properties of the chainE.

Theorem II. There exists a lattice identity that holds in all P(n), but fails in a cer-
tain 3,338-element lattice.

Somewhat paradoxically, it turns out that proving Theorem II requires far more ingenuity
than for Theorem I. The 3,338-element lattice L involved in Theorem II is constructed via
a variant of Fraser’s semilattice tensor product from [11] called complete tensor product
by Wille [77], and box product by Grätzer and Wehrung [23]. (The two concepts, although
not equivalent in general, are equivalent for finite lattices.) The lattice L, represented in
Figure B.1, is given as the box product of the lattices N5 (Figure 2.1) and B(3, 2) (Sec-
tion 2.5). Box products, and, more generally, sub-tensor products of lattices, are presented
in Section 8.

The identity in question in Theorem II is the so-called splitting identity θL of L, which
turns out to be the weakest identity failing for L (Section 2.4). The identity θL can be con-
structed explicitly (McKenzie [53, §6], Freese, Ježek, and Nation [14, Corollary 2.76]).
In the present case, this task would probably take up of a whole book. Fortunately, we do
not need to undergo such an ordeal, and we resort instead to an “identity-free” descrip-
tion of lattice varieties in Section 9. The main objects of study in that section are called
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EA-duets; they consist of a join-homomorphism and a meet-homomorphism subject to a
few simple conditions. The proof of the expanded version of Theorem II, namely The-
orem 10.1, relies mostly on the description of the box product L = N5 � B(3, 2) as a
sub-tensor product (Definition 8.2). The only specificity of the box product, compared to
other sub-tensor products, that we use in the proof of Theorem 10.1, is that it enables us
to state that L is a splitting lattice (Section 2.4). It is plausible that the method used in
Section 10 could be extended to arbitrary sub-tensor products of N5 and B(3, 2), but we
would then lose the simplification brought by EA-duets, which would bring considerable
unwieldiness to the argument.

Then the question of the extension of Theorem II to more general “permutohedra”
arises naturally. There are many such constructions. We shall focus on the one from our
paper [65], which yields the “extended permutohedron” R(E) on a poset E (Section 11),
which turns out to be the Dedekind–MacNeille completion of a “generalized permutohe-
dron” introduced by Pouzet et al. [58].

Theorem III. The equational theory of all extended permutohedra, on arbitrary (possi-
bly infinite) posets, is trivial.

In fact, we prove in Theorem 11.6 a much stronger result: every finite meet-semidistribu-
tive lattice embeds into R(E) for some countable poset E. Furthermore, the poset E can
be taken to be a directed union of finite dismantlable lattices. Theorem III is then a simple
consequence of that result (Corollary 11.8).

2. Notation and terminology

We shall mainly follow the notation and terminology from standard references on lattice
theory such as Grätzer [21], Freese, Ježek, and Nation [14], and Jipsen and Rose [37].

2.1. Basic concepts

We shall denote by [n] the set {1, . . . , n}, endowed with its standard ordering. The dual
poset P op of a poset P has the same universe as P and opposite ordering (i.e., x ≤op y

if y ≤ x). We say that P is bounded if it has both a least and a largest element, denoted
by 0P and 1P , respectively, or 0 and 1 if P is understood. For a ≤ b in P and X ⊆ P , we
set

P ↓X = {p ∈ P | p ≤ x for some x ∈ X} and P ↓ a = P ↓ {a},

P ↑X = {p ∈ P | p ≥ x for some x ∈ X} and P ↑ a = P ↑ {a},

[a, b] = {p ∈ P | a ≤ p ≤ b}, ]a, b] = {p ∈ P | a < p ≤ b}, etc.

An element a is a lower cover of an element b if a < b and ]a, b[ = ∅. A map f : P → Q

between posets is isotone (resp., antitone) if x ≤ y implies f (x) ≤ f (y) (resp., f (y) ≤
f (x)), for all x, y ∈ P .

We denote by ConL the lattice of all congruences of a lattice L, and by Conc L the
(∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of L. Whenever
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a, b ∈ L, we denote by con(a, b), or conL(a, b) if L needs to be specified, the least
congruence θ of L such that (a, b) ∈ θ .

A lattice L is subdirectly irreducible if it has a least nonzero congruence, which is
then called the monolith of L.

An element p in a lattice L is

• completely join-irreducible if p =
∨
X implies that p ∈ X, for all X ⊆ L;

• join-irreducible if p =
∨
X implies that p ∈ X, for all finite X ⊆ L;

• completely join-prime if p ≤
∨
X implies that p ∈ L ↓X, for all X ⊆ L;

• join-prime if p ≤
∨
X implies that p ∈ L ↓X, for all finite X ⊆ L.

If p is completely join-irreducible, then it has a unique lower cover, which will be denoted
by p∗. In finite lattices, join-irreducibility and join-primeness are equivalent to their com-
plete versions. Meet-irreducibility and meet-primeness are the duals of join-irreducibility
and join-primeness, respectively. We denote by JiL (resp., MiL) the set of all join-irre-
ducible (resp., meet-irreducible) elements of L.

We shall often write lattice identities as lattice inclusions p ≤ q (which is indeed
equivalent to the identity p ∨ q = q) for lattice terms p and q. We denote by Var(K) the
variety generated by a class K of lattices, and we write Var(K) instead of Var({K}).

2.2. Semidistributivity

A lattice L is meet-semidistributive if the implication

x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z

holds for all x, y, z ∈ L. Join-semidistributivity is defined dually. A lattice is semidistrib-
utive if it is both join-semidistributive and meet-semidistributive.

For a completely join-irreducible element p in a lattice L, we denote by κ(p),
or κL(p) if L needs to be specified, the largest u ∈ L, if it exists, such that p∗ ≤ u

and p � u. We shall occasionally use the following easy fact (Freese, Ježek, and Nation
[14, Lemma 2.57]): for all p, x in a lattice L such that p is completely join-irreducible
and κL(p) exists,

x ≤ κL(p) iff p � p∗ ∨ x. (2.1)

If p is completely join-prime, then κ(p) is defined, and it is also the largest u ∈ L such
that p � u.

A finite lattice L is meet-semidistributive iff κ(p) exists for every p ∈ JiL (Freese,
Ježek, and Nation [14, Theorem 2.56]). If, in addition, L is semidistributive, then the
assignment p 7→ κL(p) defines a bijection from JiL onto MiL (Freese, Ježek, and Nation
[14, Corollary 2.55]).

2.3. Join-dependency and congruences

For more details about the material of this section, see Freese, Ježek, and Nation [14]. The
join-dependency relation, among join-irreducible elements in a finite lattice L, denoted
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by D (or DL if L needs to be specified), is defined, on pairs (p, q) of join-irreducible
elements, by

p D q if
(
p 6= q and (∃x)(p ≤ q ∨ x and p � q∗ ∨ x)

)
.

Denote by EL the reflexive, transitive closure of the join-dependency relationDL and set
con(p) = conL(p) = conL(p∗, p) whenever p ∈ JiL. The following is contained in
Freese, Ježek, and Nation [14, Lemma 2.36]:

p EL q iff conL(p) ⊆ conL(q), for all p, q ∈ JiL. (2.2)

2.4. Bounded homomorphic images of free lattices

For more details about the material of this section, see Freese, Ježek, and Nation [14].
A surjective homomorphism h : K � L between lattices is lower bounded (resp.,
bounded) if h−1

{y} has a least element (resp., both a least and a largest element) when-
ever y ∈ L. Denote by LBfin the class of all finite lower bounded homomorphic images
of free lattices, and by Bfin the class of all finite bounded homomorphic images of free
lattices.1 A lattice L belongs to Bfin iff L and Lop both belong to LBfin. It follows from
[14, Corollary 2.39] that a finite lattice L belongs to LBfin iff its join-dependency rela-
tionDL has no cycle. Every member of Bfin is semidistributive. Of the lattices M3 and N5
represented in Figure 2.1, the former does not belong to LBfin, while the latter belongs
to Bfin. The labeling of N5 introduced in Figure 2.1 will be used in Section 10.

p

p∗
c

1

0
M3 N5

Fig. 2.1. The lattices M3 and N5.

A lattice K is splitting if there is a largest lattice variety CK such that K /∈ CK .
Necessarily, CK = {L | K /∈ Var(L)} and CK is defined by a single identity θK , called
the splitting identity of K (depending not only on K , but on a given generating subset
ofK). Since a lattice L fails θK iffK ∈ Var(L), it follows from Jónsson’s Lemma thatK
has the smallest size among all lattices not satisfying θK . The splitting lattices are exactly
the finite subdirectly irreducible members of Bfin (McKenzie [53, §5] or Freese, Ježek,
and Nation [14, §II.6]). The lattice N5 is splitting, with monolith con(p). An algorithm to
compute the splitting identity of a finite splitting lattice is given in [14, §II.6].

1 To the great puzzlement of many people, bounded homomorphic images of free lattices are
often called bounded lattices. In the present paper, we revert to the original usage, by just defining
bounded lattices as those with both a least and a largest element.
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2.5. The lattices B(m, n)

Following the notation introduced in Santocanale and Wehrung [64], for all positive in-
tegers m and n, we denote by B(m, n) the lattice obtained from the Boolean lattice with
m+ n atoms a1, . . . , am, b1, . . . , bn by adding a new element q above a =

∨m
i=1 ai such

that q < a ∨ bj whenever 1 ≤ j ≤ n. In particular, q is join-irreducible with lower cover
q∗ = a. The lattice B(m, n) is splitting, with monolith con(q). We set a = {a1, . . . , am}

and b = {b1, . . . , bn}. Observe that B(1, 1) = N5.
The join-prime elements in the lattices N5 and B(3, 2) are exactly the atoms, that is,

p∗, c for N5 and a1, a2, a3, b1, b2 for B(3, 2). The join-irreducible elements in those lat-
tices, represented in Figure 2.2, are the atoms together with p (for N5) and q (for B(3, 2)).
This labeling will be further put to use in Section 10.

p

p∗ c a1 a2 a3 b1 b2

q

Fig. 2.2. The join-irreducible elements of N5 (left) and B(3, 2) (right).

We will later need the following easily verified equations, valid in the lattice B(3, 2)
whenever {i, j} = {1, 2} and k, l ∈ {1, 2, 3}:

bj = (q∗ ∨ bj ) ∧ (b1 ∨ b2), (2.3)
ak = (ak ∨ bi) ∧ (q∗ ∨ bj ), (2.4)

ak ∨ al = (ak ∨ al ∨ bi) ∧ (q∗ ∨ bj ). (2.5)

3. Permutohedra and Cambrian lattices of type A

We set δE = {(p, q) ∈ E ×E | p < q} for any poset E. That is, δE is the strict ordering
associated to E. As in our papers [64, 65], we denote by cl(a) the transitive closure of
any subset a of δE , and we set int(a) = δE \ cl(δE \ a). Define

P(E) = {a ⊆ δE | a = cl(a) = int(a)}, the permutohedron on E,

R(E) = {a ⊆ δE | a = cl int(a)}, the extended permutohedron on E,

both endowed with set containment. Although P(E) may not be a lattice for an arbitrary
poset E, it is always a lattice if E is a so-called square-free poset (Pouzet et al. [58],
Santocanale and Wehrung [65]). By definition, E is square-free if it does not contain any
copy of the four-element Boolean poset. For example, every chain is square-free.

On the other hand, R(E) is always a lattice, which turns out to be the Dedekind–
MacNeille completion of P(E). The join, in R(E), of a family (ai | i ∈ I ) is always the
transitive closure of the union of the ai [65].

For a positive integer n, the lattice R([n]) = P([n]), simply denoted by P(n), was
first considered by Guilbaud and Rosenstiehl [27]; it turns out to be isomorphic to the
symmetric group on n letters endowed with its weak Bruhat ordering (see for example
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Bennett and Birkhoff [2, §5]). We refer to Björner [3] for the definition of the weak Bruhat
ordering in Coxeter groups of any type.

For an arbitrary poset E, we prove in [65] that the completely join-irreducible ele-
ments of R(E) all belong to P(E), and they are exactly the sets of the form

〈a, b〉U =
{
(x, y) ∈ ({a} ∪ Uc)× ({b} ∪ U)

∣∣ a ≤ x < y ≤ b
}
, (3.1)

where (a, b) ∈ δE , U ⊆ E, and Uc
= E \ U . For notational convenience, we shall also

set 〈a, a〉U = ∅. Notice that 〈a, b〉U = 〈a, b〉V iff U ∩ ]a, b[ = V ∩ ]a, b[. Any subset U
of E defines the set DU (E) of all a ⊆ δE such that both conditions(

x < y < z and (x, z) ∈ a and y ∈ U
)
⇒ (x, y) ∈ a,(

x < y < z and (x, z) ∈ a and y /∈ U
)
⇒ (y, z) ∈ a

are satisfied for all x, y, z ∈ E. The set AU (E) of all transitive members of DU (E) is
contained in P(E). We shall also write A(E) = AE(E). We prove in [65] that AU (E)
is a sublattice of P(E) = R(E) whenever E is square-free (this turns out to characterise
the square-freeness of E). Furthermore, the meet in AU (E) is always the set-theoretical
intersection. Whenever (a, b) ∈ δE , the set 〈a, b〉U defined in (3.1) is the least element x
of AU (E), with respect to containment, such that (a, b) ∈ x. It is completely join-irre-
ducible in R(E), with lower cover

(〈a, b〉U )∗ = 〈a, b〉U \ {(a, b)}, (3.2)

and both 〈a, b〉U and (〈a, b〉U )∗ also belong to AU (E). In case n is a positive integer and
E = [n], we shall write AU (n) instead of AU ([n]).

As discussed in Santocanale and Wehrung [64, §6], the lattices AU (n) are exactly the
Cambrian lattices of type A, with index n, introduced by Reading [60]. As established in
[64, Proposition 6.7 and Corollary 6.10], the AU (n) are exactly the quotients of P(n) by its
minimal meet-irreducible congruences, and P(n) is a subdirect product of all the AU (n)
for U ⊆ [n]. In particular, we record the following lemma.

Lemma 3.1. The class of all permutohedra P(n), for n a positive integer, and the class
of all Cambrian lattices of type A, generate the same lattice variety.

4. Dualities between Cambrian lattices of type A

Throughout this section we fix a finite chain E and a subset U of E. As usual, we set
Uc
= E \ U . We proved in [64, Corollary 6.11] that the lattices AU (E) and AUc(E)

are dually isomorphic. In the present section we shall give a more precise version of that
result.

For each join-irreducible p ∈ AU (E), we set κU (p) = κAU (E)(p), the largest u ∈
AU (E), necessarily meet-irreducible, such that p∗ ⊆ u and p 6⊆ u.

For (a, b), (c, d) ∈ δE , let (a, b) ∼U (c, d) hold if 〈a, b〉U ∩ 〈c, d〉Uc 6= ∅, and let
(a, b) ⊥U (c, d) hold if (a, b) ∼U (c, d) does not hold, that is, 〈a, b〉U ∩ 〈c, d〉Uc = ∅.

Say that a closed interval [u, v] is nontrivial if u < v.
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Lemma 4.1. (a, b) ∼U (c, d) iff [a, b]∩[c, d] is a nontrivial interval [u, v] and (u, v) ∈
〈a, b〉U ∩ 〈c, d〉Uc . Furthermore, if (a, b) ∼U (c, d), then 〈a, b〉U ∩ 〈c, d〉Uc is exactly
the singleton {(u, v)}.
Proof. If [a, b] ∩ [c, d] = [u, v] with (u, v) ∈ 〈a, b〉U ∩ 〈c, d〉Uc , then, by the defini-
tion of ∼U , we get (a, b) ∼U (c, d). Conversely, suppose that (a, b) ∼U (c, d) and let
(x, y) ∈ 〈a, b〉U ∩ 〈c, d〉Uc . Setting u = max{a, c} and v = min{b, d}, we find that

u ≤ x < y ≤ v,

while

x ∈ ({a} ∪ Uc) ∩ ({c} ∪ U)

= ({a} ∩ {c}) ∪ ({a} ∩ U) ∪ ({c} ∩ Uc),

y ∈ ({b} ∪ U) ∩ ({d} ∪ Uc)

= ({b} ∩ {d}) ∪ ({b} ∩ Uc) ∪ ({d} ∩ U).

There are nine cases to consider, for example x = a = c and y = b ∈ Uc with b < d; in
each of those cases, (x, y) = (u, v). ut

Definition 4.2. LetE be a finite chain, and let x, y ∈ E be such that x < y. A subdivision
of the interval [x, y] ⊆ E is a subset P of [x, y] containing the pair {x, y}. We shall
often write such a subdivision in the form x = z0 < z1 < · · · < zn = y, where
P = {z0, z1, . . . , zn}. Then we set

cvs(P ) = {(zi, zi+1) | 0 ≤ i < n}.

Lemma 4.3. For all (x, y), (a, b) ∈ δE , (x, y) ∈ κU (〈a, b〉U ) iff (x, y) ⊥U (a, b).
Proof. We prove the contrapositive statement. Suppose first that (x, y) /∈ κU (〈a, b〉U ),
that is, 〈a, b〉U ⊆ (〈a, b〉U )∗ ∨ 〈x, y〉U , in other words (a, b) ∈ (〈a, b〉U )∗ ∨ 〈x, y〉U .
There exists a subdivision a = c0 < c1 < · · · < cn = b such that each (ck, ck+1) belongs
to (〈a, b〉U )∗∪〈x, y〉U . We may assume that n is least possible. Since (a, b) /∈ (〈a, b〉U )∗,
we deduce that (ck, ck+1) ∈ 〈x, y〉U for some k ∈ [0, n−1]. By the minimality of n, either
ck = a, or k > 0 and (ck−1, ck) ∈ (〈a, b〉U )∗. In the latter case, ck ∈ U . In any case,
ck ∈ U ∪ {a}. Symmetrically, ck+1 ∈ U

c
∪ {b}, whence (ck, ck+1) ∈ 〈a, b〉Uc . Therefore,

(ck, ck+1) belongs to 〈x, y〉U ∩ 〈a, b〉Uc , so (x, y) ∼U (a, b).
Suppose, conversely, that (x, y) ∼U (a, b) and let (u, v) ∈ 〈x, y〉U ∩ 〈a, b〉Uc . Since

(u, v) ∈ 〈a, b〉Uc , both (a, u) and (v, b) belong to the union of (〈a, b〉U )∗ with the di-
agonal. Since (u, v) ∈ 〈x, y〉U , it follows that 〈a, b〉U ⊆ (〈a, b〉U )∗ ∨ 〈x, y〉U , thus
(x, y) /∈ κU (〈a, b〉U ). ut

Set ϕ(x) = {(i, j) ∈ δE | x ∩ 〈i, j〉Uc = ∅} for every x ∈ AU (E). Notice that ϕ(x) =
{(i, j) ∈ δE | (u, v) ⊥U (i, j) whenever (u, v) ∈ x}. It is trivial that ϕ(x) belongs
to DUc(E). Furthermore, xc is transitive, and (i, j) ∈ ϕ(x) iff 〈i, j〉Uc ⊆ xc, hence, if
(i, j) and (j, k) both belong to ϕ(x), then

〈i, k〉Uc ⊆ 〈i, j〉Uc ∨ 〈j, k〉Uc ⊆ xc,

that is, (i, k) ∈ ϕ(x), and so ϕ(x) is transitive. Therefore, ϕ(x) ∈ AUc(E), and ϕ(x) is
the largest y ∈ AUc(E) such that x ∩ y = ∅.
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Symmetrically, for every y ∈ AUc(E), ψ(y) = {(i, j) ∈ δE | 〈i, j〉U ∩ y = ∅} is the
largest x ∈ AU (E) such that x ∩ y = ∅.

Proposition 4.4. The maps ϕ and ψ are mutually inverse dual isomorphisms between
AU (E) and AUc(E).

Proof. The maps ϕ and ψ are both antitone, thus, by symmetry, it suffices to prove that
ψ ◦ ϕ = idAU (E). It is obvious that (ψ ◦ ϕ)(c) contains c whenever c ∈ AU (E), so it
suffices to prove that (ψ ◦ϕ)(c) is contained in c. Furthermore, it suffices to establish this
fact in case c is meet-irreducible, that is, c = κU (〈a, b〉U ) for some (a, b) ∈ δE .

Let (x, y) ∈ (ψ ◦ ϕ)(c); it is easily argued that this condition is equivalent to(
∀(i, j) ∈ 〈x, y〉U

)(
c ∩ 〈i, j〉Uc 6= ∅

)
. (4.1)

Suppose that (x, y) /∈ c = κU (〈a, b〉U ). By Lemma 4.3, (x, y) ∼U (a, b), that is, there
exists (i, j) ∈ 〈x, y〉U ∩ 〈a, b〉Uc . By (4.1), there exists (u, v) ∈ c ∩ 〈i, j〉Uc . Since
(i, j) ∈ 〈a, b〉Uc , we get (u, v) ∈ 〈a, b〉Uc . Thus, both (a, u) and (v, b) belong to the
union of (〈a, b〉U )∗ with the diagonal, and since (u, v) ∈ c, it follows that (a, b) belongs
to (〈a, b〉U )∗ ∨ c = (〈a, b〉U )∗ ∨ κU (〈a, b〉U ) = κU (〈a, b〉U ), a contradiction. ut

Notation 4.5. Denote2 by ψU : AUc(E)→ AU (E)
op the map denoted by ψ above.

It follows from the definition of ϕ that ϕ = ψUc . Hence, by Proposition 4.4, ψU is a
dual isomorphism from AUc(E) onto AU (E), with inverse ψUc . Whenever y ∈ AUc(E),
ψU (y) is the largest x ∈ AU (E) such that x ∩ y = ∅.

As an immediate consequence of Lemma 4.3, we obtain

ψU (〈a, b〉Uc) = κU (〈a, b〉U ) for all (a, b) ∈ δE . (4.2)

5. Half-scores and alternating words

Throughout this section we shall fix a finite set � = {z1, . . . , z`} (the “variables”) of
cardinality a positive integer `, and we shall denote by TL(�) the set of lattice terms
whose variables belong to �. Elements of TL(�) are generated from variables in � by
applying the binary symbols ∧ and ∨. The rank of a term is defined in a standard way,
so that the rank of each subterm of a given term is (strictly) smaller than the rank of the
term.

Let p ∈ TL(�); the set Cov(p) of canonical join-covers of p is inductively defined
as follows:

• If p = zi ∈ �, then we set Cov(zi) = {{zi}}.
• If p = p0 ∨ p1, then we set Cov(p) = {{p0, p1}}.
• If p = p0 ∧ p1, then we set Cov(p) = Cov(p0) ∪ Cov(p1).

2 Strictly speaking, we should write something like ψE,U instead of just ψU ; however, E will
always be clear from the context.
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A number of induction proofs will be based on the simple observation that for every
p ∈ TL(�) \ �, Cov(p) is a nonempty finite set of nonempty finite subsets of TL(�)

whose elements all have smaller rank than p has. This observation will be used implicitly
throughout the text.

In the following lemma we consider terms formed using joins and meets indexed by
nonempty subsets. This is achieved as usual, by considering the identity as the unary
meet and unary join and otherwise by coding indexed joins (resp. meets) by an arbitrary
parenthesizing of the binary join (resp. meet) operator. The lemma is proved by a straight-
forward induction argument.

Lemma 5.1. The identity p =
∧
C∈Cov(p)

∨
C holds in every lattice for all p ∈ TL(�).

In particular, p ≤
∨
C is a valid lattice inclusion whenever C ∈ Cov(p).

Definition 5.2. An alternating word on a term p in TL(�) is a finite sequence α =
(C0, p1, C1, . . . , pn, Cn), where n is a nonnegative integer and the following conditions
hold:

(i) C0 is the one-element set {p}.
(ii) pj /∈ � and Cj ∈ Cov(pj ) whenever 1 ≤ j ≤ n.

(iii) pj+1 ∈ Cj whenever 0 ≤ j < n.

We set Cα = Cn. Let Alt(p) be the set of all alternating words on p. For α, β ∈ Alt(p),
let α @ β hold if α is a proper prefix of β.

Observe that the definition above implies that if n > 0, then p1 = p. Furthermore, Alt(p)
is finite. An example of an alternating word on the term p = ((z1 ∧ z2) ∨ z3) ∧ z4, with
n = 2, is given by

α = ({p}, p, {z1 ∧ z2, z3}, z1 ∧ z2, {z2}).

We shall denote by α a β the concatenation of words α and β.

Definition 5.3. Let E be a finite chain (with at least two elements) and let p ∈ TL(�).
Denote by ⊥ any object outside TL(�) (thought of as the “undefined” symbol). A half
p-score onE is a family EP = ((Pα, τα) | α ∈ Alt(p)) satisfying the following conditions:

(i) Pα ⊆ E is a subdivision of the interval [0E, 1E] (see Definition 4.2) and τα : cvs(Pα)
→ Cα ∪ {⊥} (the valuation of index α), for every α ∈ Alt(p).

(ii) P({p}) = {0E, 1E} and τ({p})(0E, 1E) = p.
(iii) For all α ∈ Alt(p), all (x, y) ∈ cvs(Pα), all q = τα(x, y) /∈ � ∪ {⊥}, and all C ∈

Cov(q), the pair {x, y} is contained in Pαa(q,C), and ταa(q,C)(u, v) ∈ C whenever
(u, v) ∈ cvs(Pαa(q,C) ∩ [x, y]).

Example 5.4. Consider the term p = z1 ∨ z2. Then Alt(p) = {α, β}, where α =
({z1∨z2}) and β = ({z1∨z2}, z1∨z2, {z1, z2}); observe that α @ β. The half p-scores on a
nontrivial finite chain E are the pairs EP = ((Pα, τα), (Pβ , τβ)), where Pα = {0E, 1E} ⊆
Pβ ⊆ E, τα : {(0E, 1E)} → {z1 ∨ z2,⊥}, τβ : cvs(Pβ) → {z1, z2,⊥}, and whenever
τα(0E, 1E) = z1 ∨ z2, τβ(u, v) ∈ {z1, z2} for all (u, v) ∈ cvs(Pβ).
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Moving to a more graphical, though less formal, level, we can observe that the upper
three rows and the lower three rows of Figure A.1 are both special cases of a suitable
modification of the concept of half-score. For example, the upper three rows make up a
half-score for the “term”

∧
i=1,2,3(ai ∨ b1 ∨ b2 ∨ b3), with finitary (as opposed to just

binary) joins and meets allowed.

For a half p-score EP as above, we shall set

Pα[q] = {(x, y) ∈ cvs(Pα) | τα(x, y) = q} whenever α ∈ Alt(p) and q ∈ Cα. (5.1)

The main lemma of this section, relating half p-scores and evaluations of lattice terms in
Cambrian lattices AU (E), is the following.

Lemma 5.5. Let p be a lattice term on �, let E be a finite chain, let U ⊆ E, and let
a1, . . . , a` ∈ AU (E). The following are equivalent:

(i) (0E, 1E) ∈ p(a1, . . . , a`), where p(a1, . . . , a`) is evaluated within AU (E).
(ii) There exists a half p-score EP on E such that

Pα[zi] ⊆ ai whenever α ∈ Alt(p) and i ∈ [`].

From now on we shall use the abbreviation Ea = (a1, . . . , a`).

Proof. (i)⇒(ii). We construct the finite subsets Pα of E and the valuations τα : cvs(Pα)
→ Cα ∪ {⊥}, with P({p}) = {0E, 1E} and τ({p})(0E, 1E) = p, subject to the following
induction hypothesis (relative to the strict ordering @ of Alt(p)):

Pα[q] ⊆ q(Ea) whenever q ∈ Cα. (5.2)

The statement (5.2) holds at α = ({p}) by assumption (i). Suppose that Pα and τα are
constructed in such a way that (5.2) holds at α. The finite sequence β = α a (q, C)

belongs to Alt(p) whenever q ∈ Cα \ � and C ∈ Cov(q). Let (x, y) ∈ Pα[q]. By our
induction hypothesis, (x, y) belongs to q(Ea), thus (by Lemma 5.1) to

∨
r∈C r(Ea), and

therefore there exists a subdivision P x,yβ of [x, y] such that

cvs(P x,yβ ) ⊆
⋃
r∈C

r(Ea). (5.3)

Set
Pβ = {0E, 1E} ∪

⋃
(P

x,y
β | (x, y) ∈ Pα[q]). (5.4)

Observe that Pβ ∩ [x, y] = P
x,y
β whenever (x, y) ∈ cvs(Pα). Now let (u, v) ∈ cvs(Pβ).

If (u, v) ∈ cvs(P x,yβ ) for some (necessarily unique) (x, y) ∈ Pα[q], it follows from (5.3)
that there exists r ∈ C such that (u, v) ∈ r(Ea); define τβ(u, v) to be any such r . In all
other cases, that is, when there is no (x, y) ∈ Pα[q] such that (u, v) ∈ cvs(P x,yβ ), we set
τβ(u, v) = ⊥. By construction, the induction hypothesis (5.2) still holds at β. The family
of all pairs (Pα, τα) is therefore a half p-score on E, and moreover it satisfies (5.2) when-
ever α ∈ Alt(p). By applying (5.2) to the case where q = zi , we get the condition (ii).
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(ii)⇒(i). We again prove the statement (5.2), this time by downward @-induction
on α ∈ Alt(p). Let α ∈ Alt(p) and suppose that (5.2) holds at every β ∈ Alt(p) with
α @ β. Let q ∈ Cα and let (x, y) ∈ Pα[q]; we must prove that (x, y) ∈ q(Ea). If
q ∈ �, then this follows from assumption (ii). Suppose from now on that q /∈ �. Let
C ∈ Cov(q). The finite sequence β = α a (q, C) belongs to Alt(p). Since EP is a half
p-score, {x, y} is contained in Pβ and τβ(u, v) ∈ C whenever (u, v) ∈ cvs(Pβ ∩ [x, y]).
Set r = τβ(u, v); it follows from our induction hypothesis that (u, v) ∈ r(Ea). This holds
for all (u, v) ∈ cvs(Pβ ∩ [x, y]), whence (x, y) ∈

∨
r∈C r(Ea). As this is true for all

C ∈ Cov(q), and the meet in AU (E) is intersection, we get

(x, y) ∈
∧

C∈Cov(q)

∨
r∈C

r(Ea).

By Lemma 5.1, this means that (x, y) ∈ q(Ea), thus completing the proof of the induction
step for (5.2). By applying (5.2) to α = ({p}), we get the desired conclusion. ut

6. Scores and lattice inclusions

In this section we fix a set � = {zi | i ∈ [`]} of cardinality a positive integer `.
We leave to the reader the straightforward proof of the following lemma.

Lemma 6.1. Let F be an interval in a chain E. Then AU∩F (F ) is a lattice retract
of AU (E), with retraction defined by

π : AU (E)→ AU∩F (F ), x 7→ x ∩ δF .

In the context of Lemma 6.1, we shall call π the projection map from AU (E)
onto AU∩F (F ).

From now on we shall denote by qop the dual of a term q ∈ TL(�), that is, q with
meets and joins interchanged.

Definition 6.2. Let p, q ∈ TL(�), let E be a finite chain, and let U ⊆ E. A (p, q, U)-
score on E is a pair ( EP , EQ), where

EP = ((Pα, µα) | α ∈ Alt(p)) is a half p-score on E,
EQ = ((Qβ , νβ) | β ∈ Alt(qop)) is a half qop-score on E,

and the following condition holds:

Whenever i ∈ [`], α ∈ Alt(p), β ∈ Alt(qop), (x, y) ∈ Pα[zi], (u, v) ∈ Qβ [zi],

the condition (x, y) ⊥U (u, v) holds. (6.1)

We refer to Section 4 for the definition of the binary relation ⊥U and the isomorphism
ψ = ψU : AUc(E)→ AU (E)

op. The notation Pα[q] is defined in (5.1).
The following crucial lemma states the equivalence between a negated lattice inclu-

sion p � q in AU (E) and the existence of a (p, q, U)-score on E.
Recall that, in the statement and proof of the following lemma, ψU : AUc(E) →

AU (E)
op is the canonical isomorphism defined in Section 4.
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Lemma 6.3. Let p, q ∈ TL(�), let E be a finite chain, and let U be a subset of E. The
following are equivalent:

(i) There are a1, . . . , a` ∈ AU (E) such that p(Ea) 6⊆ q(Ea).
(ii) There are a1, . . . , a` ∈ AU (E) such that (0E, 1E) ∈ p(Ea) ∩ ψ−1

U (q(Ea)).
(iii) There exists a (p, q, U)-score on E.

Proof. (iii)⇒(ii). We set ai =
∨
(〈x, y〉U | α ∈ Alt(p) and (x, y) ∈ Pα[zi]) for i ∈ [`].

It follows from Lemma 5.5[(ii)⇒(i)] that (0E, 1E) ∈ p(Ea).
We must prove that (0E, 1E) ∈ qop(ψ−1

U Ea). By Lemma 5.5[(ii)⇒(i)], it suffices to
prove that Qβ [zi] ⊆ ψ

−1
U (ai) whenever i ∈ [`] and β ∈ Alt(qop). Let (u, v) ∈ Qβ [zi].

We must prove that ai ⊆ ψU (〈u, v〉Uc), that is, (x, y) ⊥U (u, v) whenever α ∈ Alt(p)
and (x, y) ∈ Pα[zi]. However, this follows from the definition of a score.

(ii)⇒(i). Suppose that p(Ea) ⊆ q(Ea) and set b = q(Ea). Then 〈0E, 1E〉U ⊆ b and
〈0E, 1E〉Uc ⊆ ψ−1

U (b). The second containment can be written b ⊆ ψU (〈0E, 1E〉Uc).
It follows that 〈0E, 1E〉U ⊆ ψU (〈0E, 1E〉Uc), that is, 〈0E, 1E〉U ⊆ κU (〈0E, 1E〉U )
(use (4.2)), a contradiction.

(i)⇒(iii). Pick a minimal interval F ofE such that (0F , 1F ) ∈ p(Ea)\q(Ea), and using
the projection homomorphism π : AU (E)� AU∩F (F ) (Lemma 6.1), set a′i = π(ai) for
each i ∈ [`]. Let V = U ∩ F and V c

= F \ V . Observe that (0F , 1F ) ∈ p(Ea′) \ q(Ea′)
(within AV (F )); thus F has at least two elements.

Suppose that 〈0F , 1F 〉V c 6⊆ ψ−1
V (q(Ea′)). Then q(Ea′) 6⊆ ψV (〈0F , 1F 〉V c). By (4.2), it

follows that q(Ea′) 6⊆ κV (〈0F , 1F 〉V ). Hence, by (2.1),

〈0F , 1F 〉V ⊆ (〈0F , 1F 〉V )∗ ∨ q(Ea′). (6.2)

Since 〈0F , 1F 〉V ⊆ p(Ea′), every (x, y) ∈ (〈0F , 1F 〉V )∗ belongs to p(Ea′); moreover,
since (x, y) 6= (0F , 1F ) for every such (x, y), we obtain, by projecting onto [x, y]
as in the paragraph above and by the minimality assumption on [0F , 1F ], the rela-
tion (x, y) ∈ q(Ea′); hence we get (〈0F , 1F 〉V )∗ ⊆ q(Ea′). Therefore, by (6.2), we
obtain 〈0F , 1F 〉V ⊆ q(Ea′), hence (0F , 1F ) ∈ q(Ea′), a contradiction; this proves that
〈0F , 1F 〉V c ⊆ ψ−1

V (q(Ea′)).
Since (0F , 1F ) ∈ p(Ea′), it follows from Lemma 5.5[(i)⇒(ii)] that there exists a half

p-score
EP = ((Pα, µα) | α ∈ Alt(p))

on F such that

Pα[zi] ⊆ a
′

i whenever α ∈ Alt(p) and i ∈ [`]. (6.3)

Similarly, since (0F , 1F ) ∈ ψ−1
V (q(Ea′)) = qop(ψ−1

V Ea
′), there exists a half qop-score

EQ = ((Qβ , νβ) | β ∈ Alt(qop))

on F such that

Qβ [zi] ⊆ ψ
−1
V (a′i) whenever β ∈ Alt(qop) and i ∈ [`]. (6.4)
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Let i ∈ [`], α ∈ Alt(p), β ∈ Alt(qop), (x, y) ∈ Pα[zi], and (u, v) ∈ Qβ [zi]. By (6.3)
and (6.4), it follows that (x, y) ∈ a′i and (u, v) ∈ ψ−1

V (a′i), that is, 〈x, y〉V ⊆ ai and
〈u, v〉V c ⊆ ψ−1

V (ai). By the definition of the mapψV (Section 4), it follows that 〈x, y〉V ∩
〈u, v〉V c = ∅, that is, (x, y) ⊥V (0F , 1F ). Therefore, ( EP , EQ) is a (p, q, V )-score on F .

It remains to extend the (p, q, V )-score ( EP , EQ) on F to a (p, q, U)-score on E. To
this end let ξ : F → E be the map extending the identity on F \ {0F , 1F } such that
ξ(0F ) = 0E and ξ(1F ) = 1E . Observe that ξ is an order-embedding. The proof of the
following claim is a straightforward application of Lemma 4.1.

Claim. Let (x, y), (u, v) ∈ δF . Then (x, y) ⊥V (u, v) iff (ξ(x), ξ(y)) ⊥U (ξ(u), ξ(v)).

Now we set P ′α = ξ(Pα) and µ′α(ξ(x), ξ(y)) = µα(x, y), for all α ∈ Alt(p) and all
(x, y) ∈ cvs(Pα). Likewise, we set Q′β = ξ(Qβ) and ν′β(ξ(x), ξ(y)) = νβ(x, y), for all
β ∈ Alt(qop) and all (x, y) ∈ cvs(Qβ). It is straightforward to verify that the families

EP ′ = ((P ′α, µ
′
α) | α ∈ Alt(p)), EQ′ = ((Q′β , ν

′
β) | β ∈ Alt(qop))

are a half p-score and a half qop-score on E, respectively. Furthermore, by the Claim
above, ( EP ′, EQ′) satisfies (6.1), so it is a (p, q, U)-score on E. ut

7. Expressing scores within monadic second-order logic: proving Theorem I

We consider the monadic second-order language MSO of one successor (Büchi [6]). We
denote by u, v, w, x, y, . . . the variables of the first-order language (s) consisting of one
unary function symbol s. In addition to that language, MSO has a binary relation symbol ∈,
second-order variables U , V , W , X, Y , . . . , and new atomic formulas t ∈ X, where t is
a term of the first-order language (s) and X is a second-order variable. The formulas
of MSO are obtained by closing the atomic formulas under propositional connectives and
quantification both on first- and second-order variables. The standard model of MSO is
(ω, s), where s is the successor function on the set ω of all nonnegative integers. The
satisfaction by (ω, s) of a formula of MSO is defined inductively on the complexity of the
formula, in a standard fashion. The following fundamental result is due to Büchi [6].

Theorem 7.1 (Büchi’s Theorem). The theory S1S consisting of all statements of MSO

valid in (ω, s) is decidable (i.e., recursive).

By Büchi’s Theorem, in order to decide the validity of a statement θ (in any mathematical
field), it suffices to find a statement θ̃ of MSO which is equivalent to θ (i.e., θ holds iff the
structure (ω, s) satisfies θ̃ ), and then apply Büchi’s decision procedure to θ̃ . A standard
fact, which we shall use repeatedly, is that the binary relations x < y and x ≤ y on ω are
both MSO-definable, respectively by the statements

(∃X)
(
(∀z)(z ∈ X⇒ s(z) ∈ X) ∧ y ∈ X ∧ ¬(x ∈ X)

)
, (7.1)

x < y ∨ x = y. (7.2)

Let � = {zi | i ∈ [`]} be a set of cardinality a positive integer `, and let p ∈ TL(�).
In order to be able to code half p-scores (Definition 5.3) in MSO, a necessary preliminary
step is to describe such objects by finite collections of subsets of ω.
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For the Pα nothing needs to be done (they are already sets of integers).
For a subset P of ω, the set cvs(P ) of all covers in P (Definition 4.2) is in one-to-

one correspondence with the set P ∗ defined to be P if P has no largest element, and
to be P \ {maxP } otherwise. Hence, for a finite set C, a map τ : cvs(P ) → C can be
described by the collection of all subsets Pc = {x ∈ P ∗ | (∃y)(τ (x, y) = c)}, where
c ∈ C. Accordingly, we set the following definition.

Definition 7.2. The code of a half p-score EP as above is the family

((Pα, Pα,q) | α ∈ Alt(p), q ∈ Cα ∪ {⊥}),

where we set

Pα,q =
{
x ∈ Pα

∣∣ (∃y)((x, y) ∈ cvs(Pα) and τα(x, y) = q
)}
.

Since the code of a half p-score is a finite family of sets of integers (viz. the Pα and
the Pα,q ), its entries can be used as parameters for MSO formulas.

Lemma 7.3. The statement saying that a given family

EP = ((Pα, Pα,q) | α ∈ Alt(p) and q ∈ Cα ∪ {⊥})

is the code of a half p-score on an interval [u, v] of ω is equivalent to an MSO statement.

Proof. Axiom (i) of Definition 5.3, with 0E replaced by u and 1E by v, can be expressed
by the conjunction of u < v and the following statements:

Pα ⊆ [u, v] for α ∈ Alt(p), (7.3)

P ∗α =
⋃

q∈Cα∪{⊥}

Pα,q for α ∈ Alt(p), (7.4)

Pα,q ∩ Pα,r = ∅ for α ∈ Alt(p) and distinct q, r ∈ Cα. (7.5)

The statement (7.3) is equivalent to the MSO formula∧
α∈Alt(p)

(∀x)
(
x ∈ Pα ⇒ (u ≤ x ∧ x ≤ v)

)
.

Now the statement “(x, y) ∈ cvs(Pα)” is equivalent to the following MSO formula:

x ∈ Pα ∧ y ∈ Pα ∧ x < y ∧ (∀z)¬(x < z ∧ z < y ∧ z ∈ Pα).

(The symbols ∧ and ¬ stand for conjunction and negation, respectively. The quotes in
what follows will mean that we are replacing the statement (x, y) ∈ cvs(P ) by its MSO
equivalent found previously, so we are reminded that the job is already done for that
statement.)

This implies immediately that (7.4) is equivalent to the conjunction of the following
two MSO statements: ∧

α∈Alt(p), q∈Cα∪{⊥}

(
x ∈ Pα,q ⇒ (∃y)“(x, y) ∈ cvs(Pα)”

)
,

∧
α∈Alt(p)

(∀x)(∀y)
(

“(x, y) ∈ cvs(Pα)”⇒
∨

q∈Cα∪{⊥}

x ∈ Pα,q

)
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(following the usual convention,
∧

and
∨

stand for conjunction and disjunction over a
given index set, respectively). The translation of (7.5) to an MSO statement is even more
straightforward.

Axiom (ii) of Definition 5.3 can be expressed by the statement

u ∈ P({p}),p ∧ (∀x)
(
x ∈ P({p}) ⇔ (x = u ∨ x = v)

)
.

Finally, axiom (iii) of Definition 5.3 is equivalent to the conjunction, over all (α, q, C)
with α ∈ Alt(p), q ∈ Cα \�, and C ∈ Cov(q), of the statements

(∀x)(∀y)
((

“(x, y) ∈ cvs(Pα)” ∧ x ∈ Pα,q
)
⇒(

x ∈ Pαa(q,C) ∧ y ∈ Pαa(q,C) ∧ ϑα,q,C(x, y)
))
,

where ϑα,q,C(x, y) is the statement

(∀u)(∀v)
((

“(u, v) ∈ cvs(Pαa(q,C))” ∧ x ≤ u ∧ v ≤ y
)
⇒

∨
r∈C

(
u ∈ Pαa(q,C),r

))
.

This concludes the proof. ut

Now we formulate the following analogue of Definition 7.2 for scores.

Definition 7.4. Let p, q ∈ TL(�). Consider families

Ṗ = ((Pα, Pα,r) | α ∈ Alt(p) and r ∈ Cα ∪ {⊥}), (7.6)

Q̇ = ((Qβ ,Qβ,s) | β ∈ Alt(qop) and s ∈ Cβ ∪ {⊥}). (7.7)

The pair (Ṗ , Q̇) is the code for a (p, q, U)-score if Ṗ is the code of a half p-score EP ,
Q̇ is the code of a half qop-score EQ, and ( EP , EQ) is a (p, q, U)-score.

The analogue of Lemma 7.3 for scores is the following.

Lemma 7.5. The statement saying that a pair (Ṗ , Q̇) is the code of a (p, q, U)-score on
an interval [u, v] of ω is equivalent to an MSO statement.

Proof. Let Ṗ and Q̇ be given by (7.6) and (7.7). By Lemma 7.3, the statements that Ṗ
and Q̇ are codes of a half p-score and a half qop-score on [u, v], respectively, are equiva-
lent to MSO formulas.

Next, the relations (x, y) ∈ 〈x′, y′〉U and (x, y) ∈ 〈x′, y′〉Uc are, respectively, equiv-
alent to the following MSO formulas:

x′ ≤ x ∧ x < y ∧ y ≤ y′ ∧ (x = x′ ∨ ¬(x ∈ U)) ∧ (y = y′ ∨ y ∈ U),

x′ ≤ x ∧ x < y ∧ y ≤ y′ ∧ (x = x′ ∨ x ∈ U) ∧ (y = y′ ∨ ¬(y ∈ U)).

From this we can deduce the following MSO equivalent of (x0, y0) ⊥U (x1, y1):

¬(∃x, y)
(
x < y ∧ “(x, y) ∈ 〈x0, y0〉U ” ∧ “(x, y) ∈ 〈x1, y1〉Uc”

)
.
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Therefore, an MSO equivalent of the statement (6.1) is the conjunction, over all i ∈ [`],
α ∈ Alt(p), and β ∈ Alt(qop), of the following formulas:

(∀x0)(∀y0)(∀x1)(∀y1)
((

“(x0, y0) ∈ cvs(Pα)” ∧ “(x1, y1) ∈ cvs(Qβ)”

∧ x0 ∈ Pα,zi ∧ x1 ∈ Qβ,zi

)
⇒ “(x0, y0) ⊥U (x1, y1)”

)
. ut

Lemma 7.6. Let p, q ∈ TL(�). The statement, depending on two first-order variables x
and y and a second-order predicate U , saying that AU ([x, y]) satisfies the lattice inclu-
sion p ≤ q is equivalent to an MSO statement.

Proof. By Lemma 6.3, AU ([x, y]) does not satisfy the lattice inclusion p ≤ q iff there is
a (p, q, U)-score on [x, y]. Now the existence of a score can be expressed via existential
quantification, over all second-order predicates Pα , Pα,r , Qβ , Qβ,s , of the MSO formula,
obtained from Lemma 7.5, that expresses being a (p, q, U)-score. Therefore, the follow-
ing formula is equivalent to AU ([x, y]) not satisfying p ≤ q:

(∃Ṗ )(∃Q̇)
(
“(Ṗ , Q̇) is the code of a (p, q, U)-score on [x, y]”

)
,

where, in an obvious sense, ∃Ṗ stands for a string of quantifiers of the form ∃Pα or ∃Pα,r
for α ∈ Alt(p) and r ∈ Cα ∪ {⊥} (and similarly for ∃Q̇). ut

Definition 7.7. An orientation is a triple (u, v, U), where u, v ∈ ω, u < v, and U ⊆
[u, v].

We can now state an expanded form of Theorem I.

Theorem 7.8. Let U be an MSO-definable set of orientations. Then the equational theory
of all lattices AU ([x, y]), where (x, y, U) ∈ U, is decidable.

Proof. For all (x, y, U) ∈ U, the Cambrian lattice AU ([x, y]) satisfies the lattice inclu-
sion p ≤ q iff the following MSO formula θp,q (obtained from the proof of Lemma 7.6) is
in S1S:

(∀x)(∀y)(∀U)
(
“(x, y, U) ∈ U”⇒ “AU ([x, y]) satisfies the inclusion p ≤ q”

)
.

Further, the assignment (p, q) 7→ θp,q is given by an effectively computable procedure,
that is, it is recursive. The desired conclusion follows from Theorem 7.1. ut

Defining U as the set of all (x, y, U) with x < y and U ⊆ [x, y], we obtain the equa-
tional theory of all Cambrian lattices of type A, which, by Lemma 3.1, is identical to the
equational theory of all permutohedra.

Corollary 7.9. The equational theory of all permutohedra lattices is decidable.

By defining U as the set of all triples (x, y, U) with U = [x, y], we obtain the following.

Corollary 7.10. The equational theory of all Tamari lattices is decidable.
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8. Tensor products and box products

Sections 8–10 will be mainly devoted to the proof of Theorem II, more precisely Theo-
rem 10.1, showing that the equational theory of all permutohedra is nontrivial. We shall
show that every Cambrian lattice of type A satisfies the splitting identity of the lattice
N5 � B(3, 2); in this section we give the background and the tools for constructing and
handling that lattice.

Our presentation originates from the tensor product of (∨, 0)-semilattices considered
by Grätzer, Lakser, and Quackenbush [22], which is a variant of Fraser’s tensor product
of join-semilattices considered in [11].

Definition 8.1. LetA andB be (∨, 0)-semilattices. A bi-ideal ofA×B is a lower subset I
of A× B (endowed with the componentwise ordering), containing the subset

0A,B = (A× {0B}) ∪ ({0A} × B),

such that whenever (a, b0) ∈ I and (a, b1) ∈ I , then (a, b0 ∨ b1) ∈ I , and similarly with
the roles of A and B reversed. The (∨, 0)-semilattice A ⊗ B of all compact elements of
A⊗ B is called the tensor product of the (∨, 0)-semilattices A and B.

The following elements of A⊗ B deserve special attention:

— The pure tensors a ⊗ b = 0A,B ∪ {(x, y) ∈ A × B | x ≤ a and y ≤ b} for (a, b) ∈
A× B. In particular, 0A,B = 0A ⊗ 0B .

— The mixed tensors (a ⊗ b′) ∪ (a′ ⊗ b) for a ≤ a′ in A and b ≤ b′ in B.
— The boxes a � b = {(x, y) ∈ A× B | x ≤ a or y ≤ b}.

Clearly, the inequalities a ⊗ b ≤ a � b′ and a ⊗ b ≤ a′ � b hold whenever a, a′ ∈ A
and b, b′ ∈ B. In fact, a ⊗ b = (a � 0B) ∩ (0A � b). Notice also that if a and b are both
nonzero, then a⊗b ≤ a′⊗b′ iff a ≤ a′ and b ≤ b′. While pure tensors and mixed tensors
always belong to A⊗ B (in particular, (a ⊗ b′) ∪ (a′ ⊗ b) is really the join of a ⊗ b′ and
a′ ⊗ b), the box a � b may not belong to A ⊗ B. However, if A and B both have a unit
element, then a � b = (a ⊗ 1B) ∪ (1A ⊗ b) is a mixed tensor, thus it belongs to A⊗ B.

If A and B are finite lattices, then A ⊗ B = A ⊗ B is a finite lattice as well. In the
infinite case, A ⊗ B may not be a lattice. For example, if F(3) denotes the free lattice
on three generators, then M3 ⊗ F(3) is not a lattice (Grätzer and Wehrung [24]). The
following comes from Grätzer and Wehrung [25, Definition 4.1].

Definition 8.2. For (∨, 0)-semilattices A and B, a subset C of A ⊗ B is a sub-tensor
product if it contains all mixed tensors, is closed under nonempty finite intersection, and
is a lattice under set inclusion. We say that C is capped if every member of C is a finite
union of pure tensors.

If A and B are both finite, then every sub-tensor product is, trivially, capped. Grätzer and
Wehrung [25] posed the problem whether A⊗ B a lattice implies that A⊗ B is a capped
tensor product, for any lattices A and B with zero. This problem appeared to be difficult,
and was finally solved, with a sophisticated counterexample, by Chornomaz [9].

A key property of sub-tensor products, with trivial proof, is the following.



1980 Luigi Santocanale, Friedrich Wehrung

Lemma 8.3. LetA and B be lattices with zero, let C be a sub-tensor product ofA and B,
and let a ∈ A. Then the map (B → C, x 7→ a ⊗ x) is a zero-preserving lattice homo-
morphism.

While even in the finite case, the ordinary tensor product A ⊗ B will not be satisfactory
for our current purposes, a variant called box product will do the trick. The box product
is an analogue, for lattices that are not necessarily complete, of Wille’s tensor product
of concept lattices [77]. Although the two concepts are, for finite lattices, equivalent,
we found the box product presentation and results from Grätzer and Wehrung [23] more
suited to our approach, heavily relying on join-coverings in our lattices.

The box product of A and B behaves well only in case both lattices A and B are
bounded.3 The following result is contained in Grätzer and Wehrung [23, Proposition 2.9
and Lemma 3.8].

Proposition 8.4. LetA andB be bounded lattices. The setA�B of all intersections of the
form

⋂n
i=1(ai � bi), for n a nonnegative integer, a1, . . . , an ∈ A, and b1, . . . , bn ∈ B, is

a lattice under set-theoretical inclusion, called the box product of A and B. Furthermore,
A � B is a capped sub-tensor product of A and B.

Let A = N5 and B = B(3, 2). By combining Lemma 8.3, Proposition 8.4, and the
equations (2.3)–(2.5), we immediately obtain the following equations, valid in the lattice
N5 � B(3, 2) whenever {i, j} = {1, 2} and k, l ∈ {1, 2, 3}:

c ⊗ bj =
(
c ⊗ (q∗ ∨ bj )

)
∧
(
c ⊗ (b1 ∨ b2)

)
, (8.1)

c ⊗ ak =
(
c ⊗ (ak ∨ bi)

)
∧
(
c ⊗ (q∗ ∨ bj )

)
, (8.2)

c ⊗ (ak ∨ al) =
(
c ⊗ (ak ∨ al ∨ bi)

)
∧
(
c ⊗ (q∗ ∨ bj )

)
. (8.3)

The behavior of capped tensor products with respect to congruences will be especially
important to us. The following is a consequence of Lemma 5.3 and Theorem 2 in Grätzer
and Wehrung [25].

Proposition 8.5. Let A and B be lattices with zero and let C be a capped sub-tensor
product of A and B. Then there exists a unique lattice isomorphism ε from (ConcA) ⊗

(Conc B) onto Conc C such that

ε
(
conA(a, a′)⊗ conB(b, b′)

)
= conC

(
(a ⊗ b′) ∪ (a′ ⊗ b), a′ ⊗ b′

)
whenever a ≤ a′ in A and b ≤ b′ in B. (8.4)

From now on we shall abuse notation and write α ⊗ β instead of ε(α ⊗ β) whenever
(α,β) ∈ (ConcA)× (Conc B). With this abuse of notation, the formula (8.4) becomes

conA(a, a′)⊗ conB(b, b′) = conC
(
(a ⊗ b′) ∪ (a′ ⊗ b), a′ ⊗ b′

)
whenever a ≤ a′ in A and b ≤ b′ in B. (8.5)

3 The box product A�B is a precursor of the further “lattice tensor product” construction A�B,
which may be defined even in some unbounded cases. This will not be pursued here.
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Lemma 8.6. The following statements hold for any sub-tensor product C of finite lat-
tices A and B:

(i) The join-irreducible elements ofC are exactly the p⊗q, where p ∈ JiA and q ∈ JiB.
Furthermore, (p ⊗ q)∗ = (p∗ ⊗ q) ∪ (p ⊗ q∗).

(ii) The join-prime elements of C are exactly the p ⊗ q, where p and q are join-prime
in A and B, respectively.

Proof. The (easy) first part of (i) is contained in Wehrung [75, Lemma 7.2].
(ii) It is an easy exercise to verify that if p ⊗ q is join-prime, then so are p and q.

Conversely, suppose that p and q are both join-prime. The box H = κA(p) � κB(q)

belongs to C, and p ⊗ q 6⊆ H . Let I ∈ C be such that p ⊗ q 6⊆ I , and suppose that
I 6⊆ H . There exists (x, y) ∈ I \H . By the definition of H , x � κA(p) and y � κB(q),
that is, p ≤ x and q ≤ y, so (p, q) ∈ x ⊗ y ⊆ I , a contradiction. Therefore, H is the
largest element of C not containing p ⊗ q. ut

A simple application of Proposition 8.5 and Lemma 8.6 yields, with the notational con-
vention introduced in (8.5), the formula

conC(p ⊗ q) = conA(p)⊗ conB(q) for all p ∈ JiA and all q ∈ JiB, (8.6)

whenever C is a sub-tensor product of finite lattices A and B.

Lemma 8.7. The following statements hold for any capped sub-tensor product C of lat-
tices A and B with zero:

(i) If A and B are both subdirectly irreducible, then so is C. Furthermore, if conA(p)
is the monolith of A and conB(q) is the monolith of B, then conC(p ⊗ q) is the
monolith of C.

(ii) If A and B both belong to LBfin, then so does C.
(iii) If A and B both belong to Bfin, then so does A � B. Further, κA�B(p ⊗ q) =

κA(p) � κB(q) for all p ∈ JiA and all q ∈ JiB.
(iv) If A and B are both splitting, then so is A � B.

Proof. (i) (see also Wille [77, Corollary 15]) It follows from Proposition 8.5 that if α
is the monolith of A and β is the monolith of B, then α ⊗ β is the monolith of C. If
α = conA(p) and β = conB(q), then α ⊗ β = conC(p ⊗ q) (use (8.6)).

(ii) Since the relations EA and EB are both antisymmetric, it follows from (8.6)
and (2.2) that EC is also antisymmetric.

(iii) By (ii) together with Theorems 2.56 and 2.64 of Freese, Ježek, and Nation [14],
it suffices to prove the second statement. Let H =

⋂
i<n(ai � bi) with p ⊗ q 6⊆ H (i.e.,

(p, q) /∈ H ) and (p ⊗ q)∗ ⊆ H . There exists i < n such that (p, q) /∈ ai � bi , that
is, p � ai and q � bi . By Lemma 8.6(i), (p∗, q) and (p, q∗) both belong to ai � bi .
It follows that p∗ ≤ ai and q∗ ≤ bi , hence ai ≤ κA(p) and bi ≤ κB(q). Therefore,
H ⊆ ai � bi ⊆ κA(p) � κB(q).

(iv) follows trivially from (i) and (iii) above. ut

Denote by λ(L) (resp., µ(L)) the cardinality of JiL (resp., MiL) for any finite lattice L.
It follows from Freese, Ježek, and Nation [14, Theorem 2.40] that L belongs to LBfin
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iff λ(L) = λ(ConL), and [14, Theorem 2.67] shows that L belongs to Bfin iff λ(L) =
µ(L) = λ(ConL). While Lemma 8.7(ii) trivially implies that (A ∈ LBfin and B ∈ LBfin)
implies that A ⊗ B ∈ LBfin, the analogous result for Bfin does not hold in general. For
example, N5 ⊗ N5 has nine join-irreducible elements and ten meet-irreducible elements
(for the union (p⊗p∗)∪ (p∗⊗p)∪ (c⊗ c) is meet-irreducible, but it is not a box), thus
it does not belong to Bfin. Hence, neither (iii) nor (iv) in Lemma 8.7, stated for the box
product A�B, can be extended to arbitrary capped sub-tensor products, even in the finite
case.

9. Tight EA-duets of maps

In the present section we shall introduce an “equation-free” view of lattice varieties, to a
great extent inspired by McKenzie [53]. This will enable us to prove Theorem II without
needing to write huge equations.

Following Keimel and Lawson [44], a Galois adjunction between posets K and L is
a pair (f, h) of maps, where f : K → L and h : L→ K , such that

f (x) ≤ y ⇔ x ≤ h(y) for all (x, y) ∈ K × L.

In such a case, each of the maps f and h is uniquely determined by the other. We say
that f is the lower adjoint of h and h is the upper adjoint of f .

Definition 9.1. Let K and L be lattices. A pair (f, g) of maps from K to L is an EA-
duet4 if there are a sublattice H of L and a surjective lattice homomorphism h : H � K

such that f is the lower adjoint of h and g is the upper adjoint of h.

Lemma 9.2. Let K and L be lattices and let f, g : K → L. Then (f, g) is an EA-duet
iff f is a join-homomorphism, g is a meet-homomorphism, and

f (x) ≤ g(y) ⇔ x ≤ y whenever x, y ∈ K. (9.1)
Proof. If (f, g) is an EA-duet with respect to h : H � K , then it is straightforward
to verify that f is a join-homomorphism and g is a meet-homomorphism. Furthermore,
f ≤ g, so x ≤ y implies f (x) ≤ g(y), and conversely, for all x, y ∈ K , f (x) ≤ g(y)
implies that x = hf (x) ≤ hg(y) = y.

Conversely, suppose that f is a join-homomorphism, g is a meet-homomorphism,
and (9.1) holds. We set

H =
⋃
x∈K

[f (x), g(x)]. (9.2)

For y ∈ H , let x0, x1 ∈ K be such that y ∈ [f (x0), g(x0)] ∩ [f (x1), g(x1)]. From
f (x0) ≤ y ≤ g(x1) and our assumptions it follows that x0 ≤ x1. Likewise, x1 ≤ x0,
whence x0 = x1. This entitles us to define a map h : H → K by the rule

h(y) = unique x ∈ K such that f (x) ≤ y ≤ g(x) for each y ∈ H. (9.3)

4 After the soprano Aloysia Weber (1760–1839) and the bass Édouard de Reske (1853–1917),
moreover following the categorical logic notation ∃h and ∀h for the left and right adjoint of h,
respectively. Calling “scores” the main objects of Section 6 and Appendix A stays in line with that
musical spirit.
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Observe in particular that h ◦ f = h ◦ g = idK (so h is surjective). Furthermore, f ◦ h ≤
idH ≤ g ◦ h. It is also easily seen that h is isotone. Therefore the previous relations
determine h as the upper adjoint of f and as the lower adjoint of g; it follows that h
preserves all the meets and joins that exist in H . Hence it remains to show that H is a
sublattice of L. If xi ∈ H and xi = h(yi) for i ∈ {0, 1}, then

f (x0 ∧ x1) ≤ f (x0) ∧ f (x1) ≤ y0 ∧ y1 ≤ g(x0) ∧ g(x1) = g(x0 ∧ x1)

(because g is a meet-homomorphism), whence y0 ∧ y1 ∈ H . The proof that y0 ∨ y1 ∈ H

is similar. ut

Remark 9.3. It is an easy exercise to verify that in the context of Lemma 9.2 above, the
sublattice H of L and the homomorphism h : H � K are uniquely determined, by the
formulas (9.2) and (9.3), respectively.

Our next lemma involves the relation of weak projectivity⇒. Let us first recall some basic

definitions (Grätzer [21, §III.1]). We define binary relations
up
� and

dn
� on the collection

of all closed intervals of a lattice L by setting

[a, b]
up
� [c, d] if a ≤ c and d = b ∨ c,

[a, b]
dn
� [c, d] if d ≤ b and c = a ∧ d,

whenever a ≤ b and c ≤ d in L. Furthermore, we denote by ⇒ (the relation of weak

projectivity) the transitive closure of the union of
up
� and

dn
�.

Lemma 9.4. Let K and L be lattices and let f, g : K → L be such that f is a join-ho-
momorphism, g is a meet-homomorphism, and f ≤ g (with respect to the component-
wise ordering). Let a ≤ b and c ≤ d in K . If [a, b] ⇒ [c, d] and f (b) ≤ g(a), then
f (d) ≤ g(c).

Proof. It suffices to settle the cases [a, b]
up
� [c, d] and [a, b]

dn
� [c, d]. In the former case,

f (d) = f (b ∨ c) = f (b) ∨ f (c) ≤ g(a) ∨ g(c) = g(c).

The case where [a, b]
dn
� [c, d] is dual. ut

Definition 9.5. A pair (u, v) of elements in a lattice L is

— critical if con(u ∧ v, u) is the monolith of L,
— prime critical if it is critical and u ∧ v is a lower cover of u.

The following lemma gives a convenient characterization of EA-duets defined on a sub-
directly irreducible lattice with a prime critical pair.

Lemma 9.6. Let K and L be lattices, with K subdirectly irreducible, and let u, v ∈ K
with u � v. Let f : K → L be a join-homomorphism and let g : K → L be a meet-
homomorphism with f ≤ g. If (f, g) is an EA-duet, then f (u) � g(v). Furthermore, if
(u, v) is prime critical, then the converse holds.
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Proof. If (f, g) is an EA-duet, then, by Lemma 9.2, the condition (9.1) is satisfied, thus
u � v implies that f (u) � g(v).

Suppose, conversely, that (u, v) is prime critical and f (u) � g(v). If (f, g) is not an
EA-duet, then there are x, y ∈ K such that f (x) ≤ g(y) and x � y. Since f (x) ≤ g(x)
and g is a meet-homomorphism, we infer that f (x) ≤ g(x ∧ y). Since x ∧ y < x,
the congruence con(x ∧ y, x) is nonzero, thus it contains the monolith con(u ∧ v, u)
of K . Since u ∧ v is a lower cover of u, Grätzer’s [21, Theorem 230] shows that the
relation [x ∧ y, x] ⇒ [u ∧ v, u] holds. Since f (u) � g(u ∧ v), Lemma 9.4 implies that
f (x) � g(x ∧ y), a contradiction. ut

From now on until the end of this section we fix lattices K and L of finite length.

Lemma 9.7. The following are equivalent:

(i) K is a homomorphic image of a sublattice of L.
(ii) There exists an EA-duet (f, g) of maps from K to L.

Proof. (i)⇒(ii). By assumption, there are a sublatticeH of L and a surjective homomor-
phism h : H � K . Since L has finite length, the lower adjoint (resp., upper adjoint) f
(resp., g) of h are both well-defined. By definition, they form an EA-duet.

(ii)⇒(i) follows trivially from Lemma 9.2. ut

For every map f : K → L, the pointwise supremum f ∨ of all join-homomorphisms be-
low f (for the componentwise ordering) is itself a join-homomorphism, and thus it is the
largest join-homomorphism below f . We denote it by f ∨. Likewise, f ∧ is the least meet-
homomorphism above f for the componentwise ordering. In particular, f ∨ ≤ f ≤ f ∧.

Definition 9.8. A pair (f, g) of maps from K to L is tight if f = g∨ and g = f ∧.

In particular, if (f, g) is tight, then f is a join-homomorphism, g is a meet-homomor-
phism, and f ≤ g.

Lemma 9.9. For every pair (f, g) of maps from K to L such that f is a join-homomor-
phism, g is a meet-homomorphism, and f ≤ g, there exists a tight pair (f , g) such that
f ≤ f ≤ g ≤ g. If (f, g) is an EA-duet, then so is (f , g).

Proof. Since f ≤ g and g is a meet-homomorphism, we get f ≤ f ∧ ≤ g. Now, since f
is a join-homomorphism, we get f = f ∨ ≤ f ∧∨ ≤ f ∧ ≤ g, so it suffices to prove that
the pair (f ∧∨, f ∧) is tight, for which we shall argue that f ∧ = f ∧∨∧:

f ∧∨∧ ≤ f ∧∧ = f ∧, f ∧∨∧ ≥ f ∨∧ = f ∧,

the last equality following from the assumption that f ∨ = f .
Finally, if (f, g) satisfies (9.1), then so does (f , g), since f ≤ f ≤ g ≤ g. ut

By applying Lemmas 9.2 and 9.9, we immediately obtain the following corollary.

Corollary 9.10. The following are equivalent:

(i) L is a homomorphic image of a sublattice of K .
(ii) There is an EA-duet of maps from K to L.

(iii) There exists a tight EA-duet of maps from K to L.
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Although the two components of a tight pair may not be identical, we shall see that they
agree on join-prime or meet-prime elements (Corollary 9.12). In order to see this, the key
lemma is the following.

Lemma 9.11. Let g : K → L be an isotone map. Then g(0) = g∨(0). Furthermore,
g(p) = g∨(p) for any join-prime element p of K .

Proof. Whenever p is join-prime, the map f : K → L defined by

f (x) =

{
g(p) if p ≤ x,
g(0K) otherwise,

for all x ∈ K,

is a join-homomorphism. (If there is no join-prime, define f (x) = g(0K) everywhere.)
From the assumption that g is isotone it follows that f ≤ g, thus f ≤ g∨. Hence,
g(0K) = f (0K) ≤ g∨(0K) ≤ g(0K) and g(p) = f (p) ≤ g∨(p) ≤ g(p). ut

Corollary 9.12. Let (f, g) be a tight EA-duet of maps from K to L. Then f and g agree
on all elements of K that are either 0K , 1K , join-prime, or meet-prime.

Proof. Apply Lemma 9.11 to g : K → L and f : Kop
→ Lop. ut

10. An identity for all permutohedra: proving Theorem II

Throughout this section we shall use the labelings of the join-irreducible elements of N5
and B = B(3, 2) introduced in Figure 2.2. Further, we shall set L = N5 � B. Since N5
and B(3, 2) are both splitting lattices, Lemma 8.7 shows that L is also splitting. This
section will be devoted to the proof of the following more precise form of Theorem II.

Theorem 10.1. Every permutohedron P(n) satisfies the splitting identity θL of L.

Brute force calculation, based on the Mace4 component of McCune’s wonderful Prover9
-Mace4 software [51], shows that L has 3,338 elements, so θL, although failing in L,
holds in all lattices with at most 3,337 elements (see Section 2.4).

Towards a contradiction, assume that not every permutohedron satisfies the splitting
identity of L. By Lemma 3.1, there are a finite chain E and a subset U of E such
that AU (E) does not satisfy the splitting identity of L, that is, L belongs to the lattice
variety generated by AU (E). Since L is subdirectly irreducible and AU (E) is finite, it fol-
lows from Jónsson’s Lemma (Jónsson [41], Jipsen and Rose [37, Ch. 1, Corollary 1.7])
that L is a homomorphic image of a sublattice of AU (E). By Corollary 9.10, there is a
tight EA-duet (f, g) of maps from L to AU (E).

Since conN5(p) is the monolith of N5 and conB(q) is the monolith ofB, Lemma 8.7(i)
shows that conL(p⊗ q) is the monolith of L. Hence the pair (p⊗ q, κL(p⊗ q)) is prime
critical in L (Definition 9.5). Further, it follows from Lemma 8.7(iii) that κL(p ⊗ q) =
κN5(p) � κB(q) = p∗ � q∗. By Lemma 9.6, (f, g) being an EA-duet means that f is a
join-homomorphism, g is a meet-homomorphism, f ≤ g, and f (p ⊗ q) 6⊆ g(p∗ � q∗).
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Take E of least possible cardinality and pick a pair

(u, v) ∈ f (p ⊗ q) \ g(p∗ � q∗).

It is easy to verify that the projection π : AU (E) → AU∩[u,v]([u, v]), a 7→ a ∩ δ[u,v],
is a lattice homomorphism. Furthermore, the maps f ′ = π ◦ f and g′ = π ◦ g are, re-
spectively, a join-homomorphism and a meet-homomorphism from L to AU∩[u,v]([u, v])
with f ′ ≤ g′ and (u, v) ∈ f ′(p ⊗ q) \ g′(p∗ � q∗). In particular, (f ′, g′) is also an EA-
duet. By the minimality assumption on E, u and v are the least and the largest element
of E, respectively. Hence, we may assume that E = [N ] for some positive integerN with
(1, N) ∈ f (p ⊗ q) \ g(p∗ � q∗), and that N is least possible.

Lemma 10.2. Let (x, y) ∈ 〈1, N〉U . If (x, y) ∈ f (c ⊗ q), then (x, y) ∈ g(0).

Proof. From (x, y) ∈ 〈1, N〉U and 〈1, N〉U ⊆ f (p⊗q) it follows that (x, y) ∈ f (p⊗q),
thus also (x, y) ∈ g(p⊗q), since f ≤ g. From (x, y) ∈ f (c⊗q)we get (x, y) ∈ g(c⊗q).
Since g is a meet-homomorphism and (p ⊗ q) ∧ (c ⊗ q) = (p ∧ c) ⊗ q = 0 ⊗ q = 0,
(x, y) belongs to g(p ⊗ q) ∧ g(c ⊗ q) = g((p ⊗ q) ∧ (c ⊗ q)) = g(0). ut

Let (x, y) ∈ f (c ⊗ q). Whenever j ∈ {1, 2}, the inequality q ≤ a1 ∨ a2 ∨ a3 ∨ bj
(within B) entails c⊗ q ≤ (c⊗ a1)∨ (c⊗ a2)∨ (c⊗ a3)∨ (c⊗ bj ) (within L), thus there
exists a subdivision x = zj0 < z

j

1 < · · · < z
j
nj = y such that

whenever 0 ≤ i < nj , there exists d ∈ a∪{bj } such that (zji , z
j

i+1) ∈ f (c⊗d). (10.1)

Denote by νj (x, y) the least possible value of nj . Our main lemma is the following.

Lemma 10.3. f (c ⊗ q) is contained in g(c ⊗ q∗).

Proof. Let (x, y) ∈ f (c ⊗ q); we argue by induction on y − x that (x, y) ∈ g(c ⊗ q∗).
Consider subdivisions (zji | 0 ≤ i ≤ nj ) of [x, y] satisfying (10.1) with nj = νj (x, y).
Set Sj = {(z

j
i , z

j

i+1) | 0 ≤ i < nj } and Zj = {z
j
i | 0 ≤ i ≤ nj }, for each j ∈ {1, 2}.

Suppose first that nj = 1 for some j ∈ {1, 2}, say n1 = 1. It follows from (10.1)
that (x, y) ∈ f (c ⊗ d) for some d ∈ a ∪ {b1}. Hence (x, y) ∈ g(c ⊗ d). Since (x, y) ∈
f (c ⊗ q) ⊆ g(c ⊗ q) and g is a meet-homomorphism, and since d ∧ q ≤ q∗, it follows
that (x, y) belongs to g((c ⊗ d) ∧ (c ⊗ q)) = g(c ⊗ (d ∧ q)) ⊆ g(c ⊗ q∗), and we are
done. Therefore we can suppose that nj > 1 for every j ∈ {1, 2}.

Claim 1. There is no i such that 0 ≤ i < nj , zji /∈ U , and zji+1 ∈ U .

Proof of Claim. Suppose that 0 ≤ i < nj with zji /∈ U and zji+1 ∈ U . It follows that

(z
j
i , z

j

i+1) ∈ 〈1, N〉U . Without loss of generality, we can suppose that i > 0; let then

d ∈ a ∪ {bj } be such that (zji−1, z
j
i ) ∈ f (c ⊗ d). Recall that (x, y) ∈ f (c ⊗ q), thus

(z
j
i , z

j

i+1) ∈ f (c ⊗ q) as well; by using Lemma 10.2, we get (zji , z
j

i+1) ∈ g(0), and thus

a fortiori (zji , z
j

i+1) ∈ g(c ⊗ d). Since (f, g) is a tight pair and c ⊗ d is join-prime in L,

we deduce, using Lemma 9.11, that f (c ⊗ d) = g(c ⊗ d), thus (zji , z
j

i+1) ∈ f (c ⊗ d),
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and so (zji−1, z
j

i+1) ∈ f (c ⊗ d), and the subdivision

x = z
j

0 < · · · < z
j

i−1 < z
j

i+1 < · · · < z
j
nj = y

fulfils the same purpose as Zj while it has length nj − 1, in contradiction with the mini-
mality of nj . utClaim 1

Claim 1 means that Zj \ {x, y} consists of a (possibly empty) bunch of elements of U ,
followed by a (possibly empty) bunch of elements of Uc. This can be formally expressed
by saying that for each j ∈ {1, 2}, there exists a unique integer mj ∈ [0, nj − 1] such that

z
j
i ∈ U whenever 0 < i ≤ mj and z

j
i /∈ U whenever mj + 1 ≤ i < nj .

To ease notation, we shall from now on set xj = z
j
mj and yj = z

j

mj+1 whenever j ∈ {1, 2}.
We shall also set

1 = {(t, t) | t ∈ [N ]}.

Claim 2. Suppose that (xj , yj ) belongs to f (c ⊗ ak) for some j ∈ {1, 2} and some
k ∈ {1, 2, 3}. Then (x, y) ∈ g(c ⊗ q∗).

Proof of Claim. From (x, y) ∈ f (c ⊗ q), x ≤ xj ≤ y, and xj ∈ {x} ∪ U it follows that
(x, xj ) ∈ f (c ⊗ q) ∪1. Likewise, (yj , y) ∈ f (c ⊗ q) ∪1. By our induction hypothesis
(on y − x), it follows that (x, xj ) and (yj , y) both belong to g(c⊗ q∗)∪1. Furthermore,
from ak ≤ q∗ it follows that c ⊗ ak ≤ c ⊗ q∗, thus

(xj , yj ) ∈ f (c ⊗ ak) ⊆ f (c ⊗ q∗) ⊆ g(c ⊗ q∗).

Since (x, y) is contained in 〈x, xj 〉U ∨ 〈xj , yj 〉U ∨ 〈yj , y〉U , we are done. utClaim 2

From now on until the end of the proof of Lemma 10.3, we shall thus assume that
(xj , yj ) /∈ f (c⊗ak) whenever j ∈ {1, 2} and k ∈ {1, 2, 3}. By (10.1), the only remaining
possibility is that (xj , yj ) ∈ f (c ⊗ bj ) for each j ∈ {1, 2}.

If {i, j} = {1, 2} and xi ≤ xj , define the left fin of Sj to be (xj , xj ) if xi = xj , and to
be the unique (u, v) ∈ Sj such that u ≤ xi < v if xi < xj . Necessarily, {u, v} ⊆ U .

Symmetrically, the right fin of Sj , defined in case yj ≤ yi , is (yj , yj ) if yi = yj , and
the unique (u, v) ∈ Sj such that u < yi ≤ v if yj < yi . Necessarily, {u, v} ⊆ Uc.

Observe that any (left or right) fin of Sj belongs to Sj ∪1.

Claim 3. The following statements hold whenever {i, j} = {1, 2}.

(i) If xi ≤ xj , then the left fin (u, v) of Sj belongs to f (c⊗ak)∪1 for some k ∈ {1, 2, 3};
furthermore, v = xj .

(ii) If yj ≤ yi , then the right fin (u, v) of Sj belongs to f (c ⊗ ak) ∪ 1 for some k ∈
{1, 2, 3}; furthermore, u = yj .

Proof of Claim. We prove (i); the proof of (ii) is symmetric. The case where xi = xj is
trivial, so we shall suppose that xi < xj ; hence u ≤ xi < v ≤ xj .
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Suppose first that (u, v) /∈ f (c⊗ ak) for any k ∈ {1, 2, 3}. It follows from (10.1) that
(u, v) ∈ f (c ⊗ bj ). Since u ≤ xi < v and xi ∈ U , it follows that

(u, xi) ∈ f (c ⊗ bj ) ∪1. (10.2)

Moreover, from {u, xj , yj } ⊆ Zj and u < xj < yj it follows that

(u, xj ) ∈ f
(
c ⊗ (q∗ ∨ bj )

)
and (u, yj ) ∈ f

(
c ⊗ (q∗ ∨ bj )

)
. (10.3)

Now we argue by considering several cases. In all cases, the key point here is to prove
that (u, yj ) ∈ f (c ⊗ (b1 ∨ b2)).

Case 1: yi ≤ yj . This case is illustrated with the two diagrams in Figure 10.1. In this
figure and all the subsequent ones, the notation −→z reminds us that z ∈ {x} ∪ Uc, while
the notation←−z reminds us that z ∈ {y} ∪ U .

(a) If xj ≤ yi , then since yi ≤ yj ≤ y, yi ∈ {y} ∪ Uc, and (xj , yj ) ∈ f (c ⊗ bj ), we get

(yi, yj ) ∈ f (c ⊗ bj ) ∪1. (10.4)

(b) If yi < xj , then, since yi /∈ U and xj ∈ U , we get (yi, xj ) ∈ 〈1, N〉U ; thus, since
(yi, xj ) ∈ 〈x, y〉U ⊆ f (c⊗q), Lemma 10.2 yields (yi, xj ) ∈ g(0), and thus a fortiori
(yi, xj ) ∈ g(c ⊗ bj ). Since c ⊗ bj is join-prime, it follows from Lemma 9.11 that
(yi, xj ) ∈ f (c ⊗ bj ). Since (xj , yj ) ∈ f (c ⊗ bj ), (10.4) follows again.

Hence, (10.4) is valid in any case. Now it follows from (xi, yi) ∈ f (c ⊗ bi), together
with (10.2) and (10.4), that (u, yj ) ∈ f (c ⊗ (b1 ∨ b2)), thus (u, yj ) ∈ g(c ⊗ (b1 ∨ b2)).
By applying the meet-homomorphism g to (8.1) and by using (10.3), we see that (u, yj )
belongs to

g
(
c ⊗ (q∗ ∨ bj )

)
∧ g

(
c ⊗ (b1 ∨ b2)

)
= g

((
c ⊗ (q∗ ∨ bj )

)
∧
(
c ⊗ (b1 ∨ b2)

))
= g(c ⊗ bj )

= f (c ⊗ bj ) (use Lemma 9.11 again).

It follows that the subdivision obtained from Zj by removing all the elements of
Zj ∩ ]u, yj [ (in particular xj ) fulfils the same purpose as Zj , contrary to the minimal-
ity of nj .

Case 2: yj < yi (see Figure 10.2). From xi < xj < yi , xj ∈ U , and (xi, yi) ∈ f (c⊗bi)
it follows that (xi, xj ) ∈ f (c ⊗ bi). By (10.2) together with (xj , yj ) ∈ f (c ⊗ bj ), we get
(u, yj ) ∈ f (c⊗(b1∨b2)), thus (u, yj ) ∈ g(c⊗(b1∨b2)). By applying the meet-homomor-
phism g to (8.1) and by using (10.3), it follows again, as in Case 1, that (u, yj ) ∈ f (c⊗bj ),
which leads to the same contradiction as above.

We have proved that (u, v) ∈ f (c ⊗ ak) for some k ∈ {1, 2, 3}. Since x ≤ u ≤ xi < v

and xi ∈ {x} ∪ U , it follows that

(u, xi) ∈ f (c ⊗ ak) ∪1. (10.5)
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u ←−
xi

c⊗bj −→
yi

c⊗bi yj
c⊗bj

u v
c⊗bj

yjxj
c⊗bj

u ←−
xi

c⊗bj −→
yi

c⊗bi ←−−
xj0

yj
c⊗bj

u v
c⊗bj

Fig. 10.1. Cases 1(a) (left) and 1(b) (right) in the proof of (u, v) ∈ f (c ⊗ ak) ∪1 in Claim 3.

u ←−
xi

c⊗bj ←−
xj

c⊗bi yj
c⊗bj

u v
c⊗bj

xi yi
c⊗bi

Fig. 10.2. Case 2 in the proof of (u, v) ∈ f (c ⊗ ak) ∪1 in Claim 3.

u ←−
xi

c⊗ak ←−
xj

c⊗bi

xi yi
c⊗bi

u v
c⊗ak

u ←−
xi

c⊗ak −→
yi

c⊗bi ←−
xj0

u v
c⊗ak

Fig. 10.3. Cases 1 (left) and 2 (right) in the proof of v = xj in Claim 3.

Now we must prove that v = xj . We argue by separating cases. In all cases, the key point
is to show that (u, xj ) ∈ f (c ⊗ (ak ∨ bi)); see Figure 10.3.

Case 1: xj ≤ yi . From (xi, yi) ∈ f (c ⊗ bi), xi < xj ≤ yi , and xj ∈ U it follows
that (xi, xj ) ∈ f (c ⊗ bi). Hence, by (10.5), it follows that (u, xj ) ∈ f (c ⊗ (ak ∨ bi)),
thus (u, xj ) ∈ g(c ⊗ (ak ∨ bi)). By using (10.3) and by applying the meet-homomor-
phism g to (8.2), it follows that (u, xj ) ∈ g(c ⊗ ak), thus, by Lemma 9.11, (u, xj ) ∈
f (c⊗ ak). It follows that the subdivision obtained by removing from Zj all the elements
of Zj ∩ ]u, xj [ fulfils the same purpose as Zj ; whence, by the minimality of Zj , we get
v = xj .

Case 2: yi < xj . Then (yi, xj ) ∈ 〈1, N〉U . Since (yi, xj ) ∈ 〈x, y〉U ⊆ f (c ⊗ q),
Lemma 10.2 yields (yi, xj ) ∈ g(0), and thus a fortiori (yi, xj ) ∈ g(c ⊗ bi); hence,
by Lemma 9.11, (yi, xj ) ∈ f (c ⊗ bi). Since (xi, yi) ∈ f (c ⊗ bi), (10.5) implies that
(u, xj ) ∈ f (c ⊗ (ak ∨ bi)). The conclusion v = xj is then obtained as in Case 1.

This completes the proof of Claim 3. utClaim 3
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u ←−
x2

c⊗ai −→
y2

c⊗b2
v

c⊗aj

u x1
c⊗ai y1 v

c⊗aj
u ←−

x1

c⊗ai y1
c⊗b1

v
c⊗aj

u x2
c⊗ai −→

y2
c⊗b2

v
c⊗aj

Fig. 10.4. Final cases in the proof of Lemma 10.3: Case 1 (left) and Case 2 (right).

In order to finish the proof of Lemma 10.3, we argue by separating cases, according to the
relative positions of the intervals [x1, y1] and [x2, y2]. By symmetry, there are two cases
to consider (see Figure 10.4).

Case 1: [x1, y1] ⊆ [x2, y2]. Denote by (u, x1) and (y1, v) the left fin and the right fin
of S1, respectively (Claim 3). In particular, u ≤ x2 ≤ x1 < y1 ≤ y2 ≤ v. Furthermore,
by Claim 3, there are i, j ∈ {1, 2, 3} such that (u, x1) ∈ f (c ⊗ ai) ∪ 1 and (y1, v) ∈

f (c ⊗ aj ) ∪ 1. From x ≤ u ≤ x2 ≤ x1, (u, x1) ∈ f (c ⊗ ai) ∪ 1, and x2 ∈ {x} ∪ U

it follows that (u, x2) ∈ f (c ⊗ ai) ∪ 1. Symmetrically, (y2, v) ∈ f (c ⊗ aj ) ∪ 1. Since
(x2, y2) ∈ f (c⊗b2)∪1, it follows that (u, v) ∈ f (c ⊗ (ai ∨ aj ∨ b2)). On the other hand,
from {u, v} ⊆ Z1 and u < v it follows that (u, v) ∈ f (c ⊗ (q∗ ∨ b1)). Since f ≤ g and
by applying the meet-homomorphism g to (8.3), it follows that (u, v) ∈ g(c ⊗ (ai ∨ aj )),
whence (u, v) ∈ g(c ⊗ q∗). Now, by the induction hypothesis, (x, u) and (v, y) both
belong to the set g(c ⊗ q∗) ∪1, whence (x, y) ∈ g(c ⊗ q∗).

Case 2: x1 < x2 and y1 < y2. Denote by (u, x2) the left fin of S2 and by (y1, v) the
right fin of S1 (Claim 3). It follows from Claim 3 that there are i, j ∈ {1, 2, 3} such that
(u, x2) ∈ f (c ⊗ ai) ∪ 1 and (y1, v) ∈ f (c ⊗ aj ) ∪ 1. From u ≤ x1 < x2, (u, x2) ∈

f (c ⊗ ai) ∪ 1, and x1 ∈ U it follows that (u, x1) ∈ f (c ⊗ ai) ∪ 1. Since (x1, y1) ∈

f (c ⊗ b1) and (y1, v) ∈ f (c ⊗ aj ), it thus follows that (u, v) ∈ f (c ⊗ (ai ∨ aj ∨ b1)).
A similar proof, using this time the subdivision u < x2 < y2 ≤ v, yields the relation
(u, v) ∈ f (c ⊗ (ai ∨ aj ∨ b2)). Since f ≤ g, by applying the meet-homomorphism g

to (8.3) we see that (u, v) ∈ g(c ⊗ (ai ∨ aj )). We conclude that (x, y) ∈ g(c ⊗ q∗) as in
Case 1.

This concludes the proof of Lemma 10.3. ut

The conclusion of Lemma 10.3, together with c⊗ q 6⊆ c⊗ q∗, implies that (f, g) cannot
be an EA-duet. This contradiction concludes the proof of Theorem 10.1.

It is plausible that a more detailed argument, based on the same idea, would show
that no sub-tensor product of N5 ⊗ B(3, 2) belongs to the variety generated by all P(n).
There would be some difficulties in checking this; for instance, other sub-tensor products
(different from the box product) are no longer splitting lattices.

11. Permutohedra on locally dismantlable lattices: proving Theorem III

The present section will deal with the extended permutohedron R(E) on a (possibly infi-
nite) poset E, as introduced in Santocanale and Wehrung [65] (Section 3), and prove that
those R(E) satisfy no nontrivial lattice identity. The posets in question will actually be
lattices of a very special kind.
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Definition 11.1. A lattice L is

— dismantlable (Rival [63], Kelly and Rival [46]) if it is finite and every sublattice of L
with at least three elements has an element which is doubly irreducible, that is, both
meet- and join-irreducible;

— locally dismantlable if every finite subset ofL is contained in a dismantlable sublattice
of L.

A poset S is a subposet of a poset T if S is contained in T and the inclusion mapping of S
into T is an order-embedding.

Definition 11.2. A poset T is a segment extension of a subposet S if there is a nonempty
finite chain C of T , with extremities x = minC and y = maxC, such that

(i) C ∩ S = {x, y} and C ∪ S = T ;
(ii) (s ≤ x ⇔ s ≤ y) and (s ≥ x ⇔ s ≥ y), whenever s ∈ S \ {x, y}.

The proof of the following lemma is straightforward.

Lemma 11.3. The following statements hold for any segment extension T of a poset S:

(i) If S is a lattice, then so is T . Furthermore, S is a sublattice of T .
(ii) If S is a dismantlable lattice, then so is T .

The following definition is mainly taken from Santocanale and Wehrung [64, §10].

Definition 11.4. Let S be a poset and let L be a lattice.

• A map µ : δS → L is an L-valued polarized measure on S if µ(x, y) ≤ µ(x, z) ≤

µ(x, y) ∨ µ(y, z) whenever x < y < z in S.
• A refinement problem for a polarized measure µ is a quadruple (x, y, a0, a1), where
(x, y) ∈ δS and a0, a1 ∈ L, such that µ(x, y) ≤ a0 ∨ a1.
• A solution of the refinement problem above is a subdivision x = z0 < z1 < · · · <

zn = y in S such that each µ(zi, zi+1) is contained in some aj .

The main lemma of this section is the following.

Lemma 11.5. Let S be a finite poset, let u < v in S, let L be a finite meet-semidistrib-
utive lattice, let µ : δS → L be a polarized measure, and let a0, a1 ∈ L be such that
µ(u, v) ≤ a0 ∨ a1. Then there are a finite segment extension T of S and a polarized
measure ν : δT → L extending µ such that:

(i) The refinement problem ν(u, v) ≤ a0 ∨ a1 can be solved in T .
(ii) If the range of µ does not contain zero, then neither does the range of ν.

Proof. As the conclusion is trivial if µ(u, v) ≤ aj for some j < 2 (take T = S and
ν = µ), we shall assume that µ(u, v) � aj for all j < 2. In particular, both a0 and a1 are
nonzero; furthermore, it is ruled out that µ(u, v) ∧ aj = 0 for each j < 2, for then we
would infer, by the meet-semidistributivity of L, that µ(u, v) = µ(u, v)∧ (a0 ∨ a1) = 0,
a contradiction. Hence we may assume that µ(u, v) ∧ a0 is nonzero.
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An intuitive description of what follows is that we first attach an infinite copy of the
chain ω of all nonnegative integers to S between u and v; then we show that all large
enough members of that ω are redundant, so we get rid of them.

We shall also use the convention µ(x, x) = 0 for each x ∈ S. We shall set ε(n) = n
mod 2 for each integer n, and we shall endow the cartesian product (S ↓ u)× ω with the
partial ordering ≤∗ defined by

(x, k) ≤∗ (y, l) ⇔ (y ≤ x and k ≤ l) whenever (x, k), (y, l) ∈ (S ↓ u)× ω.

We define, by ≤∗-induction, a map f : (S ↓ u)× ω→ L by the rule

f (x, 0) = µ(x, u), (11.1)

f (x, k + 1) =
∧(

µ(x, t) ∨ f (t, k + 1) | t ∈ ]x, u]
)
∧
(
f (x, k) ∨ aε(k)

)
∧ µ(x, v),

(11.2)

for each (x, k) ∈ (S ↓ u)× ω. As usual, empty meets are identified with the top element
of L.

Claim 1. The inequality f (x, k) ≤ µ(x, y) ∨ f (y, k) holds for all x < y in S ↓ u and
all k < ω.

Proof of Claim. We argue by induction on k. The conclusion holds for k = 0 because µ
is a polarized measure. If the statement holds at k, then setting t = y in the meet in the
defining equation (11.2), we obtain f (x, k + 1) ≤ µ(x, y) ∨ f (y, k + 1). utClaim 1

Claim 2. µ(x, u) ≤ f (x, k) ≤ µ(x, v) for each (x, k) ∈ (S ↓ u)× ω.

Proof of Claim. The inequality f (x, k) ≤ µ(x, v) is trivial. For µ(x, u) ≤ f (x, k), we
argue by ≤∗-induction on (x, k). The result is trivial for k = 0. Suppose that it holds
at every pair ≤∗-smaller than (x, k + 1). For each t ∈ ]x, u], it follows from the in-
duction hypothesis that µ(t, u) ≤ f (t, k + 1), thus µ(x, u) ≤ µ(x, t) ∨ µ(t, u) ≤

µ(x, t) ∨ f (t, k + 1). Furthermore, by the induction hypothesis, µ(x, u) ≤ f (x, k),
whence µ(x, u) ≤ f (x, k)∨ aε(k). Recalling also that µ(x, u) ≤ µ(x, v), we see that the
result follows immediately from equation (11.2) defining f (x, k + 1). utClaim 2

Claim 3. The inequality f (x, k) ≤ f (x, k + 1) holds for each (x, k) ∈ (S ↓ u)× ω.

Proof of Claim. We argue by downward induction on x. For each t ∈ ]x, u], it follows
from the induction hypothesis that f (t, k) ≤ f (t, k + 1), thus, by Claim 1, f (x, k) ≤
µ(x, t) ∨ f (t, k) ≤ µ(x, t) ∨ f (t, k + 1). Since f (x, k) ≤ f (x, k) ∨ aε(k), the result
follows immediately from (11.2). utClaim 3

By Claim 3 and as L and S ↓ u are both finite, there exists m ∈ ω \ {0} such that

(∀x ∈ S ↓ u)(∀k ≥ m in ω)
(
f (x, k) = f (x,m)

)
.

For the rest of the proof of Lemma 11.5 we shall fix the integer m. Set g(x) = f (x,m)
for each x ∈ S ↓ u.

Claim 4. The equality g(x) = µ(x, v) holds for each x ∈ S ↓ u.
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Proof of Claim. We argue by (downward) induction on x. For each t ∈ ]x, u], it fol-
lows from the induction hypothesis that g(t) = µ(t, v), thus µ(x, t) ∨ g(t) ≥ µ(x, v).
Therefore, by applying (11.2) to k ∈ {m+ 1, m+ 2}, we obtain

g(x) =
∧(

µ(x, t) ∨ g(t) | t ∈ ]x, u]
)
∧
(
g(x) ∨ aε(k)

)
∧ µ(x, v)

=
(
g(x) ∨ aε(k)

)
∧ µ(x, v).

Hence, by using the meet-semidistributivity of L, we obtain

g(x) = (g(x) ∨ a0 ∨ a1) ∧ µ(x, v). (11.3)

Now, by Claim 2, g(x) ∨ a0 ∨ a1 ≥ µ(x, u) ∨ µ(u, v) ≥ µ(x, v), thus, by (11.3),
g(x) = µ(x, v). utClaim 4

Now we fix new symbols t1, . . . , tm−1 and we set T = S ∪ {t1, . . . , tm−1} with u < t1 <

· · · < tm−1 < v. Furthermore, we extend the ordering of S to T by letting (s ≤ ti ⇔

s ≤ u) and (ti ≤ s ⇔ v ≤ s), whenever s ∈ S.
We extend the map µ to a map ν : δT → L by setting

ν(x, tk) = f (x, k) for (x, k) ∈ (S ↓ u)× [1, m[ , (11.4)

ν(tk, tl) =
∨
(aε(i) | k ≤ i < l) for 1 ≤ k < l < m, (11.5)

ν(tk, y) =
∨
(aε(i) | k ≤ i < m) ∨ µ(v, y) for (k, y) ∈ [1, m[× (S ↑ v). (11.6)

Verifying that ν is a polarized measure amounts to verifying the following statements:

• µ(x, y) ≤ f (x, k) ≤ µ(x, y) ∨ f (y, k) for all x < y in S ↓ u and all k ∈ [1, m[. This
follows trivially from Claims 1 and 2.
• f (x, k) ≤ f (x, l) ≤ f (x, k) ∨ ν(tk, tl) for all x ∈ S ↓ u and all k < l in [1, m[. The

first inequality follows from Claim 3. For l = k + 1, the second inequality follows
trivially from (11.2) and (11.5), while for l ≥ k + 2, it follows from (11.5) together
with the case of l = k + 1.
• f (x, k) ≤ µ(x, y) ≤ f (x, k) ∨ ν(tk, y) for all (x, y) ∈ (S ↓ u) × (S ↑ v) and all
k ∈ [1, m[. The first inequality follows from Claim 2 together with µ(x, v) ≤ µ(x, y).
To prove the second, we separate cases. If k ≤ m− 2, then, as µ(u, v) ≤ a0 ∨ a1,

f (x, k) ∨ ν(tk, y) = f (x, k) ∨ a0 ∨ a1 ∨ µ(v, y)

≥ µ(x, u) ∨ µ(u, v) ∨ µ(v, y) (by Claim 2)
≥ µ(x, y),

and we are done. If k = m− 1, then

f (x, k) ∨ ν(tk, y) = f (x, k) ∨ aε(k) ∨ µ(v, y)

≥ f (x, k + 1) ∨ µ(v, y) (use (11.2))
= g(x) ∨ µ(v, y)

= µ(x, v) ∨ µ(v, y) (by Claim 4)
≥ µ(x, y),

and we are done again.
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• ν(tk, tl) ≤ ν(tk, y) ≤ ν(tk, tl) ∨ ν(tl, y) for all k < l in [1, m[ and all y ∈ S ↑ v. This
follows immediately from (11.5) and (11.6).
• ν(tk, x) ≤ ν(tk, y) ≤ ν(tk, x) ∨ µ(x, y) for all k ∈ [1, m[ and all x < y in S ↑ v. This

follows immediately from (11.6).

Hence we have proved that ν is a polarized measure. By construction, the refinement
problem ν(u, v) ≤ a0 ∨ a1 can be solved in T .

Now suppose that the range of µ does not contain the zero of L (provided the latter
exists). In order to prove that ν satisfies the same statement and recalling that ai 6= 0 for
i < 2, it will be enough to prove that f (x, k) is nonzero for every x ∈ S ↓ u and every
positive integer k. By Claim 2, if f (x, k) = 0, then µ(x, u) = 0 (remember the conven-
tion µ(u, u) = 0), thus x = u, and so, by Claim 3, f (u, 1) = 0, that is, using (11.2),
a0 ∧ µ(u, v) = 0, which we have ruled out from the beginning. ut

This brings us to the main result of this section, involving the extended permutohe-
dron R(E) and its meet-subsemilattice A(E) (Section 3). From now on, by “countable”
we will always mean “at most countable”.

Theorem 11.6. Let L be a finite meet-semidistributive lattice. There are a count-
able, locally dismantlable lattice E together with a zero-preserving lattice embedding
ϕ : L ↪→ R(E) with range contained into A(E). In particular, ϕ is also a zero-preserving
lattice embedding from L into A(E).

Proof. If we endow the finite set E0 = L \ {0} with any strict well-ordering, the map
µ0 : δE0 → L, (x, y) 7→ x, is a polarized measure with nonzero values. Having defined
a polarized measure µn : δEn → L with nonzero values, and with En a dismantlable lat-
tice, a straightforward iteration of Lemma 11.5, invoking Lemma 11.3 for the preservation
of dismantlability, yields a dismantlable extension En+1 of En and a polarized measure
µn+1 : δEn+1 → L with nonzero values, extending µn, such that every refinement prob-
lem for µn is solved by µn+1.

The union µ of all µn is an L-valued polarized measure on the countable, locally
dismantlable lattice E =

⋃
n∈ω En. It has nonzero values, and every refinement problem

for µ has a solution. The map ϕ defined on L by the rule

ϕ(a) = {(x, y) ∈ δE | µ(x, y) ≤ a} for all a ∈ L

takes its values in A(E). As the meet in A(E) is intersection, ϕ is a meet-homomorphism
to A(E); as A(E) is a meet-subsemilattice of R(E), ϕ is also a meet-homomorphism to
R(E). Since µ takes nonzero values, ϕ is zero-preserving. Moreover, since µ solves all its
own refinement problems and since the join in R(E) is the transitive closure of the union,
the definition of ϕ implies immediately that ϕ is a join-homomorphism to R(E). Finally,
notice that ϕ is also a join-homomorphism to A(E); indeed, while the join in A(E) is not
in general the transitive closure of the union, the fact that ϕ(a0 ∨ a1) belongs to A(E)
forces it to be the join ϕ(a0) ∨ ϕ(a1) within A(E).

Finally, since µ extends µ0, its range is L \ {0}; hence ϕ is one-to-one. ut
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Corollary 11.7. Every free lattice embeds, as a sublattice, into R(E) for some locally
dismantlable lattice E via a map with range contained in A(E).

Proof. A well known result by Day (see Freese, Ježek, and Nation [14, Theorem 2.84])
states that every free lattice embeds into a direct product of members of Bfin. Since ev-
ery member of Bfin is meet-semidistributive, it follows from Theorem 11.6 that every
free lattice embeds into a product

∏
i∈I R(Ei) for a collection (Ei | i ∈ I ) of lo-

cally dismantlable lattices Ei . If we fix a strict well-ordering G on I , the disjoint union
E =

⋃
i∈I ({i} × Ei) endowed with the lexicographical ordering (i.e., (i, x) ≤ (j, y) if

either i G j or (i = j and x ≤ y)) is locally dismantlable, and
∏
i∈I R(Ei) embeds into

R(E) via (xi | i ∈ I ) 7→
⋃
∈I xi . The latter assignment maps

∏
i∈I A(Ei) into A(E). ut

In particular, we get the following more precise form of Theorem III.

Corollary 11.8. There is no nontrivial lattice-theoretical identity satisfied by all R(E)
(resp., A(E)) for E a countable, locally dismantlable lattice.

Remark 11.9. Every subposet E of a poset F induces a (∧, 1)-homomorphism
πFE : A(F ) → A(E), x 7→ x ∩ δE . This map preserves all directed joins. Now let
E =

⋃
n∈ω En be an increasing union of finite dismantlable lattices En. It is obvious

that A(E), together with the maps πEEn , is the inverse limit, in the category of all (∧, 1)-
semilattices, of the A(En). Now it can be proved that this implies that A(E) belongs to
the lattice variety generated by all A(En). Hence we can strengthen part of the statement
of Corollary 11.8 as follows: the lattices A(E), for E ranging over all finite dismantlable
lattices, do not satisfy any nontrivial lattice identity.

However, for a subposet E of a poset F , the assignment x 7→ x ∩ δE does not
necessarily map R(F ) to R(E), so the argument above does not extend to R(E).

Remark 11.10. The locally dismantlable latticeE in Theorem 11.6 is obtained by means
of successive segment extensions. Such extensions usually create squares. It can there-
fore be asked whether a better construction would lead to an embedding of every lattice
from Bfin into some P(E) with E square-free. This is actually impossible, because if E is
square-free, then P(E) is a subdirect product of permutohedra (Santocanale and Wehrung
[67, Exercices 8.4–8.6]).

12. Discussion

Our results raise a whole array of new questions.

12.1. How far can we go?

Extending a result by Sekanina [69], the three papers of Iturrioz [35], Katrnoška [43], and
Mayet [50] established simultaneously that every orthoposet can be obtained as the poset
of all clopen (closed and open) subsets in some closure space; hence the ortholattices of
clopen sets satisfy no nontrivial identity. Nevertheless, setting restrictions on the closure
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space (P, ϕ) brings restrictions to the corresponding lattice Reg(P, ϕ) of regular closed
subsets (the closures of open sets). For example, we prove in [66] that if (P, ϕ) is a finite
convex geometry, then Reg(P, ϕ) is pseudocomplemented. We do not know whether there
is a nontrivial lattice identity satisfied by Reg(P, ϕ) for every finite convex geometry
(P, ϕ). In view of Theorem III (see Corollary 11.8), this sounds improbable. Then the
possibility arises that every class of closure spaces (P, ϕ) would yield an identity for
all the corresponding Reg(P, ϕ). Particular instances of that question, along with natural
variants, would be the following:

(1) Is it the case that for every positive integer d there exists a nontrivial lattice iden-
tity satisfied by the extended permutohedron R(E) for every finite poset E of order-
dimension at most d? Note that there are finite dismantlable posets of arbitrarily large
order-dimension (Kelly [45]).

(2) Can every finite Coxeter lattice be embedded into some P(n)? (We know that this
holds for Coxeter lattices of type B.) Does it at least belong to the variety generated
by all P(n)?

(3) Similar questions can be asked for the various classes of “permutohedra” considered
in our papers [65, 66]: most notably, lattices of regular closed subsets constructed
from semilattices, graphs, hyperplane arrangements.

12.2. Finitely based subvarieties of the variety generated by all permutohedra

Denote by P the variety generated by all permutohedra. Is it decidable whether the class of
all lattices satisfying a given lattice identity is contained in P? Since the variety generated
by a given finite lattice can be defined by a single identity (McKenzie [52]), this would
solve the other question whether a given finite lattice belongs to P. Those questions arise,
for instance, for the lattices B(m, n) (see Section 2.5, and also Appendix A where we give
a combinatorial equivalent of the corresponding question), or for Nation’s identity β ′1
from [56, p. 537] (since N5 � B(3, 2) satisfies β ′2, we do not need to try other β ′n). In
particular, we know from [64] that B(3, 3) and all B(n, 2) belong to P, but we do not
know whether B(4, 3) belongs to P (see Appendix A). A related question is whether the
variety P can be defined by finitely many lattice identities (equivalently, by a single lattice
identity).

12.3. Varieties and quasivarieties of ortholattices

Recall that a quasi-identity is a formula of the form

(∀Ex)
((
p1(Ex) = q1(Ex) and · · · and pn(Ex) = qn(Ex)

)
⇒ p(Ex) = q(Ex)

)
,

where all p, q, pi , qi are terms. It is known (Section 1.3) that the set of all quasi-identities
satisfied by all ortholattices is decidable. Can Theorem I be extended to permutohedra
viewed as ortholattices, that is, lattices with an additional unary operation symbol for
complementation? Can Theorem I be extended to quasi-identities?

Of course, the questions asked in Sections 12.2–12.3 can be extended similarly.
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12.4. Tractability of the algorithm

While the equational theory of all permutohedra, respectively Tamari lattices, is decid-
able (Corollaries 7.9 and 7.10), the implied algorithms are totally intractable, even for
very simple identities. We do not know whether there is any tractable algorithm for those
problems. The algorithms rely on Büchi’s Theorem [6] for S1S; the complexity of decid-
ing MSO statements is determined by the automata-theoretical constructions corresponding
to logical operations (Thomas [74, §3] or Perrin and Pin [57, Ch. 1]).

A. An example: (m, n)-scores on a finite chain

It is interesting to see what becomes of the decidability results established in Section 7 for
concrete lattice identities. A blunt application of Theorem 7.1 to the translation obtained
in Section 6, via scores, of negated lattice inclusions looks quite hopeless from a practical
viewpoint.

However, in some cases it is possible to express a negated lattice inclusion in a way
which, even if it falls short of yielding any practical implementation, produces nonetheless
a rather transparent combinatorial description. We choose to illustrate this here for the
splitting identity of the lattice B(m, n) described in Section 2.5.

Definition A.1. Let E be a chain and let U ⊆ E. A pair (x, y) ∈ δE is

— a valley of (E,U) if x ∈ {0E} ∪ Uc and y ∈ {1E} ∪ U ;
— a peak of (E,U) if x ∈ {0E} ∪ U and y ∈ {1E} ∪ Uc;
— a slope of (E,U) if it is neither a peak nor a valley.

Definition A.2. Let E be a finite chain, let U ⊆ E, and let m and n be positive integers.
An (m, n)-score on E with respect to U is a triple τ = ( EB, EA, τ) such that:

• EB = (B1, . . . , Bn), where each Bj is a subdivision of E. We call the Bj the Basso
subdivisions of τ and we set cvs( EB) =

⋃n
j=1 cvs(Bj ).

• EA = (A1, . . . , Am), where each Ai is a subdivision of E. We call the Ai the Alto
subdivisions of τ and we set cvs( EA) =

⋃m
i=1 cvs(Ai).

• τ : cvs( EA) ∪ cvs( EB)→ a ∪ b, and the following conditions hold:

(ScA) Let i ∈ [m] and let (x, y) ∈ cvs(Ai). Then τ(x, y) ∈ {ai} ∪ b; moreover, if
(x, y) is a valley of (E,U), then τ(x, y) = ai .

(ScB) Let j ∈ [n] and let (x, y) ∈ cvs(Bj ). Then τ(x, y) ∈ {bj } ∪ a; moreover, if
(x, y) is a peak of (E,U), then τ(x, y) = bj .

(Comp) Let (x, y) ∈ cvs( EB) and let (x′, y′) ∈ cvs( EA). Then (x, y) ∼U (x′, y′) (see
Section 4) implies that τ(x, y) = τ(x′, y′).

The terminology Basso and Alto follows the commonly used notation (β, α) for the pair
consisting of the lower and upper adjoints of a lattice homomorphism (Freese, Ježek, and
Nation [14]). It is also adjusted to the notation bj , ai for the atoms of B(m, n) (Figure 2.2).

The following result translates the membership problem, of the lattice B(m, n) in the
lattice variety generated by AU (E), in terms of certain tiling properties of the chain E.
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This result is not too hard to obtain via a combination of the methods of Sections 6 and 9.
We do not include a proof here.

Theorem A.3. The following statements are equivalent for all positive integers m and n
and every subset U in a finite chain E:

(i) B(m, n) belongs to the lattice variety generated by AU (E).
(ii) AU (E) does not satisfy the splitting identity of B(m, n).

(iii) There exists an EA-duet of maps from B(m, n) to AU (E).
(iv) There exists an (m, n)-score on E with respect to U .

We proved in [64, §12] that B(3, 3) belongs to the lattice variety generated by AU (12),
where U = {5, 6, 9, 10, 11}. The corresponding score is represented in Figure A.1. The
circled vertices correspond to the elements of the chain [12], while the labels on the edges
are the corresponding values of τ . The notation −→x means that x /∈ U , while←−x means
that x ∈ U .

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12

Fig. A.1. A (3, 3)-score on [12] with respect to U = {5, 6, 9, 10, 11}.

We do not know whether all B(m, n) belong to the lattice variety generated by all
permutohedra, even in the particular case where m = 4 and n = 3. (This question is
also related to Section 12.2.) Equivalently, we do not know whether there are a positive
integer N , a subset U of [N ], and a (4, 3)-score on [N ] with respect to U . Although
the algorithm given by Büchi’s Theorem certainly makes it possible to settle that ques-
tion in principle (for fixed m and n), the time and space requirements of that particular
assignment (m = 4 and n = 3) are far too large.
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B. Choir in the cathedral: a portrait view of N5 � B(3, 2)

Fig. B.1. The lattice N5 � B(3, 2) (portrait).
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barkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen. Kristiania Vid.
Selsk. Skrifter I, 1920, no. 4, 36 pp. JFM 48.1121.01

[72] Skolem, T.: Selected Works in Logic. Universitetsforlaget, Oslo (1970) Zbl 0228.02001
MR 0285342

[73] Taylor, W.: Equational logic. Houston J. Math. 1979, Survey, iii+83 pp. Zbl 0421.08004
MR 0546853

[74] Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics, Elsevier, Amsterdam, 133–191 (1990)
Zbl 0900.68316 MR 1127189

[75] Wehrung, F.: From join-irreducibles to dimension theory for lattices with chain conditions.
J. Algebra Appl. 1, 215–242 (2002) Zbl 1043.06006 MR 1913085

[76] Whitman, P. M.: Free lattices. Ann. of Math. (2) 42, 325–330 (1941) Zbl 0024.24501
MR 0003614

[77] Wille, R.: Tensorial decomposition of concept lattices. Order 2, 81–95 (1985)
Zbl 0583.06007 MR 0794628

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0060.06001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0014058
http://www.ams.org/mathscinet-getitem?mr=0234875
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=48.1121.01&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0228.02001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0285342
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0421.08004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0546853
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0900.68316&format=complete
http://www.ams.org/mathscinet-getitem?mr=1127189
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1043.06006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1913085
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0024.24501&format=complete
http://www.ams.org/mathscinet-getitem?mr=0003614
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0583.06007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0794628

	1. Introduction
	2. Notation and terminology
	3. Permutohedra and Cambrian lattices of type A
	4. Dualities between Cambrian lattices of type A
	5. Half-scores and alternating words
	6. Scores and lattice inclusions
	7. Expressing scores within monadic second-order logic: proving Theorem I
	8. Tensor products and box products
	9. Tight EA-duets of maps
	10. An identity for all permutohedra: proving Theorem II
	11. Permutohedra on locally dismantlable lattices: proving Theorem III
	12. Discussion
	A. An example: (m,n)-scores on a finite chain
	B. Choir in the cathedral: a portrait view of N_5B(3,2)
	References

