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Abstract. Let S ⊆ N be a numerical semigroup with multiplicity m = min(S \ {0}), conductor
c = max(N\S)+1 and minimally generated by e elements. Let L be the set of elements of S which
are smaller than c. Wilf conjectured in 1978 that |L| is bounded below by c/e. We show here that if
c ≤ 3m, then S satisfies Wilf’s conjecture. Combined with a recent result of Zhai, this implies that
the conjecture is asymptotically true as the genus g(S) = |N \ S| goes to infinity. One main tool in
this paper is a classical theorem of Macaulay on the growth of Hilbert functions of standard graded
algebras.
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1. Introduction

Let N = {0, 1, . . . } denote the set of nonnegative integers. A numerical semigroup is a
subset S ⊆ N closed under addition, containing 0 and of finite complement in N. The
elements of N\S are called the gaps of S. The largest gap is denoted F(S) = max(N\S)
and is called the Frobenius number of S. The integer c(S) = F(S) + 1 is known as the
conductor of S. It satisfies c(S) + N ⊆ S and is minimal for that property. The number
of gaps g(S) = |N \ S| is known as the genus of S, and the smallest nonzero element
m(S) = min(S \ {0}) as the multiplicity of S.

Every numerical semigroup S is finitely generated, i.e. is of the form

S = 〈a1, . . . , an〉 = Na1 + · · · + Nan
for suitable globally coprime integers a1, . . . , an. The least number n of generators of S
is denoted e = e(S) and is called the embedding dimension of S.

Is there a general upper bound for the density of the gaps of S in the integer interval
[0, c(S)− 1]? This question was asked by Wilf [24] who, more precisely, asked whether
for S = 〈a1, . . . , an〉 the bound

|N \ S|
c(S)

≤ 1− 1/n
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always holds.1 This question is still widely open and is often referred to as Wilf’s con-
jecture, in the following equivalent form. We shall denote L(S) = S ∩ [0, c(S) − 1]
throughout, where ‘L’ stands for left part relative to the conductor.

Conjecture 1.1 (Wilf). Let S be a numerical semigroup generated by n elements. Then

|L(S)|

c(S)
≥

1
n
.

The equivalence between the two formulations plainly follows from the formulas

|L(S)| + |N \ S| = | [0, c − 1] | = c,

where c = c(S). Wilf gave the following example where equality holds in his conjecture:

S = {0} ∪ (m+ N) = {0, m,m+ 1, . . . }

for some integer m ≥ 2. Indeed, in this case |L(S)| = 1, c(S) = m, and e(S) = m since
S is minimally generated by {m,m+ 1, . . . , 2m− 1}.

Another equality case in Wilf’s conjecture is when e(S) = 2, i.e. for two-generated
numerical semigroups S = 〈a, b〉 with gcd(a, b) = 1. Indeed, nearly a century before
the formulation of the conjecture, Sylvester [23] showed that c(S) = (a − 1)(b − 1) and
|L(S)| = c(S)/2 in this case.

Finally, the last known equality case in Wilf’s conjecture is the following:

S = mN ∪ (qm+ N) = {0, m, 2m, . . . , (q − 1)m, qm, qm+ 1, qm+ 2, . . . }

for given integers m, q ≥ 1. Indeed, in this case |L(S)| = q, c(S) = qm, and e(S) = m
since S is minimally generated by {m, qm + 1, qm + 2, . . . , qm + m − 1}. This case
actually generalizes the first one by taking q = 1.

It is not known whether these are the only equality cases in Wilf’s conjecture, but
all independent computer experiments so far suggest that the above list might well be
complete (see e.g. [16, Question 8]).

Wilf’s conjecture has been shown to hold under various hypotheses: in [23] for e = 2
as mentioned above, in [9] for e = 3, in [7] for |L| ≤ 4, by computer in [2] for genus
g ≤ 50 and more recently in [11] for g ≤ 60, in [12] for c ≤ 2m, and in [20] for e ≥ m/2
and for m ≤ 8.

In this paper, we extend the verification of Wilf’s conjecture to all numerical semi-
groups S satisfying c ≤ 3m, and in some other circumstances. The importance of the
former case stems from a recent result of Zhai stating that, asymptotically as the genus
g(S) goes to infinity, the proportion of numerical semigroups S satisfying c(S) ≤ 3m(S)
tends to 1 [25]. In a forthcoming paper, we will show that Wilf’s conjecture holds for all
numerical semigroups S satisfying |L(S)| ≤ 10.

One key tool in the present paper is a suitable version of Macaulay’s classical theorem
on the growth of Hilbert functions of standard graded algebras.

1 Of course, the question is sharpest when n = e(S), the embedding dimension of S.
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Here are a few more details on the contents of this paper. Section 2 is devoted to basic
notation and notions used throughout the paper. In Section 3, we study a convenient parti-
tion of a numerical semigroup S by its intersections with translates of the integer interval
[c, c+m− 1], and we introduce the profile of S. A brief Section 4 gives some useful for-
mulas in terms of Apéry elements with respect to m. Section 5 recalls some background
material on standard graded algebras, Hilbert functions and Macaulay’s theorem, and pro-
poses a condensed version thereof which is well-suited to our subsequent applications to
Wilf’s conjecture. Section 6 is the heart of the paper, where all the material developed in
the preceding sections is used to settle Wilf’s conjecture in the case 2m < c ≤ 3m. A few
more cases of the conjecture are then settled in the last Section 7.

Nice books are available for background information on numerical semigroups (see
[18, 19]).

2. More notation

In this paper we shall mostly use integer intervals, not real ones, except in Section 5. So,
for rational numbers x, y ∈ Q, we shall denote

[x, y] = {n ∈ Z | x ≤ n ≤ y}, [x, y[= {n ∈ Z | x ≤ n < y}.

In particular, if y ∈ Z then [x, y[ = [x, y − 1] and |[x, y[| = y − x. We shall also denote
[x,∞[ = {n ∈ Z | n ≥ x}.

2.1. Primitives and decomposables

Let S be a numerical semigroup. We shall denote S∗ = S \ {0}.

Definition 2.1. We say that the element x ∈ S∗ is decomposable if

x = x1 + x2

for some x1, x2 ∈ S
∗, and primitive otherwise.2 We denote by D = D(S) the set of

decomposable elements in S∗, and by P = P(S) its set of primitive elements. Thus
S∗ = P ∪̇D, the disjoint union of P and D.

Denoting by A + B = {a + b | a ∈ A, b ∈ B} the sum of two subsets A,B ⊆ Z, or
simply a + B if A = {a}, we have

D = S∗ + S∗, P = S∗ \D.

Clearly, every element x ∈ S∗ may be expressed as a finite sum of primitive elements.
That is, the set P generates S as a semigroup. In fact, P is the unique minimal generating
set of S, since every generating set of S necessarily contains P .

2 Other commonly used terms for primitive element are irreducible element or atom.
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The finiteness of P , i.e. of the embedding dimension e = |P |, follows from the inclu-
sion P ⊆ [m, c +m[, which itself is due to the inclusions

[c +m,∞[ = m+ [c,∞[ ⊆ m+ S∗ ⊆ S∗ + S∗ = D.

Alternatively, |P | ≤ m, since no two distinct primitive elements of S can be congruent
modulo m.

2.2. The associated constants q, ρ and W(S)

The following constants associated to S will be used throughout the paper, often tacitly so.

Notation 2.2. Let S be a numerical semigroup. We denote by q = q(S) and ρ = ρ(S)
the unique integers satisfying

c = qm− ρ

with remainder ρ ∈ [0, m[. That is, we set q = dc/me and ρ = qm− c.

Example 2.3. If q = 1, then ρ = 0, and c = m since c ≥ m always. The semigroup
structure of S is very simple in this case, namely

S = {0} ∪ [c,∞[.

This case was met above already, as the first example of equality in Wilf’s conjecture.

Example 2.4. If q = 2, then m < c ≤ 2m. As mentioned above, Wilf’s conjecture holds
in this case as well [12]. See below for a new simpler proof.

Thus, Wilf’s conjecture holds for q ≤ 2. In this paper, we extend this result to the much
more demanding case q = 3.

Notation 2.5. Let S be a numerical semigroup. We denote

W(S) = e(S)|L(S)| − c(S).

This allows us to reformulate Wilf’s conjecture in the following equivalent way.

Conjecture 2.6. Let S be a numerical semigroup. Then W(S) ≥ 0.

The new results presented in this paper have been obtained via this formulation, by a
successful evaluation of W(S) in the cases under consideration.

3. A convenient partition

Throughout this section, S denotes a numerical semigroup with multiplicity m, conduc-
tor c and associated constants q, ρ.
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3.1. The interval [c, c +m[

The integer interval [c, c + m[ of cardinality m is entirely contained in S and plays a
special role in our present approach. We shall denote it by

Iq = [c, c +m[.

More generally, we shall consider the various translates of Iq by multiples of m.

Notation 3.1. For j ∈ Z, we denote by Ij the translate of Iq by (j − q)m, i.e.

Ij = Iq + (j − q)m = [c − (q − j)m, c − (q − j − 1)m[
= [jm− ρ, (j + 1)m− ρ[.

For instance, we have

Iq−1 = [c −m, c[, I1 = [m− ρ, 2m− ρ[, I0 = [−ρ,m− ρ[.

As the various Ij for j ≥ q + 1 need not be distinguished here, we denote

I∞ =
⋃

j≥q+1

Ij = [c +m,∞[.

The partition of S induced by the intervals Ij ’s will be used throughout.

Notation 3.2. For all j ≥ 0, we denote

Sj = S ∩ Ij = S ∩ [jm− ρ, (j + 1)m− ρ[.

Note the following straightforward properties:

jm ∈ Sj ∀j ≥ 0,
S0 = S ∩ [−ρ,m− ρ[ = {0},
S1 ⊆ [m, 2m− ρ[ (as min S1 = m),

Sq−1 ( Iq−1 (as c − 1 ∈ Iq−1 \ S),
Sq+j = Iq+j ∀j ≥ 0.

Lemma 3.3. Let L = L(S) = S ∩ [0, c[. Then

L = S0 ∪̇ S1 ∪̇ · · · ∪̇ Sq−1, |L| = 1+ |S1| + · · · + |Sq−1|.

Proof. Straightforward from the definitions, since L ⊆ [0, c[ ⊆
⋃̇

0≤j≤q−1Ij . ut

Lemma 3.4. We have
m+ Sj ⊆ Sj+1 for all j ≥ 0,

in particular
1 = |S0| ≤ |S1| ≤ · · · ≤ |Sq−1|.

Proof. Straightforward from the definitions. ut
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Proposition 3.5. For all i, j ≥ 1, we have a weak grading as follows:

S1 + Sj ⊆ S1+j ∪ S1+j+1 for j ≥ 1,
Si + Sj ⊆ Si+j−1 ∪ Si+j ∪ Si+j+1 for i, j ≥ 2.

Proof. For i, j ≥ 1, we have

(im− ρ)+ (jm− ρ) = (i + j)m− 2ρ > (i + j − 1)m− ρ.

Similarly,

((i + 1)m− ρ − 1)+ ((j + 1)m− ρ − 1) < (i + j + 2)m− ρ − 1.

This settles the second inclusion. Assume now i = 1. Since min S1 = m and m + Sj ⊆
Sj+1, we have

(S1 + Sj ) ∩ Sj = ∅.

The first inclusion now follows from the second one. ut

When the above weak grading happens to be a true grading up to level q − 1, more
precisely if

Si + Sj = Si+j

for all i, j ≥ 0 such that i + j ≤ q − 1, Wilf’s conjecture can be shown to hold (see
Theorem 7.1).

The following estimate, limiting the size of (Si+Sj )∩Si+j−1 by ρ = ρ(S), will play
a somewhat subtle role later on.

Proposition 3.6. For all i, j ≥ 1, we have

|(Si + Sj ) ∩ Si+j−1| ≤ ρ, |(Si + Sj ) ∩ Si+j+1| ≤ m− ρ − 1.

Proof. We have

Si + Sj ⊆ [(i + j)m− 2ρ, (i + j + 2)m− 2ρ − 1[.

It follows that

(Si + Sj ) ∩ Si+j−1 ⊆ [(i + j)m− 2ρ, (i + j)m− ρ[,
(Si + Sj ) ∩ Si+j+1 ⊆ [(i + j + 1)m− ρ, (i + j + 2)m− 2ρ − 1[. ut

3.2. The profile of a numerical semigroup

It is useful to record how many primitive elements there are in the various levels Sj .
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Notation 3.7. For j ≥ 1, let

Pj = P ∩ Sj , pj = |Pj |, Dj = D ∩ Sj , dj = |Dj |.

Note that p1 ≥ 1 since m ∈ P1. Note also that S1 = P1, i.e. D1 = ∅, as x ∈ D implies
x ≥ 2m.

Definition 3.8. The profile of S is the (q − 1)-tuple (p1, . . . , pq−1) ∈ Nq−1.

It may be shown that any (p1, . . . , pq−1) ∈ Nq−1 with p1 ≥ 1 is the profile of a suit-
able numerical semigroup S. To construct such an S, one should start with m(S) ≥
p1 + · · · + pq−1 at the very least, but the larger the difference m−

∑
pi , the more room

there is for the construction of S. For instance, one may start with P1 = [m,m + p1[,
P2 = [2(m+ p1), 2(m+ p1)+ p2[, and so on.

3.3. Left and right primitives

Among the primitive elements of the numerical semigroup S, we distinguish the left ones,
smaller than c, and the right ones, contained in [c, c +m[. That is, the left primitives are
the elements of P ∩L, and the right ones are those belonging to Pq = P ∩Iq . This covers
all of P , since P ⊆ [m, c +m[ ⊆ L ∪ Iq .

Note that the right primitives are entirely determined by the left ones together with c,
in the following sense. In Sq = Iq , all decomposable elements are sums of left primi-
tives only. Thus, the right primitives are those elements in Iq which are not sums of left
primitives. That is,

Pq = Iq \D,

or equivalently
S = 〈P ∩ L〉 ∪ [c,∞[, (1)

since Pq = P ∩ [c,∞[. This property of Pq was our reason not to include its cardinality
pq in the profile (p1, . . . , pq−1) of S. Incidentally, note that pq is the down degree of the
vertex S in the tree of all numerical semigroups (see e.g. [2, 3, 19]).

The description of S by (1) justifies introducing a specific notation.

Notation 3.9. For any nonempty subset A ⊆ N∗ and c ∈ N∗, we set

〈A〉c = 〈A〉 ∪ [c,∞[ = 〈A ∪ [c, c +m[〉,

where m = minA. It is a numerical semigroup of multiplicity at most m and conductor
at most c.

For example, consider the numerical semigroup

S = 〈10, 15〉23 = 〈10, 15〉 ∪ [23,∞[.

Its left primitives are 10 and 15 and its conductor is 23. We have q = d23/10e = 3, and
the decomposable elements in S3 = [23, 33[ are 25 and 30. Therefore, the right primitives
in S are 23, 24, 26, 27, 28, 29, 31, 32, that is,

〈10, 15〉23 = 〈10, 15, 23, 24, 26, 27, 28, 29, 31, 32〉.
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Note that the conductor of the semigroup S = 〈A〉c may occasionally be strictly smaller
than c. This happens exactly when c−1 belongs to 〈A〉. For instance, 〈3, 5〉10 = 〈3, 5〉8 =
〈3, 5〉 with conductor 8, and 〈3, 5〉7 = 〈3, 5, 7〉 = 〈3〉5 with conductor 5.

3.4. The constant W0(S)

The number pq of right primitives is involved in two terms in the formula W(S) =
|P | |L| − c = |P | |L| − qm+ ρ. Indeed,

|P | = |P ∩ L| + pq , m = pq + dq ,

since m = |[c, c + m[| = |Iq | = pq + dq . Factoring out pq from W(S) gives rise to the
following closely related constant.

Definition 3.10. Let S be a numerical semigroup. We denote

W0(S) = |P ∩ L| |L| − qdq + ρ.

As a side remark, note that |P ∩ L| = p1 + · · · + pq−1, the sum of the entries of the
profile of S. By construction, we have

W(S) = pq(|L| − q)+W0(S). (2)

Proposition 3.11. Let S be a numerical semigroup. Then

W(S) ≥ W0(S).

In particular, if W0(S) ≥ 0, then S satisfies Wilf’s conjecture.

Proof. We have |L| ≥ q since L ⊇ {0, m, . . . , (q − 1)m}. The stated inequality now
follows from (2). ut

As an application, we will settle Wilf’s conjecture for q = 3 precisely by showing that
the stronger inequality W0(S) ≥ 0 always holds in this case.

Remark 3.12. The inequality W0(S) ≥ 0 is equivalent to the fact that dq , the number of
decomposables in Iq = [c, c +m[, is bounded above as follows:

qdq ≤ |P ∩ L| |L| + ρ.

3.5. W0(S) may be negative

While the inequality W0(S) ≥ 0 will be shown to hold for q ≤ 3, it no longer holds in
general for q ≥ 4. The first counterexamples were discovered by Jean Fromentin [10],
who showed by exhaustive computer search that all the 33,474,094,027,610 numerical
semigroups S of genus g ≤ 60 do satisfy W0(S) ≥ 0 except in exactly five instances,
namely

〈14, 22, 23〉56 , 〈16, 25, 26〉64 , 〈17, 26, 28〉68 , 〈17, 27, 28〉68 and 〈18, 28, 29〉72
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of genus 43, 51, 55, 55 and 59, respectively. These sole counterexamples up to genus 60
all satisfy W0(S) = −1, c = 4m and W(S) ≥ 35. As a corollary [11], it follows that
Wilf’s conjecture is true up to genus 60 (see also [8]).

The case W0(S) < 0 seems to be very rare indeed. An interesting problem would be
to characterize all numerical semigroups S belonging to it.

3.6. The case q = 2

It was shown in [12] that Wilf’s conjecture holds for q = 2, i.e. in case m < c ≤ 2m.
Here is a short proof of a slightly stronger statement.

Proposition 3.13. Let S be a numerical semigroup with q = 2, i.e. with c = 2m− ρ and
ρ ∈ [0, m− 1[. Then

W0(S) ≥ ρ ≥ 0.
Proof. Let k = p1. Then |L| = 1+ k, since L = S0 ∪̇ S1 = {0} ∪̇ P1 here. Now

W0(S)− ρ = |P ∩ L| |L| − 2d2 = k(1+ k)− 2d2.

But d2 ≤ k(k+1)/2, since any decomposable element in S2 = [c, c+m[ is a sum of two
primitives in P1. Therefore W0(S)− ρ ≥ 0. ut

4. Apéry elements

Throughout this section again, S denotes a numerical semigroup with multiplicity m,
conductor c and associated constants q, ρ. After recalling the notion of Apéry elements
with respect to m = m(S), we shall set up formulas for |L| and dq involving them, in the
spirit of those of Selmer [22].

Definition 4.1. An Apéry element (with respect to m) is an element x ∈ S such that
x −m /∈ S. We shall denote by X ⊂ S the set of all Apéry elements of S.

Note that a common notation for X is Ap(S,m). It follows from the definition that X is
contained in [0, c+m[ and contains both extremities 0 and c+m−1. Moreover, we have
|X| = m. Indeed, for every class λ mod m, there is a unique a ∈ X of class λ, namely the
smallest element of that class in S. Note also that

P \ {m} ⊆ X,

since clearly a primitive element cannot belong to m+ S, except m itself.

Notation 4.2. We denote by N ⊂ S the set of non-Apéry elements, i.e. N = S \X.

For example, we have m ∈ N . It is clear that S + N ⊆ N . Note also that N and X may
equivalently be described as N = m+ S and X = S \N .

Notation 4.3. For all 0 ≤ j ≤ q, we denote

Xj = X ∩ Sj .

For instance, we have

X0 = {0}, X1 = S1 \ {m}, X2 ⊆ 2X1 ∪̇ P2.
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4.1. A formula for W0(S)

Here is a useful formula for W0(S) in terms of the cardinalities of the Xi’s.

Notation 4.4. For 0 ≤ i ≤ q, we denote

αi =

{
|Xi | if i ≤ q − 1,
|Xq \ P | if i = q.

In particular, if q ≥ 2, we have

α0 = 1, α1 = p1 − 1, αi ≥ pi for all 2 ≤ i ≤ q − 1, (3)

since all primitives exceptm are Apéry elements. But note that αq only counts the decom-
posable Apéry elements in Sq , ignoring Pq . Since |X| = m and Xq \ P may be a proper
subset of Xq , we have

α0 + α1 + · · · + αq ≤ m.

We now identify the left-hand sum with dq = |Dq |.

Proposition 4.5. Let S be a numerical semigroup. We have

dq =

q∑
i=0

αi, (4)

|L(S)| =

q−1∑
i=0

(q − i)αi . (5)

Proof. On the one hand, we have

m = |X| =

q∑
i=0

|Xi | =

q−1∑
i=0

αi + (αq + pq).

On the other hand, m = |Sq | = pq + dq . Comparing both expressions of m yields (4).
Now, by definition of the Apéry elements, for 1 ≤ i ≤ q − 1 we have

Si = (m+ Si−1) ∪̇Xi,

and hence
|Si | = |Si−1| + αi . (6)

Since |L| = |S0| + |S1| + · · · + |Sq−1|, it follows by a repeated application of (6) that

|L| = q + (q − 1)α1 + · · · + αq−1,

as desired. ut

Corollary 4.6. We have

W0(S)− ρ =
(q−1∑
i=0

pi

)(q−1∑
i=0

(q − i)αi

)
− q

q∑
i=0

αi .

Proof. Straightforward from the formula W0(S) − ρ = |P ∩ L| |L| − qdq and Proposi-
tion 4.5. ut
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5. The Hilbert function of standard graded algebras

We now turn to standard graded algebras, Hilbert functions thereof, Macaulay’s theo-
rem, and a condensed version of it which is well-suited to our subsequent applications
to Wilf’s conjecture. We start by recalling a few basic definitions. In this section, the
notation [x,∞[ refers to the usual real intervals.

Definition 5.1. A standard graded algebra is a commutative algebra R over a field K en-
dowed with a vector space decompositionR =

⊕
i≥0 Ri such thatR0 = K,RiRj ⊆ Ri+j

for all i, j ≥ 0, and which is generated as a K-algebra by finitely many elements in R1.

It follows from the definition that each Ri is a finite-dimensional vector space over K.
Moreover, the fact that R is generated by R1 implies that RiRj = Ri+j for all i, j ≥ 0.

Definition 5.2. Let R =
⊕

i≥0 Ri be a standard graded algebra. The Hilbert function of
R is the map i 7→ hi associating to each i ∈ N the dimension

hi = dimK Ri

of Ri as a vector space over K.

In particular, h0 = 1, and R is generated as a K-algebra by any h1 linearly independent
elements of R1.

5.1. Macaulay’s theorem

Macaulay’s theorem rests on the so-called binomial representations of integers. Here is
some background information about them.

Proposition 5.3. Let a ≥ i ≥ 1 be positive integers. There are unique integers ai >
ai−1 > · · · > a1 ≥ 0 such that

a =

i∑
j=1

(
aj

j

)
.

Proof. See e.g. [5, 17]. ut

This expression is called the ith binomial representation of a.

Notation 5.4. Let a ≥ i ≥ 1 be positive integers. Let a =
∑i
j=1

(aj
j

)
be its ith binomial

representation. We then denote

a〈i〉 =

i∑
j=1

(
aj + 1
j + 1

)
.

Note that the right-hand side is a valid (i + 1)st binomial representation of some positive
integer, namely of the integer it sums to.

Here is Macaulay’s classical result which constrains the possible Hilbert functions of
standard graded algebras [14].
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Theorem 5.5. Let R =
⊕

i≥0 Ri be a standard graded algebra over a field K, with
Hilbert function hi = dimK Ri for all i ≥ 0. Let i be a positive integer. Then

hi+1 ≤ h
〈i〉
i .

The converse also holds in Macaulay’s theorem, but we shall not need it here. That is,
satisfying these inequalities for all i ≥ 1 characterizes the Hilbert functions of standard
graded algebras (see e.g. [5, 15, 17]).

For our applications to Wilf’s conjecture, we shall derive from Macaulay’s theorem a
condensed version of it. To this end we first need some facts concerning binomial coeffi-
cients.

5.2. Some binomial inequalities

Given i ∈ N and x ∈ R, we denote as usual(
x

i

)
=
x(x − 1) . . . (x − i + 1)

i!

if i ≥ 1, and
(
x
0

)
= 1. We shall repeatedly use the following well-known fact.

Lemma 5.6. Let i ≥ 1 be an integer. Then the map x 7→
(
x
i

)
is an increasing continuous

bijection (in fact, a homeomorphism) from [i − 1,∞[ onto [0,∞[.

Proof. By Rolle’s theorem, the derivative of the polynomial f = X(X−1) · · · (X−i+1)
is of the form f ′ = i(X−λ1) · · · (X−λi−1) where j −1 < λj < j for all 1 ≤ j ≤ i−1.
Therefore f induces an increasing continuous function from [i − 1,∞[ onto [0,∞[. ut

Consequently, given i ≥ 1 and any real number y ≥ 0, there is a unique real number
x ≥ i − 1 such that

y =

(
x

i

)
.

Moreover, for any real numbers u, v ≥ i − 1, we have

u < v ⇔

(
u

i

)
<

(
v

i

)
. (7)

The following result is due to Lovász [13].

Lemma 5.7. Let r ≥ 2 be an integer, and let u ≥ v ≥ w be real numbers such that
v ≥ r − 1 and w ≥ r − 2. Then(

u

r

)
=

(
v

r

)
+

(
w

r − 1

)
implies

(
u

r − 1

)
≤

(
v

r − 1

)
+

(
w

r − 2

)
.

This appears as an exercise, with proof, in [13]. It is actually stated in a slightly stronger
way, where r − 1 is replaced throughout the conclusion by any integer k such that 1 ≤
k ≤ r − 1. But of course the two versions are equivalent.
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Proof. See [13]. The hint provided by Lovász is to use the following identity:(
u+ v + 1

m

)
=

m∑
k=0

(
u+ k

k

)(
v − k

m− k

)
. ut

Here is a straightforward consequence that we shall need.

Proposition 5.8. Let r ≥ 1 be an integer, and let u ≥ v ≥ w be real numbers such that
v ≥ r and w ≥ r − 1. Then(

u

r

)
=

(
v

r

)
+

(
w

r − 1

)
implies

(
u+ 1
r + 1

)
≥

(
v + 1
r + 1

)
+

(
w + 1
r

)
.

Proof. We first claim that the above hypothesis implies(
u

r + 1

)
≥

(
v

r + 1

)
+

(
w

r

)
. (8)

Indeed, assume that the left-hand side were strictly smaller than the right-hand side. Since
the function x 7→

(
x
r+1

)
is a strictly increasing bijection from [r,∞[ to [0,∞[, there

would exist z > u such that(
u

r + 1

)
<

(
z

r + 1

)
=

(
v

r + 1

)
+

(
w

r

)
.

Lemma 5.7 would then imply (
z

r

)
≤

(
v

r

)
+

(
w

r − 1

)
,

which is absurd since by hypothesis, the right-hand side equals
(
u
r

)
and z > u. Now, upon

adding
(
u
r

)
to (8), the hypothesis implies(

u

r + 1

)
+

(
u

r

)
≥

(
v

r + 1

)
+

(
w

r

)
+

(
v

r

)
+

(
w

r − 1

)
,

which in turn, by the basic Pascal triangle identity, yields the claimed inequality. ut

5.3. An upper bound on a〈i〉

We shall also need the following upper bound on a〈i〉.

Theorem 5.9. Let a ≥ 0, i ≥ 1 be integers, and let x ≥ i − 1 be the unique real number
such that a =

(
x
i

)
. Then a〈i〉 ≤

(
x+1
i+1

)
.

Proof. By induction on i. For i = 1, we have x = a and the statement directly follows
from the definition. Assume now i ≥ 2 and the statement true for i − 1. Consider the ith
binomial representation of a:

a =

i∑
j=1

(
aj

j

)
=

(
ai

i

)
+ b, where b =

i−1∑
j=1

(
aj

j

)
.
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By definition of the operation t 7→ t 〈i〉, we have

a〈i〉 =

(
ai + 1
i + 1

)
+ b〈i−1〉.

Let y ≥ i − 2 be the unique real number such that b =
(
y
i−1

)
. Then

a =

(
x

i

)
=

(
ai

i

)
+

(
y

i − 1

)
. (9)

By the induction hypothesis, we have b〈i−1〉
≤
(
y+1
i

)
. It follows that

a〈i〉 ≤

(
ai + 1
i + 1

)
+

(
y + 1
i

)
.

But now, it follows from (9) and Proposition 5.8 that(
x + 1
i + 1

)
≥

(
ai + 1
i + 1

)
+

(
y + 1
i

)
.

This concludes the proof of the theorem. ut

5.4. A condensed version of Macaulay’s theorem

We now express Macaulay’s theorem in a condensed version which is well suited to our
present purposes. It is inspired by a similarly condensed version of the Kruskal–Katona
theorem, due to Lovász, again given as an exercise in his book [13]. See also the book [1]
of Bollobás, where it is nicely presented and where we have first spotted it.

Theorem 5.10. Let R =
⊕

i≥0 Ri be a standard graded algebra over the field K, with
Hilbert function hi = dimK Ri for all i ≥ 0. Let r ≥ 1 be an integer. Let x ≥ r − 1 be the
unique real number satisfying hr =

(
x
r

)
. Then

hr−1 ≥

(
x − 1
r − 1

)
and hr+1 ≤

(
x + 1
r + 1

)
.

Proof. Let a = hr . By Macaulay’s Theorem 5.5 followed by Theorem 5.9, we have
hr+1 ≤ a

〈r〉
≤
(
x+1
r+1

)
. Assume now, for a contradiction, that

hr−1 <

(
x − 1
r − 1

)
. (10)

Let then y ≥ r − 2 be the unique real number such that hr−1 =
(
y
r−1

)
. Then y < x − 1

by Lemma 5.6. It would then follow from the statement just proved and Lemma 5.6 that

hr ≤

(
y + 1
r

)
<

(
x

r

)
,

contrary to our hypothesis. Therefore (10) is absurd and we are done. ut
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5.5. Averaging the Hilbert function

We conclude this section with a result on the average of initial values of the Hilbert
function of a standard graded algebra, namely that for any q ≥ 1, the average of the hi’s
for 0 ≤ i ≤ q−1 is bounded below by the ratio hq/h1. Note the similarity of the formula
below with that of Remark 3.12. This will be used in Section 7 to verify one further case
of Wilf’s conjecture.

Theorem 5.11. Let R =
⊕

i≥0 Ri be a standard graded algebra over the field K, with
Hilbert function hi = dimK Ri for all i ≥ 0. Let q ≥ 1 be an integer. Then

qhq ≤ h1(1+ h1 + · · · + hq−1).

Proof. Let x ≥ q − 1 be the unique real number such that hq =
(
x
q

)
. By repeatedly

applying Theorem 5.10 together with Lemma 5.6, we get

hq−i ≥

(
x − i

q − i

)
(11)

for all 0 ≤ i ≤ q. Summing over all i in this range implies

q∑
i=1

hq−i ≥

q∑
i=1

(
x − i

q − i

)
.

Now the sum on the right-hand side is equal to
(
x
q−1

)
. Therefore,

q∑
i=1

hq−i ≥

(
x

q − 1

)
.

By the identity (
x

q − 1

)
=

q

x − q + 1

(
x

q

)
,

it follows that

(x − q + 1)
q∑
i=1

hq−i ≥ q

(
x

q

)
= qhq .

And finally, it follows from (11) at i = q−1 that h1 ≥ x−q+1, yielding the announced
inequality. ut

6. Wilf’s conjecture for q = 3

We now settle Wilf’s conjecture for numerical semigroups satisfying q = 3, i.e. 2m <

c ≤ 3m. The profile of any such semigroup is of the form (p1, p2) with p1, p2 ∈ N and
p1 ≥ 1. Our first step consists in reducing the verification of the conjecture to the case
p2 = 0. Macaulay’s theorem, or its condensed version, will then be needed in the more
difficult remaining step, that of settling the case of profile (p1, 0).
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Notation 6.1. For a subset A ⊆ Z and an integer i ≥ 1, we shall denote by iA the ith
iterated sumset

iA = A+ · · · + A︸ ︷︷ ︸
i

.

Thus 2P2 = P2 + P2 for instance, involved below.

6.1. Reduction to profile (p1, 0)

The announced reduction is relatively straightforward, except that the constant ρ = ρ(S)
plays a somewhat subtle role and must be treated with sufficient care.

Proposition 6.2. Let S be a numerical semigroup with profile (p1, p2). Let S′ = 〈P1〉c =

〈P1〉∪[c,∞[, so that S′ ⊆ S has profile (p1, 0) and the same multiplicitym and conductor
c as S. Then

W0(S) ≥ W0(S
′)− ρ.

Proof. Consider the decomposable elements of S in Iq = I3. We have

D3(S) = D3(S
′) ∪

(
(P1 + P2) ∩ I3

)
∪ (2P2 ∩ I3).

Thus, it follows from Proposition 3.6 involving ρ, and the obvious sumset estimates
|2A| ≤ |A|(|A| + 1)/2 and |A+ B| ≤ |A| |B| for finite subsets A,B ⊂ Z, that

d3(S) ≤ d3(S
′)+ |(P1 + P2) ∩ I3| + |2P2 ∩ I3|

≤ d3(S
′)+ p1p2 +min(ρ, p2(p2 + 1)/2).

Plugging this inequality into the expression of W0(S), we get

W0(S) = |P ∩ L| |L| − 3d3 + ρ

≥ |P ∩ L| |L| − 3d3(S
′)− 3p1p2 − 3 min(ρ, p2(p2 + 1)/2)+ ρ.

Claim. For the sum of the last two terms, the following bound holds:

−3 min(ρ, p2(p2 + 1)/2)+ ρ ≥ −p2(p2 + 1). (12)

Indeed, if ρ ≤ p2(p2 + 1)/2, then min(ρ, p2(p2 + 1)/2) = ρ, whence

−3 min(ρ, p2(p2 + 1)/2)+ ρ = −2ρ ≥ −p2(p2 + 1).

Similarly, if ρ > p2(p2 + 1)/2, then min(ρ, p2(p2 + 1)/2) = p2(p2 + 1)/2, whence

−3 min(ρ, p2(p2 + 1)/2)+ ρ = −3p2(p2 + 1)/2+ ρ > −2p2(p2 + 1)/2.

This establishes the claim.
Plugging (12) into the above estimate of W0(S), we get

W0(S) ≥ |P ∩ L| |L| − 3d3(S
′)− 3p1p2 − p2(p2 + 1). (13)
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Now, we have |P ∩ L| = p1 + p2 and |L| = 1+ p1 + (p2 + d2). It follows that

|P ∩ L| |L| − 3d3(S
′) = (p1 + p2)(1+ p1 + p2 + d2)− 3d3(S

′)

= p2
2 + p2(1+ 2p1 + d2)+ p1(1+ p1 + d2)− 3d3(S

′)

= p2
2 + p2(1+ 2p1 + d2)+W0(S

′)− ρ,

by definition of W0(S
′) and since D2(S) = D2(S

′). Going back to (13), the above yields

W0(S) ≥ p
2
2 + p2(1+ 2p1 + d2)+W0(S

′)− ρ − 3p1p2 − p2(p2 + 1)
= p2(d2 − p1)+W0(S

′)− ρ.

Finally, since m + P1 ⊆ D2, we have d2 ≥ p1. It follows that W0(S) ≥ W0(S
′) − ρ, as

claimed. ut

Consequently, to settle Wilf’s conjecture for q = 3, it remains to prove W0(S
′) ≥ ρ for

any numerical semigroup S′ with profile (k, 0). This is done in Theorem 6.4 below. We
start with a counting lemma whose proof relies on our condensed version of Macaulay’s
theorem.

6.2. Counting some Apéry elements

We shall need the following bound relating the numbers of Apéry elements in 2X1 ∩ X2
and in 3X1 ∩X3 in a numerical semigroup S of the desired profile.

Lemma 6.3. Assume the profile of S is (k, 0). Let x ∈ R be such that x ≥ 1 and

|2X1 ∩X2| =

(
x

2

)
.

Then

|3X1 ∩X3| ≤

(
x + 1

3

)
.

Proof. It suffices to construct a standard graded algebra R′ with the property that

dimR′i = |iX1 ∩Xi |

for i = 1, 2 and then apply Macaulay’s theorem or its condensed version. We now proceed
to construct such an algebra R′.

By hypothesis on the profile of S, we have P ∩L = P1 = {m = a1 < a2 < · · · < ak}

= {m} ∪̇X1. Consider the standard graded algebra

R = K[ta1u, . . . , taku],

where K is a field and where t, u are commuting variables over K of degree 0 and 1,
respectively. ThusR is a subalgebra of the polynomial algebra K[t, u], andR =

⊕
n≥0 Rn

where R0 = K and R1 is the K-vector space with basis {ta1u, . . . , taku}. Let A = P1.
Then, for all i ≥ 0, we have

dimRi = |iA|.
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Now of course,

2A = (2A ∩X2) ∪̇ (2A \X2), 3A = (3A ∩X3) ∪̇ (3A \X3).

Moreover, since

2A = (m+ A) ∪ 2X1 and (m+ A) ∩X2 = ∅,

we have 2A ∩X2 = 2X1 ∩X2. Similar properties hold for 3A ∩X3. Thus, we obtain the
following partitions:

2A = (2X1 ∩X2) ∪̇ (2A \X2), 3A = (3X1 ∩X3) ∪̇ (3A \X3).

Consider the ideal J ⊆ R spanned by all monomials of the form

tbu2 and tcu3, where b ∈ 2A \X2 and c ∈ 3A \X3.

Let R′ = R/J. It is still a standard graded algebra. Regarding its Hilbert function, we
claim that

dimR′2 = |2X1 ∩X2|, dimR′3 = |3X1 ∩X3|.

The first equality follows from the above partition 2A = (2X1 ∩ X2) ∪̇ (2A \ X2). The
second one follows from the analogous partition 3A = (3X1 ∩ X3) ∪̇ (3A \ X2) and the
following inclusion, which shows that killing the monomials tbu2 of J in the quotient
R/J does not kill any monomial of the form tdu3 for d ∈ X3:

A+ (2A \X2) ⊆ 3A \X3. (14)

Indeed, we have 2A \ X2 ⊆ (m + S) ∪ I3, i.e., any z ∈ 2A \ X2 either is not an Apéry
element or belongs to I3. Inclusion (14) now follows from the inclusions

A+ (m+ S) ⊆ m+ S, A+ I3 ⊆ I∞,

where I∞ =
⋃
j≥4 Ij = [c + m,∞[, and the fact that X3 is disjoint from both m + S

and I∞.
The lemma now follows by applying the condensed Macaulay Theorem 5.10 to the

claimed respective dimensions of R′2, R
′

3. ut

6.3. The case of profile (k, 0)

Theorem 6.4. Let S ⊂ N be a numerical semigroup with q = 3 and profile (k, 0) for
some k ≥ 1. Then W0(S) ≥ ρ(S).

Proof. By hypothesis, we have P2 = ∅, whence P ∩ L = P1 = {m} ∪̇ X1. Let X1 =

{a2 < · · · < ak} withm < a2. We may list the elements ofD3 in terms of the Apéry ones
as follows:

D3 = {3m} ∪̇ (2m+X1) ∪̇ (m+X2) ∪̇X
′

3,
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whereX′3 = X3\P . By Proposition 4.5, and recalling our notation α2 = |X2|, α3 = |X
′

3|,
we have

d3 = k + α2 + α3, |L| = 3+ 2(k − 1)+ α2 = 2k + 1+ α2.

Therefore

W0(S)− ρ = k|L| − 3d3 = k(2k + 1+ α2)− 3(k + α2 + α3)

= 2k(k − 1)+ kα2 − 3(α2 + α3) = 4
(
k

2

)
+ kα2 − 3(α2 + α3).

We now proceed to bound α2 + α3 = |X2| + |X
′

3|. Since X2 ⊆ 2X1, for P2 = ∅ by
assumption, and X′3 ⊆ 2X1 ∪ 3X1 for the same reason, we have

α2 = |X2| = |2X1 ∩X2|, α3 = |X
′

3| = |2X1 ∩X3| + |3X1 ∩X3|.

It follows that

α2 + α3 = |2X1 ∩X2| + |2X1 ∩X3| + |3X1 ∩X3| ≤ |2X1| + |3X1 ∩X3|

≤

(
k

2

)
+ |3X1 ∩X3|.

Plugging this into the latter estimate of W0(S)− ρ, we get

W0(S)− ρ ≥

(
k

2

)
+ k|2X1 ∩X2| − 3|3X1 ∩X3|. (15)

Let x ≥ 1 be the unique real number such that

|2X1 ∩X2| =

(
x

2

)
.

Note that x ≤ k, since |2X1 ∩ X2| ≤ |2X1| ≤
(
k
2

)
. Further, it follows from Lemma 6.3

that

|3X1 ∩X3| ≤

(
x + 1

3

)
.

Plugging these relations into (15), we obtain

W0(S)− ρ ≥

(
k

2

)
+ k

(
x

2

)
− 3

(
x + 1

3

)
=

(
k

2

)
+ k

(
x

2

)
− 3

x + 1
3

(
x

2

)
=

(
k

2

)
+ (k − x − 1)

(
x

2

)
.

Since
(
k
2

)
≥
(
x
2

)
and k ≥ x as observed above, we conclude

W0(S)− ρ ≥ (k − x)

(
x

2

)
≥ 0,

as desired. ut
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Corollary 6.5. Wilf’s conjecture holds for all numerical semigroups S satisfying
q(S) = 3.
Proof. Straightforward from the above result and the reduction to profile (k, 0) provided
by Proposition 6.2, which together imply W0(S) ≥ 0. ut

As observed in the Introduction, the importance of this corollary stems from a recent result
of Zhai [25] stating that, as g goes to infinity, the proportion of numerical semigroups of
genus g satisfying q = 3 tends to 1. As a matter of illustration, here is a table showing how
q is distributed for 18 ≤ g ≤ 25. It clearly shows that, in this range of g, the two cases
q = 3 and q = 2 together contain an overwhelming majority of numerical semigroups.
This table was obtained with the GAP package numericalsgps [6].

Table 1. Distribution of q = q(S) by genus g, for 18 ≤ g ≤ 25 and q ≤ 20.

g
q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

18 1 4180 6935 1739 409 132 37 13 14 2 2 2 0 0 0 0 0 1
19 1 6764 11828 2895 670 195 63 20 14 8 2 2 1 0 0 0 0 0 1
20 1 10945 20096 4805 1085 290 103 35 14 15 2 2 2 0 0 0 0 0 0 1
21 1 17710 34069 7943 1750 453 172 46 19 15 9 2 2 2 0 0 0 0 0 0
22 1 28656 57566 13108 2806 707 249 81 32 16 16 2 2 2 1 0 0 0 0 0
23 1 46367 96949 21509 4453 1102 357 132 44 16 17 9 2 2 2 0 0 0 0 0
24 1 75024 162911 35248 7052 1741 500 221 60 26 17 18 2 2 2 2 0 0 0 0
25 1 121392 273139 57649 11149 2648 750 301 100 42 17 18 10 2 2 2 1 0 0 0

Remark 6.6. As observed by A. Sammartano [21] after reading a preliminary version of
this paper, one can show that the equality case W(S) = 0 in Wilf’s conjecture cannot
occur for q = 3 besides the known ones cited in the Introduction. Indeed, since W(S) =
p3(|L| − 3) +W0(S) and since W0(S) ≥ 0 holds for q = 3, it follows from W(S) = 0
that p3(|L| − 3) = W0(S) = 0. Moreover, going through the chains of inequalities in the
proofs of Proposition 6.2 and Theorem 6.4, one sees that the equalityW0(S) = 0 can only
occur if ρ = p2(p2 + 1)/2, m + P1 = D2, |P1 + P2| = p1p2, |2P2| = p2(p2 + 1)/2,
|2X1 ∩ X2| =

(
p1
2

)
and |3X1 ∩ X3| =

(
p1+1

3

)
. Considering all these constraints together,

one can show that the profile of S either equals (1, 0), or (1, 1) provided p3 = 0, both
known equality cases in Wilf’s conjecture.

7. Further results

Using the present methods, we settle Wilf’s conjecture in a few other cases, namely for
numerical semigroups S satisfying Si + Sj = Si+j whenever i + j ≤ q − 1, for those
satisfying |L(S)| ≤ 6, and finally for those satisfying gcd(L(S)) ≥ 2.

7.1. The case of true grading

Theorem 7.1. Let S be a numerical semigroup satisfying Si + Sj = Si+j for all i + j ≤
q − 1. Then W0(S) ≥ ρ ≥ 0, and hence S satisfies Wilf’s conjecture.
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Proof. It follows from the hypothesis that Si = iS1 for all 1 ≤ i ≤ q − 1. Therefore
P ∩ L = P1 = S1 and Dq ⊆ qS1. Now, denote S1 = {a1, a2, . . . , ak} with m = a1 <

a2 < · · · < ak . As in the proof of Lemma 6.3, consider the standard graded algebra

R = K[ta1u, . . . , taku],

where K is a field and where t, u are commuting variables over K of degree 0 and 1,
respectively. As Hilbert function of R, we have

hi = dimRi = |iS1| = |Si |

for all 0 ≤ i ≤ q − 1, and hq = dimRq = |qS1|. It follows from Theorem 5.11 that

qhq ≤ h1(1+ h1 + · · · + hq−1). (16)

SinceW0(S)−ρ = |P ∩L| |L|−qdq , since dq = |Dq | ≤ |qS1| = hq , and by the formula
for |L| in Lemma 3.3, we have

W0(S)− ρ ≥ |P ∩ L| |L| − qhq = h1(1+ h1 + · · · + hq−1)− qhq .

Hence W0(S)− ρ ≥ 0 by (16), as claimed. ut

Corollary 7.2. Let S be a numerical semigroup satisfying q ≥ 4 and

P ∩ L ⊆

[
m,m+

m− ρ

q − 1

[
.

Then S satisfies Wilf’s conjecture.
Proof. It suffices to show that S satisfies the hypotheses of Theorem 7.1. First note that[

m,m+
m− ρ

q − 1

[
⊆ I1.

Indeed, we have m+ (m− ρ)/(q − 1) ≤ 2m− ρ = max I1 − 1, since

(q − 1)m+ (m− ρ) ≤ (q − 1)m+ (q − 1)(m− ρ) ≤ (q − 1)(2m− ρ).

It follows that P ∩ L = P1. Therefore, for all 2 ≤ k ≤ q − 1, we have Sk = kS1 ∩ Ik .
Consider now the following inclusions for k in this same range:

kS1 ⊆ [km, km+ k(m− ρ)/(q − 1)[ ⊆ [km, km+ (m− ρ)[ ⊆ Ik.

Then Sk = kS1. Therefore, for any integers 1 ≤ i, j ≤ q − 1 such that i + j ≤ q − 1,

Si + Sj = iS1 + jS1 = (i + j)S1 = Si+j ,

and we are done. ut

Example 7.3. Let S be a numerical semigroup with m = 1000 and c = 4000. Assume
further that all left primitives of S are contained in [1000, 1333[. Equivalently, let A ⊆
[0, 333[ be an arbitrary subset, and let

S = 〈1000+ A〉4000 = 〈1000+ A〉 ∪ [4000,∞[.

Then S satisfies Wilf’s conjecture.
Indeed, we have q = 4, ρ = 0, and P ∩ L ⊆ [1000, 1000 + 333[ by hypothesis.

Hence the above corollary applies.



2126 Shalom Eliahou

7.2. The case |L| ≤ 6

Dobbs and Matthews [7] settled Wilf’s conjecture for numerical semigroups S satisfying
|L| ≤ 4. As briefly commented below, that result easily follows from the now settled case
q ≤ 3 of the conjecture. We now informally establish Wilf’s conjecture for |L| ≤ 6, and
shall extend that result to the case |L| ≤ 10 in a forthcoming publication.

Proposition 7.4. Numerical semigroups S with |L(S)| ≤ 6 satisfy Wilf’s conjecture.

Proof. By Corollary 6.5, it suffices to consider the case q ≥ 4. So, from now on, we
assume |L| ≤ 6 and q ≥ 4. Let (p1, . . . , pq−1) be the profile of S. It follows from
Proposition 4.5 and (3) that

|L| ≥ 1+ (q − 1)p1 + (q − 2)p2 + · · · + pq−1. (17)

In particular, since |L| ≤ 6, and since p1 ≥ 1 always, we must have q ≤ 6. Moreover,
p1 = 1, for if p1 ≥ 2 then |L| ≥ 7. Similarly, p2 ≤ 1, for otherwise |L| ≥ 8. Therefore,
by (17), the only profiles with 4 ≤ q ≤ 6 and compatible with |L| ≤ 6 are

(1, 1, 0), (1, 0, k), (1, 0, 0, k), (1, 0, 0, 0, k)

for some small integer k ≥ 0. We first treat the last three possibilities in one single case.

• Assume S is of profile (1, 0, . . . , 0, k) ∈ Nq−1 with q ≥ 4 and k ∈ N. We then claim

W0(S) = k(k + 1)+ ρ,

and so S satisfies Wilf’s conjecture. Indeed,

(α0, α1, . . . , αq−1) = (1, 0, . . . , 0, k),

as is easily seen. We have |P ∩ L| = 1+ k, and Proposition 4.5 yields

|L| = q + k, dq = 1+ k.

Therefore W0(S)− ρ = (1+ k)(q + k)− q(1+ k) = k(1+ k), and we are done.

• Assume now S is of profile (1, 1, 0), a slightly more delicate case. Here q = 4, |P ∩L|
= 2, and

α0 = 1, α1 = 0, α2 = 1, α3 ≤ 1, α4 ≤ 1,

as is easily seen. Thus, by Proposition 4.5,

|L| = 6+ α3, d4 = 2+ α3 + α4.

Therefore W0(S)− ρ = 2(6+ α3)− 4(2+ α3 + α4) = 4− 2α2 − 4α4. If either α3 = 0
or α4 = 0, then W0(S) − ρ ≥ 0 and we are done. However, if α3 = α4 = 1, then
W0(S) − ρ = −2. But in this case, we must have X3 = 2X2 and X4 \ P = 3X2.
Proposition 3.6 then implies ρ ≥ 2, whence W0(S) ≥ 0, and we are done again.

This settles, albeit informally, Wilf’s conjecture for |L| ≤ 6. ut

As mentioned above, we shall extend the verification of Wilf’s conjecture to the case
|L| ≤ 10 in a forthcoming publication. More precisely, we shall prove the following
result.



Wilf’s conjecture and Macaulay’s theorem 2127

Theorem 7.5. Let S be a numerical semigroup with |L(S)| ≤ 10. Then W0(S) ≥ ρ

except possibly if S has profile (1, 0, 1, 0). For that special profile, we have W0(S) ≥

ρ − 1, and if equality holds, then ρ ≥ 2. In any case, S satisfies Wilf’s conjecture.

An example where |L(S)| ≤ 10 and W0(S) = ρ − 1 is given by S = 〈5, 13〉22, for which
|L| = 7 and ρ = 3. Its profile is (1, 0, 1, 0), as expected.

The proof of Theorem 7.5, like that of Proposition 7.4, combines some general re-
ductions, in the spirit of Proposition 6.2, and some ad-hoc arguments for a few specific
profiles.

7.3. The case gcd(L(S)) ≥ 2

Sammartano [20] proved that if a numerical semigroup S satisfies e ≥ m/2, then it satis-
fies Wilf’s conjecture. Here is a straightforward consequence.

Proposition 7.6. Let S be a numerical semigroup such that gcd(L(S)) ≥ 2, i.e. all left
primitives of S have a nontrivial common factor. Then S satisfies Wilf’s conjecture.

Proof. Let k = gcd(L(S)) = gcd(P ∩ L), and assume k ≥ 2. Then Dq , the set of right
decomposable elements in Sq = Iq , is entirely contained in kN. Thus |Dq | ≤ m/k. Since

Pq = Sq \Dq

and |Sq | = m, it follows that e ≥ |Pq | ≥ m−m/k ≥ m/2. The conclusion now follows
from Sammartano’s result mentioned above. ut

As an application, it follows that all inductive numerical semigroups satisfy Wilf’s con-
jecture. These are obtained from S0 = N by applying finitely many steps of the form
S 7→ a · S ∪ (ab + N), where a, b are varying positive integers and a · S = {as | s ∈ S}.

The numerical semigroups S satisfying gcd(L(S)) ≥ 2 have an interesting geomet-
ric interpretation. Let T denote the tree of all numerical semigroups. Then a numerical
semigroup S satisfies gcd(L(S)) ≥ 2 if and only if the subtree TS ⊆ T rooted at S is
infinite.

Here are some explanations; see also [4, Theorem 10 in Section 3]. Recall first that the
root of T is N = 〈1〉, the father in T of the numerical semigroup S 6= N is the numerical
semigroup Ŝ = S ∪̇{F(S)}, and for all g ∈ N, the vertices at level g in T are all numerical
semigroups of genus g. As mentioned earlier, the down degree of S in T is the number
pq of right primitives in S. For instance, S is a leaf in TS if and only if pq = 0. Finally,
let us denote by TS the subtree of T rooted at S. For instance, TS = {S} if and only if S is
a leaf in T .

Let us now prove the above characterization. Let A = L(S) and k = gcd(A). Note
first that if T is any descendant of S, then A ⊆ T ⊆ S by construction.

• If k ≥ 2, then S has infinitely many descendants S′ in T , e.g. all S′ = 〈A〉d with
d > max(A) + 2. This is indeed an infinite collection, since if d1 < d2, the equality
〈A〉d1 = 〈A〉d2 can only occur if d1 ≡ 0 mod k and d2 = d1 + 1.
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• Conversely, if k = 1, let S0 = 〈A〉. Then S0 is a numerical subsemigroup of S, and any
descendant T of S satisfies S0 ⊆ T ⊆ S. Therefore TS is finite in this case, as desired.
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