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Abstract. We describe the statistical properties of the dynamics of the quadratic polynomials
Pα(z) = e2παiz + z2 on the complex plane, with α of high type. In particular, we show that these
maps are uniquely ergodic on their measure-theoretic attractors, and the unique invariant probabil-
ity is a physical measure describing the statistical behaviour of typical orbits in the Julia set. This
confirms a conjecture of Pérez-Marco on the unique ergodicity of hedgehog dynamics, in this class
of maps.
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Introduction

In this paper we are interested in the asymptotic distribution of the orbits of quadratic
polynomials

Pα(z) = e2παiz+ z2

acting on the complex plane, for irrational values of α.
When considering conservative dynamical systems (i.e., those preserving a smooth

density), the Ergodic Theorem ensures the existence of a basic statistical description (sta-
tionarity) of typical (with respect to Lebesgue measure) orbits, and the initial focus of
analysis tends to be the nature of the ergodic decomposition of Lebesgue measure. How-
ever, for non-conservative dynamical systems, stationarity is far from ensured in principle.
A nice situation emerges when one can identify physical measures µ, which describe the
behaviour of large subsets of the phase space, in the sense that their basins (the set of
orbits whose Birkhoff averages of any continuous observable are given by the spatial
average with respect to µ) have positive Lebesgue measure. Ideally, one would like to
be able to describe the behaviour of almost every orbit using one of only finitely many
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physical measures: indeed, that this arises frequently is the main content of the famous
Palis conjecture [Pal00].

In the case of rational maps, the analysis is rather simple in the Fatou set (in particular,
all orbits exhibit stationary behaviour), but the behaviour in the Julia set is much less well
understood. When the Julia set is not the whole Riemann sphere (e.g., for polynomial
maps), a general theorem of Lyubich [Lyu83] ensures that the ω-limit set of almost every
orbit is contained in the postcritical set PC, defined as the closure of the forward orbits of
all critical values contained in the Julia set, so it is of importance to understand the asymp-
totic distribution of orbits in the postcritical set. Particularly, if all orbits in PC admit a
common asymptotic distribution µ (i.e., the dynamics restricted to the postcritical set is
uniquely ergodic), then almost every orbit in the Julia set must have this same asymptotic
distribution, andµwill be a physical measure provided the Julia set has positive Lebesgue
measure.

Of course, in many cases the Julia sets of quadratic polynomials have zero Lebesgue
measure, and this is true in particular for almost every irrational α [PZ04]. However, it
has been shown by Buff and Chéritat [BC06, BC12] that for some irrational values of α
the Julia set of Pα has positive Lebesgue measure. Their analysis depends on a renormal-
ization approach introduced by Inou and Shishikura [IS06] to control the postcritical set
of Pα whenever α is of high type: α ∈ HTN for N suitably large. Here the class HTN is
defined in terms of the modified continued fraction expansion of α as the set of all

α = a−1 +
ε0

a0 +
ε1

a1 +
ε2

a2 + · · ·
with a−1 ∈ Z, εi = ±1 and ai ≥ N ≥ 2, i ≥ 0.

A systematic approach to study the dynamics of the quadratics Pα using Inou–Shishi-
kura renormalization has been laid out by Cheraghi [Che10]. A new analytic technique
is introduced in [Che13] to prove optimal estimates on the changes of coordinates (Fatou
coordinates) that appear in the renormalization. These have led to numerous important re-
sults on the dynamics of the quadratics Pα with α of high type. In particular, the combina-
tion of [Che10] and [Che13] provides a detailed geometric description of the postcritical
sets PC(Pα) (implying zero area), and explains the topological behaviour of the orbits of
these maps. Here, we make use of the Inou–Shishikura renormalization as well as of the
optimal estimates on the changes of coordinates established in [Che10, Che13] in order
to describe the asymptotic distribution of the orbits of Pα .

Main Theorem 0.1 (unique ergodicity). There exists N ≥ 2 such that for α ∈ HTN ,
Pα : PC(Pα)→ PC(Pα) is uniquely ergodic.

For the rest of this section, we fix N as in the previous theorem.

Corollary 0.2. For every α ∈ HTN , if J (Pα) has positive Lebesgue measure then the
map Pα : J (Pα) → J (Pα) admits a unique physical measure, which describes the be-
haviour of almost every orbit in J (Pα).
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While the use of the Inou–Shishikura renormalization operator of course restricts the
set of parameters that we can address, it is believed that some renormalization operator
with similar qualitative features should be available through the whole class of irrational
numbers, so the arguments developed here might eventually be applied to the general
case. Irrational rotations of dynamically significant types such as bounded type, Brjuno,
non-Brjuno, Herman, non-Herman, and Liouville are present inHTN . Less speculatively,
considering the class HTN is enough to conclude (due to the work of Buff–Chéritat)
that Corollary 0.2 is indeed meaningful, in the sense that it applies non-trivially to some
quadratic polynomials.

In order to identify precisely the unique invariant measure on the postcritical set,
we need to discuss in more detail the dynamics of the maps Pα near the origin. One can
identify two basic cases with fundamentally different behaviour, distinguished by whether
zero belongs to PC(Pα) or not, which turns out to depend on the local dynamics of Pα
at zero. The map Pα is called linearizable at zero if there exists a local conformal change
of coordinate φ fixing zero and conjugating Pα to the rotation of angle 2πα around zero:
Rα ◦ φ = φ ◦ Pα on the domain of φ, where Rα(z) = e2παiz. It was a nontrivial problem
to determine the values of α for which Pα is linearizable. We refer the interested reader
to [Mil06] for its rich history, and only need to mention that the answer to this problem
depends on the arithmetic nature of α. For Lebesgue almost every α ∈ [0, 1] such a
linearization exists, and on the other hand, for a generic choice of α ∈ [0, 1], Pα is
not linearizable. When Pα is linearizable at zero, the maximal domain on which Pα is
conjugate to a rotation is called the Siegel disk of Pα .

By a result of Mañé [Mañ87], the orbit of the critical point is recurrent, and when
Pα is linearizable, this orbit accumulates on the whole boundary of the Siegel disk, while
when Pα is not linearizable, the orbit accumulates on zero. In either case, this allows us
to construct natural invariant measures supported in the postcritical set: in the lineariz-
able case, one takes the harmonic measure on the boundary of the Siegel disk, viewed
from zero, while in the non-linearizable case, one takes the Dirac mass at the origin. It
is worth pointing out that Buff and Chéritat construct examples of Julia sets of positive
Lebesgue measure in both linearizable and non-linearizable cases, so there are indeed
physical measures of both types.

Theorem 0.1 implies that there is no periodic point in PC(Pα), except possibly zero.
Here, we prove an interesting property of the dynamics of linearizable maps, a counterpart
of the small cycle property of non-linearizable quadratics obtain by Yoccoz [Yoc95b].
That is, when Pα is not linearizable at 0, every neighbourhood of 0 contains infinitely
many periodic cycles of Pα .

Main Theorem 0.3 (asymptotic cycles). When Pα is linearizable at 0 for some
α ∈ HTN , every neighbourhood of the Siegel disk of Pα contains infinitely many periodic
cycles of Pα .

We also prove

Main Theorem 0.4. For every α ∈ HTN , Pα : PC(f )→ PC(f ) is one-to-one.
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Our results can also be seen as providing insight into the dynamics of so-called “hedge-
hogs”. Let f be a holomorphic germ defined on a neighbourhood of zero with f (0) = 0
and f ′(0) = e2παi for an irrational α. Pérez-Marco [PM97] introduced local invariant sets
for f , called Siegel compacta, that were used to study the local dynamics of f at zero.
More precisely, he proves that for f as above and a Jordan domain U 3 0 such that f and
its inverse are one-to-one on a neighbourhood of the closure of U , there exists a unique
compact connected invariant setK with 0 ∈ K ⊆ U andK ∩ ∂U 6= ∅. A distortion prop-
erty of the iterates of f on U is translated into the unique ergodicity of f : ∂K → ∂K ,
which was conjectured to hold in this generality. When f is not linearizable at zero, K
has no interior (∂K = K) and is called the hedgehog of f on U . In Section 4, we show
that the boundary of every Siegel compactum of Pα must be either an invariant curve in
the Siegel disk of Pα or a subset of PC(Pα). Hence, we the following partial result on this
conjecture.1

Main Theorem 0.5 (hedgehog dynamics). For every α ∈ HTN and every Siegel com-
pacta K of Pα , the map Pα : ∂K → ∂K is uniquely ergodic.

Besides the quadratic polynomials, all results of this paper also apply to maps in the Inou–
Shishikura class (see Section 1.1 for the definition) with rotation numbers of high type. In
particular, one infers the appropriately interpreted statements for a large class of rational
maps.

It is worth noting that PC(Pα) may have a complicated topology, such as being non-
locally connected. In [Che17], the second author establishes a complete topological de-
scription of PC(Pα) for α ∈ HTN . That is, PC(Pα) is either a closed Jordan curve, a
one-sided hairy circle, or a Cantor bouquet.

The result of Inou and Shishikura [IS06] and the analytic technique introduced in
[Che13] have led to recent major advances on the dynamics of quadratic polynomials,
and their numerous applications are still being harvested. They have been used to confirm
a fine relation between the sizes of the Siegel disks and the arithmetic of the rotation α in
[CC15], and have resulted in a breakthrough on the local connectivity of the Mandelbrot
set [CS15] (see also [CP17]). Most of the current paper is devoted to analysing the deli-
cate relation between the arithmetic of α and the geometry of the renormalization tower.
Indeed, once we carry out this analysis, the proofs of the above theorems only occupy
two to three pages each. We expect our analysis of this interaction will help answering
the remaining questions concerning the dynamics of the quadratic polynomials Pα .

1. Near-parabolic renormalization and an invariant class

1.1. Inou–Shishikura class

Consider the cubic polynomial P(z) = z(1 + z)2. We have P(0) = 0 and P ′(0) = 1.
Also, P has a critical point at cpP = −1/3 which is mapped to the critical value at
cvP = −4/27, and another critical point at −1 which is mapped to zero.

1 The conjecture was announced at several workshops around 1995. It has been mistakenly re-
ported in [Yoc99, Section 3.4] that it has been proved in full generality by R. Pérez-Marco. However,
our communication with him confirms that there was never any proof of this statement.
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Consider the filled-in ellipse

E =
{
x + iy ∈ C

∣∣∣∣
(
x + 0.18

1.24

)2

+
(
y

1.04

)2

≤ 1
}
,

and let

U = g(Ĉ \ E), where g(z) = − 4z
(1+ z)2 . (1.1)

The domain U contains 0 and cpP , but not the other critical point of P at −1.
Following [IS06], we define the class of maps

IS =
{
h = P ◦ ϕ−1 : Uh→ C

∣∣∣∣
ϕ : U → Uh is univalent onto, ϕ(0) = 0, ϕ′(0) = 1,
and ϕ has a quasi-conformal extension onto C

}
.

Every map h in IS has a fixed point of multiplier one at 0, and a unique critical point
at cph = ϕ(−1/3) ∈ Uh with cvh = −4/27. Elements of IS have the same covering
structure as the one of P on U .

For α ∈ R, let Rα denote the rotation of angle α about zero: Rα(z) = e2παiz. By
precomposing the elements of IS with rotations Rα , α ∈ R, we define the classes of
maps

ISα = {h ◦ Rα | h ∈ IS}.
Let us also normalize the quadratic family to the form

Qα(z) = e2παiz+ 27
16e

4παiz2,

so that it has a fixed point of multiplier e2παi at zero, and its critical value is −4/27.
Consider a holomorphic map h : Domh → C, where Domh denotes the domain of

definition (always assumed to be open) of h. Given a compact set K ⊂ Domh and an
ε > 0, a neighbourhood of h (in the compact-open topology) is defined as the set of
holomorphic maps g : Dom g → C such that K ⊂ Dom g and |g(z) − h(z)| < ε for
all z ∈ K . Then a sequence hn : Domhn → C, n = 1, 2, . . . , converges to h if for
every neighbourhood of h defined as above, hn is contained in that neighbourhood for
sufficiently large n. Note that the maps hn are not necessarily defined on the same set.

Every h ∈ ISα , with h(z) = f0(e
2παiz) for some f0 ∈ IS and α ∈ R, fixes 0 with

multiplier h′(0) = e2παi. Provided α is small enough and non-zero, h has a non-zero fixed
point in Domh, denoted by σh, that has split from 0 at α = 0. The fixed point σh depends
continuously on f0 and α, with asymptotic expansion σh = −4παi/f ′′0 (0) + o(α) as
α → 0. Clearly, σh → 0 as α → 0. Indeed, the choices of the domain U and the
polynomial P guarantee (using the area theorem) that f ′′0 (0) is uniformly bounded away
from 0.

Lemma 1.1 ([IS06]). The set {h′′(0) | h ∈ IS} is relatively compact in C \ {0}.
We summarize the basic local dynamics of maps in ISα , for small α, in the following
theorem. See Figure 1.
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cph

cvh

0

σh

Fig. 1. The domain Ph and the special points associated to some h ∈ ISα . The map8h sends each
coloured croissant to an infinite vertical strip of width one.

Theorem 1.2 (Inou–Shishikura [IS06]). There exists α∗ > 0 such that for every map
h : Uh → C in ISα ∪ {Qα} with α ∈ (0, α∗], there exist a Jordan domain Ph ⊂ Uh and
a univalent map 8h : Ph→ C satisfying the following properties:

(a) The domain Ph is bounded by piecewise smooth curves and is compactly contained
in Uh. Moreover, cph, 0, and σh belong to the boundary of Ph, while cvh belongs to
the interior of Ph.

(b) 8h(Ph) contains the set {w ∈ C | Rew ∈ (0, 1]}.
(c) Im8h(z)→+∞ as ph 3 z→ 0, and Im8h(z)→−∞ as Ph 3 z→ σh.
(d) 8h satisfies the Abel functional equation on Ph, that is,

8h(h(z)) = 8h(z)+ 1 whenever z and h(z) belong to Ph.

(e) The map 8h satisfying the above properties is unique, once normalized by setting
8h(cph) = 0. Moreover, the normalized map 8h depends continuously on h.

In the above theorem and in the following statements, if h = Qα , the Uh is taken to be C.
The class IS is denoted by F1 in [IS06]. The properties listed in the above theorem

follow from [IS06, Theorem 2.1 and Main Theorems 1 and 3]. We state some crucial geo-
metric properties of the domains Ph in the following proposition. See [Che10, Prop. 1.4]
or [BC12, Prop. 12] for different proofs of it.

Proposition 1.3 ([Che10], [BC12]). There exist α′∗ > 0 and positive integers k,k′ such
that for every map h : Uh → C in ISα ∪ {Qα} with α ∈ (0, α′∗], the domain Ph ⊂ Uh in
the above theorem may be chosen to satisfy the additional properties:

(a) there exists a continuous branch of argument defined on Ph such that

max
w,w′∈Ph

|arg(w)− arg(w′)| ≤ 2πk′,

(b) 8h(Ph) = {w ∈ C | 0 < Rew < α−1 − k}.
The map8h : Ph→ C obtained in the above theorem is called the perturbed Fatou coor-
dinate, or the Fatou coordinate for short, of h. In this paper, by this coordinate we mean
the map 8h : Ph → C, where Ph satisfies the extra properties in the above proposition.
See Figure 1.
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1.2. Near-parabolic renormalization

Let h : Uh → C be in ISα ∪ {Qα}, with α ∈ (0, α′∗], and let 8h : Ph → C denote the
Fatou coordinate of h defined in the previous section. Define

Ch = {z ∈ Ph | 1/2 ≤ Re8h(z) ≤ 3/2, −2 < Im8h(z) ≤ 2},
C]h = {z ∈ Ph | 1/2 ≤ Re8h(z) ≤ 3/2, 2 ≤ Im8h(z)}.

(1.2)

By definition, cvh ∈ int(Ch) and 0 ∈ ∂(C]h). We also assume that α is small enough that
1/α − k ≥ 3/2 (see (1.8)). See Figure 2.

Sh

C−1
h

(C♯
h
)−1

b
bcph cvh

b b bb b
1 1

α − k
−2

8

8h◦h◦kh◦8−1
h

e2π iw

b

R′(h)

0

h

b

b

Fig. 2. The figure shows the sets Ch, C]h, . . . , C
−kh
h

, (C]
h
)−kh , and the sector Sh. The induced map

8h ◦ h◦kh ◦ 8−1
h

projects via e2π iw to a well-defined map R(h) on a neighbourhood of 0. The
amoeba curve around 0 is a large number of iterates of cph under h.

Assume for a moment that there exists a positive integer kh, depending on h, such that
the following four properties hold:

• For every integer k with 1 ≤ k ≤ kh, there exists a unique connected component of
h−k(C]h) which is compactly contained in Domh and contains 0 on its boundary. We
denote this component by (C]h)

−k .
• For every integer k with 1 ≤ k ≤ kh, there exists a unique connected component of
h−k(Ch) which has non-empty intersection with (C]h)

−k , and is compactly contained in
Domh. This component is denoted by C−kh .
• The sets C−khh and (C]h)

−kh are contained in2

{z ∈ Ph | 1/2 < Re8h(z) < 〈1/α〉 − k− 1/2}.
2 The notation 〈r〉 stands for the integer closest to r ∈ R.
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• The maps h : C−kh → C−k+1
h , for 2 ≤ k ≤ kh, and h : (C]h)−k → (C]h)

−k+1, for
1 ≤ k ≤ kh, are univalent. The map h : C−1

h → Ch is a degree two proper branched
covering.

Let kh denote the smallest positive integer for which the above conditions hold, and define

Sh = C−khh ∪ (C]h)−kh .
Consider the map

Eh = 8h ◦ h◦kh ◦8−1
h : 8h(Sh)→ C. (1.3)

By the functional equation in Theorem 1.2(d), Eh(z + 1) = Eh(z) + 1 when both z
and z + 1 belong to the boundary of 8h(Sh). Hence, Eh projects via z = −4

27 e
2π iw to a

map R(h) defined on a set containing a punctured neighbourhood of 0. However, zero is
a removable singularity of this map, and one can see that R(h) must be of the form

z 7→ e2π −1
α

iz+O(z2)

near zero. The map R(h), restricted to the interior of −4
27 e

2π i(8h(Sh)), is called the near-
parabolic renormalization of h. We may simply refer to the near-parabolic renormaliza-
tion as renormalization for short.3 Note that 8h maps the critical value of h to 1, and the
projection w 7→ −4

27 e
2π iw maps integers to −4/27. Thus, the critical value of R(h) is

−4/27. See Figure 2.
Define

V = P−1(B
(
0, 4

27e
4π )) \ ((−∞,−1] ∪ B) (1.4)

where B is the component of P−1(B
(
0, 4

27e
−4π )) containing −1. By an explicit calcula-

tion (see [IS06, Prop. 5.2]) one can see that the closure of U is contained in the interior
of V . See Figure 3.

The following theorem [IS06, Main Thm. 3] guarantees that the above definition of
renormalization R can be carried out for certain perturbations of maps in IS. In particular,
this implies the existence of kh satisfying the four properties needed for the definition of
renormalization.

Theorem 1.4 (Inou–Shishikura). There exists a constant α∗ > 0 such that if h ∈ ISα
with α ∈ (0, α∗], then R(h) is well-defined and belongs to the class IS−1/α . That is, there
exists a univalent map ψ : U → C with ψ(0) = 0 and ψ ′(0) = 1 such that

R(h)(z) = P ◦ ψ−1(e
−2π
α

iz), ∀z ∈ ψ(U) · e 2π
α

i.

Furthermore, ψ : U → C extends to a univalent map on V .
Similarly, for α ∈ (0, α∗], R(Qα) is well-defined and belongs to IS−1/α .

3 Inou and Shishikura give a somewhat different definition of this renormalization operator using
slightly different regions Ch and C]

h
. However, the resulting maps R(h) are the same modulo their

domains of definition. More precisely, there is a natural extension of8h onto the sets C−k
h
∪(C]

h
)−k ,

for 0 ≤ k ≤ kh, such that each set 8h(C−kh ∪ (C
]
h
)−k) is contained in the union

D
]
−k ∪D−k ∪D′′−k ∪D′−k+1 ∪D−k+1 ∪D]−k+1

in the notation of [IS06, Section 5.A].
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×cvP

0×
cpP

0

−1

P

V

Fig. 3. A schematic representation of the polynomial P ; its domain and its range. Similar colours
and line styles are mapped on one another.

For h ∈ ISα or h = Qα with α ∈ [−α∗, 0), the conjugate map ĥ = s ◦ h ◦ s, where
s(z) = z is complex conjugation, satisfies ĥ(0) = 0 and ĥ′(0) = e−2παi. Since the class
IS is invariant under conjugation by s, ĥ belongs to IS−α ∪ {Q−α}. In particular, by
the above theorems the near-parabolic renormalization of ĥ is defined. Through this, we
extend the domain of definition of R to contain the maps h ∈ ISα ∪ {Qα}, α ∈ [−α∗, 0).

The near-parabolic renormalization and a small variation of Theorem 1.4 are extended
to cover unisingular holomorphic maps in [Ché14], and for cubic maps in [Yan15]. A nu-
merical study of the parabolic renormalization of Inou–Shishikura has been carried out
in [LY11].

1.3. Fatou coordinates

In this section we state some basic properties of the Fatou coordinates that will be used
throughout this paper. One may refer to [Che10] for detailed arguments. We say that a
smooth curve γ : (0, 1) → C \ {0} lands at 0 if γ (t) → 0 as t → 0. Moreover, we say
that γ lands at 0 at a well-defined angle if there is a branch of arg defined on γ (t) for
all small values of t and limt→0 arg γ (t) exists. The next proposition follows from the
estimates on Fatou coordinates in [Che10]. As it is not stated in that paper, we present a
proof in Section 3.3.

Proposition 1.5. For all h ∈ ISα ∪ {Qα} with 0 < |α| ≤ α∗ and every r ∈ [0, 1/α− k],
the curve 8−1

h (R+ ri) lands at 0 at a well-defined angle.

It follows from the above proposition that for all h ∈ ISα ∪ {Qα} with 0 < |α| ≤ α∗ the
sector Sh is bounded by piecewise smooth curves, two of which land at 0 at well-defined
angles. Then one can see that for every h ∈ ISα ∪ {Qα} with 0 < |α| ≤ α∗,

kh ≥ 2. (1.5)

On the other hand, we have the following upper bound on kh.

Proposition 1.6 ([Che10]). There exists k′′ ∈ Z such that kh ≤ k′′ for every h in ISα ∪
{Qα} with 0 < |α| ≤ α∗.
Proposition 1.7. There is a constant δ > 0 such that for every h in ISα ∪ {Qα} with
0 < |α| ≤ α∗ and every z ∈⋃kh

i=0 h
◦i(Sh)∪Ph, we have |z| ≤ 1/δ, Bδ(z) ⊂ Domh, and

Bδ(C−khh ) ⊂ Domh \ {0}.
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Proof. Fix α satisfying the hypothesis. According to Inou–Shishikura [IS06], for every
h ∈ ISα ∪ {Qα} the set

⋃kh
i=0 h

◦i(Sh) ∪ Ph is compactly contained in Domh. Indeed,
they show [IS06, Section 5.N, the value of η] that one may use the set

{z ∈ Ph | 1/2 ≤ Re8h(z) ≤ 3/2,−13 ≤ Im8h(z) ≤ 2}
in place of Ch (considered here) to define the near-parabolic renormalization of h. That is,
the corresponding preimages of this (larger) set are defined and contained in Domh. In
particular, the preimages of the set Ch ∪ C]h, up to kh, are compactly contained in Domh.
Similarly, for every h, the set C−khh is compactly contained in Domh \ {0}. By the pre-
compactness of the class ISα and the continuous dependence of 8h on h, we conclude
that there are constants δ and c satisfying the conclusion of the lemma for h in ISα∪{Qα}.
It remains to see what happens as α→ 0.

As h ∈⋃α∈(0,α∗] ISα ∪ {Qα} tends to some map h0 ∈ IS0 ∪ {Q0}, the Fatou coordi-
nate 8h tends to the attracting and repelling Fatou coordinates of h0. According to Inou
and Shishikura [IS06], the sets Ch0 , C]h0

, and their corresponding preimages are defined
for all h0 ∈ IS0 ∪ {Q0}, with Sh0 contained in the domain of the repelling Fatou coordi-
nate of h0. Moreover, these domains are compactly contained in the domain of h0. Then,
one defines the (parabolic) renormalization of h0 as in the previous section. By the work
of Inou–Shishikura, the Fatou coordinate and the renormalization depend continuously
on the map h ∈ ⋃α∈[−α∗,α∗] ISα ∪ {Qα}. This implies that there are positive constants δ
and c satisfying the properties in the lemma. As this is the only place where we use the
(parabolic) renormalization of maps in IS0 ∪ {Q0}, we do not explain this further and
refer the reader to [IS06] for more details. ut
Let h ∈ ISα ∪ {Qα} with 0 < |α| < α∗. Define

D′h := 8h(Ph) ∪
kh+〈1/α〉−k−2⋃

j=0

(8h(Sh)+ j).

Using the dynamics of h we may extend the domain of definition of 8−1
h .

Lemma 1.8. The map 8−1
h : 8h(Ph)→ Ph extends to a holomorphic map

8−1
h : D′h→

( kh⋃

i=0

h◦i(Sh) ∪ Ph
)
\ {0}

such that for all w ∈ C with w,w + 1 ∈ D′h we have

8−1
h (w + 1) = h ◦8−1

h (w).

Proof. If z ∈ Sh, then for all integers j with 0 ≤ j ≤ kh + 〈1/α〉 − k − 2, h◦j (z)
is defined and belongs to Dom h. Indeed, since h is near-parabolic renormalizable, the
iterates z, h(z), . . . , h◦kh(z) are defined and

h◦kh(z) ∈ Ph, Re8h(h◦kh(z)) ∈ [1/2, 3/2].
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Then it follows from the conjugacy relation for 8h and Proposition 1.3 that for all j with
kh ≤ j ≤ kh + 〈1/α〉 − k− 2, h◦j (z) is defined and belongs to Ph.

Define the map 8−1
h on D′h as

8−1
h (w) =

{
8−1
h (w) if 0 < Rew < α−1 − k,

h◦j ◦8−1
h (w − j) if w ∈ 8h(Sh)+ j.

(1.6)

The conjugacy relation in Theorem 1.2(d) implies that this is a well-defined holomorphic
map on D′h, and satisfies the desired functional equation on D′h. However, 8−1

h is not
univalent on D′h. ut
Define

Exp(ζ ) = −4
27 e

2π iζ , Exp : C→ C \ {0}.
Then we may lift the maps 8−1

h : D′h → C \ {0} and s ◦ 8−1
h : D′h → C \ {0} under the

covering map Exp : C→ C \ {0}, that is, there is a map χh : D′h→ C such that

∀w ∈ Dh,
{
Exp ◦ χh(w) = 8−1

h (w) if α ∈ (0, 1/2),
Exp ◦ χh(w) = s ◦8−1

h (w) if α ∈ (−1/2, 0).

Each χh is either holomorphic or anti-holomorphic. The lift χh is determined up to trans-
lations by integers.

C

Exp
��

D′
h
s◦8−1

h

//

χh

<<

C \ {0}

C

Exp
��

D′
h

8−1
h

//

χh

<<

C \ {0}

Fig. 4. The lift χh depends on the sign of α.

Proposition 1.9. There exists an integer k̂ such that for every h ∈ ISα ∪ {Qα} with
0 < |α| ≤ α∗ and any choice of the lift χh we have

sup{|Rew − Rew′| | w,w′ ∈ χh(D′h)} ≤ k̂.
Proof. By Proposition 1.3, there is a uniform bound on the total spiral of the set Ph
about zero. By the precompactness of the class ISα , this implies that there is a uniform
bound on the total spiral of each set h◦i(Sh), for 0 ≤ i ≤ kh, about zero. (See the proof
of Proposition 1.7 for further details.) In other words, the lifts of these sets under Exp
have uniformly bounded horizontal width. Combined with the uniform bound on kh in
Proposition 1.6, this implies the existence of a constant k̂ satisfying the conclusion of the
lemma. ut
Since 8−1

h (D′h) is contained in the image of h, for any choice of the lift χh and every
w ∈ χh(D′h) we must have Imw > −2. Hence, by the above proposition, there is a
choice of χh, denoted by χh,0, such that

χh,0(D′h) ⊂ {w ∈ C | 1 ≤ Rew ≤ k̂+ 2, Imw > −2}.
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Define

Dh := 8h(Ph) ∪
kh+k̂+k+2⋃

j=0

(8h(Sh)+ j).

Lemma 1.10. For every h ∈ ISα ∪ {Qα} with 0 < |α| ≤ min{α∗, 1/(2k+ k̂+ 4.5)},
Dh ⊂ D′h.

Proof. The condition on α guarantees that 〈1/α〉 ≥ 2k+ k̂+ 4. Hence,

kh + k̂+ k+ 2 ≤ kh + 〈1/α〉 − k− 2,

and by the definitions of the sets Dh and D′h, the inclusion follows. ut
Remark 1.11. Although the above lemma easily follows from the definitions and the
condition imposed on α, it has been emphasized to make it clear where the high type
condition is used in this paper. That is, to extend 8−1

h on Dh, we need that the map h can
be iterated at least kh + k̂ + k + 2 times on Sh. This is crucial if one wishes to prove
the main theorems of this article for all rotation numbers using an invariant class under a
similar renormalization operator. Note that the constants k and k̂ depend only on the class
of maps invariant under the renormalization.

1.4. Modified continued fractions and infinitely renormalizable maps

For irrational α ∈ R, define

α0 = d(α,Z) and αi+1 = d(1/αi,Z) for i ≥ 0, (1.7)

where d denotes the Euclidean distance on R. Then, choose a−1 ∈ Z with α − a−1 ∈
(−1/2,+1/2), and ai ∈ Z with

1/αi − ai ∈ (−1/2,+1/2) for i = 0, 1, 2, . . . .

Define ε0 = 1 if α − a−1 ∈ (0, 1/2), and ε0 = −1 if α − a−1 ∈ (−1/2, 0). Similarly, for
i = 0, 1, 2, . . . , let

εi+1 =
{

1 if 1/αi − ai ∈ (0, 1/2),
−1 if 1/αi − ai ∈ (−1/2, 0).

Note that for all i ≥ 0, αi ∈ (0, 1/2) and ai ≥ 2. It follows that α is given as the infinite
continued fraction

α = a−1 +
ε0

a0 +
ε1

a1 +
ε2

a2 + . . .

.

Recall the classHTN of high type numbers defined in the introduction. Fix an integer

N ≥ 1/α∗ + 1/2.
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Using the formula αi−1 = 1/(ai−1 + εiαi), α ∈ HTN implies that for all i ≥ 0 we have
αi ∈ (0, α∗]. We also need to assume the constant N is large enough that

N ≥ 2k+ k̂+ 4.5. (1.8)

This guarantees that for every n ≥ 0, we have αn ≤ 1/(2k + k̂ + 4.5), needed in
Lemma 1.10.

Let α ∈ HTN and fα ∈ ISα ∪ {Qα}. Define

f0 =
{
fα if ε0 = +1,
s ◦ fα ◦ s if ε0 = −1,

where s(z) = z denotes complex conjugation. Now, f0 has asymptotic rotation α0 in
(0, α∗] at 0. Then, by Theorem 1.4, we may inductively define the sequence of maps

fn+1 =
{
R(fn) if εn+1 = −1,
s ◦R(fn) ◦ s if εn+1 = +1.

Let Un = Ufn denote the domain of definition of fn for n ≥ 0. It follows that, for every
n ≥ 1,

fn : Un→ C, fn ∈ ISαn , fn(0) = 0, f ′n(0) = e2παni.

The reason for considering the above notion of continued fraction instead of the stan-
dard one is that the set of high type numbers in this expansion is strictly bigger than
the set of high type numbers in the standard expansion. It is the nature of near-parabolic
renormalization that makes this notion of continued fraction more suitable to work with.

2. Symbolic dynamics near the attractor

2.1. Changes of coordinates

Recall the sequence of maps fn, n ≥ 0, defined in Section 1.4. In this section we shall
define some changes of coordinates between the dynamic planes of these maps. Because
of the complex conjugation s that appears in the definition of fn, extra care is needed in
defining these changes of coordinates.

For n ≥ 0, let 8n = 8fn denote the Fatou coordinate of fn : Un → C defined on the
set Pn = Pfn (see Theorem 1.2, Proposition 1.3 and the definition after them).

For every n ≥ 0, let Cn and C]n denote the corresponding sets for fn defined in (1.2)
(i.e., replace h by fn). Denote by kn the smallest positive integer with

S0
n = C−knn ∪ (C]n)−kn ⊂ {z ∈ Pn | 1/2 < Re8n(z) < an − k− 1/2}.

By definition, the critical value of fn is contained in f ◦knn (S0
n). For each n ≥ 0 we define

Dn := 8n(Pn) ∪
kn+k+k̂+2⋃

j=0

(8n(S
0
n)+ j).
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With h = fn in Section 1.3 and Lemma 1.10, we have holomorphic maps

8−1
n : Dn→ Dom fn \ {0}

such that
8−1
n (w + 1) = fn ◦8−1

n (w)

for all w and w + 1 in Dn.
We denote the corresponding lifts χfn,0 by χn,0. Then, for n ≥ 1,

∀w ∈ Dn,
{
Exp ◦ χn,0(w) = 8−1

n (w) if εn = −1,
Exp ◦ χn,0(w) = s ◦8−1

n (w) if εn = +1,

and

χn,0(Dn) ⊂ {w ∈ C | 1 ≤ Rew ≤ k̂+ 2, Imw > −2} ⊂ 8n−1(Pn−1). (2.1)

Each χn,0 is either holomorphic or anti-holomorphic, depending on the sign of εn. Define
χn,i = χn,0 + i for i ∈ Z. The condition (1.8) on α implies that for all n ≥ 1 and all
integers i with 0 ≤ i ≤ an−1, we have

χn,i : Dn→ Dn−1. (2.2)

Indeed, we show in the next lemma that a stronger form of inclusion holds.

Lemma 2.1. There exists a constant δ0 > 0, depending only on the class IS, such that
for every n ≥ 1 and every i with 0 ≤ i ≤ an−1, we have

∀w ∈ χn,i(Dn), Bδ0(w) ⊂ Dn−1.

Proof. By (2.1), χn,0(Dn) ⊂ Dn−1. By Proposition 1.7, Bδ(8−1
n (Dn)) is contained in

the domain of fn and Exp ◦8n−1(S
0
n−1) = Dom fn. This implies that there is a uniform

constant δ0 such that
Bδ0(χn,0(Dn)) ⊂ 8n−1(S

0
n−1)+ Z.

On the other hand, by the first inclusion in (2.1) and the lower bound on kn in (1.5), for
all n ≥ 1, all integers i with 0 ≤ i ≤ an, and all w ∈ χn,i(Dn) we must have

1 ≤ Rew ≤ k̂+ 2+ an ≤ k̂+ kn + an < (an − k− 1/2)+ kn + k+ k̂+ 1/2.

This finishes the proof of the proposition by making α0 less than or equal to 1/2. ut
For n ≥ 1, define ψn : Pn→ Pn−1 as

ψn = 8−1
n−1 ◦ χn,0 ◦8n.

Each ψn is a holomorphic or anti-holomorphic map, depending on the sign of εn, and
extends continuously to 0 ∈ ∂Pn by mapping it to 0. Define the compositions

91 = ψ1 : P1 → P0,

92 = ψ1 ◦ ψ2 : P2 → P0,

9n = ψ1 ◦ · · · ◦ ψn : Pn→ P0 for n ≥ 3.
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These are holomorphic or anti-holomorphic maps, depending on the sign of
(−1)nε1 . . . εn.

For every n ≥ 0 and i ≥ 2, define the sectors

S1
n = ψn+1(S

0
n+1) ⊂ Pn, Sin = ψn+1 ◦ · · · ◦ ψn+i(S0

n+i) ⊂ Pn for i ≥ 2.

All these sectors contain 0 on their boundaries. For the reader’s convenience, the lower
index of each map ψn, 9n, χn,i determines the level of its domain of definition, that is,
for example, ψn is defined on a set that is on the dynamic plane of fn. Similarly, the set
Sin is contained in the dynamic plane of fn (and is at depth i). However, we shall mainly
work with S0

i and Si0 for i ≥ 0.
There are two collections of changes of coordinates ψn and 9n, for n ≥ 1, as well as

χn,i , for n ≥ 1 and 0 ≤ i ≤ an, that function in parallel. The former are more convenient
for the combinatorial study of the dynamics of the map using the tower of maps fn.
This is presented in Sections 2.2 and 2.3. The latter set of changes of coordinates are
more suitable for the analytic aspects of the associated problems. This analysis appears
in Section 3. The relations between the two collections are discussed in Section 2.4.

2.2. Orbit relations

By the definition of renormalization, iterating R(h) once corresponds to iterating h sev-
eral times, via the changes of coordinates between the dynamic planes of h and R(h).
This is made more precise in the next lemma.

Lemma 2.2. Let n ≥ 0 and z ∈ Pn be a point with w = Exp ◦ 8n(z) ∈ DomR(fn).
There exists an integer `z with 1 ≤ `z ≤ an − k+ kn − 1/2 such that

• the orbit z, fn(z), f ◦2n (z), . . . , f
◦`z
n (z) is defined, and f ◦`zn (z) ∈ Pn;

• Exp ◦8n(f ◦`zn (z)) = R(fn)(w).
Proof. Since w ∈ DomR(fn), R(fn)(w) is defined. By the definition of renormaliza-
tion, there are ζ ∈ 8n(S0

n) and ζ ′ ∈ 8n(Cn ∪ C]n) such that

Exp(ζ ) = w, Exp(ζ ′) = R(fn)(w), ζ ′ = 8n ◦ f ◦knn ◦8−1
n (ζ ).

Since Exp(8n(z)) = w, there exists an integer ` with

−kn + 1 ≤ ` ≤ an − k− 1/2

such that 8n(z)+ ` = ζ .
By the functional equation in Theorem 1.2(d), we have

ζ ′ = 8n ◦ f ◦knn ◦8−1
n (ζ ) = 8n ◦ f ◦knn ◦8−1

n (8n(z)+ `) = 8n ◦ f ◦kn+`n (z).

Letting `z = kn + `, we have

1 ≤ `z ≤ kn + an − k− 1/2, f
◦`z
n (z) = 8−1

n (ζ ′) ∈ Pn,

Exp ◦8n(f ◦`zn (z)) = Exp ◦8n(8−1
n (ζ ′)) = Exp(ζ ′) = R(fn)(w). ut
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On the practical side, if εn = −1, then R(fn) = fn+1 and the above lemma holds for
fn+1 instead of R(fn). If εn = +1, then one may replace R(fn) by fn+1 and w by s(w)
in the above lemma.

It should be clear that there are many choices for `z in the above lemma. We need
precise formulas relating the number of iterates on consecutive renormalization levels.
This may be achieved by imposing some condition on the beginning and termination
point of an orbit of fn that reduces to one iterate of R(fn). Here, we require an orbit
of fn to start and terminate in ψn+1(Pn+1). Then combining these relations for several
values of n, we relate appropriate iterates of f0 to one iterate of fn, through the change
of coordinates 9n.

Let Rα denote the rotation of angle 2πα about 0: Rα(z) = e2παiz, z ∈ C. The closest
return times of Rα are a sequence of positive integers q0 < q1 < q2 < · · · defined as
follows. Let q0 = 1, q1 = a0, and for i ≥ 1, qi+1 is the smallest integer greater than qi−1
such that

|R◦qi+1
α (1)− 1| < |R◦qiα (1)− 1|.

Define
P ′n = {w ∈ Pn | 0 < Re8n(w) < α−1

n − k− 1}.
We have fn(P ′n) ⊂ Pn.

Lemma 2.3. For every n ≥ 1 we have

(a) f ◦an−1
n−1 ◦ ψn(w) = ψn ◦ fn(w) for every w ∈ P ′n,

(b) f ◦(knan−1+1)
n−1 ◦ ψn(w) = ψn ◦ f ◦knn (w) for every w ∈ S0

n .

Lemma 2.4. For every n ≥ 1 we have

(a) f ◦qn0 ◦9n(w) = 9n ◦ fn(w) for every w ∈ P ′n,

(b) f ◦(knqn+qn−1)
0 ◦9n(w) = 9n ◦ f ◦knn (w) for every w ∈ S0

n ,
(c) similarly, for everym < n−1, fn : P ′n→ Pn and f ◦knn : S0

n → Cn∪C]n are conjugate
to some iterates of fm on ψm+1 ◦ · · · ◦ ψn(Pn).

To find the correct number of iterates in the above lemmas, we compare the maps fn near
0 to the rotations of angle 2παn about 0. That is, the relations hold near zero, and hence
must hold on the region where the equations are defined. For a detailed proof of the above
two lemmas one may refer to [Che10] or [Che13].

2.3. Petals covering the postcritical set

For every n ≥ 1, we define

Ina =
kn+an−k−2⋃

i=0

f
◦(iqn)
0 (Sn0 ), Inb = f ◦qn−1

0 (Ina ).

Note that by (1.5) we have kn ≥ 2 for all n ≥ 1. Set

In = Ina ∪ Inb .
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The set In defined through the above mechanism has some crucial dynamical properties.
We investigate these in the remainder of this section.

Lemma 2.5. For every n ≥ 1, the sets Ina , Inb , and In are connected subsets of C. More-
over, each of them is bounded by piecewise smooth curves two of which land at 0 at
well-defined angles.

Proof. By Proposition 1.5, the set S0
n is bounded by piecewise smooth curves two of

which land at 0 at well-defined angles. Moreover, one of these boundary curves is mapped
to the other by fn. Combining this with Lemma 2.4, we conclude that Sn0 = 9n(S

0
n) is

bounded by piecewise smooth curves two of which land at 0 at well-defined angles, and
one boundary curve is mapped to the other by f ◦qn0 . In particular, each f ◦iqn0 (Sn0 ) is de-
fined and is a connected set. Moreover, the consecutive sets f ◦iqn0 (Sn0 ) and f ◦(i+1)qn

0 (Sn0 )

share a boundary curve. This implies that Ina is a connected set bounded by piecewise
smooth curves landing at 0 at well-defined angles. Clearly, Inb = f ◦qn−1

0 (Ina ) must enjoy
the same properties.

It remains to show that In is a connected set. There is a point z in the interior of S0
n

(sufficiently close to 0) and an integer i with kn ≤ i ≤ an + kn − k − 2 such that w =
f ◦in (z) ∈ S0

n . The points z′ = 9n(z) and w′ = 9n(w) belong to Sn0 . Using Lemma 2.4,

we conclude that f ◦(qn−1+iqn)
0 (z′) = w′. Thus,

w′ ∈ Sn0 ⊂ Ina , w′ ∈ f ◦qn−1
0 ◦ f ◦iqn0 (Sn0 ) ⊂ Inb .

This implies that Ina and Inb intersect, and so their union is connected. ut
For n ≥ 1, define

ϒn =
qn−1⋃

i=0

f ◦i0 (I
n) ∪ {0}.

The sets Sn0 are bounded by piecewise smooth curves two of which land at zero at well-
defined angles. Comparing f0 with the rotation of angle 2πα0 near 0, one can verify that
ϒn contains a neighbourhood of 0.

When f ∈ ISα ∪ {Qα} is linearizable at 0,1(f ) denotes the Siegel disk of f centred
at 0, and when it is not linearizable at 0 we define 1(f ) as the empty set.

Some similarly defined unions of sectors, denoted by �n0 , have been studied in
[Che10, Che13] in detail. Indeed, each ϒn involves qn − 1 more iterates of Sn0 than the
set �n0 . This modification is made to achieve some nice combinatorial features that were
not available through the sets �n0 . It is proved in [Che10, Propositions 2.4 and 4.9] that
the sets �n0 form a nest of domains shrinking to PC(f0) ∪ 1(f0). The same arguments
may be repeated here to prove this result for the domains ϒn. We shall skip repeating
these arguments here as they are not the main focus of this paper, but state them in the
next two propositions for reference. (Alternatively, one can see that for every n ≥ 2,
ϒn+1 ⊆ �n0 ⊆ ϒn−1, and therefore

⋂
n≥1ϒ

n =⋂n≥1�
n
0 .)

Recall that PC(fj ) denotes the postcritical set of fj .
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Proposition 2.6. Let α ∈ HTN . Then

(a) for every n ≥ 0,

PC(fn) ⊂
kn+an−k−2⋃

i=0

f ◦in (S0
n) ∪ {0};

(b) for every n ≥ 1,
PC(f0) ⊆ ϒn.

Proposition 2.7. Assume that f ∈ ISα ∪ {Qα} is linearizable at 0 and α ∈ HTN . Then,
for every n0 ≥ 1 we have ⋂

n≥n0

ϒn = 1(f ) ∪ PC(f )

and
∂1(f ) ⊂ PC(f ).

Proposition 2.8. For every n ≥ 1 we have

PC(f0) ∩9n(Pn) = 9n(PC(fn) ∩ Pn).
Proof. Recall that cvn denotes the critical value of fn and8n(cvn) = 1. As Exp(1) = cvn
for all n, it follows from the definition of ψn that there is a non-negative integer jn with
ψn(cvn) = f ◦jnn−1(cvn−1).

First we show that for every n ≥ 1 we have

PC(fn−1) ∩ ψn(Pn) = ψn(PC(fn) ∩ Pn).
Fix z ∈ ψn(Pn) and w ∈ Pn with ψn(w) = z. It is enough to show that z ∈ PC(fn−1) if
and only if w ∈ PC(fn).

Assume that w ∈ PC(fn). As Pn is an open set, there is an increasing sequence of
positive integers ni , for i ≥ 0, such that the iterates f ◦nin (cvn) belong to Pn and converge
to w. Then, one infers from Lemma 2.4 that there is an increasing sequence of posi-
tive integers mi such that f ◦min−1(ψn(cvn)) = ψn(f

◦ni
n (cvn)). Thus, f ◦(jn+mi )n−1 (cvn−1) =

f
◦mi
n−1(ψn(cvn)) converges to z. That is, z ∈ PC(fn−1).

Let x0 = cvn, x1, x2, . . . denote the (ordered) points in the orbit of cvn that are in Pn.
Define the sequence of positive integers li , for i ≥ 0, so that xi+1 = f ◦lin (xi). By Propo-
sition 2.6(a), for every i ≥ 0, either li = 1 or 2 ≤ li ≤ kn. For every i with li = 1 we
have ψn(xi+1) = f

◦an−1
n−1 (ψn(xn)), and by the definition of renormalization, an−1 is the

smallest positive integer s with f ◦sn−1(ψn(xn)) ∈ ψn(Pn). That is, all intermediate iterates
are outside ψn(Pn). Similarly, when some li ≥ 2 then the intermediate iterates f ◦1n (xi),
. . . , f ◦li−1

n (xi) are outside Pn. This implies that

ψn(xi+1) = f ◦(lian−1+1)
n−1 (ψn(xi)) ∈ ψn(Pn),

and lian−1 + 1 is the smallest positive integer s with f ◦sn−1(ψn(xi)) ∈ ψn(Pn).
Now assume that z ∈ PC(fn−1). As ψn(Pn) is an open neighbourhood of z, by the

above paragraph, there is an increasing sequence of integers ni such that ψn(xni ) → z.
Therefore, xni → w. That is, w ∈ PC(fn).
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The equality in the proposition holds for n = 1 by the above equation. Assume that

PC(f0) ∩9n−1(Pn−1) = 9n−1(PC(fn−1) ∩ Pn−1) (2.3)

(the induction hypothesis). As each 9n : Pn→ P0 is univalent and 9n = 9n−1 ◦ψn, we
obtain

PC(f0)∩9n(Pn) = PC(f0)∩
(
9n−1(Pn−1)∩9n−1(ψn(Pn))

)

= (PC(f0)∩9n−1(Pn−1))∩9n−1(ψn(Pn))
= 9n−1(PC(fn−1)∩Pn−1)∩9n−1(ψn(Pn)) (induction hypothesis)
= 9n−1(PC(fn−1)∩ψn(Pn))
= 9n−1(ψn(PC(fn)∩Pn)) ((2.3))
= 9n(PC(fn)∩Pn).

This finishes the proof of the proposition. ut
Lemma 2.9. For every n ≥ 1, f ◦qn0 (PC(f0) ∩ Inb ) ⊂ In.

Proof. Fix z ∈ PC(f0) ∩ Inb . By the definition of Inb , z is in f ◦qn−1
0 ◦ f ◦iqn0 (Sn0 ) for some

i with 0 ≤ i ≤ kn + an − k− 2. We consider two cases.
If i < kn + an − k− 2, then

f
◦qn
0 (z) ∈ f ◦qn−1

0 ◦ f ◦(i+1)qn
0 (Sn0 ) ⊂ Inb ⊂ In.

If i = kn + an − k− 2, then by Lemma 2.4, z is in

f
◦qn−1
0 ◦ f ◦(kn+an−k−2)qn

0 (Sn0 ) = f ◦(an−k−2)qn
0 ◦ f ◦knqn+qn−1

0 (Sn0 )

= f ◦(an−k−2)qn
0 ◦9n ◦ f ◦knn (S0

n)

= 9n ◦ f ◦(kn+an−k−2)
n (S0

n).

On the other hand, since z ∈ PC(f0) and f ◦(kn+an−k−2)
n (S0

n) ⊂ Pn, by Proposition 2.8
there is

w ∈ f ◦(kn+an−k−2)
n (S0

n) ∩ PC(fn) with 9n(w) = z.
In particular,

Re8n(w) ∈ [an − k− 3/2, an − k− 1/2].
As w ∈ PC(fn), by Proposition 2.6 its forward orbit remains in the union of the sectors
f ◦in (S0

n) for 0 ≤ i ≤ kn + an − k − 2. Hence, by the mapping property of fn on these
sectors in the definition of the renormalization, we must have w ∈ ⋃kn−1

j=0 f
◦j
n (S

0
n) ∩ Pn.

Then, by Lemma 2.4, 9n(w) ∈⋃kn−1
j=0 f

◦(jqn)
0 (Sn0 ). Therefore,

f
◦qn
0 (z) = f ◦qn0 (9n(w)) ∈

kn⋃

j=1

f
◦(jqn)
0 (Sn0 ) ⊂ Ina ⊂ In. ut

Lemma 2.10. For every n ≥ 1 and every i with 0 ≤ i ≤ qn−1 − 1 we have

f ◦i0 (f
◦(mqn)
0 (Sn0 )) ⊂ f ◦(qn−qn−1+i)

0 (Inb ), where m = kn + an − k− 2.
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Proof. It is enough to prove the inclusion for i = 0. We may rearrange the iterates as in

f
◦(mqn)
0 (Sn0 ) = f ◦(qn−qn−1)

0 (f
◦qn−1
0 ◦ f ◦((m−1)qn)

0 (Sn0 )).

On the other hand, as f ◦((m−1)qn)
0 (Sn0 ) ⊂ Ina , we have f ◦qn−1

0 ◦f ◦((m−1)qn)
0 (Sn0 ) ⊂ Inb . ut

The next proposition is the ultimate statement in this section we need for the proofs of the
main results of this paper.

Proposition 2.11. For every α ∈ HTN and every integer n ≥ 1 we have the following.
For every non-zero z ∈ PC(f0) there is an integer ` with 0 ≤ ` ≤ qn − 1 such that

(a) f ◦j0 (z) ∈ f ◦(`+j)0 (In) for all j with 0 ≤ j ≤ qn − `− 1;
(b) f ◦j0 (z) ∈ f ◦(j−qn+`)0 (In) for all j with qn − ` ≤ j ≤ qn − 1.
Proof. By Proposition 2.6, z is in ϒn. We may rewrite this set as

ϒn \ {0} =
qn−1⋃

i=0

f ◦i0 (I
n
a ∪ Inb ) =

qn−1⋃

i=0

f ◦i0 (I
n
a ) ∪

qn−1⋃

i=0

f ◦i0 (I
n
b )

=
qn−1−1⋃

i=0

f ◦i0 (I
n
a ) ∪

qn−1⋃

i=0

f ◦i0 (I
n
b )

= Ina ∪
qn−1−1⋃

i=1

f ◦i0 (I
n
a ) ∪

qn−1⋃

i=0

f ◦i0 (I
n
b ).

Now, we consider four cases.

1) If z ∈ Ina , we let ` = 0. Here, z ∈ Ina ⊂ In, and therefore we have part (a) in the
proposition. There is no j satisfying (b).

2) If z ∈ f ◦i0 (I
n
b ) for some i with 0 ≤ i ≤ qn − 1, we let ` = i. Then z ∈ f ◦`0 (Inb ) ⊂

f ◦`0 (In), and hence (a) holds. On the other hand, since z ∈ f ◦`0 (Inb ), by Lemma 2.9 we
have f ◦(qn−`)0 (z) ∈ f ◦qn0 (Inb ) ⊂ In. This implies (b).

It remains to prove the proposition for z ∈ ⋃qn−1−1
i=1 f ◦i0 (I

n
a ). Fix i with z ∈ f ◦i0 (I

n
a ).

We consider two cases.

3) If z ∈ f ◦i0 (f
◦(mqn)
0 (Sn0 )) for some m with 0 ≤ m ≤ kn + an − k − 3, then with

` = i, we have z ∈ f ◦`0 (Ina ) ⊂ f ◦`0 (In). This implies (a).
On the other hand,

f
◦(qn−`)
0 (z) ∈ f ◦qn0 (f

◦(mqn)
0 (Sn0 )) = f ◦((m+1)qn)

0 (Sn0 ) ⊂ Ina ⊂ In,
which yields (b).

4) If z ∈ f ◦i0 (f
◦(mqn)
0 (Sn0 )) for m = kn + an − k − 2, we let ` = qn − qn−1 + i.

By Lemma 2.10, z ∈ f ◦`0 (Inb ) ⊂ f ◦`0 (In), and hence (a) holds. On the other hand, by
Lemma 2.9, z ∈ f ◦`0 (Inb ) implies that

f
◦(qn−`)
0 (z) ∈ f ◦qn0 (Inb ) ⊂ In,

giving (b). ut
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2.4. Lifts versus iterates

In this section we give an alternative definition of the sectors In, and their forward iterates,
in terms of the lifts χn,i . We give an alternative definition in Proposition 2.13 which makes
later arguments simpler.

Lemma 2.12. For every n ≥ 1 and every integer i with 0 ≤ i ≤ kn+ an−k− 2 we have

(a) 8n−1 ◦ f ◦(ian−1)
n−1 (S1

n−1) ⊂ {w ∈ C | −2 < Imw, 0 ≤ Rew ≤ k̂+ 2};

(b) 8n−1 ◦ f ◦(ian−1+1)
n−1 (S1

n−1) ⊂ {w ∈ C | −2 < Imw, 1 ≤ Rew ≤ k̂+ 3};

(c) f ◦(iqn)0 (Sn0 ) = 8−1
0 ◦ χ1,0 ◦ χ2,0 ◦ · · · ◦ χn−1,0 ◦8n−1 ◦ f ◦(ian−1)

n−1 (S1
n−1);

(d) f ◦(iqn+qn−1)
0 (Sn0 ) = 8−1

0 ◦ χ1,0 ◦ χ2,0 ◦ · · · ◦ χn−1,0 ◦8n−1 ◦ f ◦(ian−1+1)
n−1 (S1

n−1).

Proof. (a) Fix n ≥ 1. We consider two cases:

Case 1: Assume that i satisfies 0 ≤ i ≤ kn. First, by an inductive argument we show that
for all w ∈ S0

n ,

f
◦(ian−1)
n−1 ◦ ψn(w) = 8−1

n−1 ◦ χn,0(8n(w)+ i). (2.4)

Note that for all w ∈ S0
n we have 8n(w)+ i ∈ Dn, and hence the right hand side of (2.4)

is defined. Moreover, the right hand side is either a holomorphic or an anti-holomorphic
function of w.

By definition, ψn = 8−1
n−1 ◦ χn,0 ◦8n, and hence (2.4) holds for i = 0.

Assume that (2.4) holds for all integers less than or equal to some 0 ≤ i < kn. We
wish to show that it holds for i + 1. For |w| small enough, the left hand side is defined
for i + 1. Moreover, for w on a smooth curve on ∂S0

n landing at 0 there is w′ on ∂S0
n with

fn(w
′) = w. By Lemma 2.3 for w′, we obtain

f
◦((i+1)an−1)
n−1 ◦ ψn(w′) = f ◦(ian−1)

n−1 ◦ ψn(w)
= 8−1

n−1 ◦ χn,0(8n(w)+ i) = 8−1
n−1 ◦ χn,0(8n(w′)+ 1+ i).

That is, (2.4) holds for i + 1 on a curve landing at 0 on S0
n . Hence, by uniqueness of

analytic continuation, it must hold for w ∈ S0
n close to 0. On the other hand, by the open

mapping property of holomorphic and anti-holomorphic maps, the set of points on which
the equality holds forms an open and closed subset of S0

n . This implies that the equality
must hold on S0

n .
Equation (2.4) and S1

n−1 = ψn(S0
n) imply that 8n−1 ◦ f ◦(ian−1)

n−1 (S1
n−1) is contained in

χn,0(Dn). Combining this with the inclusion in (2.1), we deduce (a) for these values of i.

Case 2: Assume that i satisfies kn ≤ i ≤ kn + an − k − 2. For all such i we have
f ◦in (w) ∈ Pn, and by Lemma 2.3,

f
◦(ian−1+1)
n−1 (ψn(w)) = ψn(f ◦in (w)) = 8−1

n−1 ◦ χn−1,0 ◦8n(f ◦in (w)).
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Therefore, it follows from (2.1) that

8n−1(f
◦(ian−1+1)
n−1 (ψn(w))) ⊂ χn−1,0(8n(Pn)) ⊂ χn−1,0(Dn)

⊂ {w ∈ C | −2 < Imw, 1 ≤ Rew ≤ k̂+ 2}.
Hence, the relation 8n−1 ◦ fn−1(z) = 8n1(z) + 1 implies (a) for these values of i (i.e.
1 is replaced by 0).

(b) By the restriction in (1.8) on the rotation, we have k̂ + 3 ≤ α−1
n − k − 1. This

implies that the sets f ◦(ian−1)
n−1 (S1

n−1) and f ◦(ian−1+1)
n−1 (S1

n−1) are contained in P ′n−1. As
8n−1 conjugates fn−1 to the translation by 1 on P ′n−1, (b) follows from (a).

(c) Recall the changes of coordinate ψn = 8n−1 ◦ χn,0 ◦ 8n, and their composi-
tions 9n, for n ≥ 1. It follows from (a) that for every w ∈ S1

n−1, 8n−1 ◦ f ◦(ian−1)
n−1 (w)

is contained in the domain of χn−1,0. Thus, 9n−1 ◦ f ◦(ian−1)
n−1 (w) is defined. On the other

hand, by Lemma 2.4(b), for every w ∈ Sn0 , f ◦knqn+qn−1
0 (w) is defined and Re f ◦knn (w) ∈

[1/2, 3/2]. In particular, for every i with 0 ≤ i ≤ kn, f ◦(iqn)0 (w) is defined. Then
Lemma 2.4(a) implies that for all w ∈ Sn0 and all i with kn ≤ i ≤ an + kn − k − 2,
f
◦(iqn)
0 (w) is defined.

We want to show that

f
◦(iqn)
0 ◦9n(w) = 9n−1 ◦ f ◦(ian−1)

n−1 ◦ ψn(w), w ∈ S0
n,

for all i as in the lemma. The set S0
n is bounded by piecewise smooth curves two of which

land at 0 where one boundary curve is mapped to another by fn. By Lemma 2.3, S1
n−1

is bounded by piecewise smooth curves, one of which is mapped to another by f an−1
n−1 .

Similarly, by Lemma 2.4 the set Sn0 is bounded by piecewise smooth curves, one of which
is mapped to another by f ◦qn0 . These imply that the above equation, for each i, is valid
on a boundary curve of S0

n . Hence the above equation holds on a curve on the boundary
of S0

n . By the uniqueness of holomorphic and anti-holomorphic continuations, the above
equation must hold on the connected set S0

n .
(d) By (b), the set 8n−1 ◦ f ◦(ian−1+1)

n−1 (S1
n−1) is contained in the domain of

χn−1,0. Thus, the right hand side of the equality is defined. On the other hand, since
f
◦(ian−1+1)
n−1 (S1

n−1) is contained in P ′n−1, the equality follows from (c) and the conjugacy
relation in Lemma 2.4(a). ut
Define

Jn−1 =
1⋃

j=0

kn+an−k−2⋃

i=0

f
◦(ian−1+j)
n−1 (S1

n−1), n ≥ 1.

By Lemma 2.12, for all n ≥ 1, we have

8n−1(Jn−1) ⊂ {w ∈ C | −2 < Imw, 1 ≤ Rew ≤ k̂+ 3} ⊂ Dn−1, (2.5)

and
In = 8−1

0 ◦ χ1,0 ◦ χ2,0 ◦ · · · ◦ χn−1,0 ◦8n−1(Jn−1) = 9n−1(Jn−1).
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Proposition 2.13. For every n ≥ 1 and every i with 0 ≤ i ≤ qn, there are integers ij
with 0 ≤ ij ≤ aj−1, for 1 ≤ j ≤ n, such that

∀w ∈ Jn−1, f
◦i
0 (9n−1(w)) = 8−1

0 ◦χ1,i1 ◦χ2,i2 ◦ · · · ◦χn−1,in−1(8n−1(w)+ in). (2.6)

In particular,

f ◦i0 (I
n) = 8−1

0 ◦ χ1,i1 ◦ χ2,i2 ◦ · · · ◦ χn−1,in−1(Jn−1 + in).
Proof. The latter statement follows from the former. For the former, first we need to show
that both sides of (2.6) are defined. Fix n ≥ 1. By (2.5) and (1.8), for all integers in with
0 ≤ in ≤ an−1, we have

8n−1(Jn−1)+ in ⊂ Dn−1.

Hence, χn−1,in−1 is defined on 8n−1(Jn−1)+ in. Now,

χn−1,in−1(8n−1(Jn−1)+ in) ⊂ χn−1,in−1(Dn−1).

Combining the above inclusion with (2.1), we conclude that for all integers in−1 with
0 ≤ in−1 ≤ an−2,

χn−1,in−1(8n−1(Jn−1)+ in) ⊆ Dn−2.

Therefore,
χn−2,in−2 ◦ χn−1,in−1(8n−1(Jn−1)+ in)

is defined. Continuing, one infers that the right hand side of (2.6) is defined. On the
other hand, since fn−1 may be iterated at least an−1 times on Jn−1, and Jn−1 ⊂ Pn−1,
Lemma 2.4 implies that f0 may be iterated at least an−1qn−1 + qn−2 = qn times on
9n−1(Jn−1) = In. Thus, for all such i, the left hand side of (2.6) is defined.

By the conjugacy property of the coordinates 8−1
m on Dm, each composition on the

right hand side of (2.6) corresponds to some non-negative iterate of f0 on the left hand
side. Comparing f0 with the rotation Rα0 near zero, one can see that for all given i there
are integers ij as in the proposition such that the equality holds near 0. By uniqueness of
analytic continuation, it must hold on the connected set Jn−1. ut
Remark 2.14. All the lemmas and propositions in Sections 2.3 and 2.4 hold for all maps
f ∈ ISα with α ∈ HTN . That is, f need not be a quadratic polynomial.

3. Geometry of the renormalization tower and the arithmetic of α

3.1. Nearby sectors

Recall the sequence of numbers αi , i ≥ 0, defined in (1.7). Let β0 = 1 and βk =
∏k
i=1 αi ,

k ≥ 1. The irrational number α is called a Brjuno number if

∞∑

j=0

βj−1 logα−1
j < +∞.
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An equivalent characterization of Brjuno numbers in terms of best rational approximants
of α is ∞∑

j=0

q−1
j log qj+1 < +∞.

For a detailed study of the Brjuno function see [MMY01]. By the Siegel–Brjuno–Yoccoz
theorem [Sie42, Brj71, Yoc95b] the quadratic map Qα is linearizable at 0 if and only
if α is a Brjuno number. This optimality result has been extended to the maps in ISα ,
α ∈ HTN , in [Che10] (see the Remark 3.3). See also [Yoc95a, Rog98, Zak99, Gey01,
Zha11].

In this section we analyse the sizes of the sectors f ◦i0 (I
n), 0 ≤ i ≤ qn−1, defined in

Section 2.3. Our ultimate goal is to prove the following two propositions.
For δ > 0 let Bδ(0) denote the open disk of radius δ centred at 0. For every n ≥ 1 and

δ > 0 define

G(n, δ) = {i ∈ Z | 0 ≤ i ≤ qn − 1, f ◦i0 (I
n) ⊂ Bδ(0)}.

Let |X| denote the cardinality of a set X.

Proposition 3.1. Let α be a non-Brjuno number in HTN . Then, for every δ > 0,

lim sup
n→∞

|G(n, δ)|
qn

= 1.

Indeed, we state and prove a stronger statement in Proposition 3.19. However, as we
show in Section 4, the above statement is enough to derive unique ergodicity (stated in
the introduction) for non-Brjuno values of α.

For Brjuno values of α, let 1(fi) denote the Siegel disk of fi , i ≥ 0. The δ-neigh-
bourhood of 1(f0) is denoted by Bδ(1(f0)). Given n ∈ N and δ > 0, define

H(n, δ) = {i ∈ Z | 0 ≤ i ≤ qn − 1, f ◦i0 (I
n) ⊂ Bδ(1(f0))}.

Proposition 3.2. For every Brjuno α ∈ HTN we have the following:

(a) for every δ > 0,

lim sup
n→∞

|H(n, δ)|
qn

= 1;
(b) for every ε > 0 there are n0 ∈ Z and δ0 > 0 such that for every n ≥ n0 and every

δ < δ0 we have

∀k ∈ H(n, δ), diam(f ◦k0 (In) \1(f0)) ≤ ε.
When δ is small, the setsH(n, δ)may be empty for small values of n, but eventually they
become non-empty by (a) of the above proposition.

The remainder of this section is devoted to the proofs of the above propositions. The
argument has two flavours: an arithmetic part and an analytic part. Readers interested in
the proofs of unique ergodicity using the above propositions may safely skip the rest of
this section and go directly to Section 4.
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Remark 3.3. In [Che10] it is proved that for every δ > 0 the sets G(n, δ) and H(n, δ)
are non-empty for large values of n. The analysis presented in this paper uses an improved
distortion estimate on the Fatou coordinates 8n that has been established in [Che13], but
was not available at the time of writing [Che10].

3.2. An arithmetic lemma

Consider the sequence of numbers αi , i ≥ 0, and let

β0 = 1, βk =
k∏

i=1

αi, k ≥ 1.

Fix B ∈ R and define

Bk,k = −2, k = 0, 1, 2, . . . ,

Bk,i−1 = αiBk,i + logα−1
i − B, 1 ≤ i ≤ k. (3.1)

For T ≥ 0 and integers l ≥ 0 define

L(α, T , l) = {k ∈ {l + 1, l + 2, . . . } | Bk,i ≥ T α−1
i for l < i < k}.

By definition, l + 1 ∈ L(α, T , l) as there is no condition to be satisfied. Hence, every
L(α, T , l) is a non-empty set.

Lemma 3.4. For every irrational α and every B ≥ 0,

(a) for every k ≥ 0,

Bk,0 ≤
k∑

i=1

βi−1 logα−1
i ≤ Bk,0 + 2B + 2;

(b) if α is non-Brjuno, then for every T ∈ R, the set L(α, T , 0) has infinite cardinality;
(c) if α is a Brjuno number such that for some T ≥ 0 and every l ≥ 0, the set L(α, T , l)

has finite cardinality, then

lim inf
j→∞

lim
m→∞(Bm,j − T α

−1
j ) < +∞.

Items (a) and (b) of the above lemma, when one starts with Bk,k = 0 instead of −2 in
(3.1) and B = T , appear in [Yoc95b, Section 1.6]. The same argument works here as
well. For completeness, and due to their use in (c), we present a proof of these items here.

Proof. (a) First, by reverse induction we will show that for every k ≥ 1,

Bk,i−1 = −2β−1
i−1βk + β−1

i−1

k∑

j=i
βj−1(logα−1

j − B), 1 ≤ i ≤ k. (3.2)

For i = k the formula becomes

Bk,k−1 = −2β−1
k−1βk + β−1

k−1βk−1(logα−1
k − B) = −2αk + logα−1

k − B,
which is valid by (3.1). Now assume that (3.2) holds for i = m+ 1. Then, by (3.1),
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Bk,m−1 = αmBk,m + logα−1
m − B

= αm
(
−2β−1

m βk + β−1
m

k∑

j=m+1

βj−1(logα−1
j − B)

)
+ logα−1

m − B

= −2β−1
m−1βk + β−1

m−1

k∑

j=m
βj−1(logα−1

j − B),

which finishes the proof of the induction step.
In particular, for i = 1 formula (3.2) becomes

Bk,0 = −2βk +
k∑

j=1

βj−1 logα−1
j − B

k∑

j=1

βj−1.

On the other hand, since each αi is in (0, 1/2), we have

k∑

j=1

βj−1 ≤
∞∑

j=1

(1/2)j−1 = 2. (3.3)

The above two relations prove the first part of the lemma.
(b) Assume on the contrary that L(α, T , 0) has finite cardinality for some T ∈ R. Let

k0 denote the largest element in L(α, T , 0).
Given an integer N0 > k, define the integers N0 > N1 > · · · > Nr ≤ k0 according to

BNl−1,Nl < T α−1
Nl

for l = 1, . . . , r.

By (3.2) for k = Nl−1 and i = Nl + 1, the above inequality implies that

Nl−1∑

j=Nl+1

βj−1(logα−1
j − B) = βNlBNl−1,Nl + 2βNl−1 ≤ TβNl−1 + 2βNl−1 .

Adding the above sums together for l = 1, . . . , r , we obtain

N0∑

j=Nr+1

βj−1 logα−1
j ≤ 2

r∑

l=1

βNl−1 + T
r∑

l=1

βNl−1 + B
N0∑

j=Nr+1

βj−1.

As N0 →∞, using the bound in (3.3), we conclude that

∞∑

j=k0+1

βj−1 logα−1
j ≤ 2(2+ T + B),

contradicting our assumption on the type of α.
(c) Define `0 = 0 and

j̀+1 = maxL(α, T , j̀ ) for j ≥ 0.

By definition, `k+1 ≥ `k + 1, and hence limk→+∞ `k = +∞.
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Since α is a Brjuno number, by (3.2) and the uniform bound in (3.3), for every i ≥ 0,
limm→+∞ Bm,i exists and is finite. We claim that for every k ≥ 0,

lim
m→+∞Bm,`k − T α

−1
`k

is uniformly bounded from above independently of k. This will imply (c).
First we will show that

∀j ≥ 0, B
j̀+1, j̀ < T α−1

j̀
. (3.4)

Indeed, otherwise for some j ≥ 0 we have

B
j̀+1, j̀ ≥ T α−1

j̀
≥ −2 = B

j̀ , j̀ .

Then, by (3.1) and the definition of j̀ , for all i with j̀−1 < i < j̀ we must have

B
j̀+1,i ≥ B j̀ ,i ≥ T α−1

i .

However, this contradicts the choice of j̀ = maxL(α, T , j̀−1) since j̀+1 > j̀ and
satisfies the inequality B

j̀+1,i > T α−1
i for all j̀−1 < i < j̀+1.

Fix k ∈ N and let n > k. Recall that Bk,k = −2 for k ≥ 0. By (3.4), for every j with
k + 1 ≤ j ≤ n we have

|B
j̀ , j̀−1 − B j̀−1, j̀−1 | < T α−1

j̀−1
+ 2.

Then, recursively multiplying the above inequality by αi and then adding and subtracting
logα−1

i − B within the absolute value, for i = j̀−1, . . . , `k + 1, we arrive at

|B
j̀ ,`k − B j̀−1,`k | < (T α−1

j̀−1
+ 2)α

j̀−1α j̀−1−1 . . . α`k+1 = Tβ j̀−1−1β
−1
`k
+ 2β

j̀−1β
−1
`k
.

Then, by the triangle inequality,

|B`n,`k − B`k,`k | ≤
n∑

j=k+1

|B
j̀ ,`k − B j̀−1,`k |

≤
n∑

j=k+1

(Tβ
j̀−1−1β

−1
`k
+ 2β

j̀−1β
−1
`k
)

≤ T α−1
`k
+ T

∞∑

j=k+2

(β
j̀−1−1β

−1
`k
)+ 2

∞∑

j=0

βj

≤ T α−1
`k
+ 2T + 4.

It follows that for every n > k,

B`n,`k − T α−1
`k
≤ 2T + 4+ 2.

If m /∈ {`k, `k+1, `k+2, . . . }, choose n with `n−1 < m < `n. By the definition of `n,

B`n,m ≥ T α−1
m > Bm,m.

This implies that
Bm,`k − T α−1

`k
≤ B`n,`k − T α−1

`k
≤ 2T + 6.
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All in all, we have shown that for all m ≥ `k we have the uniform bound

Bm,`k − T α−1
`k
≤ 2(T + 2)+ 2.

This finishes the proof of (c). ut

3.3. Estimates on Fatou coordinates

To control the geometry of the sectors f ◦i0 (I
n) for 0 ≤ i ≤ qn − 1 through Proposi-

tion 2.13, we need some estimates on the Fatou coordinates. In this section we assemble
two crucial estimates, a global one and an infinitesimal one, that we need for the analysis
in this paper.

Recall the Fatou coordinate 8h : Ph → C of a map h ∈ ISα , α ∈ (0, α∗], from
Theorem 1.2. We denote the non-zero fixed point of h that lies on the boundary of Ph
by σh. Consider the covering map

Th(w) = σh

1− e−2παwi : C→ Ĉ \ {0, σh}. (3.5)

The map Th commutes with translation by 1/α.
The connected components of T −1

h (Ph) are simply connected sets that are disjoint
from Z/α. Moreover, the projection of each such component onto the imaginary axis
covers the whole imaginary axis. In particular, we denote by P̃h the connected component
of T −1

h (Ph) that separates 0 from 1/α. We may lift the map 8−1
h : Dh→ C \ {0, σh} to a

map Lh : Dh→ C such that

Th ◦ Lh(ζ ) = 8−1
h (ζ ), ∀ζ ∈ Dh. (3.6)

The above lifts are determined up to translation by an element of Z/α. We choose the one
that maps 8h(Ph) to P̃h. In other words, Lh is the unique extension of Th ◦8h, mapping
8h(Ph) to P̃h.

Recall the lift
χh,0 : Dh→ C

defined in Section 1.3. We need to control the derivative of this map.
One may lift h via Th to obtain a holomorphic map Fh defined on Lh(Dh). Indeed,

the lift is univalent on P̃h and has a univalent extension onto a larger set. The map Fh
on P̃h is close to translation by 1, with explicit estimates that can be worked out using
classical distortion estimates on h. It follows that L−1

h conjugates Fh to translation by 1,
and it is a classical non-trivial problem to prove estimates on Lh and in particular |L′h−1|,
depending on the bounds on |Fh(w)− (w+1)|. One may refer to [Yoc95b, Shi98, Shi00,
Che10, Che13] for further details. Then, through the factorization of 8−1

h to Lh ◦ Th one
obtains estimates on 8h. The following estimates are the finest estimates known to us.
They have been established in [Che10] and [Che13].

Proposition 3.5 ([Che10]). For every D ∈ R there exists M > 0 such that for all h in
ISα ∪ {Qα} with 0 < α ≤ α∗ we have

∀ζ ∈ Dh with Im ζ ≥ D/α, |Lh(ζ )− ζ | ≤ M log(1+ 1/α).
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Proposition 3.6 ([Che13]). For all D > 0 there exists M > 0 such that for all h in
ISα ∪ {Qα} with 0 < α ≤ α∗ the following holds. For all ζ ∈ Dh satisfying Im ζ ≥ D/α
we have

|χ ′h,0(ζ )− α| ≤ Mαe−2πα Im ζ .

Remark 3.7. Proposition 3.5 is stated as Proposition 5.15 in [Che10]. In the notation of
[Che10], xh ≥ yh (by definition), and by [Che10, Proposition 5.14], yh ≥ α−1 − k. That
is, the inequality in Proposition 3.5 is proved for ζ ∈ 8h(Ph). On the other hand, for
ζ ∈ Dh \8h(Ph) one uses the equation Fh ◦Lh(ζ ) = Lh(ζ + 1) and the uniform bounds
on Fh to bound Lh(ζ ) − ζ . Since the number of iterates of Fh involved is uniformly
bounded (by k′′ + k + k̂ + 2), the estimate also holds on Dh. Note that the condition
α < α2 in that proposition is already incorporated in Proposition 1.3 of this paper under
the constant α′∗. Hence, we do not impose any further condition on α here.

Proposition 3.6 stated above is proved in [Che13, Proposition 3.3]. Indeed, the latter
proves a stronger statement where the dependence of M on D is established and the
inequality holds on a larger domain. The latter part of Proposition 3.6 follows from the
proof of [Che13, Proposition 3.3].

Proof of Proposition 1.5. Fix r ∈ [0, 1/α − k]. The curve t 7→ 8−1
h (t + ri) lands at 0

at a well-defined angle as t → +∞ if and only if limt→+∞ Reχh,0(t + ri) exists and is
finite. We use Proposition 3.6 withD = 1 to obtain a constantM1 and the estimate on the
derivative of χh,0 above the horizontal line 1/α. For all t1 > t2 ≥ 1/α we have

|Reχh,0(t1 + ri)− Reχh,0(t2 + ri)| ≤
∫ t1

t2

M1αe
−2παt dt ≤ M1

2π
e−2παt2 .

Since e−2παt2 → 0 as t2 → +∞, we conclude that Reχh,0(t + ri) tends to a finite limit
as t →+∞. ut
Recall the sets Dn defined in Section 2.1. Let ρn(z)|dz| denote the Poincaré metric
on Dn, i.e. the hyperbolic metric of constant curvature −1. The changes of coordinates
χn,i : Dn→ Dn−1 have the following nice property with respect to these metrics.

Lemma 3.8. There exists a constant ρ ∈ (0, 1) such that for every n ≥ 1 and all inte-
gers i with 0 ≤ i ≤ ai , we have ‖χ ′n,i‖ ≤ ρ, where the norm is calculated with respect to
the hyperbolic metrics on Dn and Dn−1.

The above lemma appears in [Che10], and is also proved here for the reader’s conve-
nience.

Proof. Let ρ̃n(z)|dz| denote the Poincaré metric on χn,i(Dn). We may decompose the
map χn,i : (Dn, ρn)→ (Dn−1, ρn−1) as follows:

(Dn, ρn)
χn,i−−→ (χn,i(Dn), ρ̃n)

inc.
↪−→ (Dn−1, ρn−1).

By the Schwarz–Pick Lemma, the first map in the above chain is non-expanding. Hence,
it is enough to show that the inclusion map is uniformly contracting in the respective
metrics. For this, we use Lemma 2.1, which provides us with δ > 0, independent of n
and i, such that the δ-neighbourhood of χn,i(Dn) is contained in Dn−1.
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To prove the uniform contraction, fix ξ0 in χn,i(Dn), and consider the map

H(ξ) := ξ + δ(ξ − ξ0)

ξ − ξ0 + 2k̂+ 1
, ξ ∈ χn,i(Dn).

By Proposition 1.9, for every ξ ∈ χn,i(Dn)we have |Re(ξ−ξ0)| ≤ k̂ (note that Dh ⊂ D′h).
This implies that |ξ − ξ0| < |ξ − ξ0 + 2k̂+ 1|, and hence |H(ξ)− ξ | < δ. In particular,
H is a holomorphic map from χn,i(Dn) into Dn−1. By the Schwarz–Pick Lemma, H is
non-expanding. In particular, at H(ξ0) = ξ0 we obtain

ρn−1(ξ0)|H ′(ξ0)| = ρn−1(ξ0)

(
1+ δ

2k̂+ 1

)
≤ ρ̂n(ξ0).

That is,

ρn−1(ξ0) ≤
(

2k̂+ 1

2k̂+ 1+ δ

)
ρ̂n(ξ0).

As ξ0 was arbitrary, this finishes the proof of the lemma. ut

3.4. Geometry of sectors on level n

First we need the following basic property of the maps in ISα ∪ {Qα}.
Lemma 3.9. There exists a constant C1 > 0 such that for all α ∈ (0, α∗] and h ∈
ISα ∪ {Qα} we have

C−1
1 α ≤ |σh| ≤ C1α.

Proof. The non-zero fixed point of Qα has the form

(1− e2παi) 16
27e
−4παi.

Thus, there is an explicit constant C1 satisfying the inequalities for the map Qα . Below,
we assume that h ∈ ISα .

For every h ∈ ISα , 0 ≤ α ≤ α∗, there is a holomorphic map uh, defined on the
domain of h, such that

h(z) = z+ z(z− σh)uh(z).
The map uh depends continuously on h. Consider the set

A = {uh(0) | h ∈ ISα, 0 ≤ α ≤ α∗}.
For h ∈ ISα with α 6= 0, 0 is a simple fixed point of h and hence uh(0) 6= 0. For
h ∈ IS0, we have uh(0) = h′′(0)/2 where |h′′(0)| is uniformly bounded from above and
away from 0, by Lemma 1.1. By the precompactness of the class

⋃
α∈[0,α∗] ISα , the set

A is compactly contained in C \ {0}.
Differentiating the equation h(z) = z+ z(z− σh)uh(z) at 0 we obtain

σh = 1− e2παi

uh(0)
.

Combining this with the uniform bounds from the previous paragraph finishes the proof.
ut
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For α ∈ (0, 1/2) define

Xα = {ζ ∈ C | Im ζ ≥ −2, (1/α)2/3 ≤ Re ζ ≤ 1/α − (1/α)2/3}. (3.7)

Let M be the constant from Proposition 3.5 for D = −1, and define

X̂α =
{
w ∈ C

∣∣ Imw ≥ 2M logα, 1
2 (1/α)

2/3 ≤ Rew ≤ 1/α − 1
2 (1/α)

2/3}.
Choose δ1 > 0 such that

δ1 ≤ 1/8, δ1 ≤ (1/k)3/2,
and for all α ∈ (0, δ1] we have

−2−M log(1+ 1/α) ≥ −2M log(1/α),
1
2 (1/α)

2/3 ≤ (1/α)2/3 −M log(1+ 1/α),

1/α − (1/α)2/3 +M log(1+ 1/α) ≤ 1/α − 1
2 (1/α)

2/3.

(3.8)

Lemma 3.10. For all h ∈ ISα ∪ {Qα} with α ∈ (0, δ1], we have Lh(Xα) ⊂ X̂α .

Proof. First note that since α < 1/8, both sets Xα and X̂α are non-empty. Also, since
α ≤ (1/k)3/2, the set Xα is contained in 8h(Ph), and hence L−1

h is defined on Xh.
Now we use Proposition 3.5 with D = −1. Note that for every ζ ∈ Xα ,

Re ζ ∈ (0, 1/α − k) and Im ζ ≥ −2 ≥ −1/α.

Hence the inequality of Proposition 3.5 holds at all points in Xα , with the constant M . In
particular, the inequality implies that for all ζ ∈ Xα ,

(1/α)2/3 −M log(1+ 1/α) ≤ ReLh(ζ ) ≤ 1/α − (1/α)2/3 +M log(1+ 1/α)

and
ImLh(ζ ) ≥ −2−M log(1+ 1/α).

Now the lemma follows from the conditions imposed on δ1 in (3.8). ut
Lemma 3.11. There exists C > 0 such that for all h ∈ ISα ∪ {Qα} with α ∈ (0, δ1] the
following holds. For every z ∈ C with Exp(z) ∈ Th(X̂α), we have

Im z ≥ 1
3π

log
1
α
− C.

Proof. First note that for all w ∈ X̂α ,

−2π + πα1/3 ≤ Im(−2παwi) ≤ −πα1/3.

This implies that
|arg(e−2παwi)| ≤ πα1/3.

Using the inequality sin x ≥ 2x/π on the interval (0, π/2), as α ≤ 1/8, we conclude that

|1− e−2παwi| ≥ sin(πα1/3) ≥ 2α1/3.

On the other hand, by Lemma 3.9, |σh| ≤ C1α. Therefore, for all w ∈ X̂α , the above
inequality implies that

|Th(w)| ≤ C1

2
α2/3.
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Assume that z ∈ C and Exp(z) ∈ Th(X̂α). By the definition of Exp, the above inequality
implies that

Im z ≥ 1
2π

log
8

27C1
+ 1

2π
2
3

log
1
α
. ut

Note that the statement of the above lemma holds similarly for z ∈ C with Exp(z) ∈
s ◦ Th(X̂α).
Lemma 3.12. There exists C′ > 0 such that for all h ∈ ISα ∪ {Qα} with α ∈ (0, δ1],

1
2π

log
1
α
− C′ ≤ Imχh,0

(
1

2α
− 2i

)
≤ 1

2π
log

1
α
+ C′.

Proof. Let ζ0 = 1/(2α)− 2i. Note that ζ0 ∈ 8h(Ph) ⊂ DomLh for α ≤ 1/(2k). Using
Proposition 3.5 with D = −1, we know that

|Lh(ζ0)− ζ0| ≤ M log(1+ 1/α).

On the other hand, by the choice of δ1, M log(1+ 1/α) ≤ 1/(3α). It follows that

−2− 1
3α
≤ ImLh(ζ0) ≤ 1

3α
,

1
6α
≤ ReLh(ζ0) ≤ 5

6α
.

Then

−5π
3
≤ Im(−2παLh(ζ0)i) ≤ −π3 ,

−2π
3
≤ Re(−2παLh(ζ0)i) ≤ 4πα + 2π

3
.

Therefore,
1 ≤ |1− e−2παLh(ζ0)i)| ≤ 1+ e7π/6.

Combining the above bounds with the bounds on the size of σh in Lemma 3.9, we obtain

1
C1

1
1+ e7π/6α ≤ |Th(Lh(ζ0))| ≤ C1α.

Finally, as Exp(χh,0(ζ0)) = Th(Lh(ζ0)), we conclude that

1
2π

log
1
α
− C′ ≤ Imχh,0(ζ0) ≥ 1

2π
log

1
α
+ C′,

for some constant C′ depending only on C1. ut
In the following proposition, C′ is the constant obtained in the above lemma.

Proposition 3.13. There is δ0 > 0 such that for all h ∈ ISα ∪ {Qα} with α ∈ (0, δ0],

∀ζ ∈ Xα, Imχh,0(ζ ) ≥ 1
2

Imχh

(
1

2α
− 2i

)
+ C′.4 (3.9)

4 Here, C′ may be replaced by any constant, with δ0 depending on that constant.
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Proof. There is δ0 < δ1 such that for all α ∈ (0, δ0] we have

1
12π

log
1
α
≥ C + 3C′/2.

For all ζ in Xα , by Lemma 3.10, Lh(ζ ) belongs to X̂α . Then, by Lemma 3.11 ,

Imχh,0(ζ ) ≥ 1
2π

2
3

log
1
α
− C.

On the other hand, by Lemma 3.12,

Imχh,0

(
1

2α
− 2i

)
≤ 1

2π
log

1
α
+ C′.

Thus, we need
1

2π
2
3

log
1
α
− C ≥ 1

2

(
1

2π
log

1
α
+ C′

)
+ C′,

which is guaranteed by α ∈ (0, δ0]. ut

Lemma 3.14. We have

lim
α→0+

supw,w′∈Xα |Rew − Rew′|
1/α

= 1.

Proof. This is straightforward, since

sup
w,w′∈Xα

|Rew − Rew′| ≥ 1/α − (1/α)2/3 − (1/α)2/3

and

lim
α→0+

1/α − 2(1/α)2/3

1/α
= 1. ut

3.5. The heights of chains in the tower

Recall the maps χn,0 = χfn : Dn → Dn−1 for n ≥ 1. Given n ≥ 1 and a point ζn ∈ Dn,
define

Cn(ζn) = {〈ζj 〉0j=n | ∀j with 0 ≤ j ≤ n− 1, ζj ∈ Dj and ζj ∈ χj+1,0(ζj+1)+ Z}.
That is, members of Cn(ζn) are (ordered) sequences of length n + 1 starting with ζn
and mapping an element to the next element in the sequence by translation by some χj,0.
Given τ = 〈ζn, ζn−1, . . . , ζ0〉 in Cn(ζn), for every k ∈ {n, n−1, . . . , 0}we define τk = ζk .
We aim to study the behaviour of the sequences 〈Im τj 〉0j=n, for τ in Cn(t), as t varies
in Dn. This heavily depends on the arithmetic of α.

For Brjuno values of α, let1(fj ), for j ≥ 0, denote the Siegel disk of fj . Then define

1̃(fj ) = 8j (1(fj ) ∩ Pj ) for j ≥ 0.

Also, recall the bi-sequence Bn,j defined in Section 3.2.
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0 .5 ( 1
α

) 2
3 1

α − .5

T −1
Qα

◦ Exp

∼ 2
3

1
2π

log 1
α

∼ 1
2π

log 1
α

Fig. 5. The lower part shows a dark grey rectangle [(1/α)2/3, 1/α − (1/α)2/3] + i[0, .5/α], and
two light grey rectangles [.5, 1/α)2/3] + i[0, .5/α] and [1/α − (1/α)2/3, 1/α − .5] + i[0, .5/α].
The top figure shows some of the lifts of these rectangles under T−1

Qα
◦Exp. The dark grey rectangle

lifts to periodic regions above the approximate height 1
2π

2
3 log 1

α , up to an additive constant. The
lift of the line segment between (.5, 0) and (.5, .5/α) lifts to the black curves separating different
lifts. Here, α = 1/1000 and the choice of .5 is only to make the pictures clearer.

Proposition 3.15. There are constants B and M in R satisfying the following. Let Bk,i
be the bi-sequence defined in (3.1) with the constant B, and let ζn = 1/(2αn)− 2i. Then

(a) for all α ∈ HTN and every integer n ≥ 1 there exists τ ∈ Cn(ζn) such that for all j
with 0 ≤ j ≤ n− 1,

Bn,j ≤ Im τj ≤ Bn,j +M;
(b) if α is a Brjuno number, for every j ≥ 0 we have

∣∣∣ lim
n→∞Bn,j − max

w∈∂1̃(fj )
Imw

∣∣∣ < M.

Proof. (a) By the condition (1.8) on the rotation numbers αn we have

1
αn
− k− 1

2αn
≥ k̂

2
+ 5

2
≥ 3.
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Hence,

ζn = 1
2αn
− 2i ∈ 8n(Pn) ⊂ Dn, ∀n ≥ 1. (3.10)

Inductively define the sequence ζj , for n− 1 ≤ j ≤ 0, such that

ζj ∈ χj+1,0(ζj+1)+ Z and Re ζj ∈
[

1
2αj
− 1

2
,

1
2αj
+ 1

2

]
.

The above condition on the rotation implies that ζj ∈ Dj for all j with 0 ≤ j ≤ n− 1. In
particular, τ = 〈ζj 〉0j=n belongs to Cn(ζn).

Note that for every j ≥ 0, the set 8−1
j (Dj ) is contained in the image of fj , because

fj (
⋃kj
i=0 f

◦i
j (S

0
j )∪Pj ) covers this set. By the definition of renormalization, the image of

each fj , j ≥ 1, is equal to the disk of radius e4π4/27 about zero. In particular, 8−1
n (ζn)

is contained in the image of fn. This implies that Im ζn−1 ≥ −2. Continuing inductively,
we conclude that Im ζj ≥ −2 for all j with 0 ≤ j ≤ n. In particular, for all such j ,

Im ζj ≥ −1/α.

Let Lj denote the map Lfj introduced in (3.6). By the above inequality, we may apply
Proposition 3.5 with D = −1 to obtain M1 ∈ R such that for 0 ≤ j ≤ n,

Lj (ζj ) ∈ B(ζj ,M1 log(1+ 1/αj )).

Then, by a basic estimate there is a constant M2 depending only on M1 such that for
0 ≤ j ≤ n,

M−1
2 e−2παj Im ζj ≤ |1− e−2παj iLj (ζj )| ≤ M2e

−2παj Im ζj .

Now, the uniform bounds in Lemma 3.9 imply that there exists a constant M3 depending
only on M2 and C1 such that for 0 ≤ j ≤ n,

M3αj e
−2παj Im ζj ≤ |8−1

j (ζj )| ≤ M3αj e
−2παj Im ζj .

As Exp ζj−1 = 8−1
j (ζj ) or Exp ζj−1 = s ◦8−1

j (ζj ), an explicit estimate on Exp implies
that there is M4 ≥ 0 such that for 0 ≤ j ≤ n,

αj Im ζj + log
1

αj−1
−M4 ≤ Im(ζj−1) ≤ αj Im ζj + log

1
αj−1

+M4. (3.11)

Note that the constant M4 depends only on the class IS.
Let B = M4, that is, the constant used in the definition of the bi-sequence Bk,j . By

reverse induction (from j = n to j = 0) we now show that

Bn,j ≤ Im ζj ≤ Bn,j + 4M4

(
1+

n∑

i=j

n∏

l=i+1

αl−1

)
. (3.12)



2040 Artur Avila, Davoud Cheraghi

For j = n, (3.12) reduces to Bn,n = −2 ≤ Im ζn ≤ −2 (there is no sum), which holds
by the definition of ζn. Assume that (3.12) holds for j . Multiplying both sides of (3.12)
by αj , then adding log(1/αj ) and subtracting B we come up with

αjBn,j + log
1

αj−1
− B ≤ αj Im ζj + log

1
αj−1

− B

and

αj Im ζj + log
1

αj−1
− B ≤ αjBn,j + log

1
αj−1

− B + 4αjM4

(
1+

n∑

i=j
β−1
i βn

)
.

By the definition of the bi-sequence and (3.11), the first inequality above provides

Bn,j−1 ≤ αj Im ζj + log
1

αj−1
− B ≤ Im ζj−1,

and similarly the second inequality gives

Im(ζj−1) ≤ αj Im ζj + log
1

αj−1
+M4

≤ αj Im ζj + log
1

αj−1
− B + 2M4

≤ Bn,j−1 + 4αjM4

(
1+

n∑

i=j
β−1
i βn

)
+ 2M4

= Bn,j−1 + 4M4

(
αj +

n∑

i=j−1

β−1
i βn

)
+ 2M4

≤ Bn,j−1 + 4M4

(
1+

n∑

i=j−1

β−1
i βn

)
.

In the last inequality we have used αj + 1/2 ≤ 1. This finishes the proof of the induction
step.

Finally, since αj ∈ (0, 1/2) for all j , we have

4M4

(
1+

n∑

i=j
β−1
i−1βn−1

)
≤ 4M4

(
1+

n∑

i=j

(
1
2

)n−i)

≤ 4M4

(
1+

∞∑

i=0

(
1
2

)i)
≤ 12M4.

The above bound combined with (3.12) implies (a), that is, we define M = 12M4.
(b) By (3.1), for every j ≥ 0, limn→∞ Bn,j exists and

∣∣∣ lim
n→∞Bn,j − β

−1
j

∞∑

i=j
βi logα−1

i+1

∣∣∣ ≤ Bβ−1
j

∞∑

i=j
βi ≤ 2B.
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Each fj , j ≥ 0, belongs to the class ISαj and must be univalent on B(0, 1/12). That is be-
cause the polynomial P is univalent on B(0, 1/3) and by the 1/4-theorem, ϕ(B(0, 1/3))
contains B(0, 1/12). By the classical result of Yoccoz [Yoc95b], there is a uniform con-
stantC > 0 (independent of j ) such that the ball of radiusC exp(−β−1

j

∑∞
i=j βi logα−1

i+1)

about 0 is contained in 1(fj+1). Since 1(fj+1) lifts under Exp to the set 1̃(fj )+ Z, we
have

max
w∈∂1̃(fj )

Imw ≤ 1
2π

log
4

27C
+ 1

2π
β−1
j

∞∑

i=j
βi logα−1

i+1.

Indeed, one may recover the lower bound of Yoccoz from the estimates in (a), which we
briefly sketch here. In (a) we have chosen the branches of the lifts χj,0 + Z (the ones
at the centre) to obtain the highest possible imaginary parts. That is, all other choices
lead to smaller imaginary parts. This implies that all the sets ϒn, similarly defined for fj ,
contain the ball of radius C′′ exp(−β−1

j

∑∞
i=j βi logα−1

i+1) centred at 0, for some uniform
constant C′′. Since Proposition 2.7 holds for all maps fj , with appropriately defined ϒn,
one concludes that 1(fj ) must contain the disk of that radius.

On the other hand, we need to prove an upper bound on the size of the biggest ball
that fits into the Siegel disk of fj in terms of the above infinite series. This upper bound
is proved in [Che10]; we briefly present the argument below for the reader’s convenience.
Another proof of the upper bound, which only works when fj is a quadratic polynomial,
is given in [BC04].

Fix j ≥ 0 and let n > j . Let τ ∈ Cn(ζn) denote the sequence obtained in (a). Consider
the sequence τ ′ ∈ Cn(〈1/(2αn)〉) defined along the same branches determining τ ; that is,
for each i with 1 ≤ i ≤ n, if ζi−1 = χi,l(ζi) for some integer l then τ ′i−1 = χi,l(τ

′
i ).

The point 8−1
n (τ ′n) is in the forward orbit of the critical point of fn. It follows from the

proof of Proposition 2.13 that 8−1
j (τ ′j ) is in the forward orbit of the critical point of fj .

In particular, 8−1
j (τ ′j ) is not in the Siegel disk of fj . By definition, τ ′j /∈ 1̃(fj ).

By the uniform contraction in Lemma 3.8 and the uniform inclusion in Lemma 2.1,
we conclude that provided n is sufficiently large, |Im ζj − Im τ ′j | ≤ 1. Thus, by (a),
Im τ ′j ≥ Bn,j − 1. (Alternatively, one may repeat the estimates in the proof of (a) for
the sequence τ ′ to obtain estimates as in (3.12) for τ ′.) Combining this with the previous
paragraph, we obtain

max
w∈∂1̃(fj )

Imw ≥ Im τ ′j ≥ Bn,j − 1.

In particular,
max

w∈∂1̃(fj )
Imw − lim

n→∞Bn,j ≥ −1.

This finishes the proof of (b). ut
By Proposition 3.6 with D = 1 there is a constant M1 such that the inequality in that
proposition holds. In particular, for every D ≥ 1, the inequalities hold with the con-
stant M1. This implies that we may choose D ≥ 1 such that with the corresponding



2042 Artur Avila, Davoud Cheraghi

constant M from the proposition, for every α ∈ (0, 1/2) we have
∫ ∞

D/α

Mαe−2παt dt = M

2π
e−2πD ≤ 1/2, (3.13)

∫ 1/α+k′′+k+k̂+2

0
Mαe−2πD dt = Mαe−2πD(1/α + k′′ + k+ k̂+ 2) ≤ 1/2. (3.14)

Lemma 3.16. With the constant D obtained above we have the following. If for some
positive integers m < n there exists τ ∈ Cn(1/(2αn)− 2i) satisfying

Im τj ≥ D + 2
αj

, ∀j with m ≤ j ≤ n− 1,

then for every τ ′ ∈ Cn(1/(2αn)− 2i) we have

|Im τ ′j − Im τj | ≤ 2, ∀j with m− 1 ≤ j ≤ n− 1.

Proof. Let τ ∈ Cn(1/(2αn) − 2i) satisfy the hypotheses, and τ ′ ∈ Cn(1/(2αn) − 2i) be
arbitrary. By induction we will show that for 0 ≤ j ≤ n− 1 we have

|Im τ ′j − Im τj | ≤ 1+
n−1∑

k=j+1

β−1
j βk. (3.15)

First note that since αi ∈ (0, 1/2) for all i ≥ 0, we have

1+
n−1∑

k=j+1

β−1
j βk ≤ 1+

n−1∑

k=1

βk ≤ 1+
∞∑

k=1

1
2k
≤ 2.

For j = n−1, we have τ ′n−1 ∈ χn,0(ζn)+Z, and hence Im τ ′n−1 = Im τn−1. Therefore,
(3.15) holds for j = n− 1.

Assume (3.15) holds for some j . By the assumption in the lemma we have Im τj ≥
(D + 2)/αj , and so by the induction assumption,

Im τ ′j ≥ (D + 2)/αj − 2 ≥ D/αj .
Let γj be a piecewise smooth curve in Dj that lies above the horizontal line passing
through Di/αj and connects τj to τ ′j . We may choose γj to consist of a horizontal line

segment of length at most 1/αj + k′′ + k+ k̂+ 2 and a vertical line segment of length at
most 2. Then

|Im(τj−1 − τ ′j−1)| =
∣∣∣∣Im

∫

γj

χ ′j,0 dz
∣∣∣∣ ≤ Im

∫

γj

|χ ′j,0 − αj | dz+
∣∣∣∣Im

∫

γj

αj dz

∣∣∣∣

≤ 1/2+ 1/2+ αj |Im(τj − τ ′j )|,
where in the last inequality we have used (3.13) and (3.14). Combining this with the
induction hypothesis we obtain (3.15) for j − 1. ut
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3.6. Proof of Proposition 3.1

Recall the set Jn defined in Section 2.4 and the set Xαn defined in Section 3.4. Consider
the set

Gn = {j ∈ Z | f ◦jn (Jn) ⊂ Pn, 8n(f ◦jn (Jn)) ⊂ Xαn}.

Lemma 3.17. For every ε > 0, there exists δ > 0 such that if αn ≤ δ for some n ≥ 1,
then

|Gn|
an + 1

> 1− ε. (3.16)

Proof. Recall that the set 8n(Jn) satisfies (2.5). Hence, by Proposition 1.3, for every
positive integer j ≤ an − k − k̂ − 3, 8n(Jn) + j is contained in 8n(Pn). In particular,
for all such j , f ◦jn (Jn) is defined and is contained in Pn.

On the other hand, for all integers j such that

(1/αn)2/3 ≤ j + 1 and k̂+ 2+ j ≤ (1/αn)− (1/αn)2/3,
we have 8n(Jn) + j ⊂ Xαn . Therefore, all such integers j are in Gn. Since the number
of integers in a closed interval of length l is at least l − 1, we conclude that

|Gn| ≥ (1/αn)− (1/αn)2/3 − k̂− 2− (1/αn)2/3 − 1− 1

≥ (1/αn)− 2(1/αn)2/3 − k̂− 4.

Since
(1/αn)− 2(1/αn)2/3 − k̂− 4

〈1/αn〉 + 1
→ 1 as αn→ 0,

the statement of the lemma follows. ut
Recall the notation β0 = 1 and βk =∏k

i=1 αi for k ≥ 1. Also, recall the bi-sequenceBn,j ,
defined in 3.1. Consider the sets

W n
j =

{
w ∈ Dj

∣∣ Imw ≥ Bn,j − 1
2β
−1
j βn−1 log(1/αn)− 4

}
.

Recall the set L(α, T , l) defined in Section 3.2. In the following proposition, D is the
constant satisfying (3.13) and (3.14) (or any larger constant).

Proposition 3.18. Let T ∈ R be a constant satisfying

T ≥ (D + 2)
4π

4π − 1
, (3.17)

andm be a positive integer such that L(α, T ,m) is not empty. Then, for all n ∈ L(α, T , 0)
and for all integers li , for m+ 1 ≤ i ≤ n with 0 ≤ li ≤ ai−1, we have

χm+1,lm+1 ◦ χm+2,lm+2 ◦ · · · ◦ χn,ln(Xαn) ⊂ W n
m.



2044 Artur Avila, Davoud Cheraghi

Proof. For any wn ∈ Xαn , define a sequence wn, wn−1, . . . , wm by

wj−1 = χj,lj (wj ) for m+ 1 ≤ j ≤ n.
As n ∈ L(α, T ,m), by Proposition 3.15(a), there exists τ ∈ Cn(1/(2αn)− 2i) with

Im τj ≥ Bn,j ≥ T/αj for m+ 1 ≤ j ≤ n− 1. (3.18)

Let τ ′ ∈ Cn(1/(2αn) − 2i) be the sequence defined along the same branches as 〈wj 〉,
that is,

τ ′j−1 = χj,lj (τ ′j ) for m+ 1 ≤ j ≤ n.
By Lemma 3.16, we must have

Im τ ′j ≥ Bn,j − 2 for m ≤ j ≤ n− 1. (3.19)

By an inductive procedure we now show that for m ≤ j ≤ n− 1,

Imwj ≥ Im τ ′j −
1

4π
β−1
j βn−1 log

1
αn
− β−1

j

∞∑

k=j
βk. (3.20)

By definition,

Im τ ′n−1 = Im τn−1 = Imχn,0

(
1

2αn
− 2i

)
.

For wn ∈ Xαn , by Lemma 3.12 and Proposition 3.13, we have

Imwn−1 − Im τ ′n−1 ≥
1
2

Im τ ′n−1 + 2C′ − Im τ ′n−1

≥ −1
2

1
2π

log
1
αn
− C

′

2
+ C′

≥ − 1
4π

log
1
αn
.

Therefore, (3.20) holds for j = n− 1.
Assume we have (3.20) for some j . We want to prove it for j − 1. By the hypothesis

and (3.19),

Imwj ≥ Im τ ′j −
1

4π
β−1
j βn−1 log

1
αn
− β−1

j

∞∑

k=j
βk ((3.20))

≥ (Bn,j − 2)− 1
4π
β−1
j βn−1 log

1
αn
− 2 ((3.19) and (3.3))

≥ Bn,j − 1
4π
β−1
j βn−1 log

1
αn
− 4

≥
(

1− 1
4π

)
Bn,j − 4 ((3.2))

≥
(

1− 1
4π

)
T

αj
− 4 ≥ D

αj
((3.18) and (3.17))
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By the above inequality and (3.17)–(3.19), the points wj and τj lie above the horizon-
tal line Imw = D/αj . On the other hand, since they belong to the image of the same
lift χj+1,li+1 , by (2.1) their real parts differ at most by k̂. We may choose a piecewise
horizontal-vertical curve γj connectingwj to τ ′j that lies above the horizontal line Imw =
D/αj . Hence,

wj−1 − τ ′j−1 =
∫

γj

χ ′j,lj =
∫

γj

(χ ′j,lj − αj )+
∫

γj

αj .

By (3.13) and (3.14), | ∫
γj
(χ ′j,lj −αj )| is uniformly bounded by 1. By taking the imaginary

part of the above equation, and using (3.20) for j , we obtain (3.20) for j − 1.
Finally, (3.19), (3.20) for j = m, as well as (3.3), imply the desired lower bound on

Imwm; that is, wm belongs to W n
m. ut

Now we are ready to prove the following stronger statement that implies Proposition 3.1.

Proposition 3.19. For every non-Brjuno α ∈ HTN and every f ∈ ISα ∪ {Qα} there
exists a sequence of real numbers δi , i ≥ 1, converging to zero such that

lim sup
n→∞

|G(n, δn)|
qn

= 1.5

Proof. The proof is just by putting the above proposition and the lemma together. Define

δn+1 = sup
w∈Wn

0

|8−1
0 (w)|, n ≥ 0.

Since α is a non-Brjuno number,

lim
n→+∞

(
Bn,0 − 1

2α1 . . . αn−1 log(1/αn)− 4
) = +∞.

This implies that δn→ 0 as n→+∞.
Let ε > 0. We need to find j ∈ N such that δj ≤ ε and |G(j, δj )|/qj ≥ 1 − ε. Let δ

be the constant obtained in Lemma 3.17 for this ε.
By Lemma 3.4, if α is a non-Brjuno number, for any T ∈ R the set L(α, T , 0) is

non-empty. For T > 0, let n = minL(α, T , 0), where n depends on T . By the definition
of L(α, T , 0), if T tends to +∞, then n tends to +∞ and αn tends to 0. Indeed, if n ∈
L(α, T , 0) we must have Bn,1 ≥ T/α1 where Bn,1 is a finite number. Thus, as T gets
larger, n must be larger. On the other hand, n ∈ L(α, T , 0) requires Bn,n−1 ≥ T α−1

n−1,
which by definition of the bi-sequence implies that

−2αn + logα−1
n − B ≥ T/αn−1.

Hence, as T tends to infinity, αn must tend to 0. Therefore, we may choose T > 0 so large
that it satisfies (3.17) and n = L(α, T , 0) is large enough that δn ≥ ε and αn ∈ (0, δ).

5 It is likely that one can replace the lim sup by lim in this proposition, but we do not need it here.
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By Lemma 3.17, we have |Gn|/qn ≥ 1 − ε. And by definition, for all j ∈ Gn,
8n(f

◦j
n (Jn)) ⊂ Xαn . Then, by Proposition 3.18 with m = 0, for j ∈ Gn, 8n(f

◦j
n (Jn))

lifts to a set in W n
0 under all possible lifts in the renormalization tower. By Proposi-

tion 2.13, for every i ∈ Gn and every integer k with iqn ≤ k < (i + 1)qn, f ◦k0 (Jn) ⊂
Bδn+1(0). Hence,

|G(n+ 1, δn+1)|
qn+1

≥ |Gn|qn
qn+1

≥ |Gn|qn
(an + 1)qn

≥ 1− ε.

As ε was arbitrary, this finishes the proof of the proposition. ut
Remark 3.20. One may extract an alternative proof of Proposition 3.1 from the above
analysis. The steps in the above argument are set up to be used for the argument in the
linearizable case. But, roughly speaking, an alternative proof may go as follows. Given
ε > 0 choose D large enough so that the points w ∈ D0 with Imw ≥ D/α0 map into
Bε(0) under8−1

0 . Then, choose T ∈ R that satisfies (3.17). The set L(α, T , 0) has infinite
cardinality, hence we may let n → ∞ within it. We start with Imwn−1 ≥ T/(2αn−1).
Then, inductively, using the five-line inequality in the proof of Proposition 3.18 to obtain
the lower bound on Imwj , we show that Imw0 ≥ D/α0.

3.7. Proof of Proposition 3.2

Recall that form ≥ 0,1(fm) denotes the Siegel disk of fm, and 1̃(fm) denotes the image
of 1(fm) ∩ Pm under 8m. We consider the following two scenarios:

A : for every T ∈ R there exist m0 ∈ N and infinitely many integers m > m0 such
that there is τ ∈ Cm(1/(2αm) − 2i) satisfying Im τj ≥ T/αj for all integers j with
m0 + 1 ≤ j ≤ m− 1.

B: there exist real constants T and C as well as infinitely many integers m such that for
all w ∈ Dm with Imw ≥ T/αm + C we have 8−1

m (w) ∈ 1(fm).
Lemma 3.21. For every irrational α ∈ HTN , at least one of A and B holds.

Proof. By Proposition 3.15(a), there are constants M and B such that the bi-sequence
Bn,i defined in Section 3.2 using B satisfies the following: for every n ≥ 1 and every j
with 0 ≤ j ≤ n− 1 we have Bn,j ≤ Im τj ≤ Bn,j +M . Recall the set L(α, T , l) defined
in Section 3.2.

Assume that A does not hold. That means there is T0 ∈ R such that for everym0 ∈ N
there is m′ ∈ N such that for every m ≥ m′ and every τ ∈ Cm(1/(2αm) − 2i) there is an
integer j with m − 1 ≤ j ≤ m0 + 1 such that Im τj < T0/αj . In particular, A does not
hold for any constant larger than T0. Below we assume that T0 > 0.

By the first paragraph above, for some choice of τ ∈ Cm(1/(2αm)−2i), Bn,j ≤ Im τj .
Then, by the second paragraph above, this implies that L(α, T0, l) is finite for every l ∈ N.
Combining this with Lemma 3.4(c), we conclude that there exists a sequence of integers
`0, `1, `2, . . . , tending to +∞, such that

sup
j≥0

(
lim
m→∞Bm, j̀ − T0α

−1
j̀

)
< +∞.
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Then, by Proposition 3.15(b), we obtain

sup
j≥0

(
max

w∈∂(8j (1(fj )))
Imw − T α−1

j̀

)
< +∞.

This implies that B must hold. ut
Lemma 3.22. Assume that α ∈ HTN satisfies A , and T is a real constant satisfying
(3.17) and

T ≥ M + 3, (3.21)

where M is the constant in Proposition 3.15. Let m0 ∈ N and the infinite set of integers
A be such that for all m ∈ A there is τ ∈ Cm(1/(2αm)− 2i) satisfying Im τj ≥ T/αj for
all integers j with m− 1 ≤ j ≤ m0 + 1. Then

lim inf
m∈A,m→+∞

αm = 0.

Proof. First we show that if some α ∈ HTN satisfies A , then

lim inf
i→+∞

αi = 0. (3.22)

By A , for every T ∈ R there are positive integers m0 and m ≥ m0 + 2, and τ in
Cm(1/(2αm)− 2i), such that Im τm−1 ≥ T/αm−1. Then, by Lemma 3.12,

T ≤ T

αm−1
≤ Im τm−1 ≤ 1

2π
log

1
αm
+ C′.

That is, for every T > 0 there is m ∈ N such that logα−1
m ≥ 2π(T − C′). This implies

(3.22).
Let m0 and A be as in the lemma. If N \A has finite cardinality, then the statement of

the lemma follows from (3.22). Below we assume that N \ A hs infinite cardinality.
Assume for contradiction that

η = inf{αi | i ∈ A} > 0.

Let

µ = min
{
η

2
, T

(
1

2π
log

1
η
+ C′

)−1}
.

By (3.22), there is n ∈ N \ A such that αn < µ and n ≥ m0 + 2. Then, let m be the
smallest element of A greater than n. Let n′ be the largest integer in [n,m] such that
αn′ < µ. Since αm ≥ η ≥ 2µ, we have n′ < m. By definition, αi ≥ µ for all i with
n′ + 1 ≤ i ≤ m.

First we note that m ≥ n′ + 2. Indeed, by Lemma 3.12,

T

αm−1
≤ Im τm−1 ≤ 1

2π
log

1
αm
+ C′ ≤ 1

2π
log

1
η
+ C′.

By the definition of µ, this implies that αm−1 ≥ µ. Since αn′ < µ, it follows that n′ 6=
m− 1.
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Let B andM be the constants in Proposition 3.15, and Bn,i be the bi-sequence defined
with the constant B. By Proposition 3.15(a), there is τ ′ in Cm(1/(2αm) − 2i) such that
Im τ ′j ≤ Bm,j +M for all j with 0 ≤ j ≤ m− 1. Then, by Lemma 3.16,

|Im τj − Im τ ′j | ≤ 2 for m0 + 1 ≤ j ≤ m.
Putting the above paragraphs together, we obtain

T

αn′
≤ Im τn′ ≤ Im τ ′n′ + 2 ≤ Bm,n′ +M + 2

≤ −2β−1
n′ βm + β−1

n′
m∑

j=n′+1

βj−1

(
log

1
αj
− B

)
+M + 2

≤
(

log
1
µ
− B

)m−n′−1∑

j=0

(
1
2

)j
+M + 2 ≤ 2 log

1
µ
+M + 2.

Thus, as 2 log x < x for all x ∈ (2,+∞), the above inequality implies that

T ≤ αn′
(

2 log
1
µ
+M + 2

)
< 2µ log

1
µ
+M + 2 < M + 3.

This contradicts the choice of T . ut
Remark 3.23. In Lemma 3.22, since the lim inf is zero along any infinite set A on which
A holds for the constant T , one may conclude that indeed the lim inf can be replaced by
a lim. However, we have stated the least information enough to prove Proposition 3.2.

Proof of Proposition 3.2 when A holds. The argument is similar to the one for nonlin-
earizable maps. By Proposition 3.15(b), there is a constant B such that with the corre-
sponding bi-sequence Bn,j ,

H = sup
j∈N

∣∣∣ lim
n→∞Bn,j − max

w∈∂1̃(fj )
Imw

∣∣∣ < +∞.

Fix δ > 0. Choose δ′ > 0 such that if w ∈ Bδ′(1̃(f0)) ∩ D0 then 8−1
0 (w) ∈

Bδ(1(f0)). Recall that by Lemma 2.1, for every m ≥ 0 and 0 ≤ j ≤ am the δ0-
neighbourhood of χm+1,j (Dm+1) is contained in Dm. An elementary estimate shows that
the Poincaré metric ρm|dw| on Dm satisfies ρm(w) ≤ 2/d(w, ∂Dm). This implies that
for (every such m and j , as well as) every w ∈ χm+1,j (Dm+1) with

Imw > max
w∈∂1̃(fm)

Imw −H − 6

there is w′ ∈ ∂1̃(fm) such that the hyperbolic distance between w and w′ in Dm is
uniformly bounded from above by 2(H + 6)/δ0. Then, by Lemma 3.8, there is m′0 such
that for every m ≥ m′0, every w ∈ χm+1,j (Dm+1) with

Imw ≥ max
w∈∂1̃(fm)

Imw −H − 6
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and all integers lj , 1 ≤ j ≤ m, with 0 ≤ lj ≤ aj−1, we have

χ1,l1 ◦ χ2,l2 ◦ · · · ◦ χm,lm(w) ∈ Bδ′(1̃(f0)) ∩D0.

Let T be a constant satisfying (3.17) and (3.21). Since A holds for T , there exists
a positive integer m0 and an infinite set A of integers such that for all m ∈ A there is
τ ∈ Cm(1/(2αm)− 2i) with

Im τj > T/αj for m0 + 1 ≤ j ≤ m− 1.

Note that by making T larger, m0 becomes larger. In particular, we may assume that
besides satisfying (3.17) and (3.21), T is so large that the corresponding m0 is greater
than m′0.

Recall the set Gm defined in Section 3.4. By Lemmas 3.17 and 3.22, we obtain

lim
m∈A,m→+∞

|Gm|
am + 1

= 1.

The Brjuno sum for αm0 , that is,

+∞∑

m=m0+1

β−1
m0
βm−1 logα−1

m ,

is finite. Also, by Lemma 3.4, limn→+∞ Bn,m0 exists. Hence, there is m′′0 > 0 such that
for all m ≥ m0,

β−1
m0
βm−1 logα−1

m < 2,

and ∣∣∣ lim
n→+∞Bn,m0 − Bm,m0

∣∣∣ < 1.

Fixm ∈ A such thatm ≥ m′′0 , and let wm ∈ Xαm whereXαm is defined in (3.7). Given
integers li , m ≤ i ≤ m0 + 1, with 0 ≤ li ≤ ai−1, consider the sequence of points

wi−1 = χi,li (wi) for m ≤ i ≤ m0 + 1.

By Proposition 3.18, we have

Imwm0 ≥ Bm,m0 − 1
2β
−1
m0
βm−1 log(1/αm)− 4

> lim
n→∞Bn,m0 − 6 (since m ≥ m′′0).

Hence,
Imw0 ≥ max

w∈∂1̃(fj )
Imw −H − 6.

Now since m > m′0 (the argument in the second paragraph), all further lifts of w0 to the
level 0 are in the δ′-neighbourhood of 1̃(f0).
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By definition, for all j ∈ Gm, we have f ◦jm (Jm) ⊂ Pm and 8m ◦ f ◦jm (Jm) ⊂ Xαm .
Therefore, by Proposition 2.13, and since m ≥ m′0, we conclude that

1 ≥ lim
m→∞, m∈A

|H(mi + 1, δ)|
qmi+1

≥ lim
m→∞, m∈A

|Gm|
am + 1

= 1.

This finishes the proof of the proposition when A holds. ut
As a corollary of the above proof we state the following property for future reference.

Corollary 3.24. Assume α ∈ HTN satisfies A . Then for every δ′ > 0, there are infinitely
many m ∈ N such that for all τ ∈ Cm(1/(2αm)+ 2i), we have

τ0 ∈ Bδ′(1̃(f0)) \ 1̃(f0).

Proof. By the proof of Proposition 3.2 when A holds, we only need to show that τ0 /∈
1̃(f0) for all m ∈ N. Indeed, since Im τm = −2, we have τm /∈ 1̃(fm), and since the
changes of coordinates preserve the Siegel disks, τ0 cannot belong to 1̃(f0). ut
Proof of Proposition 3.2 when B holds. For n ≥ 0, consider the sets

En =
an⋃

i=0

χn+1,i(Dn+1).

By Lemma 2.1, for every n ≥ 0, the δ0-neighbourhood of En is contained in Dn.
Fix δ > 0. Choose δ′ > 0 such that if w ∈ Bδ′(1̃(f0)) ∩ D0 then 8−1

0 (w) ∈
Bδ(1(f0)). As discussed in the proof of Proposition 3.2 when A holds, Lemma 2.1
implies that for every H > 0 there is m′0 ≥ 1 with the following property. For every
m ≥ m′0 and all integers lj , 1 ≤ j ≤ m, with 0 ≤ lj ≤ aj−1, as well as all w ∈ Em with
either the Euclidean distance d(w, ∂1̃(fm)) or the hyperbolic distance dhyp(w, ∂1̃(fm))

at most H ,
χ1,l1 ◦ χ2,l2 ◦ · · · ◦ χm,lm(w) ∈ Bδ′(1̃(f0)) ∩D0.

Let T , C, and the sequence of integers m1 < m2 < · · · be the data obtained from B.
We break the proof into two cases.

Case I: lim supi→∞ αmi > 0. Let η > 0 and integers n1 < n2 < · · · be such that
αni > η for all i ≥ 1. It follows from B that for all i ≥ 1 and all w ∈ Eni there is
w′ ∈ ∂1̃(fni ) with d(w,w′) ≤ T/η + C. Therefore, by the above paragraph, there is n′
in the sequence ni such that for all integers lj , 1 ≤ j ≤ n′, with 0 ≤ lj ≤ aj−1,

χ1,l1 ◦ χ2,l2 ◦ · · · ◦ χn′,ln′ (En′) ⊆ Bδ′(1̃(f0)) ∩D0.

Here, we have used χn,i(1̃(fn)) ⊂ 1̃(fn−1) for all n ≥ 1 and 0 ≤ i ≤ ai−1, which
follows from Propositions 2.7 and 2.8. Thus, by Proposition 2.13, for all m ≥ n′ + 1,

|H(m, δ)|/qm = 1.

As δ was arbitrary, this finishes the proof in this case.
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Case II: limi→∞ αmi = 0. Recall the constant k̂ obtained in Lemma 1.9. Consider the
sets

E′n =
{
w ∈ En

∣∣∣∣
1

4αn
− k̂ ≤ Rew ≤ 3

4αn
+ k̂

}
.

Since αmi tends to 0, there is i0 ≥ 1 such that E′mi ⊂ Emi for all i ≥ i0.
By Proposition 3.6, for every i ≥ i0 the derivative of χmi ,0 is comparable to 1/αmi

on E′mi , with constants independent of i. Therefore, there is a constant H > 0 such that
for all i ≥ i0 and 0 ≤ li ≤ ami−1, the set χmi ,li (E

′
mi
) has Euclidean diameter bounded

from above by H . Thus, by the second paragraph in this proof, there exists i1 ≥ i0 such
that for all i ≥ i1 and all integers lj , 1 ≤ j ≤ mi , with 0 ≤ lj ≤ aj−1,

χ1,l1 ◦ χ2,l2 ◦ · · · ◦ χmi ,lmi (Emi ) ⊆ Bδ′(1̃(f0)) ∩D0.

Each set E′n contains a vertical strip of width 1/(2αn) + 2k̂. Thus, by Lemma 2.1,
for all i ≥ i0, χmi+1,l(Dmi+1) is contained in E′mi for at least half of the integers l with
0 ≤ l ≤ ami − 1 .

Fix ε > 0. Choose i2 ≥ i1 such that (1/2)i2−i1 < ε. Now consider m ≥ mi2 + 1.
Of the lifts χmi2 ,li2 ◦ · · · ◦ χm,lm(Dm), at least half lie in Emi2 , and hence their further
lifts lie in Bδ′(1̃(f0)) ∩ D0. Of all the remaining lifts up to level mi2 , at least half of
the lifts χmi2−1,li2−1 ◦ · · · ◦ χm,lm(Dm) lie in Emi2−1, and hence their further lifts lie in
Bδ′(1̃(f0))∩D0, and so on. Altogether, Proposition 2.13 implies that for allm ≥ mi2+1,

|H(m+ 1, δ)|/qm+1 ≥ 1− ε.
This finishes the proof in this case. ut
Proof of Theorem 0.3. For m ≥ 0 let σm denote the non-zero fixed point of fm that
lies on the boundary of Pm. Recall that by Lemma 2.4, 9m : Pm → P0 conjugates fm
on P ′m ⊂ Pm to f ◦qm0 on 9m(P ′m), and ψm : Pm → Pm−1 conjugates fm on P ′m to
some iterate of fm−1 on ψm(P ′m). Since Pm is bounded by piecewise analytic curves,
ψm and 9m extend to some continuous maps on the closure of Pm. In particular, 9m
maps σm to a periodic point of f0 of period qm. Similarly, ψm maps σm to a periodic
point of fm−1 of period say bm−1. We want to show that every neighbourhood of 1(f0)

contains the cycle of infinitely many periodic points of type 9m(σm), for some m ∈ N.
For m ≥ 1, define

Om−1 = {8m−1(ψm(σm))+ j | j ∈ Z, 0 ≤ j ≤ bm−1 − 1}.
By definition of ψm and Exp, the set Om−1 projects under Exp onto the non-zero fixed
point of R(fm−1), which is either σm or s(σm). Lemma 3.9 implies that there is a constant
C′1 > 0, independent of m, such that

∣∣∣∣ImOm−1 − 1
2π

log
1
αm

∣∣∣∣ ≤ C′1, (3.23)

and by Lemma 2.1, the δ0-neighbourhood of Om−1 is contained in Dm−1.
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Fix δ > 0, and choose δ′ > 0 such that for every w ∈ D0 ∩ Bδ′(1̃(f0)) we have
8−1

0 (w) ∈ Bδ(1(f0)). We break the rest of the argument into two cases.

Case I: Assume that A holds for α. By Lemma 3.12, for every τ ∈ Cm(1/(2αm) − 2i)
we have ∣∣∣∣Im τm−1 − 1

2π
log

1
αm

∣∣∣∣ ≤ C′.
Thus, by Lemma 2.1, for every element of Om−1 there is an integer l with 0 ≤ l ≤
am−1 such that the hyperbolic distance between that element and χm,l(1/(2αm) − 2i) is
uniformly bounded from above by a constant, say H , depending only on C′, C′1, and δ0.
By the uniform contraction in Lemma 3.8, there is m0 ≥ 1 such that if m ≥ m0 then any
two points at hyperbolic distance bounded by H are mapped to two points at Euclidean
distance bounded from above by δ′/2.

On the other hand, by Corollary 3.24 for δ′/2, there are infinitely many m such that
for all τ ∈ Cm(1/(2αm)+ 2i) we have τ0 ∈ Bδ′/2(1̃(f0)). Combining this with the above
paragraph, we conclude that for all such m ≥ m0 all lifts of elements of Om−1 to the
level 0 are contained in Bδ′(1̃(f0)). Therefore, by Proposition 2.13, the cycle of 9m(σm)
is contained in Bδ(1(f0)).

Case II: Assume that B holds for α. Let T , C, and m1 < m2 < · · · be provided by B.
By definition, for all i ≥ 1, Im 1̃(fmi ) ⊂ [−2, T /αmi + C]. In particular, there is wmi ∈
∂1̃(fmi ) with

Rewmi = 1/(2αmi ) and Imwmi ∈ [−2, T /αmi + C].
By Proposition 2.8, χmi ,l(wmi ) ∈ ∂1̃(fmi−1) for all l with 0 ≤ l ≤ ami−1. Moreover, by
Proposition 3.6, there is a constant C2 > 0, independent of i and l, such that

∣∣∣∣Imχmi ,l

(
1

2αmi
+ 2i

)
− Imχmi ,l(wmi )

∣∣∣∣ ≤ C2.

Thus, by Lemma 3.12,
∣∣∣∣Imχmi ,l(wmi )−

1
2π

log
1
αmi

∣∣∣∣ ≤ C2 + C′.

Combining the above inequality with (3.23), and using Lemma 2.1, we conclude that ev-
ery element of Omi lies within uniformly bounded (depending on C′1 + C2 + C′ and δ0)
hyperbolic distance from ∂1̃(fmi−1). Then, by the contraction in Lemma 3.8, for suffi-
ciently large i, Omi lifts to a set of points in Bδ′(1̃(f0)). Finally, Proposition 2.13 implies
that the cycle of 9mi (σmi ) is contained in Bδ(1(f0)). ut

4. Unique ergodicity

We work with the following equivalent definition of unique ergodicity (see for instance
[Mañ87, Theorem 9.2]). A continuous map f : X → X, where X is a compact metric
space, is uniquely ergodic if for every continuous function ϕ : X → R and every x ∈ X
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the limit of the Birkhoff averages

lim
n→∞

1
n

n−1∑

j=0

ϕ(f ◦j (x))

exists and is independent of x.
We have a simple candidate for the unique invariant measure when the map is not

linearizable, that is, the Dirac measure at 0. Because of this, the proof of Theorem 0.1
becomes slightly simpler for non-linearizable maps. Also, it conveys the idea of proof for
the linearizable ones where the invariant measure is more complicated. Hence, although
both cases may be treated simultaneously, we present the proof for non-linearizable maps
first.

4.1. Non-linearizable maps

Proof of Theorem 0.1 when α is non-Brjuno. We assume N is the integer determined in
Section 1.4 and is subject to (1.8).

Let ϕ : PC(f0)→ R be a continuous function with

M = max
z∈PC(f0)

|ϕ(z)| <∞.

Let ε > 0. There is δ > 0 such that

∀w ∈ Bδ(0), |ϕ(w)− ϕ(0)| < ε.

Recall the set G(n, δ) defined in Section 3. By Proposition 3.1, there is an integer n > 0
such that

|G(n, δ)|/qn ≥ 1− ε.
If z = 0, then clearly the Birkhoff average of ϕ along the orbit of 0 is the constant

sequence with terms equal to ϕ(0). We need to show that these averages along the orbit
of every point in PC(f0) are equal to ϕ(0).

Recall that by Proposition 2.6, PC(f0) ⊂ ϒn. Given a non-zero ζ ∈ PC(f0), by
Proposition 2.11, there is a one-to-one map

τ : {i ∈ Z | 0 ≤ i ≤ qn − 1} → {i ∈ Z | 0 ≤ i ≤ qn − 1},
depending on ζ , such that f ◦i0 (ζ ) ∈ f ◦τ(i)0 (In) for 0 ≤ i ≤ qn − 1. Then

∣∣∣∣
1
qn

qn−1∑

k=0

ϕ(f ◦k0 (ζ ))− ϕ(0)
∣∣∣∣

≤ 1
qn

∑

0≤k≤qn−1
τ(k)∈G(n,δ)

|ϕ(f ◦k0 (ζ ))− ϕ(0)| + 1
qn

∑

0≤k≤qn−1
τ(k)/∈G(n,δ)

|ϕ(f ◦k0 (z))− ϕ(0)|

≤ 1
qn
|G(n, δ)| · ε + 1

qn
(qn − |G(n, δ)|) · 2M ≤ ε + ε2M = ε(1+ 2M). (4.1)

Fix z in PC(f0). Let N be a positive integer. Dividing N − 1 by qn we obtain non-
negative integers m and r such that N − 1 = mqn + r with 0 ≤ r ≤ qn − 1. In particular,
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there is N0 > 0 such that for all N ≥ N0 we have

r

N
2M ≤ ε.

Applying (4.1), to the points f ◦iqn0 (z) for i ≥ 0, we conclude that for every N ≥ N0,

∣∣∣∣
1
N

N−1∑

k=0

ϕ(f ◦k0 (z))− ϕ(0)
∣∣∣∣

≤ 1
N

m−1∑

i=0

(i+1)qn−1∑

k=iqn
|ϕ(f ◦k0 (z))− ϕ(0)| + 1

N

N−1∑

k=mqn
|ϕ(f ◦k0 (z))− ϕ(0)|

= mqn

N

1
m

m−1∑

i=0

1
qn

(i+1)qn−1∑

k=iqn
|ϕ(f ◦k0 (z))− ϕ(0)| + 1

N

N−1∑

k=mqn
|ϕ(f ◦k0 (z))− ϕ(0)|

≤ 1 · 1
m
·m · ε(1+ 2M)+ 1

N
· r · 2M ≤ ε(1+ 2M)+ ε = ε(2+ 2M).

As ε was chosen arbitrarily, we conclude that

lim
N→∞

1
N

N−1∑

k=0

ϕ(f ◦k0 (z)) = ϕ(0). ut

4.2. Linearizable maps

Proof of Theorem 0.1 when α is Brjuno. The integer N is determined in Section 1.4 and
is subject to (1.8).

Let ϕ : PC(f0)→ R be a continuous map with

M = max
z∈PC(f0)

|ϕ(z)| <∞.

Fix z ∈ PC(f0) and ε > 0. There is δ′ > 0 such that for all w, w′ in PC(f0) with
|w′ − w| < δ′ we have |ϕ(w′)− ϕ(w)| < ε.

Recall that by Proposition 2.6, PC(f0) ⊂ ϒn for all n ≥ 0. Also, recall the definition
of the sets H(n, δ) from Section 3.1. By Proposition 3.2, there are an integer n0 and real
δ0 > 0 such that

∀n ≥ n0, ∀δ ≤ δ0, ∀k ∈ H(n, δ), diam(f ◦k0 (In) \1(f0)) < δ′.

By the same proposition, there is an integer n ≥ n0 such that

|H(n, δ)|/qn ≥ 1− ε.
From Proposition 2.11, there is a permutation τ of {i ∈ Z | 0 ≤ i ≤ qn − 1} such that

f ◦i0 (z) ∈ f ◦τ(i)0 (In) for 0 ≤ i ≤ qn − 1.
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Given w ∈ PC(f0), let ρ be a permutation of {i ∈ Z | 0 ≤ i ≤ qn − 1}, obtained from
Proposition 2.11, such that

f ◦i0 (w) ∈ f ◦ρ(i)0 (In) for 0 ≤ i ≤ qn − 1.

Note that
f
◦ρ−1(τ (i))
0 (w) ∈ f ◦τ(i)0 (In) for 0 ≤ i ≤ qn − 1.

Using this, we observe that
∣∣∣∣

1
qn

qn−1∑

k=0

ϕ(f ◦k0 (z))− 1
qn

qn−1∑

k=0

ϕ(f ◦k0 (w))

∣∣∣∣

≤ 1
qn

qn−1∑

k=0

|ϕ(f ◦k0 (z))− ϕ(f ◦ρ−1(τ (k))
0 (w))|

= 1
qn

∑

0≤k≤qn−1
k∈H(n,δ)

|ϕ(f ◦k0 (z))− ϕ(f ◦ρ−1(τ (k))
0 (w))|

+ 1
qn

∑

0≤k≤qn−1
k /∈H(n,δ)

|ϕ(f ◦k0 (z))− ϕ(f ◦ρ−1(τ (k))
0 (w))|

≤ |H(n, δ)|
qn

· ε + 1− |H(n, δ)|
qn

· 2M ≤ ε + ε · 2M. (4.2)

For every positive integer N there are non-negative integers m and r with

N − 1 = mqn + r and 0 ≤ r ≤ qn − 1.

Let N be large enough that
r

N
2M ≤ ε.

Applying the estimate in (4.2) to the points w = f ◦iqn0 (z), i ≥ 0, we get

∣∣∣∣
1
N

N−1∑

k=0

ϕ(f ◦k0 (z))− 1
qn

qn−1∑

k=0

ϕ(f ◦k0 (z))

∣∣∣∣

≤
∣∣∣∣

1
N

m−1∑

i=0

(i+1)qn−1∑

k=iqn
ϕ(f ◦k0 (z))+ 1

N

N−1∑

k=mqn
ϕ(f ◦k0 (z))− 1

qn

qn−1∑

k=0

ϕ(f ◦k0 (z))

∣∣∣∣

≤
∣∣∣∣
mqn

N

1
m

m−1∑

i=0

1
qn

(i+1)qn−1∑

k=iqn
ϕ(f ◦k0 (z))− 1

qn

qn−1∑

k=0

ϕ(f ◦k0 (z))

∣∣∣∣+
1
N

N−1∑

k=mqn
|ϕ(f ◦k0 (z))|

≤ 1 · 1
m
·m · ε(1+ 2M)+ 1

N
· r · 2M ≤ ε(1+ 2M)+ ε = ε(2+ 2M).

As ε was chosen arbitrarily, the above bound implies that the sequence of Birkhoff av-
erages along the orbit of z is a Cauchy sequence. In particular, the sequence of averages
along the orbit of every z ∈ PC(f0) is convergent.
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On the other hand, by the above argument, for every z and w in PC(f0) and every
ε > 0 there is n ≥ 0 such that (4.2) holds. This implies that the limits of the Birkhoff
averages along the orbits of z and w are equal; that is, the limit of the sequence is inde-
pendent of z. ut
Proof of Corollary 0.2. As mentioned in the introduction, the limit set of Lebesgue almost
every point in J (f0) is contained in PC(f0). (Indeed, in [Che13] we show that for Qα

with α ∈ HTN the limit set of the orbit of almost every point in the Julia set is equal to
PC(f0).) For any such point z, every convergent subsequence of the sequence of measures

µn = 1
n

n−1∑

k=0

δf ◦k0 (z)

is an f0-invariant probability supported on PC(f0). However, by Theorem 0.1 there is
only one invariant probability measure supported on PC(f0). Hence, the above sequence
of measures is convergent, and converges either to the Dirac measure at 0 or the harmonic
measure on the boundary of the Siegel disk, depending on the type of α. ut

4.3. Hedgehogs and the postcritical set

Theorem 0.5 follows from the following proposition and Theorem 0.1.

Proposition 4.1. Let f ∈ ISα ∪ {Qα} with α ∈ HTN and let K be a Siegel compactum
of f . Then, either

• ∂K is an invariant analytic curve in the Siegel disk of f , or
• ∂K is contained in the postcritical set of f .

The above proposition is proved for the quadratic maps Qα which are not linearizable
at 0 in [Chi08], where only the second possibility may arise. We break the proof of the
proposition into several lemmas.

Given f ∈ ISα with α ∈ HTN , let fj , for j ≥ 0, denote the sequence of maps defined
in Section 1.4 with f ′j (0) = e2π iαj . Recall the sets C−knn , n ≥ 0, defined in Section 2.1.

In the next lemma,

bn = (kn + an − k− 1)qn + qn−1.

Lemma 4.2. For every n ≥ 0 there is an integer ln with 0 ≤ ln ≤ knqn + qn−1 such that
f
◦ln
0 (9n(C−knn )) contains the critical point of f0. Moreover,

lim
n→∞ diam f

◦ln
0 (9n(C−knn )) = 0,

lim
n→∞ sup {|f ◦bn0 (z)− z| : z ∈ f ◦ln0 (9n(C−knn )) ∩ PC(f0)} = 0.
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Proof. For every n ≥ 0, the map f ◦knn : C−knn → Cn has a unique critical point. By
Lemma 2.4, 9n ◦ f ◦knn = f ◦knqn+qn−1

0 ◦ 9n on C−knn . This implies that f ◦knqn+qn−1
0 has a

critical point in 9n(C−knn ). Since f0 has a unique critical point in its domain of definition,
there must be an integer ln with 0 ≤ ln ≤ knqn+ qn−1 such that f ◦ln0 (9n(C−knn )) contains
the critical point of f0.

By Proposition 1.7 there is δ > 0 such that for all n ≥ 0, the δ-neighbourhood of C−knn

is contained in Dom fn \ {0}, and diam C−knn ≤ 2/δ. This implies that for every n ≥ 0
there is a simply connected regionEn ⊂ Dom fn\{0} such that the conformal modulus of
En \ C−knn is uniformly bounded from below. As 8n−1(S

0
n−1) projects onto Dom fn \ {0}

under Exp, or s◦Exp, we conclude that χn,0◦8n(C−knn ) has uniformly bounded hyperbolic
diameter in Dn−1. On the other hand, the uniform bound in Proposition 1.6 implies that

inf {Re C−knn } ≥ an + kn − k− 2− k′′.

By a similar argument, for every z′ ∈ C−knn the hyperbolic distance between χn,0 ◦8n(z′)
and χn,0 ◦8n(f ◦an+kn−k−1

n (z′)) in Dn−1 is uniformly bounded from above by a constant
independent of n and z′ ∈ C−knn .

Recall from Sections 2.3 and 2.4 that ψn(C−knn ) ⊂ Jn−1 and 9n(C−knn ) ⊂ In. Propo-
sition 2.13 implies that there are integers ij with 0 ≤ ij ≤ aj−1, for 1 ≤ j ≤ n− 1, such
that

f
◦ln
0 (C−knn ) = 8−1

0 ◦ χ1,i1 ◦ χ2,i2 ◦ χn−1,in−1(8n−1(ψn(C−knn ))).

Since the image of χ1,i1 is well contained in D0 (see Lemma 2.1), the hyperbolic
metric on D0 and the Euclidean metric on D0 are comparable on χ1,i1(D1). Now, the
uniform contraction of the changes of coordinates χj,ij with respect to the hyperbolic
metrics in Lemma 3.8 implies that the Euclidean diameters must shrink to zero. ut
The second limit in the above proposition is a special case of a more general statement.
It is proved in [Che10] that the maps f ◦qn0 converge to the identity map on certain sets
containing PC(f0) (and f ◦ln0 (9n(C−knn ))). But we do not need this stronger statement
here.

Recall that S0
n = C−knn ∪ (C]n)−kn . We break each set ϒn into two sets as follows.

Define

Ana =
kn+an−k−2⋃

i=0

f
◦(iqn)
0 (9n((C]n)−kn)), Anb = f ◦qn−1

0 (Ana), An = Ana ∪ Anb,

Bna =
kn+an−k−2⋃

i=0

f
◦(iqn)
0 (9n(C−knn )), Bnb = f ◦qn−1

0 (Bna ), Bn = Bna ∪ Bnb .

For n ≥ 1, let

An =
qn−1⋃

i=0

f ◦i0 (A
n) ∪ {0}, Bn =

qn−1⋃

i=0

f ◦i0 (B
n).
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For every n ≥ 1, we have ϒn = An ∪ Bn. The sets An, Bn, and ϒn are bounded by
piecewise smooth curves (see Lemma 2.5). The set (C]n)−kn is bounded by three (closed)
smooth curves, denoted by γn, νn, and ηn, such that

8n(f
◦kn
n (γn(t))) = 1/2+ (−2+ t)i, ∀t ∈ [0,∞),

8n(f
◦kn
n (νn(t))) = 3/2+ (−2+ t)i, ∀t ∈ [0,∞),

8n(f
◦kn
n (ηn(t))) = 1/2+ t − 2i, ∀t ∈ [0, 1].

Lemma 4.3. For every n ≥ 0,

(a) γn is contained in the interior of
⋃kn+an−k−2
m=kn (f ◦mn (S0

n));

(b) f ◦(kn+an−k−2)
n (νn) is contained in the interior of

⋃kn−1
m=0 (f

◦m
n (S0

n)).
Proof. Recall from Section 1.1 that the ellipse E is contained in B(0, 2). By a sim-
ple calculation, B(0, 8/9) ⊂ U . One can verify that the polynomial P is one-to-one
on B(0, 1/3). By the 1/4-theorem, ψ(U) contains B(0, 2/9), and ψ(B(0, 1/3)) contains
B(0, 1/12).

By Theorem 1.4 and the above paragraph, R(fn) is univalent on B(0, 1/12). In par-
ticular, B

(
0, 4

27e
−4π ) ⊂ B(0, 1/12), and by the Koebe distortion theorem,

R(fn)−1(B
(
0, 4

27e
−4π )) ⊂ B(0, 4

27e
+4π ).

Therefore, by the definition of renormalization,

Exp(8n(C]n)−kn) ⊂ Exp(8n(f ◦knn (Sn))).

This implies (a).
On the other hand,

Im8n(f
◦(kn+an−k−2)
n (νn)) ≥ 2

and R(fn) is defined onB
(
0, 4

27e
−4π ). Since Re8n(f

◦(kn+an−k−2)
n (νn)) = an−kn−1/2,

(b) follows. ut
Lemma 4.4. For every n ≥ 1, the closure of An is contained in the interior of ϒn. In
particular, the boundary of ϒn is contained in the closure of Bn.
Proof. Fix n ≥ 1 and z in the closure of An. As z = 0 belongs to the interior of ϒn,
below we assume that z is non-zero.

By the definition of An, there is an integer l of the form iqn + j or iqn + qn−1 + j ,
with 0 ≤ i ≤ kn + an − k− 2 and 0 ≤ j ≤ qn − 1, such that z ∈ f ◦l0 (9

n((C]n)−kn)).
If z is in the interior of f ◦l0 (9n((C

]
n)
−kn)) then it is in the interior of ϒn and we are

done. If z lies on the curve f ◦l0 (9n(ηn)) minus its end points, then it is in the interior of
f ◦l0 (S

n
0 ), and hence in the interior of ϒn. It remains to consider the situation where z lies

on the boundary curves f ◦l0 (9n(γn ∪ νn)).
First assume that z ∈ f ◦l0 (9n(νn)), and choose z′ ∈ νn with z = f ◦l0 (9n(z

′)). We
consider three cases:

(a) i < an + kn − k− 2;
(b) i = an + kn − k− 2 and l = iqn + qn−1 + j ;
(c) i = an + kn − k− 2 and l = iqn + j .
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Assume that (a) holds. There is w ∈ Ana ∪ Anb such that z = f
◦j
0 (w) and w =

f
◦(l−j)
0 (9n(z

′)), where l − j is either iqn or iqn + qn−1. Note that z′ is in the interior
of S0

n ∪ fn(S0
n). Also, 9n has a univalent extension onto fn(Sn) through compositions

of the lifts χ.,0. Then f ◦l0 (9n(fn(S
0
n))) = f ◦l+qn0 (9n(S

0
n)) ⊂ ϒn. By the open mapping

property of holomorphic and anti-holomorphic maps, this implies that w must be in the
interior of

f
◦l−j
0 (9n(S

0
n ∪ fn(S0

n))) ⊂ Ana ∪ Anb .
Hence, z = f ◦j0 (w) is in the interior of ϒn.

Assume that (b) holds. In this case, there is w ∈ Anb such that z = f
◦j
0 (w) and

w = f ◦(l−j)0 (9n(z
′)). By Lemma 4.3(b), f ◦kn+an−k−2

n (νn) is contained in the interior of⋃kn−1
m=0 (S

0
n). Then, by Lemma 2.4, f ◦(l−j)0 (9n(νn)) is contained in the interior of

kn−1⋃

m=0

f
◦(mqn)
0 (9n(S

0
n)) ⊂ Ana .

By the open mapping property of f ◦j0 , we conclude that z lies in the interior of ϒn.
Assume that (c) holds. Choose w ∈ f ◦iqn0 (9n(νn)) such that z = f ◦j0 (w). We have

f
◦(iqn)
0 (9n(νn)) = f ◦(qn−qn−1)

0 ◦ f ◦qn−1
0 ◦ f ◦((i−1)qn

0 (9n(νn)).

Let w′ ∈ f ◦qn−1
0 ◦f ◦((i−1)qn

0 (9n(νn)) be such that f ◦(qn−qn−1)
0 (w′) = w. By the argument

in case (a), w′ is in the interior of Ana ∪Anb = An. As f ◦(qn−qn−1)
0 maps open sets to open

sets, w is in the interior of f ◦(qn−qn−1)
0 (An). In particular, if j ≤ qn−1 − 1, we conclude

that z is in the interior of ϒn.
On the other hand, if j ≥ qn−1, then by case (b) above, f ◦qn−1

0 (w) is in the in-
terior of Anb . Therefore, for every j with qn−1 ≤ j ≤ qn − 1, z is in the interior of
f
◦(j−qn−1)
0 (Anb) ⊂ ϒn.

Now assume z ∈ f ◦l0 (9n(γn)). Choose z′ ∈ γn with z = f ◦l0 (9n(z
′)) and consider

the following three cases:

• i 6= 0;
• i = 0 and l = iqn + qn−1 + j ;
• i = 0 and l = iqn + j .

The arguments in these cases are similar to the above ones, except that one uses (a) of
Lemma 4.3 instead of (b). We leave further details to the reader. ut
Assume that W 3 0 is a Jordan domain such that f ∈ ISα and f−1 are defined and
univalent on a neighbourhood of the closure of W . Let K denote the invariant Siegel
compactum of f associated to W . Recall that if ε0 = +1 then f0 = f , and if ε0 = −1
then f0 = s ◦ f ◦ s. Define W ′ to be W if ε0 = +1, and W ′ = s(W) if ε0 = −1. Then
the Siegel compactum of f0 in the closure of W ′, denoted by K ′, is either K or s(K),
depending on the sign of ε0.
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Lemma 4.5. Let K ′ be a Siegel compactum of f0. There is an integer n0 ≥ 0 such that
for all n ≥ n0, the set K ′ does not intersect the closure of Bn.

Proof. Let cp0 denote the critical point of f0. As f0 is univalent on a neighbourhood
of K ′, there is δ > 0 such that B(cp0, δ) ∩ K ′ = ∅. By Lemma 4.2, there is n0 such
that for all n ≥ n0, we have diam f

◦ln
0 (9n(C−knn )) ≤ δ/3 and |f ◦bn0 (z) − z| ≤ δ/3 for

all z ∈ 9n(C−knn ). In particular, for all n ≥ n0, K ′ does not intersect the closure of
f
◦ln
0 (9n(C−knn )).

As f0(K
′) = K ′, for all n ≥ n0 and all i with 0 ≤ i ≤ ln, K ′ cannot intersect the

closure of f ◦i0 (9n(C
−kn
n )). However, we cannot immediately use the backward invariance

of K ′ to conclude the same for other values of i, because K ′ is only fully invariant when
f0 is restricted to W ′, and there is no relation between W ′ and ϒn.

Assume that there is n ≥ n0 and an integer i with ln ≤ i ≤ bn − 1 such that K ′
intersects the closure of f ◦i0 (9n(C

−kn
n )). Let z′ ∈ K ′ be in the closure of f ◦i0 (9n(C

−kn
n )),

and choose z in the closure of 9n(C−knn ) such that f ◦i0 (z) = z′. Then, by the invariance
of K ′, f ◦(bn−i)0 (z′) ∈ K ′, and

d(cp0, f
◦(bn−i)
0 (z′)) ≤ d(cp0, z)+ d(z, f ◦bn0 (z)) ≤ δ/3+ δ/3.

That is, there is an element of K ′ within 2δ/3 of cp0, contradicting the choice of δ. ut
Proof of Proposition 4.1. Since f0 is conjugate to f , it is enough to prove the proposition
for f0 and K ′. As K ′ is connected and contains 0, the previous lemma yields K ′ ⊆⋂
n≥n0

ϒn. On the other hand, by Proposition 2.7,
⋂
n≥n0

ϒn = 1(f0) ∪ PC(f0) and
∂1(f0) ⊆ PC(f0). Thus, K ′ is a connected invariant region in 1(f0) ∪ PC(f0). This
implies that either K is equal to the region bounded by an analytic curve in 1(f0), or it
contains 1(f0). ut
As a corollary of the above lemmas we conclude the following result.

Theorem 4.6. For every f ∈ ISα ∪ {Qα} with α ∈ HTN , f : PC(f ) → PC(f ) is
one-to-one.

Proof. For every n ≥ 1, if there are z and z′ in ϒn with f0(z) = f0(z
′) then z and z′ must

be in f ◦ln0 (C−knn ) where ln is as in Lemma 4.2. Since diam f
◦ln
0 (C−knn ) → 0 as n → ∞,

we conclude that f0 is one-to-one on
⋂
n≥1ϒ

n. By Proposition 2.6, the postcritical set of
f0 is contained in this intersection. ut
The original conjecture of Pérez-Marco on the unique ergodicity of hedgehog dynamics
is stated in the full generality of the hedgehogs of all holomorphic maps with an irra-
tionally indifferent fixed point. There are new examples of hedgehogs with surprisingly
wild topological behaviour constructed by Chéritat [Ché11]. While our argument here
proves that this conjecture holds for quadratic maps and elements of the Inou–Shishikura
class, it is not clear if one can adapt the construction of Chéritat to give counterexamples
to this unique ergodicity conjecture.
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