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Abstract. We introduce the notion of combinatorial positivity of translation-invariant valuations
on convex polytopes that extends the nonnegativity of Ehrhart h∗-vectors. We give a surprisingly
simple characterization of combinatorially positive valuations that implies Stanley’s nonnegativ-
ity and monotonicity of h∗-vectors and generalizes work of Beck et al. (2010) from solid-angle
polynomials to all translation-invariant simple valuations. For general polytopes, this yields a new
characterization of the volume as the unique combinatorially positive valuation up to scaling. For
lattice polytopes our results extend work of Betke–Kneser (1985) and give a discrete Hadwiger the-
orem: There is essentially a unique combinatorially-positive basis for the space of lattice-invariant
valuations. As byproducts, we prove a multivariate Ehrhart–Macdonald reciprocity and we show
universality of weight valuations studied in Beck et al. (2010).

Keywords. Ehrhart polynomials, h∗-vectors, combinatorial positivity, translation-invariant valua-
tions, discrete Hadwiger theorem, multivariate reciprocity

1. Introduction

A celebrated result of Ehrhart [15] states that for a convex lattice polytope P = conv(V ),
V ⊂ Zd , the function EP (n) := |nP ∩ Zd | agrees with a polynomial—the Ehrhart
polynomial of P . More precisely, there are unique h∗0, h

∗

1, . . . , h
∗
r ∈ Z with r = dimP

such that

EP (n) = h∗0

(
n+ r

r

)
+ h∗1

(
n+ r − 1

r

)
+ · · · + h∗r

(
n

r

)
(1)

for all n ∈ Z≥0. In the language of generating functions this states∑
n≥0

EP (n)zn =
h∗0 + h

∗

1z+ · · · + h
∗
r z
r

(1− z)r+1 .

Ehrhart polynomials miraculously occur in many areas such as combinatorics [5, 11, 28],
commutative algebra and algebraic geometry [25], and representation theory [6, 12]. The
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question which polynomials can occur as Ehrhart polynomials is well-studied [2, 9, 18,
31] but wide open. Groundbreaking contributions to that question are two theorems of
Stanley [29, 30]. Define the h∗-vector1 of P as h∗(P ) := (h∗0, h

∗

1, . . . , h
∗

d) where we
set h∗i = 0 for i > dimP . Stanley showed that h∗-vectors of lattice polytopes satisfy a
nonnegativity and monotonicity property: If P ⊆ Q are lattice polytopes, then

0 ≤ h∗i (P ) ≤ h
∗

i (Q)

for all i = 0, . . . , d .
McMullen [22] generalized Ehrhart’s result to translation-invariant valuations. For

now, let3 ∈ {Zd ,Rd} and P(3) be the collection of polytopes with vertices in3. A map
ϕ : P(3)→ R is a translation-invariant valuation if ϕ(∅) = 0 and

ϕ(P ∪Q)+ ϕ(P ∩Q) = ϕ(P )+ ϕ(Q)

whenever P,Q,P∪Q,P∩Q ∈ P(3), and ϕ(t+P) = ϕ(P ) for all t ∈ 3. Valuations are
a cornerstone of modern discrete and convex geometry. The study of valuations invariant
under the action of a group of transformations is an area of active research with beautiful
connections to algebra and combinatorics [20, 23]. For example, for3 = Zd , the discrete
volume E(P ) := |P ∩3| is clearly a translation-invariant valuation.

McMullen showed that for every r-dimensional polytope P ∈ P(3), there are unique
h
ϕ
0 , h

ϕ
1 , . . . , h

ϕ
r such that

ϕP (n) := ϕ(nP ) = h
ϕ
0

(
n+ r

r

)
+ h

ϕ
1

(
n+ r − 1

r

)
+ · · · + hϕr

(
n

r

)
(2)

for all n ∈ Z≥0. Hence, every translation-invariant valuation ϕ comes with the notion
of an h∗-vector hϕ(P ) := (h

ϕ
0 , h

ϕ
1 , . . . , h

ϕ
d ) with hϕi = 0 for i > dimP . We call a

valuation ϕ combinatorially positive if hϕi (P ) ≥ 0 and combinatorially monotone if
h
ϕ
i (P ) ≤ h

ϕ
i (Q) whenever P ⊆ Q. The natural question that motivated the research

presented in this paper was

Which valuations are combinatorially positive/monotone?

The Euler characteristic shows that not every translation-invariant valuation is com-
binatorially positive. Beck, Robins, and Sam [4] showed that solid-angle polynomials are
combinatorially positive/monotone, and they gave a sufficient condition for combinatorial
positivity/monotonicity of general weight valuations. Unfortunately, this condition is not
correct; see the discussion after Corollary 3.9. We will revisit the construction of weight
valuations in Section 2 and show that they are universal for 3 = Zd . Our main result is
the following simple complete characterization.

Theorem. For a translation-invariant valuation ϕ : P(3)→ R, the following are equiv-
alent:

(i) ϕ is combinatorially monotone;
(ii) ϕ is combinatorially positive;

1 Also called the δ-vector or Ehrhart h-vector.
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(iii) for every simplex 1 ∈ P(3),

ϕ(relint1) :=
∑
F

(−1)dim1−dimFϕ(F ) ≥ 0,

where the sum is over all faces F ⊆ 1.

The combinatorial positivity/monotonicity for the discrete volume (Corollary 3.7) and
solid angles (Corollary 3.9) are simple consequences, and we show that Steiner poly-
nomials are not combinatorially positive (Example 3.10). In Section 5, we investigate
the relation of combinatorial positivity/monotonicity to the more common notion of non-
negativity and monotonicity of a valuation. In particular, we show that combinatorially
positive valuations are necessarily monotone and hence nonnegative. All implications are
strict.

Condition (iii) above is linear in ϕ. Hence, the combinatorially positive valuations
constitute a pointed convex cone in the vector space of translation-invariant valuations.
In Section 6, we investigate the nested cones of combinatorially positive, monotone, and
nonnegative valuations. For 3 = Rd , this gives a new characterization of the volume
as the unique, up to scaling, combinatorially positive valuation. For 3 = Zd , these
cones are more intricate. By results of Betke and Kneser [8], the vector space of valu-
ations on P(Zd) that are invariant under lattice transformations is of dimension d + 1.
We show that the cone of lattice-invariant valuations that are combinatorially positive is
full-dimensional and simplicial.

Hadwiger’s characterization theorem [17] states that the coefficients of the Steiner
polynomial give a basis for the continuous rigid-motion invariant valuations on convex
bodies that can be characterized in terms of homogeneity, nonnegativity, and monotonic-
ity, respectively. Betke and Kneser [8] proved a discrete analog: a homogeneous basis for
the vector space of lattice-invariant valuations on P(Zd) is given by the coefficients of
the Ehrhart polynomial in the monomial basis. Unfortunately, nonnegativity and mono-
tonicity are genuinely lost. In Section 7 we prove a discrete characterization theorem: Up
to scaling there is a unique combinatorially positive basis for lattice-invariant valuations.
We close with an explicit descriptions of the three cones of combinatorially positive,
monotone, and nonnegative lattice-invariant valuations for d = 2.

While Stanley’s approach made use of the strong ties between Ehrhart polynomi-
als and commutative algebra, our main tool are half-open decompositions introduced
by Köppe and Verdolaage [21]. We give a general introduction to translation-invariant
valuations in Section 2 and we use half-open decompositions to give a simple proof of
McMullen’s result (2) in Section 3. As a byproduct, we recover and extend the famous
Ehrhart–Macdonald reciprocity to multivariate Ehrhart polynomials in Section 4.

2. Translation-invariant valuations

Let 3 ⊂ Rd be a lattice (i.e. discrete subgroup) or a finite-dimensional vector subspace
over a subfield of R. Following [22], a convex polytope P ⊂ Rd with vertices in 3 is



2184 Katharina Jochemko, Raman Sanyal

called a3-polytope and we denote all3-polytopes by P(3). A map ϕ : P(3)→ G into
some abelian group G is a valuation if ϕ(∅) = 0 and ϕ satisfies the valuation property

ϕ(P1 ∪ P2) = ϕ(P1)+ ϕ(P2)− ϕ(P1 ∩ P2)

for all P1, P2 ∈ P(3) with P1 ∪ P2, P1 ∩ P2 ∈ P(3). It can be shown that valuations
satisfy the more general inclusion-exclusion property: For any P1, . . . , Pk ∈ P(3) such
that P = P1 ∪ · · · ∪ Pk ∈ P(3) and PI :=

⋂
i∈I Pi ∈ P(3) for all I ⊆ [k],

ϕ(P ) =
∑
∅6=I⊆[k]

(−1)|I |−1ϕ(PI ). (3)

For 3 a vector subspace this was first shown by Volland [32]; for the case that 3 is a
lattice this is due to Betke (unpublished) in the case of real-valued valuations and by
McMullen [24] in general. A valuation ϕ : P(3) → G is translation-invariant with re-
spect to 3 and called a 3-valuation if ϕ(t + P) = ϕ(P ) for all P ∈ P(3) and t ∈ 3.
We write V(3,G) for the family of 3-valuations into G.

Many well-known valuations can be obtained as integrals over polytopes such as the
d-dimensional volume V (P ) =

∫
P
dx. The volume is an example of a homogeneous

valuation, that is, V (nP ) = ndV (P ) for all n ≥ 0. An important valuation that cannot
be represented as an integral is the Euler characteristic χ defined by χ(P ) = 1 for all
nonempty polytopes P . The volume and the Euler characteristic are 3-valuations with
respect to any 3. If 3 is discrete, the discrete volume E(P ) := |P ∩3| is a 3-valuation.

We mention two particular techniques to manufacture new valuations from old ones.
If 3 is a vector space over a subfield of R, then P ∩Q ∈ P(3) whenever P,Q ∈ P(3),
i.e. P(3) is an intersectional family. For a fixed valuation ϕ and a polytope Q ∈ P(3),
the map

ϕ∩Q(P ) := ϕ(P ∩Q)

is a valuation. Observe that ϕ∩Q is not translation-invariant unless Q = ∅.
The Minkowski sum of two P,Q ∈ P(3) is the 3-polytope

P +Q = {p + q : p ∈ P, q ∈ Q}.

For a fixed 3-polytope Q and valuation ϕ, we define

ϕ+Q(P ) := ϕ(P +Q)

for P ∈ P(3). That this defines a valuation follows from the fact that

(K1 ∪K2)+K3 = (K1 +K3) ∪ (K2 +K3),

(K1 ∩K2)+K3 = (K1 +K3) ∩ (K2 +K3)

for any convex bodies K1,K2,K3 ⊂ Rd [27, Section 3.1]. Observe that ϕ+Q is transla-
tion-invariant whenever ϕ is.

A result that we alluded to in the introduction regards the behavior of 3-valuations
with respect to dilations. It was first shown for the discrete volume by Ehrhart [15] and
then for all 3-valuations by McMullen [22].
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Theorem 2.1. Let ϕ : P(3) → G be a 3-valuation. Then for every r-dimensional
3-polytope P ⊂ Rd there are unique hϕ0 , h

ϕ
1 , . . . , h

ϕ
r ∈ G such that

ϕP (n) := ϕ(nP ) = h
ϕ
0

(
n+ r

r

)
+ h

ϕ
1

(
n+ r − 1

r

)
+ · · · + hϕr

(
n

r

)
.

That is, ϕP (n) agrees with a polynomial for all n ≥ 0. We define the h∗-vector of ϕ and
P as the vector of coefficients hϕ(P ) := (hϕ0 , . . . , h

ϕ
d ) with hϕi = 0 for i > dimP . We

will give a simple proof of this result in Section 3 whose inner workings we will need for
our main results.

We define the Steiner valuation of a polytope P ⊂ Rd as

S(P ) := V +Bd (P ) = V (P + Bd).

Using Theorem 2.1, we obtain the Steiner polynomial

SP (n) := V (nP + Bd) =

d∑
i=0

(
d

i

)
Wd−i(P )n

i . (4)

The coefficient Wi(P ), called the i-th quermassintegral, is a homogeneous valuation of
degree d − i [16, Sect. 6.2]. The Steiner valuation is invariant under rigid motions and
so are the quermassintegrals. Hadwiger’s characterization theorem [17] states that for any
real-valued valuation ϕ on convex bodies in Rd that is continuous and invariant under
rigid motions, there are unique α0, . . . , αd ∈ R such that

ϕ = α0W0 + · · · + αdWd .

Let 3 be a lattice. A less well-known 3-valuation is the solid-angle valuation. The
solid angle of a polytope P at the origin is defined as

ω(P ) := lim
ε→0

V (εBd ∩ P)

V (εBd)
,

where Bd is the unit ball centered at the origin. It is easy to see that ω is a valuation. The
solid-angle valuation of P ∈ P(3) is defined as

A(P ) :=
∑
p∈3

ω(−p + P)

By construction, this is a 3-valuation and an example of a simple valuation: A(P ) = 0
whenever dimP < d.

Beck, Robins, and Sam [4] considered a class of3-valuations that generalize the idea
underlying the solid-angle valuation. Slightly rectifying the definitions in [4], a system of
weights ν = (νp) is a choice of a valuation νp : P(3)→ G for every lattice point p ∈ 3
such that

Nν(P ) :=
∑
p∈3

νp(P )
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is defined for all P ∈ P(3). Certainly a sufficient condition for this is that νp has bounded
support, i.e. νp(P ) = 0 whenever P ∩ (R · Bd − p) = ∅ for some R = R(νp) > 0.
We call Nν a weight valuation. If we choose νp(P ) := ϕ(−p + P) for some fixed
valuation ϕ, then Nν is a 3-valuation. This generalizes the solid-angle valuation for
νp(P ) = ω(−p + P) as well as the discrete volume for νp(P ) = 1 if and only if
p ∈ P . For other valuations it is in general not clear if they can be represented by weight
valuations.

Example 2.2 (Euler characteristic). Let t ∈ Rd be an irrational vector. For a nonempty
lattice polytope P ∈P(Zd) there is always a unique vertex vt ∈ Q such that 〈t, x〉≤〈t, vt 〉
for all x ∈ Q. Let νp be the function defined by νp(P ) = 1 if vt = p and zero otherwise.
In particular, νp(∅) = 0. It is easy to check that this is a valuation and that Nν is the Euler
characteristic.

Before we ponder the general case, let us consider one more example.

Example 2.3 (Volume). We write Cd = [0, 1]d ⊂ Rd for the standard cube and we
define ν := V ∩Cd . The induced weights are then

νp(P ) = V (P ∩ (p + Cd))

for p ∈ Zd . Since V is a simple valuation, we get

Nν(P ) = V
(⋃
{P ∩ (p + Cd) : p ∈ Zd}

)
= V (P ).

The example already hints at the fact that general valuations on rational polytopes can be
expressed as weight valuations. The following result is phrased in terms of the standard
lattice 3 = Zd , but of course can be adapted to any lattice 3.

Proposition 2.4. Let ϕ : P(Qd) → G be a valuation on rational polytopes. Then there
is a system of weights ν such that ϕ|P(Zd ) = Nν .

Proof. Let Cd = [0, 1]d be the standard cube and define Fi := Cd ∩ {xi = 0} for
i = 1, . . . , d . The set Hd := Cd \ (F1 ∪ · · · ∪ Fd) = (0, 1]d is the half-open standard
cube. It is clear that {p +Hd}p∈Zd is a partition of Rd . Let us define the valuation

ϕ∩Hd =
∑
I⊆[d]

(−1)|I |ϕ∩FI ,

where FI :=
⋂
{Fi : i ∈ I } and F∅ := Cd . Then∑

p∈Zd
ϕ(P ∩ (p +Hd)) = ϕ

(
P ∩

⊎
{p +Hd : p ∈ Zd}

)
= ϕ(P ),

which proves the claim with νp(P ) = ϕ(P ∩ (p +Hd)). ut

Note that this result does not require ϕ to be invariant with respect to translations. The
main result of this section is a representation theorem for Zd -valuations in terms of weight
valuations.
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Theorem 2.5. Let ϕ : P(Zd)→ G be a Zd -valuation taking values in a divisible abelian
group G. Then ϕ = Nν for some system of weights ν.

This result is a direct consequence of Proposition 2.4 and the following lemma which is
of interest in its own right.

Lemma 2.6. Let ϕ : P(Zd)→ G be a Zd -valuation taking values in a divisible abelian
group. Then there is a valuation ϕ̄ : P(Qd) → G that is invariant under translations
by Zd , and ϕ̄(P ) = ϕ(P ) for all lattice polytopes P ∈ P(Zd).
Proof. Since G is divisible, we can rewrite Theorem 2.1 as

ϕP (n) = ϕd(P )n
d
+ · · · + ϕ0(P )

for all P ∈ P(Zd). The coefficients ϕi(P ) are Zd -valuations homogeneous of degree i. It
is sufficient to show that we can extend ϕi to rational polytopes.

For Q ∈ P(Qd), let ` ∈ Z>0 be such that `Q ∈ P(Zd). We define

ϕ̄i(Q) := `
−iϕi(`Q).

To see that ϕ̄i is well-defined, observe that `Q ∈ P(Zd) if and only if ` = k`0 where
`0 is the least common multiple of the denominators of the vertex coordinates of Q, and
k ∈ Z≥1. Hence, by homogeneity

ϕi(`Q) = k
iϕi(`0Q).

It remains to show that ϕ̄i satisfies the valuation property. LetQ,Q′ be rational polytopes
such that Q ∪Q′ ∈ P(Qd). Choose ` > 0 such that `Q, `Q′, `(Q ∪Q′) and `(Q ∩Q′)
are lattice polytopes. Then

`i ϕ̄i(Q ∪Q
′) = ϕi(`(Q ∪Q

′)) = ϕi(`Q)+ ϕi(`Q
′)− ϕi(`(Q ∩Q

′))

= `i ϕ̄i(Q)+ `
i ϕ̄i(Q

′)− `i ϕ̄i(Q ∩Q
′),

which finishes the proof. ut

Note that Lemma 2.6 not necessarily yields the extension one would expect: The discrete
volume E clearly extends to rational polytopes. However, the following example shows
that this is not the extension furnished by Lemma 2.6.

Example 2.7. Consider the discrete volume E in dimension d = 1. For lattice polytopes
P ⊂ R, the polynomial expansion is given by

EP (n) = V (P )n+ χ(P ),

where V is the 1-dimensional volume. By Lemma 2.6, there is an extension of E to ratio-
nal segments and we compute

Ē
([

0, 1
3

])
=

1
3V
(
3
[
0, 1

3

])
+ χ

(
3
[
0, 1

3

])
=

1
3 + 1 6= |Q ∩ Z|.

Since every abelian groupG can be embedded into a divisible group G, Theorem 2.5 can
be extended to abelian groups if we allow the weights to take values in G. However, the
assumption that ϕ is translation-invariant with respect to Zd is necessary for our proof.

Question 1. Can Lemma 2.6 be extended to general valuations ϕ : P(Zd)→ G?
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3. Half-open decompositions and h∗-vectors

For a polytope P ∈ P(3) and a valuation, we defined in the introduction

ϕ(relintP) :=
∑
F

(−1)dimP−dimFϕ(F ), (5)

where the sum is over all faces F of P . Using Möbius inversion, this definition is consis-
tent with

ϕ(P ) =
∑
F

ϕ(relintF). (6)

In this section we will extend ϕ to half-open polytopes, which allows us to use half-
open decompositions of polytopes for a proof of Theorem 2.1 that avoids inclusion-
exclusion of any sort.

Let P ⊂ Rd be a full-dimensional polytope with facets F1, . . . , Fm. A point q ∈ Rd is
general with respect to P if q is not contained in any facet-defining hyperplane. The point
q is beneath or beyond the facet Fi if q and P are on the same side or, respectively, on
different sides of the facet hyperplane aff(Fi). We write Iq(P ) ⊂ [m] for the set indexing
the facets for which q is beyond. Since we assume P to be full-dimensional, we always
have Iq(P ) 6= [m]. A half-open polytope is a set of the form

HqP := P \
⋃
{Fi : i ∈ Iq(P )}.

We will write P for a half-open polytope HqP obtained from P with respect to some
general point q.

Our interest in half-open polytopes stems from the following result of Köppe and
Verdoolaege [21] that is already implicit in the works of Stanley and Ehrhart (see [28]).
A dissection of a polytope P is a presentation P = P1 ∪ · · · ∪ Pk , where each Pi is a
polytope of dimension dimP and dim(Pi ∩ Pj ) < d for all i 6= j .

Lemma 3.1 ([21, Thm. 3]). Let P = P1 ∪ · · · ∪Pk be a dissection. If q is a point that is
general with respect to Pi for all i = 1, . . . , k, then

HqP = HqP1 ] · · · ] HqPk.

For the sake of completeness we include a short proof of this result.

Proof. We only need to show that for every p ∈ HqP there is a unique Pi with p ∈ HqPi .
There is a Pi such that for every ε > 0 sufficiently small, the point p′ := p + ε(q − p)
is in the interior and p possibly on the boundary. In particular, the segment [q, p] meets
Pi in the interior of Pi , which shows that p ∈ HqPi . If p ∈ Pj for some j 6= i, then there
is a facet-hyperplane H of Pj through p that separates Pj from p′. This, however, shows
that q and Pj are on different sides of H and hence p 6∈ HqPj . ut

For a valuation ϕ we define

ϕ(HqP) := ϕ(P )−
∑

∅6=J⊆Iq (P )

(−1)|J |ϕ(FJ ),

where we set FJ :=
⋂
i∈J Fi . Lemma 3.1 now implies the following.
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Corollary 3.2. Let P = P1 ∪ · · · ∪ Pk be a dissection with P1, . . . , Pk ∈ P(3). If ϕ is a
valuation on P(3), then for a general q ∈ relintP ,

ϕ(P ) = ϕ(HqP1)+ · · · + ϕ(HqPk).

It is well-known (see for example [13]) that every (lattice) polytope P can be dissected
into (lattice) simplices. Thus, Theorem 2.1 follows from Corollary 3.2 and the following
proposition.

Proposition 3.3. Let S be a full-dimensional, half-open3-simplex and ϕ a3-valuation.
Then the function ϕS (n) = ϕ(nS ) is a polynomial in n of degree at most d .

Proof. Let S be the3-simplex such that S = HqS for some general q and set I = Iq(S).
Now, S has vertices v1, . . . , vd+1 and facets F1, . . . , Fd+1 labeled in such a way that
vi 6∈ Fi for i ∈ [d + 1]. An intrinsic description of S is given by

S =
{∑

i

λivi :
∑
i

λi = 1, λi ≥ 0 for i 6∈ I, λi > 0 for i ∈ I
}
.

Define v̄i = (vi, 1) ∈ Rd+1 and consider the half-open polyhedral cone

C := {µ1v̄1 + · · · + µd+1v̄d+1 : µ1, . . . , µd+1 ≥ 0, µi > 0 for i ∈ I }.

For n ≥ 0, the hyperplane Hn = {x ∈ Rd+1
: xd+1 = n} can be naturally identified

with Rd such that Hn ∩ C = nS , where 0S := ∅ unless I = ∅. Define the (half-open)
parallelepiped

5 :=
{
µ1v̄1 + · · · + µd+1v̄d+1 : 0 ≤ µi < 1 for i 6∈ I, 0 < µi ≤ 1 for i ∈ I

}
.

Then for every p ∈ C there are unique µi ∈ Z≥0 and r ∈ 5 such that p =
∑
i µi v̄i + r .

Let us write
5i := 5 ∩Hi for 0 ≤ i ≤ d. (7)

In general, the5j are not half-open polytopes but partly open: they are3-polytopes with
certain relatively open faces removed. It follows that

nS = C ∩Hn =
⊎
k,r≥0
k+r=n

{v̄i1 + · · · + v̄ik +5r : 1 ≤ i1 ≤ · · · ≤ ik ≤ d + 1}.

This is a partition of nS into partly open polytopes. Using the translation-invariance of ϕ
yields

ϕS (n) = ϕ(50)

(
n+ d

d

)
+ ϕ(51)

(
n+ d − 1

d

)
+ · · · + ϕ(5d)

(
n

d

)
, (8)

where we have used (6) to compute ϕ(5j ). ut

A notion developed in the proof that will be of importance later is the following. For a
(half-open) simplex S, we define the j -th (partly open) hypersimplex 5j (S) through (7).
Proposition 3.3 prompts the definition of an h∗-vector for half-open polytopes. The proof
of Proposition 3.3 then yields
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Corollary 3.4. If S ⊂ Rd is a half-open 3-simplex and ϕ a 3-valuation, then

h
ϕ
j (S ) = ϕ(5j (S )) for all 0 ≤ j ≤ d.

The following is an immediate consequence of Corollary 3.2 and Proposition 3.3.

Corollary 3.5. Let P ∈ P(3) be a polytope and ϕ a3-valuation. Let P = P1∪· · ·∪Pk
be a dissection into 3-simplices and q ∈ relintP a point general with respect to Pi for
all i = 1, . . . , k. Then

hϕ(P ) = hϕ(HqP1)+ · · · + h
ϕ(HqPk).

3.1. Combinatorial positivity and monotonicity

We now assume that G is an abelian group together with a partial order � compatible
with the group structure, that is, (G,�) is a poset such that for all a, b, c ∈ G,

a � b ⇒ a + c � b + c.

A 3-valuation ϕ : P(3)→ G is called combinatorially positive or h∗-nonnegative if

h
ϕ
i (P ) � 0 for all P ∈ P(3) and 0 ≤ i ≤ d,

and combinatorially monotone or h∗-monotone if

h
ϕ
i (P ) � h

ϕ
i (Q) for P ⊆ Q in P(3) and 0 ≤ i ≤ d.

Our main theorem from the introduction is a special case of the following.

Theorem 3.6. For a 3-valuation ϕ : P(3) → G into a partially ordered abelian
group G, the following are equivalent:

(i) ϕ is combinatorially monotone;
(ii) ϕ is combinatorially positive;
(iii) ϕ(relint1) � 0 for every 3-simplex 1.

Proof. The implication (i)⇒(ii) simply follows from the fact that ∅ is trivially a 3-poly-
tope. Hence, hϕi (P ) � h

ϕ
i (∅) = 0 for every P ∈ P(3) and all i.

For (ii)⇒(iii), let1 be a3-simplex of dimension r . Note that the (r−1)-th partly open
hypersimplex 5r−1 of 1 is a translate of relint(−1). Combinatorial positivity implies
that 0 � hϕr−1(−1) = ϕ(5r−1(−1)) = ϕ(relint1).

(iii)⇒(i): Let P ⊆ Q be3-polytopes. If r = dimP = dimQ, letQ = T1∪· · ·∪TN
be a dissection of Q into r-dimensional 3-simplices such that P = TM+1 ∪ TM+2 ∪

· · · ∪ TN for some M < N . Such a dissection can be constructed by using, for example,
the Beneath-Beyond algorithm [14, Section 8.4]. For a point q ∈ relintP general with
respect to all Ti , it follows from Corollary 3.5 that

h
ϕ
i (Q)− h

ϕ
i (P ) = h

ϕ
i (HqT1)+ · · · + h

ϕ
i (HqTM).
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Hence, it is sufficient to show
h
ϕ
i (S ) � 0

for any half-open 3-simplex S . For 0 ≤ i ≤ dim S , let 5i = 5i(S ) be the corre-
sponding i-th hypersimplex and let 5i be its closure. Pick a triangulation T of 5i into
3-simplices. Then T ′ = {σ ∈ T : relint σ ⊂ 5i} is a triangulation of the partly open
hypersimplex. From Corollary 3.4 and inclusion-exclusion, we obtain

h
ϕ
i (S ) = ϕ(5i) =

∑
σ∈T ′

ϕ(relint σ) � 0,

which completes the proof for the case dimP = dimQ.
Let r := dimQ − dimP > 0. Set P 0

:= P and P i := conv(P i−1
∪ qi) for i =

1, . . . , r − 1, where qi ∈ (Q ∩3) \ aff(P i−1). This yields a chain of 3-polytopes

P = P 0
⊂ P 1

⊂ · · · ⊂ P r ⊆ Q

with dimP i = dimP i−1
+ 1 for 1 ≤ i ≤ r . So, it remains to prove that hϕ(P ) � hϕ(Q)

whenQ is a pyramid with base P and apex a. Let P = P1 ∪ · · · ∪Pk be a dissection of P
into3-simplices. This induces a dissection ofQ with piecesQi = conv(Pi ∪ a). A point
q ∈ relintQ general with respect to all Qi gives half-open simplices Qi = HqQi with
half-open facets Pi = Qi ∩ Pi . For 0 ≤ j ≤ d , it is easy to see that 5j (Pi ) ⊆ 5j (Qi )

is a (partly open) face. For fixed j we compute, from a triangulation T of 5j (Qi ),

h
ϕ
j (Qi )− h

ϕ
j (Pi ) =

∑
{ϕ(relint σ) : σ ∈ T , relint σ ( 5j (Pi )} � 0,

and hence
h
ϕ
j (Q)− h

ϕ
j (P ) =

∑
i

(h
ϕ
j (Qi )− h

ϕ
j (Pi )) � 0. ut

As a direct consequence we recover Stanley’s results regarding the h∗-vector for the dis-
crete volume.

Corollary 3.7. Let 3 be a lattice. Then the discrete volume E(P ) = |P ∩ Zd | is an
h∗-nonnegative and h∗-monotone valuation.

Proof. By Theorem 3.6, it suffices to prove that E(relintP) ≥ 0 for all P ∈ P(Zd). From
the definition of E(relintP) it follows that E(relintP) = |Zd ∩ relintP | ≥ 0. ut

Another simple application gives the following.

Corollary 3.8. A simple 3-valuation ϕ : P(3) → G is combinatorially positive if and
only if ϕ(P ) � 0 for all P ∈ P(3).
Proof. For a simple valuation, we observe that

ϕ(relintP) =
∑
F

(−1)dimP−dimFϕ(F ) = ϕ(P ).

Theorem 3.6 yields the claim. ut

Since the solid-angle valuation is simple, this implies the main results of Beck, Robins,
and Sam [4].
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Corollary 3.9. The solid-angle valuation A(P ) is h∗-nonnegative and h∗-monotone.

Beck, Robins, and Sam also give a sufficient condition for the h∗-nonnegativity/-mono-
tonicity of general weight valuations. Theorems 3 and 4 of [4] state that Nν is h∗-non-
negative and h∗-monotone if and only if νp(P ) ≥ 0 for all P ∈ P(Zd) and all p ∈ Zd .
Unfortunately, this condition is not correct, as Example 2.2 shows.

The Steiner valuation S also turns out not to be combinatorially positive/monotone.

Example 3.10. Let P = [0, αe1] ⊂ Rd be a segment of length α > 0 in dimension
d > 1. Then

S(relintP) = V (P + Bd)− V (0+ Bd)− V (αe1 + Bd) = αVd−1(Bd−1)− Vd(Bd) < 0

for α sufficiently small.

4. Reciprocity and a multivariate Ehrhart–Macdonald Theorem

A fascinating result in Ehrhart theory and an important tool in geometric and enumerative
combinatorics is the reciprocity theorem of Ehrhart and Macdonald.

Theorem 4.1. Let P ⊂ Rd be a lattice polytope and EP (n) its Ehrhart polynomial. Then

(−1)dimPE(−n) = E(relint(nP )) = |relint(nP ) ∩ Zd |.

McMullen [22] generalized this result to all 3-valuations as follows.

Theorem 4.2. Let ϕ : P(3)→ G be a 3-valuation and P ∈ P(3). Then

(−1)dimPϕP (−n) = ϕ(relint(−nP )).

In this section we succumb to the temptation to give a simple proof of Theorem 4.2 using
the machinery of half-open decompositions developed in Section 3. As a corollary we
obtain McMullen’s multivariate version of Theorem 2.1 for Minkowski sums ϕ(n1P1 +

· · ·+nkPk) and, from the perspective of weight valuations, we give a multivariate Ehrhart–
Macdonald reciprocity (Theorem 4.8). This section is not necessary for the remainder of
the paper and can, if necessary, be skipped.

We start with a generalization of Lemma 3.1. Let P ⊂ Rd be a full-dimensional
polytope with facets F1, . . . , Fm. For a general point q ∈ Rd , we have defined Iq(P ) =
{i ∈ [m] : q beyond Fi}, which led us to the definition of half-open polytopes. We now
define

HqP := P \
⋃
{Fi : i 6∈ Iq(P )} = P \ ∂HqP .

In a more general setting the relation between HqP and HqP was studied in [1].

Lemma 4.3. Let P = P1 ∪ · · · ∪ Pk be a dissection and q general with respect to all Pi .
Then

HqP = HqP1 ] · · · ] HqPk.
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Proof. For a polytope P ⊂ Rd , define the homogenization P̂ := {(x, t) : t ≥ 0, x ∈ tP }.
This is a polyhedral cone and P can be identified with ρ(P̂ ) := {(x, 1) ∈ P̂ }. Let q̂ =

(
q
1

)
.

Then HqPi = ρ(H−q̂ P̂i). Applying Lemma 3.1 with−q̂ to P̂ = P̂1∪· · ·∪P̂k then proves
the claim. ut

The following reciprocity is a simple extension of Stanley’s result for reciprocal do-
mains [28]. Observe that for q ∈ relintP we get HqP = relintP , and hence the following
theorem subsumes Theorem 4.2.

Theorem 4.4. Let P be a 3-polytope and ϕ be a 3-valuation. Then

(−1)dimPϕHqP (−n) = ϕ(−nHqP).

Proof. Since ϕHqP (n) = ϕnHqP (1), we only have to prove that (−1)dimPϕHqP (−1) =
ϕ(−HqP). Let us first assume that P is a simplex of dimension d . With the notation from
the proof of Proposition 3.3 and (8) we obtain

(−1)dimPϕHqP (−n) = ϕ(50)

(
n− 1
d

)
+ϕ(51)

(
n

d

)
+· · ·+ϕ(5d)

(
n+ d − 1

d

)
, (9)

where 5i = 5i(HqP) and we have used the identity (−1)b
(
−a+b
b

)
=
(
a−1
b

)
. Thus,

(−1)dimPϕHqP (−1) = ϕ(5d) = ϕ(−HqP),

since 5d is a translate of −HqP . Now, let P be an arbitrary 3-polytope, and let P =
T1 ∪ · · · ∪ Tk be a dissection into 3-simplices. Then

(−1)dimPϕHqP (−1) = (−1)dimP
(
ϕHqT1(−n)+ · · · + ϕHqTk (−n)

)
= ϕ(−HqT1)+ · · · + ϕ(−HqTk) = ϕ(−HqP)

by Lemma 4.3. ut

Corollary 4.5. Let Nν be a translation-invariant weight valuation and P be a lattice
polytope. Then also P 7→ (−1)dimPNν(− relintP) is a weight valuation, and

(−1)dimP (Nν)P (−n) =
∑
p∈Zd

νp(relint(−nP )).

4.1. Multivariate Ehrhart–Macdonald reciprocity

A multivariate version of Theorem 2.1 was given by Bernstein [7] for the discrete volume
and by McMullen [22] for general 3-valuations.

Theorem 4.6 ([22, Theorem 6]). Let P1, . . . , Pk ∈ P(3) and let ϕ : P(3) → G be a
3-valuation. Then the function

ϕP1,...,Pk (n1, . . . , nk) = ϕ(n1P1 + · · · + nkPk)

agrees with a polynomial of total degree at most dimP1+· · ·+Pk for all n1, . . . , nk ≥ 0.
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Proof. For k = 1, this is just Theorem 2.1. For k > 1, consider for fixed Pk the
3-valuation ϕ+Pk . By induction, ϕP1,...,Pk−1(Pk; n1, . . . , nk−1) := ϕ+Pk (n1P1 + · · · +

nk−1Pk−1) is a polynomial in n1, . . . , nk−1. In particular, the map

Pk 7→ ϕP1,...,Pk−1(Pk) := ϕP1,...,Pk−1(Pk; n1, . . . , nk−1) ∈ G[n1, . . . , nk−1]

is a 3-valuation. Hence, again by Theorem 2.1,

(ϕP1,...,Pk−1)Pk (nk) = ϕ(n1P1 + · · · + nk−1Pk−1 + nkPk) ∈ G[n1, . . . , nk−1][nk]

is a multivariate polynomial. The total degree of ϕP1,...,Pk (n1, . . . , nk) is equal to the
degree of ϕP1,...,Pk (n, n, . . . , n) = ϕ(n(P1 + · · · + Pk)) in n, which, by Theorem 2.1, is
≤ dim(P1 + · · · + Pk). ut

Specializing Theorem 4.6 to the discrete volume, we find that, for any lattice polytopes
P1, . . . , Pk ⊂ Rd ,

EP1,...,Pk (n1, . . . , nk) = |(n1P1 + · · · + nkPk) ∩ Zd |

agrees with a polynomial for all n1, . . . , nk ≥ 0. Using Ehrhart–Macdonald reciprocity
(Theorem 4.1), we can interpret (−1)rEP1,...,Pk (−n1, . . . ,−nk) for n1, . . . , nk ≥ 0 as
the number of lattice points in the relative interior of P = n1P1 + · · · + nkPk where
r = dimP . This raises the natural question if there is a combinatorial interpretation for
the evaluation

EP1,...,Pk (−n1, . . . ,−nl, nl+1, . . . , nk) (10)

for n1, . . . , nk ≥ 0 and 1 < l < k. The following example shows that there cannot be a
straightforward generalization of Theorem 4.1.

Example 4.7. Let P = [0, 1]2 and Q = [(0, 0), (1, 1)]. Then

EP,Q(n,m) = (n+ 1)2 + 2nm+m.

Therefore

EP,Q(−n,m) < 0 for 0 < n� m,

EP,Q(−n,m) > 0 for 0 < m� n.

However, from the perspective of weight valuations, we can give an interpretation of (10)
in terms of the topology of certain polyhedral complexes. We first note that for (10),

EP1,...,Pk (−n1, . . . ,−nl, nl+1, . . . , nk) = EP,Q(−1, 1) = E+QP (−1)

where P := n1P1 + · · · + nlPl and Q = nl+1Pl+1 + · · · + nkPk . Hence, it is sufficient
to find an interpretation for EP,Q(−1, 1) for general lattice polytopes P,Q.

For two polytopes P,Q ⊂ Rd , the Q-complement is the polyhedral complex

CQ(P ) := {F ⊆ P face : F ∩Q = ∅}.

Recall that the reduced Euler characteristic of a polyhedral complex K is defined as
χ̃(K) :=

∑
{(−1)dimF

: F ∈ K}. Here is our generalization of Ehrhart–Macdonald
reciprocity to Minkowski sums of lattice polytopes.
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Theorem 4.8. Let P,Q ⊂ Rd be nonempty lattice polytopes. Then P 7→ χ̃(CQ(P ))
defines a valuation on P(Zd) and

EP,Q(−1, 1) = −
∑
p∈Zd

χ̃(CQ(P + p)).

Proof. Consider ϕ :=χ∩(−Q) and define a system of weights ν by νp(P ) :=ϕ(−p + P).
We have νp(P ) = 1 if and only if (−p + P) ∩ (−Q) 6= ∅ if and only if p ∈ P + Q.
Hence,

E+Q(P ) =
∑
p∈Zd

νp(P ) = Nν(P ).

By Corollary 4.5, we obtain

E+QP (−1) =
∑
p∈Zd

(−1)dim(P )χ∩(−Q)(−(p + relintP))

=

∑
p∈Zd

∑
{(−1)dimF

: F ⊆ P face, (F + p) ∩Q 6= ∅}

= −

∑
p∈Zd

χ̃(CQ(P + p))

where the last equation follows from the fact that the complex of faces of P has reduced
Euler characteristic zero. ut

For Q = {0}, we recover Ehrhart–Macdonald reciprocity: For p ∈ Zd , set

Cp := CQ(−p + P) = {F ⊆ P face : p 6∈ F }.

For p ∈ relintP , Cp is a sphere of dimension dimP − 1. For p 6∈ P and p ∈ ∂P , the
complex Cp is a ball and so χ̃(Cp) = 0. Hence, Theorem 4.8 yields

EP (−1) =
∑

p∈Zd∩relintP

(−1)dimP
= (−1)dimPE(relintP).

One could hope that the Q-complements are combinatorially well-behaved (e.g.
shellable, Cohen–Macaulay, Gorenstein, etc.), but it turns out that Q-complements are
universal.

Proposition 4.9. Let C be a simplicial complex. Then there are lattice polytopes P andQ
such that

C ∼= CQ(P ).
Proof. Let C be a simplicial complex on the vertex set [m]. Let P = conv(e1, . . . , em) be
a lattice (m− 1)-simplex in Rm. For I ⊆ [m] let

wI :=
1
|I |

∑
i∈I

ei

be the barycenter of the face FI := conv(ei : i ∈ I ) ⊆ P . Let Q = conv(wI : I 6∈ C).
Then FI ∩ Q = ∅ if and only if I 6∈ C. Hence, CQ(P ) is a geometric realization of C.
Observing that m!Q ⊆ m!P are lattice polytopes finishes the proof. ut
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In particular, the weights appearing in Theorem 4.8 can be arbitrary. This, however, does
not exclude the possibility that there are combinatorial interpretations of EP,Q(m, n) for
certain regimes R ⊂ Z2, and it would certainly be interesting to find such interpretations.

5. Weak h∗-nonnegativity, monotonicity, and nonnegativity

The Euler characteristic is a simple example of 3-valuation that is not combinatorially
positive. Indeed, for an r-polytope P 6= ∅ we have

h
χ
i (P ) = (−1)i

(
r

i

)
.

In this section we consider a weaker notion than h∗-nonnegativity that clarifies the relation
of combinatorial positivity/monotonicity to the usual nonnegativity and monotonicity of
valuations. A 3-valuation ϕ ∈ V(3,G) is weakly combinatorially monotone or weakly
h∗-monotone if ϕ({0}) � 0 and

h
ϕ
i (P ) � h

ϕ
i (Q)

for all 3-polytopes P ⊆ Q such that dimP = dimQ. Clearly, every combinatorially
monotone valuation is also weakly combinatorially monotone. Moreover, the Euler char-
acteristic is weakly h∗-monotone, which also shows that weakly h∗-monotone does not
imply h∗-monotone. The main result of this section exactly characterizes the weakly
h∗-monotone valuations.

Theorem 5.1. For a 3-valuation ϕ : P(3) → G into a partially ordered abelian
group G, the following are equivalent:

(i) ϕ is weakly h∗-monotone;
(ii) ϕ(relint1)+ ϕ(relintF) � 0 for every 3-simplex 1 and every facet F of 1;
(iii) ϕ(S ) � 0 for every half-open 3-simplex S .

Proof. (i)⇒(ii): Let 1 = conv(v0, . . . , vr) be a 3-simplex of dimension r . We can
assume that v0 = 0. If r = 0, then ϕ(relint1) ≥ 0 by definition. For r > 0, the
truncated pyramid T = 21 \1 is contained in 21 and is of dimension r . Since ϕ is
weakly h∗-monotone, we obtain

0 � hϕr (−21)− hϕr (−T ) = ϕ(relint(21))− ϕ(relint T ) = ϕ(relint1)+ ϕ(relintF),

where F denotes the facet opposite to v0 = 0.
(ii)⇒(iii): Let S be a half-open simplex of dimension r and let f = f (S ) be

the number of facets present in S . If f = 1 or r = 0, then ϕ(S ) = ϕ(relint S) +
ϕ(relintF) � 0 by (ii). For f > 1, let F ⊂ S be a half-open facet. Then T = S \F is a
half-open simplex with f (T ) < f , and by induction on f and r we get

ϕ(S ) = ϕ(T )+ ϕ(F ) � 0.
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(iii)⇒(i): Let P ⊆ Q be two 3-polytopes with r − 1 = dimP = dimQ. As in the
proof of Theorem 3.6, we can choose a dissection Q = T1 ∪ · · · ∪ TN of Q into (r − 1)-
dimensional 3-simplices such that P = TM+1 ∪ TM+2 ∪ · · · ∪ TN for some M < N . For
a point q ∈ relintP general with respect to all Ti , it follows from Corollary 3.5 that

h
ϕ
i (Q)− h

ϕ
i (P ) = h

ϕ
i (HqT1)+ · · · + h

ϕ
i (HqTM).

It is thus sufficient to show
h
ϕ
i (S ) � 0

for any proper half-open3-simplex S , that is, S = HqS for some general q 6∈ S. We will
show that the corresponding partly open hypersimplex5i = 5i(S ) can be dissected into
half-open simplices. By a change of coordinates, we can assume S = {x ∈ V : x ≥ 0},
where V = {x ∈ Rr : x1 + · · · + xr = 1}, and

S = {x ∈ S : xj > 0 for j ∈ I }

with I = Iq(S) 6= ∅. We can also assume that the general point q ∈ V satisfies qj > 1
for j 6∈ I . The corresponding i-th partly open hypersimplex is

5i = {x ∈ i · V : xj > 0 for j ∈ I, xj < 1 for j 6∈ I } = Hq ′5i,

where q ′ = i · q. Hence, 5i is a half-open polytope and after choosing a dissection
5i = S1 ∪ · · · ∪ Sl into simplices, we obtain from Lemma 3.1

5i = Hq ′S1 ∪ · · · ∪ Hq ′Sl,

and thus

ϕ(5i) =

k∑
l=1

ϕ(Hq ′(Sk)) � 0. ut

A 3-valuation is monotone if ϕ(P ) � ϕ(Q) for all 3-polytopes P ⊆ Q and nonnegative
if ϕ(P ) � 0 for all P ∈ P(3). Clearly, every monotone valuation is nonnegative but the
converse is in general not true as the following example shows.

Example 5.2. For 3 = Z2, define the Z2-valuation b(P ) := E(P ) − V2(P ) − χ(P ). If
dimP ≤ 1, then b(P ) = V1(P ). For dimP = 2, 2b(P ) = |∂P ∩ Z2

|. This is clearly a
nonnegative valuation. But the following figure shows that b is not monotone.

We call a 3-valuation weakly monotone if ϕ({0}) � 0 and ϕ(P ) � ϕ(Q) for all
3-polytopes P ⊆ Q with dimP = dimQ. It turns out that monotonicity and weak
monotonicity are in fact equivalent.
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Proposition 5.3. Let ϕ be a 3-valuation. Then ϕ is monotone if and only if ϕ is weakly
monotone.

Proof. For 3-polytopes P ⊆ Q we construct a chain of 3-polytopes

P = P0 ⊆ P1 ⊆ · · · ⊆ Pr ⊆ Q,

where Pi+1 = conv(Pi ∪ qi) for some qi ∈ (Q ∩ 3) \ aff(Pi) for all 0 ≤ i ≤ r − 1,
and dimPr = dimQ. Hence, it suffices to prove that ϕ(P ) � ϕ(Q) when Q is a pyramid
over P with apex a = 0. If P = ∅, then Q = {0} and ϕ(Q) � 0 by definition. If
dimP ≥ 0, then the truncated pyramid T := 2Q \ (Q \ P) is contained in 2Q and is of
equal dimension. Therefore

0 � ϕ(2Q)− ϕ(T ) = ϕ(Q)− ϕ(P ). ut

The next result gives us the relation to monotone valuations.

Proposition 5.4. Let ϕ be a weakly h∗-monotone 3-valuation. Then ϕ is monotone.

Proof. We have to show that ϕ(P ) ≤ ϕ(Q) for 3-polytopes P ⊆ Q. By Proposition 5.3
we may assume that dimP = dimQ. Let Q = T1 ∪ · · · ∪ TN be a dissection of Q into
3-simplices such that P = TM+1 ∪ TM+2 ∪ · · · ∪ TN for some M < N . For a point
q ∈ relintP general with respect to all Ti we obtain

ϕ(Q)− ϕ(P ) =

M∑
i=1

ϕ(HqTi) � 0

by Theorem 5.1. ut

The converse, however, is not true.

Example 5.5. Let R be the lattice triangle with vertices a =
(0

0

)
, b =

(2
0

)
, c =

(2
1

)
.

Consider the valuation E+Q where Q = [(0, 0), (1, 1)]. It is easy to see that E+Q is
monotone. To see that E+Q is not weakly h∗-monotone, we appeal to Theorem 5.1 and
compute, for the facet F = conv(b, c),

E+Q(relintR)+ E+Q(relintF) = (−1)+ 0 < 0.

We close this section by summarizing the various relationships in the following diagram:

h∗-nonnegative
m

h∗-monotone
=⇒

weakly
h∗-monotone =⇒

monotone
m

weakly monotone
=⇒ nonnegative

6. Cones of combinatorially positive valuations

Let us assume that G is a finite-dimensional R-vector space. Then

V(3,G) = {ϕ : P(3)→ G a 3-valuation}
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inherits the structure of a real vector space. Let C ⊂ G be a closed and pointed convex
cone. Then we can define a partial order on G by

x �C y :⇔ y − x ∈ C.

This partial order is compatible with the group structure on G and C = {x ∈ G : x � 0}.
Throughout this section, G will be partially ordered by some C.

We will write VCP(3,G) for the collection of combinatorially positive 3-valuations
ϕ : P(3) → G. Observing that condition (iii) in Theorem 3.6 is linear in ϕ shows that
VCP(3,G) has typically a nice structure.

Proposition 6.1. The set VCP(3,G) is a convex cone.

In the following sections we will study the geometry of this cone for 3 = Rd and
3 = Zd .

6.1. Rd -valuations

Our main result for 3 = Rd gives a precise description of VCP(Rd ,G).

Theorem 6.2. Let G be a finite-dimensional real vector space partially ordered by a
closed and pointed convex cone C. Then

VCP(Rd ,G) ∼= C.

The isomorphism takes c to cVd .

If dimG = 1 and hence up to isomorphism G = R with the usual order, we obtain a new
characterization of the volume.

Corollary 6.3. The volume is, up to scaling, the unique real-valued combinatorially pos-
itive Rd -valuation.

As a first step towards the proof of Theorem 6.2, we recall the following result of
McMullen.

Theorem 6.4 ([22, Theorem 8]). Every monotone Rd -valuation ϕ : P(Rd) → R is
continuous with respect to the Hausdorff metric.

Since every combinatorially positive valuation is monotone (Proposition 5.4), we con-
clude that the cone VCP(Rd ,G) is indeed a closed convex cone. We recall the following
well-known result (see, for example, Gruber [16, Chapter 16]).

Lemma 6.5. If ϕ : P(Rd)→ R is a simple, monotone Rd -valuation, then ϕ = λVd for
some λ ≥ 0.

Proof of Theorem 6.2. Let ϕ be a combinatorially positive valuation. We will show that
for every linear form ` : G→ R that is nonnegative on C, the real-valued Rd -valuation
`◦ϕ is a nonnegative multiple of the volume. SinceC is pointed, this then proves ϕ = cVd
for c = ϕ([0, 1]d) ∈ C.
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Since ` ≥ 0 on C, ` ◦ϕ is monotone and by Theorem 6.4 continuous in the Hausdorff
metric. In light of Lemma 6.5 it thus suffices to prove that ϕ is simple.

For every polytope P ∈ P(Rd) let g(P ) = (g0(P ), g1(P ), . . . , gd(P )) ∈ G
d+1 be

such that ∑
n≥0

ϕ(nP )tn =
g0(P )+ g1(P )t + · · · + gd(P )t

d

(1− t)d+1 .

We denote the numerator polynomial by gP (t). For all 0 ≤ i ≤ d , every gi is a continuous
Rd -valuation. If dimP = r , then

gP (t) = (1− t)d−r
r∑
i=0

h
ϕ
i (P )t

i .

In particular, if dimP = d, then gi(P ) = h
ϕ
i (P ) ∈ C for all 0 ≤ i ≤ d .

Now let Q be of dimension r < d . Consider the sequence of polytopes Qn =

Q + 1
n
[0, 1]d . Then dimQn = d for all n ≥ 1 and hϕi (Qn) = gi(Qn) → gi(Q) as

n→∞. Since C is closed, we have gi(Q) ∈ C for all i. On the other hand, (1− t) | gQ(t)
and therefore

∑d
i=0 gi(Q) = 0. Since C is pointed, we conclude that gi(Q) = 0 for all i

and thus ϕ(Q) = 0. ut

Using similar techniques, we can describe the cone

VWCP(Rd ,G) := {ϕ : P(Rd)→ G weakly h∗-monotone}.

Theorem 6.6. Let G be a finite-dimensional real vector space partially ordered by a
closed and pointed convex cone C. Then

VWCP(Rd ,G) ∼= C × C.

The isomorphism takes (c1, c2) to c1χ + c2Vd .

Proof. Proposition 5.4 shows that weakly h∗-monotone implies monotone. It follows that
for c1 := ϕ({0}) ∈ C,

ψ := ϕ − c1χ

is still a weakly h∗-monotone Rd -valuation and, in particular, monotone. Analogous to
the proof of Theorem 6.2, we show that ψ is simple and conclude that ψ = c2Vd for
some c2 ∈ C.

Let P ⊆ Q be two polytopes of dimension r < d. Consider the d-polytopes Pn :=
P + 1

n
[0, 1]d and Qn := Q + 1

n
[0, 1]d . Then dimPn = dimQn = d and Pn ⊆ Qn

for all n ≥ 1. Following the proof of Theorem 6.2, we infer that gQn(t) − gPn(t) has all
coefficients in C and

gQn(t)− gPn(t)
n→∞
−−−→ gQ(t)− gP (t).

However, since dimP = dimQ < d , we have gP (1) − gQ(1) = 0. Since C is pointed,
this implies that gP (t) = gQ(t) and ψ(P ) = ψ(Q).

Let us assume that 0 ∈ P . Then P ⊆ nP for all n ≥ 1 and hence ψ(nP ) = c for all
n ≥ 1. In particular ψ(0P) = ψ({0}) = c, which implies that ψ(P ) = 0. ut
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Corollary 6.7. The Steiner valuation S(P ) = Vd(P + Bd) is not weakly h∗-monotone
for d > 1.

Proof. The quermassintegrals are linearly independent Rd -valuations with W0 being the
volume and Wd proportional to the Euler characteristic. Hence the representation (4)
shows that for d > 1, S is not in the cone spanned by χ and Vd . ut

It is known (see [16]) that the quermassintegrals are nonnegative and monotone with re-
spect to inclusion. Hence, by Hadwiger’s characterization result, the cone of nonnegative
and the cone of monotone rigid-motion invariant continuous valuations on convex bod-
ies in Rd coincide and are isomorphic to Rd+1

≥0 . Meanwhile, the corresponding cones of
rigid-motion invariant (weakly) h∗-monotone valuations are still given by Theorems 6.2
and 6.6.

6.2. Lattice-invariant valuations

Let 3 be a lattice of rank d that, without loss of generality, we can assume to be Zd .
A valuation ϕ : P(Zd)→ G is lattice-invariant if ϕ(T (P )) = ϕ(P ) for all P ∈ P(Zd)
and every affine map T with T (Zd) = Zd . A fundamental result on the structure of
lattice-invariant valuations was obtained by Betke and Kneser [8]. For 0 ≤ i ≤ d , we
define the i-th standard simplex as 1i := conv{0, e1, . . . , ei}, where {e1, . . . , ed} is a
fixed basis for 3.

Theorem 6.8 (Betke–Kneser [8]). For every a0, a1, . . . , ad ∈ G there is a unique
lattice-invariant valuation ϕ : P(Zd)→ G such that

ϕ(1i) = ai for all 0 ≤ i ≤ d.

In particular, there are lattice-invariant valuations ϕ0, . . . , ϕd : P(Zd) → Z such that
ϕj (1i) = δij and every valuation ϕ : P(Zd)→ G admits a unique presentation as

ϕ = ϕ(10)ϕ0 + · · · + ϕ(1d)ϕd . (11)

This implies that

V(Zd ,G) := {ϕ : P(Zd)→ G : ϕ lattice-invariant} ∼= Gd+1.

We assume that G is a real vector space of finite dimension, partially ordered by a
closed and pointed convex cone C. In this section we study the cone of combinatorially
positive, lattice-invariant valuations,

VCP(Zd ,G) := VCP(Zd ,G) ∩ V(Zd ,G).

In contrast to the case of (rigid-motion invariant) Rd -valuations, this is a proper convex
cone.

Proposition 6.9. The cone VCP(Zd ,G) is of full dimension (d + 1) · dimC.
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Proof. For ` = 1, . . . , d + 1, define the valuation E`(P ) := E(` · P). Then E` is lattice-
invariant, and

E`(relintP) = E(relint(` · P)) ≥ 0

shows that E` is combinatorially positive. Moreover, E1, . . . ,Ed+1 are linearly indepen-
dent. Indeed, assume that α1E1

+· · ·+αd+1Ed+1
= 0. We have E`(n[0, 1]d) = (`n+1)d ,

and
α1(n+ 1)d + α2(2n+ 1)d + · · · + αd+1((d + 1)n+ 1)d = 0

for all n implies αi = 0 for all i.
Now, let m = dimC and let c1, . . . , cm ∈ C be linearly independent. The lattice-

invariant valuations {ciE` : 1 ≤ i ≤ m, 1 ≤ ` ≤ d + 1} are linearly independent and
combinatorially positive, which proves the claim. ut

We will give a detailed description of VCP(Zd ,G) that complements the Betke–Kneser
theorem.

Theorem 6.10. A lattice-invariant valuation ϕ : P(Zd)→ G is combinatorially positive
if and only if ϕ(relint1i) � 0 for all standard simplices 1i , i = 0, . . . , d . In particular,

VCP(Zd ,G) ∼= Cd+1.

The theorem is equivalent to

VCP(Zd ,G) = {ϕ ∈ V(Zd ,G) : ϕ(relint1i) � 0 for all i = 0, . . . , d}. (12)

The inclusion ‘⊆’ follows from Theorem 3.6(iii). To prove the reverse inclusion it is
sufficient to show that every lattice-invariant valuation ϕ is combinatorially positive if
ϕ(relint1i) � 0 for all i = 0, . . . , d . In dimensions d ≤ 2, this is true since every lattice
polytope can be triangulated into unimodular simplices. In dimension d = 3, a direct
approach uses the classification of empty lattice simplices due to Reznick [26, Corollary
2.7] and induction on the lattice volume similar to Betke–Kneser [8].

Our proof of Theorem 6.10 pursues a different strategy: Since the right-hand side
of (12) is a polyhedral cone, it is sufficient to verify it is generated by a set of combinato-
rially positive valuations. For the case (G,C) = (R,R≥0), such generators will be given
in the next section.

7. A discrete Hadwiger theorem

Hadwiger’s characterization theorem [17] states that every continuous rigid-motion in-
variant valuation ϕ on convex bodies in Rd is uniquely determined by the evaluations
(ϕ(Si))i=0,...,d where S0, . . . , Sd ⊂ Rd are arbitrary but fixed convex bodies with dim Sr
= r . From this it is easy to deduce that the quermassintegrals Wi , i.e. the coefficients of
the Steiner polynomial

V (tK + Bd) =

d∑
i=0

(
d

i

)
Wd−i(K)n

i,



Combinatorial positivity and a discrete Hadwiger theorem 2203

are linearly independent and hence span the space of continuous rigid-motion invariant
valuations. The quermassintegral Wi is homogeneous of degree d − i and hence up to
scaling W0, . . . ,Wd is the unique homogeneous basis for this space.

The Betke–Kneser result (Theorem 6.8) is a natural discrete counterpart: Every
lattice-invariant valuation ϕ : P(Zd) → G is uniquely determined by its values on
d + 1 lattice simplices of different dimensions. A homogeneous basis for the space of
lattice-invariant valuations is given by the coefficients of the Ehrhart polynomial

EP (n) = ed(P )nd + · · · + e0(P ).

However, there are many desirable properties of quermassintegrals that the valua-
tions ei lack. As they are special mixed volumes, the quermassintegrals are nonnegative
and monotone. These properties distinguish them from all other bases for the space of
rigid-motion invariant valuations: The cones of nonnegative and, equivalently, monotone
rigid-motion invariant valuations are spanned by the quermassintegrals. Unfortunately,
the valuations ei are neither monotone nor nonnegative [3, Chapter 3]. This was Stan-
ley’s original motivation for the h∗-monotonicity result [30] given in Corollary 3.7. In
this section we study a basis for V(Zd ,Z) that is combinatorially positive and hence by
the results of Section 5 also nonnegative and monotone. This yields a discrete Hadwiger
Theorem.

In a different binomial basis Ehrhart’s result (1) states that

EP (n) = f ∗0 (P )
(
n− 1

0

)
+ f ∗1 (P )

(
n− 1

1

)
+ · · · + f ∗d (P )

(
n− 1
d

)
. (13)

for some f ∗i (P ) ∈ Z. These coefficients take the role of the quermassintegrals for com-
binatorial positivity.

Theorem 7.1. Let ϕ : P(Zd)→ R be a lattice-invariant valuation. Then ϕ is combina-
torially positive if and only if

ϕ = α0f
∗

0 + α1f
∗

1 + · · · + αdf
∗

d for some α0, . . . , αd ≥ 0.

Since
(
n−1

0

)
, . . . ,

(
n−1
d

)
is a basis for univariate polynomials of degree ≤ d , the valuations

f ∗0 , . . . , f
∗

d are a basis for V(Zd ,R). The following lemma gives an explicit expression
of ϕ in terms of this basis.

Lemma 7.2. For all i, j = 0, 1, . . . , d ,

f ∗j (relint1i) = δij .

In particular, for every lattice invariant valuation ϕ ∈ V(Zd ,G),

ϕ = ϕ(relint10)f
∗

0 + ϕ(relint11)f
∗

1 + · · · + ϕ(relint1d)f ∗d .

Proof. For the first claim, we simply note that Erelint1i (n) =
(
n−1
i

)
. For the second claim,

observe that if ϕ(relint1i) = ai for all i = 0, . . . , d , then (6) together with the fact that
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every r-face of 1i is lattice isomorphic to 1r yields

ϕ(1i) =

i∑
r=0

(
i + 1
r + 1

)
ar .

By Theorem 6.8, there is a unique valuation taking these values on standard simplices,
and (5) finishes the proof. ut

Thus, if ϕ is combinatorially positive, then αi = ϕ(relint1i) ≥ 0, which proves necessity
in Theorem 7.1. For sufficiency, we need to show that f ∗j is combinatorially positive for
all j , that is, f ∗j (relint1) ≥ 0 for all lattice simplices 1.

For a lattice polytope P ∈ P(Zd), f ∗(P ) = (f ∗0 (P ), . . . , f
∗

d (P )) is called the
f ∗-vector. The f ∗-vector was introduced and studied by Breuer [10]. He showed that
f ∗j (relintP) ≥ 0 and gave an enumerative interpretation for lattice simplices. We deduce
the nonnegativity result from more general considerations. For a translation-invariant val-
uation ϕ : P(3) → G, where 3 is not restricted to lattices, we define its f ∗-vector
f ϕ = (f

ϕ
0 , . . . , f

ϕ
d ) to be such that for every P ∈ P(3),

ϕP (n) =

d∑
i=0

f
ϕ
i (P )

(
n− 1
i

)
for all n ≥ 0. Equivalently,

f
ϕ
i (P ) :=

i∑
k=0

(
i

k

)
(−1)i−kϕ((k + 1)P ).

Notice the f ϕi are translation-invariant 3-valuations.

Theorem 7.3. Let 3 ⊂ Rd be a lattice or a finite-dimensional vector subspace over a
subfield of R, andG a partially ordered abelian group. For a3-valuation ϕ : P(3)→ G

the following are equivalent:

(i) ϕ is combinatorially positive;
(ii) f ϕi is combinatorially positive for all i = 0, . . . d.

Proof. For the implication (ii)⇒(i) simply observe that

ϕ(relintP) = ϕrelint1(1) = f
ϕ
0 (relintP) ≥ 0

for all P ∈ P(3). The claim now follows from Theorem 3.6.
For (i)⇒(ii), we claim that

f
ϕ
r−k(relint(−P)) =

r∑
i=k

h
ϕ
i (P )

(
i

k

)
for any r-dimensional 3-polytope P . Assuming that ϕ is h∗-nonnegative then shows
combinatorial positivity of f ϕi . To prove the claim, we use Theorem 4.2 together with the
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identity (−1)r
(
−n+r−k

r

)
=
(
n−1+k
r

)
to get

ϕrelint(−P)(n)= (−1)rϕP (−n)=h
ϕ
0 (P )

(
n− 1
r

)
+h

ϕ
1 (P )

(
n

r

)
+· · ·+hϕr (P )

(
n− 1+ r

r

)
,

and collecting terms completes the proof. ut

To complete the proof of Theorem 7.1, we use Stanley’s nonnegativity of the h∗-vector
(Corollary 3.7) together with Theorem 7.3. The same reasoning also yields a proof of
Theorem 6.10.

Proof of Theorem 6.10. The map 9 : V(Zd ,G)→ Gd+1 given by

ϕ 7→ (ϕ(relint1i))i=0,...,d

is an isomorphism by Lemma 7.2. In particular 9 takes VCP(Zd ,G) into Cd+1. To show
that9 is a surjection, we use Theorem 7.3 to infer that for every a = (a0, . . . , ad) ∈ C

d+1

the valuation ϕ = a0f
∗

0 + · · · + adf
∗

d is combinatorially positive with 9(ϕ) = a. ut

It turns out that there is also a Hadwiger-type result for weakly h∗-monotone valuations.
For this consider the Ehrhart polynomial in the basis

EP (n) = f̃
∗

0 (P )

(
n

0

)
+ · · · + f̃ ∗0 (P )

(
n

d

)
. (14)

Theorem 7.4. A lattice-invariant valuation ϕ : P(Zd) → R is weakly h∗-monotone if
and only if

ϕ = α0f̃
∗

0 + α1f̃
∗

1 + · · · + αd f̃
∗

d for some α0, . . . , αd ≥ 0.

As for the proof of Theorem 7.1, the crucial observation is that ϕ is weakly h∗-monotone
if and only if an analogous extension f̃ ϕi is weakly h∗-monotone for all i. Necessity
follows from the proof of Theorem 5.1 where it is shown that if ϕ is weakly h∗-monotone
then h∗i (S ) � 0 for all proper half-open simplices S .

7.1. Dimension d = 2

In this section we study in detail the cone VCP(Z2,R) in relation to the cones

VM(Z2,R) := {ϕ ∈ V(Z2,R) : ϕ(P ) ≥ ϕ(Q) for lattice polytopes Q ⊆ P },

V+(Z2,R) := {ϕ ∈ V(Z2,R) : ϕ(P ) ≥ 0 for P ∈ P(Z2)}.

The results of Section 5 imply

VCP(Z2,R) ( VM(Z2,R) ( V+(Z2,R).

We study these cones in the usual monomial basis. From Pick’s theorem [3, Theorem
2.8] the Ehrhart polynomial of a lattice polytope can be expressed as

EP (n) = V2(P )n
2
+ b(P )n+ χ(P ),

where b(P ) was introduced in Example 5.2. In particular, the coefficients V2, b, χ are
lattice-invariant, nonnegative and homogeneous of degrees 2, 1, 0, respectively.
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Proposition 7.5. The cone V+ is the simplicial cone generated by V2, b and χ .

From Theorem 6.10 we know that VCP is simplicial and generated by

E = V2 + b + χ, V2, 3V2 + b.

Determining the cone of monotone valuations is harder since b, as opposed to V2 and χ ,
is not monotone (see Example 5.2).

Theorem 7.6. The cone VM is simplicial and generated by

χ, b + V2, V2.

Proof. First, since b + V2 = E− χ , the given valuations are indeed monotone.
Now, let ϕ = αV2+βb+γχ be a monotone translation-invariant valuation. Since ϕ is

monotone, we have α, β, γ ≥ 0. We can assume that γ = 0 as ϕ−ϕ(0) is still monotone.
Let Qn = [0, n]2 be the n-th dilated unit square and set Pn = conv(Qn ∪ {(−1,−1)}).
Then

ϕ(Qn) = αn
2
+ 2βn, ϕ(Pn) = α(n

2
+ n)+ β(n+ 1).

By monotonicity, we obtain

0 ≤ ϕ(Pn)− ϕ(Qn) = (α − β)n+ β

for all n ≥ 0, and thus α ≥ β. The cone generated by the inequalities α ≥ 0, γ ≥ 0 and
α ≥ β is generated by the rays V2, V2 + b, and χ . ut

In the space V(Z2,R) = {αV2 + βb + γχ : α, β, γ ∈ R}, a cross-section of the cones
with {α + β + γ = 1} is given in Figure 1.

V2

b

χ

V+

1
2V2 +

1
2b

VM

1
3 E

3
4V2 +

1
4b

VCP

Fig. 1. Cross-section of the nested cones VCP ⊂ VM ⊂ V+ for 3 = Z2.

It would be very interesting to see if a Hadwiger-type result can be given for monotone
or nonnegative valuations. In the language of cones, we conjecture the following.
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Conjecture 1. The cones of lattice-invariant valuations ϕ : P(Zd)→ R that are mono-
tone or respectively nonnegative are simplicial.

In dimension d = 2, it can also be observed that the cone of lattice-invariant mono-
tone valuations coincides with the cone of weakly h∗-monotone valuations. Example 5.5
shows that this is not true without the restriction to lattice-invariant valuations. We do
not believe that these cones coincide in general. However, we currently do not have a
counterexample.
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