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Abstract. The last years have seen a growing interest from mathematicians in Mahler functions.
This class of functions includes the generating series of the automatic sequences. The present paper
is concerned with the following problem, which is rather frequently encountered in combinatorics:
a set of Mahler functions u1, . . . , un being given, are u1, . . . , un and their successive derivatives
algebraically independent? In this paper, we give general criteria ensuring an affirmative answer to
this question. We apply our main results to the generating series attached to the so-called Baum–
Sweet and Rudin–Shapiro automatic sequences. In particular, we show that these series are hy-
peralgebraically independent, i.e., these series and their successive derivatives are algebraically
independent. Our approach relies on parametrized difference Galois theory (in this context, the
algebro-differential relations between the solutions of a given Mahler equation are reflected by a
linear differential algebraic group).
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Introduction

This paper grew out of an attempt to understand the algebraic relations between classi-
cal Mahler functions and their successive derivatives. By Mahler function, we mean a
function f (z) such that

an(z)f (z
pn)+ an−1(z)f (z

pn−1
)+ · · · + a0(z)f (z) = 0 (1)

for some integers p ≥ 2, n ≥ 1, and some a0(z), . . . , an(z) ∈ C(z) with a0(z)an(z) 6= 0.
The study of this class of functions was originally motivated by the work of Mahler

[Mah29, Mah30a, Mah30b] about the algebraic relations between special values at al-
gebraic points of Mahler functions. This arithmetic aspect of the theory of the Mahler
functions was developed further by several authors, e.g., Becker, Kubota, Loxton, van
der Poorten, Masser, Nishioka, Töfer. We refer to Nishioka’s book [Nis96] and Pellarin’s
paper [Pel09] for more information and references. We just mention that, quite recently,
Philippon [Phi15] proved a refinement of Nishioka’s analogue of the Siegel–Shidlovski
theorem, in the spirit of Beukers’ refinement of the Siegel–Shidlovski theorem [Beu06].
See also [AF16, AF17]. Roughly speaking, it says that the algebraic relations over Q
between the above-mentioned special values come from algebraic relations over Q(z) be-
tween the functions themselves. These functional relations are at the heart of the present
paper.

The renewed attractiveness of the theory of Mahler functions comes (to a large extent)
from its close connection with automata theory: the generating series f (z) =

∑
k≥0 skz

k

of any p-automatic sequence (sk)k≥0 ∈ QN
(and, actually, of any p-regular sequence)

is a Mahler function: see Mendès France [MF80], Randé [Ran92], Dumas [Dum93],
Becker [Bec94], Adamczewski and Bell [AB13], and the references therein. The famous
examples are the generating series of the Thue–Morse, paper-folding, Baum–Sweet and
Rudin–Shapiro sequences (see Allouche and Shallit’s book [AS03]).

The Mahler functions also appear in many other circumstances, such as the combina-
torics of partitions, the enumeration of words and the analysis of algorithms of divide and
conquer type; see for instance [DF96] and the references therein.

It is a classical problem (in combinatorics in particular) to determine whether or not
a given generating series is transcendental or even hypertranscendental over C(z).1

The hypertranscendence over C(z) of Mahler functions solutions of inhomogeneous
Mahler equations of order one can be studied by using the work of Nishioka [Nis96]; see

1 We say that a series f (z) ∈ C((z)) is hypertranscendental over C(z) if f (z) and all its deriva-
tives are algebraically independent over C(z).
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also the work of Nguyen [Ngu11, Ngu12] via difference Galois theory. This can be ap-
plied to the paper-folding generating series for instance. Actually, Randé [Ran92] already
studied the functions f (z) meromorphic on the unit disc D(0, 1) ⊂ C which are solu-
tions of some inhomogeneous Mahler equation of order one with coefficients in C(z); he
proved that if f (z) is hyperalgebraic over C(z), then f (z) ∈ C(z) (see [Ran92, Chapitre 5,
Théorème 5.2]).

The present work started with the observation that, besides this case, very few things
are known. For instance, the hypertranscendence of the Baum–Sweet or Rudin–Shapiro
generating series was not known. The main objective of the present work is to develop an
approach, as systematic as possible, to proving the hypertranscendence of such series.

To give an idea of the contents of this paper, we mention the following result (see
Theorem 4.2), which is a consequence of one of our main hypertranscendence criteria.
We consider the field K =

⋃
j≥1 C(z1/j ) endowed with the field automorphism φ given

by φ(f (z)) = f (zp). In this way we obtain a difference field with field of constants
Kφ
= C, and we have at our disposal a difference Galois theory over K (see Section 1.1).

Theorem. Assume that the difference Galois group over K of the Mahler equation (1)
contains SLn(C) and that an(z)/a0(z) is a monomial. Let f (z) ∈ C((z)) be a nonzero
solution of (1). Then the series f (z), f (zp), . . . , f (zp

n−1
) and all their successive deriva-

tives are algebraically independent over C(z). In particular, f (z) is hypertranscendental
over C(z).

The hypothesis that an(z)/a0(z) is a monomial is satisfied in any of the above-mentioned
cases. Moreover, for n = 2, there is an algorithm to determine whether or not the dif-
ference Galois group over K of (1) contains SL2(C) [Roq15]. It turns out that the differ-
ence Galois groups involved in the Baum–Sweet and Rudin–Shapiro cases both contain
SL2(C) [Roq15, Section 9]. Therefore, we have the following consequences of the above
theorem (see Theorems 4.3 and 4.4), with fBS(z) and fRS(z) denoting the generating
series of the Baum–Sweet and Rudin–Shapiro sequences.

Corollary. The series fBS(z), fBS(z
2) and all their successive derivatives are alge-

braically independent over C(z). In particular, fBS(z) is hypertranscendental over C(z).

Corollary. The series fRS(z), fRS(−z) and all their successive derivatives are alge-
braically independent over C(z). In particular, fRS(z) is hypertranscendental over C(z).

Actually, our methods also allow one to study the relations between these series. We prove
the following result (see Theorem 4.6).

Corollary. The series fBS(z), fBS(z
2), fRS(z), fRS(−z) and all their successive deriva-

tives are algebraically independent over C(z).

We shall now say a few words about the proofs of these results. Our approach relies on
the parametrized difference Galois theory developed by Hardouin and Singer [HS08].
Roughly speaking, to the difference equation (1), they attach a linear differential alge-
braic group over a differential closure C̃ of C—called the parametrized difference Ga-
lois group—which reflects the algebro-differential relations between the solutions of the
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equation. The above theorem is actually a consequence of the following purely Galois
theoretic statement (see Section 3.2 for more general results).

Theorem. Assume that the difference Galois group over K of the Mahler equation (1)
contains SLn(C) and an(z)/a0(z) is a monomial. Then the parametrized difference Galois
group of equation (1) is between SLn(C̃) and C×SLn(C̃).
Roughly speaking, the fact that the parametrized difference Galois group of equation (1)
contains SLn(C̃) says that the algebro-differential relations between the elements of a
basis f1, . . . , fn of solutions (in a suitable sense) of (1) are generated by the relations
satisfied by the determinant of the associated Wronskian matrix (fj (zp

i−1
))1≤i,j≤n. In

particular, there is no nontrivial algebro-differential relation between the entries of a given
column of this matrix, and this is exactly the conclusion of the first theorem stated in this
introduction (with f1 = f ).

Note that, in order to use the parametrized difference Galois theory developed by
Hardouin and Singer, one cannot work with the base field K endowed with the auto-
morphism φ and the usual derivation d/dz because φ and d/dz do not commute. To
solve this problem, Michael Singer uses, in an unpublished proof2 of the fact that the
Mahler function

∑
n≥0 z

pn is hypertranscendental, the field K(log(z)) and the derivation
z log(z)d/dz. We follow this approach in the present paper. This idea also appears in
Randé’s [Ran92], but in a slightly different form. Indeed, Randé uses the change of vari-
able z = exp(t) to transform the Mahler difference operator z 7→ zp into the p-difference
operator t 7→ pt . Pulling back the usual Euler derivation td/dt to the z variable, we find
the derivation z log(z)d/dz. Note that Lemma 2.3 and Proposition 2.6 below are also due
to Michael Singer and appear in the above mentioned unpublished manuscript.

This paper is organized as follows. Section 1 contains reminders and comple-
ments on difference Galois theory. Section 2 starts with reminders and complements on
parametrized difference Galois theory. Then, we state and prove user-friendly hypertran-
scendence criteria for general difference equations of order one. We finish the section
with complements on (projective) isomonodromy for general difference equations from
a Galoisian point of view. In Section 3, we first study hypertranscendence of solutions
of Mahler equations of order 1. We then come to higher order equations and give our
main hypertranscendence criteria for Mahler equations. Section 4 provides user-friendly
hypertranscendence criteria and is mainly devoted to applications of our main results to
the generating series of classical automatic sequences.
General conventions. All rings considered are commutative with identity and contain
the field of rational numbers. In particular, all fields are of characteristic zero.

1. Mahler equations and difference Galois theory

1.1. Difference Galois theory

For details on what follows, we refer to [vdPS97, Chapter 1].

2 Letter from Michael Singer to the second author (February 25, 2010).
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A φ-ring (R, φ) is a ring R together with a ring automorphism φ : R → R. An ideal
of R stabilized by φ is called a φ-ideal of (R, φ). If R is a field, then (R, φ) is called a
φ-field. To simplify the notation, most of the time we will write R instead of (R, φ).

The ring of constants of the φ-ring R is defined by

Rφ := {f ∈ R | φ(f ) = f }.

If Rφ is a field, it is called the field of constants.
A φ-morphism (resp. φ-isomorphism) from the φ-ring (R, φ) to the φ̃-ring (R̃, φ̃) is

a ring morphism (resp. ring isomorphism) ϕ : R→ R̃ such that ϕ ◦ φ = φ̃ ◦ ϕ.
Given a φ-ring (R, φ), a φ̃-ring (R̃, φ̃) is an R-φ-algebra if R̃ is a ring extension of R

and φ̃|R = φ; in this case, we will often denote φ̃ by φ. Two R-φ-algebras (R̃1, φ̃1) and
(R̃2, φ̃2) are isomorphic if there exists a φ-isomorphism ϕ from (R̃1, φ̃1) to (R̃2, φ̃2) such
that ϕ|R = IdR .

We fix a φ-field K such that k := Kφ is algebraically closed. We consider the linear
difference system

φ(Y ) = AY with A ∈ GLn(K), n ∈ N∗. (2)

By [vdPS97, §1.1], there exists a K-φ-algebra R such that

• there exists U ∈ GLn(R) such that φ(U) = AU (such a U is called a fundamental
matrix of solutions of (2));
• R is generated, as a K-algebra, by the entries of U and det(U)−1;
• the only φ-ideals of R are {0} and R.

Such an R is called a Picard–Vessiot ring, or PV ring for short, for (2) over K. By
[vdPS97, Lemma 1.8], we have Rφ = k. Two PV rings are isomorphic as K-φ-algebras.
A PV ring R is not always an integral domain. However, there exist idempotent elements
e1, . . . , es of R such that R = R1 ⊕ · · · ⊕ Rs where the Ri := Rei are integral domains
which are transitively permuted by φ. In particular, R has no nilpotent element and one
can consider its total ring of quotients QR , i.e., the localization ofR with respect to the set
of its nonzero divisors, which can be decomposed as the direct sum QR = K1⊕· · ·⊕Ks
of the fields of fractions Ki of the Ri . The ring QR has a natural structure of R-φ-algebra
and we have QR

φ
= k. Moreover, the Ki are transitively permuted by φ. We call the

φ-ring QR a total PV ring for (2) over K.
The following lemma gives a characterization of PV rings.

Lemma 1.1 ([HS08, Proposition 6.17]). Let S be a K-φ-algebra with no nilpotent ele-
ment and let QS be its total ring of quotients. If

(1) there exists V ∈ GLn(S) such that φ(V )V −1
= B ∈ GLn(K) and S is generated, as

a K-algebra, by the entries of V and by det(V )−1,
(2) QS

φ
= k,

then S is a PV ring for the difference system φ(Y ) = BY over K.

As a corollary, we find
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Lemma 1.2. Let R be a PV ring over K and let S be a K-φ-subalgebra of R. If there ex-
ists V ∈ GLn(S) such that φ(V )V −1

= B ∈ GLn(K) and S is generated, as a K-algebra,
by the entries of V and by det(V )−1 then S is a PV ring for φ(Y ) = BY over K.

Proof. Since R has no nilpotent element, S has no nilpotent element. By [HS08, Corol-
lary 6.9], the total ring of quotients QS can be embedded into QR . Since QR

φ
= k, we

have QS
φ
= k. Lemma 1.1 yields the desired result. ut

The difference Galois group Gal(QR/K) ofR over K is the group of K-φ-automorphisms
of QR commuting with φ:

Gal(QR/K) := {σ ∈ Aut(QR/K) | φ ◦ σ = σ ◦ φ}.

Abusing notation, we shall sometimes let Gal(QR/F ) denote the group {σ ∈Aut(QR/F ) |

φ ◦ σ = σ ◦ φ} for F a K-φ-subalgebra of QR .
An easy computation shows that, for any σ ∈ Gal(QR/K), there exists a unique

C(σ) ∈ GLn(k) such that σ(U) = UC(σ). By [vdPS97, Theorem 1.13], the faithful
representation

Gal(QR/K)→ GLn(k), σ 7→ C(σ),

identifies Gal(QR/K) with a linear algebraic subgroup of GLn(k). If we choose another
fundamental matrix of solutions U , we find a conjugate representation.

A fundamental theorem of difference Galois theory [vdPS97, Theorem 1.13] says that
R is the coordinate ring of aG-torsor over K. In particular, the dimension of Gal(QR/K)
as a linear algebraic group over k coincides with the transcendence degree of the Ki
over K. Thereby, the difference Galois group controls the algebraic relations satisfied by
the solutions.

The following proposition gives a characterization of the normal algebraic subgroups
of Gal(QR/K).

Proposition 1.3. An algebraic subgroupH of Gal(QR/K) is normal if and only if the φ-
ring QR

H
:= {g ∈ QR | ∀σ ∈ H, σ(g) = g} is stable under the action of Gal(QR/K).

In this case, the K-φ-algebra QR
H is a total PV ring over K and the following sequence

of group morphisms is exact:

0→ H
ι
−→ Gal(QR/K)

π
−→ Gal(QR

H /K)→ 0,

where ι is the inclusion of H in Gal(QR/K) and π denotes the restriction of elements of
Gal(QR/K) to QR

H .

Proof. Assume that H is normal in Gal(QR/K). For all τ ∈ Gal(QR/K), g ∈ QR
H , and

σ ∈ H , we have
σ(τ(g)) = τ((τ−1στ)(g)) = τ(g).

This shows that QR
H is stable under the action of Gal(QR/K). Conversely, assume that

QR
H is stable under the action of Gal(QR/K). Then we can consider the restriction

morphism
π : Gal(QR/K)→ Gal(QR

H /K), σ 7→ σ |QR
H .

By Galois correspondence [HS08, Theorem 6.20], we have ker(π) = H , and hence H is
normal in Gal(QR/K). The rest of the proof is [vdPS97, Corollary 1.30]. ut
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Corollary 1.4. Let f be an invertible element of R such that φ(f ) = af for some
a ∈ K. Let Qf ⊂ QR be the total ring of quotients of K[f, f−1

]; this is a total PV
ring for φ(y) = ay over K. Then Gal(QR/Qf ) is a solvable algebraic group if and only
if Gal(QR/K) is a solvable algebraic group.

Proof. We have QR
Gal(QR/Qf ) = Qf (in virtue of the Galois correspondence [vdPS97,

Theorem 1.29.3]) and Qf is stable under the action of Gal(QR/K) (because, for all σ ∈
Gal(QR/K), we have σ(f )f−1

∈ QR
φ
= k). By Proposition 1.3, Gal(QR/Qf ) is normal

in Gal(QR/K) and the sequence

0→ Gal(QR/Qf )
ι
−→ Gal(QR/K)

π
−→ Gal(Qf /K)→ 0

is exact. Since Gal(Qf /K) ⊂ GL1(k) is abelian, Gal(QR/K) is solvable if and only if
Gal(QR/Qf ) is. ut

1.2. More specific results about Mahler equations

Now, we restrict ourselves to the Mahlerian context.
We let p ≥ 2 be an integer. We consider the field

K :=
⋃
j≥1

C(z1/j ).

The field automorphism

φ : K→ K, f (z) 7→ f (zp),

gives a structure of φ-field on K such that Kφ
= C.

We also consider the field K′ := K(log(z)). The field automorphism

φ : K′→ K′, f (z, log(z)) 7→ f (zp, p log(z)),

gives a structure of φ-field on K′ such that K′φ = C.
We shall consider Mahler equations over the φ-field K and also over its φ-field ex-

tension K′. We now study the effect of the base extension from K to K′ on the difference
Galois groups.

We first state and prove a lemma.

Lemma 1.5. Let L be a φ-subfield of K′ that contains K. Then there exists an integer
k ≥ 0 such that L = K(log(z)k).

Proof. The case L = K is obvious (take k = 0). Now assume that L 6= K. Lemma 1.1
ensures that K′ is a total PV ring over K for the equation φ(y) = py. The action of
Gal(K′/K) on log(z) allows us to see Gal(K′/K) as an algebraic subgroup of C×. Since
log(z) is transcendental over K, we have Gal(K′/K) = C×. Since L 6= K, the group
Gal(K′/L) is a proper algebraic subgroup of C×, and hence a group of roots of unity,
so there exists an integer k ≥ 1 such that Gal(K′/L) = µk := {c ∈ C× | ck = 1}.
Consequently, log(z)k is fixed by Gal(K′/L), and hence belongs to L by Galois corre-
spondence. Since Gal(K′/K(log(z)k)) ⊂ µk , we get L = K(log(z)k). ut
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We consider the difference system

φ(Y ) = AY (3)

with A ∈ GLn(C(z)). Let R′ be a PV ring for (3) over K′; then QR′ is a total PV ring
for (3) over K′. Let U ∈ GLn(R′) be a fundamental matrix of solutions of (3). Let R
be the K-subalgebra of R′ generated by the entries of U and by det(U)−1. By [HS08,
Corollary 6.9], we have QR ⊂ QR′ . Since QR′

φ
= K′φ = C, we have QR

φ
= C, and

Lemma 1.1 shows that R is a PV ring for (3) over K and QR is a total PV ring for (3)
over K.

The restriction morphism

ι : Gal(QR′/K′)→ Gal(QR/K)

is a closed immersion; we will freely identify Gal(QR′/K′) with the subgroup
ι(Gal(QR′/K′)) of Gal(QR/K).

Proposition 1.6. The difference Galois group Gal(QR′/K′) is a normal subgroup of
Gal(QR/K) and the quotient Gal(QR/K)/Gal(QR′/K′) is either trivial or isomorphic
to C×.

Proof. We set G′ := ι(Gal(QR′/K′)) and G := Gal(QR/K). Let F := (QR)
G′
=

(QR′)
G′
∩ QR = K′ ∩ QR . The Galois correspondence [HS08, Theorem 6.20] ensures

that G′ = Gal(QR/F ). Since F/K is a φ-subfield extension of K′/K, Lemma 1.5 yields
an integer k ≥ 0 such that F = K(log(z)k). Since F φ = C, Lemma 1.1 shows that F
is a total PV ring over K for φ(y) = pky. Using Proposition 1.3, we see that G′ is a
normal subgroup of G and G/G′ is isomorphic to the difference Galois group over K of
φ(y) = pky, which is trivial if k = 0 and equal to C× otherwise. ut

Corollary 1.7. If SLn(C) ⊂ Gal(QR/K) then SLn(C) ⊂ Gal(QR′/K′).

2. Parametrized difference Galois theory

We will use standard notions and notation of difference and differential algebra which
can be found in [Coh65] and [vdPS97].

2.1. Differential algebra

A δ-ring (R, δ) is a ring R endowed with a derivation δ : R → R (this means that δ is
additive and satisfies the Leibniz rule δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R). If R is
a field, then (R, δ) is called a δ-field. To simplify the notation, most of the time we will
write R instead of (R, δ).

We let Rδ denote the ring of δ-constants of the δ-ring R, i.e.,

Rδ := {c ∈ R | δ(c) = 0}.

If Rδ is a field, it is called the field of δ-constants.
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Given a δ-ring (R, δ), a δ̃-ring (R̃, δ̃) is an R-δ-algebra if R̃ is a ring extension of R
and δ̃|R = δ; in this case, we will often denote δ̃ by δ. Let K be a δ-field. If L is a
K-δ-algebra and a field, we say that L/K is a δ-field extension. Let R be a K-δ-algebra
and let a1, . . . , an ∈ R. We let K{a1, . . . , an} denote the smallest K-δ-subalgebra of R
containing a1, . . . , an. Let L/K be a δ-field extension and let a1, . . . , an ∈ L. We let
K〈a1, . . . , an〉 denote the smallest K-δ-subfield of L containing a1, . . . , an.

The ring of δ-polynomials in the differential indeterminates y1, . . . , yn and with coef-
ficients in a differential field (K, δ), denoted by K{y1, . . . , yn}, is the ring of polynomials
in the indeterminates {δjyi | j ∈ N, 1 ≤ i ≤ n} with coefficients in K.

Let R be be a K-δ-algebra and let a1, . . . , an ∈ R. If there exists a nonzero δ-
polynomial P ∈ K{y1, . . . , yn} such that P(a1, . . . , an) = 0, then we say that a1, . . . , an
are hyperalgebraically dependent over K. Otherwise, we say that a1, . . . , an are hyperal-
gebraically independent over K.

A δ-field k is called differentially closed if, for every (finite) set of δ-polynomials F ,
if the system of differential equations F = 0 has a solution with entries in some δ-field
extension L, then it has a solution with entries in k. Note that the field of δ-constants kδ of
any differentially closed δ-field k is algebraically closed. Any δ-field k has a differential
closure k̃, i.e., a differentially closed δ-field extension, and we have k̃δ = k.

From now on, we consider a differentially closed δ-field k.
A subset W ⊂ kn is Kolchin-closed (or δ-closed, for short) if there exists S ⊂

k{y1, . . . , yn} such that

W = {a ∈ kn | ∀f ∈ S, f (a) = 0}.

The Kolchin-closed subsets of kn are the closed sets of a topology on kn, called the
Kolchin topology. The Kolchin-closure of W ⊂ kn is the closure of W in kn for the
Kolchin topology.

Following Cassidy [Cas72, Chapter II, Section 1, p. 905], we say that a subgroupG ⊂
GLn(k) ⊂ kn×n is a linear differential algebraic group (LDAG) if G is the intersection
of a Kolchin-closed subset of kn×n (identified with kn2

) with GLn(k).
A δ-closed subgroup, or δ-subgroup for short, of an LDAG is a subgroup that is

Kolchin-closed. The Zariski-closure of a LDAG G ⊂ GLn(k) is denoted by G and is
a linear algebraic group.

We will use the following fundamental result.

Proposition 2.1 ([Cas72, Proposition 42]). Let k be a differentially closed field. Let
C := kδ . A Zariski-dense δ-closed subgroup of SLn(k) is either conjugate to SLn(C)
or equal to SLn(k).

We will also use the following result.

Lemma 2.2 ([MS13, Lemma 11]). Let k be a differentially closed field. Let C := kδ .
Then the normalizer of SLn(C) in GLn(k) is k×SLn(C).
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2.2. Difference-differential algebra

A (φ, δ)-ring (R, φ, δ) is a ring R endowed with a ring automorphism φ and a derivation
δ : R → R (in other words, (R, φ) is a φ-ring and (R, δ) is a δ-ring) such that φ com-
mutes with δ. If R is a field, then (R, φ, δ) is called a (φ, δ)-field. If there is no possible
confusion, we will write R instead of (R, φ, δ).

We have straightforward notions of (φ, δ)-ideals, (φ, δ)-morphisms, (φ, δ)-algebras,
etc., similar to the notions recalled in Sections 1 and 2.1. We omit the details and refer for
instance to [HS08, Section 6.2] and the references therein.

In order to use the parametrized difference Galois theory developed in [HS08], we will
need to work with a base (φ, δ)-field K such that k := Kφ is differentially closed. Most
of the common function fields do not satisfy this condition. The following result shows
that any (φ, δ)-field with algebraically closed field of constants can be embedded into
a (φ, δ)-field with differentially closed field of constants. The following lemma appears
in an unpublished proof due to M. Singer (in a letter to the second author, February 25,
2010) of the fact that the Mahler function

∑
n≥0 z

pn is hypertranscendental. It is close to
[CHS08, Proposition 2.4] and [vdPS97, Lemma 1.11], but it is not completely similar.

Lemma 2.3. Let F be a (φ, δ)-field with k := F φ algebraically closed. Let k̃ be a dif-
ferentially closed field containing k. Then the ring k̃ ⊗k F is an integral domain whose
fraction field K is a (φ, δ)-field extension of F such that Kφ

= k̃.

Proof. The first assertion follows from the fact that since k is algebraically closed, the
extension k̃/k is regular.

In what follows, we view F as embedded in k̃ ⊗k F and k̃ as embedded in k̃ ⊗k F
via the maps

F → k̃⊗k F,
f 7→ 1⊗ f,

and k̃→ k̃⊗k F,
a 7→ a ⊗ 1.

The maps

φ : k̃⊗k F → k̃⊗k F,
(a, b) 7→ a ⊗ φ(b),

and δ : k̃⊗k F → k̃⊗k F,
(a, b) 7→ δ(a)⊗ b + a ⊗ δ(b),

are well-defined and endow k̃⊗k F with a structure of F -(φ, δ)-algebra.
To prove the second statement, we first show that any φ-ideal of k̃⊗k F is trivial. Let

(ci)i∈I be a k-basis of k̃. Let I be a nonzero φ-ideal of k̃⊗k F and let w =
∑n
i=1 ci ⊗ fi

be a nonzero element of I with fi ∈ F and n minimal. Without loss of generality, we can
assume that f1 = 1. Since φ(w)− w =

∑n
i=2 ci ⊗ (φ(fi)− fi) is an element of I with

fewer terms than w has, it must be 0. This implies that, for all i ∈ {1, . . . , n}, φ(fi) = fi ,
i.e., fi ∈ k. Then w = (

∑n
i=1 cifi)⊗ 1 is invertible in k̃⊗k F , and hence I = k̃⊗k F .

Let c ∈ Kφ . Since I := {d ∈ k̃ ⊗k F | dc ∈ k̃ ⊗k F } is a nonzero φ-ideal of
k̃⊗k F , we must have I = k̃⊗k F . In particular, 1 ∈ I, and hence c ∈ k̃⊗k F . Writing
c =

∑
i∈I ci ⊗ fi , we see that φ(c) = c implies φ(fi) = fi for all i ∈ {1, . . . , n}.

Therefore, the fi are in k, and hence c belongs to k̃. ut
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2.3. Parametrized difference Galois theory

For details on what follows, we refer to [HS08].
Let K be a (φ, δ)-field with k := Kφ differentially closed. We consider the linear

difference system
φ(Y ) = AY (4)

with A ∈ GLn(K) for some integer n ≥ 1.
By [HS08, § 6.2.1], there exists a K-(φ, δ)-algebra S such that

• there exists U ∈ GLn(S) such that φ(U) = AU (such a U is called a fundamental
matrix of solutions of (4));
• S is generated, as a K-δ-algebra, by the entries of U and by det(U)−1;
• the only (φ, δ)-ideals of S are {0} and S.

Such an S is called a parametrized Picard–Vessiot ring, or PPV ring for short, for (4)
over K. It is unique up to isomorphism of K-(φ, δ)-algebras. A PPV ring is not always
an integral domain. However, there exist idempotent elements e1, . . . , es of R such that
R = R1⊕ · · ·⊕Rs where the Ri := Rei are integral domains stable by δ and transitively
permuted by φ. In particular, S has no nilpotent element and one can consider its total
ring of quotients QS . It can be decomposed as the direct sum QS = K1⊕ · · · ⊕Ks of the
fields of fractions Ki of the Ri . The ring QS has a natural structure of R-(φ, δ)-algebra
and we have QS

φ
= k. Moreover, the Ki are transitively permuted by φ. We call the

(φ, δ)-ring QS a total PPV ring for (4) over K.
The parametrized difference Galois group Galδ(QS/K) of S over (K, φ, δ) is the

group of K-(φ, δ)-automorphisms of QS :

Galδ(QS/K) := {σ ∈ Aut(QS/K) | φ ◦ σ = σ ◦ φ and δ ◦ σ = σ ◦ δ}.

Note that if δ = 0, we recover the difference Galois groups considered in Section 1.1.
A straightforward computation shows that, for any σ ∈ Galδ(QS/K), there exists a

unique C(σ) ∈ GLn(k) such that σ(U) = UC(σ). By [HS08, Proposition 6.18], the
faithful representation

Galδ(QS/K)→ GLn(k), σ 7→ C(σ),

identifies Galδ(QS/K) with a linear differential algebraic subgroup of GLn(k). If we
choose another fundamental matrix of solutions U , we find a conjugate representation.

The parametrized difference Galois group Galδ(QS/K) of (4) reflects the differen-
tial algebraic relations between the solutions of (4). In particular, the δ-dimension of
Galδ(QS/K) coincides with the δ-transcendence degree of the Ki over K (see [HS08,
Proposition 6.26] for definitions and details).

A parametrized Galois correspondence holds between the δ-closed subgroups of
Galδ(QS/K) and the K-(φ, δ)-subalgebras F of QS such that every nonzero divisor of
F is a unit of F (see for instance [HS08, Theorem 6.20]). Abusing notation, we still let
Galδ(QS/F ) denote the group of F -(φ, δ)-automorphisms of QS . The following propo-
sition is at the heart of the parametrized Galois correspondence.
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Proposition 2.4 ([HS08, Theorem 6.20]). Let S be a PPV ring over K. Let F be a
K-(φ, δ)-subalgebra of QS such that every nonzero divisor of F is a unit of F . Let H
be a δ-closed subgroup of Galδ(QS/K). Then

• QGalδ(QS/F )
S := {f ∈ QS | ∀τ ∈ Galδ(QS/F ), τ (f ) = f } = F ;

• Galδ(QS/QH
S ) = H .

Let S be a PPV ring for (4) over K and let U ∈ GLn(S) be a fundamental matrix of
solutions. Then the K-φ-algebra R generated by the entries of U and by det(U)−1 is a
PV ring for (4) over K and we have QR ⊂ QS . One can identify Galδ(QS/K) with a
subgroup of Gal(QR/K) by restricting the elements of Galδ(QS/K) to QR .

Proposition 2.5 ([HS08, Proposition 2.8]). Galδ(QS/K) is a Zariski-dense subgroup of
Gal(QR/K).

2.4. Hypertranscendence criteria for equations of order one

The hypertranscendence criteria contained in [HS08] are stated for (φ, δ)-fields K such
that the δ-field k := Kφ is differentially closed. Recently some schematic versions (see
for instance [Wib12] or [DVH12]) of [HS08] have been developed which allow one to
work over (φ, δ)-fields with algebraically closed field of constants. One could use this
schematic approach to show that the hypertranscendence criteria of [HS08] still hold over
(φ, δ)-fields with algebraically closed field of constants (not necessarily differentially
closed). However, for the sake of clarity and simplicity of exposition, we prefer to show
that one can deduce these criteria directly from the ones contained in [HS08], via simple
descent arguments. The following result is due to Michael Singer.

Proposition 2.6. Let K be a (φ, δ)-field with k := Kφ algebraically closed and let
(a, b) ∈ K× ×K . Let R be a K-(φ, δ)-algebra and let v ∈ R \ {0}.

• If φ(v) − v = b and v is hyperalgebraic over K, then there exist a nonzero linear
homogeneous δ-polynomial L(y) ∈ k{y} and an element f ∈ K such that

L(b) = φ(f )− f.

• Assume moreover that v is invertible in R. If φ(v) = av and if v is hyperalgebraic
over K, then there exist a nonzero linear homogeneous δ-polynomial L(y) ∈ k{y} and
an element f ∈ K such that

L
(
δ(a)

a

)
= φ(f )− f.

The converse of either statement is true if Rφ = k.

Proof. Let us prove the first statement. Let k̃ be a δ-closure of k. Lemma 2.3 ensures
that L := Frac(̃k ⊗k K) is a (φ, δ)-field extension of K such that Lφ = k̃. Let L{y} be
the ring of δ-polynomials in one variable over L endowed with the structure of L-(φ, δ)-
algebra induced by setting φ(y) := y + b. Without loss of generality, we can assume
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that R = K{v}. We identify R with K{y}/I for some (φ, δ)-ideal I of K{y}. Since v is
hyperalgebraic over K, we have I 6= {0}. Moreover, I 6= K{y} because R 6= {0}. We
claim that (I) ∩ K{y} = I where (I) denotes the (φ, δ)-ideal generated by I in L{y}.
Indeed, choose a K-basis (ci)i∈I of L with ci0 = 1 for some i0 ∈ I . Note that (ci)i∈I is
also a basis of the K{y}-module L{y}. Then (I) consists of the sums

∑
aici with ai ∈ I. It

follows easily that (I)∩K{y} = I, as claimed. In particular, (I) is a proper ideal of L{y},
and hence is contained in some maximal (φ, δ)-ideal M of L{y}. The ring S := L{y}/M
is a PPV ring for φ(y) = y + b over L. The image u of y in S is hyperalgebraic over L
(because M 6= {0}) and is a solution of φ(y) = y + b. By [HS08, Proposition 3.1], there
exist a nonzero linear homogeneous δ-polynomial L0(y) ∈ k̃{y} and g ∈ L such that

L0(b) = φ(g)− g. (5)

Let (hi)i∈I be a k-basis of K. Without loss of generality, we can assume that

L0(y) = δ
n+1(y)+

n∑
i=0

ciδ
i(y) and g :=

∑r
i=1 ai ⊗ hi∑s
i=1 bi ⊗ hi

where ai, bi, ci ∈ k̃ and b1 = 1. It is clear that (5) can be rewritten as∑
j

Pj
(
(ai)i∈{1,...,r}, (bi)i∈{2,...,s}, (ci)i∈{1,...,n}

)
⊗ hj = 0

where the Pj are polynomials with coefficients in k. Thus, for all j ,

Pj
(
(ai)i∈{1,...,r}, (bi)i∈{2,...,s}, (ci)i∈{1,...,n}

)
= 0.

Since k is algebraically closed, there exist αi , βi , γi ∈ k such that, for all j ,

Pj
(
(αi)i∈{1,...,r}, (βi)i∈{2,...,s}, (γi)i∈{1,...,n}

)
= 0.

Set β1 := 1. Then we see that

L(y) := δn+1(y)+

n∑
i=0

γiδ
i(y) and f :=

∑
i αi ⊗ hi∑
i βi ⊗ hi

satisfy the conclusion of the first part of the proposition.
Conversely, if Rφ = k and there exist a nonzero linear homogeneous δ-polynomial

L(y) ∈ k{y} and f ∈ K such that L(b) = φ(f )− f , then L(v)− f belongs to Rφ = k.
Since L(y) is nonzero, v is differentially algebraic over K.

The proof of the second statement is similar. It can also be deduced from the first
by noticing that if φ(v) = av then φ( δv

v
) = δv

v
+

δa
a

and by using the fact that v is
hyperalgebraic over K if and only if δv

v
is. ut

Remark 2.7. In Proposition 2.6, we require that v is invertible inR. This is automatically
satisfied ifR is similar to a total PPV ring. More precisely, assume thatR =

⊕
x∈Z/sZKx ,

where the Kx are δ-field extensions of K such that φ(Kx) = Kx+1. Then any nonzero
solution v ∈ R of φ(y) = ay for a ∈ K× is invertible. Indeed, v =

∑
x∈Z/sZ vx for some

vx ∈ Kx . Since v 6= 0, there exists x0 ∈ Z/sZ such that vx0 6= 0. From the equation
φ(v) = av, we get φ(vx0−1) = avx0 . So, vx0−1 6= 0. Iterating this argument, we see that
vx 6= 0 for all x ∈ Z/sZ. Hence, v is invertible in R.
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2.5. Isomonodromy and projective isomonodromy

Let K be a (φ, δ)-field with k := Kφ algebraically closed. Let k̃ be a δ-closure of k. Let
C := k̃δ be the (algebraically closed) field of constants of k̃. Lemma 2.3 ensures that
k̃⊗k K is an integral domain and L := Frac(̃k⊗k K) is a (φ, δ)-field extension of K such
that Lφ = k̃. We let QS be the total ring of quotients of a PPV ring S over L for the
difference system φ(Y ) = AY where A ∈ GLn(K).

Proposition 2.8. The following statements are equivalent:

(i) Galδ(QS/L) is conjugate to a subgroup of GLn(C);
(ii) there exists B̃ ∈ Ln×n such that

φ(B̃) = AB̃A−1
+ δ(A)A−1

; (6)

(iii) there exists B ∈ Kn×n such that

φ(B) = ABA−1
+ δ(A)A−1.

Proof. The equivalence between (i) and (ii) is [HS08, Proposition 2.9]. To complete the
proof, it remains to show that if (6) has a solution B̃ in Ln×n, then it has a solution
in Kn×n. This follows from an argument similar to the descent argument in the proof of
Proposition 2.6. ut

We now consider a “projective isomonodromic” situation, in the spirit of [MS13]. LetU ∈
GLn(S) be a fundamental matrix of solutions of φ(Y ) = AY and let d := det(U) ∈/∈ S×.

Proposition 2.9. Assume that the difference Galois group of φ(Y ) = AY over the
φ-field K contains SLn(k) and that the parametrized difference Galois group of φ(y) =
det(A)y over the (φ, δ)-field L is included in C×. Then either

(i) Galδ(QS/L) is conjugate to a subgroup of GLn(C) that contains SLn(C), or
(ii) Galδ(QS/L) is equal to a subgroup of C×SLn(̃k) that contains SLn(̃k).
Moreover, (i) holds if and only if there exists B ∈ Kn×n such that

φ(B) = ABA−1
+ δ(A)A−1. (7)

Proof. Let R be the L-φ-algebra generated by the entries of U and by det(U)−1; this is
a PV ring for φ(Y ) = AY over the φ-field L. Using [CHS08, Corollary 2.5], we see that
the hypothesis that the difference Galois group of φ(Y ) = AY over the φ-field K con-
tains SLn(k) implies that Gal(QR/L) contains SLn(̃k). So, Gal(QR/L)der

= SLn(̃k).
Since Galδ(QS/L) is Zariski-dense in Gal(QR/L), we find that Galδ(QS/L)derδ (the
Kolchin-closure of the derived subgroup of Galδ(QS/L); see Section 4.4.1) is Zariski-
dense in Gal(QR/L)der

= SLn(̃k). By Proposition 2.1, Galδ(QS/L)derδ is either con-
jugate to SLn(C) or equal to SLn(̃k). Since Galδ(QS/L)derδ is a normal subgroup of
Galδ(QS/L), Lemma 2.2 ensures that Galδ(QS/L) is either conjugate to a subgroup of
k̃×SLn(C) containing SLn(C), or equal to a subgroup of GLn(̃k) containing SLn(̃k). But
the parametrized difference Galois group of φ(y) = det(A)y over L, which can be iden-
tified with det(Galδ(QS/L)), is contained in C×. Therefore, Galδ(QS/L) is contained in
C×SLn(C) = GLn(C) or in C×SLn(̃k), which implies the first part of the proposition.

The “moreover” part follows from Proposition 2.8. ut
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Proposition 2.10. Assume that the difference Galois group of φ(Y ) = AY over the φ-
field K contains SLn(k) and that the parametrized difference Galois group of φ(y) =
det(A)y over the (φ, δ)-field L is k̃×. Then either

(i) Galδ(QS/L) is conjugate to k̃×SLn(C), or
(ii) Galδ(QS/L) is equal to GLn(̃k).

Moreover, (i) holds if and only if there exists B ∈ Kn×n such that

φ(B) = ABA−1
+ δ(A)A−1

−
1
n
δ(det(A)) det(A)−1In. (8)

Proof. Arguing as in the proof of Proposition 2.9, we see that Galδ(QS/L) is either con-
jugate to a subgroup of k̃×SLn(C) containing SLn(C), or equal to a subgroup of GLn(̃k)
containing SLn(̃k). Now, the first part of the proposition follows from the fact that the
parametrized difference Galois group of φ(y) = det(A)y over L, which can be identified
with det(Galδ(QS/L)), is equal to k̃×.

We shall now prove that (i) holds if and only if there exists B ∈ Ln×n such that

φ(B) = ABA−1
+ δ(A)A−1

−
1
n
δ(det(A)) det(A)−1In. (9)

First assume that Galδ(QS/L) is conjugate to k̃×SLn(C). So, there exists a fundamen-
tal matrix of solutions U ∈ GLn(S) of φ(Y ) = AY such that, for all σ ∈ Galδ(QS/L),
there exist ρσ ∈ k̃× and Mσ ∈SLn(C) such that σ(U)=UρσMσ . Note that σ(d)= dρnσ .
Easy calculations show that the matrix

B := δ(U)U−1
−

1
n
δ(d)d−1In ∈ S

n×n

is left-invariant under the action of Galδ(QS/L), and hence belongs to Ln×n in virtue of
Proposition 2.4, and that B satisfies (9).

Conversely, assume that there exists B ∈ Ln×n satisfying (9). Consider

B1 = B +
1
n
δ(d)d−1In ∈ S

n×n.

Note that
φ(B1) = AB1A

−1
+ δ(A)A−1.

Let U ∈ GLn(S) be a fundamental matrix of solutions of φY = AY . As φ(δ(U)− B1U)

= A(δ(U) − B1U), there exists C ∈ k̃n×n such that δ(U)− B1U = UC. Since k̃
is differentially closed, we can find D ∈ GLn(̃k) such that δ(D) + CD = 0. Then
V := UD is a fundamental matrix of solutions of φY = AY such that δ(V ) = B1V.

Consider σ ∈ Galδ(QS/L) and let Mσ ∈ GLn(̃k) be such that σ(V ) = VMσ ; note
that σ(d) = dρσ where ρσ = det(Mσ ). On the one hand, σ(δ(V )) = σ(B1V ) =(
B1 +

1
n
δ(ρσ )ρ

−1
σ In

)
VMσ . On the other hand, σ(δ(V )) = δ(σ (V )) = δ(VMσ ) =

B1VMσ+V δ(Mσ ). So, 1
n
δ(ρσ )ρ

−1
σ Mσ = δ(Mσ ), i.e., the entries ofMσ = (mi,j )1≤i,j≤n
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are solutions of δ(y) = 1
n
δ(ρσ )ρ

−1
σ y. Let i0, j0 be such that mi0,j0 6= 0. Then Mσ =

mi0,j0M
′ with M ′ = (1/mi0,j0)Mσ ∈ GLn(̃kδ) = GLn(C), whence the desired result.

To conclude the proof, we have to show that if (9) has a solution B in Ln×n then it
has a solution in Kn×n. This can be proved by using an argument similar to the descent
argument in the proof of Proposition 2.6. ut

3. Hypertranscendence of solutions of Mahler equations

Now, we focus our attention on Mahler equations.
We use the notation of Section 1.2: p ≥ 2 is an integer, K :=

⋃
j≥1 C(z1/j ) and

K′ := K(log(z)). We endow K with the structure of φ-field given by φ(f (z)) := f (zp).
We endow K′ := K(log(z)) with the structure of φ-field given by φ(f (z, log(z))) :=
f (zp, p log(z)). We have Kφ

= K′φ = C.
The derivation

δ := z log(z)
d

dz

gives a structure of (φ, δ)-field over K′ (so δ commutes with φ, and this is why we work
with δ instead of a simplest derivation). We also set

ϑ := z
d

dz
.

We let C̃ denote a differential closure of (C, δ). We have C̃δ = C. As in Lemma 2.3,
we consider L = Frac(C̃⊗C K′) =

⋃
j≥1 C̃(z1/j )(log(z)), which is a (φ, δ)-field exten-

sion of K′ such that Lφ = C̃.

3.1. Homogeneous Mahler equations of order one

In this section, we consider the difference equation of order one

φ(y) = ay (10)

where a ∈ C(z)×. We let S be a PPV ring for (10) over L.
Since S is an L-(φ, δ)-algebra, it can be seen as a C(z)-ϑ-algebra (i.e., over the dif-

ferential field (C(z), ϑ)) by letting ϑ act as 1
log(z)δ.

Proposition 3.1. Let R be a K′-(φ, δ)-algebra such that Rφ = C. Let u be an invertible
element of R such that φ(u) = au. The following statements are equivalent:

(i) u is hyperalgebraic over (C(z), ϑ);3

(ii) Galδ(QS/L) is conjugate to a subgroup of C×;
(iii) there exists d ∈ C(z) such that ϑ(a) = a(pφ(d)− d);
(iv) there exist c ∈ C×, m ∈ Z and f ∈ C(z)× such that a = czm φ(f )

f
.

3 Of course, u is hyperalgebraic over (C(z), ϑ) if and only if it is hyperalgebraic over
(C(z), d/dz).
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Proof. We first prove the implication (iii)⇒(ii). Assume that there exists d ∈ C(z) such
that ϑ(a) = a(pφ(d) − d). Then d1 := d log(z) ∈ K′ satisfies δ(a) = a(φ(d1) − d1),
and hence Galδ(QS/L) is conjugate to a subgroup of C× in virtue of Proposition 2.8.

We now prove (ii)⇒(iii). We assume that Galδ(QS/L) is conjugate to a subgroup
of C×. By Proposition 2.8, there exists d1 ∈ K′ such that δ(a) = a(φ(d1)−d1). Therefore,

ϑ(a) = a(pφ(d2)− d2) (11)

with d2 := d1/ log(z) ∈ K′. We shall now prove that there exists d3 ∈ K such that
ϑ(a) = a(pφ(d3) − d3). Indeed, let u(X, Y ) ∈ C(X, Y ), k ≥ 1 and v ∈ C(X) be such
that d2 = u(z

1/k, log(z)) and ϑ(a)/a = v(z). Equation (11) can be rewritten as

v(z) = pu(zp/k, p log(z))− u(z1/k, log(z)).

Since z1/k and log(z) are algebraically independent over C, we get

v(Xk) = pu(Xp, pY )− u(X, Y ).

We view u(X, Y ) as an element of C(X)(Y ) ⊂ C(X)((Y )) as follows: u(X, Y ) =∑
j≥−N uj (X)Y

j for some N ∈ Z. We have

v(Xk) = pu(Xp, pY )− u(X, Y ) =
∑
j≥−N

(pj+1uj (X
p)− uj (X))Y

j .

Equating the coefficients of Y 0, we obtain

pu0(X
p)− u0(X) = v(X

k).

Hence, d3 := u0(z
1/k) has the required property.

We claim that d3 ∈ C(z). Indeed, suppose not. Let k ≥ 2 be such that d3 ∈ C(z1/k).
We view d3 as an element of C((z1/k)): d3 =

∑
j≥−N d3,jz

j/k for some N ∈ Z. Let
j0 ∈ Z be such that k - j0 and d3,j0 6= 0, with |j0| minimal with this property. Then the
coefficient of zj0/k in pφ(d3) − d3 is nonzero, contrary to pφ(d3) − d3 ∈ C(z). This
proves (iii).

We now prove (iii)⇒(i). Assume there exists d ∈ C(z) such that ϑ(a) =
a(pφ(d) − d). Then d1 := d log(z) ∈ K′ satisfies δ(a) = a(φ(d1) − d1), and hence
Proposition 2.6 ensures that u is hyperalgebraic over (K′, δ). Therefore, u is hyperalge-
braic over (K′, ϑ) and the conclusion follows, as (K′, ϑ) is hyperalgebraic over (C(z), ϑ).

We now prove (i)⇒(iii). Proposition 2.6, applied to the difference equation φ(y) =
ay over the (φ, δ)-field K′, ensures that there exist L1 :=

∑ν
i=1 βiδ

i with coefficients
β1, . . . , βν = 1 in C and g1 ∈ C(z1/k, log(z)) such that

L1

(
δ(a)

a

)
= φ(g1)− g1. (12)

We shall now prove that there exists g2 ∈ C(z1/k) such that

ϑν
(
ϑ(a)

a

)
= pν+1φ(g2)− g2.
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Indeed, it is easily seen that there exists v(X, Y ) ∈ C(X)[Y ] such that
L1
(
δ(a)
a

)
= v(z, log(z)). Using the fact that δi = log(z)iϑ i + terms of lower degree in

log(z), we see that

L1

(
δ(a)

a

)
= L1

(
log(z)

ϑ(a)

a

)
= ϑν

(
ϑ(a)

a

)
(log(z))ν+1

+ terms of lower degree in log(z).

On the other hand, let u(X, Y ) ∈ C(X, Y ) and k ≥ 1 be such that g1 = u(z
1/k, log(z)).

Then (12) can be rewritten as

v(z, log(z)) = u(zp/k, p log(z))− u(z1/k, log(z)).

Since z1/k and log(z) are algebraically independent over C, we get

v(Xk, Y ) = u(Xp, pY )− u(X, Y ).

We again view u(X, Y ) as an element of C(X)(Y ) ⊂ C(X)((Y )) as follows:
u(X, Y ) =

∑
j≥−N uj (X)Y

j for some N ∈ Z. So,

v(Xk, Y ) = u(Xp, pY )− u(X, Y ) =
∑
j≥−N

(pjuj (X
p)− uj (X))Y

j .

Equating the coefficients of Y ν+1, and letting X = z1/k , we obtain

pν+1uν+1(z
p/k)− uν+1(z

1/k) = ϑν
(
ϑ(a)

a

)
.

Therefore, g2 = uν+1(z
1/k) ∈ C(z1/k) has the required property. One can show that

g2 ∈ C(z) by arguing as for d3 ∈ C(z) in the proof of (ii)⇒(iii) above. We now claim
that there exists g3 ∈ C(z) such that

ϑ(a)

a
= pφ(g3)− g3.

If ν = 0, then g3 := g2 has the expected property. Assume that ν > 0. Let G2 =
∫ g2

z
be

some primitive of g2
z

that we view as a function on some interval (0, ε), ε > 0. We have

ϑ(pνφ(G2)−G2) = p
ν+1φ(g2)− g2 = ϑ

ν

(
ϑ(a)

a

)
,

so there exists C ∈ C such that

pνφ(G2)−G2 = ϑ
ν−1

(
ϑ(a)

a

)
+ C.

Hence, G3 := G2 −
C

pν−1 satisfies

pνφ(G3)−G3 = ϑ
ν−1

(
ϑ(a)

a

)
.
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But G3 = G4 + ` where G4 ∈ C(z) and ` is a C-linear combination of log(z) and of
functions of the form log(1− zξ)4 with ξ ∈ C×. Using the C-linear independence of any
C-linear combination of log(z) and of functions of the form log(1 − zξ) with ξ ∈ C×
with any element of C(z), we see that the equality

pνφ(G3)−G3 = (p
νφ(G4)−G4)+ (p

νφ(`)− `) = ϑν−1
(
ϑ(a)

a

)
implies that

pνφ(G4)−G4 = ϑ
ν−1

(
ϑ(a)

a

)
.

Iterating this argument, we find g3 ∈ C(z) with the expected property. This proves (iii).
We shall now prove (iii)⇒(iv). We assume that there exists d ∈ C(z) such that ϑ(a) =

a(pφ(d) − d). We write a = czml with c ∈ C×, m ∈ Z and l ∈ C(z) without pole at 0
and such that l(0) = 1. Since ϑ(a)

a
=

ϑ(c−1a)
c−1a

, we can assume that c = 1. A fundamental
solution of φ(y) = ay is given by

f0 = z
m/(p−1)

∏
k≥0

φk(l)−1
∈ zm/(p−1)C[[z]] ⊂ C((z1/(p−1))).

We have δ(a)a−1
= φ(d̃) − d̃ with d̃ = log(z)d. This is the integrability condition for

the system of equations {
φ(y) = ay,

δ(y) = d̃y, i.e., ϑ(y) = dy.

A straightforward calculation shows that δ(f0) − d̃f0 is a solution of φ(y) = ay, so
there exists q ∈ C such that δ(f0) = (q + d̃)f0, i.e., log(z)ϑ(f0) = (q + log(z)d)f0
(here, we work in the (φ, δ)-field C((z1/(p−1)))(log(z)) and we have used the fact that
the field of φ-constants of C((z1/(p−1)))(log(z)) is C, so that the solutions of φ(y) = ay
in C((z1/(p−1)))(log(z)) are of the form λf0 for some λ ∈ C). Therefore, ϑ(f0) = df0.
So, f0 satisfies a nonzero linear differential equation with coefficients in K, and also a
nonzero linear Mahler equation with coefficients in K. It follows from [Béz94, Theorem
1.3] that f0 ∈ C(z1/(p−1)). Therefore, f0 = zm/(p−1)h for some h ∈ C(z), and hence
a = φ(f0)f

−1
0 = zmφ(h)h−1.

We shall now prove (iv)⇒(iii). We assume that there exist c ∈ C×, m ∈ Z and
f ∈ C(z)× such that a = czm

φ(f )
f

. Then we have ϑ(a)/a = pφ(d) − d with
d = m/(p − 1)+ ϑ(f )/f ∈ C(z), whence the desired result. ut

Remark 3.2. The techniques employed above could also be used to recover a famous
result of Nishioka [Nis84] about the hypertranscendence of solutions of inhomogeneous
Mahler equations of order one. A Galoisian approach (but without parametrized Picard–
Vessiot theory) to the work of Nishioka has been proposed by Nguyen [Ngu11].

4 Here, log(z) is the principal determination of the logarithm, and log(1−zξ) is such that log(1−
0ξ) = 0
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3.2. Mahler equations of higher order with large classical difference Galois group

Consider the difference system
φ(Y ) = AY (13)

with A ∈ GLn(C(z)). We let S be a PPV ring for (13) over L. The aim of the present
section is to study the parametrized difference Galois group Galδ(QS/L) of (13) over L
under the following assumption.

Assumption 3.3. The difference Galois group of (13) over theφ-field K contains SLn(C).

Note the following result.

Lemma 3.4. Assume that Assumption 3.3 holds. Then the difference Galois group of (13)
over the φ-field L contains SLn(C̃).

Proof. Corollary 1.7 ensures that the difference Galois group of (13) over the φ-field K′
contains SLn(C). The conclusion is now a direct consequence of [CHS08, Corollary 2.5].

ut

Let U ∈ GLn(S) be a fundamental matrix of solutions of (13) and set

d := det(U) ∈ S×.

Then d is a fundamental solution of φ(y) = det(A)y in S. We split our study of
Galδ(QS/L) into two cases, depending on whether d is hyperalgebraic or hypertran-
scendental over (L, δ). Note that Proposition 3.1 may be used to check whether d is
hyperalgebraic or not.

3.2.1. Hyperalgebraic determinant. This section is devoted to the proof of the following
result.

Theorem 3.5. Assume that Assumption 3.3 holds and d is hyperalgebraic over (C(z), ϑ)
(or equivalently the parametrized difference Galois group of φ(y) = det(A)y over L
is included in C×; see Proposition 3.1). Then the parametrized difference Galois group
Galδ(QS/L) is a subgroup of C×SLn(C̃) containing SLn(C̃).

Before proceeding to the proof of this theorem, we give some lemmas.

Lemma 3.6. Assume that Assumption 3.3 holds and d is hyperalgebraic over (C(z), ϑ)
(or equivalently the parametrized difference Galois group of φ(y) = det(A)y over L is
included in C×; see Proposition 3.1). Then either

(i) Galδ(QS/L) is conjugate to a subgroup of GLn(C) containing SLn(C), or
(ii) Galδ(QS/L) is equal to a subgroup of C×SLn(C̃) containing SLn(C̃).

Moreover, (i) holds if and only if there exists B ∈ Kn×n such that

pφ(B) = ABA−1
+ ϑ(A)A−1. (14)
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Proof. Using Proposition 2.9, we are reduced to proving that the equation

φ(B) = ABA−1
+ δ(A)A−1 (15)

has a solution B ∈ K′n×n if and only if (14) has a solution B ∈ Kn×n.
Assume that (15) has a solution B ∈ K′n×n. Let u(X, Y ) ∈ C(X, Y )n×n, k ≥ 1,

v(X) ∈ GLn(C(X)) and w(X) ∈ C(X)n×n be such that

B = u(z1/k, log(z)), A = v(z), δ(A)A−1
= log(z)w(z).

Then (15) can be rewritten as

u(zp/k, p log(z)) = v(z)u(z1/k, log(z))v(z)−1
+ log(z)w(z).

Since z1/k and log(z) are algebraically independent over C, we get

u(Xp, pY ) = v(Xk)u(X, Y )v(Xk)−1
+ Yw(Xk).

We view u(X, Y ) as an element of C(X)(Y )n×n ⊂ C(X)((Y ))n×n by writing u(X, Y ) =∑
j≥−N uj (X)Y

j for some N ∈ Z. We have∑
j≥−N

uj (X
p)pjY j =

∑
j≥−N

v(Xk)uj (X)v(X
k)−1Y j + Yw(Xk).

Equating the terms of degree 1 in Y , we get

pu1(X
p) = v(Xk)u1(X)v(X

k)−1
+ w(Xk).

Therefore, B1 := u1(z
1/k) ∈ K is a solution of (14).

Conversely, assume that (14) has a solution B ∈ Kn×n. Then B1 := B log(z) ∈ K′n×n
satisfies φ(B1) = AB1A

−1
+ δ(A)A−1. ut

Lemma 3.7. Assume that the system φ(Y ) = BY , with B ∈ GLn(K′), has a solution
u = (u1, . . . , un)

t with coefficients in C((z1/k)) for some integer k ≥ 1. Then there
exists a PPV ring T for φ(Y ) = BY over L that contains the L-δ-algebra L{u1, . . . , un}.

Proof. The result is obvious if u=(0, . . . , 0)t . We shall now assume that u 6=(0, . . . , 0)t .
We consider the field K̂′ :=

⋃
j≥1 C((z1/j ))(log(z)). We equip K̂′ with the structure

of (φ, δ)-field given by φ(f (z, log(z))) = f (zp, p log(z)) and δ = log(z)z d
dz

. It is

easily seen that K̂′φ = C. One can view K′ as a (φ, δ)-subfield of K̂′. We let F =
K′〈u1, . . . , un〉 be the δ-subfield of K̂′ generated over K′ by u1, . . . , un; this is a (φ, δ)-
subfield of K̂′ such that F φ = C. By Lemma 2.3, C̃ ⊗C F is an integral domain and
its field of fractions L1 = L〈u1, . . . , un〉 is a (φ, δ)-field such that Lφ1 = C̃. We con-
sider a PPV ring S1 for φ(Y ) = BY over L1 and we let U ∈ GLn(S1) be a fundamental
matrix of solutions of this difference system. We can assume that the first column of U
is u. Then the L-(φ, δ)-algebra T generated by the entries of U and by det(U)−1 contains
L{u1, . . . , un} and is a PPV ring for φ(Y ) = BY over L, whence the result. ut
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Lemma 3.8. Let u = (u1, . . . , un)
t be a vector with coefficients in K̂ :=

⋃
j≥1 C((z1/j ))

such that φ(u) = Bu for some B ∈ GLn(K). Assume moreover that each ui satisfies
some nonzero linear differential equation with coefficients in

⋃
j≥1 C̃(z1/j ), with respect

to the derivation ϑ . Then the ui actually belong to K.

Proof. According to the cyclic vector lemma, there exists P ∈ GLn(K) such that Pu =
(f, φ(f ), . . . , φn−1(f ))t for some f ∈ K̂ which is a solution of a nonzero linear Mahler
equation (i.e., a φ-difference equation) of order n with coefficients in K. Moreover, f sat-
isfies a nonzero linear differential equation with coefficients in

⋃
j≥1 C̃(z1/j ), with respect

to the derivation ϑ , because it is a K-linear combination of the ui and the ui themselves
satisfy such equations. It follows from [Béz94, Theorem 1.3] that f belongs to K. Hence,
the entries of u = P−1(Pu) = P−1(f, φ(f ), . . . , φn−1(f ))t actually belong to K, as
expected. ut

Lemma 3.9. There exists c ∈ C× such that the difference system φ(Y ) = c−1AY has a
nonzero solution u = (u1, . . . , un)

t with coefficients in K̂ :=
⋃
j≥1 C((z1/j )).

Proof. According to [Roq15, Section 4], the system φ(Y ) = AY is triangularizable
over K̂, i.e., there exists P̂ ∈ GLn(K̂) such that φ(P̂ )−1AP̂ =: (vi,j )1≤i,j≤n is upper-
triangular. Let c ∈ C×, m ∈ Z and l ∈ 1 + z1/kC[[z1/k

]] be such that v1,1 = cz
ml.

We consider A1 = c−1A ∈ GLn(C(z)). Then the system φ(Y ) = A1Y has a nonzero
solution with entries in K̂, namely u = (u1, . . . , un)

t
:= P̂ (f, 0, . . . , 0)t with f :=

zm/(p−1)∏
j≥0 φ

j (l)−1. ut

Proof of Theorem 3.5. We let c ∈ C× and u = (u1, . . . , un)
t be as in Lemma 3.9, and we

set A1 := c
−1A ∈ GLn(C(z)). Thanks to Lemma 3.7, we can consider a PPV ring S1 for

φ(Y ) = A1Y over L that contains L{u1, . . . , un}. We let U1 ∈ GLn(S1) be a fundamental
matrix of solutions of φ(Y ) = A1Y whose first column is u.

Let G denote the difference Galois group of φ(Y ) = AY over the φ-field K, and let
Gδ be its parametrized difference Galois group over the (φ, δ)-field L. Similarly, G1 is
the difference Galois group of φ(Y ) = A1Y over the φ-ring K, andGδ1 is its parametrized
difference Galois group over the (φ, δ)-field L.

We haveGder
1 = G

der
= SLn(C), soG1 contains SLn(C). Moreover, the parametrized

difference Galois group of φ(y) = det(A1)y = c
−n det(A)y over L is a subgroup of C×

(because the parametrized difference Galois group of φ(y) = det(A)y over L is a sub-
group of C× by hypothesis, and the parametrized difference Galois group of φ(y) = c−ny
over L has the same property).

We claim that Gδ1 is a subgroup of C×SLn(C̃) that contains SLn(C̃). Indeed, accord-
ing to Lemma 3.6, it is sufficient to prove that there is no B ∈ Kn×n such that ϑ(A1) =

pφ(B)A1 − A1B. Suppose such a B exists. The equation ϑ(A1) = pφ(B)A1 − A1B,
which can be rewritten as δ(A1) = φ(log(z)B)A1−A1(log(z)B), ensures the integrabil-
ity of the system of equations {

φ(Y ) = A1Y,

δ(Y ) = (log(z)B)Y.
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So, there exists D ∈ GLn(C̃) such that V := U1D ∈ GLn(S1) satisfies{
φ(V ) = A1V,

δ(V ) = (log(z)B)V, i.e., ϑ(V ) = BV.

Hence, we have the equalities ϑ(U1)D+U1ϑ(D) = ϑ(U1D) = ϑ(V ) = BV = BU1D,
so ϑ(U1) = BU1 − U1ϑ(D)D

−1. This formula implies that the (finite-dimensional)⋃
j≥1 C̃(z1/j )-vector space generated by the entries of U1 is stable by ϑ . In particular,

any ui (recall that the ui are the entries of the first column of U ) satisfies a nonzero linear
differential equation with coefficients in

⋃
j≥1 C̃(z1/j ), with respect to the derivation ϑ .

It follows from Lemma 3.8 that the ui belong to K. Hence, the first column of U1 is fixed
by the Galois group G1, and this contradicts the fact that G1 contains SLn(C).

Therefore, (Gδ)der
= (Gδ1)

der contains SLn(C̃). Now, the theorem follows from Lem-
ma 3.6. ut

3.2.2. Hypertranscendental determinant. In the case of a hypertranscendental determi-
nant, we can reduce the computation of the parametrized difference Galois group to a
question concerning the existence of a rational solution of a given Mahler equation as
follows.

Lemma 3.10. Assume that Assumption 3.3 holds and d is hypertranscendental over
(C(z), θ) (or equivalently the parametrized difference Galois group of φ(y) = det(A)y
over L is equal to C̃×). Then either

(i) Galδ(QS/L) is conjugate to C̃×SLn(C), or
(ii) Galδ(QS/L) is equal to GLn(C̃).
Moreover, (i) holds if and only if there exists B ∈ Kn×n such that

pφ(B) = ABA−1
+ ϑ(A)A−1

−
1
n
ϑ(det(A)) det(A)−1In. (16)

Proof. Note that d is hypertranscendental over (L, δ). Using Proposition 2.10, it remains
to prove that the equation

φ(B) = ABA−1
+ δ(A)A−1

−
1
n
δ(det(A)) det(A)−1In (17)

has a solution B ∈ K′n×n if and only if (16) has a solution B ∈ Kn×n. The proof of this
fact is similar to the proof of Lemma 3.6. ut

Unlike the situation in Section 3.2.1, it is not completely obvious that we can bypass the
search of rational solutions of (16) to decide which of the two options of Lemma 3.10 is
satisfied. However, we can still directly get some information on hypertranscendence of
solutions in

⋃
j≥1 C(z1/j ) as follows.

Theorem 3.11. Assume that Assumption 3.3 holds and d is hypertranscendental over
(C(z), ϑ). Assume that the difference system φ(Y ) = AY admits a nonzero solution
u = (u1, . . . , un)

t with coefficients in C((z1/k)) for some integer k ≥ 1. Then at least one
of the ui is hypertranscendental over (C(z), ϑ).
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Note the following immediate corollary, which is particularly interesting when one works
with difference equations rather than difference systems.

Corollary 3.12. Assume that Assumption 3.3 holds and d is hypertranscendental over
(C(z), ϑ). Assume that the difference system φ(Y ) = AY admits a nonzero solution
u = (f, φ(f ), . . . , φn−1(f ))t for some f ∈ C((z1/k)) and some integer k ≥ 1. Then f
(and hence any φi(f )) is hypertranscendental over (C(z), ϑ).

The arguments employed in the proof of Theorem 3.11 given below are very similar to
the ones used in the hyperalgebraic case, but we need a new descent argument, contained
in the following lemma.

Lemma 3.13. Let L be a δ-field and let L〈a〉 and L〈b1, . . . , bn〉 be two δ-field extensions
of L, both contained in the same δ-field extension of L. Assume that a is hypertranscen-
dental over L and any bi is hyperalgebraic over L. Then the field extensions L〈a〉 and
L〈b1, . . . , bn〉 are linearly disjoint over L.

Proof. If L〈a〉 and L〈b1, . . . , bn〉 are not linearly disjoint over L then a is hyperal-
gebraic over L〈b1, . . . , bn〉. This implies that the differential transcendence degree of
L〈a, b1, . . . , bn〉 over L〈b1, . . . , bn〉 is zero. Since the differential transcendence degree
of L〈b1, . . . , bn〉 over L is also zero by hypothesis, we find that the differential transcen-
dence degree of L〈a, b1, . . . , bn〉 over L is zero by the classical properties of transcen-
dence degree. This implies that a is hyperalgebraic over L. ut

Proof of Theorem 3.11. Thanks to Lemma 3.7, we can assume that the PPV ring S for
φ(Y ) = AY over L contains L{u1, . . . , un}. We can assume that the first column of the
fundamental matrix of solutions U ∈ GLn(S) of φ(Y ) = AY is u.

We let G denote the difference Galois group of φ(Y ) = AY over the φ-field K, and
Gδ its parametrized difference Galois group over the (φ, δ)-ring L. Since d is hypertran-
scendental over L, the parametrized difference Galois group of φ(y) = det(A)y over L
is C̃×.

Since Lemma 3.10 implies that Gδ is Kolchin-connected, S is an integral domain.
We claim that at least one of the ui is hypertranscendental over L. Suppose to the con-

trary that all of them are hyperalgebraic. In particular, Gδ is a strict subgroup of GLn(C̃).
Lemma 3.10 ensures that there exists B ∈ Kn×n such that

pφ(B) = ABA−1
+ ϑ(A)A−1

−
1
n
ϑ(det(A)) det(A)−1In. (18)

This equation can be rewritten as

φ(B0) = AB0A
−1
+ δ(A)A−1

−
1
n
δ(det(A)) det(A)−1In,

where B0 = log(z)B. Set B1 := B0 +
δ(d)
nd

. Note that

φ(B1) = AB1A
−1
+ δ(A)A−1.
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This equation ensures the integrability of the system of equations{
φ(Y ) = AY,

δ(Y ) = B1Y.

So, there exists D ∈ GLn(C̃) such that V := UD ∈ GLn(S) satisfies{
φ(V ) = AV,

δ(V ) = B1V, i.e., ϑ(V ) =
(
B +

ϑ(d)
nd

)
V.

In particular, ϑ(U)D + Uϑ(D) = ϑ(U1D) = ϑ(V ) =
(
B +

ϑ(d)
nd

)
UD, so

ϑ(U) =

(
B +

ϑ(d)

nd

)
U − Uϑ(D)D−1.

If we set F =
⋃
j≥1 C̃(z1/j ), the previous formula implies that the F 〈d〉-vector sub-

space5 of QS generated by the entries of U and all their successive ϑ-derivatives is
of finite dimension. In particular, any ui satisfies a nonzero linear differential equation
Li(y) = 0 with coefficients in F 〈d〉, with respect to the derivation ϑ . We can assume that
the coefficients of Li(y) belong to F {d}. We write Li(y) =

∑
α Li,α(y)dα where Li,α(y)

is a linear differential operator with coefficients in F , with respect to the derivation ϑ , and
dα is a monomial in the ϑ i(d)’s. By Lemma 3.13, the ϑ-fields F 〈d〉 and F 〈u1, . . . , un〉

are linearly disjoint over F . It follows easily that there exists a nonzero Li,α(y) such
that Li,α(ui) = 0. Therefore, any ui satisfies a nonzero linear differential equation with
coefficients in F , with respect to the derivation ϑ . It follows from Lemma 3.8 that the
ui belong to K. Hence, the first column of U is fixed by the difference Galois group G,
which contradicts the fact that G contains SLn(C). ut

4. Applications

In this section, we will use the notation introduced at the beginning of Section 3.

4.1. User-friendly hypertranscendence criteria

Consider the Mahler system

φ(Y ) = AY with A ∈ GLn(C(z)). (19)

Theorem 4.1. Assume that the difference Galois group of the Mahler system (19) over
the φ-field K contains SLn(C) and that detA(z) is a monomial. Then the following prop-
erties hold:
(i) The parametrized difference Galois group of the Mahler system (19) over L is a

subgroup of C×SLn(C̃) containing SLn(C̃).
(ii) Let u = (u1, . . . , un)

t be a nonzero solution of (19) with entries in C((z)). Then the
series u1, . . . , un and all their successive derivatives are algebraically independent
over C(z). In particular, any ui is hypertranscendental over C(z).

5 Here, F 〈d〉 denotes the ϑ-field extension generated by d over F .
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Proof. As detA(z) is a monomial, Proposition 3.1 ensures that the parametrized differ-
ence Galois group of φ(y) = det(A)y is included in C×, so Theorem 3.5 yields (i).

We claim that u1, . . . , un are hyperalgebraically independent over C(z). Suppose to
the contrary that they are hyperalgebraically dependent over C(z). Thanks to Lemma 3.7,
there exists a PPV ring S for (19) over L containing K′{u1, . . . , un}. Let U ∈ GLn(S)
be a fundamental matrix of solutions of (19) whose first column is u. Then det(U) is
hyperalgebraic over L and the elements of the first column of U are hyperalgebraically
dependent over L. It follows easily that the δ-transcendence degree of S over L is at most
n2
−2. This contradicts the fact that the δ-dimension of the parametrized difference Galois

group of (19) over L, namely n2
− 1, is equal to the δ-transcendence degree of S over L

[HS08, Proposition 6.26]. ut

We shall now state a variant of the last theorem for Mahler equations. Consider the Mahler
equation

an(z)y(z
pn)+ an−1(z)y(z

pn−1
)+ · · · + a0(z)y(z) = 0 (20)

for some integers p ≥ 2, n ≥ 1, and some a0(z), . . . , an(z) ∈ C(z) with a0(z)an(z) 6= 0.
In what follows, by “difference Galois group of (20)”, we mean the difference Galois
group of the associated system

φ(Y ) = AY with A =



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
−
a0
an
−
a1
an
· · · · · · −

an−1
an

 ∈ GLn(C(z)). (21)

Theorem 4.2. Assume that the difference Galois group over the φ-field K of the Mahler
equation (20) contains SLn(C) and an(z)/a0(z) is a monomial. Then the following prop-
erties hold:

(i) The parametrized difference Galois group of (20) over L is a subgroup of C×SLn(C̃)
containing SLn(C̃).

(ii) Let f (z) ∈ C((z)) be a nonzero solution of (20). Then the series f (z), f (zp), . . . ,
f (zp

n−1
) and all their successive derivatives are algebraically independent over

C(z). In particular, f (z) is hypertranscendental over C(z).
Proof. Since the determinant of the matrix A given by (21) is a0/an and if f (z) ∈ C((z))
is a nonzero solution of (20), then (f (z), f (zp), . . . , f (zp

n−1
))t is a nonzero solution

of (21) with entries in C((z)), this theorem is a consequence of Theorem 4.1. ut

4.2. The Baum–Sweet sequence

The Baum–Sweet sequence (an)n≥0 is the automatic sequence defined by an = 1 if the
binary representation of n contains no block of consecutive 0’s of odd length, and an = 0
otherwise. It is characterized by the recursive equations

a0 = 1, a2n+1 = an, a4n = an, a4n+2 = 0.
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Let fBS(z) =
∑
n≥0 anz

n be the corresponding generating series. The recursive equations
show that

Y (z) =

(
fBS(z)

fBS(z
2)

)
satisfies the Mahler system

φ(Y ) = AY where A =

(
0 1
1 −z

)
∈ GL2(K). (22)

Here p=2, K=
⋃
j≥1 C(z1/j ) and φ is the field automorphism of K such that φ(z)=z2.

Theorem 4.3. The parametrized difference Galois group of (22) over L is µ4SL2(C̃),
where µ4 ⊂ C× is the group of 4th roots of unity. The series fBS(z), fBS(z

2) and all their
successive derivatives are algebraically independent over C(z).
Proof. According to [Roq15, Theorem 50], the difference Galois group of (22) over the
φ-field K is µ4SL2(C). Now, the result is a direct consequence of Theorem 4.2. ut

4.3. The Rudin–Shapiro sequence

The Rudin–Shapiro sequence (an)n≥0 is the automatic sequence defined by an = (−1)bn
where bn is the number of pairs of consecutive 1’s in the binary representation of n. It is
characterized by the recurrence relations

a0 = 1, a2n = an, a2n+1 = (−1)nan.

Let fRS(z) =
∑
n≥0 anz

n be the corresponding generating series. The recursive equations
show that

Y (z) =

(
fRS(z)

fRS(−z)

)
satisfies the Mahler system

φ(Y ) = AY where A =
1
2

(
1 1
1
z
−

1
z

)
∈ GL2(K). (23)

Here p=2, K=
⋃
j≥1 C(z1/j ) and φ is the field automorphism of K such that φ(z)=z2.

Theorem 4.4. The parametrized difference Galois group of (23) over L is GL2(C̃). The
series fRS(z), fRS(−z) and all their successive derivatives are algebraically independent
over C(z).
Proof. According to [Roq15, Theorem 54], the difference Galois group of (23) over the
φ-field K is GL2(C). Now, the result is a direct consequence of Theorem 4.1. ut

4.4. Direct sum of the Baum–Sweet and the Rudin–Shapiro equations

The aim of this section is to illustrate how one can use the results of this paper to prove
the hyperalgebraic independence of Mahler function solutions of distinct equations.
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4.4.1. A differential-group-theoretic preliminary result. Let G◦ denote the neutral com-
ponent of the linear algebraic group G, and Gder its derived subgroup. We recall that G◦

and Gder are Zariski-closed in G.
We letG◦δ denote the neutral component of the differential algebraic groupG (so here

we consider Kolchin’s topology), and let Gder be the derived subgroup of G. In general,
Gder is not Kolchin-closed; let Gderδ denote its Kolchin-closure in G.

Theorem 4.5. Let k be a differentially closed δ-field. Let r ≥ 2 be an integer and, for any
i ∈ {1, . . . , r}, letGi be an algebraic subgroup of GLni (k). Consider the linear algebraic
group G =

∏r
i=1Gi . Assume that, for any i ∈ {1, . . . , r}, G◦,der

i is quasi-simple and
G◦,der

=
∏r
i=1G

◦,der
i . LetH be a Zariski-dense differential algebraic subgroup ofG. Let

Hi be the projection of H in Gi ⊂ G. Then

(i) for all i ∈ {1, . . . , r}, H ◦δ,derδ
i is Zariski-dense in G◦,der

i ;
(ii) we have

H ◦δ,derδ =

r∏
i=1

H
◦δ,derδ
i ⊂

r∏
i=1

G
◦,der
i .

Proof. By hypothesis, H is Zariski-dense in G, and hence Hi is Zariski-dense in Gi
(because the projection pi : G → Gi is continuous for the Zariski topology, and hence
Gi = pi(G) = pi(H) ⊂ pi(H)). Therefore, H ◦δ,derδ is Zariski-dense in G◦,der

=∏r
i=1G

◦,der
i andH ◦δ,derδ

i is Zariski-dense inG◦,der
i . Recall that theG◦,der

i are quasi-simple
by hypothesis. It follows from [Cas89, Theorem 15] that

H ◦δ,derδ =

r∏
i=1

Ki

for some δ-closed subgroups Ki of G◦,der
i . (In the terminology of [Cas89, Theorem 15],

the simple component Ai of G◦,der is {1}i−1
× G

◦,der
i × {1}r−i−1). We necessarily have

Ki = H
◦δ,derδ
i . ut

4.4.2. Baum–Sweet and Rudin–Shapiro

Theorem 4.6. The parametrized difference Galois group of the direct sum of the systems
(22) and (23) is equal to the direct product of the parametrized difference Galois groups of
(22) and (23), namely µ4SL2(C̃)×GL2(C̃). The series fBS(z), fBS(z

2), fRS(z), fRS(−z)

and all their successive derivatives are algebraically independent over C(z).
Proof. We let MBS and MRS denote the φ-modules associated to (22) and (23). It is
proved in [Roq15, Section 9.3] that the difference Galois group over K of MBS ⊕MRS
is the direct product of the difference Galois groups, i.e., µ4SL(C) × GL2(C). It fol-
lows from Theorems 4.5, 4.3, and 4.4 that the parametrized difference Galois group of
MBS⊕MRS contains SL2(C̃)× SL2(C̃). The fact that the parametrized difference Galois
group of MBS ⊕MRS is µ4SL2(C̃)× GL2(C̃) is now clear.

The proof of the last assertion is similar to the proof of the last statement of Theo-
rem 4.2. ut
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