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Abstract. In a previous paper, we introduced a notion of mean curvature flow with surgery for
embedded, mean convex surfaces in R3. In this paper, we extend this construction to embedded,
mean convex surfaces in a Riemannian three-manifold. Moreover, by combining our results with
earlier work of Brian White, we are able to give a precise description of the longtime behavior of
the surgically modified flow.

Keywords. Mean curvature flow, singularities

1. Introduction

This is a sequel to our earlier paper [7], where we introduced a notion of mean curvature
flow with surgery for embedded, mean convex surfaces in R3. This construction extends
earlier work of Huisken and Sinestrari in the higher-dimensional case. An alternative
approach was later described by Haslhofer and Kleiner [11]. Both approaches are inspired
by the spectacular work of Hamilton [8], [9] and Perelman [17]–[19] on the formation of
singularities in the Ricci flow.

In this paper, we extend the surgery construction of [7] to the more general setting
of embedded, mean convex surfaces in Riemannian three-manifolds. It is well known
that embeddedness and mean convexity are preserved under mean curvature flow in any
ambient Riemannian manifold. The fact that mean convexity is preserved follows from
the maximum principle together with the evolution equation for the mean curvature:

∂

∂t
H = 1H + (|A|2 + Ric(ν, ν))H.

Our first main result asserts that there exists a surgically modified flow on any given
bounded time interval.
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Theorem 1.1. Let X be a compact Riemannian manifold of dimension 3, and let M0 =

∂�0 be a closed, embedded, mean convex surface in X. Finally, let T > 0 be a given
number. Then there exists a mean curvature flow with surgery starting from M0 which is
defined on the time interval [0, T ]. We allow for the possibility that the flow may become
extinct before time T .

Theorem 1.1 relies on the insight that finite-time singularities of embedded, mean con-
vex surfaces are either spherical or contain a cylindrical neck. This is not true for flows
of immersed surfaces: in that case, the flow may form singularities modeled after the
translating grim reaper solution crossed with a line. Without the assumption of mean
convexity, many more singularity models are possible.

We briefly recall the surgery algorithm from [7] and [15]. We specify three curvature
thresholds H3 = 10H2 � H1. We start from the given initial surface M0, and evolve
it by the smooth mean curvature flow until the maximum of the mean curvature reaches
the threshold H3 for the first time. We then perform surgery on suitably chosen necks.
On each neck, the mean curvature is comparable to H1. After surgery, the maximum of
the mean curvature drops below H2. We then evolve the surgically modified surface by
smooth mean curvature flow until the maximum of the mean curvature reaches the thresh-
old H3 for the second time. Again, by performing surgery on suitably chosen necks, we
are able to push the maximum of the mean curvature below H2. We then run the smooth
flow again. This process can be repeated until we reach time T or the flow becomes ex-
tinct.

One of the main ingredients in the proof of Theorem 1.1 is a sharp estimate, estab-
lished in [5], for the inscribed radius along mean curvature flow (see [3] for a survey).
Given a hypersurfaceM in a Riemannian manifold X, we can define the inscribed radius
at x as [

sup
y∈M, 0<d(x,y)≤ 1

2 inj(X)

(
−

2〈exp−1
x (y), ν(x)〉

d(x, y)2

)]−1

.

Similarly, the outer radius can be defined as[
max

{
sup

y∈M, 0<d(x,y)≤ 1
2 inj(X)

2〈exp−1
x (y), ν(x)〉

d(x, y)2
, 0
}]−1

.

Here, exp and d denote the exponential map and Riemannian distance in the ambient
manifold X. In the Euclidean setting, the inscribed radius can be interpreted as the ra-
dius of the largest ball which lies inside M and touches M at x. This quantity was first
considered by Sheng and Wang [20].

For embedded, mean-convex solutions of mean curvature flow in Euclidean space,
the inscribed radius is bounded from below by a constant multiple of 1/H . This was first
proved by Brian White [21], [22]. Alternative proofs were given by Sheng–Wang [20],
and by Andrews [1]. In [4] and [5], this was improved to a sharp estimate, which also
holds for flows in Riemannian manifolds. More precisely, if Mt is a family of closed,
embedded, mean convex hypersurfaces evolving under mean curvature flow, then the in-
scribed radius is bounded from below by 1

(1+δ)H at points where the curvature is large
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(see [5]). This estimate is particularly useful for flows of two-dimensional surfaces in
three-manifolds where it serves as a substitute for the cylindrical estimate of [15].

In the second step, we want to extend the flow to the interval [0,∞), and analyze
its asymptotic behavior for t → ∞. Here, we encounter several new phenomena. For
example, while mean curvature flow in R3 becomes extinct in finite time, the mean cur-
vature flow in a Riemannian manifold may exist for all time. For the level-set flow, Brian
White [21] has shown that the flow will either become extinct in finite time, or will con-
verge to a finite collection of stable minimal surfaces as t →∞. It turns out that there is
an analogous picture for mean curvature flow with surgery.

Theorem 1.2. Let M0 = ∂�0 be a closed, embedded, mean convex surface in a Rie-
mannian three-manifold X. Then there exists a mean curvature flow with surgery starting
from M0 which is defined for all t ∈ [0,∞). Furthermore, the solution either becomes
extinct in finite time, or else the flow is smooth for t sufficiently large, and the surfaces
converge smoothly to a union of finitely many embedded stable minimal surfaces.

We briefly sketch the main ideas involved in the proof of Theorem 1.2. By work of Brian
White [21], we can fix a time T such that the level-set flow is smooth for t ∈ (T − 2,∞).
We then consider the surgically modified flow on the interval [0, T ]. By a suitable choice
of the surgery parameters, we can ensure that the surgically modified flow is close to the
level-set flow in the sense of geometric measure theory (see [16]). A result from [6] then
implies that the surgically modified flow is, in fact, free of surgeries for t ∈ (T − 1, T ).
We then restart the flow at time T . This flow turns out to have a smooth solution which is
defined on the time interval [T ,∞) and has the desired asymptotic behavior as t →∞.

We note that Theorem 1.2 can be applied to mean curvature flows starting from large
coordinate spheres in asymptotically flat three-manifolds. In this case, the flow will con-
verge to an outermost minimal surface in the limit.

2. Auxiliary results needed for the proof of Theorem 1.1

In order to define the surgery algorithm, we need a number of auxiliary results. These
results were established in [7] in the special case when the ambient manifold is R3. In the
following, we list the auxiliary results needed, and indicate the necessary adaptations in
the Riemannian setting.

We first describe how to perform a single surgery on a mean convex surface M in a
Riemannian three-manifold. We first recall a definition from [7]:

Definition 2.1. LetM be an embedded, mean convex surface in R3, and letN be a region
inM . As usual, we denote by ν the outward pointing unit normal vector field. We say that
N is an (α̂, δ̂, ε, L)-neck of size r if (in a suitable coordinate system in R3) the following
holds:

• There is a simple closed, convex curve 0 ⊂ R2 with distC20(r−1N,0× [−L,L]) ≤ ε.
• At each point on 0, the inscribed radius is at least 1

(1+δ̂)κ
, where κ denotes the geodesic

curvature of 0.



2242 Simon Brendle, Gerhard Huisken

•
∑18
l=1 |∇

lκ| ≤ 1/100 at each point on 0.
• There exists a point on 0 where the geodesic curvature κ is equal to 1.
• The region {x + aν(x) : x ∈ N, a ∈ (0, 2α̂r)} is disjoint from M .

Here, it is understood that ε is much smaller than δ̂.

We can extend this definition to Riemannian manifolds as follows:

Definition 2.2. Let M be a closed surface in a Riemannian three-manifold X, and let
o ∈ M . We say that o lies at the center of an (α̂, δ̂, ε, L)-neck of size r if 0 lies at the
center of an (α̂, δ̂, ε, L)-neck of size r in exp−1

o (M ∩ B 1
4 inj(X)(o)) ⊂ ToX in the sense of

[7, Definition 2.4]. Here, it is understood that ε is much smaller than δ̂, and the product Lr
is much smaller than the injectivity radius of the ambient three-manifold X.

There is now an obvious way to perform surgery on a neck in Riemannian three-mani-
foldX. Namely, if o lies at the center of an (α̂, δ̂, ε, L)-neck N inX, then exp−1

o (N) is an
(α̂, δ̂, ε, L)-neck in Euclidean space. Hence, we can perform the surgery procedure de-
scribed in [7] on exp−1

o (N). This gives a surgically modified surface in Euclidean space,
which we can paste back into X using the exponential map expo. This surgery procedure
depends on a parameter 3, and enjoys good properties as long as 3 is large and Lr is
small:

Theorem 2.3 (Properties of surgery). Given any number α̂ > α, there exists a real num-
ber δ0 with the following properties. Suppose that we are given a pair of real numbers δ
and δ̂ such that δ̂ < δ < δ0. Then we can find numbers ε̄, 3, and r̄ , depending only on δ
and δ̂, such that the following holds. Suppose thatN is an (α̂, δ̂, ε, L)-neck of size r which
is contained in an embedded, mean convex surface in X, where ε ≤ ε̄, L/1000 ≥ 3, and
Lr ≤ r̄ . If we perform a 3-surgery on N , then the resulting surface Ñ will be 1

1+δ -
noncollapsed. Furthermore, the outer radius is at least α/H at each point on Ñ . Finally,
if p̃ ∈ Ñ \ N is a point in the surgically modified region, then either λ1(p̃) ≥ 0, or else
there exists a point p ∈ N such that λ1(p̃) ≥ λ1(p) and H(p̃) ≥ H(p).

Proof. We sketch the modifications needed to prove Theorem 2.3. By [7, Theorem 2.5],
we can choose the surgery parameters ε̄ and 3 so that performing surgery on an
(α̂, δ̂, ε, L)-neck in R3 will produce a surface which is 2

2+δ+δ̂
-noncollapsed with respect

to the Euclidean metric. Suppose now that o lies at the center of an (α̂, δ̂, ε, L)-neck N
in X. By definition, exp−1

o (N) is an (α̂, δ̂, ε, L)-neck with respect to the Euclidean
metric. Hence, if we perform surgery on exp−1

o (N), then the resulting surface is
2

2+δ+δ̂
-noncollapsed with respect to the Euclidean metric. We now paste this surface back

into X using the exponential map. If Lr is sufficiently small, then we obtain a surface Ñ
in X which is 1

1+δ -noncollapsed. An analogous argument works for the outer radius.

From now on, we will fix a Riemannian three-manifoldX, and an initial surfaceM0 =

∂�0 in X. We assume that M0 is closed, embedded, and mean convex. In view of the
evolution equation for the mean curvature, the mean curvature H has a positive lower
bound which may deteriorate exponentially in t . The following proposition tells us that
the noncollapsing constant can only deteriorate in a controlled way.
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Proposition 2.4 (Coarse noncollapsing estimate). We can find positive functions 4(t)
and α(t) with the following properties:
• The initial surface M0 satisfies |A| + 1 ≤ 4(0)H . Moreover, the inscribed radius and

the outer radius of M0 are bounded from below by α(0)/H .
• Suppose that, for some time t , the surface Mt satisfies |A| + 1 ≤ 4(t)H , and the

inscribed radius and the outer radius of Mt are bounded from below by α(t)/H . Then
this remains so for all later times.

Proposition 2.4 follows directly from results in [5]. Note that the functions 4(t) and α(t)
are uniformly bounded from below on any finite time interval, but may deteriorate as
t →∞. From now on, we will fix the time interval [0, T ] and the functions4(t) and α(t)
throughout the proof of Theorem 1.1. For abbreviation, we define αmin := mint∈[0,T ] α(t).

Assumption 2.5. In the following, we will assume that Mt is a solution of the mean
curvature flow with surgery which starts fromM0 and is defined on a subinterval of [0, T ].
We will assume that this flow has the following properties:
• Each surgery procedure on Mt involves performing a 3-surgery on an (α̂(t), δ̂, ε, L)-

neck of size r ∈ [1/(2H1), 2/H1], where α̂(t) > α(t), δ̂ ≤ 1/10, L/1000 ≥ 3, and
H1 is sufficiently large.
• The region �t enclosed by Mt shrinks as t increases.
• For each t , the surface Mt is outward-minimizing within the region �0.
• For each t , the inscribed radius and the outer radius of Mt are at least α(t)/H .

The precise values of the function α̂(t) and the surgery parameters δ̂,3, ε, L, andH1 will
be specified later.

In the first step, we want to apply the Pseudolocality Theorem to obtain derivative
bounds shortly after a surgery. We begin by showing that surgeries are separated in space:

Proposition 2.6 (Separation of surgery regions). Let Mt be a mean curvature flow with
surgery satisfying Assumption 2.5. Suppose that t0 < t1 are two surgery times, and
x0 ∈ Mt0+ and x1 ∈ Mt1+ are two points in the surgically modified regions. Then
x1 /∈ B αmin

1000 H
−1
1
(x0).

Proof. The proof of [7, Proposition 2.7] carries over directly to the Riemannian setting.

Thus, if t0 is a surgery time and x0 is a point in the surgically modified region at time
t0+, then the flowMt∩B αmin

1000 H
−1
1
(x0), t > t0, is free of surgeries. Using the Pseudolocality

Theorem of [7], we can draw the following conclusion:

Proposition 2.7. There exist positive constants β∗ ∈ (0, αmin/1000) and C∗ with the fol-
lowing property. LetMt be a mean curvature flow with surgery satisfying Assumption 2.5.
Suppose that t0 ∈ [0, T ] is a surgery time and x0 is a point in the surgically modified re-
gion at time t0+. Then

H−1
1 |A| +H

−2
1 |∇A| +H

−3
1 |∇

2A| ≤ C∗

for all times t ∈ (t0, t0 + β∗H−2
1 ] and all points x ∈ Mt ∩ Bβ∗H−1

1
(x0). The constants β∗

and C∗ may depend on the noncollapsing constant αmin, but they are independent of the
surgery parameters α̂(t), δ̂, 3, ε, L, and H1.
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The exact values of the surgery parameters will depend on the value of the constant in
the derivative estimate, which in turn depends on β∗ and C∗. It is therefore critically
important that the constants β∗ and C∗ do not depend on the exact choice of the surgery
parameters α̂(t), δ̂, 3, ε, L, and H1.

We next recall the following gradient estimate due to Haslhofer and Kleiner [10].
This estimate is stated for solutions of mean curvature flow in Euclidean space, but their
arguments easily carry over to the Riemannian setting.

Theorem 2.8 (cf. Haslhofer–Kleiner [10, Theorem 1.8′]). Let Mt be a mean curvature
flow with surgery satisfying Assumption 2.5. Let p be a point onMt0 for some t0 ∈ [0, T ],
and let r ≤ 1/H(p, t0). Assume that the surfaces Mt ∩ B4r(p), t ∈ [t0 − r2, t0], are
free of surgeries. Moreover, assume that the surface Mt ∩ B4r(p) is outward-minimizing
within the ball B4r(p) for each t ∈ [t0− r2, t0]. Then r2

|∇A| ≤ C(αmin) and r3
|∇

2A| ≤

C(αmin) at the point p.

Combining Proposition 2.7 with the interior gradient estimate of Haslhofer and
Kleiner [10], we obtain pointwise bounds for the first and second derivatives of the second
fundamental form which hold even in the presence of surgeries.

Proposition 2.9 (Pointwise derivative estimate). There exists a constant C# with the fol-
lowing properties. Suppose that Mt is a mean curvature flow with surgery satisfying As-
sumption 2.5. Then |∇A| ≤ C#(H + H1)

2 and |∇2A| ≤ C#(H + H1)
3 for 0 ≤ t ≤ T .

The constant C# may depend on the noncollapsing constant αmin, but is independent of
the surgery parameters α̂(t), δ̂, 3, ε, L, and H1.

Proof. Let us consider an arbitrary time t1 and an arbitrary point x1 ∈ Mt1 for which we
want to verify the estimate. Without any loss of generality, we may assume that t1 is not
a surgery time. There are two cases:

Case 1: There exists a surgery time t0 and a point x0 such that |x1 − x0| ≤ β∗H
−1
1 ,

0 < t1− t0 ≤ β∗H
−2
1 , and x0 lies in the surgically modified region at time t0+. Applying

Proposition 2.7, we conclude that

H−1
1 |A| +H

−2
1 |∇A| +H

−3
1 |∇

2A| ≤ C∗

at the point (x1, t1). Hence, |∇A| ≤ C∗(H +H1)
2 and |∇2A| ≤ C∗(H +H1)

3 at (x1, t1).

Case 2: There does not exist a surgery time t0 and a point x0 as in Case 1. Then the flow
Mt∩Bβ∗H−1

1
(x1), t ∈ (t1−β∗H−2

1 , t1], is free of surgeries. Moreover, the ball B
β∗H

−1
1
(x1)

is contained in the region�0, so the surfacesMt are outward-minimizing within that ball.
Hence, Theorem 2.8 implies that |∇A| ≤ B(H +H1)

2 and |∇2A| ≤ B(H +H1)
3 at the

point (x1, t1). Here,B is a positive constant that depends only on β∗ and the noncollapsing
constant αmin. This completes the proof.

Having fixed the constantC# in the derivative estimate, we next define2 = 400/αmin,
θ0 = 10−6 min{αmin, 1/(C#2

3)}, and α̂(t) = α(t)/(1− θ0/8). Hence, if we start at a
point (p0, t0) with H(p0, t0) ≥ H1/2 and follow this point back in time, then the mean
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curvature at the resulting point will be between 1
2H(p0, t0) and 2H(p0, t0) provided that

t ∈ (t0 − 2θ0H(p0, t0)
−2, t0].

We next recall two auxiliary results from [7] concerning curves in R2. As in [7], we
will apply these results to a blow-up limit that splits off a line. This will be used to show
that the noncollapsing constants of a neck improve prior to surgery; this improvement
offsets the deterioration of the noncollapsing constants under surgery (see Theorem 2.3
above).

Proposition 2.10. We can find a real number δ > 0 such that the following holds:

• Suppose that 0 is a (possibly nonclosed) embedded curve in the plane with κ > 0,∣∣ dκ
ds

∣∣ ≤ C#(κ + 22)2, and
∣∣ d2κ
ds2

∣∣ ≤ C#(κ + 22)3. Moreover, suppose that the inscribed
radius is at least 1

(1+δ)κ at each point on 0, and the outer radius is at least αmin/κ at
each point on 0. Finally, assume that κ(p) = 1 for some point p ∈ 0. ThenL(0) ≤ 3π
and sup0 |κ − 1| ≤ 1/100.
• Suppose that 0t , t ∈ (−2θ0, 0], is a family of simple, closed, convex curves in the plane

which evolve by curve shortening flow. Assume that, for each t ∈ (−2θ0, 0], the curve
0t satisfies the derivative estimates

∣∣ dκ
ds

∣∣ ≤ C#(κ + 22)2 and
∣∣ d2κ
ds2

∣∣ ≤ C#(κ + 22)3.
Moreover, assume that at each point on 0t , the inscribed radius is at least 1

(1+δ)κ and
the outer radius is at least αmin/κ . Finally, assume that the geodesic curvature of 00
is equal to 1 somewhere. Then the curve 00 satisfies

∑18
l=1 |∇

lκ| ≤ 1/1000. Moreover,
sup0−θ0 κ ≤ 1− θ0/4.

We assume that δ is chosen so small that δ < δ0, where δ0 is the constant in Theorem 2.3.
In the next step, we choose δ̂ such that the following holds:

Proposition 2.11. Given θ0, δ > 0, we can find a real number δ̂ ∈ (0, δ) with the follow-
ing property. Consider a simple, closed, convex solution 0t , t ∈ (−2θ0, 0], of the curve
shortening flow in the plane which satisfies the derivative estimates

∣∣ dκ
ds

∣∣ ≤ C#(κ + 22)2

and
∣∣ d2κ
ds2

∣∣ ≤ C#(κ + 22)3. Moreover, assume that at each point on 0t , the inscribed
radius is at least 1

(1+δ)κ and the outer radius is at least αmin/κ . Finally, assume that the

geodesic curvature of 00 is 1 somewhere. Then 00 is 1
1+δ̂

-noncollapsed.

Having fixed the values of α(t), α̂(t), δ, δ̂, we will choose ε̄ and3 such that the conclusion
of Theorem 2.3 holds.

We next observe that the convexity estimates of Huisken and Sinestrari [13], [14] still
hold for mean curvature flow with surgery.

Proposition 2.12 (Huisken–Sinestrari [15, Section 4]). Suppose that ε̄ and3 are chosen
so that the conclusion of Theorem 2.3 holds. Moreover, let Mt be a mean curvature flow
with surgery satisfying Assumption 2.5, where ε ≤ ε̄ and L ≥ 10003. Given any η > 0,
there exists a constant C1(η) such that λ1 ≥ −ηH − C1(η) for 0 ≤ t ≤ T . The constant
C1(η) depends only on η, T , the initial surface M0, and the ambient manifold X, but is
independent of the remaining surgery parameters ε, L, and H1.
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Theorem 2.3 implies that performing3-surgery on an (α̂(t), δ̂, ε, L)-neck will produce a
surface which is 1

1+δ -noncollapsed provided that ε ≤ ε̄ and L ≥ 10003. This allows us
to show that the cylindrical estimate from [5] holds in the presence of surgeries:

Proposition 2.13 (Cylindrical estimate). Let δ and δ̂ be chosen as above. Moreover, sup-
pose that ε̄ and 3 are chosen so that the conclusion of Theorem 2.3 holds. Finally, let
Mt be a mean curvature flow with surgery satisfying Assumption 2.5, where ε ≤ ε̄ and
L ≥ 10003. Then µ ≤ (1+ δ)H +CH 1−σ for 0 ≤ t ≤ T , where µ denotes the recipro-
cal of the inscribed radius. Here, σ and C may depend on δ, T , M0, and X, but they are
independent of the exact choice of ε, L, and H1.

Proof. In view of Proposition 2.12, we can find a large constant

K0 ≥ 8 inj(X)−1
(

inf
t∈[0,T ]

inf
Mt

min{H, 1}
)−1

such that
(n− 1)λ1 ≥ −

δ

2
H −K0 min{H, 1}.

Note that K0 is a constant that depends only on δ, T , the initial surface M0, and the
ambient manifold X. We next define

fδ,σ = H
σ−1(µ− (1+ δ)H)−K0,

where µ denotes the reciprocal of the inscribed radius. By results in [5], we can find a
constant c0, depending only on δ, T ,M0, andX, with the following property: if p ≥ 1/c0
and σ ≤ c0p

−1/2, then

d

dt

(∫
Mt

f
p
δ,σ,+

)
≤ Cσp

∫
Mt

f
p
δ,σ,+ + σpK

p

0

∫
Mt

|A|2 + (Cp)p|Mt |

in between surgery times. Here, C depends only on δ, T , the initial surface M0, and the
ambient manifold X, but not on σ or p.

In the next step, we show that the integral
∫
Mt
f
p
δ,σ,+ does not increase under surgery.

To see this, we consider a surgery time t0. By assumption, each surgery is being performed
on an (α̂(t0), δ̂, ε, L)-neck with ε ≤ ε̄ and L ≥ 10003. Hence, Theorem 2.3 implies that
the inscribed radius of Mt0+ is at least 1

(1+δ)H in the surgically modified region. In other
words, fδ,σ ≤ 0 in the surgically modified region of Mt0+. Consequently,

∫
Mt0+

f
p
δ,σ,+ ≤∫

Mt0−
f
p
δ,σ,+.

Arguing as in [5], we conclude that there exists a constant c0, depending only on δ,
T , M0, and X, with the following property: if p ≥ 1/c0 and σ ≤ c0p

−1/2, then∫
Mt

f
p
δ,σ,+ ≤ C

for all t . Here, C is a constant that depends on p, σ , δ, T , M0, and X. Having established
this, we can now use Stampacchia iteration to show that fδ,σ ≤ C, where σ and C depend
only on δ, T , M0, and X. This completes the proof of Proposition 2.13.
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Using the convexity estimate and the cylindrical estimate, we can now prove the Neck
Detection Lemma. The proof is the same as in [7], and will be omitted. As in [15], we
need two slightly different versions.

Theorem 2.14 (Neck Detection Lemma, Version A). Let δ and δ̂ be chosen as above,
and let ε̄ and3 be chosen so that the conclusion of Theorem 2.3 holds. LetMt be a mean
curvature flow with surgery satisfying Assumption 2.5, where ε ≤ ε̄ and L ≥ 10003.
Then, given ε0 > 0 and L0 ≥ 100, we can find η0 > 0 and K0 with the following
properties. Suppose that t0 ∈ [0, T ] and p0 ∈ Mt0 satisfy

• H(p0, t0) ≥ max{K0, H1/2} and λ1(p0, t0)/H(p0, t0) ≤ η0,
• the parabolic neighborhood P̂(p0, t0, L0 + 4, 2θ0) does not contain surgeries.1

Then (p0, t0) lies at the center of an (α̂(t0), δ̂, ε0, L0)-neck of size H(p0, t0)
−1. Finally,

the constants η0 and K0 may depend on ε0, L0, δ, δ̂, T , M0, and X, but they are indepen-
dent of the remaining surgery parameters ε, L, and H1.

Theorem 2.15 (Neck Detection Lemma, Version B). Let δ and δ̂ be chosen as above,
and let ε̄ and3 be chosen so that the conclusion of Theorem 2.3 holds. LetMt be a mean
curvature flow with surgery satisfying Assumption 2.5, where ε ≤ ε̄ and L ≥ 10003.
Then, given θ, ε0 > 0 and L0 ≥ 100, we can find positive numbers η0 and K0 with the
following properties. Suppose that t0 ∈ [0, T ] and p0 ∈ Mt0 satisfy

• H(p0, t0) ≥ max{K0, H1/2} and λ1(p0, t0)/H(p0, t0) ≤ η0,
• the parabolic neighborhood P̂(p0, t0, L0 + 4, θ) does not contain surgeries.

Let us dilate the surface {x ∈ Mt0 : dg(t0)(p0, x) ≤ L0H(p0, t0)
−1
} by the factor

H(p0, t0). Then the resulting surface is ε0-close to a product 0 × [−L0, L0] in the C3-
norm. Here, 0 is a closed, convex curve satisfying L(0) ≤ 3π and sup0 |κ−1| ≤ 1/100.
The constantK0 may depend on θ , ε0, L0, δ, δ̂, T ,M0, and X, but it is independent of the
remaining surgery parameters ε, L, and H1.

The proof of the Neck Continuation Theorem in Section 3 will require both versions of the
Neck Detection Lemma. The main difference between the two versions is that Version A
requires the assumption that P̂(p0, t0, L0 + 4, 2θ0) does not contain surgeries, whereas
Version B only requires that the parabolic neighborhood P̂(p0, t0, L0 + 4, θ) is free of
surgeries. (Note that θ can be much smaller than θ0.)

The following result serves as a replacement for [15, Lemma 7.12]:

Proposition 2.16 (Replacement for [15, Lemma 7.12]). Let Mt be a mean curvature
flow with surgery satisfying Assumption 2.5. Suppose that (p1, t1) is a point in spacetime
such thatH(p1, t1) ≥ H1 and the parabolic neighborhood P̂(p1, t1, L̃+4, 2θ0) contains
at least one point belonging to a surgery region. Then there exists a point q1 ∈ Mt1

and an open set V ⊂ Mt1 such that dg(t1)(p1, q1) ≤ (L̃ + 4)H(p1, t1)
−1, {x ∈ Mt1 :

dg(t1)(q1, x) ≤ 500H−1
1 } ⊂ V , and V is diffeomorphic to a disk. Moreover, the mean

curvature is at most 40H1 at each point in V .

1 See [15, pp. 189–190] for the definition of P̂(p0, t0, L0 + 4, 2θ0).
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Proof. We will consider a surgical cap that was inserted shortly before time t1, and fol-
low this cap forward in time. More precisely, in view of our assumption, the parabolic
neighborhood P̂(p1, t1, L̃ + 4, 2θ0) contains a point which belongs to a surgery region.
Consequently, we can find a surgery time t0 ∈ [t1 − 2θ0H(p1, t1)

−2, t1) and a point
q1 ∈ Mt1 such that the following holds:

• dg(t1)(p1, q1) ≤ (L̃+ 4)H(p1, t1)
−1.

• If we follow the point q1 ∈ Mt1 back in time, then the corresponding point q0 ∈ Mt0+

lies in the region modified by surgery at time t0.

Let us consider the region modified by surgery at time t0, and let U0 denote the connected
component of this set that contains the point q0. In other words, U0 ⊂ Mt0+ is a cap that
was inserted at time t0. We next define V0 = {x ∈ Mt0+ : distg(t0+)(U0, x) ≤ 1000H−1

1 }.
Clearly, V0 is diffeomorphic to a disk. Let

D =
⋃
x∈V0

B αmin
1000 H

−1
1
(x).

Arguing as in Proposition 2.6 above, we can show that, for every surgery time t > t0, the
setD is disjoint from the region modified by surgery at time t . Consequently, the surfaces
Mt∩D form a regular mean curvature flow for t > t0. In other words, the surfacesMt∩D

evolve smoothly for t > t0, but we allow the possibility that some components ofMt ∩D

may disappear as a result of surgeries in other regions.
At each point on V0 ⊂ Mt0+, the mean curvature is at most 20H1. We now fol-

low the surface V0 ⊂ Mt0+ forward in time. This gives a one-parameter family of sur-
faces which are all diffeomorphic to a disk. It follows from Proposition 2.9 that, for
t ∈ (t0, t0 + 2θ0H

−2
1 ], the resulting surfaces remain inside the region D and have mean

curvature at most 40H1. Moreover, since q1 ∈ Mt1 , the resulting surfaces cannot disap-
pear before time t1.

Let V1 ⊂ Mt1 denote the region in Mt1 which is obtained by following the region
V0 ⊂ Mt0+ forward in time. Clearly, V1 is diffeomorphic to a disk, and the mean curvature
is at most 40H1 at each point in V1. Since q0 ∈ V0, we have q1 ∈ V1. Furthermore, since
distg(t0+)(q0, ∂V0) ≥ 1000H−1

1 , we obtain distg(t1)(q1, ∂V1) ≥ 500H−1
1 . From this, we

deduce that
{x ∈ Mt1 : dg(t1)(q1, x) ≤ 500H−1

1 } ⊂ V1.

Hence, if we set V := V1, then V has the required properties.

Since we have a pointwise estimate for the derivatives of the second fundamental
form, we are able to prove an analogue of [15, Theorem 7.14].

Proposition 2.17. Consider a closed surfaceM inX which satisfies the estimate |∇A| ≤
C#(H+H1)

2 for suitable constantsC# andH1, and let d(·, ·) denote the intrinsic distance
onM . Given any η > 0, we can find large numbers ρ and γ0 (depending only onC# and η)
with the following properties. Suppose that p is a point on M with λ1(p) > ηH(p) and
H(p) ≥ γ0H1, whereH1 is sufficiently large. Then one of the following statements holds:
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• λ1(q
′) > ηH(q ′) and d(p, q ′) ≤ ρ/H(p) for each point q ′ ∈ M .

• There exists a point q ∈ M such that λ1(q) ≤ ηH(q) and d(p, q) ≤ ρ/H(p).

Furthermore, H(q) ≥ H(p)/γ0 ≥ H1 for each point q ′ ∈ M satisfying d(p, q ′) ≤
ρ/H(p).

Proof. Let ρ = (1/C#)e
20πC#/η and γ0 = 1 + 10C#ρ. We claim that ρ and γ0 have the

desired property. To see this, suppose that p is a point in M satisfying λ1(p) > ηH(p)

and H(p) ≥ γ0H1. Using the curvature derivative estimate, we obtain

H(q) ≥
H(p)

1+ 10C#d(p, q)H(p)
≥
H(p)

γ0
≥ H1

for all points q ∈ M satisfying d(p, q) ≤ ρ/H(p).
If there exists a point q ∈ M such that λ1(q) ≤ ηH(q) and d(p, q) ≤ ρ/H(p), then

we are done. Hence, it remains to consider the case that λ1(q) > ηH(q) for all q ∈ M
satisfying d(p, q) ≤ ρ/H(p). In this case, we will show that d(p, q) ≤ ρ/H(p) for all
q ∈ M . To prove this, we choose a local height function u : Bσ (p)→ R in ambient space
such that |∇u| = 1 at each point on Bσ (p), u(p) = 0, and ∇u(p) = −ν(p). Here, σ is
a positive constant which depends only on the ambient manifold X. In the following, we
assume thatH1 is chosen so large that ρ/H(p) ≤ ρ/(γ0H1) ≤ σ/2. We next consider the
flow on M generated by the vector field ωT /|ωT |2, where ω = ∇u and ωT denotes the
projection of ω to the tangent space ofM . For y > 0 small, we can find a closed curve 0y
around p which is contained in the level set {u = y}. By following the trajectories of the
ODE, we can extend this to a maximal foliation 0y , y ∈ (0, ymax).

We claim that supq∈0y d(p, q) ≤ ρ/H(p) for each y ∈ (0, ymax) provided that H1 is
sufficiently large. Suppose this is false. Let ȳ ∈ (0, ymax) be the smallest number with the
property that supq∈0ȳ d(p, q) ≥ ρ/H(p). Along a trajectory of the ODE, we have

d

dy
〈ν, ω〉 =

〈D̄ωT ν, ω〉 + 〈ν, D̄ωT ω〉

|ωT |2
=
h(ωT , ωT )+ 〈ν − 〈ν, ω〉ω, D̄ωT ω〉

|ωT |2
,

where in the last step we have used the fact that ω has unit length. Using the identity
|ν − 〈ν, ω〉ω| = |ω − 〈ω, ν〉ν| = |ωT |, we conclude that

d

dy
〈ν, ω〉 ≥ λ1 − |D̄ω|.

Hence, if H1 is sufficiently large, then d
dy
〈ν, ω〉 ≥ ηH − |D̄ω| ≥

η
2H for all points

q ∈
⋃
y∈(0,ȳ) 0y . Consequently, along a trajectory of the ODE, we have

d

dy

(
η

20C#
log(1+ 10C#d(p, q)H(p))− arcsin〈ν, ω〉

)
≤
η

2

(
H(p)

1+ 10C#d(p, q)H(p)
−H(q)

)
1√

1− 〈ν, ω〉2
≤ 0
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for all q ∈
⋃
y∈(0,ȳ) 0y . This implies

η

20C#
log(1+ 10C#d(p, q)H(p))− arcsin〈ν, ω〉 ≤

π

2
,

hence

d(p, q) ≤
1

10C#H(p)

(
e20πC#/η − 1

)
≤

ρ

10H(p)

for all q ∈
⋃
y∈(0,ȳ) 0y . This contradicts the fact that supq∈0ȳ d(p, q) ≥ ρ/H(p).

Thus, supq∈0y d(p, q) ≤ ρ/H(p) for all y ∈ (0, ymax). In particular, λ1 ≥ ηH ≥

ηH1 at each point in
⋃
y∈(0,ymax)

0y . Using this uniform convexity property together with
elementary Morse theory, we conclude that M \ ({p} ∪

⋃
y∈(0,ymax)

0y) consists of a
single point, and furthermore ν = ω at that point. Consequently, d(p, q) ≤ ρ/H(p) for
all q ∈ M . This completes the proof of Proposition 2.17.

3. The Neck Continuation Theorem and the proof of Theorem 1.1

In this section, we use the auxiliary results from Section 2 to establish an analogue of the
Neck Continuation Theorem of Huisken and Sinestrari [15].

We begin by finalizing our choice of the surgery parameters. This step is similar to the
discussion in [15, pp. 208–209]. Recall that the parameters δ, δ̂, α̂(t) and the constants
C#, θ0,2 have already been chosen at this stage. Moreover, ε̄ and3 have been chosen so
that the conclusion of Theorem 2.3 holds.

In the next step, we choose numbers ε0 and L0 so that ε0 < ε̄ and L0 > 10003.
In addition, we require that the mean curvature on an (α̂(t), δ̂, ε0, L0)-neck varies by at
most a factor of 1 + L−1

0 . (This can always be achieved by choosing ε0 very small.) We
then choose real numbers η0 > 0 and K0 so that the conclusion of Version A of the
Neck Detection Lemma can be applied for each L̃ ∈ [100, L0]. In other words, if (p0, t0)

satisfiesH(p0, t0) ≥ max{K0, H1/2} and λ1(p0, t0) ≤ η0H(p0, t0), and if the parabolic
neighborhood P̂(p0, t0, L̃ + 4, 2θ0) is free of surgeries for some L̃ ∈ [100, L0], then
(p0, t0) lies at the center of an (α̂(t0), δ̂, ε0, L̃)-neck in Mt0 .

In the next step, we set ε1 = η0/10. By Version A of the Neck Detection Lemma,
we can find constants η1 < η0 and K1 > K0 such that the following holds: if (p0, t0)

satisfies H(p0, t0) ≥ max{K1, H1/2}, λ1(p0, t0) ≤ η1H(p0, t0), and if the parabolic
neighborhood P̂(p0, t0, 104, 2θ0) is free of surgeries, then (p0, t0) lies at the center of an
(α̂(t0), δ̂, ε1, 100)-neck in Mt0 .

Having chosen η1, we next choose γ0 and ρ so that the conclusion of Proposition 2.17
holds with η = η1.

By Version B of the Neck Detection Lemma, we can find a number K2 > K1 such
that the following holds. Suppose that (p0, t0) satisfiesH(p0, t0) ≥ max{K2, H1/2} and
λ1(p0, t0) ≤ η2H(p0, t0), and the parabolic neighborhood P̂(p0, t0, 104, 10−62−2γ−2

0 )

does not contain surgeries. Then, if we dilate the surface {x ∈ Mt0 : dg(t0)(p0, x) ≤

100H(p0, t0)
−1
} by the factorH(p0, t0), the resulting surface is ε1/10-close to a product
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0×[−100, 100] in the C3-norm. Here, 0 is a closed, convex curve satisfying L(0) ≤ 3π
and sup0 |κ − 1| ≤ 1/100.

Finally, we choose H1 ≥ 10002K2, and define H2 = 1000γ0H1 and H3 = 10H2.
Note that we may choose H1 arbitrarily large (cf. [15, remark at the bottom of p. 209]).

We note that the distance between consecutive surgery times is bounded from below
by

1
3
(H−2

2 −H
−2
3 ) >

1
4
(1000γ0H1)

−2
= 10−62−2γ−2

0

(
2H1

2

)−2

(cf. [15, p. 210]). In particular, ifH(p0, t0) ≥ 2H1/2 and λ1(p0, t0) ≤ η2H(p0, t0), then
the parabolic neighborhood P̂(p0, t0, 104, 10−62−2γ−2

0 ) does not contain surgeries, so
we may apply Version B of the Neck Detection Lemma.

As in [7], the Neck Detection Lemma requires that a certain parabolic neighborhood
be free of surgeries, but this assumption can be removed when the curvature is at least
1000H1:

Proposition 3.1. Suppose that Mt is a mean curvature flow with surgeries satisfying As-
sumption 2.5, where ε ≤ ε̄ and L ≥ 10003. Moreover, suppose that (p0, t0) satisfies
H(p0, t0) ≥ 1000H1 and λ1(p0, t0) ≤ η0H(p0, t0), where η0 and H1 are defined as
above. Then p0 lies at the center of an (α̂(t0), δ̂, ε0, L0)-neck.

Proof. We distinguish two cases:

Case 1: Suppose first that the parabolic neighborhood P̂(p0, t0, 104, 2θ0) contains a
point modified by surgery. By Proposition 2.16, we can find a point q ∈ Mt0 and an open
set V ⊂ {x ∈ Mt0 : H(x, t0) ≤ 40H1} such that dg(t0)(p0, q) ≤ 104H(p0, t0)

−1 and
{x ∈ Mt0 : dg(t0)(q, x) ≤ 500H−1

1 } ⊂ V . Clearly, p0 ∈ V . Consequently, H(p0, t0) ≤

40H1, contrary to our assumption.

Case 2: We now assume that the parabolic neighborhood P̂(p0, t0, 104, 2θ0) is free
of surgeries. Let L̃ ∈ [100, L0] be the largest number such that P̂(p0, t0, L̃ + 4, 2θ0)

is free of surgeries. By Version A of the Neck Detection Lemma, the point (p0, t0)

lies at the center of an (α̂, δ̂, ε0, L̃)-neck N . If L̃ = L0, we are done. Hence, it re-
mains to consider the case when L̃ < L0. In this case, the parabolic neighborhood
P̂(p0, t0, L̃ + 5, 2θ0) must contain a point modified by surgery. By Proposition 2.16,
we can find a point q ∈ Mt0 and an open set V ⊂ {x ∈ Mt0 : H(x, t0) ≤ 40H1} such that
dg(t0)(p0, q) ≤ (L̃+ 5)H(p0, t0)

−1 and {x ∈ Mt0 : dg(t0)(q, x) ≤ 500H−1
1 } ⊂ V . Since

the set {x ∈ Mt0 : dg(t0)(p0, x) ≤ (L̃ − 1)H(p0, t0)
−1
} is contained in N , we conclude

that distg(t0)(q,N) ≤ 6H(p0, t0)
−1
≤ 6H−1

1 . Consequently, N ∩ V 6= ∅. On the other
hand, H ≥ 1

2H(p0, t0) ≥ 500H1 at each point of N , and H ≤ 40H1 at each point of V .
This contradiction completes the proof of Proposition 3.1.

Theorem 3.2 (Neck Continuation Theorem). Suppose that Mt is a mean curvature flow
with surgery satisfying Assumption 2.5, where ε ≤ ε̄ and L ≥ 10003. Suppose that
(p0, t0) satisfies H(p0, t0) ≥ 1000H1 and λ1(p0, t0) ≤ η1H(p0, t0), where η1 is de-
fined as above and H1 is sufficiently large. Then there exists a finite collection of points
p1, . . . , pl with the following properties:
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• For each i = 0, 1, . . . , l, the point pi lies at the center of an (α̂(t0), δ̂, ε0, L0)-neck
N (i)
⊂ Mt0 , and H(pi, t0) ≥ H1.

• For each i = 1, . . . , l − 1, the point pi+1 lies on the neck N (i), and

distg(t0)(pi+1, ∂N
(i)
\N (i−1)) ∈ [(L0 − 100)H(pi, t0)−1, (L0 − 50)H(pi, t0)−1

].

• Finally, at least one of the following four statements holds: either the union N =⋃l
i=1N

(i) covers the entire surface; orH(pl, t0) ∈ [H1, 2H1]; or there exists a closed
curve in N ∩{x ∈ Mt0 : H(x, t0) ≤ 40H1} which is homotopically nontrivial in N and
bounds a disk in {x ∈ Mt0 : H(x, t0) ≤ 40H1}; or the outer boundary ∂N (l)

\ N (l−1)

bounds a convex cap.

Proof. By Proposition 3.1, the point p0 lies at the center of an (α̂(t0), δ̂, ε0, L0)-neck
N (0)
⊂ Mt0 . The construction of the points p1, p2, . . . is by induction. Suppose that we

have constructed points p1, . . . , pk and necks N (1), . . . , N (k) with the following proper-
ties:

• For each i = 0, 1, . . . , k, the point pi lies at the center of an (α̂(t0), δ̂, ε0, L0)-neck
N (i)
⊂ Mt0 , and H(pi, t0) ≥ H1.

• For each i = 1, . . . , k − 1, the point pi+1 lies on the neck N (i), and
distg(t0)(pi+1, ∂N

(i)
\N (i−1)) ∈ [(L0 − 100)H(pi, t0)−1, (L0 − 50)H(pi, t0)−1

].

If H(pk, t0) ∈ [H1, 2H1], then we are done. Hence, for the remainder of the proof, we
will assume that H(pk, t0) ≥ 2H1. We break the discussion into several cases:

Case 1: Suppose that there exists a point p ∈ N (k) such that

distg(t0)(p, ∂N
(k)
\N (k−1)) ∈ [(L0 − 100)H(pk, t0)−1, (L0 − 50)H(pk, t0)−1

], (†)

and the parabolic neighborhood P̂(p, t0, L0 + 4, 2θ0) contains a point modified by
surgery. In this case, Proposition 2.16 implies that there exists a point q ∈ Mt0 and an
open set V ⊂ {x ∈ Mt0 : H(x, t0) ≤ 40H1} such that dg(t0)(p, q) ≤ (L0+4)H(p, t0)−1,
{x ∈ Mt0 : dg(t0)(q, x) ≤ 500H−1

1 } ⊂ V , and V is diffeomorphic to a disk.
By our choice of ε0 and L0, the mean curvature on N (k) varies at most by a factor of

1+L−1
0 . Hence, H(pk, t0) ≤ (1+L−1

0 )H(p, t0). Since the set {x ∈ Mt0 : dg(t0)(p, x) ≤

(L0 − 100)H(pk, t0)−1
} is contained in N (k), we conclude that

distg(t0)(q,N
(k)) ≤ (L0 + 4)H(p, t0)−1

− (L0 − 100)H(pk, t0)−1

≤ (L0 + 4)(1+ L−1
0 )H(pk, t0)

−1
− (L0 − 100)H(pk, t0)−1

≤ 200H(pk, t0)−1
≤ 100H−1

1 .

Consequently, there exists a closed curve which is contained in N (k)
∩ V and is homo-

topically nontrivial in N (k). Since V is diffeomorphic to a disk, this curve bounds a disk
in V , and we are done.

Case 2: We now assume that the parabolic neighborhood P̂(p, t0, L0+ 4, 2θ0) is free of
surgeries for all points p ∈ N (k) satisfying (†). There are two possibilities:
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Subcase 2.1: Suppose that there exists a point p ∈ N (k) satisfying (†) and λ1(p, t0) ≤

η0H(p, t0). By Version A of the Neck Detection Lemma, the point p lies at the center
of an (α̂(t0), δ̂, ε0, L0)-neck N . Moreover, since p ∈ N (k) and H(pk, t0) ≥ 2H1, we
have H(p, t0) ≥ H1. Hence, we can set p(k+1)

:= p and N (k+1)
:= N and continue the

process.

Subcase 2.2: Suppose that λ1(p, t0) > η0H(p, t0) for all points p ∈ N (k) satisfy-
ing (†). Let N =

⋃k
i=0N

(i), and let A be the set of all points x ∈ N satisfying
distg(t0)(p, ∂N

(k)
\N (k−1)) ≥ (L0−50)H(pk, t0)−1 and λ1(x, t0) ≤ η1H(x, t0). The as-

sumptions of Theorem 3.2 imply that the initial point p0 belongs to A, so A is nonempty.
Let us consider a point p∗ which has maximal intrinsic distance from p0 among all points
in A.

Subcase 2.2.1: Suppose that the parabolic neighborhood P̂(p∗, t0, 104, 2θ0) contains a
point modified by surgery. In this case, Proposition 2.16 implies that there exists a point
q ∈ Mt0 and an open set V ⊂ {x ∈ Mt0 : H(x, t0) ≤ 40H1} such that dg(t0)(p

∗, q) ≤

104H(p∗, t0)−1, {x ∈ Mt0 : dg(t0)(q, x) ≤ 500H−1
1 } ⊂ V , and V is diffeomorphic to a

disk. Since H(p∗, t0) ≥ H1/2, this implies

{x ∈Mt0 : dg(t0)(p
∗, x)≤ 100H(p∗, t0)−1

} ⊂ {x ∈Mt0 : dg(t0)(q, x)≤ 204H(p∗, t0)−1
}

⊂ {x ∈Mt0 : dg(t0)(q, x)≤ 500H−1
1 } ⊂ V.

Consequently, there exists a closed curve in N ∩ V which is homotopically nontrivial
in N . This curve bounds a disk which is contained in V . Hence, we can again terminate
the process.

Subcase 2.2.2: Suppose, finally, that the parabolic neighborhood P̂(p∗, t0, 104, 2θ0) is
free of surgeries. In this case, Version A of the Neck Detection Lemma implies that the
point p∗ lies at the center of an (α̂(t0), δ̂, ε1, 100)-neck N∗. Clearly, λ1 ≤ ε1H at each
point on N∗. Consequently, the set N∗ is disjoint from the set {p ∈ N (k)

: (†) holds}.
Furthermore, since p∗ has maximal distance from p0 among all points in A, we conclude
that λ1 ≥ η1H ≥ η1H1/2 on the part of N that lies between the neck N∗ and the set
{p ∈ N (k)

: (†) holds}. In particular, the part of N that lies between N∗ and the latter set
has diameter O(H−1

1 ).
Let u : Bσ (p∗)→ R be a local height function in ambient space such that |∇u| = 1 at

each point on Bσ (p∗) and ∇u agrees with the first eigenvector of the second fundamental
form at p∗. Here, σ is a positive constant which depends only on the ambient manifoldX.
As above, we consider the flow on Mt0 generated by the vector field ωT /|ωT |2, where
ω = ∇u and ωT denotes the projection of ω to the tangent space of Mt0 . It was shown
in the proof of Proposition 2.17 that d

dy
〈ν, ω〉 ≥ λ1 − |D̄ω| along each trajectory of this

ODE. In particular, if H1 is large enough, then the function 〈ν, ω〉 is increasing on the
part of N that lies between the neck N∗ and the set {p ∈ N (k)

: (†) holds}. From this,
we deduce that 〈ν, ω〉 ≥ −ε1 for all points p in the latter set. Moreover, λ1(p, t0) >

η0H(p, t0) for all such p. Putting these facts together (and using the fact that η0 ≥ 10ε1),
we conclude that 〈ν, ω〉 ≥ 4ε1 for all p ∈ N (k) satisfying distg(t0)(p, ∂N

(k)
\ N (k−1)) ∈

[(L0 − 100)H(pk, t0)−1, (L0 − 75)H(pk, t0)−1
].
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We claim that the boundary curve ∂N (k)
\ N (k−1) bounds a convex cap. To prove

this, we follow the argument of [15, pp. 215–216]. Choose a curve 00 ⊂ {p ∈ N
(k)
:

distg(t0)(p, ∂N
(k)
\N (k−1)) ∈ [(L0−100)H(pk, t0)−1, (L0−75)H(pk, t0)−1

]} contained
in a level set of u. For each point on 00, we continue to follow the integral curves of the
vector field ωT /|ωT |2. This gives a family of curves 0y ⊂ Mt0 , each of which is contained
in a level set of u. The curves 0y are well-defined for y ∈ [0, ymax). Moreover, there exists
a point p ∈ 00 such that ν(γ (y, p))→ ω as y → ymax.

Following the arguments in [15, p. 215], we can show that

〈ν, ω〉 < 1, λ1 ≥ η2H, H > 2H1/2, 〈ν, ω〉 > ε1 (?)

for all y ∈ [0, ymax). Indeed, the inequalities in (?) are clearly satisfied for y = 0. If one of
the inequalities in (?) fails for some y > 0, we consider the smallest value of y for which
that happens. The first inequality in (?) cannot fail first by definition of ymax. If the second
inequality in (?) is the first one to fail, then λ1 ≤ η2H . Since H ≥ 2H1/2, we may
apply Version B of the Neck Detection Lemma to conclude that we are ε1/10-close to a
Cartesian product, but this is ruled out by the fourth inequality in (?). If the third inequality
in (?) is the first one to fail, we obtain a contradiction with [7, Proposition 2.18]. Finally,
as long as (?) holds, we have d

dy
〈ν, ω〉 ≥ λ1−|D̄ω| ≥ η2H −|D̄ω| ≥ 2η2H1/2−|D̄ω|.

Note that η2 and2 have already been fixed at this stage. Hence, if we choose the curvature
thresholdH1 sufficiently large, then 〈ν, ω〉 is increasing along each trajectory of the ODE.
This implies that the fourth inequality in (?) cannot fail first. Thus, the inequalities in (?)
hold for all y ∈ [0, ymax). Consequently, the union of the curves 0y is a convex cap, and
we can terminate the process. This completes the construction of the sequence p1, p2, . . . .

If the sequence p1, p2, . . . terminates after finitely many steps, then the theorem is
proved. Otherwise, the necks N (1), N (2), . . . will eventually cover the entire surface. This
completes the proof of Theorem 3.2.

Having completed the proof of the Neck Continuation Theorem, we are now ready to
implement the surgery algorithm of Huisken and Sinestrari [15]. Starting from the given
initial surfaceM0, we run the mean curvature flow until the maximum of the mean curva-
ture reaches the thresholdH3 for the first time. Let us denote this time by T1. By Proposi-
tion 2.4, the inscribed radius and the outer radius are bounded from below by α(t)/H for
0 ≤ t ≤ T1. Moreover, it is easy to see that the surfaces Mt are outward-minimizing for
0 ≤ t ≤ T1. Therefore, Assumption 2.5 is satisfied for 0 ≤ t ≤ T1. Consequently, we may
apply the Neck Detection Lemma and the Neck Continuation Theorem for 0 ≤ t ≤ T1.
At time T1, we perform surgeries on suitably chosen (α̂(T1), δ̂, ε0, L0)-necks. This allows
us to remove all regions where the mean curvature is between H2 and H3. Immediately
after surgery, the maximum of the mean curvature drops to a level below H2. We then
run the flow again until the maximum of the mean curvature reaches H3 for the second
time. Let us denote this time by T2. We claim that, for 0 ≤ t ≤ T2, the flow satisfies
Assumption 2.5 with ε = ε0 and L = L0. Indeed, Theorem 2.3 implies that the inscribed
radius and the outer radius of the surface MT1+ are bounded from below by α(t)/H , and
this property continues to hold for all T1 < t ≤ T2 by Proposition 2.4. Furthermore, the
outward-minimizing property follows from work of Head [12, Lemma 5.2]. Therefore,
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Assumption 2.5 is satisfied for 0 ≤ t ≤ T2 with ε = ε0 and L = L0. Hence, we can again
apply the Neck Detection Lemma and the Neck Continuation Theorem for 0 ≤ t ≤ T2.
By performing surgery on suitably chosen (α̂(T2), δ̂, ε0, L0)-necks, we can push the max-
imum of the mean curvature below H2. We then restart the flow again. This process can
now be repeated until we reach time T or the solution becomes extinct.

4. Longtime behavior of the flow

In this final section, we prove Theorem 1.2. Let M̄t = ∂�̄t denote the level-set solution
of mean curvature flow with initial surface M0. If the level-set solution becomes extinct
in finite time, then the solution of mean curvature flow with surgery also becomes extinct
in finite time. Hence, it is enough to consider the case that the level-set flow does not
become extinct in finite time. We recall the following fundamental theorem due to Brian
White:

Theorem 4.1 (Brian White [21, Theorem 11.1]). Each connected component of �̄∞ =⋂
t≥0 �̄t is either an embedded stable minimal surface or a compact domain bounded by

one or more embedded stable minimal surfaces. Moreover, the level-set flow M̄t is smooth
for t sufficiently large. Finally, M̄t converges smoothly to �̄∞. Near a point p̄ ∈ �̄∞, the
convergence is locally one-sheeted if the connected component of �̄∞ containing p̄ has
nonempty interior; otherwise the convergence is locally two-sheeted.

Let us fix a positive real number T such that the level-set flow M̄t is smooth for t ∈
(T − 2,∞). By Theorem 1.1, there exists a solution of mean curvature flow with surgery
on the interval [0, T ]. Let M(j) be a sequence of mean curvature flows with surgery
starting from the initial surface M0 with curvature thresholds H (j)

1 → ∞. We assume
that the surgery parameters δ, δ̂, 3, ε, and L are independent of j and are chosen so
that the monotonicity formula in [6] holds. It follows from work of Lauer [16] that the
flows M(j) converge to the level-set flow M̄ in the Hausdorff sense. Using the outward-
minimizing property, we conclude that the flows M(j) converge to M̄ in the sense of
geometric measure theory for each t ∈ (T − 2, T ] (see also [12]). Since the flow M̄
is smooth for all t ∈ (T − 2, T ], the results in [6] imply that the flow M(j) is free of
surgeries for t ∈ (T − 1, T ] provided that j is sufficiently large. Moreover, as j → ∞,
the flows M(j) converge smoothly to M̄ for all t ∈ (T − 1, T ]. Furthermore, by Lauer’s
result, �̄T−τj ⊂ �

(j)
T ⊂ �̄

(j)
T for some sequence τj → 0.

For each j , we consider the unique maximal solution of the smooth mean curvature
flow with initial surfaceM(j)

T . Let us denote this solution by {M(j)
t : t ∈ [T , Tj )}. Clearly,

�̄t−τj ⊂ �
(j)
t ⊂ �̄

(j)
t for all t ∈ [T , Tj ). We next show that these flows are defined for

all time and have uniformly bounded curvature.

Proposition 4.2. We have

lim sup
j→∞

sup
t∈[T ,Tj )

sup
M
(j)
t

|A| <∞.

In particular, Tj = ∞ if j is sufficiently large.
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Proof. Suppose that the upper limit is infinite. Then there exists a sequence of points
pj ∈ M

(j)
tj

such that tj ∈ [T , Tj ) and |A(pj , tj )| → ∞. Clearly, tj →∞. After passing to
a subsequence, we may assume that the points pj converge to a point p̄ in ambient space.
Note that p̄ ∈ ∂�̄∞. We next consider a small geodesic ball B2σ (p̄) in ambient space.
After passing to a subsequence, we may assume that the points pj all lie in one connected
component of B2σ (p̄) \ �̄∞. Let us denote this connected component by U . Note that
U is close to a half-ball if σ > 0 is sufficiently small. It follows from Brian White’s
theorem that the flows M̄s+tj ∩ U , s ∈ [−1, 0], converge smoothly to ∂�̄∞ ∩ B2σ (p̄),

and the convergence is one-sheeted. Using the inclusion �̄s+tj−τj ⊂ �
(j)
s+tj
⊂ �̄

(j)
s+tj

together with the outward-minimizing property of the set �(j)s+tj , we conclude that the
flows M(j)

s+tj
∩ U , s ∈ [−1, 0], converge to ∂�̄∞ ∩ B2σ (p̄) in the sense of geometric

measure theory, and the limit has multiplicity 1. By Brakke’s local regularity theorem,
the flows M(j)

s+tj
∩ U ∩ Bσ (p̄), s ∈ [−1, 0], converge smoothly to ∂�̄∞ ∩ Bσ (p̄). This

contradicts the fact that |A(pj , tj )| → ∞.
Thus, we conclude that the upper limit in the statement is finite. This immediately

implies that Tj = ∞ if j is sufficiently large.
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