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Abstract. Let G be a connected reductive group over an algebraically closed field F of good char-
acteristic, satisfying some mild conditions. In this paper we relate tilting objects in the heart of
Bezrukavnikov’s exotic t-structure on the derived category of equivariant coherent sheaves on the
Springer resolution of G, and Iwahori-constructible F-parity sheaves on the affine Grassmannian of
the Langlands dual group. As applications we deduce in particular the missing piece for the proof
of the Mirković–Vilonen conjecture in full generality (i.e. for good characteristic), a modular ver-
sion of an equivalence of categories due to Arkhipov–Bezrukavnikov–Ginzburg, and an extension
of this equivalence.
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1. Introduction

1.1. Summary

Let F be an algebraically closed field, and let G be a connected reductive group over
F which is a product of simply connected quasi-simple groups and of general linear
groups. We assume that the characteristic p of F is very good for each quasi-simple
factor of G. Let also Ǧ be the complex Langlands dual group. The main result of this pa-
per is an equivalence of categories relating tilting objects in the heart of Bezrukavnikov’s
exotic t-structure on the derived category of G × Gm-equivariant coherent sheaves on
the Springer resolution Ñ of G, and Iwahori-constructible parity sheaves on the affine
Grassmannian Gr of Ǧ, with coefficients in F (in the sense of [JMW1]).

We provide several applications of this result; in particular

(1) a proof that spherical parity sheaves on Gr , with coefficients in a field of good char-
acteristic, are perverse, which provides the last missing step in the proof of the
Mirković–Vilonen conjecture [MV] on stalks of standard spherical perverse sheaves
on Gr in the expected generality;
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(2) a construction of an equivalence of categories relatingDb CohG×Gm(Ñ ) to the “mod-
ular mixed derived category” of Iwahori-constructible sheaves on Gr (in the sense
of [AR2]), which is a modular generalization of an equivalence due to Arkhipov–
Bezrukavnikov–Ginzburg [ABG];

(3) an “extension” of (2) to an equivalence relating Db CohG×Gm (̃g) (where g̃ is the
Grothendieck resolution of G) to the modular mixed derived category of Iwahori-
equivariant sheaves on Gr .

A weaker version of (1) was obtained earlier by Juteau–Mautner–Williamson [JMW2]
using a case-by-case argument. The application to the Mirković–Vilonen conjecture is
due to Achar–Rider [ARd1]. In the case p = 0, the equivalence in (2) plays an important
role in the representation theory of Lusztig’s quantum groups at a root of unity [ABG, Be,
BL]. We expect our equivalence to play a comparable role in the modular representation
theory of connected reductive groups.1 A similar result has been obtained independently
by Achar–Rider [ARd2], under the assumption that spherical parity sheaves are perverse.
Our methods are different from theirs; see §1.7 below for a detailed comparison.

1.2. Main result

To state our results more precisely, let us choose a Borel subgroup B ⊂ G, and a maximal
torus T ⊂ B. Let b be the Lie algebra of B. Then the Springer resolution Ñ is defined as

Ñ := {(ξ, gB) ∈ g∗ ×G/B | ξ|g·b = 0}.

This variety is endowed with a natural action of G×Gm, defined by

(g, x) · (ξ, hB) := (x−2g · ξ, ghB),

so that we can consider the derived category Db CohG×Gm(Ñ ) of G × Gm-equivariant
coherent sheaves on Ñ . This category possesses a remarkable t-structure, called the exotic
t-structure, defined by Bezrukavnikov [Be] in the case p = 0, and studied in our gener-
ality in [MR]. The heart EG×Gm(Ñ ) of this t-structure has a natural structure of a graded
highest weight category, with weights the lattice X = X∗(T) of characters of T, and “nor-
malized” standard, resp. costandard, objects denoted1λÑ , resp.∇λÑ . In particular, we will

be interested in the category Tilt(EG×Gm(Ñ )) of tilting objects in EG×Gm(Ñ ) (i.e. those
objects which possess both a standard filtration and a costandard filtration). This category
is Krull–Schmidt, and its indecomposable objects are parametrized in a natural way by
X× Z. For λ ∈ X, we denote by T λ the indecomposable object attached to (λ, 0). Then
for any n ∈ Z the object associated with (λ, n) is T λ

〈n〉, where 〈n〉 is the n-th power of
the functor 〈1〉 of tensoring with the tautological 1-dimensional Gm-module (see §5.2 for
details). For any T in Tilt(EG×Gm(Ñ )), λ ∈ X and m ∈ Z, we denote by (T : 1λÑ 〈m〉),
resp. (T : ∇λÑ 〈m〉), the multiplicity of the standard object 1λÑ 〈m〉, resp. the costandard
object ∇λÑ 〈m〉, in a standard (resp. costandard) filtration of T .

1 One year after this paper was written, this expectation was indeed confirmed in the article [AR3]
by P. Achar and the second author.



Exotic tilting sheaves and parity sheaves 2261

Let now Ǧ be a complex connected group, with a maximal torus Ť ⊂ Ǧ, and assume
that (Ǧ, Ť ) is Langlands dual to (G,T), in the sense that the root datum of (Ǧ, Ť ) is dual
to that of (G,T). In particular, we have an identification X = X∗(Ť ). We let B̌ ⊂ Ǧ

be the Borel subgroup containing Ť whose roots are the coroots of B (which we will
consider as the negative coroots). Let O := C[[z]] and K := C((z)). Then the affine
Grassmannian Gr of Ǧ is defined as

Gr := Ǧ(K )/Ǧ(O),

with its natural ind-variety structure. We denote by Ǐ the Iwahori subgroup of Ǧ(O)
determined by B̌, i.e. the inverse image of B̌ under the morphism Ǧ(O) → Ǧ defined
by the evaluation at z = 0. Then Ǐ acts naturally on Gr via left multiplication on Ǧ(K ),
and the orbits of this action are parametrized in a natural way by X; we denote by Grλ the
orbit associated with λ and by iλ : Grλ ↪→ Gr the inclusion. We let

Parity
(Ǐ )
(Gr,F)

be the category of parity complexes on Gr , with coefficients in F, with respect to the
stratification by Ǐ -orbits (in the sense of [JMW1]). This category is defined as an additive
subcategory of the derived category Db

(Ǐ )
(Gr,F) of Ǐ -constructible F-sheaves on Gr . It

is Krull–Schmidt, and its indecomposable objects are parametrized in a natural way by
X×Z. We denote by Eλ the indecomposable object attached to (λ, 0); then for any n ∈ Z
the object associated with (λ, n) is Eλ[n].

The main result of this paper (whose proof is given in §6.1) is the following.

Theorem 1.1. There exists an equivalence of additive categories

2 : Parity
(Ǐ )
(Gr,F) ∼−→ Tilt(EG×Gm(Ñ )) (1.1)

which satisfies the following properties:

(1) 2 ◦ [1] ∼= 〈−1〉 ◦2;
(2) for all m ∈ Z, λ ∈ X and E ∈ Parity

(Ǐ )
(Gr,F), we have

(2(E) : 1λÑ 〈m〉) = dimF
(
Hm−dim(Gr−λ)(Gr−λ, i

∗
−λE)

)
,

(2(E) : ∇λÑ 〈m〉) = dimF
(
Hm−dim(Gr−λ)(Gr−λ, i

!

−λE)
)
;

(3) 2(Eλ) ∼= T −λ for any λ ∈ X.

1.3. Outline of the proof

Our strategy of proof of Theorem 1.1 is based on the description of both sides in (1.1)
in terms of an appropriate category of “Soergel bimodules.”2 This idea is very classical;
see e.g. [S1, BY, Do] for examples in characteristic zero, and [S3, AR1] for examples in
positive characteristic.

2 Our “Soergel bimodules” are in fact not bimodules over any ring, but rather modules over a
certain algebra built out of two copies of a polynomial algebra. We use this terminology since these
objects play the role which is usually played by actual Soergel bimodules.
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On the “constructible side” (i.e. the left-hand side in (1.1)), this description is obtained
using the total cohomology functor. The arguments in this section follow well-established
techniques; see §1.8 below for a discussion of the only new idea that is needed.

On the “coherent side” (i.e. the right-hand side in (1.1)), we adapt a construction
due to Dodd [Do] in characteristic zero, which uses a “Kostant–Whittaker reduction”
functor. This construction uses modular (and integral) versions of some classical results
of Kostant, which are treated in the companion paper [R3]. Our constructions are slightly
different from Dodd’s, however, in that we do not use a deformation to (asymptotic) D-
modules, but only to coherent sheaves on the Grothendieck resolution

g̃ := {(ξ, gB) ∈ g∗ ×G/B | ξ|g·n = 0},

where n is the Lie algebra of the unipotent radical of B. (On the constructible side,
this deformation amounts to replacing the category Parity

(Ǐ )
(Gr,F) by the category

Parity
Ǐ
(Gr,F) of Ǐ -equivariant F-parity complexes on Gr .)

Our proof of fully-faithfulness of the Kostant–Whittaker reduction functor is also dif-
ferent from the proof in [Do]. One of the crucial ideas in our proof, which we learnt
from papers of Soergel [S1, S3] and which was also used in [AR1], is to determine Hom-
spaces between Soergel bimodules from the analogues for parity complexes. We use this
computation to prove the “coherent side”; see the proof of Theorem 5.14 for more details.

We also use some ideas from categorification, related to the fact that both categories
appearing in (1.1) provide categorifications of the spherical module Msph of the affine
Hecke algebra Haff attached to G (in the sense that their split Grothendieck groups are
equipped with natural actions of Haff, and are naturally isomorphic to Msph). On the
left-hand side this uses the realization of Haff in terms of constructible sheaves on the
affine flag variety of Ǧ, and on the right-hand side it uses the Kazhdan–Lusztig–Ginzburg
description of Haff in terms of equivariant coherent sheaves on the Steinberg variety of G,
a “categorical” counterpart of which is provided by the “geometric braid group action”
studied in [R1, BR2].

Note that, surprisingly, our proof does not use the geometric Satake equivalence
from [MV].

1.4. Equivalences of triangulated categories

One of our motivations for the study of the equivalence in Theorem 1.1 was the de-
sire to obtain a “modular version” of an equivalence of categories due to Arkhipov–
Bezrukavnikov–Ginzburg [ABG] in the case p = 0. Our version involves the “modular
mixed derived category”

Dmix
(Ǐ )
(Gr,F) := Kb Parity

(Ǐ )
(Gr,F),

introduced and studied (in a more general setting) in [AR2]. In particular, it can be en-
dowed with a “perverse t-structure” and a “Tate twist” autoequivalence 〈1〉, and possesses
“standard objects” 1mix

λ (λ ∈ X) and “costandard objects” ∇mix
λ (λ ∈ X) which have the

same properties as ordinary standard and costandard perverse sheaves. For λ ∈ X, we
denote by Emix

λ the object Eλ, considered as an object of Dmix
(Ǐ )
(Gr,F). In case F = Q`,
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the categoryDmix
(Ǐ )
(Gr,F) is equivalent to the bounded derived category of the category P̃

of [BGS, §4.4] (see [AR2, Remark 2.2]).
As an immediate application of Theorem 1.1 we obtain the following theorem, whose

proof is given in §6.2, and which provides a “modular analogue” of the equivalence
of [ABG, Theorem 9.4.1].

Theorem 1.2. There exists an equivalence of triangulated categories

8 : Dmix
(Ǐ )
(Gr,F) ∼−→ Db CohG×Gm(Ñ )

which satisfies

8 ◦ 〈1〉 ∼= 〈1〉[1] ◦8, 8(1mix
λ ) ∼= 1

−λ

Ñ , 8(∇mix
λ ) ∼= ∇

−λ

Ñ , 8(Emix
λ ) ∼= T −λ

for all λ ∈ X.

Remark 1.3. One should think of8 as some kind of “Ringel–Koszul duality,” i.e. a com-
position of a Koszul duality (as in [BGS, Theorem 2.12.6], which sends simple objects to
projective objects) and a Ringel duality (which sends projective objects to tilting objects).
The relevance of such equivalences in Lie-theoretic contexts was pointed out in [BG]; see
also [BY]. The idea that, in a modular context, simple perverse sheaves should be replaced
by parity sheaves in “Koszul-type” statements is implicit in [S3], and was developed more
explicitly in [RSW].

As explained in §1.3, our proof of Theorem 1.1 is based on the consideration of a “defor-
mation” of the picture, replacing Ǐ -constructible sheaves by Ǐ -equivariant sheaves, and
equivariant coherent sheaves on Ñ by equivariant coherent sheaves on g̃. Using these
considerations, we define objects 1λg̃ and ∇λg̃ in Db CohG×Gm (̃g) which satisfy

Li∗(1λg̃)
∼= 1

λ

Ñ , Li∗(∇λg̃)
∼= ∇

λ

Ñ

for all λ ∈ X, where i : Ñ ↪→ g̃ is the inclusion (see §5.3). We also define an additive and
Karoubian subcategory Tilt of Db CohG×Gm (̃g), stable under the shift 〈n〉 for any n ∈ Z,
and indecomposable objects T̃ λ in Tilt satisfying Li∗(T̃ λ) ∼= T λ and such that Tilt is
Krull–Schmidt with indecomposable objects T̃ λ

〈n〉 for λ ∈ X and n ∈ Z (see §6.3). On
the other hand, we consider the equivariant modular mixed derived category

Dmix
Ǐ
(Gr,F) := Kb Parity

Ǐ
(Gr,F),

and denote by 1mix
Ǐ ,λ

, resp. ∇mix
Ǐ ,λ

, the standard, resp. costandard, object associated with
λ ∈ X. For any λ ∈ X, the parity complex Eλ can be naturally “lifted” to the category
Parity

Ǐ
(Gr,F); we again denote by Emix

λ this object viewed as an object in Dmix
Ǐ
(Gr,F).

The following “deformation” of Theorem 1.2 is proved in §6.3. (In case p = 0, a
similar result can be deduced from the main result of [Do], though this equivalence is not
explicitly stated there.)
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Theorem 1.4. There exists an equivalence of triangulated categories

9 : Dmix
Ǐ
(Gr,F) ∼−→ Db CohG×Gm (̃g)

which satisfies

9 ◦ 〈1〉 ∼= 〈1〉[1] ◦9, 9(1mix
Ǐ ,λ
) ∼= 1

−λ
g̃ , 9(∇mix

Ǐ ,λ
) ∼= ∇

−λ
g̃ , 9(Emix

λ ) ∼= T̃ −λ

for all λ ∈ X.

In §6.4 we also prove that the equivalences 9 and 8 are compatible in the natural way.

1.5. Parity, tilting and the Mirković–Vilonen conjecture

Our other main motivation for the study of Theorem 1.1 comes from the Mirković–
Vilonen conjecture [MV, Conjecture 13.3]. In this subsection, we let G be more generally
any split connected reductive group scheme over an arbitrary commutative ring k. As be-
fore, we fix a (split) maximal torus T and let X denote the weight lattice. We again let Ǧ
and Ť ⊂ Ǧ denote the unique (up to isomorphism) complex connected reductive group
and maximal torus with Langlands dual root datum, and consider its affine Grassmannian
Gr := Ǧ(K )/Ǧ(O).

The geometric Satake equivalence, proven by Mirković–Vilonen [MV] for any k
which is Noetherian and of finite global dimension, is an equivalence of abelian cate-
gories

Sk : Perv
(Ǧ(O))(Gr, k)

∼
−→ Rep(G),

where Perv
(Ǧ(O))(Gr, k) is the category of Ǧ(O)-constructible k-perverse sheaves on Gr ,

and Rep(G) is the category of algebraic G-modules which are of finite type over k. (This
equivalence is compatible with the natural monoidal structures on these categories.)

After a choice of positive roots, the Ǧ(O)-orbits on Gr are parametrized in a natural
way by the set X+ ⊂ X of dominant weights; we denote by Grλ the orbit associated with
λ ∈ X+, and by iλ : Grλ ↪→ Gr the inclusion. For any λ ∈ X+, we consider the perverse
sheaf

I!(λ, k) := p(iλ)!kGrλ [dim(Grλ)].

By [MV, Proposition 13.1], this object corresponds, under Sk , to the Weyl G-module
associated with λ. Towards the end of their paper, Mirković–Vilonen state the following
conjecture.

Conjecture 1.5 (Mirković–Vilonen [MV]). The cohomology modules of the stalks of
I!(λ,Z) are free.

We understand this conjecture was based on evidence in typeA and was part of an attempt
to produce a “modular analogue” of results of Bezrukavnikov and collaborators (in par-
ticular, the equivalence of [ABG, Theorem 9.4.1]), like the one we prove as Theorem 1.2.

Using [MV, Proposition 8.1(a)–(b)], one can also state this conjecture equivalently as
the property that, for any field k, the dimensions

dimk
(
Hm(Grµ, i∗µI!(λ, k))

)
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are independent of k. Note that, by [MV, Lemma 7.1], if k has characteristic zero, we
have I!(λ,k) = IC(Grλ,k), and the graded dimensions of stalks of these objects can be
computed in terms of affine Kazhdan–Lusztig polynomials [KL] and vanish in either all
odd or all even degrees.

It was realized by Juteau [Ju] that Conjecture 1.5 does not hold as stated, namely
that the cohomology modules of the stalks of I!(λ,Z) can have p-torsion if p is a prime
number which is bad for Ǧ.

On the other hand, if I!(λ,Z) does not have p-torsion for any λ ∈ X+, then it follows
that for any field k of characteristic p, the tilting objects in Perv

(Ǧ(O))(Gr, k) are parity
complexes, or equivalently all the parity sheaves Eλ for λ ∈ −X+ (i.e. the parity sheaves
which are Ǧ(O)-constructible) are perverse. (The equivalence between these properties
follows from [JMW2, Proposition 3.3].)

The statement that the parity sheaves Eλ for λ ∈ −X+ with coefficients in a field k
of characteristic p are perverse, was proved using a case-by-case analysis by Juteau–
Mautner–Williamson [JMW2, Theorem 1.8] provided that p is bigger than explicit
bounds. The bounds in [JMW2] are a byproduct of the method of proof and are in gen-
eral stronger than the condition that p is good (most notably when G is quasi-simple of
type Cn, in which case the bound is p > n).

Achar–Rider [ARd1] then proved that if all the parity sheaves Eλ for λ ∈ −X+ with
coefficients in a field k of characteristic p are perverse, then the cohomology modules of
the stalks of the perverse sheaves I!(λ,Z) have no p-torsion.

In §6.5 we give a uniform proof of the following.

Corollary 1.6. If p is good for Ǧ, then for any λ ∈ −X+ the parity sheaf Eλ is perverse.

By the main result of [ARd1], this implies

Theorem 1.7 (Mirković–Vilonen conjecture). If p is good for Ǧ, then the cohomology
modules of the stalks of the perverse sheaves I!(λ,Z) have no p-torsion.

Our proof of Corollary 1.6 is based on the explicit description of the tilting objects T λ

for λ ∈ X+ obtained in [MR].

1.6. Other applications

Now, let us come back to our assumptions on G and p from §1.1. In this subsection we
state some other applications of Theorem 1.1. Most of these results are already known
(at least when p = 0), but their proof usually requires the geometric Satake equivalence
of §1.5. We find it useful to explain how these results can be derived directly using our
methods.

We denote by Parity
(Ǧ(O))(Gr,F) the subcategory of Parity

(Ǐ )
(Gr,F) consisting of

objects which are Ǧ(O)-constructible, i.e. direct sums of objects Eλ[i] where λ ∈ −X+
and i ∈ Z. We also denote by PParity

(Ǧ(O))(Gr,F) the subcategory of Parity
(Ǧ(O))(Gr,F)

consisting of objects which are perverse sheaves. By Corollary 1.6, this category consists
of objects which are direct sums of parity sheaves Eλ where λ ∈ −X+.
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To conform to the notation used most of the time in this context, for λ ∈ X+ we set
Eλ := Ew0λ (where w0 is the longest element in the Weyl group W of (G,T)), and (as
in §1.5) Grλ =

⊔
µ∈Wλ Grµ. We also denote by Lλ the unique Ť -fixed point in Grλ, and

by ıλ : {Lλ} ↪→ Gr the inclusion.
We denote by Tilt(G) the additive category of tilting G-modules, and by T(λ) the

indecomposable tilting G-module with highest weight λ (for λ ∈ X+). We also denote
by M(λ) and N(λ) the standard and costandard G-modules with highest weight λ respec-
tively (see [MR, §4.3]). We denote by (T(λ) : M(µ)) and (T(λ) : N(µ)) the correspond-
ing multiplicities.

From Theorem 1.1 one can deduce the following result (see §6.6).

Proposition 1.8. There exists an equivalence of additive categories

SF : PParity
(Ǧ(O))(Gr,F)

∼
−→ Tilt(G)

which satisfies SF(Eλ) ∼= T(λ) for all λ ∈ X+. Moreover, for λ,µ ∈ X+ we have∑
k∈Z

dim
(
Hk−dim(Grµ)(ı∗µEλ)

)
· vk =

∑
ν∈X+

(
T(λ) : N(−w0ν)

)
·M−w0µ

ν (v−2), (1.2)

where Mχ
η (v) is Lusztig’s q-analogue [L1].

In case p = 0, M(λ) and T(λ) both coincide with the simple G-module with highest
weight λ, so that

(
T(λ) : M(ν)

)
= δλ,ν . On the other hand, we have Eλ = IC(Grλ,F).

By [KL], the dimensions of the stalks of this perverse sheaf can be expressed in terms of
Kazhdan–Lusztig polynomials for the affine Weyl group Waff of G. Hence in this case,
(1.2) provides a geometric proof of the relation between affine Kazhdan–Lusztig poly-
nomials and Lusztig’s q-analogue, conjectured in [L1] and proved by different methods
in [Ka].

Once it is known that the parity sheaves Eλ are perverse, as remarked in [JMW2,
Proposition 3.3], it follows that SF(Eλ) ∼= T(λ) (where SF is the geometric Satake equiv-
alence, see §1.5). Hence one can obtain a different construction of an equivalence SF
by simply restricting SF. In this setting, a sketch of a different proof of (1.2) is given
in [JMW2, Remark 4.2].

One can also apply our results to describe the (equivariant) cohomology of spherical
parity sheaves and their costalks (see §6.7 for the proof).

Proposition 1.9. (1) For any λ ∈ X+, there exist isomorphisms of graded vector spaces,
resp. of graded H•

Ǐ
(pt;F)-modules,

H•(Gr, Eλ) ∼= T(λ), H•
Ǐ
(Gr, Eλ) ∼= T(λ)⊗H•

Ǐ
(pt;F),

where the grading on T(λ) is obtained from the Gm-action through the cocharacter
given by the sum of the positive coroots.
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(2) For any λ,µ ∈ X+, there exist isomorphisms of graded vector spaces, resp. of graded
H•
Ǐ
(pt;F)-modules,

H•−dim(Grµ)(ı!µEλ) ∼=
(
T(λ)⊗ 0(Ñ ,OÑ (−w0µ))

)G
,

H•−dim(Grµ)
Ǐ

(ı!µEλ) ∼=
(
T(λ)⊗ 0(̃g,Og̃(−w0µ))

)G
,

where in both cases T(λ) is in degree 0, the global sections are equipped with
the grading induced by the Gm-actions on Ñ and g̃, and the H•

Ǐ
(pt;F)-action on

(T(λ) ⊗ 0(̃g,Og̃(−w0µ)))
G is induced by the natural morphism g̃ → Lie(T) =

Spec(H•
Ǐ
(pt;F)).

The first isomorphism in (1) can be alternatively deduced from the fact that SF(Eλ)
∼= T(λ) (see the comments after Proposition 1.8). Then one can deduce the second iso-
morphism using [YZ, Lemma 2.2]. In case p = 0, the isomorphisms in (2) are proved
in [GR, Corollary 2.4.5 and Proposition 8.7.1].3

1.7. Comparison with [ARd2]

As already mentioned, Achar and Rider [ARd2] have obtained a different proof of The-
orem 1.2. Their methods are quite different from ours, and closer to the methods used
in [ABG]. In fact, while for us most of the work is required on the “coherent side,” in
their approach the most difficult constructions appear on the “topological side.” More-
over, the exotic t-structure does not play any role in the construction of their equivalence.4

Another important difference is that their arguments rely on the geometric Satake equiv-
alence, while ours do not.

The assumptions in [ARd2] are also different from ours: in fact they assume that the
field F is such that any spherical parity sheaf with coefficients in F on Gr is perverse.
Hence Corollary 1.6 allows to extend the validity of their results to all good characteristics.

1.8. A key lemma

An important role in our arguments is played by the following easy lemma (see [BY,
Lemma 3.3.3]).

Lemma 1.10. Let k be an integral domain, and let K be its field of fractions. Let A
and B be k-algebras, and let ϕ : A → B be an algebra morphism. If the morphism
K⊗k ϕ : K⊗k A→ K⊗k B is an isomorphism, then the “restriction of scalars” functor

Mod(B)→ Mod(A)

is fully faithful on modules which are k-free.

3 The conventions for the choice of positive roots and the normalization of line bundles are dif-
ferent in [GR], which explains the formal difference between the two formulas. A more important
difference is that in [GR] we construct an explicit and canonical isomorphism, while here we only
claim the existence of such an isomorphism.

4 The relation between their equivalence and the exotic t-structure is studied in [ARd2, Section 8],
but only after the equivalence is constructed.
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We learnt from [BY] how useful this observation can be. It also plays an important role
in [AR1]. In practice, this lemma can be used when we are interested in modules over
a k-algebra B which is “complicated” or not well understood, but for which we have a
“simplified model” A which is “isomorphic to B up to torsion”, i.e. such that we have a
k-algebra morphism A→ B inducing an isomorphism K⊗k A

∼
−→ K⊗k B.

For instance, on the “constructible side” of our proof of Theorem 1.1, working over F
directly we would have to consider the equivariant cohomology algebra H•

Ǐ
(Gr;F). Using

the results in [YZ] (which rely on the geometric Satake equivalence) one can obtain a
description of this algebra in terms of the distribution algebra of the universal centralizer
associated with G. This algebra is a rather complicated object; in particular it is not finitely
generated over F. On the other hand, if K is a field of characteristic zero, the algebra
H•
Ǐ
(Gr;K) has a nice description (in terms similar to the description of the cohomology of

a finite flag variety as a coinvariant algebra) which follows from [BF, Theorem 1].5 Hence,
instead of working over F, our main constructions are done with coefficients in a finite
localization R of Z. In this case, we do not have a very explicit description of the algebra
H•
Ǐ
(Gr;R). But the same construction as the one used by Bezrukavnikov–Finkelberg

in the case of K provides a “simplified model” for this algebra, which is isomorphic to
H•
Ǐ
(Gr;R) “up to R-torsion” (see §3.5). Since the modules over this algebra that we want

to consider are all R-free, using Lemma 1.10 we can replace the “complicated algebra”
H•
Ǐ
(Gr;R) by its “simplified model” without loosing any information.
Given this strategy, we also have to work over R on the “coherent side.” Most of the

complications appearing in this setting are treated in [BR2] and in [R3].

1.9. Contents

In Section 2 we prove some preliminary technical results, and introduce some objects
which will play an important role in the later sections. In Section 3 we describe the left-
hand side in (1.1) in terms of our Soergel bimodules. In Section 4 we define the Kostant–
Whittaker reduction functor, building on the main results of [R3]. In Section 5 we use this
functor to describe the right-hand side in (1.1) in terms of Soergel bimodules. Finally, in
Section 6 we prove the results stated in the introduction.

1.10. Some notation and conventions

All rings in this paper are tacitly assumed to be commutative and unital.
If A is an algebra, we denote by Mod(A) the category of left A-modules. If A is a

Z-graded algebra, we denote by Modgr(A) the category of Z-graded left A-modules. We
denote by 〈1〉 the shift of the grading defined by (M〈1〉)n = Mn−1. If M is a free graded
A-module of finite rank, we denote by grkA(M) ∈ Z[v, v−1

] its graded rank, with the
convention that grkA(A〈n〉) = vn.

5 This simpler description is related to the preceding one via the fact that, over a field of char-
acteristic zero, the distribution algebra of a smooth group scheme is isomorphic to the enveloping
algebra of its Lie algebra.
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IfX is a scheme, we denote by OX its structure sheaf, and by O(X) the global sections
of OX. If Y is a scheme and X is a Y -scheme, we denote by �X/Y , or simply �X, the
sheaf of relative differentials, and by �(X/Y), or simply �(X), its global sections.

If k is a ring and V is a free k-module of finite rank, by abuse we still denote by V the
affine k-scheme Spec(Sk(Homk(V , k))), where S denotes the symmetric algebra.

If R is a finite localization of Z, we define a geometric point of R to be an alge-
braically closed field whose characteristic p ≥ 0 is not invertible in R. If F is a such
a geometric point, then there exists a unique algebra morphism R → F, so that tensor
products of the form F⊗R (−) make sense.

IfX is a Noetherian scheme and A is an affineX-group scheme, we denote by Rep(A)
the category of representations of A which are coherent as OX-modules. If A is flat
over X, then this category is abelian.

At various points in the paper we consider certain schemes and affine group schemes
that could be defined over various base rings. When it is not clear from context, we will
use a subscript to specify the base ring. For example, we write XZ, resp. XF, to denote
the Z-scheme X, resp. its base change to F. In order to avoid notational clutter, we will
affix a single subscript k to some constructions like fiber products, for example writing
(X ×Z Y )k and O(X ×Z Y )k rather than Xk ×Zk Yk and O(Xk ×Zk Yk), or categories of
equivariant coherent sheaves, writing CohG(X)k instead of CohGk (Xk). We will also use
the abbreviation DG(X)k := Db CohGk (Xk).

2. Preliminary results

2.1. Reminder on parity sheaves

Let X be a complex algebraic variety, and

X =
⊔
s∈S

Xs

be a finite (algebraic) stratification of X into affine spaces. For any s ∈ S , we denote
by is : Xs ↪→ X the embedding. If k is a Noetherian ring of finite global dimension, we
denote byDb

S (X, k) the S -constructible derived category of sheaves of k-modules onX.
Note that any k-local system on any stratum Xs is constant. If k′ is a k-algebra which is
also Noetherian and of finite global dimension, we will denote by

k′(−) : Db
S (X, k)→ Db

S (X, k
′)

the derived functor of extension of scalars.
The following is a slight generalization of [JMW1, Definition 2.4] (where it is as-

sumed that k is a complete local principal ideal domain).

Definition 2.1. An object F in Db
S (X, k) is called ∗-even, resp. !-even, if Hn(i∗sF),

resp. Hn(i!sF), vanishes if n is odd, and is a local system of projective k-modules if n is
even. It is called even if it is both ∗-even and !-even.
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An object F is called ∗-odd, resp. !-odd, resp. odd if F[1] is ∗-even, resp. !-even,
resp. even.

Finally, an object is called a parity complex if it is isomorphic to the direct sum of an
even and an odd object.

We will denote by ParityS (X, k) the full subcategory of Db
S (X, k) consisting of

parity complexes; it is stable under direct sums and direct summands. It is also clear that
if k′ is a k-algebra satisfying the assumptions above, then the functor k′(−) restricts to a
functor from ParityS (X, k) to ParityS (X, k

′) (which we denote similarly).6

We now assume that a connected complex algebraic group A acts on X, stabilizing
each stratum Xs . We will assume that HnA(pt; k) vanishes if n is odd, and is projective
over k otherwise. One can consider the S -constructible A-equivariant derived category
Db
A,S (X, k) in the sense of Bernstein–Lunts. We let For : Db

A,S (X, k)→ Db
S (X, k) be

the forgetful functor. More generally, if A′ ⊂ A is a closed subgroup satisfying the same
assumption as A, we have a forgetful functor For : Db

A,S (X, k)→ Db
A′,S (X, k). We say

that an object F in Db
A,S (X, k) is a parity complex if For(F) is a parity complex in the

sense of Definition 2.1. We denote by ParityA,S (X, k) the subcategory of Db
A,S (X, k)

consisting of parity complexes. For k′ a k-algebra satisfying the assumptions above, we
also have an “extension of scalars” functor k′(−) in this setting. If S is the stratification
by A-orbits, we will omit it from the notation.

We refer to [JMW1] for the main properties of parity complexes, in the case k is
a complete local principal ideal domain. Here we will only need the properties below,
which follow from [JMW1, Proposition 2.6]. (Note that the proof in loc. cit. does not use
the running assumptions on the ring of coefficients.)

Lemma 2.2. (1) If F is in ParityA,S (X, k), then H•A(X,F) is a finitely generated pro-
jective module over H•A(pt; k). If A′ ⊂ A is a closed subgroup as above, then the
natural morphism

H•A′(pt; k)⊗H•A(pt;k) H•A(X,F)→ H•A′(X,For(F))

is an isomorphism. If k′ is a k-algebra as above, then the natural morphism

k′ ⊗k H•A(X,F)→ H•A(X, k
′(F))

is also an isomorphism.

6 This remark uses the property that the functor k′(−) commutes with i!s and i∗s . For i∗s , this
follows from [KS, Proposition 2.6.5]. For i!s , we observe that [KS, Proposition 3.1.11] provides a
morphism of functors k′(−) ◦ i!s → i!s ◦ k

′(−). To prove that this morphism is an isomorphism on
Db

S (X, k), it suffices to remark that Db
S (X, k) is generated (as a triangulated category) by objects

of the form (it )∗(MXt
) where t ∈ S and M is a finitely generated flat k-module, and that our

morphism is clearly an isomorphism on such objects.
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(2) If F , G are in ParityA,S (X, k), then Hom•
Db
A,S (X,k)

(F ,G) is a finitely generated

projective H•A(pt; k)-module. If A′ ⊂ A is a closed subgroup as above, then the
natural morphism

H•A′(pt; k)⊗H•A(pt;k) Hom•
Db
A,S (X,k)

(F ,G)

→ Hom•
Db
A′,S

(X,k)
(For(F),For(G))

is an isomorphism. If k′ is a k-algebra as above, then the natural morphism

k′ ⊗k Hom•
Db
A,S (X,k)

(F ,G)→ Hom•
Db
A,S (X,k′)

(k′(F), k′(G))

is also an isomorphism. ut

Remark 2.3. In [JMW1], the ring k is assumed to be a principal ideal domain, so every
finitely generated projective k-module is free.

We will also use the following observation.

Lemma 2.4. Assume that k is complete local. If F is an object of ParityA,S (X, k) which
is indecomposable, then its image For(F) in ParityS (X, k) is also indecomposable.

Proof. Under our assumptions on k, ParityA,S (X, k) and ParityS (X, k) are Krull–
Schmidt categories (see [JMW1, Remark 2.1]). Hence to prove the indecomposability
of For(F) it suffices to prove that EndDb

S (X,k)(For(F)) is a local ring. By Lemma 2.2
the ring Hom•

Db
S (X,k)

(For(F),For(F)) is a quotient of Hom•
Db
A,S (X,k)

(F ,F). Hence

EndDb
S (X,k)(For(F)) is a quotient of EndDb

A,S (X,k)(F). Since the latter is local, so is
the former, which finishes the proof. ut

Assume now that k is an integral domain. Recall that, in this setting, the rank of a
projective k-module M , denoted rkk(M), is the dimension of the Frac(k)-vector space
Frac(k) ⊗k M . To X one can associate the free Z[v, v−1

]-module MX with basis (es :
s ∈ S ) indexed by S , and to any F in ParityA,S (X, k) the elements

ch∗X(F) =
∑
s∈S
j∈Z

rkk
(
Hj−dim(Xs )(Xs, i

∗
sF)

)
· vj · es,

ch!X(F) =
∑
s∈S
j∈Z

rkk
(
Hj−dim(Xs )(Xs, i

!
sF)

)
· v−j · es .

We also define a bilinear form 〈−,−〉 on MX, with values in Z[v, v−1
], by setting

〈vnes, vmet 〉 = v−n−mδs,t .

The following result is also an easy application of [JMW1, Proposition 2.6], whose proof
is left to the reader.
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Lemma 2.5. Assume that k is an integral domain.

(1) If F is in ParityA,S (X, k), then its Grothendieck–Verdier dual DX(F) is also in
ParityA,S (X, k), and moreover

ch!X(DX(F)) = ch∗X(F).

(2) If F , G are in ParityA,S (X, k), then

grkH•A(pt;k)
(
Hom•

Db
A,S (X,k)

(F ,G)
)
= 〈ch∗X(F), ch!X(G)〉. ut

Remark 2.6. We will also use the straightforward generalization of the notions and re-
sults of this subsection to the case of ind-varieties, in the setting of [JMW1, §2.7].

2.2. Equivariant coherent sheaves

Let X be a Noetherian scheme, and let H be an affine group scheme over X. Consider a
separated Noetherian X-scheme Y endowed with an action of H, i.e. we are given a mor-
phism a : H×X Y → Y of X-schemes which satisfies the natural compatibility property
with the group structure on H. Let also p : H×X Y → Y be the projection. Then one can
define the category CohH(Y ) of H-equivariant coherent sheaves on Y as the category of
pairs (F , φ) where F is a coherent sheaf on Y and φ : p∗(F) ∼−→ a∗(F) is an isomor-
phism which satisfies the usual cocyle condition. If H is flat over X, then this category is
abelian.

We define the “universal stabilizer” as the fiber product

S := Y ×Y×XY (H×X Y ) (2.1)

where the morphism Y → Y ×X Y is the diagonal embedding (which we will denote
by1), and the morphism H×X Y → Y ×X Y is a×p. Then S is an affine group scheme
over Y , and the natural morphism S → H ×X Y is a closed embedding of Y -group
schemes.

The goal of this subsection is to recall the construction of a faithful functor

CohH(Y )→ Rep(S) (2.2)

whose composition with the forgetful functor Rep(S)→ Coh(Y ) coincides with the nat-
ural forgetful functor ForH

Y : CohH(Y )→ Coh(Y ).
We begin with a remark. LetX′ be a NoetherianX-scheme. Then one can consider the

X′-group scheme H′ := H×XX′, which acts naturally on Y ′ := Y ×XX′. If f : Y ′→ Y

is the natural morphism, then we remark that the usual pullback functor f ∗ : Coh(Y )→
Coh(Y ′) induces a functor from CohH(Y ) to CohH′(Y ′), which we also denote f ∗. In
particular, using this construction for the morphism Y → X, we obtain a functor

p∗1 : CohH(Y )→ CohH×XY (Y ×X Y ),

where Y ×X Y is considered as a Y -scheme through the second projection.
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Using this functor we can define (2.2) as the composition

CohH(Y )
p∗1
−→ CohH×XY (Y ×X Y )→ CohS(Y ×X Y )

1∗

−→ CohS(Y ) = Rep(S),

where the second arrow is the restriction functor, and S acts trivially on Y . (Note that 1
is an S-equivariant morphism of Y -schemes.)

More generally, if Z ⊂ Y is a (not necessarily H-stable) closed subscheme, one can
consider the restriction SZ := Z ×Y S, and the composition

CohH(Y )→ Rep(SZ)

of (2.2) with restriction to Z. The composition of this functor with the forgetful functor

Rep(SZ) → Coh(Z) is the composition CohH(Y )
ForH

Y
−−→ Coh(Y ) → Coh(Z), where the

second functor is restriction.

2.3. Deformation to the normal cone

Let A be a ring, and let I ⊂ A be an ideal. We define the associated deformation to the
normal cone7 DNCI (A) as the subalgebra of A[~±1

] generated by A[~] together with the
elements of the form ~−1f for f ∈ I .

Lemma 2.7. Let A′ be a ring, and let A → A′ be a flat ring morphism. Denote by I ′

the ideal of A′ generated by the image of I . Then there exists a canonical isomorphism of
k-algebras

A′ ⊗A DNCI (A)
∼
−→ DNCI ′(A′).

Proof. The natural morphism

A′ ⊗A DNCI (A)→ A′ ⊗A (A[~±1
]) = A′[~±1

]

is injective. The image of this morphism is clearly DNCI ′(A′), which provides the desired
isomorphism. ut

2.4. Two lemmas on graded modules over polynomial rings

Let k be a ring, and let V be a free k-module of finite rank. We denote byA the symmetric
algebra of V over k, which we consider as a Z-graded k-algebra with the generators
V ⊂ A in degree 2. We consider the trivial A-module k as a graded module concentrated
in degree 0.

7 Our terminology comes from geometry: if X is the spectrum of A and Y ⊂ X the closed
subscheme associated with I , then the spectrum of DNCI (A) is (a slight variant of) the usual
deformation to the normal cone of X along Y considered e.g. in [Fu, Chap. 5].
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Lemma 2.8. (1) Let M be a graded A-module which is bounded below for the internal
grading, and assume that

k ⊗A M is graded free over k and TorA1 (k,M) = 0.

Then M is graded free over A.
(2) Let M be an object of the bounded derived category of graded A-modules, and as-

sume that the cohomology modules ofM are all bounded below for the internal grad-
ing. Assume that the complex k ⊗LA M is concentrated in degree 0, and graded free
over k. Then M is concentrated in degree 0, and graded free over A.

Proof. (1) Let M ′ be a free graded A-module and let f : M ′ → M be a morphism such
that the induced morphism k ⊗A M

′
→ k ⊗A M is an isomorphism. (Such an M ′ exists

by our first assumption.) By the graded Nakayama lemma, f is surjective. Let M ′′ be its
kernel, and consider the exact sequence

TorA1 (k,M)→ k ⊗A M
′′
→ k ⊗A M

′
→ k ⊗A M → 0.

This exact sequence shows, by our second assumption, that k⊗AM ′′ = 0. By the graded
Nakayama lemma again, we deduce that M ′′ = 0, which finishes the proof.

(2) An easy argument using the graded Nakayama lemma shows that M is concen-
trated in non-positive degrees. Now, consider the truncation triangle

τ<0M → M → H0(M)
+1
−→ .

Applying the functor k ⊗LA (−) we obtain a distinguished triangle

k
L
⊗A τ<0M → k

L
⊗A M → k

L
⊗A H0(M)

+1
−→ .

The associated long exact sequence of cohomology implies that TorA1 (k,H
0(M)) = 0,

hence H0(M) is free by (1). Considering again the long exact sequence we obtain
k ⊗LA τ<0M = 0, hence τ<0M = 0 by the graded Nakayama lemma, which finishes
the proof. ut

Now we assume that we are given an open k-subscheme V ′ ⊂ V . Then, for any alge-
braically closed field F and any ring morphism k→ F, we set

VF := Spec(F)×Spec(k) V, V ′F := Spec(F)×Spec(k) V
′.

Lemma 2.9. Let M , N be free graded A-modules of finite rank, and let ϕ : M → N be
a morphism of graded A-modules. Assume that grkA(M) = grkA(N), and the morphism

ϕ′F : O(V
′

F)⊗A M → O(V ′F)⊗A N

induced by ϕ is injective for any algebraically closed field F and any ring morphism
k→ F. Then ϕ is an isomorphism.
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Proof. Let ϕF : F ⊗k M → F ⊗k N be the morphism induced by ϕ. Then, considering
the commutative diagram

F⊗k M

��

ϕF // F⊗k N

��
O(V ′F)⊗A M

ϕ′F // O(V ′F)⊗A N

(where the vertical arrows are injective since the morphism V ′F → VF is an open embed-
ding) we see that ϕF is injective, hence an isomorphism under our assumption on graded
ranks. Now if i ∈ Z, the k-modules Mi and Ni are free of (the same) finite rank, and the
determinant of the restriction ϕi : Mi → Ni of ϕ (in any fixed choice of bases) does not
belong to any prime ideal of k. Hence this determinant is invertible, proving that ϕ is an
isomorphism. ut

2.5. Affine braid groups and associated Hecke algebras

Let (X,8, X̌, 8̌) be a root datum, and let 8+ ⊂ 8 be a system of positive roots. We
will assume that X̌/Z8̌ has no torsion (or in other words the connected reductive groups
with root datum (X,8, X̌, 8̌) have a simply connected derived subgroup). For α ∈ 8, we
denote by α∨ the corresponding coroot, and by sα the associated reflection.

Let W be the corresponding Weyl group, and Waff := W n X be the associated affine
Weyl group. To avoid confusion, for λ ∈ X we denote by tλ the corresponding element of
Waff. We let Z8 ⊂ X be the root lattice; then the subgroup WCox

aff := W n (Z8) ⊂ Waff
is a Coxeter group with generators given by reflections along walls of the fundamental
dominant alcove. (In other words, we use the same conventions as in [L2, §1.4].) The
simple reflections which belong to W will be called finite; the ones which do not belong
to W will be called affine.

Let us consider the length function ` : Waff → Z≥0 defined as follows: for w ∈ W
and λ ∈ X we set

`(w · tλ) =
∑

α∈8+∩w−1(8+)

|〈λ, α∨〉|

+

∑
α∈8+∩w−1(−8+)

|1+ 〈λ, α∨〉|. (2.3)

Then the restriction of ` toWCox
aff is the length function associated with the Coxeter struc-

ture considered above. We denote by � the subgroup of Waff consisting of elements of
length 0; it is a commutative group isomorphic to X/Z8 via the composition of natural
maps � ↪→ W n X� X� X/Z8. Moreover, any element of Waff can be written in the
form ωv for unique ω ∈ � and v ∈ WCox

aff . (For all this, see [L2, §1.5].)
We will also consider the braid group Baff associated with Waff. It is defined as

the group generated by elements Tw for w ∈ Waff, with relations Tvw = TvTw for
all v,w ∈ Waff such that `(vw) = `(v) + `(w). There exists a canonical surjection
Baff � Waff sending Tw to w. One can define (following Bernstein and Lusztig), for each
λ ∈ X, an element θλ ∈ Baff; see e.g. [R1, §1.1] for details. (This element is denoted T λ
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in [L2, §2.6].) Then Baff admits a second useful presentation (usually called the Bernstein
presentation), with generators {Tw, w ∈ W } and {θλ, λ ∈ X}, and the following relations
(where v,w ∈ W , λ,µ ∈ X, and α runs over simple roots):

1. TvTw = Tvw if `(vw) = `(v)+ `(w);
2. θλθµ = θλ+µ;
3. Tsαθλ = θλTsα if 〈λ, α∨〉 = 0;
4. θλ = Tsαθλ−αTsα if 〈λ, α∨〉 = 1.

(See [BR1] for a proof of this fact in the case X/Z8 is finite; the general case is similar.)
The following lemma is proved in [R2, Lemma 6.1.2].

Lemma 2.10. For any affine simple reflection s0, there exist a finite simple reflection t
and an element b ∈ Baff such that Ts0 = b · Tt · b

−1. ut

We define the affine Hecke algebra Haff as the quotient of the group algebra of Baff over
Z[v, v−1

] by the relations
(Ts + v−1)(Ts − v) = 0

for all finite simple reflections s. (Note that the same formula for affine simple roots au-
tomatically follows by Lemma 2.10.) We denote by HW the subalgebra of Haff generated
by Z[v, v−1

] and the elements Tw for w ∈ W , and by Mtriv the HW -module which is free
of rank one over Z[v, v−1

], and where Ts acts by multiplication by v for each finite simple
reflection s.

We define the “spherical” right Haff-module

Msph :=Mtriv ⊗HW Haff.

We denote by m0 ∈ Msph the element 1 ⊗ 1. For λ ∈ X, we denote by wλ the shortest
representative in Wtλ ⊂ Waff, and set mλ := m0 · Twλ . Then the elements mλ, λ ∈ X,
form a Z[v, v−1

]-basis of Msph. We define a bilinear form 〈−,−〉 on Msph, with values in
Z[v, v−1

], by setting
〈vimλ, v

jmµ〉 = v−j−iδλ,µ.

For any sequence s = (s1, . . . , sr) of simple reflections and any ω ∈ � we will
consider the element

m(ω, s) := m0 · Tω · (Ts1 + v−1) · · · (Tsr + v−1) ∈Msph.

Remark 2.11. Our element Ts ∈ Haff corresponds to the element denoted Hs in [S2],
while our v corresponds to v−1 in [S2].

3. Constructible side

3.1. Overview

In this section we describe the category Parity
(Ǐ )
(Gr,F) in terms of an appropriate cat-

egory of Soergel bimodules using a “total cohomology” functor. Similar constructions
appear in [S1, S3, AR1] for flag varieties of reductive groups, and in [BY] for flag vari-
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eties of Kac–Moody groups (with coefficients in characteristic zero). The main difference
from these works is that in our case the cohomology algebra is much more complicated.
To overcome this difficulty we work over a certain ring R of integers, which allows us to
replace this cohomology algebra by a “simplified model”—see §1.8 for a discussion of
this idea.

After setting the notation in §3.2, we introduce our “Soergel bimodules” in §§3.3–
3.4. In §3.5 we study the equivariant cohomology of Gr . In §3.6 we explain how the
category Parity

(Ǐ )
(Gr,F) can be recovered from a certain category of (equivariant) “Bott–

Samelson parity sheaves” over R. Then in §3.7 we introduce our “total cohomology func-
tor,” and in §§3.8–3.9 we prove that this functor induces an equivalence between “Bott–
Samelson” parity sheaves and Soergel bimodules. Finally, in §3.10 we derive a formula
for the graded rank of the space of morphisms between certain Soergel bimodules, which
will play an important role in a proof on the “coherent side” (see §5.8).

3.2. Notation

In this section we let Ǧ be a connected reductive algebraic group over C, with a chosen
Borel subgroup B̌ ⊂ Ǧ and maximal torus Ť ⊂ B̌. We let X̌ := X∗(Ť ) be the lattice of
characters of Ť , and 8̌ ⊂ X̌ be the roots of Ǧ. We also fix a finite localization R of Z. In
the whole section we will make the following assumptions:

1. X̌/Z8̌ has no torsion (or in other words the connected reductive groups which are
Langlands dual to Ǧ have a simply connected derived subgroup);

2. all the torsion primes of the “refined root system” 8̌ ⊂ X̌ (in the sense of [De, Sec-
tion 5]) are invertible in R.

In the later sections we will apply our results in the case where Ǧ is a product of simple
groups (of adjoint type) and general linear groups; in this case the first condition is auto-
matic, and the second condition means that the prime numbers which are not very good
for some simple factor of Ǧ are invertible in R.

Let O := C[[z]] and K := C((z)). We consider the affine Grassmannian

Gr := Ǧ(K )/Ǧ(O),

with its natural ind-variety structure. We denote by Ǐ the Iwahori subgroup of Ǧ(O)
determined by B̌, i.e. the inverse image of B̌ under the morphism Ǧ(O) → Ǧ defined
by the evaluation at z = 0. Then Ǐ acts naturally on Gr via left multiplication on Ǧ(K ).
We also let the multiplicative group Gm act on Gr by loop rotation (i.e. via x · g(z) =
g(x−1z)), so that we obtain an action of the semidirect product Ǐ oGm.

The main players of this section are the categories

Parity
ǏoGm

(Gr,R), Parity
Ǐ
(Gr,R) and Parity

(Ǐ )
(Gr,R).

Here we use the notation Parity
(Ǐ )
(Gr,R) for the category ParityS (Gr,R) where S is

the stratification of Gr by orbits of Ǐ . If F is a field (not necessarily algebraically closed)
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whose characteristic is invertible in R, we can consider the unique algebra morphism
R→ F, and the categories

Parity
ǏoGm

(Gr,F), Parity
Ǐ
(Gr,F) and Parity

(Ǐ )
(Gr,F). (3.1)

We let X := X∗(Ť ) be the lattice of cocharacters of Ť , and 8 ⊂ X be the coroots
of Ǧ (with respect to Ť ). The choice of B̌ determines a system of positive roots: more
precisely we denote by 8̌+ ⊂ 8̌ the roots which are opposite to the Ť -weights in the
Lie algebra of B̌. We denote by 8+ ⊂ 8 the corresponding system of positive coroots.
To these data one can associate the affine Weyl group Waff and its length function ` as
in §2.5.

Recall that the Ǐ -orbits on Gr are parametrized in a natural way by Waff/W ∼= X, and
that each Ǐ -orbit is stable under the action of Ǐ oGm. More precisely, any λ ∈ X defines
a point zλ ∈ Ť (K ) ⊂ Ǧ(K ). We set Lλ := zλǦ(O)/Ǧ(O) ∈ Gr and Grλ := Ǐ · Lλ.
Then

Gr =
⊔
λ∈X

Grλ.

Moreover, the dimension of Grλ is the length of the shortest representative in tλW ⊂ Waff,
i.e. `(w−λ). For any w ∈ tλW we also set Grw := Grλ.

Let F be as above, and consider the categories in (3.1). By [JMW1] these categories
are all Krull–Schmidt, and their indecomposable objects can be described as follows.
For any λ ∈ X there exists a unique indecomposable object Eλ in Parity

ǏoGm
(Gr,F)

which is supported on Grλ and whose restriction to Grλ is FGrλ
[dim(Grλ)]. Moreover

any indecomposable object in Parity
ǏoGm

(Gr,F) is isomorphic to Eλ[n] for some unique
λ ∈ X and n ∈ Z. By Lemma 2.4, the images of Eλ under the appropriate forgetful
functors to Parity

Ǐ
(Gr,F) and Parity

(Ǐ )
(Gr,F) remain indecomposable; for simplicity

these images will still be denoted by Eλ. The same description of indecomposable objects
as above applies in the categories Parity

Ǐ
(Gr,F) and Parity

(Ǐ )
(Gr,F).

The connected components of Gr are parametrized by �; for ω ∈ � we denote
by Gr(ω) the corresponding component. (In fact, if we identify � with X/Z8 as in §2.5,
then Gr(ω) is the union of the orbits Grλ where λ has image ω in X/Z8.)

Below we will also use the affine flag variety

Fl := Ǧ(K )/Ǐ ,

with its natural ind-variety structure, and the natural Ǐ -action. The Ǐ -orbits on Fl are
parametrized in a natural way by Waff, and are stable under the loop rotation action. If
Flw is the orbit associated with w ∈ Waff, then we have dim(Flw) = `(w), and the image
of Flw under the natural projection Fl � Gr is Grw. For each simple reflection s, the
orbit Fls is isomorphic to A1

C, and its closure Fls is isomorphic to P1
C.

We define
t := X̌⊗Z R, t∗ := HomR(tR,R) = X⊗Z R.

(In fact, t is the Lie algebra of the split R-torus which is Langlands dual to Ť .) Then there
exists a canonical isomorphism of graded R-algebras

O(t∗) = S(t)
∼
−→ H•

Ť
(pt;R), (3.2)
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where t is in degree 2, and S(t) is the symmetric algebra of t. Using [To, Theorem 1.3(2)],
we deduce, under our assumptions on R,8 a canonical isomorphism

O(t∗/W) ∼−→ H•
Ǧ
(pt;R). (3.3)

We will also identify H•Gm
(pt;R) with R[~] (where ~ is an indeterminate, in degree 2) in

the natural way.

Lemma 3.1. The R-scheme t∗/W is isomorphic to an affine space. Moreover, O(t∗) is
free over O(t∗/W).

Proof. The claims follow from [De, Théorèmes 2(c) & 3] and our assumption on R, since
O(t∗/W) = SZ(X̌)W ⊗Z R. ut

Remark 3.2. The main result of this section will be proved in the Ǐ -equivariant setting;
the Ǐ oGm-equivariant setting will be used only for technical purposes. However, similar
results hold in the ǏoGm-equivariant case. On the “coherent side”, replacing Ǐ by ǏoGm
amounts to deforming coherent sheaves on g̃ to asymptotic D-modules on B; see [Do]
for details in the characteristic zero case.

3.3. Some algebras

Let 1 ⊂ t∗/W × t∗/W be the diagonal copy of t∗/W , and I1 ⊂ O(t∗/W × t∗/W)
the associated ideal (i.e. the ideal generated by elements of the form f ⊗ 1 − 1 ⊗ f for
f ∈ O(t∗/W)). We also denote by I2 ⊂ O(t∗/W × t∗), resp. I3 ⊂ O(t∗ × t∗), the
ideal generated by the image of I1 under the ring morphism associated with the quotient
morphism t∗/W × t∗→ t∗/W × t∗/W , resp. t∗ × t∗→ t∗/W × t∗/W .

We will consider the Z-graded algebras9

C~ := DNCI2(O(t
∗/W × t∗)), C̃~ := DNCI3(O(t

∗
× t∗)),

C := C~/~ · C~, C̃ := C̃~/~ · C̃~.

Here the grading is induced by the grading on O(t∗) and R[~] from §3.2. We also set
C′~ := DNCI1(O(t∗/W × t∗/W)).

By Lemmas 2.7 and 3.1, we have canonical isomorphisms

C~ ∼= O(t∗/W × t∗)⊗O(t∗/W×t∗/W) C
′

~, C̃~ ∼= O(t∗ × t∗)⊗O(t∗/W×t∗) C~. (3.4)

Lemma 3.3. (1) The two natural ring morphisms O(t∗/W)[~] → C′~ are flat.
(2) The natural ring morphisms O(t∗/W)[~] → C~ and O(t∗)[~] → C~ are flat.
(3) The two natural ring morphisms O(t∗)[~] → C̃~ are flat.

8 Recall that the torsion primes of Ǧ (in the sense of [To]) are the same as the torsion primes of
the “refined root system” 8̌ ⊂ X̌ (in the sense of [De]).

9 Here the letter “C” stands for “coinvariants,” since these algebras will play the role played by
the coinvariant algebra in [S1, S3, AR1].
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Proof. First we treat (1). By symmetry, it is enough to prove the claim in the case of the
morphism induced by the first projection t∗/W × t∗/W → t∗/W . By Lemma 3.1, we
can fix an isomorphism of R-schemes t∗/W ∼= AnR for some n ∈ Z≥0. Then 1 identifies
with the diagonal copy of AnR in A2n

R . Writing A2n
R as the direct sum of the diagonal and

antidiagonal copies of AnR, we obtain ring isomorphisms

C′~
∼= R[x1, . . . , xn] ⊗ DNCI+(R[y1, . . . , yn]) ∼= R[x1, . . . , xn, z1, . . . , zn, ~],

where I+ ⊂ R[y1, . . . , yn] is the ideal of the subscheme {0} ⊂ AnR, and zi := ~−1yi .
With these identifications, the morphism under consideration is defined by ~ 7→ ~,
xi 7→ xi + ~zi . This morphism is clearly flat.

The second claim in (2) is an immediate consequence of (1) and the first isomor-
phism in (3.4). To prove the first claim we decompose the morphism as the composi-
tion O(t∗/W)[~] → C′~ → C~. Now the first morphism is flat by (1), and the second
one is flat by the first isomorphism in (3.4) since the projection t∗ → t∗/W is flat (see
Lemma 3.1). This implies the desired claim.

Finally, in (3) the flatness of the morphism induced by the first projection t∗×t∗→ t∗

follows from (2) and the second isomorphism in (3.4). Then the flatness of the other
morphism follows by symmetry. ut

Let us denote by
f1, f2 : O(t∗)[~] → C̃~

the morphisms considered in Lemma 3.3(3). These morphisms endow C̃~ with the struc-
ture of a graded O(t∗)[~]-bimodule. In fact, this algebra has a natural structure of bial-
gebra in the monoidal category of graded O(t∗)[~]-bimodules, constructed as follows.
Consider the R[~]-algebra morphism

O(t∗ × t∗)[~] → C̃~ ⊗O(t∗)[~] C̃~ (3.5)

sending any x in the first copy of O(t∗) to f1(x) ⊗ 1, and any y in the second copy of
O(t∗) to 1 ⊗ f2(y). One can easily check that the image under this morphism of any
element of the form g⊗ 1− 1⊗ g with g ∈ O(t∗/W) belongs to ~ · (C̃~⊗O(t∗)[~] C̃~). It
follows from Lemma 3.3(3) that C̃~ ⊗O(t∗)[~] C̃~ is flat over R[~]; in particular it has no
~-torsion. Hence (3.5) factors in a unique way through a graded R[~]-algebra morphism

C̃~→ C̃~ ⊗O(t∗)[~] C̃~,

which provides our comultiplication morphism. Using this structure, we find that ifM and
N are graded C̃~-modules, then the tensor product M ⊗O(t∗)[~] N has a natural structure
of graded C̃~-module.

Similar constructions provide a structure of graded (O(t∗/W)[~],O(t∗)[~])-bimo-
dule on C~, and a graded R[~]-algebra morphism

C~→ C~ ⊗O(t∗)[~] C̃~.

Hence, ifM is a graded C~-module andN is a graded C̃~-module, then the tensor product
M ⊗O(t∗)[~] N has a natural structure of graded C~-module.



Exotic tilting sheaves and parity sheaves 2281

Applying the functor R⊗R[~] (−), we also obtain graded algebra morphisms

C̃ → C̃ ⊗O(t∗) C̃, C → C ⊗O(t∗) C̃,

and the corresponding structures for tensor products of graded modules.

3.4. “Algebraic” Bott–Samelson category

The group Waff acts naturally on t∗ × A1
R via the formulas

v · (ξ, x) = (v · ξ, x), tλ · (ξ, x) = (ξ + xλ, x)

for ξ ∈ t∗, x ∈ A1
R, v ∈ W and λ ∈ X. For this action, the subspace t∗ = t∗ × {0} ⊂

t∗ × A1
R is stable, and the action of Waff on this subspace factors through the natural

action of W = Waff/X. The Waff-action on t∗ × A1
R induces an action on the graded

algebra O(t∗)[~] = O(t∗ × A1
R). If w ∈ Waff, we denote by (O(t∗)[~])w the subalgebra

of w-invariants.
We will need the following easy lemma.

Lemma 3.4. For any simple reflection s, the morphism

R⊗R[~] (O(t∗)[~])s → O(t∗)s

induced by the restriction morphism O(t∗)[~] → O(t∗) is an isomorphism.

Proof. If s is finite, then the claim is obvious. The general case follows by using Lem-
ma 2.10. ut

For anyw ∈ Waff, we define the graded O(t∗× t∗)[~]-module E~
w as follows. As a graded

R-module, we have E~
w = O(t∗)[~]. The right copy of O(t∗)[~] in O(t∗ × t∗)[~] =

O(t∗)[~] ⊗R[~] O(t∗)[~] acts in the natural way, by multiplication. And any f in the left
copy of O(t∗)[~] acts by multiplication byw−1

·f . Since the induced action of O(t∗×t∗)
on E~

w/~ ·E~
w factors through an action of O(t∗×t∗/W t∗), there exists a unique extension

of the action of O(t∗ × t∗)[~] to an action of C̃~ on E~
w. By restriction, one can also

consider E~
w as a graded C~-module.

If s is a simple reflection, we also consider the graded O(t∗ × t∗)[~]-module

D~
s := O(t∗)[~] ⊗(O(t∗)[~])s O(t∗)[~]〈−1〉.

Using the same arguments as above and Lemma 3.4, one can check that the action of
O(t∗ × t∗)[~] on D~

s extends in a canonical way to an action of C̃~, so that D~
s can be

considered as a graded C̃~-module.
Now, using the constructions of §3.3 one can define, for any ω ∈ � and any sequence

s = (s1, . . . , sn) of simple reflections, the graded C~-module

D~(ω, s) := E
~
ω ⊗O(t∗)[~] D

~
s1
⊗O(t∗)[~] · · · ⊗O(t∗)[~] D

~
sn
.

We will also consider the corresponding constructions for C-modules: we set

Ew := E
~
w/~ · E

~
w, Ds := D

~
s /~ ·D

~
s ,
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and then

D(ω, s) := D~(ω, s)/~ ·D~(ω, s) ∼= Eω ⊗O(t∗) Ds1 ⊗O(t∗) · · · ⊗O(t∗) Dsn .

Note for later use that, by Lemma 3.4, we have a canonical isomorphism

Ds
∼
−→ O(t∗)⊗O(t∗)s O(t∗). (3.6)

With these definitions one can define the category BSalg with
• objects: triples (ω, s, i) with ω ∈ �, s a sequence of simple reflections indexed by
(1, . . . , n) for some n ∈ Z, and i ∈ Z;
• morphisms: for ω,ω′ ∈ �, s and t sequences of simple reflections, and i, j ∈ Z,

HomBSalg
(
(ω, s, i), (ω′, t, j)

)
=

{
HomModgr(C)

(
D(ω, s)〈−i〉,D(ω, t)〈−j〉

)
if ω = ω′,

0 if ω 6= ω′.

3.5. Equivariant cohomology of Gr

The graded algebras C~ and C defined in §3.3 can be used to describe the algebras
H•
ǏoGm

(Gr;R) and H•
Ǐ
(Gr;R) “up to torsion,” as follows. There exists a natural graded

algebra morphism

O(t∗)[~] (3.2)
−−→
∼

H•
ǏoGm

(pt;R)→ H•
ǏoGm

(Gr;R).

On the other hand, we have a canonical isomorphism

H•
ǏoGm

(Gr;R) ∼= H•
Ǧ(O)oGm

(
(Ǐ oGm)\(Ǧ(K )oGm);R

)
,

so that there also exists a natural graded algebra morphism

O(t∗/W)[~] (3.3)
−−→
∼

H•
Ǧ(O)oGm

(pt;R)→ H•
ǏoGm

(Gr;R)

induced by the multiplication of Ǧ(O)oGm on Ǧ(K )oGm on the right. Using the fact
that the projection Ǧ(K )oGm → pt factors through Gm, it is not difficult to check that
the images of ~ under these two morphisms coincide (see the proof of Lemma 3.6 below
for similar considerations). Hence combining them we obtain an algebra morphism

O(t∗/W × t∗)[~] → H•
ǏoGm

(Gr;R). (3.7)

Remark 3.5. Note that we have switched the order of the factors here: the left-hand
factor of t∗/W × t∗ is related to the multiplication of Ǧ(O) on Ǧ(K ) on the right, while
the right-hand factor is related to the multiplication of Ǐ on Ǧ(K ) on the left. This choice
of convention complicates some formulas in this section, but it will make the comparison
with the constructions on the “coherent” side easier. Another option would have been to
work with the (less customary) variety Gr ′ := Ǧ(O)\Ǧ(K ) instead of Gr . Here Gr ′ is
isomorphic to Gr through Ǧ(O)g 7→ g−1Ǧ(O), but this isomorphism switches the roles
of left and right multiplications.
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Lemma 3.6. Morphism (3.7) factors in a unique way through a graded R[~]-algebra
morphism

γ~ : C~→ H•
ǏoGm

(Gr;R).

Proof. There exist natural converging spectral sequences

E
pq

2 = Hp
Ǧ(O)oGm

(pt;R)⊗R Hq(Gr;R)⇒ Hp+q
Ǧ(O)oGm

(Gr;R),

E
pq

2 = Hp
ǏoGm

(pt;R)⊗R Hq(Gr;R)⇒ Hp+q
ǏoGm

(Gr;R).

In both cases, the spectral sequence degenerates since the left-hand side vanishes unless
p and q are even. This implies in particular that H•

ǏoGm
(Gr;R) is R[~]-free, proving the

unicity of the factorization. It also follows that the natural morphism

H•
ǏoGm

(pt;R)⊗H•
Ǧ(O)oGm

(pt;R) H•Ǧ(O)oGm
(Gr;R)→ H•

ǏoGm
(Gr;R)

is an isomorphism. Using this, we see that to prove the existence of the factorization it
suffices to prove that the natural algebra morphism

O(t∗/W × t∗/W)[~] → H•
Ǧ(O)oGm

(Gr;R) (3.8)

defined in a way similar to (3.7) factors through C′~.
The latter property can be proved as follows.10 Using the same spectral sequence ar-

gument as above, one can check that H•
Ǧ(O)oGm

(Gr;R) is R[~]-free, and that the natural
morphism

R⊗R[~] H•
Ǧ(O)oGm

(Gr;R)→ H•
Ǧ(O)

(Gr;R)

is an isomorphism. From these facts we see that it suffices to prove that the morphism

O(t∗/W × t∗/W)→ H•
Ǧ(O)

(Gr;R)

defined as for (3.8) (but with the Gm-equivariance omitted) factors through O(1).
Now we make the following observation. Let H be a topological group acting on a

topological space X, and let Y := H × X. We endow Y with an action of H × H via
(h1, h2) · (k, x) = (h1kh

−1
2 , h2 · x). Then there exists a natural morphism

H•H×H (pt;R)→ H•H×H (Y ;R). (3.9)

We claim that (3.9) factors through the morphism H•H×H (pt;R)→ H•H (pt;R) induced
by restriction to the diagonal copy of H . Indeed, one can consider the composition

H•H×H (Y ;R)→ H•H (Y ;R)→ H•H (X;R), (3.10)

where the first morphism is induced by restriction to the diagonal copy, and the second
morphism by restriction to the H -stable subspace X = {1} × X ⊂ Y . Since Y iden-
tifies with the induced variety (H × H) ×H X (via the morphism [(h1, h2) : x] 7→

10 A similar claim is asserted without details in [BF]. We thank V. Ginzburg for explaining this
proof to one of us.
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(h1h
−1
2 , h2 · x)), (3.10) is an isomorphism. Since the composition of (3.9) and (3.10)

clearly factors through H•H (pt;R), the same holds for (3.9).
We take for H a maximal compact subgroup of Ǧ, so that we have isomorphisms

H•
Ǧ(O)

(pt;R) ∼= H•
Ǧ
(pt;R) ∼= H•H (pt;R). Similarly, using the Künneth formula (which

is applicable here since our cohomology spaces are free over R) we obtain isomorphisms

O(t∗/W × t∗/W) ∼= H•
Ǧ(O)×Ǧ(O)

(pt;R) ∼= H•H×H (pt;R),

and one can identify the morphism O(t∗/W × t∗/W) → O(1) with the morphism
H•H×H (pt;R)→ H•H (pt;R) considered above.

If�H denotes the group of polynomial loops from the unit circle toH , then as in [G2,
§1.2] we have a natural homeomorphism �H/H

∼
−→ Gr . Writing �H = H × �0H

(where �0H is the space of based loops, i.e. those sending the base point of the circle to
the identity) we obtain isomorphisms

H•
Ǧ(O)

(Gr;R) ∼= H•H (�H/H ;R) ∼= H•H×H (H ×�
0H ;R).

Hence we are in the setting considered above, with X = �0H , and the desired claim
follows from our general observation. ut

Using a spectral sequence argument as in the proof of Lemma 3.6, one can check that the
natural morphism

H•
Ǐ
(pt;R)⊗H•

ǏoGm
(pt;R) H•ǏoGm

(Gr;R)→ H•
Ǐ
(Gr;R)

is an isomorphism. We denote by

γ : C → H•
Ǐ
(Gr;R)

the composition of R⊗R[~] γ~ with this isomorphism. Then γ is a graded algebra mor-
phism.

Since Gr is the disjoint union of its connected components Gr(ω) (ω ∈ �) which are
Ǐ oGm-stable, there exist natural isomorphisms of graded algebras

H•
ǏoGm

(Gr;R) ∼=
∏
ω∈�

H•
ǏoGm

(Gr(ω);R), H•
Ǐ
(Gr;R) ∼=

∏
ω∈�

H•
Ǐ
(Gr(ω);R).

For any ω ∈ �, we denote by

γ
(ω)
~ : C~→ H•

ǏoGm
(Gr(ω);R), resp. γ (ω) : C → H•

Ǐ
(Gr(ω);R)

the composition of γ~, resp. γ , with the projection on the factor parametrized by ω.

Proposition 3.7. For all ω ∈ �, the morphisms Q⊗R γ
(ω)
~ and Q⊗R γ (ω) are isomor-

phisms.

Proof. It is sufficient to prove the claim for γ (ω)~ . Then, by construction of this morphism,
it is sufficient to prove that the similar morphism

C′~→ H•
Ǧ(O)oGm

(Gr(ω);R)
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becomes an isomorphism after applying Q⊗R (−). However, since Q is flat over R, by
Lemma 2.7 we have a natural isomorphism

Q⊗R C′~
∼= DNC

I
Q
1
(O(t∗Q/W × t∗Q/W)),

where t∗Q := Q⊗R t∗ and IQ1 is the ideal of the diagonal copy of t∗Q/W . Similarly,

Q⊗R H•
Ǧ(O)oGm

(Gr(ω);R) ∼= H•
Ǧ(O)oGm

(Gr(ω);Q).

Hence our claim follows from [BF, Theorem 1]. ut

Remark 3.8. Unlike for the case of Q, the morphisms γ (ω)~ and γ (ω) are not isomor-
phisms. In fact, C~ is a finitely generated R-algebra, whereas H•

ǏoGm
(Gr(ω);R) is not

finitely generated in general (see [YZ]).

3.6. “Topological” Bott–Samelson category

Let E be either R or F. Recall the standard convolution product on the category
Db
ǏoGm

(Fl,E), defined by
F ? G := µ∗(F �̃ G),

where Fl ×̃Fl is the quotient of (Ǧ(K ) o Gm) × Fl by the natural diagonal action of
Ǐ o Gm, µ : Fl ×̃Fl → Fl is defined by µ([g : hǏ ]) = ghǏ , and F �̃ G is the “twisted
external product” of F and G, i.e. the unique object whose pullback to (Ǧ(K )oGm)×Fl

is the external product of the pullback of F with G. A similar construction provides a
bifunctor

(−) ? (−) : Db
ǏoGm

(Fl,E)×Db
ǏoGm

(Gr,E)→ Db
ǏoGm

(Gr,E).

We now introduce some “Bott–Samelson objects” in Parity
ǏoGm

(Gr,E), as follows.
Each connected component Gr(ω) contains a unique 0-dimensional Ǐ -orbit; we denote
by δEω the constant (skyscraper) sheaf on this orbit (with coefficients E). On the other
hand, for any simple reflection s, we have the Ǐ oGm-equivariant parity complex Es,E :=
EFls
[1] on Fl. Then, if ω ∈ � and if s = (s1, . . . , sr) is a sequence of simple reflections,

we can consider the object

EE(ω, s) := Esr ,E ? · · · ? Es1,E ? δ
E
ω−1

in Db
ǏoGm

(Gr,E). The arguments in [JMW1, §4.1] or in [FW, §5.5] show that EE(ω, s)
belongs to the subcategory Parity

ǏoGm
(Gr,E). We will denote the images of this object

in Parity
Ǐ
(Gr,E) and in Parity

(Ǐ )
(Gr,E) similarly.

We define the category BStop with

• objects: triples (ω, s, i) with ω ∈ �, s a sequence of simple reflections indexed by
(1, . . . , n) for some n ∈ Z, and i ∈ Z;
• morphisms:

HomBStop
(
(ω, s, i), (ω′, t, j)

)
:= HomParity

Ǐ
(Gr,R)

(
ER(ω, s)[i], ER(ω′, t)[j ]

)
.
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Proposition 3.9. The category Parity
(Ǐ )
(Gr,F) can be recovered from the category

BStop, in the sense that it is equivalent to the Karoubian closure of the additive enve-
lope of the category which has the same objects as BStop, and morphisms from (ω, s, i)

to (ω′, t, j) which are given by the (j − i)-th piece of the graded vector space

F⊗H•
Ǐ
(pt;R)

(⊕
n∈Z

HomBStop
(
(ω, s, 0), (ω′, t, n)

))
.

Proof. Denote (for the duration of this proof) by A the category which has the same
objects as BStop, and whose morphisms are defined as in the statement of the proposition.
We observe that if F(−) is the “modular reduction functor” defined as in §2.1, then we
have a canonical isomorphism

F(ER(ω, s)) ∼= EF(ω, s)

for any (ω, s) as above. (In fact, this follows from the commutation of the functor F(−)
with ∗-pullback [KS, Proposition 2.6.5] and with !-pushforward [KS, Proposition 2.6.6].)
Using these isomorphisms and Lemma 2.2(2), we see that the assignment (ω, s, i) 7→
EF(ω, s)[i] defines an equivalence of categories from A to the full subcategory A′ of
Parity

(Ǐ )
(Gr,F) whose objects are of the form EF(ω, s)[i].

Now we observe that, by the results of [JMW1], the category Parity
(Ǐ )
(Gr,F) is a

Krull–Schmidt, Karoubian, additive category, and that moreover any indecomposable
object in this category is isomorphic to a direct summand of an object of the form
EF(ω, s)[i]. It follows that Parity

(Ǐ )
(Gr,F) is equivalent to the Karoubian closure of the

additive envelope of A′, which finishes the proof. ut

Remark 3.10. More precisely, the results of [JMW1, §4.1] imply that if λ ∈ X and if
w−λ = ωs1 · · · sr is a reduced expression for wλ, then Eλ can be characterized (up to
isomorphism) as the unique direct summand of EF(ω, (s1, . . . , sr)) which is not a direct
summand of any object of the form EF(ω′, t)[i] where ω′ ∈ �, i ∈ Z, and t is a sequence
of simple reflections of length at most r − 1.

3.7. Equivariant cohomology functors

For any ω ∈ �, we define the functor

H
ǏoGm

: Parity
ǏoGm

(Gr,R)→ Modgr(C~)

as the composition

Parity
ǏoGm

(Gr,R)
H•
ǏoGm

(Gr,−)

−−−−−−−−→ Modgr(H•
ǏoGm

(Gr;R))→ Modgr(C~), (3.11)

where the second functor is the “restriction of scalars” functor associated with the mor-
phism γ~. We define a functor

H
Ǐ
: Parity

Ǐ
(Gr,R)→ Modgr(C)

similarly. The goal of this subsection is to prove the following.
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Proposition 3.11. For any ω ∈ � and any sequence s = (s1, . . . , sn) of simple reflec-
tions, there exists a canonical isomorphism of graded C-modules

H
Ǐ
(ER(ω, s)) ∼= D(ω, s).

Before proving the proposition, we remark that the same constructions as in §3.5 allow
one to define graded algebra morphisms

C̃~→ H•
ǏoGm

(Fl;R) and C̃ → H•
Ǐ
(Fl;R),

and then functors

H̃
ǏoGm

: Parity
ǏoGm

(Fl,R)→ Modgr(C̃~), H̃
Ǐ
: Parity

Ǐ
(Fl,R)→ Modgr(C̃).

Lemma 3.12. (1) For any ω ∈ �, there exists a canonical isomorphism of graded C~-
modules

H
ǏoGm

(δRω )
∼= E

~
ω−1 .

(2) For any simple reflection s, there exists a canonical isomorphism of C̃~-modules

H̃
ǏoGm

(Es,R) ∼= D~
s .

Proof. (1) By definition, if ω = tλv (with v ∈ W and λ ∈ X) we have

H
ǏoGm

(δRω ) = H•
ǏoGm

(Gr, δRω ) = H•
ǏoGm

(
zλ · (Ǧ(O)oGm)/Ǧ(O)oGm;R

)
.

We deduce a canonical isomorphism

H
ǏoGm

(δRω )
∼= H•

(ǏoGm)×(Ǧ(O)oGm)

(
zλ · (Ǧ(O)oGm);R

)
.

Now if v̇ is a lift of v in Ǧ, the assignment (a, b) 7→ a · zλv̇ ·b−1 induces an isomorphism

(Ǐ oGm)× (Ǧ(O)oGm)/K
∼
−→ zλ · (Ǧ(O)oGm),

where K = {(a, b) ∈ (Ǐ o Gm) × (Ǧ(O) o Gm) | b = (z
λv̇)−1a(zλv̇)}. This group is

isomorphic to (Ǐ o Gm) (through a 7→ (a, (zλv̇)−1a(zλv̇))); hence we obtain canonical
isomorphisms

H
ǏoGm

(δRω )
∼= H•K(pt;R) ∼= H•

ǏoGm
(pt;R).

The right-hand side is isomorphic to O(t∗)[~] (see (3.2)), with the natural action of the
subalgebra O(t∗)[~] ⊂ C~. And, via this isomorphism, the subalgebra O(t∗/W)[~] ⊂
C~ acts via the composition of multiplication and the morphism

O(t∗/W)[~] ↪→ O(t∗)[~] f 7→ω·f−−−−→ O(t∗)[~].

Hence we have constructed a canonical isomorphism of O(t∗/W × t∗)[~]-modules

H
ǏoGm

(δRω )
∼= E

~
ω−1 .

Since these spaces have no ~-torsion, this isomorphism is automatically an isomorphism
of C~-modules.
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(2) Using Lemma 2.10, one can assume that s is finite, with associated simple root
α∨ ∈ X̌ and associated simple coroot α ∈ X. By definition we have

H̃
ǏoGm

(Es,R) ∼= H•
Ť×Gm

(Fls;R)〈−1〉.

Since Fls is isomorphic to P1
C, it is well known (see e.g. [FW]) that the morphism

H•
Ť×Gm

(Fls;R)→ H•
Ť×Gm

(pt;R)⊕H•
Ť×Gm

(pt;R)

induced by restriction to the fixed points Ǐ /Ǐ and s · Ǐ /Ǐ induces an isomorphism between
H•
Ť×Gm

(Fls;R) and

′D~
s := {(a, b) ∈ O(t∗)[~] ⊕O(t∗)[~] | a = b mod α∨}.

(Here, the right copy of O(t∗)[~] in C̃~ acts diagonally, while any f in the left copy
of O(t∗)[~] in C̃~ acts by multiplication by (f, s(f )).) Now we consider the morphism
D~
s →

′D~
s defined by f ⊗g 7→ (fg, s(f )g). By our assumptions on R, there exists µ̌ in

X̌⊗Z R such that 〈µ̌, α〉 = 1. Then our morphism sends the basis of D~
s as an O(t∗)[~]-

module (for the action of the right copy of O(t∗)[~] in C̃~) consisting of 1⊗ 1 and µ̌⊗ 1
to the basis of ′D~

s consisting of (1, 1) and (µ̌, µ̌− α∨); hence it is an isomorphism.
We have constructed an isomorphism of O(t∗ × t∗)[~]-modules

H̃
ǏoGm

(Es,R) ∼= D~
s .

Since both sides have no ~-torsion, this isomorphism is automatically an isomorphism of
C̃~-modules. ut

Proof of Proposition 3.11. The arguments in [JMW1, §4.1] imply that for any F in
Parity

ǏoGm
(Gr,R) and any sequence t = (t1, . . . , tr) of simple reflections, the convolu-

tion
Et1,R ? · · · ? Etr ,R ? F

belongs to Parity
ǏoGm

(Gr,R). Then the same arguments as in the proof of [BY, Proposi-
tion 3.2.1] (using Lemma 2.2(1) instead of [BY, Corollary B.4.2]) imply that there exists
a canonical isomorphism of graded H•

ǏoGm
(pt;R)⊗R[~] H•

Ǧ(O)oGm
(pt;R)-modules

H
ǏoGm

(Et1,R ? · · · ? Etr ,R ? F)
∼= H̃

ǏoGm
(Et1,R)⊗H•

ǏoGm
(pt;R)· · ·⊗H•

ǏoGm
(pt;R)H̃ǏoGm

(Etr ,R)⊗H•
ǏoGm

(pt;R)HǏoGm
(F).

Applying this remark to F = δR
ω−1 and t = (sn, . . . , s1), and using Lemma 3.12, we

obtain a canonical isomorphism of O(t∗/W × t∗)[~]-modules

H
ǏoGm

(ER(ω, s)) ∼= D~(ω, s).

Since both sides have no ~-torsion, this isomorphism is automatically an isomorphism of
C~-modules. Specializing ~ to 0, we deduce the isomorphism of the proposition. ut
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3.8. Equivalence

The proof of the following proposition (which is independent of the rest of the section) is
postponed to §3.9.

Proposition 3.13. For any ω,ω′ ∈ �, any sequences s, t of simple reflections, and any
n ∈ Z, the morphism

HomParity
Ǐ
(Gr,R)

(
ER(ω, s), ER(ω′, t)[n]

)
→ HomModgr(H•

Ǐ
(Gr;R))

(
H•
Ǐ
(Gr, ER(ω, s)),H•

Ǐ
(Gr, ER(ω′, t)[n])

)
induced by the functor H•

Ǐ
(Gr,−) is an isomorphism.

Now we define a functor
HBS : BS

top
→ BSalg

as follows. This functor sends an object (ω, s, i) of BStop to the corresponding object
(ω, s, i) of BSalg. Then if (ω, s, i) and (ω′, t, j) are objects of BStop, the morphism

HomBStop
(
(ω, s, i), (ω′, t, j)

)
→ HomBSalg

(
(ω, s, i), (ω′, t, j)

)
is defined as the trivial morphism if ω 6= ω′ (in which case both Hom-spaces are 0), and
as the morphism induced by H

Ǐ
if ω = ω′, using the canonical isomorphisms

H
Ǐ
(ER(ω, s)[i]) ∼= D(ω, s)〈−i〉, H

Ǐ
(ER(ω′, t)[j ]) ∼= D(ω′, t)〈−j〉

deduced from Proposition 3.11.
The main result of this section is the following.

Theorem 3.14. The functor HBS is an equivalence of categories.

Proof. The functor HBS clearly induces a bijection on objects. So, what we have to prove
is that if (ω, s, i) and (ω′, t, j) are objects of BStop, then the corresponding morphism

HomBStop
(
(ω, s, i), (ω′, t, j)

)
→ HomBSalg

(
(ω, s, i), (ω′, t, j)

)
is an isomorphism. This is obvious if ω 6= ω′.

Now, assume that ω = ω′. Then both parity complexes are supported on Gr(ω), so that
our morphism is induced by the composition

Parity
Ǐ
(Gr(ω),R)

H•
Ǐ
(Gr(ω),−)

−−−−−−−→ Modgr(H•
Ǐ
(Gr(ω);R))→ Modgr(C),

where the second arrow is the “restriction of scalars” functor associated with γ (ω). Now
the first functor is fully faithful on objects of the form ER(ω, s) by Proposition 3.13,
and the second functor is fully faithful on objects which are R-free by Lemma 1.10 and
Proposition 3.7. Since the R-modules H•

Ǐ
(Gr(ω), ER(ω, s)) are free by Lemma 2.2(1),

this finishes the proof of the theorem. ut
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3.9. Proof of Proposition 3.13

The proof below is a simple variant of the proof of the main result of [G1]. The key
observation is from [ARd1, Theorem 4.1], where it is shown that the arguments from [G1]
involving weights can be replaced in a parity sheaf setting by parity arguments. Another
exposition of Ginzburg’s proof in an equivariant setting appears in [BY, Lemma 3.3.1]
(for coefficients in characteristic zero).

To avoid unnecessary notational complications, in this proof we will say that an object
E in Parity

Ǐ
(Gr,R) is a Bott–Samelson parity complex if it is isomorphic to ER(ω, s)[i]

for some ω ∈ �, s a sequence of simple reflections, and i ∈ Z.
Let us fix an extension of the partial order on X corresponding to the closure relations

among the orbits Grλ to a total order v such that (X,v) is isomorphic (as an ordered
set) to Z≥0 with its standard order. Let Grvλ denote the union of all Grµ with µ v λ,
and ivλ : Grvλ → Gr the closed embedding. Let also Avλ := H•

Ǐ
(Grvλ;R). We define

Gr@λ, i@λ, and A@λ analogously.
We begin with a number of preliminary lemmas.

Lemma 3.15. For any λ ∈ X, there exists a canonical exact sequence of Z-graded R-
modules

0→ H•
c,Ǐ
(Grλ;R)→ Avλ→ A@λ→ 0.

Proof. The lemma can be proved by induction, using the fact that the existence of the
exact sequences for smaller λ’s implies that A@λ is concentrated in even degrees, and the
adjunction triangle

(iλ)!(iλ)
∗RGrvλ

→ RGrvλ
→ i@λ∗i

∗
@λRGrvλ

[1]
−→,

where iλ : Grλ ↪→ Gr is the inclusion. ut

Let again λ ∈ X. To simplify notation, we set Z = Gr@λ, X = Grvλ, U = Grλ, and
denote by i : Z → X, resp. j : U → X, the closed, resp. open, embedding. A key
ingredient we will need is the following lemma.

Lemma 3.16. Let E be a Bott–Samelson parity complex, and let F be either i∗
vλE or

i!
vλE . Then the adjunction triangles induce short exact sequence of Avλ-modules

0→ H•
Ǐ
(X, j!j

∗F)→ H•
Ǐ
(X,F)→ H•

Ǐ
(X, i∗i

∗F)→ 0, (3.12)

0→ H•
Ǐ
(X, i∗i

!F)→ H•
Ǐ
(X,F)→ H•

Ǐ
(X, j∗j

∗F)→ 0. (3.13)

Proof. For F = i∗
vλE , resp. i!

vλE , F is either ∗-even or ∗-odd, resp. either !-even or
!-odd, and (3.12), resp. (3.13), is obtained using the long exact sequence of equivari-

ant cohomology associated with the adjunction triangle j!j∗F → F → i∗i
∗F [1]
−→,

resp. i∗i!F → F → j∗j
∗F [1]
−→, because by induction the various terms are concen-

trated either all in even degrees, or all in odd degrees.
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Consider now the sequence (3.13) for F = i∗
vλE . In this case it is shown in [FW,

Proposition 5.9]11 that the composition of restriction morphisms

H•
Ǐ
(Gr, E)→ H•

Ǐ
(Grλ, i

∗
λE)→ H•

Ǐ
({Lλ}, ı

∗
λE)

is surjective, where (as in §1.6) ıλ : {Lλ} ↪→ Gr is the inclusion. Since the second mor-
phism is an isomorphism by [FW, Proposition 2.3], the first one is also surjective. And
since this first morphism factors through the morphism

H•
Ǐ
(Grvλ, i

∗
vλE)→ H•

Ǐ
(Grλ, i

∗
λE)

considered in (3.13), the latter morphism is also surjective, which finishes the proof in
this case.

Finally, let us consider the sequence (3.12) for F = i!
vλE . In this case, the arguments

are similar to the ones used in the preceding case, using the fact that the natural morphism

H•
Ǐ
({Lλ}, ı

!

λE)→ H•
Ǐ
(Gr, E)

is injective. (This fact is shown in the proof of [FW, Proposition 5.9]: in fact this mor-
phism identifies with the morphism considered in [FW, Proposition 5.8(2)].) ut

SinceU=Grλ is isomorphic to an affine space, the graded H•
Ǐ
(pt;R)-module H•

c,Ǐ
(U ;R)

is free of rank one. Moreover, the natural morphism

H2 dim(Grλ)
c,Ǐ

(U ;R)→ H2 dim(Grλ)
c (U ;R)

is an isomorphism, and if xλ ∈ H2 dim(Grλ)
c,Ǐ

(U ;R) is the inverse image of a generator

of H2 dim(Grλ)
c (U ;R) ∼= R (as an R-module), then xλ gives a basis of H•

c,Ǐ
(U ;R) over

H•
Ǐ
(pt;R). We still denote by xλ the image of this element in Avλ under the injection of

Lemma 3.15.

Lemma 3.17. Let E be a Bott–Samelson parity complex, and let F be either i∗
vλE or

i!
vλE . Then the morphism

H•
Ǐ
(X,F)→ H•+2 dim(Grλ)

Ǐ
(X,F)

given by the action of xλ ∈ Avλ factors as a composition

H•
Ǐ
(X,F)� H•

Ǐ
(X, j∗j

∗F) ∼−→ H•+2 dim(Grλ)
Ǐ

(X, j!j
∗F) ↪→ H•+2 dim(Grλ)

Ǐ
(X,F),

where the first, resp. third, morphism is the morphism appearing in (3.13), resp. (3.12),
and the second one is an isomorphism.

11 In [FW], this result (as well as the other results used in this proof) is stated for a coefficient
ring that is a complete local principal ideal domain, but the same proof applies verbatim for general
coefficients.
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Proof. The element xλ ∈ Avλ acts trivially on H•
Ǐ
(X, i∗i

∗F) and H•
Ǐ
(X, i∗i

!F). Hence
its action on the module H•

Ǐ
(X,F) factors through a morphism H•

Ǐ
(X, j∗j

∗F) →
H•+2 dim(Grλ)
Ǐ

(X, j!j
∗F). To show that the latter morphism is an isomorphism, we observe

that j∗F is a direct sum of shifts of constant sheaves RU (since E is a parity complex),
and that our morphism is the corresponding direct sum of shifts of the isomorphism

H•
Ǐ
(U ;R)

∼
−→ H•

Ǐ
(pt;R)

∼
−→ H•+2 dim(Grλ)

c,Ǐ
(U ;R)

determined by our choice of xλ ∈ H2 dim(Grλ)
c,Ǐ

(U ;R). ut

Lemma 3.18. Let E1, E2 be Bott–Samelson parity complexes. If φ : H•
Ǐ
(X, i∗

vλE1) →

H•
Ǐ
(X, i!

vλE2) is a morphism of Avλ-modules, then the composition

H•
Ǐ
(X, i∗vλE1)

φ
−→ H•

Ǐ
(X, i!

vλE2)� H•
Ǐ
(X, j∗j

∗i!
vλE2) (3.14)

(where the second morphism is the surjection appearing in (3.13)) factors uniquely
through a morphism of Avλ-modules

φ′ : H•
Ǐ
(X, j∗j

∗i∗vλE1)→ H•
Ǐ
(X, j∗j

∗i!
vλE2).

Moreover, we have φ′ = 0 iff φ factors as a composition

H•
Ǐ
(X, i∗vλE1)� H•

Ǐ
(Z, i∗@λE1)

φ′′

−→ H•
Ǐ
(Z, i!@λE2) ↪→ H•

Ǐ
(X, i!

vλE2)

where φ′′ is a morphism ofA@λ-modules and the other morphisms are the ones appearing
in (3.12) and (3.13).

Proof. Using Lemma 3.16, we see that the first claim is equivalent to the statement that
the composition

H•
Ǐ
(X, i∗i

!i∗vλE1) ↪→ H•
Ǐ
(X, i∗vλE1)

φ
−→ H•

Ǐ
(X, i!

vλE2)� H•
Ǐ
(X, j∗j

∗i!
vλE2)

vanishes. And in view of Lemma 3.17, to prove this it suffices to show that the composi-
tion

H•
Ǐ
(X, i∗i

!i∗vλE1) ↪→ H•
Ǐ
(X, i∗vλE1)

φ
−→ H•

Ǐ
(X, i!

vλE2)
xλ
−→ H•

Ǐ
(X, i!

vλE2)

vanishes. This follows from the fact that φ commutes with the action of xλ, and xλ acts
trivially on H•

Ǐ
(X, i∗i

!i∗
vλE1).

Now we consider the second claim. The “if” direction is easy. Conversely, assume
that φ′ = 0. Then the composition (3.14) vanishes, hence the image of φ is included in
the image of the embedding H•

Ǐ
(Z, i!@λE2) ↪→ H•

Ǐ
(X, i!

vλE2) of Lemma 3.16. On the
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other hand, by Lemma 3.17, this also implies that the composition of φ with the action
of xλ on H•

Ǐ
(X, i!

vλE2) vanishes; hence, as φ is a morphism of Avλ-modules, φ vanishes
on the image of the action of xλ on H•

Ǐ
(X, i∗

vλE1). By Lemma 3.17, we deduce that the
composition

H•(X, j!j∗i∗vλE1) ↪→ H•
Ǐ
(X, i∗vλE1)

φ
−→ H•

Ǐ
(X, i!

vλE2)

vanishes, which, in view of Lemma 3.16, proves the existence of a morphism of
Avλ-modules φ′′ : H•

Ǐ
(X, i∗i

∗
@λE1)→ H•

Ǐ
(X, i∗i

!

@λE2) as in the lemma. Finally, the fact
that φ′′ is a morphism of A@λ-modules follows from Lemma 3.15. ut

Now we are ready to prove Proposition 3.13. We will proceed by induction on λ ∈ X,
showing that for any Bott–Samelson parity complexes E1, E2, the cohomology functor
induces an isomorphism of graded vector spaces

Hom•Grvλ(i
∗
vλE1, i

!

vλE2)
∼
−→ HomAvλ

(
H•
Ǐ
(Grvλ, i

∗
vλE1),H•

Ǐ
(Grvλ, i

!

vλE2)
)
. (3.15)

If λ is minimal, then Grλ is a point and i∗
vλE1 and i!

vλE2 are also parity complexes.
On the other hand, the cohomology functor induces an equivalence of categories between
Parity

Ǐ
(Grλ,R) and the full subcategory of the category of finitely generated gradedAvλ-

modules consisting of free modules. Thus (3.15) is indeed an isomorphism in this case.
Now fix λ ∈ X, and suppose that (3.15) is an isomorphism for all λ′ @ λ. We use the

same notation as above for X, Z, U , i and j . Note that Lemma 3.18 is equivalent to the
existence of a natural sequence

HomA@λ

(
H•
Ǐ
(Z, i∗@λE1),H•

Ǐ
(Z, i!@λE2)

)
→ HomAvλ

(
H•
Ǐ
(X, i∗vλE1),H•

Ǐ
(X, i!

vλE2)
)

→ HomH•
Ǐ
(U ;R)

(
H•
Ǐ
(U, j∗i∗vλE1),H•

Ǐ
(U, j∗i!

vλE2)
)

(3.16)

which is exact at the middle term. It is also easy to check (using Lemma 3.16) that the
first morphism is injective.

Consider the adjunction triangle

i@λ∗i
!

@λE2 → i!
vλE2 → j∗j

∗i!
vλE2

[1]
−→

and the long exact sequence

· · · → Homn
Z(i
∗
@λE1, i

!

@λE2)→ Homn
X(i
∗
vλE1, i

!

vλE2)

→ Homn
U (j
∗i∗vλE1, j

∗i!
vλE2)→ · · ·

obtained by appying the functor HomX(i
∗
vλE1,−). Parity considerations and [JMW1,

Corollary 2.8] imply that the connecting morphisms in this long exact sequence are trivial,
so that the maps form short exact sequences in each degree. Then one can consider the
commutative diagram
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Hom•Z(i
∗
@λE1, i

!

@λE2)
H•
Ǐ
(Z,−)

//
� _

��

HomA@λ

(
H•
Ǐ
(Z, i∗@λE1),H•

Ǐ
(Z, i!@λE2)

)
� _

��
Ext•X(i

∗
vλE1, i

!

vλE2)
H•
Ǐ
(X,−)

//

����

HomAvλ

(
H•
Ǐ
(X, i∗

vλE1),H•
Ǐ
(X, i!

vλE2)
)

��
Ext•U (j

∗i∗
vλE1, j

∗i!
vλE2)

H•
Ǐ
(U,−)

// HomH•
Ǐ
(U ;R)

(
H•
Ǐ
(U, j∗i∗

vλE1),H•
Ǐ
(U, j∗i!

vλE2)
)

where the right column is the sequence (3.16), and both columns are exact at the middle
term. By induction, the top horizontal arrow is an isomorphism. The bottom one is an
isomorphism because the cohomology functor induces an equivalence of categories be-
tween Parity

Ǐ
(Grλ,R) and the full subcategory of free modules in the category of finitely

generated graded H•
Ǐ
(Grλ;R)-modules. By the five-lemma, this implies that the middle

horizontal arrow is also an isomorphism, which completes the induction step.

Remark 3.19. It can be easily checked that the proof of Proposition 3.13 applies to any
ring k of coefficients which is Noetherian and of finite global dimension, and also in the
Ǐ oGm-equivariant setting, or for other partial flag varieties of Kac–Moody groups. If k
is a complete local principal ideal domain, one can also work directly with the categories
Parity

ǏoGm
(Gr, k) and Parity

Ǐ
(Gr, k) instead of restricting to “Bott–Samelson objects.”

3.10. Graded ranks of Hom spaces

We identify the Z[v, v−1
]-module MFl associated with Fl and its stratification by Ǐ -orbits

as in §2.1 with Haff, where ew corresponds to Tw−1 (for w ∈ Waff). We also identify MGr

(where Gr is stratified by Ǐ -orbits) with Msph, where eλ corresponds to m−λ (for λ ∈ X).

Lemma 3.20. Let E be either F or R.

(1) For any F , G in Parity
Ǐ
(Fl,E), we have

ch!Fl(F ? G) = ch!Fl(G) · ch!Fl(F) and ch∗Fl(F ? G) = ch∗Fl(G) · ch∗Fl(F)

in Haff.
(2) For any G in Parity

Ǐ
(Fl,E), we have

ch!Gr(G ? δ
E
1 ) = m0 · ch!Fl(G) and ch∗Gr(G ? δ

E
1 ) = m0 · ch∗Fl(G)

in Msph.

Sketch of proof. The case E = R follows from the case E = F, so we concentrate on the
latter case. Also, in each case, the formula for ch∗ follows from the formula for ch! and
Lemma 2.5(1), so we only consider the latter case.

(1) First we consider the case G = Es,F for some simple reflection s. We let J̌s be
the minimal standard parahoric subgroup of Ǧ(K ) associated with s, and define Fls :=
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Ǧ(K )/J̌s . We let ps : Fl→ Fls be the projection, and set Flsw := ps(Flw) forw ∈ Waff.
Then by base change we have

F ? G = F ? Es,F ∼= (ps)∗(ps)∗F[1],

and ch!Fl(Es,F) = Ts + v−1. The formula in this case can be checked by a direct compu-
tation, using the fact that

H•(Flsw, (i
Fls

w )!(ps)∗F) = H•(Flw, (iFlw )
!F)⊕H•(Flws, (iFlws)

!F)

for w ∈ Waff, which can be derived from the base change theorem and [JMW1, Proposi-
tion 2.6]. (Here iFl

s

w , iFlw and iFlws are the obvious inclusions.)
The case where G is the skyscraper sheaf Eω,F at the Ǐ -fixed point given by the unique

point in Flω (for ω ∈ �) is easy.
Using these special cases one deduces that the formula holds when G is of the form

Es1,F ? · · · ? Esr ,F ? Eω,F[n] (3.17)

where ω ∈ �, n ∈ Z, and s1, . . . , sr are simple reflections. Then one can prove the
formula when G is indecomposable by induction on the dimension of its support, using
the fact that any indecomposable parity complex on Fl appears as a direct summand of
an object of the form (3.17) with r the dimension of the support (see [JMW1, §4.1]). The
general case follows.

(2) We have G ? δE1 = p∗G, where p : Fl → Gr is the natural projection. Then the
lemma can be checked by a direct computation, using the formula

H•(Grλ, (iλ)!p∗G) ∼=
⊕
w∈tλW

H•(Flw, (iFlw )
!G) for all λ ∈ X,

which can be derived from the base change theorem and [JMW1, Proposition 2.6]. ut

Remark 3.21. Using similar arguments one can show that ch?
Gr(F ? G) = ch?

Gr(G) ·
ch?

Fl(F) for any G in Parity
Ǐ
(Gr,E), F in Parity

Ǐ
(Fl,E) and ? = ! or ∗.

Proposition 3.22. For E = R or F, for any sequence s of simple reflections, and for any
ω ∈ �, we have

ch!Gr(EE(ω, s)) = ch∗Gr(EE(ω, s)) = m(ω, s).

Proof. This follows immediately from Lemma 3.20 and the facts that ch!Fl(Es,E) =
ch∗Fl(Es,E) = (Ts + v−1) and ch∗Fl(Eω,E) = ch∗Fl(Eω,E) = Tω−1 (where Eω,E is de-
fined as in the proof of Lemma 3.20(1)). ut

The following consequence of Theorem 3.14 will play a crucial role in Section 5.

Corollary 3.23. For any any ω,ω′ ∈ � and any sequences s, t of simple reflections, the
graded O(t∗)-module ⊕

n∈Z
HomBSalg

(
(ω, s, 0), (ω′, t, n)

)
is free. Its graded rank is equal to 〈m(ω, s),m(ω′, t)〉.
Proof. The first assertion follows from Theorem 3.14 and Lemma 2.2(2), and the second
from Lemma 2.5(2) and Proposition 3.22. ut
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4. Kostant–Whittaker reduction

In this section and the next one we work with derived categories of equivariant coherent
sheaves and usual derived functors between them. See [MR, Appendix A] for a brief
reminder of the main definitions and properties of these objects.

4.1. Overview

The goal of this section is to introduce and study the “Kostant–Whittaker reduction” func-
tor for equivariant coherent sheaves on the Grothendieck resolution of G. This construc-
tion is a mild adaptation of a construction in [BF]; it relies in a crucial way on geometric
results proved in [R3]. A related construction also appears in [Do]. This functor is used
in Section 5 to obtain a description of the category Tilt(EG×Gm(Ñ )) in terms of “Soergel
bimodules.”

After introducing our notation and assumptions in §4.2, we recall the definition of the
“geometric braid group action” of [R1, BR2] in §4.3, and the main results of [R3] in §4.4.
In §4.5 we define our functors. Then, after some preparation in §4.7, in §4.8 we prove the
main result of the section, a certain compatibility property between Kostant–Whittaker
reduction and the geometric braid group action.

4.2. Notation

Let GZ be a group scheme over Z which is a product of split simply connected quasi-
simple groups, and general linear groups GLn,Z. In particular, GZ is a split connected
reductive group over Z. We let BZ ⊂ GZ be a Borel subgroup, TZ ⊂ BZ be a (split)
maximal torus, and B+Z ⊂ GZ be the Borel subgroup which is opposite to BZ (with
respect to TZ). We denote by r the rank of GZ.

We let N be the product of all the prime numbers which are not very good for some
quasi-simple factor of GZ, and set R := Z[1/N ]. Throughout the section, we use F to
denote an arbitrary geometric point of R, and E to denote either R or F.

Let GR, BR, TR, B+R be the groups obtained from GZ, BZ, TZ, B+Z by base change
to R, and let gR, bR, tR, b+R be their respective Lie algebras. We also denote by UR,
resp. U+R, the unipotent radical of BR, resp. B+R; by nR, resp. n+R, its Lie algebra; by W
the Weyl group of (GR,TR); and by X := X∗(TR) the weight lattice.

We also set
GF := Spec(F)×Spec(R) GR,

denote by gF the Lie algebra of GF, by BF, TF, B+F , UF, U+F the base change of BR,
TR, B+R, UR, U+R, and by bF, tF, b+F , nF, n+F their respective Lie algebras. Note also that
X = X∗(TF).

If V is an E-module, we set V ∗ := HomE(V ,E). In this section we will consider the
Grothendieck resolution

g̃E := (G×B (g/n)∗)E ↪→ (G/B× g∗)E.
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The scheme g̃E is a vector bundle over the flag variety BE := (G/B)E. It is endowed with
an action of GE × Gm,E, where GE acts naturally, and the action of Gm,E is induced by
the action on (g/n)∗E where x ∈ Gm,E acts by multiplication by x−2. We will consider the
derived categories of equivariant coherent sheaves DG×Gm (̃g)E and DG(̃g)E. We denote
by 〈1〉 the functor of tensoring with the free rank one tautological Gm,E-module, and by

F(−) : DG×Gm (̃g)R→ DG×Gm (̃g)F, F(−) : DG(̃g)R→ DG(̃g)F

the “modular reduction functors” induced by the functor F⊗LR (−).
For any λ ∈ X we denote by OBE(λ) the line bundle on BE associated naturally

with λ, and by Og̃E(λ) the pullback of OBE(λ) to g̃E.
We will also consider the morphism

ν : g̃E→ t∗E

which is defined as follows. Consider the restriction morphism (g/n)∗E → t∗E. It is easily
checked that this morphism is BE-equivariant, where BE acts trivially on t∗E. Therefore,
our morphism defines a morphism (G ×B (g/n)∗)E → t∗E, which is our morphism ν.
There is also a natural morphism

π : g̃E→ g∗E

induced by the coadjoint action.
By [R3, Lemma 4.2.3] there exists a GR-invariant symmetric bilinear form on gR

which is a perfect pairing. We fix such a bilinear form once and for all, and we denote by κ
both the induced (GR-equivariant) isomorphism gR

∼
−→ g∗R and the induced isomorphism

gF
∼
−→ g∗F.
In case E = F, we let grs

F ⊂ g
reg
F ⊂ gF be the open subsets consisting of regu-

lar semisimple elements and regular elements respectively (see [R3, §2.3]), let g∗,rsF ⊂

g
∗,reg
F ⊂ g∗F be their image under κ, and let g̃rs

F ⊂ g̃
reg
F be the inverse images in g̃F.

Then there exists a natural action of W on g̃
reg
F stabilizing g̃rs

F and commuting with the
GF × Gm,F-action (see [BR2, §1.9]). Moreover, the restriction νreg : g̃

reg
F → t∗F is W -

equivariant, where W acts naturally on t∗F. (Indeed, this property is easily checked for the
restriction of νreg to g̃rs; then the claim follows by a density argument.)

4.3. Geometric braid group action

We let X̌ be the lattice of cocharacters of TR, and denote by 8 ⊂ X, resp. 8̌ ⊂ X̌,
the roots, resp. coroots, of (GR,TR). We denote by 8+ the positive roots, i.e. the roots
appearing in b+R. To these data one can associate the affine Weyl groupWaff and the affine
braid group Baff as in §2.5. We also choose ρ ∈ X such that 〈ρ, α∨〉 = 1 for any simple
coroot α∨. (If GR is semisimple, then ρ is the halfsum of positive roots.)

Let s be a finite simple reflection, associated with a simple root α. Recall the associ-
ated subscheme ZE

s ⊂ (̃g×g∗ g̃)E defined in [BR2, §§1.3–1.5]. (If E = F, then ZE
s is the

closure of the graph of the action of s on g̃
reg
E .) We denote by

Tsg̃, S
s
g̃ : D

G×Gm (̃g)E→ DG×Gm (̃g)E
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the Fourier–Mukai transforms with kernels OZE
s
〈−1〉 and OZE

s
(−ρ, ρ − α)〈−1〉 respec-

tively. (Here, OZE
s
(−ρ, ρ−α) denotes the tensor product of OZE

s
with the line bundle on

(̃g× g̃)E which is the pullback of the line bundle OBE(−ρ)�OBE(ρ−α) on (B×B)E.)
By [BR2, Lemma 1.5.1 & Proposition 1.10.3], these functors are quasi-inverse equiva-
lences of categories. We will use the same symbols to denote the similar autoequivalences
of the category DG(̃g)E.

By [BR2, Section 1], there exists a right action12 of the group Baff on the category
DG×Gm (̃g)E, resp. DG(̃g)E, where Ts acts by the functor Tsg̃ (for any finite simple reflec-
tion s), and where θλ acts by tensoring with the line bundle Og̃E(λ) (for any λ ∈ X). (The
same remarks as in [MR, §3.3] on the difference with the conventions of [R1, BR2] apply
here: the (right) action considered in the present paper differs from the (left) action of [R1,
BR2] by the composition with the anti-automorphism of Baff fixing all generators Ts for s
a simple reflection and θλ for λ ∈ X.) For b ∈ Baff, we denote by

IEb : D
G×Gm (̃g)E

∼
−→ DG×Gm (̃g)E

the action of b. (This functor is defined only up to isomorphism.) It is easily checked that
we have an isomorphism of functors

F ◦ IRb ∼= IFb ◦ F (4.1)

for any b ∈ Baff.
For s a finite simple reflection, associated with a simple root α, we also set g̃Es :=

G×Ps (g/(ps)
nil)∗E, where PE

s is the minimal standard parabolic subgroup of GE associated
with s, and (pEs )

nil is the Lie algebra of the unipotent radical of PE
s . There exists a natural

morphism π̃s : g̃E→ g̃Es . By [R1, Corollary 5.3.2] there exist natural exact sequences

O1g̃E〈2〉 ↪→ O(̃g×g̃s g̃)E � OZE
s
, OZE

s
(−ρ, ρ − α) ↪→ O(̃g×g̃s g̃)E � O1g̃E (4.2)

in DG×Gm (̃g × g̃)E, where in each sequence the surjection is induced by restriction of
functions, and where1g̃E ⊂ (̃g× g̃)E is the diagonal copy. (In fact, in [R1] only the case
E = F is treated, but one can easily check that the same arguments apply for E = R.)

4.4. Reminder on [R3]: Kostant section and universal centralizer

We denote by 8s
⊂ 8 the subset of simple roots. As in [R3, §4.3],13 for each α ∈ −8s

we choose an element eα ∈ gZ which forms a Z-basis of the α-weight space in gZ, and
set

e :=
∑
α∈−8s

eα ∈ gR.

12 Here by a (left) action of a group on a category we mean a group morphism from the given
group to the group of isomorphism classes of autoequivalences of the category. As usual, a right
action of a group is a left action of the opposite group.
13 Note that, compared to [R3], we have switched the roles of positive and negative roots. Another

difference which appears below is that we work with g∗ instead of g, using the identification κ.
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We will consider the cocharacter λ̌◦ :=
∑
α∈−8+ α

∨, and the Gm,R-actions on gR
and g∗R defined by

x · y = x−2λ̌◦(x) · y

for x ∈ Gm,R and y either in gR or in g∗R. With these definitions, κ is Gm,R-equivariant,
e is fixed by the action, and b+R and n+R are Gm,R-stable.

By [R3, Lemma 4.3.1], the quotient b+R/[e, n
+

R] is free of rank r; therefore one can
choose a Gm,R-stable R-submodule sR ⊂ b+R such that b+R = sR ⊕ [e, n

+

R]. We set

SR := κ(e + s)R, S̃R := (S ×g∗ g̃)R.

The Gm,R-action on g∗R defined above stabilizes SR, and contracts it to κ(e) as t →∞.
Similarly, the action on g̃R defined by

x · [g : ξ ] = [λ̌◦(x)g : x
−2ξ ]

(for x ∈ Gm,R, g ∈ GR and ξ ∈ (g/n)∗R) stabilizes S̃R, and is contracting (see [R3, §3.5]
for details). We will denote by SF, resp. S̃F, the scheme obtained from SR, resp. S̃R, by
base change to F.

The following result is proved in [R3, Propositions 3.5.5 & 4.5.2]. Here we consider
the Gm,E-action on t∗E where x acts by multiplication by x−2.

Proposition 4.1. The morphism ν : g̃E → t∗E induces a Gm,E-equivariant isomorphism
of E-schemes

νS : S̃E
∼
−→ t∗E.

The following result is proved in [R3, Lemmas 3.5.1 & 4.5.1].

Lemma 4.2. The morphism
a : G× S̃E→ g̃E

induced by the GE-action on g̃E is smooth. When E = F, it factorizes through a surjective
morphism G× S̃F→ g̃

reg
F .

We denote by ĨE the universal centralizer associated with the action of GE on g̃E
(see (2.1)). We will also denote by ĨES the restriction of ĨE to S̃E. Then by [R3, Corol-
lary 3.5.8 & Proposition 4.5.3], ĨES is a commutative smooth group scheme over S̃E. We
denote by ĨES its Lie algebra; it is a locally free sheaf of commutative OS̃E

-Lie algebras
(see [R3, §2.1]).

Recall that the quotient t∗E/W is a smooth scheme, isomorphic to an affine space
(see [De, Théorème 3 & Corollaire on p. 296]). We will denote by % : t∗E → t∗E/W the
quotient morphism; then we denote by ηS : S̃E→ t∗E/W the composition

S̃E
νS
−→ t∗E

%
−→ t∗E/W.

The following result follows from [R3, Theorems 3.5.12 & 4.5.5] and the fact that the
natural morphism SE → t∗E/W is an isomorphism (see [R3, Theorems 3.2.2 & 4.3.3],
combined with [R3, Propositions 2.3.2 & 4.2.1]).
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Theorem 4.3. There exists a canonical isomorphism of sheaves of commutative OS̃E
-Lie

algebras
ĨES
∼= (ηS)

∗�t∗E/W
.

For the remainder of this subsection, let us consider the case E = F. First we recall
that there exists a unique smooth commutative group scheme J̃F over t∗F whose pullback
under νreg is the restriction ĨFreg of ĨF to g̃

reg
F (see [R3, Proposition 3.3.9]). Now by [R3,

Remark 3.5.9], the composition

CohG(̃greg)F→ Rep(̃IFreg)→ Rep(̃IFS)
∼
−→ Rep(̃JF)

is an equivalence of categories, where the first functor is the functor (2.2) in our particular
situation, the second functor is induced by restriction to S̃, and the last functor is induced
by the isomorphism of Proposition 4.1.

Similarly, let s be a finite simple reflection, let Ws := {1, s} ⊂ W , and consider the
natural morphism g̃Fs → t∗F/Ws . Let also g̃

F,reg
s ⊂ g̃Fs be the inverse image of g∗,reg

F under
the natural morphism g̃Fs → g∗F, and let ĨFs be the universal stabilizer associated with the
action of GF on g̃Fs . Then the same arguments as in the case of g̃F (see in particular [R3,
Remark 3.5.7]) show that there exists a unique commutative group scheme J̃Fs on t∗F/Ws

whose pullback under the morphism g̃
F,reg
s → t∗F/Ws is the restriction of ĨFs to g̃

F,reg
s ;

moreover, as above we have a natural equivalence of categories CohG(̃g
reg
s )F

∼
−→ Rep(̃JFs ).

There exists a canonical Cartesian diagram

J̃F //

��

J̃Fs
��

t∗F
// t∗F/Ws

so that the direct and inverse image functors under the quotient morphism t∗F → t∗F/Ws

induce functors Rep(̃JF) → Rep(̃JFs ) and Rep(̃JFs ) → Rep(̃JF) respectively. Under the
equivalences considered above, these functors correspond to the direct and inverse image
functors under the restriction of π̃s to g̃

reg
F , respectively.

4.5. Definition of the functors

Let us denote by T(t∗E/W) the tangent bundle of the smooth E-scheme t∗E/W . We con-
sider the Gm,E-action on t∗E/W such that the corresponding grading on O(t∗E/W) =
O(t∗E)

W is obtained by restriction of the grading on O(t∗E) where the generators tE ⊂
O(t∗E) are in degree 2, so that the morphism % of §4.4 is Gm,E-equivariant. This ac-
tion induces a Gm,E-equivariant structure on �t∗E/W

. We consider the Gm,E-action on
T(t∗E/W) such that O(T(t∗E/W)) is the symmetric algebra of �t∗E/W

〈−2〉 as a graded
algebra. In other words, the Gm,E-action on T(t∗E/W) is the combination of the action
induced by the action on t∗E/W with multiplication by x2 in the fibers of the projection
T(t∗E/W)→ t∗E/W .
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We will consider the bounded derived categories of (equivariant) coherent sheaves
DGm(t∗ ×t∗/W T(t∗/W))E and D(t∗ ×t∗/W T(t∗/W))E. In this context we also have
“modular reduction functors”

F(−) : DGm(t∗ ×t∗/W T(t∗/W))R→ DGm(t∗ ×t∗/W T(t∗/W))F,

F(−) : D(t∗ ×t∗/W T(t∗/W))R→ D(t∗ ×t∗/W T(t∗/W))F.

Now we can explain the construction of the “Kostant–Whittaker reduction” functors

κE : D
G×Gm (̃g)E→ DGm(t∗ ×t∗/W T(t∗/W))E, (4.3)

κE : D
G(̃g)E→ D(t∗ ×t∗/W T(t∗/W))E. (4.4)

First, consider the functor

κ ′E : CohG(̃g)E→ Coh(t∗)E

defined as the pullback functor associated with the embedding S̃E ↪→ g̃E, where we
identify S̃E with t∗E using the isomorphism νS from Proposition 4.1.

Remark 4.4. Consider the closed subvariety ϒ̃F ⊂ g̃F defined in [R3, §3.5], and the anal-
ogously defined closed subscheme ϒ̃R ⊂ g̃R. Then UE acts freely on ϒ̃E, and ν induces
an isomorphism of E-schemes ϒ̃/UE

∼
−→ t∗E. (For E = F, this fact follows from [R3,

Proposition 3.2.1, Theorem 3.2.2 & Proposition 3.5.5]; the case E = R is similar.) Using
this isomorphism, we can describe the functor κ ′E more canonically as the composition of
restriction to ϒ̃E with the natural equivalences CohU(ϒ̃)E

∼
−→ Coh(ϒ̃/UE) ∼= Coh(t∗E).

Lemma 4.5. The functor κ ′E is exact.

Proof. Our functor can be written as the composition

CohG(̃g)E
a∗

−→ CohG(G× S̃)E
∼
−→ Coh(S̃)E

(νS )∗
−−−→
∼

Coh(t∗)E,

where a is the morphism considered in Lemma 4.2, and the middle arrow is the obvious
equivalence. Now a is a smooth (in particular, flat) morphism by Lemma 4.2, which
implies exactness. ut

Now we can explain the definition of κE. This functor will be induced by an exact functor
CohG(̃g)E→ Coh(t∗×t∗/W T(t∗/W))E, which we denote similarly. In fact, starting from
an equivariant coherent sheaf F on g̃E, we can naturally endow its restriction to S̃E with
an action of the universal centralizer ĨES (see §2.2). Differentiating this action we obtain an
action of the Lie algebra ĨES of ĨES . By Theorem 4.3 one can identify ĨES with (ηS)∗�t∗E/W

,
considered as a sheaf of commutative Lie algebras on S̃E. Identifying S̃E with t∗E via
νS (see Proposition 4.1), we obtain an action of the commutative Lie algebra %∗�t∗E/W

on κ ′E(F), hence also an action of its symmetric algebra %∗SOt∗E/W
(�t∗E/W

). This action

defines a coherent sheaf κE(F) on (t∗ ×t∗/W T(t∗/W))E whose direct image under the
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affine morphism (t∗ ×t∗/W T(t∗/W))E → t∗E is κ ′E(F). It follows from Lemma 4.5 that
the functor

κE : CohG(̃g)E→ Coh(t∗ ×t∗/W T(t∗/W))E

that we have just defined is exact. Then the functor (4.4) is defined as the induced functor
between bounded derived categories.

We construct κE similarly, simply keeping track of the appropriate Gm,E-actions.
More precisely, recall the action of Gm,E on S̃E defined in §4.4. One can “extend” this
action to the group scheme GE × S̃E via

x · (g, y) = (λ̌◦(x)gλ̌◦(x)
−1, x · y)

for x ∈ Gm,E, g ∈ GE and y ∈ S̃E. Then the subgroup ĨES is Gm,E-stable, and the pro-
jection ĨES → S̃E is Gm,E-equivariant. This action induces a Gm,E-equivariant structure
on the coherent sheaf ĨES (on S̃E), and it is easily seen that the isomorphism of Theo-
rem 4.3 is Gm,E-equivariant, where the action on the right-hand side is induced by the
action on T(t∗E/W) considered at the beginning of this subsection (see [R3, proof of
Theorem 3.4.2]). Now if F is in CohG×Gm (̃g)E, then the restriction of F to S̃E is a Gm,E-
equivariant coherent sheaf, and the action of ĨES is compatible with this structure in the
obvious sense, which allows one to define the exact functor

κE : CohG×Gm (̃g)E→ CohGm(t∗ ×t∗/W T(t∗/W))E

by the same recipe as for κE. Then the functor (4.3) is defined as the induced functor
between bounded derived categories.

The proof of the following lemma is easy, and left to the reader.

Lemma 4.6. There exist canonical isomorphisms of functors

F ◦ κR ∼= κF ◦ F, F ◦ κR ∼= κF ◦ F,

where, in both equations, the functor F on the left-hand side is the modular reduction
functor on the R-scheme (t∗×t∗/W T(t∗/W))R, and the functor F on the right-hand side
is the similar functor on g̃R. ut

4.6. Another geometric braid group action

The goal of this subsection is to define a “geometric” (right) action of the group Baff on
the category DGm(t∗ ×t∗/W T(t∗/W))E. We begin by defining an action of Waff.

First, there exists a natural action of W on the E-scheme (t∗ ×t∗/W T(t∗/W))E, in-
duced by the action on t∗E. For w ∈ W , we denote by

′KE
w : D

Gm(t∗ ×t∗/W T(t∗/W))E
∼
−→ DGm(t∗ ×t∗/W T(t∗/W))E

the pullback functor associated with the morphism given by the action of w.
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Then, let λ ∈ X. To define the functor associated with tλ we will identify
DGm(t∗ ×t∗/W T(t∗/W))E with the derived category of finitely generated graded mod-
ules over the commutative O(t∗E)-Lie algebra (O(t∗)⊗O(t∗/W) �(t∗/W))E. We define a
module FE

λ for this Lie algebra as follows. As an O(t∗E)-module, FE
λ is free of rank one.

Then to define the action of the commutative Lie algebra (O(t∗)⊗O(t∗/W)�(t∗/W))E it
is enough to define a morphism of O(t∗E)-modules

(O(t∗)⊗O(t∗/W) �(t
∗/W))E→ O(t∗E). (4.5)

In order to do so, we interpret the left-hand side as the module of sections of the projection

(t∗ ×t∗/W T∗(t∗/W))E→ t∗E, (4.6)

where T∗(t∗E/W) is the cotangent bundle of the smooth E-scheme t∗E/W . The morphism
% : t∗E→ t∗E/W defines a natural morphism

d∗% : (t∗ ×t∗/W T∗(t∗/W))E→ T∗(t∗E).

Now since t∗E is an affine space, the right-hand side is canonically isomorphic to t∗E × tE.
Hence, if σ is a section of (4.6), the composition of σ with

(t∗ ×t∗/W T∗(t∗/W))E
d∗%
−−→ T∗(t∗E)

∼= t∗ × tE � tE
dλ
−→ E

defines an element in O(t∗E). This construction provides the definition of (4.5), hence also
of the module FE

λ . It is clear that if λ,µ ∈ X andw ∈ W we have canonical isomorphisms
of (O(t∗)⊗O(t∗/W) �(t∗/W))E-modules

FE
λ ⊗O(t∗E) F

E
µ
∼= F

E
λ+µ and ′KE

w(F
E
λ ) = F

E
w−1λ

. (4.7)

(In the first isomorphism, the left-hand side is endowed with the natural action on the
tensor product).

With this definition at hand, we define the functor

′KE
tλ
: DGm(t∗ ×t∗/W T(t∗/W))E

∼
−→ DGm(t∗ ×t∗/W T(t∗/W))E

as the functor of tensoring (over O(t∗E)) with the module FE
λ .

Using (4.7) one can easily check that we have canonical isomorphisms

′KE
v ◦
′KE

w
∼=
′KE

wv,
′KE

tλ
◦
′KE

tµ
∼=
′KE

tλ+µ
, ′KE

w ◦
′KE

tλ
∼=
′KE

t
w−1λ
◦
′KE

w

for all v,w ∈ W and λ,µ ∈ X. In other words, these functors define a right action of the
group Waff on the category DGm(t∗ ×t∗/W T(t∗/W))E. For w ∈ Waff, we denote by ′KE

w

the functor giving the action of w.
Now we “renormalize” this action as follows. For w ∈ W and λ ∈ X, we set

KE
Tw
:=
′KE

w〈−`(w)〉, KE
θλ
:=
′KE

tλ
〈λ(λ̌◦)〉.
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Then these functors extend to a right action of Baff on DGm(t∗ ×t∗/W T(t∗/W))E. For
any b ∈ Baff, we denote by KE

b the action of b. Note that if b is the image of b under the
canonical surjection Baff � Waff, then there exists n(b) ∈ Z such that

KE
b
∼=
′KE

b
〈n(b)〉. (4.8)

Note also that if ω ∈ � then necessarily

n(Tω) = 0. (4.9)

(Indeed, if the claim is known for a power of ω then it follows for ω. Now this claim is
obvious if ω = tλ for some λ ∈ X such that λ(α∨) = 0 for all α ∈ 8. Since the quotient
of� by the subgroup consisting of such elements is finite, this suffices to imply the claim
for all ω ∈ �.)

4.7. Kostant–Whittaker reduction of line bundles

The goal of this subsection is to prove the following result (whose proof is quite technical,
even though the statement is very natural).

Proposition 4.7. For any λ ∈ X, there exists an isomorphism

κE(Og̃E(λ))
∼= F

E
λ 〈λ(λ̌◦)〉.

We start with two preliminary results. The first lemma is a generalization of a lemma
in [GK].

Lemma 4.8. If g ∈ GF and ξ ∈ (g/n)∗F are such that g · ξ ∈ SF, then g ∈ U+F · BF.

Proof. Our assumption ensures that [g : ξ ] ∈ S̃F. Recall the contracting Gm,F-
actions on SF and S̃F defined in §4.4. We have limx→∞ x · [g : ξ ] = [1 : κ(e)],
hence limx→∞ λ̌◦(x)gBF = 1BF. Since 1BF belongs to the λ̌◦-stable open subset
U+F BF/BF ⊂ BF, we deduce that gBF also belongs to U+F BF/BF, which finishes the
proof. ut

Lemma 4.9. Let λ ∈ X. LetM be an object of CohGm(t∗×t∗/W T(t∗/W))R which is flat
over R, and whose direct image to t∗R is coherent. Assume that for any geometric point F
of R there exists an isomorphism F⊗R M ∼= F F

λ in CohGm(t∗ ×t∗/W T(t∗/W))F. Then
there exists an isomorphism M ∼= FR

λ .

Proof. In this proof we identify the category CohGm(t∗ ×t∗/W T(t∗/W))R with the cat-
egory of finitely generated graded O(t∗×t∗/W T(t∗/W))R-modules, and similarly for F.

First we construct an isomorphism of graded O(t∗R)-modules O(t∗R)
∼
−→ M . In fact,

if M0 denotes the degree 0-part of M (a free R-module of finite rank), our assumption
ensures that dimC(C⊗RM0) = 1; we deduce thatM0 has rank 1. Choosing any basis for
this module, we obtain a morphism of graded O(t∗R)-modules

φ : O(t∗R)→ M.
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Our assumption implies that the induced morphism O(t∗F)→ F⊗RM is an isomorphism
for all F. Since all graded pieces in O(t∗R) and M are free R-modules of finite rank, we
deduce that φ is an isomorphism.

We claim that φ induces an isomorphism of graded O(t∗×t∗/W T(t∗/W))R-modules
FR
λ

∼
−→ M . In fact, it is enough to prove that for all ω ∈ �(t∗R/W) we have ω · φ(1) =

(dλ)(ω′) · φ(1), where ω′ is the image of ω in �(t∗R) = tR ⊗R O(t∗R) as in §4.6 (and
we still write dλ for the morphism (dλ) ⊗ 1 : tR ⊗R O(t∗R) → O(t∗R)). However, the
embedding

EndModgr(O(t∗×t∗/WT(t∗/W))C)(F
C
λ ) ↪→ EndModgr(O(t∗C))(F

C
λ )

is an isomorphism, since the right-hand side is reduced to scalars. Hence C⊗R φ induces
an isomorphism of O(t∗ ×t∗/W T(t∗/W))C-modules FC

λ

∼
−→ C ⊗R M . We deduce that

the image of ω · φ(1) − (dλ)(ω′) · φ(1) in C ⊗R M is 0; it follows that this element is
zero, which finishes the proof. ut

Proof of Proposition 4.7. Using Lemmas 4.6 and 4.9, it is enough to prove the isomor-
phism in the case E = F. For simplicity, in the proof we omit the subscripts “F.”

We denote by g̃� the inverse image in g̃ of the open subset U+B/B ⊂ B; more
concretely we have g̃� = U+B×B (g/n)∗. This open subset is stable under the action of
Gm obtained by restricting the action of G × Gm along the embedding Gm → G × Gm
sending x to (λ̌◦(x), x). Moreover, by Lemma 4.8, we have S̃ ⊂ g̃�.

First, we claim that there exists a canonical isomorphism of Gm-equivariant line
bundles (in other words a canonical trivialization)

Og̃(λ)|̃g�
∼
−→ Og̃�〈λ(λ̌◦)〉. (4.10)

In fact, consider the variety X := G ×U (g/n)∗. It is endowed with a (free) action of T
defined by t · [g : ξ ] = [gt−1

: t · ξ ], and g̃ is the quotient of X by this action. It is also
endowed with a natural action of G×Gm such that the quotient morphism q : X → g̃ is
G×Gm-equivariant. Moreover, it follows from the definition that

Og̃(λ) = (q∗OX )
T,−λ

as G × Gm-equivariant line bundles, where on the right-hand side we mean sections on
which T acts by the character −λ. Consider now the commutative diagram

T× U+ × (g/n)∗ ∼ //

q���

U+B×U (g/n)∗

��

� � // X
q
��

U+ × (g/n)∗ ∼ // U+B×B (g/n)∗
� � // g̃

Here q� is the projection, the right horizontal arrows are the natural (open) embeddings,
and the left arrows are defined by (t, u, ξ) 7→ [ut−1

: t · ξ ] and (u, ξ) 7→ [u : ξ ] re-
spectively. All the maps in this diagram are Gm-equivariant if Gm acts on X and g̃ via the
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morphism Gm → G×Gm considered above, and on T×U+×(g/n)∗, resp. U+×(g/n)∗,
via

x · (t, u, ξ) = (t · λ̌−1
◦ (x), λ̌◦(x)uλ̌

−1
◦ (x), x

−2λ̌◦(x) · ξ),

resp. x · (u, ξ) = (λ̌◦(x)uλ̌
−1
◦ (x), x

−2λ̌◦(x) · ξ).

We deduce an isomorphism of Gm-equivariant line bundles

Og̃(λ)|U+×(g/n)∗
∼
−→

(
(q�)∗OT×U+×(g/n)∗

)T,−λ
.

Now we have (q�)∗OT×U+×(g/n)∗ ∼= F[T] ⊗F OU+×(g/n)∗ , and the subsheaf where T
acts by −λ is (Fλ)⊗F OU+×(g/n)∗ . We deduce (4.10).

Using (4.10) we obtain a canonical isomorphism of Gm-equivariant Ot∗ -modules

κ(Og̃(λ)) ∼= Ot∗〈λ(λ̌◦)〉. (4.11)

To conclude we have to identify the action of �(t∗/W) on κ(Og̃(λ)).
In order to do so we can restrict to the open subset t∗,rs ⊂ t∗ (the complement of

the coroot hyperplanes). Note that ν−1(t∗,rs) = g̃rs. To compute the action we will use
another, more elementary section of the restriction of ν to g̃rs. Set

6rs
:= {1B} × κ(trs) ⊂ g̃rs

⊂ G/B× g∗,

where trs := grs
∩ t. Clearly, ν restricts to an isomorphism 6rs ∼

−→ t∗,rs. Hence, if S̃rs
:=

g̃rs
∩ S̃, we have canonical identifications S̃rs ∼

−→ t∗,rs
∼
←− 6rs. In fact, since the restriction

of Ĩ to g̃reg is the pullback of the group scheme J̃ on t∗, we also obtain a canonical
identification of the corresponding restrictions of Ĩ, and then of their Lie algebras:

Lie(̃Irs
S)

∼ //

��

Lie(̃Jrs)

��

Lie(̃Irs
6)

∼oo

��
S̃rs ∼ // t∗,rs 6rs∼oo

(4.12)

(Here, for A a smooth group scheme over a scheme X, Lie(A) denotes the vector bundle
whose sections are the Lie algebra ofA, considered as an OX-module; the superscript “rs”
means restriction to the regular semisimple locus, and Ĩrs

6 is the restriction of Ĩ to 6rs.)
With the notation we have just introduced, Theorem 4.3 defines an isomorphism

Lie(̃Irs
S)

∼
−→ S̃rs

×Srs T∗(Srs). In fact, since the morphism S̃rs
→ Srs is étale (be-

cause the restriction of % : t∗ → t∗/W to t∗,rs is étale [R3, Proof of Lemma 3.5.3]),
this can be rewritten as an isomorphism Lie(̃Irs

S)
∼
−→ T∗(S̃rs). Now we clearly have

Ĩrs
6 = T × 6rs

⊂ G × 6rs, hence Lie(̃Irs
6) = t × 6rs ∼

−→ T∗(6rs), where we iden-
tify t with κ(t)∗ = g/(n+ ⊕ n) in the natural way. We claim that the following diagram
commutes, where the horizontal isomorphisms are induced by the identifications in (4.12)
and the vertical isomorphisms are the ones we have just defined:



Exotic tilting sheaves and parity sheaves 2307

Lie(̃Irs
S)

∼ //

o ��

Lie(̃Irs
6)

o
��

T∗(S̃rs)
∼ // T∗(6rs)

(4.13)

In fact, let y ∈ κ(trs), and let z̃ be the point of S̃rs corresponding to ỹ = (1B, y) ∈ 6rs

under the identification in (4.12). Let us also fix g ∈ G such that z̃ = g · ỹ. Then,
unravelling the various definitions (see in particular [R3, Remark 3.3.4]), we see that the
fiber over z̃↔ ỹ of (4.13) can be described as

gg·y ad
g−1

∼ //
� _

��

gy

g

����

t

o
��

κ(s)∗ goooo [g, g · y]⊥? _oo
ad
g−1

∼
//

∼

vv UZ_di

[g, y]⊥
� � //

∼

((i d _ Z U

g // // κ(t)∗

Now gg·y = [g, g · y]
⊥ and gy = [g, y]

⊥, so the commutativity is obvious.
With this comparison at hand, we can now identify the restriction of κ(Og̃(λ)) to

t∗,rs with Og̃(λ)|6rs , endowed with the action of Irs
6 , identified with t ⊗ O6rs as above.

But the restriction of Og̃(λ) to {1B} × (g/n)∗ is O(g/n)∗ ⊗F Fλ (where Fλ is the one-
dimensional B-module defined by λ), and we finally deduce that (4.11) defines an iso-
morphism κ(Og̃(λ)) ∼= Fλ〈λ(λ̌◦)〉, as desired. ut

4.8. Kostant–Whittaker reduction and geometric actions

The main result of this subsection is the following.

Proposition 4.10. (1) For any b ∈ Baff, there exists an isomorphism of functors

KF
b ◦ κF

∼= κF ◦ I
F
b .

(2) Let b ∈ Baff, and let F be an object ofDG×Gm (̃g)R such that κR(F) is concentrated
in degree 0, and R-free. Then κR ◦ IRb (F) is concentrated in degree 0 and R-free,
and moreover there exists an isomorphism

KR
b ◦ κR(F) ∼= κR ◦ I

R
b (F)

in DGm(t∗ ×t∗/W T(t∗/W))R.

Remark 4.11. It is probably true that there exists an isomorphism of functors KR
b ◦κR

∼=

κR ◦ I
R
b . The weaker statement in Proposition 4.10(2) will be sufficient for our purposes.

Before proving Proposition 4.10 we need a preliminary lemma. In this lemma we fix a
finite simple reflection s, and consider the morphism ZE

s → g̃E induced by the second
projection.
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Lemma 4.12. (1) The Cartesian square

(S̃ ×g̃ Zs)E
� � //

��

ZE
s

��
S̃E
� � // g̃E

is tor-independent in the sense of [Li, Definition 3.10.2].
(2) The embedding ZE

s ↪→ (̃g × g̃)E identifies (S̃ ×g̃ Zs)E with a closed subscheme
of (S̃ × S̃)E. Then, identifying S̃E with t∗E via the isomorphism of Proposition 4.1,
(S̃ ×g̃ Zs)E identifies with the graph of the action of s on t∗E.

Proof. (1) We decompose our Cartesian square into two squares:

(S̃ ×g̃ Zs)E
� � //

��

G× (S̃ ×g̃ Zs)E //

��

ZE
s

��
S̃E
� � // (G× S̃)E

a // g̃E

Here the left arrows are induced by the embedding Spec(E) ↪→ GE given by the identity.
The left square is obviously Cartesian and tor-independent (since GE is flat over Spec(E)),
and the right square is Cartesian by GE-equivariance, and tor-independent since a is flat
(see Lemma 4.2). The claim follows.

(2) The first claim is a consequence of the definition of S̃E and of the fact that ZE
s is

included in (̃g×g∗ g̃)E. Now we consider the second claim.
In the case E = F, the claim follows from the definition of ZF

s if we use the facts
that S̃F is included in g̃

reg
F (see [R3, (3.1.1)]), and that the morphism νreg isW -equivariant

(see §4.2).
Now, let E = R. It follows in particular from the first claim that (S̃ ×g̃ Zs)R is an

affine scheme. Since GR × (S̃ ×g̃ Zs)R is flat over ZR
s (see the proof of (1)), which is

itself flat over R, and since R is a direct summand in O(GR), the scheme (S̃ ×g̃ Zs)R is
also flat over R.

Let us denote by f the morphism (S̃ ×g̃ Zs)R→ S̃R induced by the first projection.
We claim that f is an isomorphism. In fact, consider the morphism

f ∗ : O(S̃R)→ O(S̃ ×g̃ Zs)R.

Since f is projective, the right-hand side is finite over O(S̃R). Moreover, the morphism
F⊗R (f

∗) is an isomorphism for any geometric point F of R, by the case of fields treated
first. Using [BR2, Lemma 1.4.1] we deduce that f ∗ is an isomorphism, which finishes
the proof of the claim.

Now, consider the morphism τs : S̃R→ S̃R defined as the composition of the inverse
of f with the natural projection (S̃ ×g̃ Zs)R → S̃R. The induced morphism S̃C → S̃C
coincides with the action of s (via the identification S̃C

∼
−→ t∗C). It follows that the mor-

phism τs itself coincides with the action of s, finishing the proof. ut



Exotic tilting sheaves and parity sheaves 2309

Proof of Proposition 4.10. In each case, it is sufficient to prove the claim when b = Ts
for s a finite simple reflection, or when b = θλ for some λ ∈ X.

First, assume that b = θλ. Since κE is compatible with tensoring with a line bundle,
Proposition 4.7 implies that there exists an isomorphism of functors KE

θλ
◦ κE ∼= κE ◦ IEθλ ,

which proves the claims in (1) and (2) in this case.
Now let b = Ts . In this case IETs

∼= R(ps)∗ ◦ L(qs)
∗
〈−1〉, where ps, qs : ZE

s → g̃E
are induced by the first and second projections, respectively. Let κ ′E be the composition
of κE with the direct image under the (affine) morphism ς : (t∗ ×t∗/W T(t∗/W))E→ t∗E.
(In other words, κ ′E is the composition of restriction to S̃E with the functor (νS)∗.)
By Lemma 4.12(1) and the base change theorem (see [Li, Theorem 3.10.3]), we have
κ ′E ◦ I

E
Ts
∼= R(p′s)∗ ◦ L(q

′
s)
∗
◦ κ ′E〈−1〉, where p′s, q

′
s : (S̃ ×g̃ Zs)E→ t∗E are the composi-

tions of νS with the morphisms obtained from ps, qs by restriction. Using Lemma 4.12(2),
we deduce a canonical isomorphism

κ ′E ◦ I
E
Ts
∼= (τ

′
s)
∗
◦ κ ′E〈−1〉, (4.14)

where τ ′s : t
∗

F→ t∗F is the action of s.

In the case E = F, since the automorphism τs : S̃F
∼
−→ S̃F is the restriction of a

GF × Gm,F-equivariant automorphism of g̃reg
F , isomorphism (4.14) is induced by an iso-

morphism of functors
KF
Ts
◦ κF ∼= κF ◦ I

F
Ts
,

which finishes the proof of (1). Then the case E = R follows from the case E = C:
indeed, by (4.14) we have an isomorphism

ς∗(K
R
Ts
◦ κR(F)) ∼= ς∗(κR ◦ IRTs (F)). (4.15)

Hence if κR(F) is concentrated in degree 0 and R-free, the same is true for κR ◦ IRTs (F).
And in this case, since the image of (4.15) under C⊗R (−) is O(t∗ ×t∗/W T(t∗/W))C-
linear, we deduce that (4.15) is O(t∗ ×t∗/W T(t∗/W))R-linear, which finishes the proof
of (2). ut

We finish this section with the following variant of Lemma 4.12, to be used later. In this
lemma we consider the morphism (̃g×g̃s g̃)E→ g̃E induced by the second projection.

Lemma 4.13. (1) The Cartesian square

(S̃ ×g̃ (̃g×g̃s g̃))E
� � //

��

(̃g×g̃s g̃)E

��
S̃E
� � // g̃E

is tor-independent in the sense of [Li, Definition 3.10.2].
(2) If we identify S̃E with t∗E via the isomorphism of Proposition 4.1, the fiber prod-

uct (S̃ ×g̃ (̃g ×g̃s g̃))E identifies with the closed subscheme of (t∗ × t∗)E given by
(t∗ ×t∗/Ws t

∗)E.
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Proof. The proof of (1) is identical to the proof of Lemma 4.12(1). The case E = F of (2)
follows from the observation that the intersection of (̃g ×g̃s g̃)F with g̃

reg
F × g̃

reg
F is the

union of the diagonal copy of g̃reg
F and the graph of the action of s. Now, let us consider

the case E = R.
By the same arguments as in the proof of Lemma 4.12(2), the fiber product(

S̃ ×g̃ (̃g ×g̃s g̃)
)
R

is a flat R-scheme, and a closed subscheme of the affine scheme
(S̃ × S̃)R. Consider the algebra

A := O(S̃ ×g̃ (̃g×g̃s g̃))R.

We claim that A is R-free. Indeed, consider the contracting Gm,R-action on S̃R consid-
ered in §4.4. The diagonal action on (S̃×S̃)R stabilizes the subscheme (S̃×g̃ (̃g×g̃s g̃))R,
so that A is endowed with a Z-grading. Each graded piece of A is finite over R, and flat,
hence free, which proves our claim.

Now, consider the surjection

O(t∗ × t∗)R � A.

For any x ∈ O(t∗R)
s , the image of x ⊗ 1− 1⊗ x in A becomes zero in C⊗R A, by the

case E = C. Since A is R-free, this implies that this image is 0, hence that our morphism
factors through a surjection

(O(t∗)⊗O(t∗)s O(t∗))R � A.

This surjection is compatible with the Z-gradings, and on both sides the graded pieces
are free of finite rank over R. (In fact, this property has been proved above for A. For the
left-hand side, we have O(t∗R) = O(t∗R)

s
⊕O(t∗R)

s
·δ, where δ ∈ tR is any element such

that 〈δ, α〉 = 1—see e.g. [EW, Claim 3.9] – which implies our claim.) Hence to conclude
we only have to prove that the induced morphism

F⊗R (O(t∗)⊗O(t∗)s O(t∗))R � F⊗R A

is an isomorphism for all geometric points F of R.
Using again the case E = F treated above, we only have to prove that the natural

morphism

F⊗R (O(t∗)⊗O(t∗)s O(t∗))R→
(
O(t∗)⊗O(t∗)s O(t∗)

)
F

is an isomorphism. In turn, this follows easily from the decompositions O(t∗E) =
O(t∗E)

s
⊕ O(t∗E)

s
· δ for E = R and F (where δ is as above or, when E = F, its im-

age in tF). ut

5. Tilting exotic sheaves

In this section we use the same notation as in Section 4.

5.1. Overview

In this section we give a description of the category of tilting objects in EG×Gm(Ñ ) in
terms of “Soergel bimodules.” This description is based on a “Bott–Samelson type” de-
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scription of these tilting objects, due to Dodd [Do] in the case p = 0 and generalized
to the modular setting in [MR], and on the use of the “Kostant–Whittaker reduction” of
Section 4.

In §5.2 we review the basic definitions and results on Bezrukavnikov’s exotic t-struc-
ture, and in §5.3 we introduce and study some variants of the associated “standard” and
“costandard” objects. In §5.4 we recall the “Bott–Samelson” description of tilting objects
in EG×Gm(Ñ ). In §5.5 we compute the graded ranks of Hom-spaces between our “Bott–
Samelson objects.” Finally, in §§5.6–5.8 we obtain the desired description in terms of
Soergel bimodules.

5.2. Reminder on the exotic t-structure

In this section we will consider the Springer resolution

ÑE := (G×B (g/b)∗)E ↪→ BE × g∗E,

a vector subbundle of the Grothendieck resolution g̃E studied in Section 4. We denote
by i : ÑE ↪→ g̃E the inclusion. For λ ∈ X we denote by OÑE

(λ) the restriction of
Og̃E(λ) to ÑE. We will consider the derived categories of equivariant coherent sheaves
DG×Gm(Ñ )E and DG(Ñ )E.

By [BR2, Section 1], the geometric braid group actions considered in §4.3 “restrict”
to the categories DG×Gm(Ñ )E and DG(Ñ )E in the following sense. For s a finite simple
reflection, associated with a simple root α, we define Z′Es := Z

E
s ∩(ÑE×ÑE), and denote

by
TsÑ , S

s

Ñ : D
G×Gm(Ñ )E→ DG×Gm(Ñ )E

the Fourier–Mukai transforms with kernels OZ′Es
〈−1〉 and OZ′Es

(−ρ, ρ − α)〈−1〉 re-
spectively. We use the same symbols for the analogous endofunctors of DG(Ñ )E. (Here
OZ′Es

(−ρ, ρ − α) is defined by the same recipe as for OZE
s
(−ρ, ρ − α) in §4.3.) Then

TsÑ and SsÑ are quasi-inverse equivalences of categories, and there exists a right action

of the group Baff on the categories DG×Gm(Ñ )E and DG(Ñ )E such that Ts acts by TsÑ
for any finite simple reflection s, and θλ acts by tensoring with OÑE

(λ) for any λ ∈ X.
For b ∈ Baff, we denote by

JEb : D
G×Gm(Ñ )E

∼
−→ DG×Gm(Ñ )E

the action of b. Then there exist isomorphisms of functors

IEb ◦ Ri∗
∼= Ri∗ ◦ J

E
b , Li∗ ◦ IEb

∼= JEb ◦ Li
∗ (5.1)

and
F ◦ JRb ∼= JFb ◦ F. (5.2)

Recall the elements wλ ∈ Waff defined in §2.5. We set

∇
λ

Ñ ,E := JETwλ
(OÑE

), 1λÑ ,E := JE
(T
w
−1
λ

)−1(OÑE
).
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By (5.2), these objects satisfy

F(∇λÑ ,R
) ∼= ∇

λ

Ñ ,F, F(1λÑ ,R
) ∼= 1

λ

Ñ ,F. (5.3)

Remark 5.1. For any w ∈ W we have JETw (OÑE
) ∼= OÑE

〈−`(w)〉 (see [MR, (3.10)] for
E = F; the case E = R can be deduced by using the arguments in the proof of [BR2,
Proposition 1.4.3], or proved along the same lines.) Therefore, as in [MR], for any w ∈
Wtλ we have

∇
λ

Ñ ,E
∼= JETw (OÑE

)〈−`(wλ)+ `(w)〉, 1λÑ ,E
∼= JE

(T
w−1 )−1(OÑE

)〈−`(w)+ `(wλ)〉.

In the case E = F, the objects ∇λÑ ,F
and 1λÑ ,F

were studied in [MR] (see in partic-

ular [MR, Proposition 3.7]). In fact, if we denote by D≤0, resp. D≥0, the subcategory
of DG×Gm(Ñ )F generated under extensions by the objects 1λÑ ,F

〈n〉[m] with n ∈ Z
and m ∈ Z≥0, resp. by the objects ∇λÑ ,F

〈n〉[m] with n ∈ Z and m ∈ Z≤0, then the
pair (D≤0,D≥0) constitutes a bounded t-structure on DG×Gm(Ñ )F, called the exotic t-
structure. We denote by EG×Gm(Ñ )F the heart of this t-structure.

By [MR, Corollary 3.10], the objects 1λÑ ,F
and ∇λÑ ,F

belong to EG×Gm(Ñ )F. Let us

fix an order ≤′ on X as in [MR, §2.5]. Then by [MR, §3.5], the category EG×Gm(Ñ )F is a
graded highest weight category with weight poset (X,≤′), standard objects {1λÑ ,F

, λ∈X}
and costandard objects {∇λÑ ,F

, λ ∈ X}. In particular, it makes sense to consider the tilting
objects in EG×Gm(Ñ )F, i.e. the objects which admit both a standard filtration (i.e. a fil-
tration with subquotients of the form1λÑ ,F

〈m〉 with λ ∈ X andm ∈ Z), and a costandard
filtration (i.e. a filtration with subquotients of the form ∇λÑ ,F

〈m〉 with λ ∈ X and m ∈ Z).
The subcategory consisting of such objects will be denoted by Tilt(EG×Gm(Ñ )F).

If X admits a standard filtration, resp. a costandard filtration, we denote by (X :
1λÑ ,F

〈m〉), resp. (X : ∇λÑ ,F
〈m〉), the number of times 1λÑ ,F

〈m〉, resp. ∇λÑ ,F
〈m〉, ap-

pears in a standard, resp. costandard, filtration of X. (This number does not depend on
the filtration.) The general theory of graded highest weight categories implies that for
any λ ∈ X there exists a unique (up to isomorphism) indecomposable object T λ in
Tilt(EG×Gm(Ñ )F) which satisfies

(T λ
: 1λÑ ,F) = 1 and (T λ

: 1
µ

Ñ ,F
〈m〉) 6= 0⇒ µ ≤′ λ.

Moreover, every object in Tilt(EG×Gm(Ñ )F) is a direct sum of objects of the form T λ
〈m〉

for some λ ∈ X and m ∈ Z (see e.g. [AR2, Appendix A] for references on this subject).
Recall also from [MR, (2.3)] that

Hom
DG×Gm (Ñ )F

(1λÑ ,F,∇
µ

Ñ ,F
〈n〉[m]) =

{
F if λ = µ and n = m = 0,
0 otherwise.

(5.4)

Remark 5.2. One can easily check that none of our constructions depends on the choice
of the order ≤′.
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5.3. More “standard” and “costandard” objects

If H is an affine group scheme over a ring k, we denote by InvH
k the functor of derived

H-invariants (see [MR, §A.3]).

Lemma 5.3. For any F ,G in DG×Gm(Ñ )R, the complex of R-modules

RHom
DG×Gm (Ñ )R

(F ,G)

is bounded, and has finitely generated cohomology modules.

Proof. By [MR, Proposition A.6], we have a natural isomorphism

RHom
DG×Gm (Ñ )R

(F ,G) ∼= InvGR
R ◦ Inv

Gm,R
R

(
RHom

Db Coh(ÑR)
(F ,G)

)
.

Since the natural morphism ÑR → g∗R (the restriction of the morphism π

from §4.2) is projective, by [Ha, Theorem III.8.8] RHom
Db Coh(ÑR)

(F ,G) is a
bounded complex of finitely generated O(g∗R)-modules, which implies that the complex
Inv

Gm,R
R (RHom

Db Coh(ÑR)
(F ,G)) of R-modules is bounded, and has finitely generated

cohomology modules. Hence the claim follows from the fact that if M is a GR-module
which is finitely generated over R, then InvGR

R (M) is a bounded complex of finitely gen-
erated R-modules (see [J1, Lemma II.B.5 and its proof]). ut

Proposition 5.4. For λ,µ ∈ X and n,m ∈ Z we have

Hom
DG×Gm (Ñ )R

(1λÑ ,R
,∇

µ

Ñ ,R
〈n〉[m]) =

{
R if λ = µ and n = m = 0,
0 otherwise.

Moreover, the natural morphism

F⊗R Hom
DG×Gm (Ñ )R

(1λÑ ,R
,∇

µ

Ñ ,R
〈n〉[m])→ Hom

DG×Gm (Ñ )F
(1λÑ ,F,∇

µ

Ñ ,F
〈n〉[m])

is an isomorphism.

Proof. By the same arguments as in [MR, proof of Lemma 4.11], there exists a canonical
isomorphism of complexes of F-vector spaces

F
L
⊗R RHom

DG×Gm (Ñ )R
(1λÑ ,R

,∇
µ

Ñ ,R
〈n〉)

∼
−→ RHom

DG×Gm (Ñ )F
(1λÑ ,F,∇

µ

Ñ ,F
〈n〉).

By (5.4), the right-hand side is isomorphic to F if λ = µ and n = 0, and is 0 otherwise.
Using Lemma 5.3, we deduce the claim. ut

As in [MR, §4.1], for λ ∈ X, we set

∇
λ
g̃,E := IETwλ

(Og̃E), 1λg̃,E := IE
(T
w
−1
λ

)−1(Og̃E).

Then by (4.1) we have

F(∇λg̃,R) ∼= ∇
λ
g̃,F, F(1λg̃,R) ∼= 1

λ
g̃,F,

and by (5.1) we have

Li∗(∇λg̃,E)
∼= ∇

λ

Ñ ,E, Li∗(1λg̃,E)
∼= 1

λ

Ñ ,E. (5.5)
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Recall that for F ,G in DG×Gm (̃g)E the morphism⊕
n∈Z

HomDG×Gm (̃g)E(F ,G〈−n〉)→ HomDG (̃g)E(F ,G)

induced by the forgetful functor is an isomorphism. In particular, this isomorphism en-
dows the right-hand side with a natural Z-grading.

Proposition 5.5. For λ,µ ∈ X andm ∈ Z there exists an isomorphism of graded O(t∗E)-
modules

HomDG (̃g)E(1
λ
g̃,E,∇

µ

g̃,E[m]) =

{
O(t∗E) if λ = µ and m = 0,
0 otherwise.

Moreover, the natural morphisms

E⊗O(t∗E) HomDG (̃g)E(1
λ
g̃,E,∇

µ

g̃,E[m])→ Hom
DG(Ñ )E

(1λÑ ,E,∇
µ

Ñ ,E
[m])

(induced by Li∗ via isomorphisms (5.5)) and

F⊗R HomDG (̃g)R
(1λg̃,R,∇

µ

g̃,R[m])→ HomDG (̃g)F(1
λ
g̃,F,∇

µ

g̃,F[m])

are isomorphisms.

Proof. As in [MR, Lemma 4.11], for F ,G in DG(̃g)E we have a canonical isomorphism

E
L
⊗O(t∗E) RHomDG (̃g)E(F ,G) ∼= RHom

DG(Ñ )E
(Li∗F , Li∗G).

Choosing F = 1λg̃,E and G = ∇µg̃,E and using (5.5), we deduce an isomorphism

E
L
⊗O(t∗E) RHomDG (̃g)E(1

λ
g̃,E,∇

µ

g̃,E)
∼= RHom

DG(Ñ )E
(1λÑ ,E,∇

µ

Ñ ,E
).

Using Proposition 5.4, we see that the right-hand side is concentrated in degree 0, and
isomorphic either to E (when λ = µ) or to 0 (when λ 6= µ). By Lemma 2.8(2), this
implies the first claim, and the first isomorphism.

The proof of the second isomorphism is similar to the proof of the corresponding
claim in Proposition 5.4. ut

5.4. “Coherent” Bott–Samelson objects

As in [MR, §4.2], if s is a finite simple reflection, we denote by

4E
s : D

G×Gm (̃g)E→ DG×Gm (̃g)E
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the Fourier–Mukai transform associated with the kernel O(̃g×g̃s g̃)E〈−1〉 (see §4.3 for
the notation). We also make a similar definition for s0 an affine simple reflection: by
Lemma 2.10 we can choose (once and for all) a finite simple reflection t and an element
b ∈ Baff such that Ts0 = bTtb

−1, and set 4E
s0
:= IE

b−1 ◦ 4
E
t ◦ I

E
b . One can easily check

that for any simple reflection s ∈ Waff there exists an isomorphism

F ◦4R
s
∼= 4

F
s ◦ F. (5.6)

For s = (s1, . . . , sn) a sequence of simple reflections and ω ∈ �, we set

ME(ω, s) := 4
E
sn
◦ · · · ◦4E

s1
◦ IETω (Og̃E).

By (4.1) and (5.6), these objects satisfy

F(MR(ω, s)) ∼=MF(ω, s).

Our interest in the objects ME(ω, s) comes from the following result, which is proved
in [MR, Corollary 4.2].

Proposition 5.6. For any sequence s of simple reflections and ω ∈ �, the object
Li∗(MF(ω, s)) is in EG×Gm(Ñ )F, and is tilting. Moreover, any indecomposable object of
Tilt(EG×Gm(Ñ )F) is a direct summand in an object of the form Li∗(MF(ω, s))〈n〉 with
(ω, s) as before and n ∈ Z. ut

The properties of Hom-spaces between objects of the form ME(s, ω) are summarized in
the following proposition.

Proposition 5.7. For any sequences s and t of simple reflections, for ω,ω′ ∈ �, and for
k ∈ Z, we have

HomDG (̃g)E(ME(ω, s),ME(ω
′, t)[k]) = 0

and Hom
DG(Ñ )E

(
Li∗(ME(ω, s)), Li

∗(ME(ω
′, t))[k]

)
= 0

unless k = 0. Moreover, the graded O(t∗E)-module

HomDG (̃g)E(ME(ω, s),ME(ω
′, t))

is graded free, and the functor Li∗ induces an isomorphism

E⊗O(t∗E) HomDG (̃g)E(ME(ω, s),ME(ω
′, t))

∼
−→ Hom

DG(Ñ )E

(
Li∗(ME(ω, s)), Li

∗(ME(ω
′, t))

)
.

Finally, the functor F(−) induces isomorphisms of graded F-vector spaces

F⊗R HomDG (̃g)R
(MR(ω, s),MR(ω

′, t))
∼
−→ HomDG (̃g)F(MF(ω, s),MF(ω

′, t))

and

F⊗R Hom
DG(Ñ )R

(Li∗(MR(ω, s)), Li
∗(MR(ω

′, t)))

∼
−→ Hom

DG(Ñ )F

(
Li∗(MF(ω, s)), Li

∗(MF(ω
′, t))

)
.
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Proof. By [MR, Lemma 4.1], the objects of the form ME(ω, s) belong to the subcategory
ofDG×Gm (̃g)E generated under extensions by the objects ∇λg̃,E〈m〉 for λ ∈ X and m ∈ Z,
and also to the subcategory generated under extensions by the objects1λg̃,E〈m〉 for λ ∈ X
and m ∈ Z. (In [MR] only the case E = F is considered, but the same proof applies for
E = R; in fact this proof relies on the existence of the exact sequences (4.2).) Then the
claims follow from Propositions 5.4 and 5.5. ut

5.5. Graded ranks of Hom-spaces

Recall the Haff-module Msph of §2.5. If F is an object of EG×Gm(Ñ )F which admits a
standard filtration, we define

ch1(F) :=
∑
λ∈X
n∈Z

(F : 1λÑ 〈n〉) · v
n
·mλ ∈Msph.

Similarly, if G is an object of EG×Gm(Ñ )F which admits a costandard filtration, we define

ch∇(G) :=
∑
λ∈X
n∈Z

(G : ∇λÑ 〈n〉) · v
−n
·mλ ∈Msph.

One can easily check that for F ,G tilting objects in EG×Gm(Ñ )F we have

grkF(Hom
DG(Ñ )F

(F ,G)) = 〈ch1(F), ch∇(G)〉. (5.7)

Proposition 5.8. For any sequence s of simple reflections and any ω ∈ � we have

ch1(Li∗MF(ω, s)) = ch∇(Li∗MF(ω, s)) = m(ω, s).

Proof. We only consider the case of ch1; the case of ch∇ is similar. For any w ∈ Waff we
set

1wÑ ,F := J(T
w−1 )−1(OÑF

), 1wg̃,F := I(T
w−1 )−1(Og̃F)

and mw := m0 · Tw ∈ Msph. Then 1wÑ ,F
is a standard object in EG×Gm(Ñ )F, and we

have
ch1(1wÑ ,F) = mw.

Indeed, the formula holds by definition if w is minimal in Ww. For a general w ∈ Waff,
write w = uv with u ∈ W and v minimal in Ww. Then Tw−1 = Tv−1Tu−1 , so that

1wÑ ,F = J(T
w−1 )−1(OÑF

) = J(T
u−1 )−1·(T

v−1 )−1(OÑF
)

= J(T
v−1 )−1 ◦ J(T

u−1 )−1(OÑF
) = J(T

v−1 )−1(OÑF
)〈`(u)〉

(see Remark 5.1), and hence

ch1(1wÑ ,F) = v`(u) ch1(1vÑ ,F) = v`(u)mv = mw.
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Using this fact and the proof of [MR, Lemma 4.1], one can check that for allw ∈ Waff
and all simple reflections s, the object Li∗(4F

s (1
w
g̃,F)) belongs to EG×Gm(Ñ )F and admits

a standard filtration, and moreover

ch1(Li∗(4F
s (1

w
g̃,F))) = mw · (Ts + v−1) = ch1(Li∗(1wg̃,F)) · (Ts + v−1).

Then one deduces that for any object F in the subcategory of DG×Gm (̃g)F generated
under extensions by the objects 1λg̃,F〈n〉 (λ ∈ X, n ∈ Z), the object Li∗(4F

s (F)) belongs
to EG×Gm(Ñ )F and admits a standard filtration, and moreover

ch1(Li∗(4F
s (F))) = ch1(Li∗(F)) · (Ts + v−1).

Since, for ω ∈ �, we have

ch1(Li∗(IFTω (Og̃F))) = ch1(JF(T
ω−1 )−1(OÑF

)) = ch1(1ωÑ ,F) = mω = m0 · Tω,

the formula follows. ut

Proposition 5.9. Let s, t be sequences of simple reflections, and let ω,ω′ ∈ �. Then the
graded O(t∗R)-module

HomDG (̃g)R

(
MR(ω, s),MR(ω

′, t)
)

is graded free, of graded rank 〈m(ω, s),m(ω′, t)〉.

Proof. The first assertion follows from Proposition 5.7. For the second assertion, we ob-
serve that, by Proposition 5.7 again, the graded rank under consideration is equal to the
graded dimension of the graded F-vector space

Hom
DG(Ñ )F

(
Li∗(MF(ω, s)), Li

∗(MR(ω
′, t))

)
(where F is any geometric point of R). Then the assertion follows from (5.7) and Propo-
sition 5.8. ut

5.6. “Coherent” Bott–Samelson category

We define a “coherent” category of Bott–Samelson objects BScoh as follows. The objects
in this category are the triples (ω, s, n) as in §3.6. The morphisms are given by

HomBScoh
(
(ω, s, n), (ω′, t, m)

)
= HomDG×Gm (̃g)R

(
MR(ω, s)〈−n〉,MR(ω

′, t)〈−m〉
)
.

Proposition 5.10. The category Tilt(EG×G(Ñ )F) can be recovered from the category
BScoh, in the sense that it is equivalent to the Karoubian closure of the additive envelope
of the category which has the same objects as BScoh, and morphisms from (ω, s, n) to
(ω′, t, m) which are given by the (m− n)-th piece of the graded vector space

F⊗O(t∗R)
(⊕
k∈Z

HomBScoh
(
(ω, s, 0), (ω′, t, k)

))
.
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Proof. Consider the category which has the same objects as BScoh, and whose morphisms
are defined as in the statement. By Proposition 5.7, this category is equivalent to the full
subcategory A of DG×Gm(Ñ )F whose objects are of the form Li∗(MF(ω, s)). It follows
from Proposition 5.6 that the category Tilt(EG×Gm(Ñ )F) is equivalent to the Karoubian
closure of the additive envelope of A; the claim follows. ut

5.7. Kostant–Whittaker reduction and Bott–Samelson objects

Let us consider the constructions of §§3.3–3.4, with X now defined as X∗(TR). Then the
space t∗ of Section 3 coincides with the space denoted by t∗R in the present section, and
we can define the algebra C and the category BSalg of “Bott–Samelson” C-modules with
the present data. We use the same notation as in §3.4 for the modules Ew and Ds .

Lemma 5.11. There exists a natural W -equivariant isomorphism of graded algebras

C
∼
−→ O(t∗ ×t∗/W T(t∗/W))R.

Proof. By definition, the algebra C is generated by O(t∗R) and the images of the elements
of the form ~−1(f ⊗ 1− 1⊗ f ) ∈ C~ for f ∈ O(t∗R)

W . On the other hand, the algebra
O(t∗ ×t∗/W T(t∗/W))R is the symmetric algebra (over O(t∗R)) of the module

(O(t∗)⊗O(t∗)W �(t
∗/W))R.

(Note that this module is free of finite rank since t∗R/W is an affine space, by Lemma 3.1.)
One can easily check that the assignment

~−1(f ⊗ 1− 1⊗ f ) 7→ d(f )

induces a morphism C → O(t∗ ×t∗/W T(t∗/W))R of graded O(t∗R)-algebras, and that
this morphism is a W -equivariant isomorphism. ut

From now on we identify the two algebras in Lemma 5.11 via the isomorphism con-
structed in its proof. Then one can consider the functor κR of §4.5 as a functor taking
values in Db Modgr(C).

Proposition 5.12. For any sequence s of simple reflections, any ω ∈ �, and any n ∈ Z,
there exists an isomorphism

κR(MR(ω, s)〈n〉) ∼= D(ω, s)〈n〉 in Db Modgr(C).

Before proving the proposition we begin with a lemma.

Lemma 5.13. Let s be a finite simple reflection. Let F be an object of DG×Gm (̃g)R such
that κR(F) is concentrated in degree 0, and R-free. Then κR ◦ 4R

s (F) is concentrated
in degree 0 and R-free, and moreover there exists an isomorphism of graded C-modules

κR ◦4
R
s (F) ∼= κR(F)⊗O(t∗R) Ds .
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Proof. The proof is very similar to the proof of the case b = Ts of Proposition 4.10(2).
In fact, using the same notation as in that proof, by Lemma 4.13 and the base change
theorem (and using also (3.6)) we have a canonical isomorphism of functors

κ ′E ◦4
E
s (−)

∼= κ
′

E(−)⊗O(t∗E) (E⊗R Ds) (5.8)

for E = R or F. (Note that Ds is free over O(t∗R)—see the proof of Lemma 4.13(2)—so
that the tensor product on the right-hand side makes sense in the derived category.)

When E = F, using the fact that 4F
s
∼= L(π̃s)

∗
◦ R(π̃s)∗ (see [R1, Proposition 5.2.2])

and the remarks at the end of §4.4, one can check that this isomorphism is induced by an
isomorphism of functors

κF ◦4
F
s (−)

∼= κF(−)⊗O(t∗F) (F⊗R Ds)

(where the tensor product on the right-hand side is defined in a similar way to the case
of R). Then we can come back to the case E = R: if κR(F) is concentrated in degree 0
and R-free, (5.8) shows that the same holds for κR ◦4R

s (F). And the final claim follows
from the case E = C treated above. ut

Proof of Proposition 5.12. We remark that the statement of Lemma 5.13 also holds when
s is an affine simple reflection, by definition of 4s in this case and Proposition 4.10(2)
(see also (4.8)). This observation reduces the proof of Proposition 5.12 to the proof that

κR(I
R
Tω
(Og̃R))

∼= Eω

when ω ∈ �. However, by Proposition 4.10 (see also (4.8) and (4.9)) we have

κR(I
R
Tω
(Og̃R))

∼=
′KR

ω (Ot∗R
),

where t∗R is identified with the zero section in t∗×t∗/W T(t∗/W)R. Now writing ω = vtλ
(with v ∈ W and λ ∈ X) we have

′KR
ω (Ot∗R

) ∼=
′KR

tλ
◦
′KR

v (Ot∗R
) ∼=

′KR
tλ
(Ot∗R

) ∼= F
R
λ .

Similarly Eω ∼= Etλ , and one can check that FR
λ and Etλ are isomorphic under our

identification C ∼= O(t∗ ×t∗/W T(t∗/W))R. ut

5.8. Equivalence

Let us fix isomorphisms as in Proposition 5.12, for all s and ω. Then the functor κR
induces a functor

κBS : BS
coh
→ BSalg.

The main result of this section is the following.

Theorem 5.14. The functor κBS is an equivalence of categories.

Before proving the theorem we first establish a lemma. In this statement, we identify
quasi-coherent sheaves on S̃R with O(S̃R)-modules, and denote by Rep(̃IRS ) the abelian
category of representations of the commutative O(S̃R)-Lie algebra ĨRS .
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Lemma 5.15. The natural functor

Rep(̃IRS )→ Rep(̃IRS )

defined by differentiating the action is fully faithful on representations which are free
over O(S̃R).

Proof. The group scheme ĨRS is smooth over S̃R (see §4.4), hence it is infinitesimally
flat as an O(S̃R)-group scheme (in the sense of [J1, §I.7.4]) by [SGA6, Exposé VII,
Proposition 1.10]. This group scheme is also integral, since it is flat over S̃R and its
pullback to S̃C ∩ g̃rs

C is irreducible. (In fact, it can be deduced from [R3, Lemma 2.3.3]
that the restriction of ĨC to g̃rs

C identifies with T × g̃rs
C.) Using [J1, Lemma I.7.16] we

deduce that if we denote by Dist(̃IRS ) the distribution algebra of this group scheme, the
natural functor

Rep(̃IRS )→ Mod(Dist(̃IRS ))

is fully faithful on representations which are projective over O(S̃R).
Now, consider the natural algebra morphism

UO(S̃R)
(̃IRS )→ Dist(̃IRS ),

where the left-hand side is the universal enveloping algebra of ĨRS (see [J1, §I.7.10]). If K
denotes the fraction field of O(S̃R), we claim that this morphism induces an isomorphism

K⊗O(S̃R)
UO(S̃R)

(̃IRS )
∼
−→ K⊗O(S̃R)

Dist(̃IRS ). (5.9)

Indeed, the left-hand side is isomorphic to UK(K ⊗O(S̃R)
ĨRS ), and if we set ĨK :=

Spec(K) ×S̃R
ĨRS , then by [R3, Lemma 2.1.1] and [J1, §I.7.4, (1)] respectively, there

are natural isomorphisms

K⊗O(S̃R)
ĨRS
∼= Lie(̃IK), K⊗O(S̃R)

Dist(̃IRS ) ∼= Dist(̃IK),

so that (5.9) gets identified with the natural morphism

UK(Lie(̃IK))→ Dist(̃IK).

Since K is a field of characteristic zero, the latter morphism is an isomorphism by [J1,
§I.7.10, (1)], which finishes the proof of our claim.

Now that the claim is established, the lemma follows from Lemma 1.10. ut

Proof of Theorem 5.14. By definition, κBS is essentially surjective. Hence what we have
to prove is that for any sequences s, t of simple reflections and any ω,ω′ ∈ �, the mor-
phism

HomDG (̃g)R

(
MR(ω, s),MR(ω

′, t)
)
→ HomC

(
D(ω, s),D(ω′, t)

)
induced by κR (via the isomorphisms of Proposition 5.12) is an isomorphism. By Corol-
lary 3.23 and Proposition 5.9, both sides are graded free over O(t∗R), of the same graded
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rank. Hence, by Lemma 2.9, to finish the proof it suffices to show that the image of our
morphism under the functor O(t∗,rsF ) ⊗O(t∗R) (−) is injective for any geometric point F
of R. Then, by the definition of κR (see §4.5) and Lemma 5.15, it suffices to prove that
the morphism

O(t∗,rsF )⊗O(t∗R) HomDG (̃g)R

(
MR(ω, s),MR(ω

′, t)
)

→ O(t∗,rsF )⊗O(t∗R) HomRep(̃IRS )
(
MR(ω, s)|S̃R

,MR(ω
′, t)
|S̃R

)
induced by restriction to S̃R is injective. And finally, to prove this injectivity it suffices to
show that the natural morphism

O(t∗,rsF )⊗O(t∗R) HomDG (̃g)R

(
MR(ω, s),MR(ω

′, t)
)

→ HomCoh(S̃rs
F )

(
MF(ω, s)|S̃rs

F
,MF(ω

′, t)
|S̃rs

F

)
is injective.

Consider the following chain of isomorphisms:

O(t∗,rsF )⊗O(t∗R) HomDG (̃g)R

(
MR(ω, s),MR(ω

′, t)
)

∼= O(t∗,rsF )⊗O(t∗F)
(
F⊗R HomDG (̃g)R

(MR(ω, s),MR(ω
′, t))

)
∼= O(t∗,rsF )⊗O(t∗F)

(
HomDG (̃g)F(MF(ω, s),MF(ω

′, t))
)

∼= HomCohG (̃grs)F

(
MF(ω, s)|̃grs

F
,MF(ω

′, t)|̃grs
F

)
.

Here the second isomorphism follows from Proposition 5.7, and the others are easy. (Ob-
serve that, on the last line, the objects MF(ω, s)|̃grs

F
and MF(ω′, t)|̃grs

F
are concentrated in

degree 0, i.e. are equivariant coherent sheaves.) Via these identifications, the morphism
under consideration is the morphism

HomCohGF (̃grs
F )

(
MF(ω, s)|̃grs

F
,MF(ω

′, t)|̃grs
F

)
→ HomCoh(S̃rs)F

(
MF(ω, s)|S̃rs

F
,MF(ω

′, t)
|S̃rs

F

)
induced by restriction to S̃rs

F . Then injectivity follows from the observation that the functor
CohG(̃grs)F→ Coh(S̃rs)F is faithful, since it can be written as the composition

CohG(̃grs)F→ CohG(G× S̃rs)F
∼
−→ Coh(S̃rs)F

where the first functor is the inverse image under the natural morphism ars
: GF × S̃rs

F
→ g̃rs

F (which is faithful since ars is smooth and surjective, by Lemma 4.2), and the
second functor is the natural equivalence. ut

6. Proofs of the main results

In this section (except in §6.5) we come back to the assumptions of §1.1: G is a prod-
uct of simply connected quasi-simple groups and general linear groups over F, and the
characteristic p of F is very good for each quasi-simple factor of G. Such a group can be
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obtained by base change to F from a split connected reductive group scheme GZ over Z,
and we set GR = Spec(R)×Spec(Z) GZ, where R is the localization of Z at all the prime
numbers which are not very good for a quasi-simple factor of G. These data satisfy the
assumptions of Sections 4–5, and we use the same notation as in those sections. (The
only exception is that we drop the subscripts “F,” since the geometric point will not vary
anymore.)

We also let Ǧ be the complex Langlands dual group. This group and R satisfy the
assumptions of Section 3, and we also use the notation of that section. (Note a slight
conflict of notation: t denotes X̌ ⊗Z R in Section 3, while in the present section it will
denote X̌⊗ZF.) We assume that the roots of B̌ with respect to Ť are the coroots of B with
respect to T.

6.1. Proof of Theorem 1.1

Combining Theorems 3.14 and 5.14 we obtain an equivalence of categories

BStop ∼
−→ BScoh (6.1)

which is the identity morphism on objects. Then using Propositions 3.9 and 5.10 we
deduce the desired equivalence of additive categories

2 : Parity
(Ǐ )
(Gr,F) ∼−→ Tilt(EG×Gm(Ñ )).

By construction, this equivalence satisfies

2(EF(ω, s)) ∼= Li∗MF(ω, s) (6.2)

for any sequence s of simple reflections and any ω ∈ �, and 2 ◦ [1] ∼= 〈−1〉 ◦ 2. It
also satisfies property (3) of Theorem 1.1, by (6.2) and a standard argument based on
induction on `(wλ) (see in particular Remark 3.10 and [MR, Remark 4.3]).

Finally, we prove property (2). In fact, this property can be expressed as the following
equalities for any E in Parity

(Ǐ )
(Gr,F):

ch∗Gr(E) = ch1(2(E)), ch!Gr(E) = ch∇(2(E)). (6.3)

However, these formulas hold when E = EF(ω, s) by Proposition 3.22, Proposition 5.8,
and (6.2). And one can easily check that if they hold for E then they hold for E[1]. Using
these observations one can prove, by standard arguments, that the formulas (6.3) hold
when E = Eλ[i] for some λ ∈ X and i ∈ Z, by induction on `(wλ). The general case
follows.

6.2. Proof of Theorem 1.2

We construct the equivalence 8 as the composition

Dmix
(Ǐ )
(Gr,F) := Kb Parity

(Ǐ )
(Gr,F) Kb(2)

−−−−→
∼

Kb Tilt(EG×Gm(Ñ )) ∼−→ DG×Gm(Ñ ),

where the last equivalence is provided by [MR, Proposition 3.11]. Then it follows from
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this construction and the properties of 2 proved in Theorem 1.1 that

8 ◦ 〈1〉 ∼= 〈1〉[1] ◦8 and 8(Emix
λ ) ∼= T −λ.

It remains to show that

8(1mix
−λ )
∼= 1

λ

Ñ and 8(∇mix
−λ )
∼= ∇

λ

Ñ

for any λ ∈ X. We prove the first isomorphism; the proof of the second one is similar.
Our proof is similar to the proof of a similar claim in [AR2, Lemma 5.2]. Namely, we

use induction on `(wλ). If `(wλ) = 0, then1mix
−λ
∼= Emix
−λ and1λÑ

∼= T λ, hence our claim
is clear. For a general λ, we consider a non-zero morphism 1λÑ → T λ (which is unique
up to an invertible scalar), and the associated triangle

1λÑ → T λ
→ N

[1]
−→ . (6.4)

Then N belongs to the triangulated subcategory of DG×Gm(Ñ ) generated by the objects
1
µ

Ñ 〈m〉 with m ∈ Z and µ ∈ X which satisfies Gr−µ ⊂ Gr−λ and µ 6= λ (see The-

orem 1.1(2)–(3)). In particular, by induction we deduce that 8−1(N) is supported on
Gr−λ r Gr−λ.

Again using induction we also observe that

HomDmix
(Ǐ )
(Gr,F)

(
8−1(1λÑ ),1

mix
−µ 〈m〉[n]

)
= 0

for all n,m ∈ Z and µ ∈ X such that Gr−µ ⊂ Gr−λ and µ 6= λ. Hence the triangle

8−1(1λÑ )→ Emix
−λ → 8−1(N)

[1]
−→

obtained from (6.4) satisfies the two properties which uniquely characterize the triangle
whose first arrow is the unique (up to scalar) non-zero morphism 1mix

−λ → Emix
−λ . In par-

ticular, we deduce the wished-for isomorphism 8−1(1λÑ )
∼= 1mix

−λ .

Remark 6.1. The equivalence Kb Tilt(EG×Gm(Ñ )) ∼−→ DG×Gm(Ñ ) used in the proof of
Theorem 1.2 is the composition

Kb Tilt(EG×Gm(Ñ )) ↪→ KbEG×Gm(Ñ ) real
−−→ DG×Gm(Ñ ), (6.5)

where real is the functor constructed in [BBD, Lemme 3.1.11]. On the other hand, it
follows from [MR, Corollary 4.16] that the objects in Tilt(EG×Gm(Ñ )) are concentrated
in degree 0, so that one can also construct such an equivalence as the composition

Kb Tilt(EG×Gm(Ñ )) ↪→ Kb CohG×Gm(Ñ ) can
−−→ DG×Gm(Ñ ), (6.6)

where can is the canonical functor. We claim that (6.5) and (6.6) are isomorphic. Indeed,
it is clear that can coincides with the realization functor from [BBD, Lemme 3.3.11]
associated with the tautological t-structure on DG×Gm(Ñ ). Then the claim follows from
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the observation that if C and C ′ are the hearts of two bounded t-structures on DbA for
some abelian category A , then the following diagram commutes up to isomorphism:

Kb(C ∩ C ′) �
� //

� _

��

KbC

real
��

KbC ′
real′ // DbA

6.3. Proof of Theorem 1.4

Before entering the proof, we need some preliminary results.
First, recall that we use the same notation for the indecomposable objects in

Parity
Ǐ
(Gr,F) and in Parity

(Ǐ )
(Gr,F) (see §3.2). We define the additive subcategory Tilt

of DG×Gm (̃g) as the Karoubian closure of the additive envelope of the subcategory gen-
erated by the objects MF(ω, s) for s a sequence of simple reflections and ω ∈ �. Us-
ing (6.1) it is not difficult to construct an equivalence of categories

Parity
Ǐ
(Gr,F) ∼−→ Tilt (6.7)

sending EF(ω, s)[n] to MF(ω, s)〈−n〉.
This equivalence shows that the category Tilt is Krull–Schmidt, and one can transfer

the known classification of indecomposable objects in Parity
Ǐ
(Gr,F) proved in [JMW1]

to deduce a classification of the indecomposable objects in Tilt. Namely, for any λ ∈ X,
if wλ = ωs1 · · · sr is a reduced decomposition, then there exists a unique indecomposable
factor T̃ λ of MF(ω, (s1, . . . , sr)) which is not isomorphic to any object of the form
MF(ω′, t)〈m〉 where m ∈ Z, ω′ ∈ �, and t is a sequence of simple reflections of length
at most r − 1. This object does not depend on the choice of the reduced decomposition
up to isomorphism. Moreover, any indecomposable object in Tilt is isomorphic to T̃ λ

〈m〉

for some λ ∈ X and m ∈ Z. Finally, the image of E−λ under (6.7) is T̃ λ.
The following lemma implies that the objects T̃ λ are “deformations” of the tilting

exotic sheaves T λ.

Lemma 6.2. For any λ ∈ X we have Li∗(T̃ λ) ∼= T λ.
Proof. The result easily follows if we can prove that Li∗(T̃ λ) is indecomposable. How-
ever, since T̃ λ is a direct summand in an object of the form MF(ω, s), it follows from
Proposition 5.7 that the functor Li∗ induces an isomorphism

F⊗O(t∗) EndDG (̃g)(T̃ λ)
∼
−→ End

DG(Ñ )

(
Li∗(T̃ λ)

)
.

Then the proof proceeds as for Lemma 2.4. ut

Lemma 6.3. The subcategory Tilt generates DG×Gm (̃g) as a triangulated category.
Proof. Looking at the proof of [MR, Corollary 4.2], one can check that the triangulated
subcategory generated by Tilt coincides with the triangulated subcategory generated by
the objects 1λg̃〈m〉 for λ ∈ X and m ∈ Z. By [BR2, Lemma 1.11.3(2)], for w ∈ W we
have ITw (Og̃) ∼= Og̃〈−`(w)〉. We deduce (as in Remark 5.1) that

1λg̃
∼= I(Tt−λ )

−1(Og̃)〈−`(tλ)+ `(wλ)〉.
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Then, using [MR, Lemma 2.3] and [BR2, Lemma 1.11.3], one can check that the tri-
angulated subcategory generated by the objects 1λg̃〈m〉 coincides with the triangulated
subcategory generated by the objects Og̃(λ)〈m〉 for λ ∈ X and m ∈ Z. Hence the claim
of the lemma is equivalent to the claim that DG×Gm (̃g) is generated by this collection of
objects, which can be proved by the same arguments as for Ñ in [A1, Corollary 5.8]. ut

Lemma 6.4. There exists an equivalence of triangulated categories

KbTilt
∼
−→ DG×Gm (̃g)

commuting with 〈1〉 and sending T̃ λ to T̃ λ for any λ ∈ X.

Proof. It follows from [MR, Corollary 4.16] that the complexes T λ are concentrated in
degree 0. Using Lemmas 6.2 and 2.8(2) (over an affine open covering of g̃) we deduce
that the complexes T̃ λ are also concentrated in degree 0. We construct the functor of the
lemma as the composition

KbTilt→ Kb CohG×Gm (̃g)→ DG×Gm (̃g).

It follows from standard arguments, using Proposition 5.7 and Lemma 6.3, that this func-
tor is an equivalence of categories. ut

Proof of Theorem 1.4. We define 9 as the composition

Dmix
Ǐ
(Gr,F) := Kb Parity

Ǐ
(Gr,F) (6.7)

−−→
∼

KbTilt
Lemma 6.4
−−−−−−→

∼
DG×Gm (̃g).

By construction, this equivalence satisfies 9 ◦ 〈1〉 ∼= 〈1〉[1] ◦9 and 9(Emix
−λ )
∼= T̃ λ. The

isomorphisms involving standard and costandard objects can be proved by using the same
arguments as for their counterparts in Theorem 1.2. ut

6.4. Compatibility

In this subsection we prove that the functors 8 and 9 as constructed in §§6.2–6.3 are
compatible in the natural way. We denote by For : Dmix

Ǐ
(Gr,F)→ Dmix

(Ǐ )
(Gr,F) the “for-

getful functor” induced by the forgetful functor Parity
Ǐ
(Gr,F)→ Parity

(Ǐ )
(Gr,F).

Proposition 6.5. The following diagram commutes up to isomorphisms of functors:

Dmix
Ǐ
(Gr,F) 9

∼
//

For
��

DG×Gm (̃g)

Li∗

��
Dmix
(Ǐ )
(Gr,F) 8

∼
// DG×Gm(Ñ )

Proof. It is clear from construction that the diagram

Parity
Ǐ
(Gr,F)

∼

(6.7) //

For
��

Tilt

Li∗

��
Parity

(Ǐ )
(Gr,F)

∼

(1.1) // Tilt(EG×Gm(Ñ ))
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commutes. Hence to conclude we only have to prove that the diagram

KbTilt ∼ //

Kb(Li∗)
��

DG×Gm (̃g)

Li∗
��

Kb Tilt(EG×Gm(Ñ )) ∼ // DG×Gm (̃g)

commutes, where the horizontal arrows are the functors considered in §6.3 and §6.2
respectively. The latter fact follows from Remark 6.1 and the fact that the objects in
Tilt, considered as equivariant coherent sheaves, are acyclic for the functor i∗ (see
Lemma 2.8(2)). ut

6.5. Proof of Corollary 1.6

We begin with an easy lemma. Let k be a field, andX =
⊔
s∈S Xs be an algebraic variety

endowed with an algebraic stratification, where Xs is simply connected for any s ∈ S .
We denote by DX the Grothendieck–Verdier duality functor.

Lemma 6.6. Let F be an object in Db
S (X, k) which satisfies DX(F) ∼= F and

Hom(F ,F[n]) = 0 for any n ∈ Z<−1. Then F is perverse.

Proof. Assume that F is not perverse, and let N = max{n ∈ Z>0 |
pHn(F) 6= 0}.

Then since DX(F) ∼= F , N is also the largest integer such that pH−N (F) 6= 0, and
we have H−N (F) ∼= DX(HN (F)). In particular, top(HN (F)) ∼= DX(soc(H−N (F))).
Under our assumptions each simple S -constructible perverse sheaf on X is stable un-
der DX, hence there exists an isomorphism top(HN (F)) ∼= soc(H−N (F)); in particular
there exists a non-zero morphism φ : HN (F) → H−N (F). Now consider the follow-
ing morphism (where the first and third morphisms come from the appropriate perverse
truncation triangles):

ψ : F → HN (F)[−N ] φ[−N ]−−−−→ H−N (F)[−N ] → F[−2N ].

Then pHN (ψ) 6= 0, hence ψ is a non-zero element in Hom(F ,F[−2N ]), contradicting
our assumption. ut

Proof of Corollary 1.6. By standard reductions (see e.g. [JMW2, Lemma 3.6]) one can
assume that G is a product of simply connected quasi-simple groups not of type A and
general linear groups. Then G and F satisfy the assumptions of Theorem 1.1.

By Lemma 6.6, to prove our claim it suffices to prove that for λ ∈ −X+ and n < −1
we have

HomParity
(Ǐ )
(Gr,F)(Eλ, Eλ[n]) = 0.

However, we have 2(Eλ) ∼= T −λ by Theorem 1.1(3), hence 2(Eλ) ∼= T(−λ) ⊗ OÑ
by [MR, Corollary 4.8]. We deduce that

HomParity
(Ǐ )
(Gr,F)(Eλ, Eλ[n]) ∼= Hom

DG×Gm (Ñ )
(T(−λ)⊗OÑ ,T(−λ)⊗OÑ 〈−n〉).
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By [MR, Proposition A.6] the right-hand side is isomorphic to

H0(InvG
◦ InvGm(T(−λ)∗ ⊗ T(−λ)⊗ R0(Ñ ,OÑ )〈−n〉)

)
∼= H0

(
InvG(T(−λ)∗ ⊗ T(−λ)⊗ InvGm(R0(Ñ ,OÑ )〈−n〉)

))
.

Now, using the same arguments as in [BR2, Lemma 1.4.2] one can check that

InvGm(R0(Ñ ,OÑ )〈−n〉) = 0

unless n ∈ 2Z≥0. The claim follows. ut

6.6. Proof of Proposition 1.8

By [MR, Corollary 4.8], for any λ ∈ X+ we have T λ ∼= T(λ) ⊗ OÑ , hence 2(E−λ) ∼=
T(λ)⊗OÑ . Now we observe that, by the same arguments as in the proof of Corollary 1.6
and since InvGm(R0(Ñ ,OÑ )) = F, the functor

Tilt(G)→ DG×Gm(Ñ ) : V 7→ V ⊗OÑ

is fully faithful. Hence 2 induces an equivalence

PParity
(Ǧ(O))(Gr)

∼
−→ Tilt(G) (6.8)

sending Eλ = Ew0λ to T(−w0λ) for all λ ∈ X+.
Now by [MV, Proposition 2.1] the categories of Ǧ(O)-constructible and Ǧ(O)-equiv-

ariant perverse sheaves on Gr are canonically equivalent. Using this property and the an-
tiautomorphism of Ǧ(K ) defined by g 7→ g−1, one can construct an autoequivalence of
PParity

(Ǧ(O))(Gr) sending Eλ to E−w0λ. Composing this equivalence with (6.8) provides

the equivalence SF.
Formula (1.2) follows from the following chain of equalities for λ,µ ∈ X+:∑
k∈Z

dim
(
Hk−dim(Grµ)(ı∗µEλ)

)
· vk =

∑
k∈Z

dim
(
Hk−dim(Grw0µ)(Grw0µ, i

∗
w0µ

Ew0λ)
)
· vk

=

∑
k∈Z
(T −w0λ : 1

−w0µ

Ñ 〈k〉) · vk

=

∑
ν∈X+

(T(−w0λ) : M(ν)) ·M−w0µ
ν (v−2)

=

∑
ν∈X+

(T(λ) : N(−w0ν)) ·M−w0µ
ν (v−2).

Here the second equality follows from Theorem 1.1(2), the third from the formula for
ch1(T(−w0λ)⊗OÑ ) provided by [MR, Proposition 4.6], and the last one from the fact
that (T(−w0λ) : N(ν)) = (T(λ) : M(−w0ν)) (since T(λ)∗ ∼= T(−w0λ)).
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6.7. Proof of Proposition 1.9

Before giving the proof, we state a lemma describing the objects T̃ λ introduced in §6.3
in the case λ ∈ X+.

Lemma 6.7. For λ ∈ X+, we have T̃ λ ∼= T (λ)⊗Og̃ in DG×Gm (̃g).

Proof. Recall that, by [MR, Corollary 4.8], we have T λ ∼= T(λ)⊗OÑ . Using this fact,
the isomorphisms

Li∗(T̃ λ) ∼= T λ, Li∗(T(λ)⊗Og̃) ∼= T(λ)⊗OÑ

(see Lemma 6.2), and arguments as in the proof of Proposition 5.5, one can check
that the graded O(t∗)-modules HomDG (̃g)(T̃ λ,T(λ)⊗Og̃), HomDG (̃g)(T(λ)⊗Og̃, T̃ λ),
EndDG (̃g)(T̃ λ) and EndDG (̃g)(T(λ)⊗Og̃) are free, and the morphisms

F⊗O(t∗) HomDG (̃g)(T̃ λ,T(λ)⊗Og̃)→ Hom
DG(Ñ )

(T λ,T(λ)⊗OÑ ),

F⊗O(t∗) HomDG (̃g)(T(λ)⊗Og̃, T̃ λ)→ Hom
DG(Ñ )

(T(λ)⊗OÑ , T
λ),

F⊗O(t∗) EndDG (̃g)(T̃ λ)→ End
DG(Ñ )

(T λ),

F⊗O(t∗) EndDG (̃g)(T(λ)⊗Og̃)→ End
DG(Ñ )

(T(λ)⊗OÑ )

induced by Li∗ are isomorphisms. Since End
DG(Ñ )

(T(λ) ⊗ OÑ )
∼= End

DG(Ñ )
(T λ) is

concentrated in non-negative degrees (see the proof of Corollary 1.6), we deduce that the
morphisms

EndDG×Gm (̃g)(T̃ λ)→ End
DG×Gm (Ñ )

(T λ),

EndDG×Gm (̃g)(T(λ)⊗Og̃)→ End
DG×Gm (Ñ )

(T(λ)⊗OÑ )

induced by Li∗ are isomorphisms.
Choose a pair of inverse isomorphisms f : T λ ∼

−→ T(λ)⊗OÑ and g : T(λ)⊗OÑ
∼
−→

T λ inDG×Gm(Ñ ). Then by the preceding observations there exist morphisms f ′ : T̃ λ
→

T(λ)⊗Og̃ and g′ : T(λ)⊗Og̃→ T̃ λ inDG×Gm (̃g) such that Li∗(f ′) = f , Li∗(g′) = g.
And these observations also show that g◦f = id, resp. f ◦g = id, implies that g′◦f ′ = id,
resp. f ′ ◦ g′ = id. ut

Proof of Proposition 1.9. First we prove (1). It follows from the construction of our equiv-
alence (6.7) that the following diagram commutes:

Parity
Ǐ
(Gr,F)

∼

(6.7) //

H•
Ǐ
(Gr,−) ))TT

TTTT
TTT

Tilt

κvvnnn
nnn

nnn

Modgr(O(t∗))

(In both downward arrows, we omit the forgetful functor from graded C-modules to
graded O(t∗)-modules.) It is clear that κ(T(λ)⊗Og̃) ∼= T(λ)⊗O(t∗), with the grading
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indicated in the statement of the proposition. On the other hand,

H•
Ǐ
(Gr, Eλ) ∼= H•

Ǐ
(pt;F)⊗H•

Ǧ(O)
(pt;F) H•Ǧ(O)(Gr, E

λ)

∼= H•
Ǐ
(pt;F)⊗H•

Ǧ(O)
(pt;F) H•Ǧ(O)(Gr, E

−w0λ) ∼= H•
Ǐ
(Gr, E−λ).

(Here we use the autoequivalence considered in §6.6 and the fact that the two natural
morphisms H•

Ǧ(O)
(pt;F) → H•

Ǧ(O)
(Gr;F) coincide—see the proof of Lemma 3.6.)

These observations prove the second isomorphism in (1). The first one follows from
Lemma 2.2(1).

Now we prove the first isomorphism in (2). By adjunction, for m ∈ Z we have

Homm

Dmix
(Ǐ )
(Gr,F)(1

mix
−µ , Emix

−λ 〈−m〉)

∼= HomDmix
(Ǐ )
(Gr−µ,F)

(
FGr−µ

{dim(Gr−µ)}, (i−µ)!Emix
−λ {m}

)
.

(Here, as in [AR2], {1} = 〈−1〉[1] is the autoequivalence of the triangulated cate-
gory Dmix

(Ǐ )
(Gr−µ,F) = Kb Parity

(Ǐ )
(Gr−µ,F) induced by the cohomological shift in

Parity
(Ǐ )
(Gr−µ,F).) By [AR2, Remark 2.7], (i−µ)!Emix

−λ is the complex whose 0-th term
is the parity complex (i−µ)!E−λ, and whose other terms vanish. We deduce that

HomDmix
(Ǐ )
(Gr−µ,F)

(
FGr−µ

{dim(Gr−µ)}, (i−µ)!Emix
−λ {m}

)
∼= Hm−dim(Gr−µ)(Gr−µ, (i−µ)

!E−λ).

Finally, using the same considerations as in §6.6 (or as in the proof of (1)), we deduce a
canonical isomorphism

Homm

Dmix
(Ǐ )
(Gr,F)(1

mix
−µ , Emix

−λ 〈−m〉)
∼= Hm−dim(Grµ)(ı!µEλ).

On the other hand, using the equivalence 8 we find that

Homm

Dmix
(Ǐ )
(Gr,F)(1

mix
−µ , Emix

−λ 〈−m〉)
∼= Hom

DG×Gm (Ñ )
(1

µ

Ñ , T
λ
〈−m〉).

Using [MR, (4.10)] and the fact that T λ ∼= T(λ)⊗OÑ , we deduce that

Homm

Dmix
(Ǐ )
(Gr,F)(1

mix
−µ , Emix

−λ 〈−m〉)
∼=
(
T(λ)⊗ 0(Ñ ,OÑ (−w0µ))m

)G
,

where the subscript “m” denotes the m-th graded part. This finishes the proof.
The proof of the second isomorphism in (2) is similar: we use Lemma 6.7 and replace

Dmix
(Ǐ )
(Gr,F) byDmix

Ǐ
(Gr,F), ordinary cohomology by equivariant cohomology,8 by 9,

and Ñ by g̃. ut
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