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Abstract. We establish the non-singular Hasse principle for systems of three diagonal quartic equa-
tions in 32 or more variables, subject to a certain rank condition. Our methods employ the arithmetic
harmonic analysis of smooth quartic Weyl sums and also a new estimate for their tenth moment.
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1. Introduction

In recent years, investigations concerning the solubility of systems of diagonal Diophan-
tine equations via the circle method have been enriched through the use of such uncon-
ventional elements as thin averages of Fourier coefficients only partially of arithmetic
nature [5], and moment estimates of odd order [6]. These innovations have been applied
in several instances to surmount the barrier imposed by the classical scaling principle for
suitably entangled systems of diagonal equations. This principle suggests that the number
of variables required to solve a system should grow in proportion to the number of its
equations. In particular, the recent work of the authors [6] concerning pairs of diagonal
quartic equations applies estimates for cubic moments of Fourier coefficients to show that
22 variables suffice to establish the Hasse principle. While the corresponding conclusion
for a single quartic equation is available only when the number of variables is at least 12
(this may be established in a manner similar to [14, Theorem 1.2]), our work [6] employs,
on average, only 11 variables per equation. We now develop such ideas further, and pro-
vide a flexible approach to the control of large values of Fourier coefficients associated
with quartic Weyl sums. Once the arithmetic problem at hand is transformed into one in
which only Fourier coefficients are present, one is at liberty to consider fractional num-
bers of variables, as well as fractional numbers of equations. We illustrate the potential
of such ideas by investigating the Hasse principle for systems involving three diagonal
quartic forms.
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2334 Jörg Brüdern, Trevor D. Wooley

Consider a matrix (aij ) ∈ Z3×s with the associated system of equations
s∑

j=1

aijx
4
j = 0 (1 ≤ i ≤ 3). (1.1)

We verify the Hasse principle for systems of the shape (1.1), subject to a suitable rank
condition on (aij ), whenever s ≥ 32. This should be compared with the conclusion from
[3, Theorem 1], which would furnish the Hasse principle for systems of r diagonal quartic
equations in s variables only when s > 12r . While the latter conclusion is consistent with
the classical scaling principle mentioned above, our new result concerning the system
(1.1) employs an average of only 10 2

3 variables per equation, and is even more economical
than our earlier results [6] for pairs of equations. The new methods of this paper also
improve the latter work, covering essentially all of those cases in 22 or more variables
that had previously defied resolution (see [7]).

In order to give a precise statement of our result, we introduce some notation. When
s ≥ 3 and any collection of three columns of the matrix (aij ) is linearly independent, we
refer to (aij ) as being highly non-singular. We say that the matrix of coefficients (aij )
is propitious when s ≥ 32 and it has the block structure (A0, A1, . . . , A7, B), in which
Al ∈ Z3×4 is highly non-singular for each l, and B ∈ Z3×(s−32). Note that the set of
3× s matrices with s ≥ 32 which fail to be propitious is very thin. Indeed, typical 3× s
matrices are highly non-singular, and hence also propitious when s ≥ 32. Finally, given a
positive number P , we denote by N (P ) the number of integral solutions x of (1.1) with
|xj | ≤ P (1 ≤ j ≤ s).

Theorem 1.1. Let s ≥ 32, and suppose that (aij ) ∈ Z3×s is propitious. Then provided
that the system (1.1) has non-singular real and p-adic solutions for each prime number
p, one has N (P )� P s−12.

We remark that [1, Theorem 1] guarantees the existence of a non-zero p-adic solution of
the Diophantine system (1.1) provided only that s ≥ 25 and p ≥ 216. A familiar p-adic
compactness argument (see [8, Theorem 4]) allows one to deduce that for a propitious
system the p-adic solubility hypothesis in Theorem 1.1 is void for all p ≥ 216, and
one may determine whether or not it possesses non-trivial integral solutions with a finite
computation.

The novel arithmetic harmonic analysis associated with our proof of Theorem 1.1
depends on the fourth power moment of certain Fourier coefficients. For a continuous
function H : R→ [0,∞) of period 1, let

c(n) =

∫ 1

0
H(α)e(−nα) dα,

where as usual we write e(z) for e2πiz. We relate the correlation∫
[0,1)3

H(α1)H(α2)H(α3)H(−α1 − α2 − α3) dα

to the moment
∑
n∈Z |c(n)|

4, and bound the latter by using large values estimates for
Fourier coefficients.
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Choose a number δ ∈ [0, 1), and let

gδ(α;P,R) =
∑

x∈A(P,R)
δP<x≤P

e(αx4),

where A(P,R) denotes the set of numbers n ∈ [1, P ], all of whose prime divisors
are at most R. When there is no doubt about the choice of parameters, we abbreviate
gδ(α;P,R) to g(α). We take R = P η and H(α) = |g(α)|8−ν , where η and ν are suf-
ficiently small positive numbers. An application of Hölder’s inequality conveys us from
the above correlation to the mean value∫

[0,1)3
|g(α1)g(α2)|

8
|g(α3)g(α1 + α2 + α3)|

8−2ν dα.

Here the presence of even exponents offers the possibility of replacing the smooth Weyl
sum g(α) by its classical cousin

fδ(α;P) =
∑

δP<x≤P

e(αx4),

and one perceives the potential for applying the Hardy–Littlewood method to achieve an
essentially optimal estimate. In this way, in §5 we obtain the estimate contained in the
following theorem, which provides just adequate space for a subsequent application of
the circle method to establish Theorem 1.1.

Theorem 1.2. Suppose that ai, bi (1 ≤ i ≤ 3) are non-zero integers, and that δ ∈ (0, 1).
Then, whenever η and ν are sufficiently small positive numbers and 1 ≤ R ≤ P η, one
has ∫

[0,1)3
|g(a1α1)g(a2α2)g(a3α3)g(b1α1 + b2α2 + b3α3)|

8−ν dα � P 20−4ν .

Our proof of Theorem 1.2 involves an analysis of the large values of the Fourier coeffi-
cients ∫ 1

0
|g(α)|8−νe(−nα) dα,

and this is made to depend on a tenth moment of g(α). Unfortunately, available estimates
for this tenth moment would fall woefully short of the strength required to press the
method home. We therefore reconfigure and enhance earlier analyses of quartic smooth
Weyl sums due to Vaughan [14] and the present authors [4]. In this context, we refer to
the number 1t as an admissible exponent for the positive even integer t if there exists a
positive number η such that, whenever 1 ≤ R ≤ P η, one has∫ 1

0
|f0(α;P)

2g0(α;P,R)
t−2
| dα � P t−4+1t . (1.2)

Note that, in such circumstances, it follows from orthogonality and a consideration of the
underlying Diophantine equations that∫ 1

0
|g0(α;P,R)|

t dα � P t−4+1t . (1.3)
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Theorem 1.3. The number 110 = 0.1991466 is an admissible exponent.

We remark that, by applying the methods of Vaughan [14], the authors [4] obtained the
admissible exponent 0.213431 in place of 0.1991466, thus improving on the earlier work
of Vaughan [14, 15], which, when appropriately combined, delivers the bound (1.3) in the
case t = 10 with 110 = 0.2142036. For the application considered here it is vital to have
at hand admissible exponents 18 and 110 with 18 + 2110 < 1. In our earlier work [4]
we showed that18 = 0.594193 is admissible. With the numerical value for110 provided
by Theorem 1.3, we obtain18+2110 < 0.9925, leaving barely any space to spare in the
precision to which we estimate the tenth moment.1

Our basic parameter is P , a sufficiently large positive number. In this paper, implicit
constants in Vinogradov’s notation� and� may depend on s and ε, as well as ambient
coefficients stemming from Diophantine systems such as (1.1). We make frequent use
of vector notation in the form x = (x1, . . . , xr). Here, the dimension r depends on the
course of the argument. Occasionally, we abbreviate systems of inequalities 0 ≤ ai ≤ q
(1 ≤ i ≤ r) to 0 ≤ a ≤ q, and use (q, a) as a shorthand for the largest factor common
to the integers a1, . . . , ar and the natural number q. Whenever ε appears in a statement,
either implicitly or explicitly, we assert that the statement holds for each ε > 0. Whenever
R appears in a statement, it is asserted that there exists a number η > 0 such that this
statement is true for all 1 ≤ R ≤ P η. Whenever ε occurs in a statement involving also
R, then we allow η to depend on ε. Note that our conventions allow us, for example, to
conclude that R9

� P ε.

2. The tenth moment of smooth quartic Weyl sums

In this section, we shall be occupied with the verification of Theorem 1.3. The new ingre-
dient in our treatment is an approach to the exponential sum associated with the difference
polynomial

9(z, h,m) = m−4((z+ hm4)4 − (z− hm4)4
)
= 8hz(z2

+ h2m8)

that diverges from previous work in several respects. Some notation is required to describe
the novel features in detail. Whenever 0 ≤ θ ≤ 1/4, we put

M = P θ , H = PM−4, Q = PM−1,

and introduce the sum

E0(α) =
∑

1≤h≤H

∑
1≤l≤2P

∑
M<m1<m2≤MR

e(8αlh3(m8
1 −m

8
2)).

Our first auxiliary lemma supplies an estimate for the mean square of E0(α).

1 Ford [9] and Israilov and Allakov [11] have recorded exponents 18 and 110 that are smaller
than those obtained here. These works are erroneous. See also [10].
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Lemma 2.1. One has ∫ 1

0
|E0(α)|

2 dα � P 1+εHM2.

Proof. The integral on the left hand side of the proposed estimate is equal to the number
of solutions of the Diophantine equation

l1h
3
1(m

8
1 −m

8
2) = l2h

3
2(m

8
3 −m

8
4),

in which, for j = 1 and 2, the variables are subject to the conditions

1 ≤ lj ≤ 2P, 1 ≤ hj ≤ H, M < m2j−1 < m2j ≤ MR.

There are O(PHM2R2) choices for l2, h2, m3, m4, and for each such choice, the num-
bers l1, h1 and m8

1 − m
8
2 are divisors of the non-zero integer l2h3

2(m
8
3 − m

8
4). A familiar

estimate for the number of divisors now shows that the number of choices for l1, h1, m1
and m2 is bounded by O(P ε), and the lemma follows. ut

We emphasise here and in what follows our use of the conventions concerning the param-
eters R and ε described in the penultimate paragraph of §1. In plain language, Lemma 2.1
asserts that for each ε > 0, there exists a positive number η = η(ε) having the property
that, whenever 1 ≤ R ≤ P η, then

∫ 1
0 |E0(α)|

2 dα � P 1+εHM2.
The next lemma is the key to our new tenth moment estimate.

Lemma 2.2. One has ∫ 1

0
|E0(α)

2f0(α; 2Q)4| dα � Q5+ε.

Proof. By Weyl’s differencing technique [16, Lemma 2.3], one finds that

|f0(α; 2Q)|4 � Q3
+Q

∑
0<|n|≤32Q4

c(n)e(αn),

where the coefficients c(n) are certain rational numbers satisfying c(n)� |n|ε. Write

%(n) =

∫ 1

0
|E0(α)|

2e(αn) dα.

Then it follows that∫ 1

0
|E0(α)

2f0(α; 2Q)4| dα � Q3%(0)+Q
∑

0<|n|≤32Q4

c(n)%(n).

By orthogonality, one has %(n) ≥ 0. Furthermore, Lemma 2.1 supplies the bound %(0)�
P 1+εHM2. Thus, we deduce that∫ 1

0
|E0(α)

2f0(α; 2Q)4| dα � Q3P 1+εHM2
+QP ε

∑
n∈Z

%(n)

� P ε(Q3PHM2
+QE0(0)2)� Q5+2ε. ut
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Lemma 2.3. The exponents 18 = 0.594193 and 112 = 0 are admissible.

Proof. The desired conclusion concerning 18 follows from [4, Theorem 2] and the dis-
cussion surrounding the table of exponents in [4, p. 393]. Meanwhile, the upper bound
(1.2) when t = 12 is a consequence of [14, Lemma 5.2]. ut

We initiate our estimation of the tenth moment by choosing an admissible value for 110.
That such values exist follows from the trivial bounds for f0 and g0. For the rest of this
section, we work with the sums g0(α;P,R) and f0(α;P) only, and abbreviate these to
g(α) and f (α), respectively. We put g[(α) = g0(α; 2Q,R), and for the sake of concision,
for positive even integers t , we write

Ut =

∫ 1

0
|g[(α)|

t dα.

Further, we require the exponential sum

F1(α) =
∑

1≤h≤H

∑
M<m≤MR

∑
1≤z≤2P

e(8αhz(z2
+ h2m8)).

Lemma 2.4. Suppose that 18 and 110 are admissible exponents satisfying

1
2 < 18 <

3
5 ,

1
10 < 110 <

1
4 and 3

218 −
5
7 < 110 < 218 −

27
28 .

Put

θ = max
{

3
17
,

7+ 2110 − 318

33+ 2110 − 318

}
,

and define 1′10 = 18(1 − θ) + 4θ − 1. Then whenever 1 > 1′10, the exponent 1 is
admissible for t = 10.

Proof. Our starting point is an application of a suitable version of the fundamental lemma
in the iterative method (compare [14, Lemma 2.1]). Thus, as a consequence of [20,
Lemma 2.3] in combination with the argument of the proof of [20, Lemma 3.1] (see
[17, Lemma 2.1]), ∫ 1

0
|f (α)2g(α)8| dα � P εM7(PMQ4+18 + T ) (2.1)

where

T =

∫ 1

0
F1(α)|g[(α)|

8 dα. (2.2)

By Cauchy’s inequality,

|F1(α)|
2
≤ HMR

∑
1≤h≤H

∑
M<m≤MR

∣∣∣ ∑
1≤z≤2P

e(α9(z, h,m))

∣∣∣2.
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Here, we open the square and rewrite it as a double sum over z1 and z2, say. The substi-
tutions z = z1 + z2 and l = z1 − z2 then yield∣∣∣ ∑

1≤z≤2P

e(α9(z, h,m))

∣∣∣2 = ∑
|l|≤2P

∑
z∈B(l)

e
(
αhl(6z2

+ 2l2 + 8h2m8)
)
,

in which B(l) denotes the set of all integers z with 1 ≤ z ± l ≤ 4P and z ≡ l mod 2.
Separation of the term l = 0 delivers the inequality

|F1(α)|
2
� P 1+εH 2M2

+ P εHM
∑

1≤h≤H
1≤l≤2P

∣∣∣ ∑
M<m≤MR

∑
z∈B(l)

e(αhl(6z2
+ 8h2m8))

∣∣∣.
Yet another application of Cauchy’s inequality now produces the bound

|F1(α)|
2
� P 1+εH 2M2

+ P εHM(D(α)E(α))1/2,

in which

D(α) =
∑

1≤h≤H

∑
1≤l≤2P

∣∣∣ ∑
z∈B(l)

e(6αhlz2)

∣∣∣2,
E(α) =

∑
1≤h≤H

∑
1≤l≤2P

∣∣∣ ∑
M<m≤MR

e(8αlh3m8)

∣∣∣2.
On substituting the last inequality for |F1(α)|

2 into (2.2), we infer that

T � P 1/2+εHMQ4+18 + P ε(HM)1/2T1, (2.3)

where

T1 =

∫ 1

0
(D(α)E(α))1/4|g[(α)|

8 dα. (2.4)

We apply the Hardy–Littlewood method to estimate T1. For integers a, q with 0 ≤
a ≤ q ≤ P and (a, q) = 1, let N(q, a) denote the set of all α ∈ [0, 1) with |qα − a| ≤
PQ−4, and let N denote the union of these intervals. Note that this union is disjoint.
Define the function � : [0, 1)→ [0, 1] by

�(α) = (q +Q4
|qα − a|)−1 (α ∈ N(q, a)),

and put �(α) = 0 when α 6∈ N.
By Dirichlet’s theorem on Diophantine approximation, whenever α ∈ [0, 1), there

are integers a, q with 0 ≤ a ≤ q ≤ Q4P−1, (a, q) = 1 and |qα − a| ≤ PQ−4.
Moreover, although our sum D(α) differs in detail from that used by Vaughan [14] in his
equation (3.2), the proof of [14, Lemma 3.1] applies to our sum as well and yields the
same estimate. We therefore conclude that the bound

D(α)� P 2+εH + P 3+εH�(α)
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holds for all α ∈ [0, 1). Consequently, we deduce from (2.4) that

T1 � P 1/2+εH 1/4T2 + P
3/4+εH 1/4T3, (2.5)

where

T2 =

∫ 1

0
E(α)1/4|g[(α)|

8 dα and T3 =

∫
N
(�(α)E(α))1/4|g[(α)|

8 dα.

The estimation of T2 will involve the application of Lemma 2.2. An inspection of the
definitions of E0(α) and E(α) reveals that

E(α)� |E0(α)| + PHMR. (2.6)

As a first bound for T2, we then have

T2 � P ε(PHM)1/4U8 +

∫ 1

0
|E0(α)|

1/4
|g[(α)|

8 dα.

Let

V =

∫ 1

0
|E0(α)

2g[(α)
4
| dα.

Then, a further application of Hölder’s inequality yields the bound

T2 � P ε(PHM)1/4U8 + U
5/8
8 U

1/4
10 V

1/8.

By orthogonality, the mean value V counts the number of integral solutions of an asso-
ciated Diophantine equation. By relaxing the conditions on the variables associated with
the exponential sum g[(α), and reversing course on the application of orthogonality, we
infer via Lemma 2.2 that

V ≤

∫ 1

0
|E0(α)

2f0(α; 2Q)4| dα � (PHM2)2Q1+ε, (2.7)

and so by applying (1.3), we deduce that

P 1/2H 1/4T2 � P 3/4+ε(HM)1/2Q4(M−1/4Q18 +Q(518+2110+1)/8).

However, the hypothesis 110 >
3
218 −

5
7 ensures that

318 − 2110 − 1
318 − 2110 + 1

<
7+ 2110 − 318

33+ 2110 − 318
.

Hence we have

θ >
318 − 2110 − 1
318 − 2110 + 1

,

so that
M2
≥ Q318−2110−1.
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We thus conclude that

P 1/2H 1/4T2 � P 3/4+ε(HM)1/2Q4+(518+2110+1)/8. (2.8)

As our first step in estimating T3, we apply (2.6) to deduce that

T3 � T4 + (PHMR)
1/4T5,

where

T4 =

∫
N
(�(α)|E0(α)|)

1/4
|g[(α)|

8 dα and T5 =

∫
N
�(α)1/4|g[(α)|

8 dα.

Write
W =

∫
N
�(α)|g[(α)|

4 dα.

Then an application of [2, Lemma 2] confirms the estimate

W � Qε−4(PQ2
+Q4)� Qε.

Hölder’s inequality therefore combines with (1.3), (2.7) and Lemma 2.3 to give

T4 ≤ V
1/8W 1/4U

1/2
10 U

1/8
12 � P ε

(
(PHM2)2Q

)1/8
(Q6+110)1/2(Q8)1/8,

whence
P 3/4+εH 1/4T4 � P 1+ε(HM)1/2Q4+(4110+1)/8. (2.9)

In like manner, another application of Hölder’s inequality yields the bound

T5 � W 1/4U
1/4
8 U

1/2
10 � P ε(Q4+18)1/4(Q6+110)1/2,

whence

P 1+εH 1/2M1/4T5 � P 1+ε(HM)1/2Q4(M−1/4Q(18+2110)/4). (2.10)

By combining (2.9) and (2.10), we conclude that

P 3/4H 1/4T3 � P 1+ε(HM)1/2Q4(Q(4110+1)/8
+M−1/4Q(18+2110)/4).

The hypotheses of the statement of the lemma imply that

θ ≥
3
17
>

1
11
≥

218 − 1
218 + 1

,

so that M ≥ Q18−1/2. Thus we conclude that

P 3/4H 1/4T3 � P 1+ε(HM)1/2Q4+(4110+1)/8. (2.11)

We may now collect together our various estimates, first combining (2.5), (2.8) and
(2.11), and substituting the result into (2.3) to obtain the bound

T � P 1+εMHQ4+18(P−1/2
+ P−1/4Q(1+2110−318)/8 +Q(1+4110−818)/8).
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Since θ ≥ 3
17 >

1
8 , one has HP−1/2

≤ 1, and the bound

HP−1/4Q(1+2110−318)/8 ≤ 1

follows in its turn from the hypothesis that

θ ≥
7+ 2110 − 318

33+ 2110 − 318
.

Meanwhile, since we suppose that110 < 218−
27
28 , one finds from the hypothesis θ ≥ 3

17
that

HQ(1+4110−818)/8 < HQ−5/14
≤ 1.

We therefore deduce that T � P 1+εMQ4+18 , and on substituting into (2.1), we obtain
the bound ∫ 1

0
|f (α)2g(α)8| dα � P 1+εM8Q4+18 = P 6+1′10+ε,

where1′10 = 18(1−θ)+4θ−1. It follows that whenever1 > 1′10, then1 is admissible
for t = 10, and so the proof of the lemma is complete. ut

We are now equipped to describe the iteration that yields the admissible exponent
recorded in Theorem 1.3. We recall from Lemma 2.3 that the exponent 18 = 0.594193
is admissible. Also, from the work of Vaughan [14] and the authors [4], there exists an
admissible exponent 110 smaller than 0.22. Suppose then that an admissible exponent
110 has been established satisfying

0.2241 . . . = 218 −
27
28 > 110 >

3
218 −

5
7 = 0.1770 . . . .

It follows that Lemma 2.4 then applies with

θ =
7+ 2110 − 318

33+ 2110 − 318
,

and that any exponent1′10 exceeding18(1− θ)+ 4θ − 1 is also admissible. On iterating
this treatment, one finds a decreasing sequence of admissible exponents converging to the
larger root 1∗10 of the equation

1∗10 = 18 − 1+ (4−18)
7+ 21∗10 − 318

33+ 21∗10 − 318
.

On using the value for18 recorded in Lemma 2.3, one readily confirms that1∗10 satisfies
the equation

2(1∗10)
2
+ (27− 318)1

∗

10 + 5− 1718 = 0,

whence

1∗10 =
1
4

(
318 − 27+

√
689− 2618 + 912

8
)
= 0.199146547 . . . .
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Given any positive number δ, this iteration yields an admissible exponent 1†
10, satisfy-

ing 1∗10 < 1
†
10 < 1∗10 + δ, after a number of iterations bounded solely in terms of δ.

Consequently, keeping in mind our conventions concerning ε and R, we have∫ 1

0
|f (α)2g(α)8| dα � P 6+1∗10+ε.

We deduce that the exponent 110 is admissible whenever 110 > 1∗10, and thus we arrive
at the conclusion of Theorem 1.3.

3. Large values estimates

Our next task is to provide a proof of the mixed fractional moment estimate recorded
in Theorem 1.2. Within this and the next two sections, we fix a choice of δ ∈ (0, 1)
once and for all, and then adumbrate fδ(α;P) to f (α) and gδ(α;P,R) to g(α). Finally,
according to Theorem 1.3 and Lemma 2.3, we are at liberty to suppose that 18 and 110
are admissible exponents satisfying the inequalities

18 ≤ 0.594193 and 110 ≤ 0.1991466.

When 0 ≤ τ ≤ 1, we define the Fourier coefficient

ψτ (n) =

∫ 1

0
|g(α)|8−τ e(−nα) dα. (3.1)

Notice here that since |g(α)|8−τ is real and even, the Fourier coefficient ψτ (n) is neces-
sarily real. Our goal in Lemmata 4.1 and 4.2 will be to estimate the fourth moment∑

|n|≤P 5

|ψτ (n)|
4

together with some of its relatives. This we achieve by dividing the range of summation
into dyadic intervals according to the size of the Fourier coefficients. With such ideas in
mind, when T > 0, we write

Mτ (T ) =
∑
|n|≤P 5

T<|ψτ (n)|≤2T

|ψτ (n)|
4. (3.2)

By applying the triangle inequality to (3.1) in combination with Hölder’s inequality, one
obtains the bound

|ψτ (n)| ≤ ψτ (0) ≤
(∫ 1

0
|g(α)|8 dα

)1−τ/8

� P 4+18 ,

and thus we may restrict attention to values of T with T ≤ P 5.



2344 Jörg Brüdern, Trevor D. Wooley

We now seek to bound Mτ (T ) when 1 ≤ T ≤ P 5. Define ZT to be the set of integers
n with |n| ≤ P 5 such that T < |ψτ (n)| ≤ 2T , and write ZT = card(ZT ). For each
n ∈ ZT , we take ωn = 1 when ψτ (n) > 0, and ωn = −1 when ψτ (n) < 0, and then
define

KT (α) =
∑
n∈ZT

ωne(−nα).

Thus we have∫ 1

0
|g(α)|8−τKT (α) dα =

∑
n∈ZT

ωn

∫ 1

0
|g(α)|8−τ e(−nα) dα

=

∑
n∈ZT
|ψτ (n)| > TZT . (3.3)

Before announcing our basic large values estimates, we recall that as an immediate
consequence of [12, Lemma 2.1], one has∫ 1

0
|g(α)4KT (α)

2
| dα ≤

∫ 1

0
|f (α)4KT (α)

2
| dα � P 3ZT + P

2+εZ
3/2
T . (3.4)

Finally, we introduce the exponents

κ1(τ ) = 11− (2−110)τ, (3.5)
κ2(τ ) = 19+18 + 2110 − (4− 218 + 2110)τ. (3.6)

Lemma 3.1. Let 0 < τ ≤ 1 and 1 ≤ T ≤ P 5. Then

ZT � P ε(P κr (τ )T −2r
+ P 2κr (τ )−2T −4r) (r = 1, 2).

Proof. In the looming discussion we drop mention of T and τ from our various notations.
When r ∈ {1, 2} and s ∈ N is even, define

Ir =

∫ 1

0
|g(α)4K(α)2r | dα and Js =

∫ 1

0
|g(α)|s dα.

As an immediate consequence of (1.3), Lemma 2.3 and Theorem 1.3, one has

J8 � P 4+18 , J10 � P 6+110 and J12 � P 8. (3.7)

Then an application of Hölder’s inequality shows in the first instance that∫ 1

0
|g(α)|8−τK(α) dα ≤ I 1/2

1 J
τ/2
10 J

(1−τ)/2
12 ,

and by means of (3.3), (3.4) and (3.7), we infer the bound

T Z <

∫ 1

0
|g(α)|8−τK(α) dα � P ε(P 3Z + P 2Z3/2)1/2(P 6+110)τ/2(P 8)(1−τ)/2

� P ε
(
(P κ1(τ )Z)1/2 + (P 2κ1(τ )−2Z3)1/4

)
.

The claimed estimate with r = 1 follows on disentangling this bound.
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Meanwhile, another application of Hölder’s inequality yields∫ 1

0
|g(α)|8−τK(α) dα ≤ I 1/4

2 J
(1+2τ)/4
8 J

(1−τ)/2
10 .

Hence, by applying a trivial estimate for K(α) in combination with (3.3), (3.4) and (3.7),
we infer that

T Z � P ε(P 3Z3
+ P 2Z7/2)1/4(P 4+18)(1+2τ)/4(P 6+110)(1−τ)/2

� P ε
(
(P κ2(τ )Z3)1/4 + (P 2κ2(τ )−2Z7)1/8

)
.

The claimed estimate with r = 2 follows on disentangling this bound. ut

We require large values estimates of similar type for related mean values associated with
a restriction to a set of minor arcs. Define the major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα − a| ≤ P−7/2
}, (3.8)

with 0 ≤ a ≤ q ≤ P 1/2 and (a, q) = 1, and then put m = [0, 1) \M. When B ⊆ [0, 1)
is measurable, we define

9B(n) =

∫
B
|f (α)2g(α)6|e(−nα) dα,

and when T > 0, define

M∗0 (T ) =
∑
|n|≤P 5

T<|9m(n)|≤2T

|9m(n)|
4. (3.9)

Define Z0 to be the set of integers n with |n| ≤ P 5 for which T < |9m(n)| ≤ 2T , and
write Z0 = Z0(T ) for card(Z0). For each n ∈ Z0, we take ωn = 1 when9m(n) > 0, and
we put ωn = −1 when 9m(n) < 0. Also, we define

K0(α) =
∑
n∈Z0

ωne(−nα).

Then, as in (3.3), one obtains∫
m
|f (α)2g(α)6|K0(α) dα =

∑
n∈Z0

|9m(n)| > TZ0. (3.10)

Before announcing our large values estimates for 9m(n), we recall the definitions (3.5)
and (3.6) of κ1(τ ) and κ2(τ ).

Lemma 3.2. Let 1 ≤ T ≤ P 5. Then

Z0 � P ε(P κ1(0)+110−1/4T −2
+ P 2κ1(0)+2110−5/2T −4)

and
Z0 � P ε(P κ2(0)T −4

+ P 2κ2(0)−2T −8).
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Proof. Define

J =
∫
m
|f (α)2g(α)10

| dα.

An enhanced version of Weyl’s inequality (see [13, Lemma 3]) shows that

sup
α∈m
|f (α)| � P 7/8+ε,

and so we deduce via (3.7) that

J ≤
(

sup
α∈m
|f (α)|

)2
J10 � P 8+110−1/4+ε.

An application of Schwarz’s inequality shows that∫
m
|f (α)2g(α)6|K0(α) dα ≤

(∫ 1

0
|f (α)g(α)K0(α)|

2 dα
)1/2

J 1/2.

In view of (3.4) and (3.10), another application of Schwarz’s inequality yields

T Z0 <

∫
m
|f (α)2g(α)6|K0(α) dα � P ε(P 3Z0 + P

2Z
3/2
0 )1/2(P 8+110−1/4)1/2.

The first of the claimed estimates follows by disentangling this bound. For the second we
proceed just as in the proof of Lemma 3.1 in the case r = 2, noting that the mean value
estimates for J8 and J10 should in this instance be replaced by the estimates∫ 1

0
|f (α)2g(α)6| dα � P 4+18 and

∫ 1

0
|f (α)2g(α)8| dα � P 6+110 ,

available via (1.2). This completes the proof of the lemma. ut

4. Fourier coefficients and their moments

Our goal in this section is the proof of an estimate for a certain mixed moment of Fourier
coefficients associated with quartic Weyl sums. This we achieve by employing our large
values estimates of the previous section so as to bound the quantities Mτ (T ) and M∗0 (T )
defined in (3.2) and (3.9). We proceed in stages. In what follows, we make use of a positive
number τ satisfying

40τ ≤ min{1− 4110, 1− 2110 −18}. (4.1)

Lemma 4.1. Suppose that τ is a positive number satisfying (4.1). Then∑
|n|≤P 5

|ψτ (n)|
4
� P 20−τ and

∑
|n|≤P 5

|9m(n)|
4
� P 20−9τ .
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Proof. Observe first that ∑
|n|≤P 5

|ψτ (n)|>1

|ψτ (n)|
4
≤

∞∑
l=0

2l≤P 5

Mτ (2l).

Thus, for some number T with 1 ≤ T ≤ P 5, one has∑
|n|≤P 5

|ψτ (n)|
4
� P 5

+ (logP)Mτ (T )� P 5
+ P εT 4ZT .

Should T satisfy the bound T ≤ P 9/2, then it follows from the estimate supplied by
Lemma 3.1 with r = 1 that∑
|n|≤P 5

|ψτ (n)|
4
� P 5

+ P ε(P κ1(τ )T 2
+ P 2κ1(τ )−2)� P 20−(2−110)τ+ε � P 20−τ .

Meanwhile, when P 9/2 < T ≤ P 5, we discern from Lemma 3.1 with r = 2 that∑
|n|≤P 5

|ψτ (n)|
4
� P 5

+ P ε(P κ2(τ ) + P 2κ2(τ )−2T −4)

� P ε(P κ2(τ ) + P 2κ2(τ )−20).

In view of our hypotheses concerning τ , one finds that

κ2(τ ) ≤ 19+18 + 2110 ≤ 20− 40τ

and
2κ2(τ )− 20 ≤ 18+ 218 + 4110 ≤ 20− 80τ.

The first conclusion of the lemma is now immediate.
In like manner, one finds that for some number T with 1 ≤ T ≤ P 5, one has∑

|n|≤P 5

|9m(n)|
4
� P 5

+ (logP)M∗0 (T )� P 5
+ P εT 4Z0(T ).

Should one have T ≤ P 9/2, it follows from the first estimate of Lemma 3.2 that∑
|n|≤P 5

|9m(n)|
4
� P 5

+ P ε(P 11+110−1/4T 2
+ P 20+2110−1/2)

� P ε(P 20+110−1/4
+ P 20+2110−1/2).

Meanwhile, when P 9/2 < T ≤ P 5, the second estimate of Lemma 3.2 yields∑
|n|≤P 5

|9m(n)|
4
� P 5

+ P ε(P κ2(0) + P 2κ2(0)−2T −4)

� P ε(P 19+18+2110 + P 18+218+4110).

Thus, in all cases, our hypotheses concerning τ ensure that∑
|n|≤P 5

|9m(n)|
4
� P 20−10τ+ε,

and the second conclusion of the lemma follows. ut
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Lemma 4.2. Let a and b be non-zero integers, and suppose that the positive number τ
satisfies (4.1). Then ∑

|n|≤P 5

ψ0(an)
2ψτ (bn)

2
� P 20−2τ .

Proof. By orthogonality, the Fourier coefficient ψ0(n) counts the number of integral so-
lutions of the Diophantine equation

4∑
i=1

(x4
i − y

4
i ) = n,

with xi, yi ∈ A(P,R) and δP < xi, yi ≤ P (1 ≤ i ≤ 4). Thus, in particular, one
has ψ0(an) = 0 whenever |n| > P 9/2. Moreover, by relaxing the condition on x1 and
y1 so that these variables are no longer required to lie in A(P,R), and again invoking
orthogonality, it is apparent that

ψ0(n) =

∫ 1

0
|g(α)|8e(−nα) dα ≤

∫ 1

0
|f (α)2g(α)6|e(−nα) dα = 9[0,1)(n),

whence ψ0(n) ≤ 9m(n)+9M(n). Thus,

ψ0(n)
2
≤ 2(9m(n)

2
+9M(n)

2),

and we deduce that ∑
|n|≤P 5

ψ0(an)
2ψτ (bn)

2
� 4(M)+4(m), (4.2)

where
4(B) =

∑
|n|≤P 9/2

9B(an)
2ψτ (bn)

2.

On the one hand, by Cauchy’s inequality and Lemma 4.1, we have

4(m) ≤
( ∑
|n|≤P 5

9m(n)
4
)1/2( ∑

|n|≤P 5

ψτ (n)
4
)1/2

� (P 20−9τ )1/2(P 20−τ )1/2 � P 20−5τ .

On the other hand, the adjuvant Lemma 9.2 provided in the appendix combines with
the triangle inequality to give 9M(an) = O(P 4). Thus, as a consequence of Bessel’s
inequality, one has

4(M)� (P 4)2
∑
|n|≤P 5

ψτ (bn)
2
� P 8

∫ 1

0
|g(α)|16−2τ dα.

By (1.3) and Lemma 2.3, we now infer that

4(M)� P 12−2τ
∫ 1

0
|g(α)|12 dα � P 20−2τ ,

and thus it follows that 4(M) + 4(m) � P 20−2τ . The conclusion of the lemma is now
immediate from (4.2). ut



Arithmetic harmonic analysis 2349

5. The transition to moments of smooth Weyl sums

In this section we establish Theorem 1.2. With this end in view, we put

ψτ (m; l) =

{
ψτ (m/l) when l |m,
0 otherwise.

Suppose that ai, bi (1 ≤ i ≤ 3) are non-zero integers. When ν is a sufficiently small
positive number, we write

Iν(a,b) =
∫
[0,1)3
|g(a1α1)g(a2α2)g(a3α3)g(b1α1 + b2α2 + b3α3)|

8−ν dα. (5.1)

An application of Schwarz’s inequality reveals that

Iν(a,b) ≤ W 1/2
0 W

1/2
1 ,

where

W0 =

∫
[0,1)3
|g(a1α1)g(a2α2)|

8−2ν
|g(a3α3)g(b1α1 + b2α2 + b3α3)|

8 dα,

W1 =

∫
[0,1)3
|g(a3α3)g(b1α1 + b2α2 + b3α3)|

8−2ν
|g(a1α1)g(a2α2)|

8 dα.

Observe that in the mean value W1, the substitution

α1 = b2β3, α2 = β2 − b3β1 − b1β3, α3 = b2β1

implies that b2β2 = b1α1 + b2α2 + b3α3, and hence, by periodicity modulo 1 of the
integrand, we obtain the relation

W1 �

∫
[0,1)3
|g(a3b2β1)g(b2β2)|

8−2ν
|g(a1b2β3)g(a2β2 − a2b3β1 − a2b1β3)|

8 dα.

By invoking symmetry, we therefore discern that there are non-zero integers ci, di (1 ≤
i ≤ 3), depending at most on a and b, for which

Iν(a,b)�
∫
[0,1)3
|g(c1α1)g(c2α2)|

8−2ν
|g(c3α3)g(d1α1 + d2α2 + d3α3)|

8 dα.

Next, since |g(θ)| = |g(−θ)| and

|g(θ)|8 =
∑
|n|≤4P 4

ψ0(n)e(nθ),

we find that

Iν(a,b)�
∑
|n|≤4P 4

ψ0(n)

∫
[0,1)3
|g(c1α1)g(c2α2)|

8−2ν
|g(c3α3)|

8e(−nd · α) dα

=

∑
|n|≤4P 4

ψ0(n)ψ2ν(nd1; c1)ψ2ν(nd2; c2)ψ0(nd3; c3).
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Thus, on employing the inequality |z1z2| ≤ 2(|z1|
2
+ |z2|

2), we obtain

Iν(a,b)�
∑
|n|≤4P 4

(
ψ0(n)

2
+ ψ0(nd3; c3)

2)(ψ2ν(nd1; c1)
2
+ ψ2ν(nd2; c2)

2)
�

∑
|n|≤4P 4

ψ0(k1n; l1)
2ψ2ν(k2n; l2)

2,

for suitable non-zero integers ki , li . Hence, we conclude from Lemma 4.2 that

Iν(a,b)�
∑
|n|≤4P 4

ψ0(k1n)
2ψ2ν(k2n)

2
� P 20−4ν .

This completes the proof of Theorem 1.2

6. Prelude to the circle method

We assume the hypotheses of Theorem 1.1, and in particular suppose that s ≥ 32. With
the column vectors (aij )1≤i≤3 ∈ Z3

\ {0}, we associate the ternary forms

3j =

3∑
i=1

aijαi (1 ≤ j ≤ s),

and the linear forms Li(γ ) (1 ≤ i ≤ 3) defined for γ ∈ Rs by

Li(γ ) =

s∑
j=1

aijγj .

The hypotheses of Theorem 1.1 ensure that there is a non-singular real solution of
the system (1.1). By invoking homogeneity, therefore, one finds that there exists a real
solution x = θ in [0, 1)s for which the 3 × s matrix (4al,j θ3

j ) has maximal rank. Hence,
there exist distinct indices j1, j2 and j3 for which the 3×3 matrix formed with the columns
indexed by j1, j2 and j3 is non-singular. The solution set of the system of equations (1.1)
remains unchanged if one replaces any one of its equations by the equation obtained
by adding to it any multiple of another equation. Thus, by appropriate elementary row
operations on the matrix (al,j ) of coefficients, there is no loss of generality in supposing
that the system (1.1) takes the form

al,jlx
4
jl
= −

s∑
j=1

j 6∈{j1,j2,j3}

al,jx
4
j (1 ≤ l ≤ 3) (6.1)

with al,jl 6= 0 (1 ≤ l ≤ 3). An application of the inverse function theorem consequently
confirms that whenever 1 > 0 is sufficiently small, the simultaneous equations

al,jlx
4
jl
= −

s∑
j=1

j 6∈{j1,j2,j3}

al,j (θj +1)
4 (1 ≤ l ≤ 3)
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remain soluble for xl,jl with xl,jl > 0. In this way we see that the system (1.1) possesses
a non-singular real solution θ satisfying θ ∈ (0, 1)s . Now we choose a positive number
δ with the property that θ ∈ (δ, 1)s , and fix this value of δ throughout the remaining
sections of this paper. In addition, we fix η > 0 and ν > 0 to be sufficiently small in the
context of Theorem 1.2.

Next, define

G0(α) =

32∏
j=1

g(3j ) and G(α) =

s∏
j=1

g(3j ).

Here and later, we write g(α) = gδ(α;P,R). By orthogonality, one has

N (P ) ≥
∫
[0,1)3

G(α) dα.

The Hardy–Littlewood dissection is defined as follows. We put L = log logP , take Q =
L40, and when bl ∈ Z (1 ≤ l ≤ 3) and q ∈ N we define

N(q,b) = {α ∈ [0, 1)3 : |αl − bl/q| ≤ QP−4 (1 ≤ l ≤ 3)}.

We then take N to be the union of the boxes N(q,b)with 0 ≤ b ≤ q ≤ Q and (q,b) = 1.
Finally, we put n = [0, 1)3 \N.

The contribution of the major arcs N in this dissection satisfies∫
N
G(α) dα � P s−12, (6.2)

a fact we confirm in §8. Meanwhile, in §7 we show that∫
n
G(α) dα = o(P s−12). (6.3)

The desired conclusion N (P )� P s−12 is immediate from (6.2) and (6.3) on noting that
[0, 1)3 is the disjoint union of N and n.

7. The minor arc treatment

In this section we establish the minor arcs bound (6.3). We start with an inspection of the
proof of [21, Lemma 8.1]. This shows that there exist positive numbers B and C with the
following property. Suppose that P is a large real number, and that γ is a real number
with P−B < γ ≤ 1. Then, whenever |g(α)| ≥ γP , there exist integers a and q with

(a, q) = 1, 1 ≤ q ≤ Cγ−12 and |qα − a| ≤ Cγ−12P−4.

Note that, whenever |G(α)| ≥ P sL−1, then |g(3j )| ≥ PL−1 for 1 ≤ j ≤ s. Hence,
there exist integers cj and qj with 1 ≤ qj ≤ L13, (cj , qj ) = 1 and |qj3j − cj | ≤ L13P−4

(1 ≤ j ≤ s). By considering the indices j1, j2, j3, one finds that there exist bl ∈ Z
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(1 ≤ l ≤ 3) and q ∈ N with 0 ≤ b ≤ q ≤ L40, (q,b) = 1 and |αl − bl/q| ≤ L40P−4

(1 ≤ l ≤ 3). Hence α ∈ N. This shows that

sup
α∈n
|G(α)| � P sL−1.

On applying a trivial estimate for excessive factors g(α), therefore, we obtain∫
n
G(α) dα �

(
sup
α∈n
|G(α)|

)ν ∫
[0,1)3
|G(α)|1−ν dα

� (P s−32)1−ν(P sL−1)ν
∫
[0,1)3
|G0(α)|

1−ν dα.

Further, by applying Hölder’s inequality, we obtain∫
[0,1)3
|G0(α)|

1−ν dα ≤

7∏
l=0

(∫
[0,1)3
|g(34l+1) . . . g(34l+4)|

8−8ν dα

)1/8

.

On noting that g(α) has period 1, a change of variables confirms that for each l with
0 ≤ l ≤ 7 there are non-zero integers ai, bi (1 ≤ i ≤ 3) such that, in the notation
introduced in (5.1), one has∫

[0,1)3
|g(34l+1) . . . g(34l+4)|

8−8ν dα � I8ν(a,b).

Hence, by Theorem 1.2, one concludes that∫
n
G(α) dα � (P s−32)1−ν(P sL−1)ν(P 20−32ν)� P s−12L−ν .

This inequality is a quantitative form of (6.3).

8. The major arcs analysis

The analysis of the major arcs is largely standard. Define

S(q, a) =

q∑
r=1

e(ar4/q), T (q, c) = q−s
s∏

j=1

S(q,3j (c)),

A(q) =
∑

1≤c≤q
(q,c)=1

T (q, c), S(X) =
∑

1≤q≤X

A(q).

Also, put

v(θ) =

∫ P

δP

e(θγ 4) dγ and V (γ ) =

s∏
j=1

v(3j (γ )).
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Write B(X) = [−XP−4, XP−4
]
3 and define

J(X) =

∫
B(X)

V (γ ) dγ .

Standard arguments ([14, Lemma 5.4] and [19, Lemma 8.5]) show that there is a
positive number % having the property that whenever α ∈ N(q,b) ⊆ N, one has

G(α)− %T (q, c)V (α − b/q)� P s(logP)−1/2.

Integrating over N, we infer that∫
N
G(α) dα = %S(Q)J(Q)+O(P s−12(logP)−1/4). (8.1)

Lemma 8.1. Under the hypotheses of Theorem 1.1, the limit S = limX→∞S(X) exists,
S−S(X)� X−1/2, and S� 1.

Proof. Recall that [16, Theorem 4.2] gives q−1S(q, a) � q−1/4(q, a)1/4. Hence, on
writing uj = (q,3j (c)), we obtain

T (q, c)� q−8(u1 . . . u32)
1/4.

By applying the elementary inequality |z1 . . . zn| ≤ |z1|
n
+ · · · + |zn|

n twice, one finds
that

(u1 . . . u32)
1/4
�

7∑
l=0

∑
(a,b,c)∈Sl

|uaubuc|
8/3,

where Sl denotes the set of triples (a, b, c) of integers with

4l < a < b < c ≤ 4l + 4.

Thus
A(q)� q−8 max

0≤l≤7
max

(a,b,c)∈Sl

∑
1≤c≤q
(q,c)=1

|uaubuc|
8/3.

By symmetry, we may suppose that the maximum here occurs when l = 0 and (a, b, c) =
(1, 2, 3). The argument following from equation (95) to the end of the proof of Lemma
23 in Davenport and Lewis [8] then shows that

A(q)� q−8
∑
u1|q

∑
u2|q

∑
u3|q

(u1,u2,u3)�1

(u1u2u3)
8/3q3/(u1u2u3).

Since u1u2u3 � q2, an elementary estimate for the divisor function yields the bound
A(q)� qε−5/3. Hence limX→∞S(X) exists, and S−S(X)� Xε−2/3. The remaining
conclusions follow as in [8, Lemma 31]. ut

Lemma 8.2. Under the hypotheses of Theorem 1.1, the limit J = limX→∞ J(X) exists,
J− J(X)� P s−12X−1, and J� P s−12.
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Proof. Write B̂(X) for R3
\ B(X), and recall the prearrangement of indices implicit

in (6.1). Then a direct modification of the argument of [8, Lemma 30], following an anal-
ysis similar to that of Lemma 8.1, confirms that, for a suitable positive number2 = 2(c),

∫
B̂(X)
|v(31(γ )) . . . v(332(γ ))| dγ � P 32

∫
B̂(2X)

3∏
i=1

(1+ P 4
|ξi |)

−8/3 dξ .

By applying trivial bounds for the additional factors v(3j (γ )) for j > 32, we therefore
conclude that ∫

R3\B(X)
V (ξ) dξ � P s−32(P 20X−1)� P s−12X−1.

In particular, the limit J = limX→∞ J(X) exists, and one has J − J(X) � P s−12X−1.
By the argument concluding the proof of [8, Lemma 30], one finds via Fourier’s integral
theorem that J� P s−12. ut

Subject to the hypotheses of Theorem 1.1, the conclusions of Lemmata 8.1 and 8.2 com-
bine with (8.1) to deliver the lower bound (6.2). In view of the discussion concluding §6,
this establishes Theorem 1.1.

9. Appendix: an adjuvant lemma

Before announcing our adjuvant pruning lemma, for k ≥ 4 we define the multiplicative
function wk(q) by defining, for each prime number p,

wk(p
uk+v) =

{
kp−u−1/2 when u ≥ 0 and v = 1,
p−u−1 when u ≥ 0 and 2 ≤ v ≤ k.

Lemma 9.1. Suppose that k ≥ 4. Let K denote the union of the intervals

K(q, a) = {α ∈ [0, 1) : |qα − a| ≤ P 1−k
}

with 0 ≤ a ≤ q ≤ P and (a, q) = 1. Let ω be a real number with ω > 1, and define the
function ϒω(α) for α ∈ K by taking

ϒω(α) = wk(q)
2ω(1+ P k|α − a/q|)−ω,

when α ∈ K(q, a) ⊆ K. Also, let t be a real number with t ≥ bk/2c. Then for any
subset A of [1, P ] ∩ Z, one has∫

K
ϒω(α)

∣∣∣∑
x∈A

e(αxk)

∣∣∣2t dα � P 2t−k.
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Proof. We follow the proof of [18, Lemma 5.4] as far as [18, equation (5.8)], mutatis
mutandis, reaching the estimate∫

K
ϒω(α)

∣∣∣∑
x∈A

e(αxk)

∣∣∣2t dα � P 2t−k
∑

1≤q≤P

wk(q)
2ωσ(q), (9.1)

where
σ(q) =

∑
r|q

rwk(r)
2t ,

given in [18, equation (5.9)]. Following the argument concluding the proof of [18, Lem-
ma 5.4], we find that

wk(p)
2ωσ(p)�k p

−ω,

wk(p
uk+1)2ωσ(puk+1)�k p

−u−ω+1/k (u ≥ 1),

wk(p
uk+v)2ωσ(puk+v)�k p

−u−ω (u ≥ 0 and 2 ≤ v ≤ k)

whence ∑
1≤q≤P

wk(q)
2ωσ(q) ≤

∏
p≤P

(1+ Ap−ω),

for a suitable A = A(k, ω) > 0. Since ω > 1, the desired conclusion now follows
from (9.1). ut

We apply this lemma when k = 4 to confirm the following estimate that we announce
in the notation of §4. In particular, we recall the definition of the major arcs M given
via (3.8).

Lemma 9.2. One has ∫
M
|f (α)2g(α)6| dα � P 4.

Proof. By reference to [16, Theorem 4.1] and its sequel in [16], one finds that when
α ∈M(q, a) ⊆M, then

f (α)� Pw4(q)(1+ P 4
|α − a/q|)−1

+O(P 1/4+ε)� Pw4(q)(1+ P 4
|α − a/q|)−1.

Hence, as an immediate consequence of Lemma 9.1, one obtains∫
M
|f (α)8/3g(α)4| dα � P 8/3

∫
M
ϒ4/3(α)|g(α)|

4 dα � P 8/3.

We recall that Lemma 2.3 shows 112 = 0 to be an admissible exponent. Then it follows
via Hölder’s inequality that∫

M
|f (α)2g(α)6| dα ≤

(∫
M
|f (α)8/3g(α)4| dα

)3/4(∫ 1

0
|g(α)|12 dα

)1/4

� (P 8/3)3/4(P 8)1/4 � P 4.

This completes the proof of the lemma. ut
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