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Abstract. We show that classical chaining bounds on the suprema of random processes in terms
of entropy numbers can be systematically improved when the underlying set is convex: the en-
tropy numbers need not be computed for the entire set, but only for certain “thin” subsets. This
phenomenon arises from the observation that real interpolation can be used as a natural chain-
ing mechanism. Unlike the general form of Talagrand’s generic chaining method, which is sharp
but often difficult to use, the resulting bounds involve only entropy numbers but are nonetheless
sharp in many situations in which classical entropy bounds are suboptimal. Such bounds are read-
ily amenable to explicit computations in specific examples, and we discover some old and new
geometric principles for the control of chaining functionals as special cases.

Keywords. Generic chaining, majorizing measures, entropy numbers, real interpolation, suprema
of random processes

1. Introduction

A remarkable achievement of modern probability theory is the development of sharp con-
nections between the boundedness of random processes and the geometry of the underly-
ing index set. Perhaps the most fundamental result in this direction is the characterization
of boundedness of Gaussian processes due to Talagrand.

Theorem 1.1 ([16]). Let (Xt )t∈T be a centered Gaussian process and denote by d(t, s)
= (E|Xt −Xs |2)1/2 the associated natural metric on T . Then

E
[
sup
t∈T

Xt

]
� γ2(T ) := inf sup

t∈T

∑
n≥0

2n/2d(t, Tn),

where the infimum is taken over all sequences of sets Tn with cardinality |Tn| < 22n .

The quantity γ2(T ) captures precisely what aspect of the geometry of the metric space
(T , d) controls the suprema of Gaussian processes: it quantifies the degree to which T
can be approximated by a sequence of increasingly fine nets Tn. While we quote this par-
ticular result for concreteness, the structure that is expressed by Theorem 1.1, called the
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generic chaining, extends far beyond the theory of Gaussian processes and has a substan-
tial impact on various problems in probability, functional analysis, statistics, and theoret-
ical computer science. An extensive development of this theory and its implications can
be found in [16].

Theorem 1.1 provides a powerful general principle for the study of the suprema of
random processes. However, when presented with any specific situation, it often proves
to be remarkably difficult to control γ2(T ) efficiently. Theorem 1.1 can only give sharp
results if one is able to construct a nearly optimal sequence of nets Tn, a task that is
significantly complicated by the multiscale nature of γ2(T ). The aim of this paper is
to exhibit some surprisingly elementary principles that make it possible to obtain sharp
control of γ2(T ) in various interesting examples, and that shed new light on the underlying
geometric phenomena.

There are essentially two general approaches that have been used to control γ2(T ).
The simplest and by far the most useful approach is obtained by bringing the supremum
over t ∈ T inside the sum in the definition of γ2(T ). This yields

γ2(T ) ≤
∑
n≥0

2n/2en(T ),

where the entropy number en(T ) is defined as the smallest ε > 0 such that there is an
ε-net in T of cardinality less than 22n . This bound, due to Dudley [7], long predates
Theorem 1.1 and has found widespread use. Its utility stems from the fact that controlling
entropy numbers only requires us to approximate the set T at a single scale, for which
numerous methods are available; see, e.g., [10, 8, 2]. Unfortunately, Dudley’s bound can
fail to be sharp even in the simplest examples, such as ellipsoids in Hilbert space. In fact,
the supremum of a random process on T cannot in general be understood in terms of the
entropy numbers of T : one can easily construct two such sets with comparable entropy
numbers on which a Gaussian process behaves very differently [14]. It is therefore a
crucial feature of Theorem 1.1 that the use of entropy numbers is replaced by a genuinely
multiscale form of approximation. The construction of such a multiscale approximation
in any given situation is however a highly nontrivial task.

The main approach that has been developed for the latter purpose is Talagrand’s
growth functional machinery [16] that forms the core of the proof of Theorem 1.1. To
show that γ2(T ) is upper bounded by the expected supremum of the Gaussian process,
the proof of Theorem 1.1 constructs nets Tn by means of a greedy partitioning scheme
that uses the Gaussian process itself G(A) := E[supt∈AXt ] as an objective function. It
turns out that the success of this proof relies on the properties of Gaussian processes only
through the validity of a single “growth condition” of the functional G. If one can design
another functional F that mimics this property of Gaussian processes, then the same proof
also yields an upper bound on γ2(T ) in terms of F(T ). An important example of such a
construction is the proof that γ2(T ) is strictly smaller than Dudley’s bound when T is a q-
convex body [16, §4.1]. It is generally far from obvious, however, how a functional F can
be designed, and successful application of this approach requires considerable ingenuity.

In this paper, we develop a new approach that is intermediate between these two
extremes. The central insight of this paper is that it is possible to improve systematically
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on Dudley’s bound without giving up the formulation in terms of entropy numbers. Of
course, as was noted above, we cannot expect to improve on Dudley’s bound in a general
setting in terms of the entropy numbers of T itself. Instead, we will show that when T
is a convex set, the entropy numbers en(T ) in Dudley’s bound can be replaced by the
entropy numbers of certain “thin” subsets that can be substantially smaller than T . (The
convexity assumption is not essential for our approach, but leads to a cleaner statement of
the results.)

To illustrate this idea, let us begin by stating a useful form of such a result. Let (X, ‖·‖)
be a Banach space, and letB ⊂ X be a symmetric compact convex set. We denote by ‖·‖B
the gauge of B, and by ‖ · ‖∗B and ‖ · ‖∗ the dual norms on X∗. In this setting, we will
always choose the distance d in the definitions of γ2(B) and en(B) to be the one generated
by the norm, d(x, y) := ‖x − y‖.

Theorem 1.2. Let B ⊂ (X, ‖ · ‖) be a symmetric compact convex set, and define

Bt := {y ∈ B : ∃z ∈ X
∗ such that 〈z, y〉 = ‖y‖B , ‖z‖∗B ≤ 1, ‖z‖∗ ≤ t}.

Then for any a > 0,

γ2(B) .
1
a
+

∑
n≥0

2n/2en(Ba2n/2).

The bound of Theorem 1.2 proves to be sharp in many situations in which Dudley’s
bound is suboptimal, and often provides a simple explanation for why this is the case. At
the same time, Theorem 1.1 is typically no more difficult to apply than Dudley’s bound,
as the “thin” subsets Bt ⊆ B that appear in this bound can be found in quite explicit form.
For example, if B is a smooth symmetric convex body in Rd , then it is a classical fact that
∇‖x‖B is the unique norming functional for the norm ‖ · ‖B at the point x, so that we can
simply write

Bt =
{
y ∈ B :

∥∥∇‖y‖B∥∥∗ ≤ t}.
Such expressions are readily amenable to explicit computations.

One of the nice features of Theorem 1.2 is that the phenomenon that it describes arises
in a completely elementary fashion. To understand its origin, let us sketch the simple idea
behind the proof. The basic challenge in controlling γ2(B) is to approximate the unit ball
of the norm ‖ · ‖B in terms of another norm ‖ · ‖. It proves to be useful to connect these
two norms using an idea that is inspired by real interpolation of Banach spaces [4]. To
this end, define Peetre’s K-functional

K(t, x) := inf
y
{‖y‖B + t‖x − y‖} = ‖πt (x)‖B + t‖x − πt (x)‖,

where πt (x) is any minimizer in the definition of K(t, x) (assume for simplicity that
we work in a finite-dimensional Banach space to avoid trivial technicalities). It is easily
seen that limt→∞K(t, x) = ‖x‖B , K(0, x) = 0, and d

dt
K(t, x) = ‖x − πt (x)‖ (the

latter follows by observing that ‖x − πt (x)‖ is a supergradient of the concave function
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t 7→ K(t, x), so it must equal d
dt
K(t, x) a.e.; see Proposition 2.3 below). We therefore

obtain, by the fundamental theorem of calculus,

‖x‖B =

∫
∞

0
‖x − πt (x)‖ dt �

∑
n≥0

2n/2‖x − π2n/2(x)‖,

where the last step follows from a Riemann sum approximation of the integral. This leads
immediately to the following observation: if we define the sets

Bt := {πt (x) : x ∈ B},

then we have shown that
sup
x∈B

∑
n≥0

2n/2d(x, B2n/2) . 1.

In other words, we see that a natural chaining mechanism is in fact built into the real in-
terpolation method: we automatically generate a multiscale approximation of B in terms
of the sets Bt . In order to bound γ2(B), it remains to choose a finite net with the appro-
priate cardinality inside each of the sets Bt . (While it may not be immediately obvious,
the definition of Bt given in Theorem 1.2 is none other than the dual formulation of the
definition of Bt as a set of minimizers.)

It should be clear at this point that convexity is not essential in the construction using
real interpolation: convexity only enters the proof of Theorem 1.2 in order to obtain the
convenient formulation of the sets Bt . In Section 2, we first prove a general form of
Theorem 1.2 that is applicable in any metric space; we also formulate the results for
more general γp-functionals that appear when the generic chaining method is applied
to non-Gaussian processes. We then specialize to the convex setting and derive the dual
formulation of Bt . In Section 3, we illustrate the power of Theorem 1.2 in a number of
explicit examples. We also illustrate by means of an example that Theorem 1.2 does not
always give sharp results.

Theorem 1.2 improves on Dudley’s bound by replacing the entropy numbers of B by
the entropy numbers of the smaller sets Bt . A rather different improvement arises when
B is q-convex, for which Talagrand shows that [16, §4.1]

γ2(B) .
[∑
n≥0

(2n/2en(B))q/(q−1)
](q−1)/q

.

This bound involves only the entropy numbers of the set B itself, and appears at first sight
to be quite different in nature than Theorem 1.2. Nonetheless, we show in Section 4 that
this fundamental result is a direct consequence of Theorem 1.2. Roughly speaking, we
will see that the q-convexity assumption forces the sets Bt to be much smaller than the
original set B in the sense that en(Bt ) / t1/(q−1)en(B)

q/(q−1). In fact, it turns out there is
nothing particularly special about uniform convexity: Talagrand’s result is a special case
of a more general geometric phenomenon that will be developed in Section 4. As another
illustration of this phenomenon, we will show that Talagrand’s bound for q-convex bodies
holds verbatim for `q -balls in Banach spaces with an unconditional basis for every q with
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1 < q <∞. Note that such sets are only 2-convex rather than q-convex when 1 < q < 2,
so that the behavior of `q -balls is evidently not explained by uniform convexity.

The connection between interpolation and generic chaining appears in hindsight to
be entirely natural. Many generic chaining constructions (that appear in [16, 15], for ex-
ample) have a flavor of interpolation, and even the multiscale notion of approximation that
is intrinsic to the definition of γ2(T ) has appeared independently in interpolation theory
in the study of approximation spaces [13, 6, 12]. To the best of the author’s knowledge,
however, the results of this paper are the first to explicitly develop this connection. It
would be interesting to understand whether broader interactions exist between these areas
of probability and analysis.

2. Chaining, interpolation, and convexity

The aim of this section is to develop the basic connections between chaining, interpola-
tion, and convexity that lie at heart of this paper. In Section 2.1, we develop an abstract
chaining principle that holds in any metric space. In Section 2.2, we specialize to the
convex setting and complete the proof of Theorem 1.2.

2.1. Chaining and interpolation

In this section, let (X, d) be any metric space. We begin by defining formally the no-
tions of entropy numbers and Talagrand’s γp-functionals. The case p = 2 arises in the
context of Gaussian processes together with the associated natural metric, as in Theo-
rem 1.1; however, other values of p and more general metrics can arise for other random
processes [16].

Definition 2.1. For any A ⊆ X and n ≥ 0, define the entropy number

en(A) := inf
|Ã|<22n

sup
x∈A

d(x, Ã),

and for p > 0 define the γp-functional

γp(A) := inf
|Ãn|<22n

sup
x∈A

∑
n≥0

2n/pd(x, Ãn).

(The approximating sets Ãn ⊆ X are not necessarily subsets of A.)

Fix a set A ⊆ X for the remainder of this section. To measure the size of A, we introduce
a penalty function f : X → R+ ∪ {+∞} that may in principle be chosen arbitrarily.
Consider the corresponding optimization problem

K(t, x) := inf
y∈X
{f (y)+ td(x, y)}

for every t ≥ 0 and x ∈ A. We will assume for simplicity that the infimum in this
optimization problem is attained for every t ≥ 0 and x ∈ A, and denote by πt (x) any
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choice of minimizer in the definition of K(t, x). (It is a trivial exercise to extend our
results to the setting where πt (x) is a near-minimizer, but such an extension will not be
needed in what follows.) We now define for every t ≥ 0 the set

At := {πt (x) : x ∈ A}.

Remark 2.2. In the present formulation, At is not necessarily a subset of A. However, it
is natural to choose a penalty function f such that A = {x : f (x) ≤ 1}, in which case
evidently At ⊆ A (because f (πt (x)) ≤ K(t, x) ≤ f (x)).

The following result lies at the heart of this paper. We write a . b if a ≤ Cb for a
universal constant C, and a � b if a . b and b . a. We indicate explicitly when the
universal constant depends on some parameter in the problem.

Proposition 2.3. In the setting of this section, for every a > 0 we have

γp(A) .
1
a

sup
x∈A

f (x)+
∑
n≥0

2n/pen(Aa2n/p ),

where the universal constant depends on p only.

Proof. We can assume without loss of generality that f is uniformly bounded on A. Thus
0 ≤ K(t, x) ≤ f (x) <∞ for every x ∈ A and t ≥ 0. Moreover, t 7→ K(t, x) is clearly a
concave function for every x ∈ A. We now use some basic facts about univariate concave
functions [9, Chapter I]. First, we note that

K(t, x)−K(s, x) = inf
y∈X
{f (y)+ td(x, y)} − f (πs(x))− sd(x, πs(x))

≤ (t − s)d(x, πs(x))

for all t, s ≥ 0, so that d(x, πs(x)) is a supergradient of t 7→ K(t, x) at t = s. As a
bounded concave function is absolutely continuous, we obtain

K(T , x) = K(0, x)+
∫ T

0
d(x, πt (x)) dt

for every T ≥ 0 and x ∈ A. In particular, we can estimate∫
∞

0
d(x, πt (x)) dt ≤ f (x)

for every x ∈ A. We also recall that the derivative of a concave function is nonincreasing,
so that we can discretize the integral as follows:

f (x) ≥

∫ a

0
d(x, πt (x)) dt +

∑
n≥1

∫ a2n/p

a2(n−1)/p
d(x, πt (x)) dt

≥ (1− 2−1/p) a
∑
n≥0

2n/pd(x, πa2n/p (x)),

where in the last step we have used the fact that t 7→ d(x, πt (x)) is nonincreasing.
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It remains to discretize the minimizers πt (x). By the definition of entropy numbers,
we can choose for every n ≥ 0 a set Ãn ⊆ X such that |Ãn| < 22n and

sup
x∈A

a2n/p

d(x, Ãn) ≤ 2en(Aa2n/p ).

We can therefore estimate

γp(A) ≤ sup
x∈A

∑
n≥0

2n/pd(x, Ãn)

≤ sup
x∈A

∑
n≥0

2n/pd(x, πa2n/p (x))+
∑
n≥0

2n/p sup
x∈A

d(πa2n/p (x), Ãn)

.
1
a

sup
x∈A

f (x)+
∑
n≥0

2n/pen(Aa2n/p ). ut

Remark 2.4. Suppose we replace the penalty f by an equivalent penalty f̃ � f . Then
the first term in the bound of Proposition 2.3 only changes by a universal constant, but
the second term might change substantially as the definition of the sets At is highly non-
linear. This highlights the nontrivial nature of the choice of penalty. Similarly, the bound
of Theorem 1.2 could potentially give better results if we replace B by an equivalent set
cB̃ ⊆ B ⊆ CB̃. Note that the same phenomenon arises when applying the growth func-
tional machinery of [16]: the growth condition is not preserved if we choose an equivalent
functional. This appears to be an inherent difficulty that arises in the control of chaining
functionals.

2.2. Convexity

While Proposition 2.3 provides a very general chaining principle in metric spaces, it is not
immediately obvious how to apply this result in any given situation. The problem is that
the sets At that appear in the previous section are defined implicitly as families of solu-
tions to certain optimization problems; in the absence of a more explicit characterization,
the computation of the entropy numbers en(Aa2n/p ) can be a challenging problem. To ad-
dress this problem, we specialize our results from this point onwards to the case where
the set of interest is convex and where the penalty function is chosen to be the associated
gauge. The convexity assumption makes it possible to obtain a dual formulation of the
sets of optimizers that is readily amenable to explicit computations. The advantages of
this formulation will be amply illustrated in the following sections.

We now introduce the setting that will be used throughout the remainder of this paper.
Let (X, ‖ · ‖) be a Banach space, and let B ⊂ X be a symmetric compact convex set. The
metric d that appears in the definitions of the entropy numbers en(B) and the functionals
γp(B) (see Definition 2.1) will always be chosen to be defined by the norm, d(x, y) :=
‖x − y‖, on the underlying Banach space. The gauge (Minkowski functional) of B will
be denoted ‖ · ‖B , that is,

‖x‖B := inf{s ≥ 0 : x ∈ sB}
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for x ∈ X. Denote by ‖ · ‖∗B and ‖ · ‖∗ the associated dual gauge and norm, that is,

‖z‖∗B := sup
‖x‖B≤1

〈z, x〉 = sup
x∈B

〈z, x〉, ‖z‖∗ := sup
‖x‖≤1
〈z, x〉

for z ∈ X∗. The key point of this section is the following duality result, which shows that
the minimizers of the K-functional in the convex setting define a form of projection onto
an explicitly defined scale of subsets Bt ⊆ B.

Proposition 2.5. For every t ≥ 0, there is a map πt : B → B such that:

(i) πt (x) is a minimizer for Peetre’s K-functional for every x ∈ B:

K(t, x) := inf
y∈X
{‖y‖B + t‖x − y‖} = ‖πt (x)‖B + t‖x − πt (x)‖.

(ii) The set of minimizers
Bt := {πt (x) : x ∈ B}

can be characterized as

Bt = {y ∈ B : ∃z ∈ X
∗ such that 〈z, y〉 = ‖y‖B , ‖z‖∗B ≤ 1, ‖z‖∗ ≤ t}.

(iii) πt (x) = x for every x ∈ Bt .

Proof. The result holds trivially for t = 0, so we fix t > 0 in what follows.

Step 1. Let BK := conv(B ∪ (1/t)B∼), where B∼ is the closed unit ball in (X, ‖ · ‖). For
completeness, we recall the proof of the elementary fact that K(t, x) = ‖x‖BK for every
x ∈ X, where ‖ · ‖BK denotes the gauge of BK .

Suppose first thatK(t, x) < r , so there exists y ∈ X with ‖y‖B+ t‖x−y‖ < r . Then
writing x = λx1 + µx2 with x1 = y/‖y‖B and x2 = (x − y)/(t‖x − y‖) readily implies
that ‖x‖BK < r . In the converse direction, suppose that ‖x‖BK < r , so that x = λx1+µx2
for some |λ| + |µ| < r , x1 ∈ B, x2 ∈ (1/t)B∼. Then choosing y = λx1 in the definition
of K(t, x) shows that K(t, x) < r .

Step 2. We now establish the existence of a minimizer in the definition of K(t, x) for
every x ∈ X. This is a direct consequence of the previous step and the compactness of B.
Indeed, as B is compact, the set BK is closed. Thus K(t, x) = r implies x ∈ rBK , so
there exist |λ| + |µ| ≤ r and x1 ∈ B, x2 ∈ (1/t)B∼ such that x = λx1 + µx2. It follows
that y = λx1 is a minimizer for K(t, x), as

K(t, x) ≤ ‖λx1‖B + t‖µx2‖ ≤ r = K(t, x).

Step 3. Define the set
B ′t := {y ∈ B : K(t, y) = ‖y‖B}.

We can characterize this set by duality. Indeed, note that

K(t, y) = sup{〈z, y〉 : z ∈ X∗, ‖z‖∗B ≤ 1, ‖z‖∗ ≤ t},
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where we have used the polar identity B◦K = B◦ ∩ tB◦∼. Moreover, the supremum is
attained at some point z ∈ X∗ by the Hahn–Banach theorem. Therefore, if y ∈ B ′t , then
there exists z ∈ X∗ such that 〈z, y〉 = ‖y‖B , ‖z‖∗B ≤ 1, and ‖z‖∗ ≤ t . Conversely, if
y ∈ B is such that a point z satisfying the latter properties exists, then ‖y‖B = 〈z, y〉 ≤
K(t, y) ≤ ‖y‖B so that y ∈ B ′t . Thus we have

B ′t = {y ∈ B : ∃z ∈ X
∗ such that 〈z, y〉 = ‖y‖B , ‖z‖∗B ≤ 1, ‖z‖∗ ≤ t}.

Step 4. Define the map πt : B → B as follows. For x ∈ B ′t , we set πt (x) = x. For
x 6∈ B ′t , we choose πt (x) to be any minimizer in the definition of K(t, x). We are going
to verify that each of the claims in the statement of the proposition hold.

Let us first note that πt does indeed map B into itself. For x ∈ B ′t , this is true by
construction. For x 6∈ B ′t , it is true because ‖πt (x)‖B ≤ K(t, x) ≤ ‖x‖B . Moreover, note
that when x ∈ B ′t , by construction y = x = πt (x) is a minimizer in the definition of
K(t, x). We have therefore established part (i).

To prove (ii) and (iii), it suffices to show that Bt = B ′t . That B ′t ⊆ Bt is obvious from
the fact that πt (x) = x for x ∈ B ′t ⊆ B. To establish the converse inclusion, we argue
as follows. Fix x ∈ B, and choose z ∈ X∗ such that K(t, x) = 〈z, x〉, ‖z‖∗B ≤ 1, and
‖z‖∗ ≤ t . By the bipolar theorem, we can write

〈z, πt (x)〉 ≤ ‖πt (x)‖B = 〈z, πt (x)〉 + 〈z, x − πt (x)〉 − t‖x − πt (x)‖ ≤ 〈z, πt (x)〉.

This implies that πt (x) ∈ B ′t , and thus Bt ⊆ B ′t . ut

Remark 2.6. When B is a symmetric convex body in a finite-dimensional Banach space,
the details of the proof of Proposition 2.5 simplify significantly. It is an instructive exer-
cise to give a quick proof in this case using subdifferential calculus.

The proof of Theorem 1.2 in the introduction now follows trivially. For future reference,
we formulate the analogous result for γp-functionals.

Corollary 2.7. Let B ⊂ (X, ‖ · ‖) be a symmetric compact convex set, and define

Bt := {y ∈ B : ∃z ∈ X
∗ such that 〈z, y〉 = ‖y‖B , ‖z‖∗B ≤ 1, ‖z‖∗ ≤ t}.

Then for any a > 0 we have

γp(B) .
1
a
+

∑
n≥0

2n/pen(Ba2n/2),

where the universal constant depends on p only.

Proof. This is simply the combined statement of Proposition 2.3, where we choose the
penalty f (x) = ‖x‖B and distance d(x, y) = ‖x − y‖, and Proposition 2.5. ut

We end this section by emphasizing a remark that was also made in the introduction.
Recall that a symmetric convex set B ⊂ X is called smooth if for every x ∈ X, x 6= 0,
there is a unique z ∈ X∗ such that 〈z, x〉 = ‖x‖B and ‖z‖∗B ≤ 1 (see [3]).
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Corollary 2.8. Let B be a symmetric convex body in a finite-dimensional Banach space
(X, ‖ · ‖), and denote by ∂‖y‖B the subdifferential of ‖y‖B . Then

Bt =
{
y ∈ B : inf

z∈∂‖y‖B
‖z‖∗ ≤ t

}
.

In particular, if B is smooth, then

Bt = {y ∈ B : ‖∇‖y‖B‖
∗
≤ t}.

Proof. It is a classical fact that ∂‖y‖B = {z ∈ X∗ : 〈z, y〉 = ‖y‖B , ‖z‖∗B ≤ 1}, so that
the result follows readily from Proposition 2.5 (cf. [9, Chapter VI]). ut

The explicit nature of Corollary 2.8 is particularly useful in computations.

3. Examples

The aim of this section is to illustrate the utility of Theorem 1.2 in explicit computa-
tions by investigating some simple but conceptually interesting examples. As our goal
is to develop insight into the phenomenon described by Theorem 1.2, we have avoided
unnecessary distractions by restricting attention to situations in which existing entropy
estimates can be used.

We write ‖x‖r := [
∑
i |xi |

r
]
1/r , and denote by e1, . . . , ed the standard basis in Rd .

Throughout this section, we work in Euclidean space (Rd , ‖ · ‖) where ‖ · ‖ := ‖ · ‖2.
The concrete choice of the Euclidean norm is not important for our theory, but is made in
order to enable explicit computations and is natural in the setting of Gaussian processes
(as it corresponds to the canonical choice Xt = 〈t, g〉 in Theorem 1.1, where g is a
standard Gaussian vector in Rd ). Some of the examples developed here will be revisited
in Section 4 in a much more general setting.

3.1. `q -Ellipsoids

The classical example of a situation where Dudley’s bound fails to be sharp is that of
ellipsoids in Hilbert space. In this section, we will investigate the following more general
situation. Given scalars 1 < q < ∞ and b1 ≥ · · · ≥ bd > 0, let B ⊂ Rd be the
`q -ellipsoid whose gauge is given by

‖x‖B =

[ d∑
i=1

(
|xi |

bi

)q]1/q

.

We will show that Theorem 1.2 yields the following optimal bound.

Proposition 3.1. In the setting of this section, we have

γ2(B) .
( d∑
i=1

b
q/(q−1)
i

)(q−1)/q
,

where the universal constant depends on q only.

Of course, this result can easily be obtained from Theorem 1.1, but our aim is to provide
a geometric proof that explains why the result is true.
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In order to apply either Dudley’s bound or Theorem 1.2, we will require suitable es-
timates on the entropy numbers of `q -ellipsoids. The behavior of these entropy numbers
is investigated in detail in a classic paper by Carl [5] (in the special case of `2-ellipsoids
a much more elementary approach can be found in [16, §2.5]). For future reference, we
record a more general form of the main result of Carl than is presently needed. The fol-
lowing can be read off from the proof of [5, Theorem 2]. (While the result of Carl is
formulated only for r ≥ 1, the proof extends directly to the case 0 < r < 1 if we replace
[5, Theorem 1] by [8, Proposition 3.2.2].)

Lemma 3.2 ([5]). Given 0 < r < ∞, 1/s > (1/2 − 1/r)+, 0 < u < ∞, and scalars
c1 ≥ · · · ≥ cd > 0, the `r -ellipsoid C = {x ∈ Rd : ‖(xi/ci)‖r ≤ 1} satisfies

∑
n≥0

(
2n(1/s+1/r−1/2)en(C)

)u
�

d∑
k=1

(k1/s−1/uck)
u

where the universal constant depends on r, s, u only.

Applying this result with r = q, 1/s = 1− 1/q, and u = 1 yields

∑
n≥0

2n/2en(B) �
d∑
k=1

k−1/qbk.

We therefore see immediately that Dudley’s bound is suboptimal for `q -ellipsoids: Dud-
ley’s bound is much larger than γ2(B), say, when bk = k−(q−1)/q(log k)−1.

To obtain a sharp bound, we will apply Theorem 1.2. The crux of the matter is to
control the sets Bt . In the present setting, this is exceedingly simple and gives a vivid
illustration of where the improvement over Dudley’s bound comes from.

Proof of Proposition 3.1. Note that B is a smooth convex body with

∂‖y‖B

∂yk
=

1
b
q
k

|yk|
q−1

‖y‖
q−1
B

sign(yk).

Thus Corollary 2.8 gives

Bt = {y ∈ B : ‖y‖C ≤ t
1/(q−1)

‖y‖B} ⊆ t
1/(q−1)C,

where

‖y‖C =

[ d∑
i=1

(
|yi |

b
q/(q−1)
i

)2q−2]1/(2q−2)

.

Substituting Bt ⊆ t1/(q−1)C into Theorem 1.2 and optimizing over a > 0 yields

γ2(B) .
(∑
n≥0

2nq/(2q−2)en(C)
)(q−1)/q

.

The conclusion follows by applying Lemma 3.2 with r = 2q − 2 and s = u = 1. ut
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The key point of the proof of Proposition 3.1 is that each subset Bt of the `q -ellipsoid
B is contained in a dilation of the much “thinner” `2q−2-ellipsoid C: the lengths of the
semiaxes of C have been raised to the power q/(q − 1) as compared to those of B. This
is precisely why we obtain the correct powers of bi inside the sum in Proposition 3.1.
The author sees no obvious way to explain this miracle other than that it drops out of
the trivial explicit computation performed above. However, a deeper understanding of the
geometry of the sets Bt for `q -ellipsoids will be obtained in a much more general setting
in Section 4.

Remark 3.3. There exist two previous geometric proofs of Proposition 3.1 for special
values of q. The first, in [11, §15.6], gives a delicate manual construction of an equivalent
formulation of γ2(B) for q = 2. The second, in [16, §4.1], deduces the result for 2 ≤ q
< ∞ from a more general bound for uniformly convex bodies that is proved using the
growth functional machinery. We will revisit the latter idea in section 4, where we will
also see that uniform convexity fails to explain the behavior of `q -ellipsoids for 1 <

q < 2. That we have obtained a sharp bound for every value of q with the same proof
therefore hides the fact that `q -ellipsoids can have a very different geometry for different
values of q.

Remark 3.4. The universal constant in Proposition 3.1 must necessarily depend on q: if
this were not the case, then we would obtain γ2(B) . b1 in the limit q ↓ 1, which is
easily seen to be false by Theorem 1.1. Unfortunately, the entropy estimates provided by
Lemma 3.2 are not sufficiently accurate to recover the correct behavior as q ↓ 1. This is
not a deficiency of Theorem 1.2, however: the case q = 1 is of particular interest in its
own right and will be investigated in the next section.

3.2. Octahedra

In this section, we investigate the limiting case q = 1 of the example developed in the
previous section. That is, given scalars b1 ≥ · · · ≥ bd > 0, we investigate the octahedron
B ⊂ Rd defined by

B = absconv{biei : i = 1, . . . , d}.
It is not difficult to show that Dudley’s bound is suboptimal in this setting [16, Exercise
2.2.15]. We will show that Theorem 1.2 yields the following optimal bound.

Proposition 3.5. In the setting of this section, we have

γ2(B) . 6 := max
i≤d

bi
√

log(i + 1).

Of course, this result could easily be obtained from Theorem 1.1, and a rather difficult
geometric proof using growth functionals can be found in [15, §8]. However, the point
for our purposes is that this result follows in a completely elementary fashion from The-
orem 1.2. To apply the latter, let us first identify the sets Bt .

Lemma 3.6. For any t ≥ 0, we have

Bt =

{
y ∈ B :

d∑
i=1

1yi 6=0

b2
i

≤ t2
}
.
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Proof. While ‖ · ‖B is not smooth, we can easily compute its subdifferential:

∂‖y‖B = {z ∈ Rd : zi = sign(yi)/bi if yi 6= 0, |zi | ≤ 1/bi if yi = 0}.

We therefore obtain

inf
z∈∂‖y‖B

‖z‖2 =

d∑
i=1

1yi 6=0

b2
i

,

and the result follows from Corollary 2.8. ut

Lemma 3.6 shows that the sets Bt are very thin indeed: they consist of sparse vectors.
Controlling the entropy numbers of such sets is an easy exercise; for each fixed spar-
sity pattern we can discretize using a standard volumetric argument, while counting the
number of sparsity patterns is a matter of simple combinatorics.

Lemma 3.7. There is a universal constant c > 0 such that for all n ≥ 0,

en(Bc2n/2/6) . 2−nb1.

Proof. Fix n ≥ 0. As 1/b2
i ≥ log(i + 1)/62 by definition, we have

Bt ⊆ Ct :=
{
y ∈ B :

d∑
i=1

log(i + 1) 1yi 6=0 ≤ 6
2t2
}
.

It suffices to control the entropy numbers of the larger set Cc2n/2/6 .
Let us begin with some counting. Denote by I the family of all admissible sparsity

patterns of y ∈ Cc2n/2/6 , that is, I is the family of all I ⊆ [d] such that∑
i∈I

log(i + 1) ≤ c22n.

Denote by Ik ⊆ I the family of all I ∈ I with cardinality |I | = k. Let us bound the
number of such sets. Setting c :=

√
log 2/2, we can estimate

|Ik| =
∑
|I |=k

1I∈I =
∑
|I |=k

1∏
i∈I (i+1)2≤22n−1 ≤ 22n−1 ∑

|I |=k

∏
i∈I

1
(i + 1)2

.

The right-hand side can be bounded as follows:

∑
|I |=k

∏
i∈I

1
(i + 1)2

=

∑
1≤`1<···<`k≤d

k∏
i=1

1
(`i + 1)2

≤

k∏
i=1

∑
`≥i

1
(`+ 1)2

<
1
k!
,

where we have used the inequality∑
`≥i

1
(`+ 1)2

<
∑
`≥i

∫ `+1

`

1
x2 dx =

∫
∞

i

1
x2 dx =

1
i
.

We have therefore shown that |Ik| < 22n−1
/k!.
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Let ε ≤ b1 be a constant to be chosen later on. For every I ∈ I, choose a minimal
ε-net TI for the Euclidean ball in RI with radius b1, and denote by T the union of all these
sets TI . Evidently T is a ε-net for Cc2n/2/6 . Let us estimate its cardinality. A standard
volumetric argument yields [2, Corollary 4.1.15]

|TI | ≤ (3b1/ε)
|I |.

We can therefore estimate

|T | ≤

d∑
k=0

(3b1/ε)
k
|Ik| < 22n−1

e3b1/ε.

If we choose ε = (6/log 2) 2−nb1, we find that |T | < 22n , which establishes the claim
whenever 2n ≥ 6/log 2 (as we have assumed that ε ≤ b1 in the volumetric estimate). For
2n < 6/log 2, simply note the trivial bound en(Cc2n/2/6) ≤ diam(B) ≤ 2b1. ut

With this entropy estimate in hand, the proof of Proposition 3.5 is an immediate conse-
quence of Lemma 3.7 and Theorem 1.2 with a = c/6.

3.3. A counterexample

The aim of this section is to show that Theorem 1.2 does not always give sharp results. As
the example that we will discuss is a conceptually important one, let us briefly consider
this example in a broader context.

A remarkable consequence of Theorem 1.1 is that γ2(conv(T )) � γ2(T ) for any (non-
convex) subset T ⊆ Rd of Euclidean space: as the supremum of a linear function over a
convex set is attained at an extreme point, Theorem 1.1 yields

γ2(T ) � E
[

sup
x∈T

〈x, g〉
]
= E

[
sup

x∈conv(T )
〈x, g〉

]
� γ2(conv(T ))

(here g denotes a standard Gaussian vector in Rd ). It is a long-standing open problem
to understand the geometric mechanism behind this fundamental fact (cf. [16, §2.4]). By
using a known device [16, Theorem 2.4.18], one can reduce this problem to the following
special case: it suffices to give a geometric proof of the fact that for any x1, . . . , xn ∈ Rd
such that ‖x1‖ ≥ · · · ≥ ‖xn‖ > 0, we have

γ2(B) . max
i≤n
‖xi‖

√
log(i + 1), B = absconv{xi : i = 1, . . . , n}.

We solved this problem in the previous section under the additional assumption that the
vectors xi are orthogonal. It is not known, however, how this conclusion can be estab-
lished in the absence of the orthogonality assumption. The results of this paper originated
in an attempt by the author to understand this issue. We will presently illustrate that The-
orem 1.2 does not directly resolve this problem.

The example that we will consider is defined as follows. Fix 0 < ε < 1 and let
u = d−1/21, where 1 is the vector of ones (note that ‖u‖ = 1). We consider the set

B = absconv{xi : i = 1, . . . , d}, xi = ei + εu.
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This is a small perturbation of the example in the previous section where all vertices of the
simplex have been shifted along the diagonal. One can show as in [16, Exercise 2.2.15]
that γ2(B) �

√
log d, while Dudley’s bound is of order (log d)3/2.

We claim that Theorem 1.2 does not improve on Dudley’s bound in the present set-
ting: the sets Bt are not sufficiently small to gain any improvement. This unfortunate
conclusion is contained in the following lemma.

Lemma 3.8. We have Bt ⊇ conv{xi : i = 1, . . . , d} for all t ≥ 1/ε.
Proof. Let V =

∑d
i=1 xi ⊗ ei be the square matrix whose columns are the vectors xi .

Note that V is invertible, and we have ‖x‖B = ‖V −1x‖1. Therefore

∂‖x‖B = (V
∗)−1∂‖V −1x‖1 3 (V

∗)−1 sign(V −1x),

where sign(z) operates entrywise on a vector z and we set sign(0) := 1. In particular,

Bt ⊇ {x ∈ B : sign(V −1x) ∈ tV ∗B∼}

by Corollary 2.8, where B∼ denotes the Euclidean unit ball in Rd .
Now note that if x ∈ conv{xi : i = 1, . . . , d}, then V −1x has nonnegative entries and

thus sign(V −1x) = 1. It therefore suffices to show that 1 ∈ tV ∗B∼ whenever t ≥ 1/ε.
But this is a simple consequence of the definition of V , as

tV ∗v = 1 for v =
u

t(ε + d−1/2)

and clearly ‖v‖ ≤ 1 when t ≥ 1/ε. This completes the proof. ut

Let 1d−1 be the standard simplex in Rd . Lemma 3.8 shows that Bt ⊇ 1d−1
+ εu when-

ever t ≥ 1/ε. Setting na,ε = (2 log2(1/(aε)))+, we can estimate∑
n≥0

2n/2en(Ba2n/2) ≥
∑
n≥na,ε

2n/2en(1d−1) & (log d)3/2 − Cna,ε
√

log d

for some constant C > 0, where we have used en(1d−1) & 2−n/2
√

log d for n . log d
[16, Exercise 2.2.15]. We have therefore shown that Theorem 1.2 does not improve on
Dudley’s bound in this example unless ε is polynomially small in d .

Remark 3.9. Of course, the example described in this section is sufficiently simple that
we can make some manual adjustments to obtain a sharp geometric construction. Indeed,
we clearly haveB ⊂ B1+B2 whereB1 denotes the `1-ball in Rd andB2 = {αu : |α| ≤ ε}

is one-dimensional. Theorem 1.2 gives a sharp generic chaining construction forB1, while
a trivial discretization of α suffices to control B2. We can then glue together the generic
chaining constructions for B1 and B2 by summing the corresponding nets. It is not clear,
however, how one could construct such a decomposition in the general setting described
at the beginning of this section.

4. Geometry and entropy contraction

In the previous section, we illustrated the utility of Theorem 1.2 in specific examples. The
computations hinge, however, on a sufficiently explicit description of the sets Bt , which
may not always be available in more general situations. For example, if we consider the
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examples of the previous section under general norms, it may be nontrivial to control the
sets Bt directly. It is therefore of interest to develop more systematic methods to control
the geometry of the sets Bt .

As a prototype of what one might hope for, let us reconsider the setting of `q -ellipsoids
in Hilbert space. Theorem 1.2 bounds γ2(B) in terms of the entropy numbers of the
sets Bt , which we computed explicitly in Section 3.1. However, Lemma 3.2 suggests
that the correct behavior of γ2(B) in this example can also be expressed in terms of the
entropy numbers of B itself: we easily verify that

γ2(B) �
[∑
n≥0

(2n/2en(B))q/(q−1)
](q−1)/q

.

The appearance of such a bound is not a coincidence. Talagrand has shown that an upper
bound of this form holds for any q-convex setB [16, §4.1]: as `q -ellipsoids are max(2, q)-
convex, this provides an alternative explanation for the behavior of `q -ellipsoids in the
case 2 ≤ q < ∞. One of the insights to be developed in this section is that this funda-
mental property of q-convex sets is fully explained by Theorem 1.2. Roughly speaking,
we will show that the q-convexity assumption forces the sets Bt to be much smaller than
B itself in the sense that en(Bt ) / t1/(q−1)en(B)

q/(q−1), from which the above bound is
easily deduced. More generally, this phenomenon suggests that the chaining principle for
general convex sets given by Theorem 1.2 can be significantly simplified in the presence
of additional geometric structure.

It turns out that there is nothing special about q-convexity per se, but that the entropy
contraction phenomenon illustrated above arises from a much more general geometric
mechanism. We develop a general formulation of this idea in Section 4.1. We then demon-
strate how the requisite structure arises in two distinct settings: the case of q-convex sets
is developed in Section 4.2, while the case of `q -balls in Banach spaces with an uncondi-
tional basis is developed in Section 4.3.

4.1. A geometric principle

Let (X, ‖ · ‖) be a Banach space and let B ⊂ X be a symmetric compact convex set.
The sets Bt are defined as in Theorem 1.2. The following geometric principle is the main
result of this section.

Theorem 4.1. Let q > 1 and K > 0 be given constants, and suppose that

‖y − z‖
q
B ≤ Kt‖y − z‖ for every y, z ∈ Bt , t ≥ 0.

Then
γp(B) .

[∑
n≥0

(2n/pen(B))q/(q−1)
](q−1)/q

,

where the universal constant depends on p, q, and K only.

Like Theorem 1.2, the message of Theorem 4.1 is that the behavior of γp(B) is strictly
better than would be expected from Dudley’s bound. Unlike Theorem 1.2, however, the
presence of additional geometric structure allows us to bound γp(B) only in terms of
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the entropy numbers of B itself. This bound could therefore be applied even without an
explicit description ofBt . Of course, there is no free lunch: the assumption of Theorem 4.1
requires us to understand the metric structure of the sets Bt . Fortunately, we will see
that there are interesting situations in which this can be accomplished without explicitly
computing the sets Bt .

Remark 4.2. Before we turn to the proof of Theorem 4.1, it is instructive to consider the
significance of the geometric assumption of Theorem 4.1. Observe that we always have,
regardless of any assumptions, the following simple fact:

‖y‖B ≤ t‖y‖ for every y ∈ Bt , t ≥ 0.

Indeed, if z ∈ X∗ is as in the definition of Bt , then

‖y‖B = 〈z, y〉 ≤ ‖z‖
∗
‖y‖ ≤ t‖y‖.

We therefore see that by construction, an element y ∈ Bt with small norm must be con-
tained in a small dilation y ∈ t‖y‖B of the original set B. The assumption of Theorem 4.1
asks that a weaker form of this property hold not only for norms, but also for distances:
that is, if y, z ∈ Bt , then y − z ∈ (Kt‖y − z‖)1/qB. This does not follow automatically
from the corresponding property for norms, as it is typically not true that Bt −Bt ⊆ cBct
for some constant c. Nonetheless, this intuition proves to be useful as it will help us iden-
tify how the requisite geometric structure arises.

The main idea behind the proof of Theorem 4.1 is the following observation.

Lemma 4.3. Suppose that the assumption of Theorem 4.1 holds. Then

en+1(Bt ) ≤ (Kten(Bt ))
1/qen(B) for every n ≥ 0, t ≥ 0.

Proof. Fix ε > 0. By the definition of entropy numbers, we can cover Bt by less
than 22n balls of radius (1 + ε)en(Bt ). By our assumption, each of these balls (inter-
sected with Bt ) is contained in a translate of sB with s ≤ (1 + ε)1/q(Kt en(Bt ))1/q .
Therefore, each of these balls can be further covered by less than 22n balls of radius
(1 + ε)s en(B). We have now covered Bt by less than 22n

· 22n
= 22n+1

balls of radius
≤ (1+ ε)1+1/q(Kt en(Bt ))

1/qen(B). Letting ε ↓ 0 completes the proof. ut

An annoying feature of Lemma 4.3 is that the entropy number on the left-hand side is
en+1(Bt ) rather than en(Bt ). If it were the case that en(Bt ) . en+1(Bt ) (that is, if we
knew a priori that the entropy numbers do not decay too quickly), then we could simplify
the conclusion of Lemma 4.3 to

en(Bt ) . t1/(q−1)en(B)
q/(q−1).

This expression quantifies in the present setting in what sense the setsBt are much smaller
than the original set B. From this expression, it would be easy to conclude the result of
Theorem 4.1: substituting the above bound into Theorem 1.2 yields

γp(B) .
1
a
+ a1/(q−1)

∑
n≥0

(2n/pen(B))q/(q−1),
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and the conclusion of Theorem 4.1 would follow by optimizing over a > 0. The main
technical issue in the proof of Theorem 4.1 is to show that its conclusion remains valid
even when the regularity assumption en(Bt ) . en+1(Bt ) does not hold, which we do by
means of a routine dyadic regularization argument.

Proof of Theorem 4.1. Fix a constant λ > 0 to be chosen at a later stage. For any set C,
we introduce the regularized entropy numbers dn(C) ≥ en(C) as

dn(C) := max
0≤k≤n

2λ(k−n)ek(C).

Using Lemma 4.3, we estimate

dn(Bt ) ≤ max
0≤k≤n+1

2λ(k−n)ek(Bt )

≤ 2−λndiam(B)+ 2λ max
0≤k≤n

2λ(k−n)ek+1(Bt )

. 2−λndiam(B)+ 2λt1/q max
0≤k≤n

2λ(k−n)ek(Bt )1/qek(B)

≤ 2−λndiam(B)+ 2λt1/qdn(Bt )1/q max
0≤k≤n

2λ(k−n)(q−1)/qek(B).

Therefore, using a1/qb(q−1)/q
≤ a/q + b(q − 1)/q, we obtain

dn(Bt ) . 2−λndiam(B)+ 2λq/(q−1)t1/(q−1) max
0≤k≤n

2λ(k−n)ek(B)q/(q−1).

In particular, we can crudely bound∑
n≥0

2n/pen(Ba2n/p ) . diam(B)
∑
n≥0

2n/p2−λn

+ a1/(q−1)2λq/(q−1)
∑
n≥0

2nq/(q−1)p2−λn
∑

0≤k≤n

2λkek(B)q/(q−1).

In order for the sums to converge we must choose λ > q/(q − 1)p, so we fix for con-
creteness λ = 2q/(q − 1)p (the precise value of λ does not matter). This yields∑
n≥0

2n/pen(Ba2n/p ) . diam(B)+ a1/(q−1)
∑
n≥0

2−nq/(q−1)p
∑

0≤k≤n

(22k/pek(B))
q/(q−1)

= diam(B)+ a1/(q−1)
∑
k≥0

∑
n≥k

2−nq/(q−1)p(22k/pek(B))
q/(q−1)

. diam(B)+ a1/(q−1)
∑
k≥0

(2k/pek(B))q/(q−1).

Applying Corollary 2.7 and optimizing over a > 0 yields

γp(B) . diam(B)+
[∑
n≥0

(2n/pen(B))q/(q−1)
](q−1)/q

.

It remains to note that diam(B) ≤ 2e0(B), so that the first term can be absorbed in the
second at the expense of the universal constant. ut
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Remark 4.4. An inspection of the proof shows that the universal constant in Theorem 4.1
blows up as q ↓ 1. It would be interesting to understand whether there is an analogue of
Theorem 4.1 that holds in the limiting case q = 1: that is, whether there is a general
geometric mechanism that ensures the sharp bound

γp(B) � sup
n≥0

2n/pen(B)

(that the right-hand side is a lower bound on γp(B) is trivial). This situation is illustrated
by the example of Section 3.2: in this case both the assumption and the conclusion of
Theorem 4.1 hold for q = 1 (the assumption holds by Remark 4.2 and Bt −Bt ⊆ 2B√2t ,
while the conclusion can be deduced from [16, Exercise 2.2.15]), but Theorem 4.1 is not
sufficiently sharp to capture this example.

4.2. Uniformly convex sets

In this section, we exhibit an important situation where the assumption of Theorem 4.1
can be verified by imposing additional geometric structure on the set B: we show that the
assumption holds when B is q-convex. This recovers a fundamental result of Talagrand
[16, §4.1].

Let (X, ‖ · ‖) be any Banach space, and let B ⊂ X be a symmetric convex set. As
usual, we denote by ‖ · ‖B the gauge of B. We recall the following definition.

Definition 4.5. Let q ≥ 2. A symmetric convex set B is called q-convex if∥∥∥∥x + y2

∥∥∥∥
B

≤ 1− η‖x − y‖qB

for all x, y ∈ B, where η > 0 is an absolute constant.

We will prove the following result.

Corollary 4.6 ([16]). Let B be a symmetric convex set in a Banach space (X, ‖ · ‖), and
assume that B is q-convex (with constant η). Then

γp(B) .
[∑
n≥0

(2n/pen(B))q/(q−1)
](q−1)/q

,

where the universal constant depends on p, q, and η only.

To connect this result to the explicit computations in Section 3.1, we recall that `q -ellip-
soids are max(2, q)-convex [3]. This shows that the case 2 ≤ q <∞ of Proposition 3.1 is
in fact a manifestation of the much more general phenomenon described by Corollary 4.6:
we emphasize that the present result requires no assumption of any kind on the norm ‖ ·‖.
On the other hand, it is impossible for a convex set to be q-convex with q < 2 (Hilbert
space is maximally convex), so that uniform convexity cannot explain the behavior of
`q -ellipsoids for q < 2. We will nonetheless see in the next section that the latter case
can also be understood as a manifestation of the general geometric principle described by
Theorem 4.1.

We prove Corollary 4.6 by verifying the assumption of Theorem 4.1.
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Lemma 4.7. Let B be a q-convex set and t ≥ 0. Then

‖y − z‖
q
B . t‖y − z‖ for every y, z ∈ Bt ,

where the universal constant depends on q and η only.

We will give two different proofs of this lemma. The first proof is pedestrian, but perhaps
not very intuitive. The second proof is more intuitive, as it is close in spirit to the intu-
ition developed in Remark 4.2; however, this proof requires us to use an alternative (but
equivalent) formulation of the q-convexity property.

First proof. By Proposition 2.5, we have πt (y) = y for y ∈ Bt . Thus

‖y‖B = inf
u
{‖u‖B + t‖y − u‖} ≤

∥∥∥∥y + z2

∥∥∥∥
B

+ t

∥∥∥∥y − z2

∥∥∥∥
for any y, z ∈ Bt . Similarly, exchanging the roles of y and z, we obtain

1 ≤
∥∥∥∥y + z2γ

∥∥∥∥
B

+ t

∥∥∥∥y − z2γ

∥∥∥∥, γ := ‖y‖B ∨ ‖z‖B .

But note that ‖y/γ ‖B ≤ 1 and ‖z/γ ‖B ≤ 1 by the definition of γ . Therefore, applying
the q-convexity assumption to the first term on the right yields

‖y − z‖
q
B ≤

γ q−1

2η
t‖y − z‖

for any y, z ∈ Bt . The proof is completed by noting that γ ≤ 1. ut

Second proof. An equivalent characterization of the q-convexity property is as follows
[17, Corollary 1]: B is q-convex if and only if

〈jy − jz, y − z〉 & ‖y − z‖
q
B

for all jy ∈ Jy := {u ∈ X∗ : 〈u, y〉 = ‖y‖
q
B , ‖u‖

∗

B ≤ ‖y‖
q−1
B } and jz ∈ Jz, where the

universal constant depends on q, η only. Note that Jy is none other than the subdifferential
of the map y 7→ ‖y‖qB/q (cf. Corollary 2.8), so this characterization is rather intuitive:
B is q-convex precisely when the map y 7→ ‖y‖qB exhibits a uniform improvement over
the usual first-order condition for convexity.

With this formulation in hand, the lemma follows easily. Let y, z ∈ Bt . By definition
of Bt , we can choose uy ∈ X∗ with 〈uy, y〉 = ‖y‖B , ‖uy‖∗B ≤ 1, ‖uy‖∗ ≤ t . Choose
uz ∈ X

∗ analogously. Setting jy = uy‖y‖
q−1
B and jz = uz‖z‖

q−1
B gives

‖y − z‖
q
B . 〈jy − jz, y − z〉 ≤ ‖jy − jz‖

∗
‖y − z‖ ≤ 2t‖y − z‖.

This completes the proof. ut

It is now trivial to complete the proof of Corollary 4.6.

Proof of Corollary 4.6. We may as well assume thatB is compact: ifB is not precompact,
the right-hand side of the desired inequality is infinite and there is nothing to prove; if B
is precompact, there is no loss of generality in assuming that it is also closed. It remains
to apply Theorem 4.1 and Lemma 4.7. ut
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4.3. `q -balls and unconditional bases

We have seen in the previous section that uniform convexity cannot explain the behavior
of `q -ellipsoids in Hilbert space that was observed in Section 3.1. We will presently show
that this behavior is nonetheless a manifestation of the general geometric principle of
Theorem 4.1. It will follow immediately that the same behavior persists in a much larger
family of Banach spaces (but not in a setting as general as for q-convex sets).

To understand what is going on, let us take inspiration from the second proof of
Lemma 4.7 (and from Remark 4.2). For any x ∈ X, choose any point jx ∈ X∗ such
that 〈jx, x〉 = ‖x‖

q
B and ‖jx‖∗B ≤ ‖x‖

q−1
B . As

‖y − z‖
q
B = 〈jy−z, y − z〉 ≤ ‖jy−z‖

∗
‖y − z‖,

the assumption of Theorem 4.1 would follow if we could show that ‖jy−z‖∗ . t whenever
y, z ∈ Bt . We can always choose ‖jx‖∗ ≤ t when x ∈ Bt , but this does not in itself yield
the desired result: y, z ∈ Bt does not imply y − z ∈ Bt .

To obtain the desired bound, we must find a relation between jy−z and jy, jz. The
q-convexity assumption provides the inequality 〈jy−z, y − z〉 . 〈jy − jz, y − z〉, which
is particularly convenient for this purpose. However, this is by no means the only way to
achieve our goal. In the case of `q -ellipsoids, we will use a completely different geometric
property: in this case we observe that |jy−z| . |jy | + |jz| coordinatewise. This simple
device allows us to reach the same conclusion as in the q-convex case as long as the dual
norm ‖ · ‖∗ respects the coordinatewise ordering.

We proceed to make this idea precise. We first recall the class of Banach spaces that
possess the desired monotonicity properties [1, §3.1].

Definition 4.8. Let (X, ‖ · ‖) be a Banach space and let {en} be a basis for X. The basis
is said to be unconditional with constant K if∥∥∥ N∑

n=1

anen

∥∥∥ ≤ K∥∥∥ N∑
n=1

bnen

∥∥∥
for all N ∈ N and scalars an, bn ∈ R such that |an| ≤ |bn| for all n.

We recall for future reference that if {en} is an unconditional basis in X with constant K ,
then the biorthogonal sequence {e∗n} is an unconditional basic sequence in X∗ with the
same constant K [1, Proposition 3.2.1].

Remark 4.9. The notion of aK-unconditional basis is often defined in a slightly different
way than we have done above: a basis is unconditional with constant K if∥∥∥ N∑

n=1

εnbnen

∥∥∥ ≤ K∥∥∥ N∑
n=1

bnen

∥∥∥
for all N ∈ N, bn ∈ R, and εn ∈ {−1,+1}, that is, if the norm of

∑N
n=1 bnen is ap-

proximately invariant to sign changes of the coefficients bn. The more general property
of Definition 4.8 is however readily deduced from this alternative definition (for example,
by choosing random signs εn such that an = E[εnbn]).
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In the following let (X, ‖ · ‖) be a Banach space and let {en} be an unconditional basis
with constant K . Fix 1 < q <∞, and define the `q -ball B ⊂ X as follows:

B =
{ d∑
i=1

ziei :

d∑
i=1

|zi |
q
≤ 1

}
(our result will be independent of d , and therefore extends readily to infinite dimension).
Note that the `q -ellipsoids considered in Section 3.1 correspond to the special case where
{ei} is the standard basis in Rd and ‖x‖2 =

∑
i b

2
i x

2
i .

Corollary 4.10. In the setting of this section, we have

γp(B) .
[∑
n≥0

(2n/pen(B))q/(q−1)
](q−1)/q

,

where the universal constant depends on p, q, and K only.

Proof. The norm ‖ · ‖ on X can be transferred to Rd by defining ‖z‖ := ‖
∑d
i=1 ziei‖ for

z ∈ Rd . There is therefore no loss of generality in assuming that X = Rd with the above
norm, that {ei} = {e∗i } is the standard basis, and that ‖x‖B is the `q -norm on Rd , as we
will do in what follows for notational simplicity. (We emphasize, however, that ‖ · ‖ is not
the Euclidean norm, so that the present setting does not reduce to the Euclidean setting
considered previously in Section 3.1).

As ‖x‖B is the `q -norm, we can compute

∂‖x‖B

∂xi
=
|xi |

q−1

‖x‖
q−1
B

sign(xi).

By Corollary 2.8, we can write

Bt =
{
x ∈ B :

∥∥|x|q−1 sign(x)
∥∥∗ ≤ t‖x‖q−1

B

}
.

Now note that for any vectors x, y ∈ Rd , we have

‖x − y‖
q
B = 〈|x − y|

q−1 sign(x − y), x − y〉 ≤
∥∥|x − y|q−1 sign(x − y)

∥∥∗‖x − y‖.
Moreover, as |x − y|q−1

≤ 2q−2+(|x|q−1
+ |y|q−1), we have∥∥|x − y|q−1 sign(x − y)

∥∥∗ ≤ 2q−2+K
∥∥|x|q−1

+ |y|q−1∥∥∗ ≤ 21+(q−2)+K2t

for all x, y ∈ Bt using the unconditional property of the dual basis {e∗n}. Thus

‖x − y‖
q
B ≤ 21+(q−2)+K2t‖x − y‖

whenever x, y ∈ Bt , and it remains to invoke Theorem 4.1. ut

We have now given two distinct explanations for the behavior of `q -ellipsoids observed in
Section 3.1. When q ≥ 2, such sets are q-convex and the result follows from the general
principle described by Corollary 4.6. In this setting, the result remains valid when ‖ · ‖
is an arbitrary norm. When q < 2, the observed behavior is described by Corollary 4.10,
which exploits a more special geometric property of `q -balls. In this setting, the result also
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remains valid for a large class of norms ‖ · ‖, but we require the additional restriction that
the underlying basis is unconditional. It appears that these two cases possess a genuinely
different geometry, which is completely hidden in the statement of Proposition 3.1.
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