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Abstract. It is known that families of graphs with a semialgebraic edge relation of bounded com-
plexity satisfy much stronger regularity properties than arbitrary graphs, and can be decomposed
into very homogeneous semialgebraic pieces up to a small error (see e.g. [33, 2, 16, 18]). We show
that similar results can be obtained for families of graphs with the edge relation uniformly defin-
able in a structure satisfying a certain model-theoretic property called distality, with respect to a
large class of generically stable measures. Moreover, distality characterizes these strong regularity
properties. This applies in particular to graphs definable in arbitrary o-minimal structures and in
p-adics.
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1. Introduction

In this paper by a graph we always mean an undirected graph, i.e. a graph G = (V ,E)
consists of a set of vertices V together with a symmetric set of edges E ⊆ V × V .

As usual, we say that a subset V0 ⊆ V is homogeneous if either (v, v′) ∈ E for all
v 6= v′ ∈ V0 or (v, v′) /∈ E for all v 6= v′ ∈ V0, i.e. the induced graph on V0 is either
complete or empty (we ignore the diagonal).

A classical theorem of Erdős–Szekeres [15] states that every graph on n vertices con-
tains a homogeneous subset of size at least 1

2 log n (all log’s are to base 2), and this bound
is tight up to a constant multiple.

Since the families of graphs with a forbidden induced subgraph have much stronger
structural properties than arbitrary graphs, they have much bigger homogeneous subsets.

Theorem 1.1 (Erdős–Hajnal [13]). For any finite graph H there is a constant c =
c(H) > 0 such that every H -free finite graph on n vertices contains a homogeneous
subset of size at least ec

√
log n.
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However, the following conjecture is widely open (see e.g. [3, 10]).

Erdős–Hajnal Conjecture. For every finite graph H there is a constant δ = δ(H) > 0
such that every H -free graph on n vertices has a homogeneous subset of size at least nδ .

In the bi-partite case one has better bounds. Let G = (V ,E) be a graph. We say that a
pair of subsets V1, V2 ⊆ V is homogeneous if either V1×V2 ⊆ E or (V1×V2)∩E = ∅.

Theorem 1.2 (Erdős, Hajnal and Pach [14]). For any finite graph H there is a constant
δ = δ(H) > 0 such that everyH -free graph on n vertices has a homogeneous pair V1, V2
with |V1|, |V2| ≥ n

δ .

The following definition is taken from [17].

Definition 1.3. Let G be a class of finite graphs.

(1) G has the Erdős–Hajnal property if there is δ > 0 such that every G = (V ,G) ∈ G
has a homogeneous subset V0 of size |V0| ≥ |V |

δ .
(2) G has the strong Erdős–Hajnal property if there is δ > 0 such that every G ∈ G has

a homogeneous pair V1, V2 with |V1|, |V2| ≥ δ|V |.

Remark 1.4. It is shown in [2] that if a family G of finite graphs has the strong Erdős–
Hajnal property and is closed under taking induced subgraphs then it has the Erdős–
Hajnal property.

In this paper we consider families of graphs whose edge relations are given by a fixed
definable relation in a first-order structure.

Definition 1.5. Let M be a first-order structure and R ⊆ Mk
×Mk be a definable rela-

tion. Consider the family GR of all finite graphs V = (G,E) where G ⊆ Mk is a finite
subset and E = (V ×V )∩R. We say that R satisfies the (strong) Erdős–Hajnal property
if the family GR does.

We extend this notion to the bi-partite case.

Definition 1.6. Let M be a first-order structure and R ⊆ Mm
×Mn a definable relation.

(1) A pair of subsets A ⊆ Mm, B ⊆ Mn is called R-homogeneous if either A× B ⊆ R
or (A× B) ∩ R = ∅.

(2) We say that the relation R satisfies the strong Erdős–Hajnal property if there is a
constant δ = δ(R) > 0 such that for any finite subsets A ⊆ Mm and B ⊆ Mn there
are A0 ⊆ A and B0 ⊆ B such that |A0| ≥ δ|A| and |B0| ≥ δ|B|, and the pair A0, B0
is R-homogeneous.

Our motivation for this work comes from the following remarkable theorem by Alon et al.

Theorem 1.7 ([2, Theorem 1.1]). If R ⊆ Rn × Rm is a semialgebraic relation then R
has the strong Erdős–Hajnal property.
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Remark 1.8. (1) Although this is not stated explicitly in [2], but can be easily derived
from the proof, homogeneous pairs in the above theorem can be chosen to be relatively
uniformly definable.

(2) The above theorem was generalized by Basu [5] to (topologically closed) relations
definable in arbitrary o-minimal expansions of real closed fields.

Besides the Erdős–Hajnal property for semialgebraic graphs, the above theorem has many
other applications, including those in unit distance problems [32], improved bounds in the
higher dimensional semialgebraic Ramsey theorem [11], [2, Theorem 1.2], algorithmic
property testing [18], and can also be used to obtain a strong Szemerédi-type regularity
lemma for semialgebraic graphs [16, 18] (see also Section 5).

The aim of this article is to demonstrate that the above result by Alon et al., along
with its key implications, holds at a much larger level of generality, namely for families of
graphs whose edge relation is definable in a structure satisfying a certain model-theoretic
property called distality (see Section 2.3) and with respect to the class of so-called generi-
cally stable measures (as opposed to just the counting ones, see Section 2.4). In particular,
this applies to graphs definable in arbitrary o-minimal structures and in p-adics with ana-
lytic expansions, with respect to the Lebesgue (respectively, Haar) measure on a compact
interval (respectively, compact ball).

The following is one of the key results of our paper (see Theorem 3.1).

Theorem 1.9. Let M be a distal structure and R ⊆ Mn
×Mm a definable relation. Then

there is a constant δ = δ(R) > 0 such that for any generically stable measures µ1, µ2
on Mn and Mm respectively there are definable sets A ⊆ Mn and B ⊆ Mm such that
µ1(A) ≥ δ, µ2(B) ≥ δ, and the pair A,B is R-homogeneous.

Remark 1.10. It is not hard to see that our Theorem 1.9 implies Theorem 1.7, by tak-
ing M to be the ordered field of real numbers, and considering measures concentrated
on finite sets. Thus distal structures provide a natural framework for a model-theoretic
approach to Ramsey-type results in geometric combinatorics.

Remark 1.11. It is demonstrated by Malliaris–Shelah [29] (see also [9] for an alternative
proof) that if M is a stable structure and R ⊆ Mk

×Mk is a definable relation then the
family GR of finite graphs has the Erdős–Hajnal property. However, in general this family
does not have the strong Erdős–Hajnal property (see Section 6.1).

Remark 1.12. Our proof of Theorem 1.9 (and the density version in Corollary 4.6) gives
explicit bounds on δ and the number of parameters in the definitions of A and B in terms
of the VC-density of the edge relation R. In particular, for o-minimal structures and for
p-adics, we obtain a bound in terms of the number of variables involved in R, due to the
corresponding bounds for VC-density from [4]. We were informed by Pierre Simon that
after reading our paper he found another proof of this result which is faster, but does not
give bounds [40].

Here is a brief summary of the paper. In Section 2 we introduce the context and the
notation: first-order structures and definable sets, distality, Keisler measures and generic
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stability. In Section 3 we prove a definable generalization of Theorem 1.7 for bi-partite
graphs. In Section 4 we improve it to a density version, which enables us to obtain an
analogue for hypergraphs and a version allowing additional parameters in the definition
of the edge relation. This gives in particular a lot of new families of graphs satisfying
the strong Erdős–Hajnal property (see Example 4.11). In Section 5 we obtain a strong
regularity lemma for hypergraphs definable in distal structures, generalizing the result for
semialgebraic hypergraphs from [16, 18].

In Section 6 we consider the converse to our results from the previous sections. First,
in Section 6.1 we demonstrate a very explicit failure of the definable counterpart of Theo-
rem 1.7 in the theory of algebraically closed fields of positive characteristic, even without
requiring definability of the homogeneous subsets. It turns out in particular that every
field interpretable in a distal structure is of characteristic 0. In Section 6.2 we prove that
distality of a structure is in fact equivalent to the definable counterpart of Theorem 1.7.

Some further questions concerning incidence phenomena and higher-dimensional
Ramsey theory in our setting will be addressed in a future paper.

2. Preliminaries

2.1. Model-theoretic notation

We assume familiarity only with the very basic notions of model theory such as first-
order structures and formulas that can be found in any introductory model theory book
(e.g. [30]). By a structure we always mean a first-order structure.

Our notations are standard. We will denote first-order structures by script letters
M,N etc., and use M,N etc. to denote their underlying sets. Very often we will not
distinguish singletons and tuples: e.g. we may use x to denote a tuple of variables
(x1, . . . , xn), a to denote an element of Mn, and |x| to denote the length of the tuple
x = (x1, . . . , xn).

If M is a structure and φ(x, y) is a formula in the language of M, then for a ∈ M |y|,
as usual, we denote by φ(M, a) the subset ofM |x| defined by φ(x, a), that is, φ(M, a) =
{b ∈ M |x| :M |= φ(b, a)}.

A subset X ⊆ Mn is called definable if there is a formula φ(x, y) and a ∈ M |y|

such that X = φ(M, a); if we want to specify the set of parameters, then for A ⊆ M ,
a definable subset X ⊆ Mn is called A-definable (or definable over A) if we can choose
a as above in A|y|. Also if we want to specify φ we say that such a set X is φ-definable.

2.2. VC-dimension and NIP

Vapnik–Chervonenkis dimension, or VC-dimension, is an important notion in combina-
torics and statistical learning theory. LetX be a set, finite or infinite, and let F be a family
of subsets of X. Given A ⊆ X, we say that it is shattered by F if for every A′ ⊆ A there
is some S ∈ F such that A ∩ S = A′. A family F is said to be a VC-class if there
is some n < ω such that no subset of X of size n is shattered by F . In this case the
VC-dimension of F , denoted by VC(F), is the smallest integer n such that no subset ofX
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of size n+ 1 is shattered by F . For a set B ⊆ X, let F ∩ B = {A ∩ B : A ∈ F}, and let
πF (n) = max{|F ∩ B| : B ⊆ X, |B| = n}.

Fact 2.1 (Sauer–Shelah lemma). If VC(F) ≤ d then πF (n) ≤
∑
i≤d

(
n
i

)
= O(nd) for

all n ≥ d .

If S ⊆ X and x1, . . . , xn ∈ X, we let Av(x1, . . . , xn; S) =
1
n
|{i ≤ n : xi ∈ S}| (we do not

assume that the xi are distinct).

Fact 2.2 (VC-theorem [44]; see also [21, Section 4] for a discussion). For any k > 0
and ε > 0 there is n = O(k(1/ε)2 log(1/ε)) satisfying the following. For any finite
probability space (X,µ) and any family F of subsets of X of VC-dimension ≤ k, there
are x1, . . . , xn ∈ X such that for any S ∈ F we have |µ(S)− Av(x1, . . . , xn; S)| ≤ ε.

An important class of NIP theories was introduced by Shelah in his work on the classifi-
cation program [37]. It has attracted a lot of attention recently, both from the point of view
of pure model theory and due to some applications in algebra and geometry. We refer to
[1, 39] for an introduction to that area.

As observed early on in [25], the original definition of NIP is equivalent to the fol-
lowing one (see [4] for a more detailed account).

Definition 2.3. Let T be a complete theory and φ(x, y) a formula in T , where x, y are
tuples of variables, possibly of different length. We say that the formula φ(x, y) is NIP if
there is a model M of T such that the family {φ(M, a) : a ∈ M |y|} is a VC-class. In this
case we define the VC-dimension of φ(x, y) to be the VC-dimension of this class. (It is
easy to see that by elementary equivalence the above does not depend on the model M
of T .)

A theory T is NIP if all formulas in T are NIP.

Slightly abusing terminology we say that a structure M is NIP if its complete theory
Th(M) is NIP. Restated differently, M is an NIP structure if for every formula φ(x, y)
the family Fφ = {φ(M, a) : a ∈ M |y|} of φ-definable sets is a VC-class.

Given a set 1(x, y) of formulas and a set B ⊆ M |y|, we say that π(x) is a 1-type over
B if π(x) ⊆

⋃
φ(x,y)∈1, b∈B {φ(x, b),¬φ(x, b)} and there is some N � M and some

a ∈ N |x| satisfying simultaneously all formulas from π(x). By a complete 1-type over
B we mean a maximal 1-type over B. We will denote by S1(B) the collection of all
complete 1-types over B. In view of the remarks above, the following is an immediate
corollary of the Sauer–Shelah lemma.

Fact 2.4. A structure M is NIP if and only if for any finite set 1(x, y) of formulas there
is some d ∈ N such that |S1(B)| = O(|B|d) for any finite B ⊆ M |y|.

2.3. Distality

The class of distal theories is defined and studied in [38], with the aim of isolating the
class of purely unstable NIP theories (as opposed to the class of stable theories which
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are always NIP; see also [39]). The original definition is in terms of some properties
of indiscernible sequences, but the following explicit combinatorial characterization of
distality given in [8] can be used as an alternative definition.

Fact 2.5. Let T be a complete NIP theory and M a model of T . The following are
equivalent:

(1) T is distal (in the sense of the original definition, see Fact 6.4).
(2) For every formula φ(x, y) there is a formula ψ(x, y1, . . . , yn) with |y1| = · · · =

|yn| = |y| such that: for any finite B ⊆ M |y| with |B| ≥ 2 and any a ∈ M |x|,
there are b1, . . . , bn ∈ B such that M |= ψ(a, b1, . . . , bn) and ψ(x, b1, . . . , bn) `

tpφ(a/B) (i.e. for any b ∈ B either φ(M, b) ⊇ ψ(M, b1, . . . , bn) or φ(M, b) ∩
ψ(M, b1, . . . , bn) = ∅).

Remark 2.6. It is not hard to see that if M satisfies (2) for all formulas φ(x, y) with
|x| = 1 then it satisfies it for all formulas, i.e. M is distal. Besides, any M satisfying (2)
is automatically NIP (easy to see using the equivalence from Fact 2.4), so the assumption
that M is NIP in Fact 2.5 is used to deduce (2) from (1).

Remark 2.7. An immediate corollary of Fact 2.5 is that in a distal structure, for any for-
mula φ(x, y) there is a formula ψ ′(y, y1, . . . , yn) such that for any finite B ⊆ M |y|

with |B| ≥ 2 and a ∈ M |x|, there are some b1, . . . , bn ∈ B such that φ(a, B) =
ψ ′(B, b1, . . . , bn). Namely, one can take ψ ′(y, y1, . . . , yn) = ∀x(ψ(x, y1, . . . , yn) →

φ(x, y)). In fact, this corollary characterizes NIP (see [8] for the details).

We list some examples of distal structures (providing more details than we normally
would, for the sake of a non-model-theorist reader).

2.3.1. O-minimal structures. A structure M = (M,<, . . .) is o-minimal if every de-
finable subset of M is a finite union of singletons and intervals (with endpoints in M ∪
{±∞}). From this assumption one obtains cell decomposition for definable subsets ofMn,
for all n. Moreover, a cell decomposition of a definable set is uniformly definable in
terms of its definition (see [42] for a detailed treatment of o-minimality, or [36, Section
3] and references there for a quick introduction). Examples of o-minimal structures in-
clude R̄ = (R,+,×), Rexp = (R,+,×, ex), Ran = (R,+,×, f �[0,1]k ) for f ranging
over all functions real-analytic on some neighborhood of [0, 1]k , or the combination of
both, Ran,exp. It is straightforward to verify that if M is o-minimal then it satisfies (2) of
Fact 2.5 for all formulas φ(x, y) with |x| = 1.

Example 2.8 (The field of reals R). By Tarski’s quantifier elimination, for each n the
definable subsets of Rn are exactly the semialgebraic sets, that is, finite Boolean com-
binations of sets defined by polynomial equations p(x1, . . . , xn) = 0 and inequalities
q(x1, . . . xn) > 0 for p(x̄), q(x̄) ∈ R[x1, . . . , xn]. This structure is o-minimal, and so
distal.
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2.3.2. Ordered dp-minimal structures. More generally, it is proved in [38] that every
ordered dp-minimal structure is distal (see Fact 6.6 below). Examples of ordered dp-
minimal structures include weakly o-minimal structures and quasi-o-minimal structures.
An ordered structure M is weakly o-minimal (respectively, quasi-o-minimal) if in every
elementary extension, every definable subset is a finite union of convex subsets (respec-
tively, a finite boolean combination of singletons, intervals and ∅-definable sets [6]).

Example 2.9 (Z as an ordered group). By Presburger’s quantifier elimination, for each n
the definable subsets of Zn are finite boolean combinations of sets of the following types:

S=ā = {(x1, . . . , xn) ∈ Rn : a1x1 + · · · + anxn = a0},

S>ā = {(x1, . . . , xn) ∈ Rn : a1x1 + · · · + anxn > a0},

Skā = {(x1, . . . , xn) ∈ Rn : ∃y ∈ Z ky = a0 + a1x1 + · · · + anxn},

for ā = (a0, a1, . . . , an) ∈ Zn+1 and k ∈ N. This structure is quasi-o-minimal (see [6,
Example 2]).

Example 2.10 (The valued field K =
⋃
n∈N R((T 1/n)) of Puiseux power series over R,

in the language Ldiv = {0, 1, <,+,−,×, v(x) ≤ v(y)}). Using quantifier elimination
from [12], for each n the definable subsets of Kn (in the language of valued fields) are
finite boolean combinations of sets of the following types:

S=p = {(x1, . . . , xn) ∈ Kn : p(x1, . . . , xn) = 0},

S>p = {(x1, . . . , xn) ∈ Kn : p(x1, . . . , xn) > 0},

Svp,q = {(x1, . . . , xn) ∈ Rn : v(p(x1, . . . , xn)) ≥ v(q(x1, . . . , xn))},

for p, q ∈ K[x1, . . . , xn].
This structure is a model of the complete theory RCVF of real closed fields equipped

with a proper convex valuation ring, and by [12] it is weakly o-minimal.

2.3.3. P-minimal structures with definable Skolem functions

Example 2.11. By a result of Macintyre [28] the field of p-adics Qp eliminates quanti-
fiers in the language Lp = {0, 1,+,×, v(x) ≤ v(y), Pn(x)}, where for n ≥ 2 we have
Pn(x) ⇔ ∃y(x = yn). It follows that for each n the definable subsets of Qnp are finite
boolean combinations of sets of the following three types:

Sp = {(x1, . . . , xn) ∈ Rn : p(x1, . . . , xp) = 0},
Svp,q = {(x1, . . . , xn) ∈ Rn : v(p(x1, . . . , xn)) ≥ v(q(x1, . . . , xn))},

Skp = {(x1, . . . , xn) ∈ Rn : ∃y ∈ Qp yk = p(x1, . . . , xn)},

for p, q ∈ Qp[x1, . . . , xn] and k ∈ N.

Similarly to the o-minimal case, there is a notion of minimality for expansions of Qp.
Namely, a structure M in a language L ⊇ Lp is p-minimal if in every model of Th(M),
every definable subset in one variable is quantifier-free definable just using the lan-
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guage Lp [20]. P -minimal structures with an additional assumption of definability of
Skolem functions satisfy an analogue of the p-adic cell decomposition of Denef. A mo-
tivating example of a p-minimal theory with definable Skolem functions is the theory
pCFan of the field of p-adic numbers Qp expanded by all subanalytic subsets of Zp [43].

By [4, Corollary 7.8], every p-minimal structure with definable Skolem functions
is dp-minimal. Since (Qp,+,×, 0, 1) is distal [38] (which can also be verified using
Fact 6.6), it follows by Remark 6.7 that any p-minimal theory with Skolem functions is
distal.

2.4. Keisler measures

Let M be a structure. Recall that a Keisler measure onMn is a finitely additive probability
measure on the Boolean algebra of all definable subsets of Mn, i.e. it is a function µ that
assigns to every definable X ⊆ Mn a number µ(X) ∈ [0, 1] with µ(∅) = 0, µ(Mn) = 1
and

µ(X ∪ Y ) = µ(X)+ µ(Y )− µ(X ∩ Y )

for all definable subsets X, Y ⊆ Mn. Given a formula φ(x) with parameters from M and
a Keisler measure µ on M |x|, we will write µ(φ(x)) to denote µ(φ(M |x|)).

In this paper we will deal mostly with the so-called generically stable and smooth
Keisler measures.

Generically stable measures onMn are defined as Keisler measures onMn admitting
a (unique) global M-invariant extension which is both finitely satisfiable in M and de-
finable over M (see Remark 5.12). In the NIP case, according to the following fact from
[22, Theorem 3.2] (see also [39, Section 7.5]), they can also be defined in terms of the
structure M alone without mentioning global measures.

Fact 2.12. Let M be an NIP structure and µ a Keisler measure on Mk . Then the follow-
ing are equivalent:

(1) The measure µ is generically stable.
(2) For every formula φ(x, y) with |x| = k and ε > 0 there are some a1, . . . , am ∈ M

k

such that |µ(φ(x, b))− Av(a1, . . . , am;φ(x, b))| < ε for any b ∈ M |y|.

The VC-theorem implies that in NIP theories, for any Keisler measure, a uniformly de-
finable family of sets admits an ε-approximation by types (see [21, Section 4]). Fact 2.12
implies that with respect to a generically stable measure, there are ε-approximations by
elements of a model rather than just by types over it. We remark that the bound on the
size of ε-approximations depends just on the VC-dimension of the formula (so is uniform
over all generically stable measures).

Proposition 2.13. Let M be an NIP structure. Then for any k ∈ ω and any ε > 0 there
is some n = O(k(2/ε)2 log(2/ε)) such that: for any formula φ(x, y) of VC-dimension at
most k and any generically stable measure µ on M |x|, there are some a1, . . . , an ∈ M

|x|

such that for any b ∈ M |y|, |µ(φ(x, b))− Av(a1, . . . , an;φ(x, b))| < ε.
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Proof. Let n ∈ ω be given for k and ε by Fact 2.2. Let φ(x, y) be a formula of VC-
dimension at most k and let µ be an arbitrary generically stable measure on M |x|. By
Fact 2.12 there are some a′1, . . . , a

′
m ∈ M |x| such that for any b ∈ M |y| we have

|µ(φ(x, b)) − ν(φ(x, b))| < ε/2, where ν(φ(x, b)) = Av(a′1, . . . , a
′
m;φ(x, b)). Now

applying Fact 2.2 to ν, we find some a1, . . . , an ∈ M
|x| such that for all b ∈ M we have

|ν(φ(x, b))− Av(a1, . . . , an;φ(x, b))| < ε/2. Then

|µ(φ(x, b))− Av(a1, . . . , an;φ(x, b))| < ε

for all b ∈ M |y|, as wanted. ut

Remark 2.14. Encoding several formulas into one we can replace a single formula
φ(x, y) in Proposition 2.13 by a finite set 1(x, y) of formulas.

Recall that a Keisler measure µ onMn is called smooth if there is a unique global Keisler
measure extending it. The following equivalence can be used to avoid a reference to global
measures in the definition of smoothness.

Fact 2.15 ([22, Section 2]). A Keisler measure µ on Mn is smooth if and only if the
following holds. For any formula φ(x, y) with |x| = n and ε > 0 there are some formulas
θ1
i (x), θ

2
i (x) and ψi(y) with parameters from M , for i = 1, . . . , m, such that:

(1) the sets ψi(M |y|) partition M |y|,
(2) for all i and b ∈ M |y|, if M |= ψi(b), then

M |= (θ1
i (x)→ φ(x, b))& (φ(x, b)→ θ2

i (x)),

(3) for each i, µ(θ2
i (x))− µ(θ

1
i (x)) < ε.

Every smooth measure is generically stable, and there are generically stable measures
which are not smooth (though every Keisler measure in an NIP theory can be extended
to a smooth one, but over a larger set of parameters). However, we have the following
characterization from [38].

Fact 2.16. Let T be NIP. Then the following are equivalent:

(1) T is distal.
(2) For any model M of T , any generically stable measure on Mn is smooth.

Remark 2.17. Let µ be a Keisler measure on Mn and A ⊆ Mn a definable subset with
µ(A) > 0. Then we can localize µ to A by defining µA(X) = µ(A ∩ X)/µ(A). Clearly
µA is a Keisler measure on Mn and µA is generically stable (smooth) provided µ is.

Let M be a structure, µ1 a Keisler measure on Mm, and µ2 a Keisler measure on Mn.
A Keisler measure µ on Mm+n is called a product measure of µ1 and µ2 if for any
definable subsets X ⊆ Mm and Y ⊆ Mn we have µ(X × Y ) = µ1(X)µ2(Y ). We
can extend this notion to finitely many Keisler measure µi on M |ni | in the obvious way.
A product Keisler measure always exists but in general is not unique. However, for smooth
measures we have the following proposition that follows from [22, Corollary 2.5].
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Proposition 2.18. Let M be a structure, µ1 a smooth Keisler measure on Mm, and µ2
a smooth Keisler measure on Mn. Then there is a unique product measure of µ1 and µ2,
and this measure is also smooth.

If µ1 and µ2 are smooth measures, we will denote their unique product measure as µ =
µ1 ⊗ µ2.

Let x1, . . . , xn be pairwise disjoint tuples of variables, and µ a Keisler measure on
M |x1|×· · ·×M |xn|. Then for each i = 1, . . . , n, µ induces a Keisler measure µi onM |xi |

by
µi(Y ) = µ(M

|x1| × · · · ×M |xi−1| × Y ×M |xi+1| × · · · ×M |xn|),

and we will denote µi by µ|xi . It is easy to see that if µ is generically stable [smooth]
then every µ|xi is also generically stable [smooth]. Also in this case we will call a Keisler
measure µ on M |x1| × · · · ×M |xn| a product measure if µ is a product of µ|x1 , . . . , µ|xn .

Finally, we give some examples of smooth Keisler measures.

Fact 2.19. (1) Any Keisler measure concentrated on a finite set is smooth (as the condi-
tion (2) of Fact 2.12 is clearly satisfied).

(2) Let λn be the Lebesgue measure on the unit cube [0, 1]n in Rn. Let M be an o-min-
imal structure expanding the field of real numbers. If X ⊆ Rn is definable in M,
then, by o-minimal cell decomposition,X∩[0, 1]n is Lebesgue measurable, hence λn
induces a Keisler measure on Mn. This measure is smooth (by [22, Section 6]).

(3) Similarly to (2), for every prime p the (normalized) Haar measure on a compact ball
in Qp induces a smooth Keisler measure on Qnp (see [22, Section 6]).

(4) Any definable, definably compact group G in an o-minimal structure or over the
p-adics admits a unique G-invariant generically stable measure [21, 7], which is
then smooth (by distality and Fact 2.16).

3. Strong Erdős–Hajnal for definable bi-partite graphs in distal theories

In this section we prove the key result of this paper.

Theorem 3.1. Let M be a model of a distal theory, and R ⊆ Mn
×Mm a definable rela-

tion. Then there is a constant δ = δ(R) > 0 and a pair of formulas ψ1(x, z1), ψ2(y, z2)

such that for any generically stable measures µ1, µ2 on Mn and Mm respectively, there
are c1, c2 from M such that µ1(ψ1(M, c1)) ≥ δ, µ2(ψ2(M, c2)) ≥ δ, and the pair
A = ψ1(M, c1), B = ψ2(M, c2) is R-homogeneous.

As in [2], the above theorem will follow from an asymmetric version (see Theorem 3.6
below).

Let M be a distal structure and fix a formula φ(x, y). Letψ(x, y1, . . . , yl) be as given
for φ(x, y) by Fact 2.5.

For Ed = (d1, . . . , dl) we will denote by C Ed the subset ofM |x| defined by ψ(x, Ed), and
call it a chamber. If in addition Ed ∈ B l then we say that C Ed is a B-definable chamber.
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Definition 3.2. For a chamber C = C Ed and b ∈ M |y| we say that φ(x, b) crosses C if
both C ∩ φ(M, b) and C ∩ ¬φ(M, b) are nonempty.

For a chamber C and a set B we will denote by C#(B) the set of all b ∈ B such that
φ(x, b) crosses C. Note that C#(M) is a definable set (by a formula depending just on the
formula ψ defining C).

Definition 3.3. For B ⊆ M |y|, a chamber C is called B-complete if C is B-definable and
C#(B) = ∅.

It follows from the choice of ψ that for every finite B ⊆ M |y| and a ∈ M |x| there is
a B-complete chamber C with a ∈ C. In particular, for any finite B the union of all
B-complete chambers covers M |x|.

Definition 3.4 (1/r-cutting). Let ν be a Keisler measure on M |y|. Adopting a definition
from [31], for a positive r ∈ R we say that a family F of chambers is a 1/r-cutting
with respect to ν if M |x| is covered by {C : C ∈ F} and for every C ∈ F we have
ν(C#(M)) ≤ 1/r .

The following claim is an analogue of a cutting lemma from [31] (see also Exercise
10.3.4(b) there).

Claim 3.5. There is a constant K such that the following holds. For any positive r and
for any generically stable measure ν on M |y| there is a finite set S ⊆ M such that the
family of all S-complete chambers is a 1/r-cutting with respect to ν, and the size of S is
bounded by Kr2 log 2r .

Proof. Consider the family of sets

C = {C#(M) : C is an M-definable chamber}.

It is a definable family, hence has a bounded VC-dimension by NIP. Applying Proposi-
tion 2.13 with ε = 1/r we obtain a subset S ⊆ M of size at most Kr2 log 2r , where K is
a constant that depends only on the VC-dimension of C, such that for every M-definable
chamber C, if ν(C#(M)) > 1/r then S ∩ C#(M) 6= ∅.

Since C#(S) = ∅ for any S-complete cell C, we are done. ut

The following theorem is an analogue of a result in [2, Section 6].

Theorem 3.6. Let M be a distal structure and let R(x, y) be a definable relation. Then
for any β ∈ (0, 1/2) there are some α ∈ (0, 1) and formulas ψ1(x, z1), ψ2(y, z2) de-
pending just on R and β such that: for any Keisler measure µ on M |x| and any gener-
ically stable measure ν on M |y|, there are some c1 ∈ M

|z1| and c2 ∈ M
|z2| such that

µ(ψ1(x, c1)) > α, ν(ψ2(y, c2)) > β and the pair of sets ψ1(M, c1), ψ2(M, c2) is R-
homogeneous.

Proof. Let φ(x, y) be a formula defining R. Let r be a positive real number to be deter-
mined later.
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By Claim 3.5, let S ⊆ M |y| be a set of size at most Kr2 log 2r such that for every
S-complete chamber C we have ν(C#(M)) ≤ 1/r . It is not hard to see that there is a
constant K1 and a number l = l(ψ) ∈ N such the number of S-definable chambers is at
most K1|S|

l . Thus the number of S-complete chambers is at most K ′r2l logl 2r , where
K ′ is a constant.

As the set of S-complete chambers covers M |x|, there is an S-complete chamber C0
with µ(C0) ≥ 1/(K ′r2l logl(2r)).

For the setD = M |y|\C#
0(M), we have ν(D) ≥ 1−1/r , and for every d ∈ D, φ(x, d)

does not cross C0. In particular all a ∈ C0 have the same φ-type over D. Note that D is a
disjoint union ofD1 = {d ∈ D : C0 ⊆ φ(M, d)} andD2 = {d ∈ D : C0∩φ(M, d) = ∅},
and both (C0,D1) and (C0,D2) are R-homogeneous. Thus either ν(D1) ≥

1
2 −

1
2r or

ν(D2) ≥
1
2 −

1
2r . Let ψ1 := ψ be the formula such that an instance of it defines C0,

and let ψ2 be the formula such that an instance of it defines either D1 or D2, depending
on which one has larger measure. By assumption there are only finitely many choices for
both depending on the original data. So given β ∈ (0, 1/2)we can find r with 1

2−
1
2r = β,

and take any positive α < 1/(K ′r2l logl(2r)). Then, encoding finitely many choices for
ψ1, ψ2 into one formula, we can conclude the theorem. ut

Proof of Theorem 3.1. We can take any β ∈ (0, 1/2) and let α be as in Theorem 3.6. Now
take δ = min{α, β}. ut

Remark 3.7. We will see in Corollary 4.6 that one can allow an extra parameter in R
without affecting the uniform choice of ψ1, ψ2.

4. Density version and a generalization to hypergraphs

First we prove that Theorem 3.1 can be strengthened to a density version. It seems that this
implication is folklore, as it is mentioned in [2, Corollary 7.1 and the remark afterwards]
without definability of the homogeneous subsets, and stated in [16]. However, the proofs
in both places are very sketchy, so we give a complete proof verifying definability of the
homogeneous subsets, and in addition working with Keisler measures. Our argument is
an elaboration on the proof of [33, Theorem 3.3].

Proposition 4.1. Let M be a distal structure and R(x, y) a definable relation. Given
α > 0 there is ε > 0 such that for any Keisler measure µ on M |x|, any generically stable
measure ν on M |y|, and a product measure ω of µ and ν, if ω(R(x, y)) ≥ α then there
are uniformly definable (in terms of α and R only) A0 ⊆ M |x| and B0 ⊆ M |y| with
µ(A0) ≥ ε, ν(B0) ≥ ε, and A0 × B0 ⊆ R.

We fix a distal structure M and a definable relation R(x, y). By Theorem 3.1 there is a
constant δ > 0 and formulasψ1(x, z1) andψ2(y, z2) such that for any measure µ onM |x|

and any generically stable measure ν on M |y| there are some A ⊆ M |x| and B ⊆ M |y|

definable by an instance of ψ1 and ψ2 respectively, with µ(A), ν(B) ≥ δ, such that either
A× B ⊆ R or A× B ∩ R = ∅.
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Now we fix Keisler measures µ, ν as in the proposition and let ω be a product Keisler
measure of µ, ν on M |x|+|y|.

For definable sets A ⊆ M |x| and B ⊆ M |y| we denote by d(A,B) the density of R in
A× B, that is,

d(A,B) =
ω((A× B) ∩ R)

µ(A)ν(B)
,

and we set d(A,B) = 0 if µ(A)ν(B) = 0. The following claim is a basic step.

Claim 4.2. Let A ⊆ M |x| and B ⊆ M |y| be definable sets with d(A,B) > 1− δ2. Then
there are subsets A1 ⊆ A and B1 ⊆ B defined uniformly (in terms of A, B and R) such
that µ(A1) ≥ δµ(A), ν(B1) ≥ δν(B) and A1 × B1 ⊆ R.

Proof. Using Remark 2.17 we apply Theorem 3.1 to µA and νB , the localizations of µ
on A and of ν on B, respectively. This gives us A′ ⊆ M |x| and B ′ ⊆ M |y| defined by
instances of ψ1 and ψ2 respectively such that for the sets A1 = A

′
∩A and B1 = B

′
∩ B

we have µ(A1) ≥ δµ(A), ν(B1) ≥ δν(B) and either A1×B1 ⊆ R or (A1×B1)∩R = ∅.
If (A1 × B1) ∩ R = ∅ then

ω((A× B) ∩ R) ≤ ω(A× B)− ω(A1 × B1) ≤ (1− δ2)µ(A)ν(B),

contradicting the assumption d(A,B) > 1− δ2. ut

It is not hard to see that Proposition 4.1 follows from Claim 4.2 and the following claim
by iterating sufficiently (but boundedly) many times and taking the conjunction of the
corresponding defining formulas.

Claim 4.3. For any 0 < α < 1 − δ2 there is some h > 0 such that for any definable A
and B with d(A,B) ≥ α there are uniformly definable (in terms of R, α, A, B) subsets
A′ ⊆ A and B ′ ⊆ B with µ(A′) ≥ hµ(A), ν(B ′) ≥ hν(B) and d(A′, B ′) ≥ α/(1− δ2).

Proof. We pick d ∈ (0, 1) to be specified later.
We choose A0 ⊆ A and B0 ⊆ B homogeneous with respect to R and with µ(A0) ≥

δµ(A) and ν(B0) ≥ δν(B) (applying Theorem 3.6 and Remark 2.17 to µA and νB , the
localizations of µ on A and of ν on B, respectively).

If A0 × B0 ⊆ R then we take A′ = A0, B ′ = B0, h = δ and we are done. So assume

(A0 × B0) ∩ R = ∅. (4.1)

Let a0 = µ(A0)/µ(A) and b0 = ν(B0)/ν(B). Let α′ = d(A,B), so α′ ≥ α.
From (4.1) it follows that a0b0 ≤ 1 − α′ ≤ 1 − α. In particular at least one of a0 or

b0 is at most
√

1− α.
We assume a0 ≤

√
1− α. Let A1 = A \ A0 and B1 = B \ B0.

Case 1: ν(B0) ≤ dν(B). For definable A′ ⊆ A and B ′ ⊆ B we write ω(R(A′, B ′)) for
ω((A′ × B ′) ∩ R).

Since there are no R-edges between A0 and B0, we have

ω(R(A0, B1))+ ω(R(A1, B0))+ ω((A1, B1)) = ω(R(A,B)) ≥ αµ(A)ν(B). (4.2)
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We also have

µ(A0)ν(B1)+ µ(A1)ν(B0)+ µ(A1)ν(B1)

= µ(A)ν(B)− µ(A0)ν(B0) ≤ µ(A)ν(B)(1− δ2). (4.3)

A very simple combinatorial statement is that if r1+ r2+ r3 ≥ r and s1+ s2+ s3 ≤ s
then there is i ∈ {1, 2, 3} with ri/si ≥ r/s.

So in this case we can choose A′ ∈ {A0, A1} and B ′ ∈ {B0, B1} such that

d(A′, B ′) ≥ α/(1− δ2),

and µ(A′) ≥ hµ(A), ν(B ′) ≥ hν(B), where

h = min{δ, 1− d, 1−
√

1− α}.

Case 2: ν(B0) > dν(B). In this case we take A′ = A1 = A \A0 and B ′ = B. As above,
let B1 = B \ B0. Let d ′ = 1− d.

The maximal possible measure of the set of R-edges between A0 and B is

ω(R(A0, B)) = ω(R(A0, B1)) ≤ µ(A0)ν(B1) ≤
√

1− α d ′µ(A)ν(B).

Thus for the measure of the set of R-edges between A1 and B we obtain

ω(R(A1, B)) ≥ αµ(A)ν(B)−
√

1− α d ′µ(A)ν(B).

Since µ(A1)ν(B) ≤ (1− δ)µ(A)ν(B), we obtain

d(A1, B) =
ω(R(A1, B))

µ(A1)ν(B)
≥
α −
√

1− α d ′

1− δ
= α

1−
√

1− α (d ′/α)
1− δ

.

As d ′ decreases to 0+, the right side goes increasingly to α/(1− δ). Since 0 < δ < 1, we
have 1/(1− δ2) < 1/(1− δ). So we can choose d ∈ (0, 1) such that for d ′ = 1 − d the
right side is at least α/(1− δ2).

Combining the two cases we take h as in Case 1. Uniform definability of A′, B ′ in all the
cases follows from the uniform definability of A0, B0 and the construction, so as always
we can encode finitely many formulas into a single one. ut

Now we can use this proposition inductively to prove the analogue of Proposition 4.1 for
hypergraphs, essentially following the proof of [16, Theorem 8.2].

Proposition 4.4. Let M be a distal structure and R(x0, . . . , xh−1) a definable relation.
Given α > 0 there is ε > 0 such that: given a generically stable product measure ω on
M |x0| ×M |x1| × · · · ×M |xh−1| with ω(R) ≥ α there are definable sets Ai ⊆ M |xi | with
ω|xi (Ai) ≥ ε for all i < h such that

∏
i<hAi ⊆ R. Moreover, each Ai is defined by an

instance of a formula that depends only on R and α.
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Proof. Let h ≥ 2 be given, and assume inductively that we have proved the assertion
for all i ≤ h. Let R(x0, . . . , xh) and α > 0 be given. Let ω be a generically stable
product measure on M |x0| × · · · × M |xh|. Applying Proposition 4.1 with h = 2 to the
binary relation R(x0; x1, . . . , xh) we find some ε′ > 0, A0 with ω|x0(A0) ≥ ε′ and
A ⊆ M |x1| × · · · × M |xh| with ω|x1,...,xh(A) ≥ ε′ such that R holds on all elements
of A0 × A (the corresponding projections of ω are clearly generically stable). More-
over, A = R′(M |x1| × · · · ×M |xh|) for some uniformly definable (depending only on R
and α) relation R′. We apply the inductive assumption to R′ with h − 1, α = ε′ and
ω|x1,...,xh , which gives us some ε′′ > 0 and uniformly definable sets Ai, 1 ≤ i ≤ h, with
ω|xi (Ai) ≥ ε

′′ and such thatA1×· · ·×Ah ⊆ R
′, which impliesA0×A1×· · ·×Ah ⊆ R.

Take ε = min{ε′, ε′′}. All the data are chosen uniformly depending only on R, α. ut

The density version implies a generalization of Theorem 3.6 to hypergraphs.

Corollary 4.5. Let M be a distal structure and R(x0, . . . , xh−1) a definable relation.
Then there is δ > 0 such that for any generically stable measures µi on M |xi |, there
are Ai with µi(Ai) ≥ δ for all i < h, uniformly definable in terms of R, and such that
either

∏
i<hAi ⊆ R or

∏
i<hAi ∩ R = ∅.

Proof. Since a product of generically stable measures is generically stable, the measure
ω = µ0⊗· · ·⊗µh−1 is generically stable, and either ω(R) ≥ 1/2 or ω(¬R) ≥ 1/2. Ap-
plying Proposition 4.4 with α = 1/2 to R and to ¬R we obtain some ε1, ε2 respectively.
But then δ = min{ε1, ε2} satisfies the conclusion. ut

Moreover, the formulas defining homogeneous subsets can be chosen depending just on
the formula defining the edge relation, and not on the parameters used (in the semialge-
braic setting this corresponds to saying that the complexity of the homogeneous subsets
is bounded in terms of the complexity of the edge relation, and does not depend on the
choice of the coefficients of the polynomials involved).

Corollary 4.6. Let M be a distal structure and φ(x0, . . . , xh−1, y) a formula. Given
α > 0 there is ε > 0 such that: for a definable relation R(x0, . . . , xh−1) =

φ(x0, . . . , xh−1, c) with some c ∈ M |y| and a generically stable product measure ω on
M |x0| ×M |x1| × · · · ×M |xh−1| with ω(R) ≥ α there are definable sets Ai ⊆ M |xi | with
ω|xi (Ai) ≥ ε for all i < h and

∏
i<hAi ⊆ R. Moreover, eachAi is defined by an instance

of a formula that depends only on φ and α.

Proof. This follows immediately from Proposition 4.4 applied to the relation

R′(x0, . . . , xh−1, y) = φ(x0, . . . , xh−1, y)

and to the generically stable product measure ω′ = ω ⊗ δc, where δc is a (generically
stable) {0, 1}-valued measure on M |y| concentrated on c. ut

Example 4.7. Let λn be the Lebesgue measure on Rn restricted to the unit cube, i.e.
λn(X) = 3n(X ∩ In) where 3n is the standard Lebesgue measure and In is the unit cube
in Rn.
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Let R be an o-minimal expansion of R and R(x1, . . . , xn; u) be a formula. Then for
any α > 0 there is some ε > 0 such that for any c ∈ R|u| with λn(R(Rn; c)) ≥ α there
are definable Ai ⊆ R, i = 1, . . . , n, with λ1(Ai) ≥ ε and A1 × · · · × An ⊆ R(Rn, c).

This follows from Corollary 4.6 and Fact 2.19.

Also we get a generalization of the original semialgebraic counting version over finite sets
from Theorem 1.7 with additional control on the parameters over which the homogeneous
subsets are defined.

Corollary 4.8. Let M be a distal structure and let a formula φ(x, y, z) be given. Then
there is some δ = δ(φ) > 0 and formulas ψ1(x, z1) and ψ2(y, z2) depending just on φ
and satisfying the following. For any definable relation R(x, y) = φ(x, y, c) for some
c ∈ M |z| and finite A ⊆ M |x| and B ⊆ M |y| there are some A′ ⊆ A and B ′ ⊆ B such
that |A′| ≥ δ|A|, |B ′| ≥ δ|B| and

(1) the pair A′, B ′ is R-homogeneous,
(2) there are some c1 ∈ A|z1| and c2 ∈ B |z2| such that A′ = ψ1(A, c1) and B ′ =

ψ2(B, c2).

Proof. Let ψ1(x, z1), ψ2(x, z2), ε be as given by Corollary 4.6. Then the existence of
A′, B ′ follows by defining µ(X) (resp., ν(X)) to be the normalized number of points in
X ∩ A (resp., X ∩ B). Such Keisler measures are always generically stable by Fact 2.19.

For (2), by Remark 2.7 we can find some formulas ψ ′1(x, z
′

1) and ψ ′2(x, z
′

2) such that
for any finite sets A,B and c1, c2 there are some c′1 ∈ A

|z′1| and c′2 ∈ B
|z′2| such that

ψ1(A, c1) = ψ
′

1(A, c
′

1) and ψ ′2(B, c2) = ψ
′

2(B, c
′

2). ut

We will show in Section 6 that the most basic version of Corollary 4.8 characterizes
distality. This is not the case however if we do not require definability of the homogeneous
subsets.

Remark 4.9. (1) If every definable relation in M satisfies the strong Erdős–Hajnal prop-
erty and N is interpretable in M, then every definable relation in N satisfies the strong
Erdős–Hajnal property.

(2) Let M and N be two structures in the same language and assume that N embeds
into M. If all quantifier-free definable relations in M satisfy the strong Erdős–Hajnal
property, then so do all quantifier-free definable relations in N .

By the remark and Corollary 4.8 we have the following.

Corollary 4.10. If M is distal and N is interpretable in M (resp., embeds into M), then
all definable (resp., quantifier-free definable) relations in N satisfy the strong Erdős–
Hajnal property.

Example 4.11. The following relations satisfy the strong Erdős–Hajnal property.

(1) Definable relations in an arbitrary algebraically closed field of characteristic 0 (since
ACF0 is interpretable in the distal theory RCF of real closed fields).
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(2) Definable (in the language Ldiv) relations in an arbitrary nontrivially valued alge-
braically closed field of residue characteristic 0 (since its theory ACVF0,0 is in-
terpretable in the theory RCVF of real closed valued fields—see e.g. [4, Corollary
6.3]—which is distal in view of Example 2.10).

(3) Quantifier-free definable relations in an arbitrary field of characteristic 0 (as the field
can be embedded into some model of ACF0).

(4) Quantifier-free definable (in Ldiv) relations in an arbitrary valued field of equicharac-
teristic 0 (as it can always be embedded into a model of ACVF0,0).

Thus (see Remark 1.4) we obtain many new families of graphs satisfying the Erdős–
Hajnal conjecture.

Remark 4.12. (1) Every relation satisfying the strong Erdős–Hajnal property is NIP.
(2) If all definable relations on M satisfy the Erdős–Hajnal property then M is NIP.

Proof. (1) If the relation R(x, y) is not NIP, then for any finite bi-partite graph G there
are some A ⊆ M |x| and B ⊆ M |y| such that G is isomorphic to (A,B,R ∩ (A × B)).
By the optimality of the bound O(log n) on the size of homogeneous subsets in arbitrary
bi-partite graphs it follows that R does not have the strong Erdős–Hajnal property.

(2) If the relation R(x, y) is not NIP, let R′ ⊆ M |x|+|y| × M |x|+|y| be defined by
R′(ab, cd) ⇔ R(a, d) ∨ R(c, b). This is a symmetric relation such that for any finite
graph G there is some set A ⊆ M |x|+|y| such that G is isomorphic to (R′, A) (see e.g.
[26, Lemma 2.2]). Again optimality of the logarithmic bound for arbitrary graphs implies
that R′ does not have the Erdős–Hajnal property. ut

5. Regularity lemma for distal hypergraphs

5.1. Regularity lemmas for restricted families of graphs

Szemerédi’s regularity lemma is a fundamental result in graph combinatorics with many
versions and applications in extremal combinatorics, number theory and computer science
(see [24] for a survey). In its simplest form for bi-partite graphs, it can be stated as follows.

Fact 5.1. If ε > 0, then there exists K = K(ε) such that: for any finite bi-partite graph
R ⊆ A × B, there exist partitions A = A1 ∪ · · · ∪ Ak1 and B = B1 ∪ · · · ∪ Bk2 into
nonempty sets, and a set 6 ⊆ {1, . . . , k1} × {1, . . . , k2}, with the following properties:

(1) Bounded size of the partition: k1, k2 ≤ K .
(2) Few exceptions: |

⋃
(i,j)∈6 Ai × Bj | ≥ (1− ε)|A× B|.

(3) ε-regularity: for all (i, j) ∈ 6, and all A′ ⊆ Ai and B ′ ⊆ Bj , one has∣∣|R ∩ (A′ × B ′)| − dij |A′| |B ′|∣∣ ≤ ε|A| |B|, where dij =
|R ∩ (Ai × Bj )|

|Ai | |Bj |
.

In general the bound on the size of the partition K is known to grow as an exponential
tower of height 1/ε, and the result is less informative in the case of sparse graphs. Re-
cently several improved regularity lemmas were obtained in the context of definable sets
in certain structures or in restricted families of structures.
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(1) [41] Algebraic graphs of bounded complexity in large finite fields (equivalently, de-
finable graphs in pseudofinite fields): pieces of the partition are algebraic of bounded
complexity, no exceptional pairs, stronger regularity. Some generalizations and sim-
plifications were obtained in [34, 19] and by Hrushovski (unpublished).

(2) [27] Graphs of bounded VC-dimension: density arbitrarily close to 0 or 1, the size
of the partition is bounded by a polynomial in 1/ε.

(a) [29] Graphs without arbitrarily large half-graphs, corresponding to the case of
stable graphs (no exceptional pairs).

(b) [16, 18] Semialgebraic graphs of bounded complexity.
We remark that the classes of structures in (1), (2)(a) and (2)(b) are orthogonal to each
other. In the next section we give a generalization of (2)(b) to graphs definable in arbitrary
distal structures. As remarked before, the stable and the distal cases present two extremal
cases of general NIP structures.

5.2. Distal regularity lemma

We work in a model M of a distal theory T . We have sorts S1, . . . , Sk (i.e. definable
subsets of some powers of M) and a definable relation R ⊆ S1 × · · · × Sk .

Notation 5.2. (a) Let ES = S1 × · · · × Sk .
(b) We call a subset X ⊆ ES rectangular if it is of the form X = X1 × · · · ×Xk .
(c) For A ⊆ M and a finite set E1 = {1i(xi, yi) : i = 1, . . . , k} of formulas, a rectan-

gular subset X = X1 × · · · × Xk is called E1-definable over A if each Xi is a finite
Boolean combination of sets from {1i(xi, a) : a ∈ A}. (In fact, we will need only
conjunctions of 1i and their negations, i.e. partial E1-types.)

(d) Given Keisler measures µi on each sort Si , for a rectangular definable X = X1 ×

· · · ×Xk we set
µ(X) = µ1(X1) · µ2(X2) · . . . · µk(Xk).

(e) By a rectangular definable partition of ES we mean a finite partition P of ES consisting
of rectangular definable sets.

(f) For rectangular definable partitions P,P1 of ES we write P @ P1 if P refines P1, that
is, for each X ∈ P there is Y ∈ P1 with X ⊆ Y .

(g) Given Keisler measures µi on each sort Si , for a rectangular definable partition P
of ES, we define the defect of P to be

def(P) :=
∑
X∈P

X is not R-homogeneous

µ(X).

Obviously, if P1 @ P then def(P1) ≤ def(P).

Proposition 5.3. There is some constant c = c(R) such that: for any ε > 0 and any
generically stable measures µi on Si , for i = 1, . . . , k, there is a rectangular uniformly
definable (in terms of R and ε) partition P of ES with |P| ≤ (1/ε)c and def(P) ≤ ε.

We give a proof of the proposition in several claims, essentially following the proof of
[18, Theorem 1.3] but working with Keisler measures.
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Using Proposition 4.4 we find that the following holds.

Claim 5.4. There is a constant δ = δ(R) and formulas 1i(xi, yi), i = 1, . . . , k, such
that for any generically stable measures µi on Si there are ai, i = 1, . . . , k, such that the
sets Xi ⊆ Si defined by 1i(xi, ai) are R-homogeneous and µi(Xi) ≥ δ.

Remark 5.5. Since we are going to keep track of the parameters used in 1i , it is more
convenient to assume that in the above claim y1 = · · · = yk = y and a1 = · · · = ak = a.
This can always be achieved by a concatenation of variables.

We fix δ from the previous claim and let E1 = {1i(xi, y) : i = 1, . . . , k}, where the 1i
are from the above claim.

Claim 5.6. Let X be a definable rectangular subset of ES with µ(X) > 0. Then there is
some a ∈ M |y| and a rectangular set Y which is E1-definable over {a}, such that X ∩ Y is
R-homogeneous and µ(X ∩ Y ) ≥ δkµ(X).

Proof. Apply Claim 5.4 to measures µi relativized to the sets Xi . ut

Claim 5.7. Let P be a rectangular partition of ES which is E1-definable over a finite set A.
Then there is a rectangular partition P1 which is E1-definable over a finite set A1 with

(1) |P1| ≤ (k + 1)|P|,
(2) |A1| ≤ |A| + |P|,
(3) def(P1) ≤ (1− δk) def(P).
Proof. LetX ∈ P be nonhomogeneous. We can partition it into k+1 rectangular subsets,
all of them E1-definable using one extra parameter aX, such that one of these subsets
is R-homogeneous and is of measure at least δkµ(X). Namely, if X =

∏k
i=1Xi , by

Claim 5.6 there are some Yi ⊆ Xi such that Y =
∏k
i=1 Yi is an R-homogeneous subset

of X with µ(Y ) ≥ δkµ(X), and we take a partition of X into k + 1 pieces given by the
sets Y1 × · · · × Yk and X1 × · · · ×Xi−1 × (Xi \ Yi)× Yi × · · · × Yk for all i = 1, . . . , k.

Replacing each nonhomogeneous X ∈ P with such a subpartition we obtain P1 sat-
isfying the requirements. ut

Thus, by induction on n we can construct a rectangular partition Pn of ES which is E1-de-
finable over a finite set An and such that

(1) def(Pn) ≤ (1− δk)n,
(2) |Pn| ≤ (k + 1)n,

(3) |An| ≤
∑
j<n(k + 1)j =

(k + 1)n − 1
(k + 1)− 1

≤ (k + 1)n.

In particular, given ε > 0, using (1) and (2) above, after

N =
log ε

log(1− δk)
=

(
−

1
log(1− δk)

)
log

1
ε

steps we have def(PN ) ≤ ε with |PN | ≤ (k + 1)N ≤ 2kN ≤ (1/ε)c, where c =
−k/log(1− δk) is a positive constant depending only on R.

This finishes the proof of Proposition 5.3.

From the above k-partite version we obtain a regularity lemma for hypergraphs.
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Theorem 5.8 (Distal regularity lemma). Let P ⊆ Md be a definable set and
R(x1, . . . , xk) with |xi | = d for all 1 ≤ i ≤ k be a definable relation. Then there is
some constant c = c(R) such that the following holds. For any ε > 0 and for any generi-
cally stable measure µ on P , there is a partition P = P1∪· · ·∪PK withK = O((1/ε)c)
such that the Pi’s are uniformly definable (in terms of R and ε) and∑

µ(Pi1) . . . µ(Pik ) ≤ ε,

where the sum is over all tuples (i1, . . . , ik) such that (Pi1 , . . . , Pik ) is not
R-homogeneous.

Proof. Let PN , AN , c, E1 be as given in the proof of Proposition 5.3 for Si = P and
µi = µ, for all 1 ≤ i ≤ k.

Using Fact 2.4, we obtain constants c2 and c3 depending only on R and such that the
number of E1-types over any finite set A is bounded by c2|A|

c3 . Finally, we partition P
into realizations of complete E1-types over AN , say P =

⋃
i≤K Pi . It follows that there

will be at most c2(1/ε)cc3 parts. It is easy to see that this partition of P satisfies the
homogeneity condition because the rectangular partition

P := {Pi1 × · · · × Pik : 1 ≤ i1, . . . , ik ≤ K}

refines PN and def(PN ) ≤ ε. ut

5.3. Finding definable equipartitions

Normally in the conclusion of a regularity lemma one is able to choose parts of (approxi-
mately) equal measure. We give a sufficient condition for this in the definable setting. To
simplify some expressions, given real numbers r1, r2 and ε > 0, we write r1 ≈ε r2 to
denote that |r1 − r2| < ε.

Definition 5.9. We say that a structure M uniformly cuts finite sets if for every formula
φ(x, y) and every ε > 0 there is a formula χ(x, z) such that for any sufficiently large
finite set A ⊆ M |x|, any b ∈ M |y| and any 0 ≤ m ≤ |φ(A, b)| there is some c ∈ M |z|

such that
|φ(A, b) ∩ χ(A, c)|

|φ(A, b)|
≈
ε m

|φ(A, b)|
.

Note that this is a property of Th(M).

Example 5.10. (1) Assume that there is a definable linear order x < y on M. Then
clearly M uniformly cuts finite sets, and χ in Definition 5.9 can be chosen independently
of φ and ε (using lexicographic ordering for subsets of Mn for n > 1).

(2) Let M = (Qp,+,×). Then M uniformly cuts finite sets. For subsets of M this
follows from the fact that every ball in Qp is a disjoint union of exactly p balls; then an
argument similar to the proof that for an atomless measure, every set of positive measure
contains subsets of arbitrary smaller measure, can be carried out up to ε, in a number of
steps bounded in terms of ε (one can check using quantifier elimination in the p-adics that
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in this case χ cannot be chosen independent of ε). To extend this to subsets of Mn for
n > 1, note that if k is an infinite field and A ⊆ kn is a finite set then there is a uniformly
definable linear map f : kn→ k that is one-to-one on A.

Proposition 5.11. Let M be a distal structure and assume that it uniformly cuts finite
sets. Then for every formula φ(x, y) and δ > 0 there is some χ(x, z) such that: for any
generically stable measure µ on M with µ({c}) = 0 for any singleton c ∈ M |x|, if
0 ≤ α ≤ µ(φ(x, a)) then we can find some b ∈ M |z| with µ(φ(x, a) ∩ χ(x, b)) ≈δ α.

Proof. Fix ε > 0, and let χ(x, z) be an arbitrary formula. As M is distal, it follows by
Fact 2.16 that µ is smooth over M . Let θ1

i (x), θ
2
i (x), ψi(y, z), i = 1, . . . , n, list all of

the formulas over M given by Fact 2.15 for each of φ(x, y) and φ(x, y) ∧ χ(x, z), with
respect to µ and ε. Let B be the finite Boolean algebra of subsets of M |x| generated by
2 = {θ ti (M) : i = 1, . . . , n, t = 1, 2}. Clearly the number of atoms in B is at most 4n. By
assumption every definable set of positive µ-measure is infinite. Then for all sufficiently
large m ∈ N we can choose a set C ⊆ M |x| with |C| = m such that for every atom A

of B, ∣∣∣∣ |C ∩ A|m
− µ(A)

∣∣∣∣ < ε

2 · 4n
.

It then follows that for every i ∈ {1, . . . , n} and t ∈ {1, 2} we have |θ ti (C)|/|C| ≈
ε/2

µ(θ ti (M)). But by the choice of θ0
i , θ

1
i this implies that for any set D from

1(M) = {φ(M, a) : a ∈ M} ∪ {φ(M, a) ∩ χ(M, b) : a, b ∈ M}

we have |D ∩ C|/|C| ≈ε µ(D).
Now let 0 < α < β := µ(φ(M, a)) be given (if α ∈ {0, β} then there is nothing to

do). Let ε := δ/4, and let χ(x, z) be as given by Definition 5.9 for φ(x, y) and ε. Take m
sufficiently large (to be specified later). Then for C with |C| = m chosen as above with
respect to ε and χ we have in particular |φ(C, a)|/|C| ≈ε β. Let l := |φ(C, a)|. We may
assume that there is some k ∈ N with k ≤ l such that k/l ≈ε α/β (since α > 0, by
choosing m sufficiently large we may assume that l is arbitrarily large). Then, using the
fact that both β, k/l ≤ 1 we obtain α ≈ε βk/l ≈ε l

m
k
l
=

k
m

, so α ≈2ε k/m.
By the choice of χ(x, z), there is some b ∈ M |z| such that

|φ(C, a) ∩ χ(C, b)|

l
≈
ε k

l
,

which implies |φ(C, a) ∩ χ(C, b)|/m ≈ε k/m, and so |φ(C, a) ∩ χ(C, b)|/m ≈3ε α.
By the assumption on C this implies µ(φ(x, a) ∧ χ(x, b)) ≈4ε α; but 4ε = δ. ut

Remark 5.12. Recall that a global measure µ is definable over a small model M if it is
Aut(U/M)-invariant and for every formula φ(x, y) ∈ L and every closed subset X of
[0, 1], the set {q ∈ S|y|(M) : µ(φ(x, b)) ∈ X for any b ∈ U|y| with b |= q(y)} is closed.
The measure µ is finitely satisfiable if for every φ(x, b) ∈ L(U) with µ(φ(x, b)) > 0
there is some a ∈ M |x| such that |= φ(a, b) holds. As mentioned before, in an NIP
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structure, a Keisler measure µ over M is generically stable if and only if it admits a
globalM-invariant extension which is both definable overM and finitely satisfiable inM
(see [22, Theorem 3.2]).

Corollary 5.13. Assume that T uniformly cuts finite sets in such a way that χ in Defini-
tion 5.9 can be chosen independent of ε (e.g. if M has a definable linear order). Then
under the assumptions of Proposition 5.11 we can choose b ∈ U such that µ1(φ(x, a) ∩

χ(x, b)) = α, where µ1 is the unique global Keisler measure extending µ.

Proof. As µ1 is generically stable over M, it is in particular definable over M. That is,
for every δ > 0 the set {b ∈ U : α−δ ≤ µ1(φ(x, a)∧χ(x, b)) ≤ α+δ} is type-definable
over M (and consistent). It then follows by compactness that we can find some b∗ ∈ U
with µ1(φ(x, a) ∧ ψ(x, b)) = α. ut

Corollary 5.14. Let M be a distal structure and assume that it uniformly cuts finite sets.
Then in Theorem 5.8 for any µ satisfying in addition µ({c}) = 0 for all c ∈ Md and any
δ > 0 we can find a partition P1, . . . , PK with µ(Pi) ≈δ µ(Pj ) for all 1 ≤ i, j ≤ K (and
with the parts Pi uniformly definable in terms of R, ε, δ, χ).

Proof. We follow the standard repartition argument (see e.g. [18, proof of Theorem 1.3]).
Let (P,R) be a k-uniform hypergraph, and let P = P1 ∪ · · · ∪ PK be a partition

of its vertices given by Theorem 5.8 for ε/2, with K ≤ c1(2/ε)c2 . Fix δ > 0 and µ
satisfying the assumptions; we will find a new partition P = Q1 ∪ · · · ∪QK ′ satisfying
the conclusion of the corollary for ε and δ.

LetK ′ = d4(2k/ε)Ke; without loss of generality 0 < δ < 1/K ′. Fix an arbitrary 0 <
δ′ < δ/K ′. Using Proposition 5.11 we can partition each Pi into Pi = Si ∪

⋃
Qi,j with

µ(Qi,j ) ≈
δ′ 1/K ′ for all j and with the remainder µ(Si) < 1/K ′. Let now S =

⋃
i Si ;

again using Proposition 5.11 we can partition S into S = T ∪
⋃
Uj with µ(Uj ) ≈δ

′

1/K ′

and µ(T ) < 1/K ′. As δ′ was sufficiently small compared to δ and 1/K ′, calculating the
error we get µ(T ) ≈δ 1/K ′.

We claim that P =
⋃
Qi,j ∪

⋃
Uj ∪ T is the required partition. We relabel it as

P = Q1 ∪ · · · ∪QK ′ . ThenK ′ is still a polynomial in 1/ε. Note that µ(S) < K/K ′, so at
mostK parts of the new partition are contained in S. Hence the sum

∑
µ(Qi1) . . . µ(Qik )

over all tuples (i1, . . . , ik) for which not all of Pi1 , . . . , Pik are subsets of parts of the
original partition is at most

K(K ′)
k−1

(
1
K ′
+ δ

)k
≤ K(K ′)k−1 2k

(K ′)k
=

2kK
K ′
=
ε

4
.

Together with the assumption on the original partition it then follows that∑
µ(Qi1) . . . µ(Qik ), where the sum is over all tuples (i1, . . . , ik) such that

(Qi1 , . . . ,Qik ) is not R-homogeneous, is bounded by ε/2+ ε/4 < ε.
It follows from the construction that the new partition is uniformly definable in terms

of the old one and δ, and thus uniformly definable in terms of R, ε and δ. ut

Remark 5.15. Answering a question from an earlier version of our article, Pierre Simon
has recently demonstrated that all distal structures uniformly cut finite sets.
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6. Equivalence to distality

6.1. Strong Erdős–Hajnal fails in ACFp

Fields of positive characteristic give a standard example of the failure of the strong Sze-
merédi–Trotter bound on the number of incidences between points and lines. In a per-
sonal communication Terrence Tao suggested that it may also be used for the failure of
the strong Erdős–Hajnal property in this setting, which turned out to be the case indeed.

Let F be a field. For a set P ⊆ F2 of points and a set L of lines in F2 we denote by
I (P, L) ⊆ P × L the incidence relation, i.e. I (P, L) = {(p, l) ∈ P × L : p ∈ l}. As
remarked in Example 4.11, every field F of characteristic 0 satisfies the strong Erdős–
Hajnal property with respect to quantifier-free formulas. In particular we have

Proposition 6.1. Let F be a field of characteristic 0. Then there is a constant δ > 0 such
that for any finite (sufficiently large) set P ⊆ F2 of points and any finite (sufficiently
large) set L of lines in F2 there are some P0 ⊆ P and L0 ⊆ L with |P0| ≥ δ|P |,
|L0| ≥ δ|L| and I (P0, L0) = ∅.

We show that the assumption of characteristic 0 cannot be removed.

Proposition 6.2. Fix a prime p, and let F = Falg
p . Then the conclusion of Proposition 6.1

fails in F.
Proof. Assume towards a contradiction that F satisfies that conclusion. Since every finite
field of characteristic p can be embedded into F, the following would be true:

Let Fq be a finite field of characteristic p, of size q. Let P be the set of all points
in Fq , and let L be the set of all lines in F2

q of the form y = ax + b. Then there are
P0 ⊆ P and L0 ⊆ L with |P0| ≥ δ|P | and |L0| ≥ δ|L| and such that I (P0, L0) = ∅.

We show that this is impossible. We have |P | = q2 and |L| = q2. Since Fq has size q,
every line contains exactly q points, therefore |I (P, L)| = |L|q = q3. Notice also that
every point belongs to exactly q lines in L.

We fix k large enough so that 1/pk < δ, and let δ0 = 1/pk . Since q = pn for some n,
δ0q is an integer for every q ≥ pk .

Hence we can choose P0 ⊆ P with |P0| = δ0|P | and L0 ⊆ L with |L0| = δ0|L| such
that I (P0, L0) = ∅. Let P1 = P \ P0 and L1 = L \ L0. We have |P1| = (1− δ0)q

2 and
|L1| = (1− δ0)q

2.
Consider I (P0, L). Since every point belongs to exactly q lines in L, we have

|I (P0, L)| = |P0|q = δ0q
3. Since I (P0, L0) = ∅, we have I (P0, L) = I (P0, L1),

so |I (P0, L1)| = δ0q
3.

On the other hand, from the Cauchy–Schwarz inequality (see e.g. [35, p. 1]) it follows
that |I (P0, L1)| ≤

√
|L1|

√
|I (P0, L1)| + |P0|2.

Thus we have

δ0q
3
≤

√
(1− δ0)q2

√
δ0q3 + δ2

0q
4 =

√
(1− δ0)δ0q5 + (1− δ0)δ

2
0q

6.

Since 1− δ0 < 1, the above inequality fails for large enough q—a contradiction. ut

Corollary 6.3. LetK be an infinite field definable in a distal structure M. Then char(K)
= 0.
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Proof. By [23, Corollary 4.5] every infinite NIP field of characteristic p > 0 con-
tains Falg

p . But then M cannot satisfy the strong Erdős–Hajnal property by the proposition
above, contradicting distality. ut

In particular the theory ACFp admits no distal expansion. No examples of NIP theories
with this property have been known until now.

6.2. Equivalence to distality

In this section we assume some familiarity with NIP theories (see e.g. [39]) and recall
some facts about distal theories. We fix a theory T and a big sufficiently saturated model U
of T . Recall that a sequence (ai : i ∈ I ) of elements of Mn indexed by a linear order I is
indiscernible over a set of parameters A ⊆ M if for any i1 < · · · < ik and j1 < · · · < jk
from I we have tp(ai1 , . . . , aik/A) = tp(aj1 , . . . , ajk/A). Given a linear order I , by a
Dedekind cut in I we mean a cut I = I1 + I2 (i.e., I = I1 ∪ I2, I1 ∩ I2 = ∅ and a < b

for all a ∈ I1 and b ∈ I2) such that I1 has no maximal element and I2 has no minimal
element. We denote by I ∗ the reverse of the order on I .

Fact 6.4 ([8]). Let T be a complete NIP theory. Then the following are equivalent:
(1) T is distal (in the sense of Fact 2.5).
(2) Every indiscernible sequence I ⊆ Md in any model of M of T is distal. That is, for

any two distinct Dedekind cuts of I , if some two elements fill them separately, then
they also fill them simultaneously: if I = I1 + I2 + I3 and we have some a and b
fromMd such that both I1+ a+ I2+ I3 and I1+ I2+ b+ I3 are indiscernible, then
I1 + a + I2 + b + I3 is indiscernible.

Given an indiscernible sequence I = (ai : i ∈ [0, 1]), one defines the average measure µ
of I as the global Keisler measure given by µ(φ(x)) = λ1({i ∈ [0, 1] : ai |= φ(x)}) for
all definable sets φ(x), where λ1 is the Lebesgue measure on [0, 1]. It follows from NIP
that this Keisler measure is well-defined, i.e. the corresponding set of indices is measur-
able for every φ(x) with parameters from U. We say that c = (I1, I2, t) is a polarized cut
of I if I = I1 + I2 is a cut of I and t ∈ {1, 2} specifies whether the cut is approached
from the left or from the right. It follows from NIP that for a polarized Dedekind cut
c = (I1, I2, t) and a set of parameters A ⊆ U we have a complete limit type of c over A
denoted by lim(c/A) and defined by φ(x) ∈ lim(c/A)⇔ the set {i ∈ It : U |= φ(ai)} is
unbounded from above in case t = 1, or from below in case t = 2.

Fact 6.5. Let T be NIP, let I be an indiscernible sequence and let µ be the average
measure of I .
(1) The measure µ is generically stable [22, Proposition 3.7].
(2) The support of µ is exactly the set of limit types of cuts of I . That is, if for some for-

mula φ(x) we have µ(φ(x)) > 0 then φ(x) ∈ lim(c/U) for some polarized Dedekind
cut c of I [38, Lemma 2.20].

(3) I is distal if and only if µ is smooth [38, Proposition 2.21].

Recall that a sequence (ai : i ∈ I ) is totally indiscernible if for any i1 6= · · · 6= ik and
j1 6= · · · 6= jk from I we have tp(ai1 , . . . , aik/A) = tp(aj1 , . . . , ajk/A)
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Fact 6.6 ([38]). Let T be dp-minimal. Then it is distal if and only if no infinite indis-
cernible sequence is totally indiscernible.

Remark 6.7. It follows that if T ′ is a dp-minimal expansion of a distal dp-minimal the-
ory T , then T ′ is distal as well.

Indeed, If T ′ expands T and (ai : i ∈ I ) is an infinite L′-indiscernible sequence, then
it is in particular L-indiscernible, so it is not totally-L-indiscernible by distality of T , so
of course not totally-L′-indiscernible.

Fact 6.8 (Strong base change, [38, Lemma 2.8]). Let T be NIP. Let I be an indiscernible
sequence and A ⊇ I a set of parameters. Let (ci : i < α) be a sequence of pairwise
distinct polarized Dedekind cuts in I . For each i, let di fill the cut ci (i.e., if ci = (I1, I2, t)

then I1 + di + I2 is indiscernible). Then there exist (d ′i : i < α) in U such that

(1) tp((d ′i)i<α/I) = tp((di)i<α/I),
(2) for each i < α, tp(d ′i/A) = lim(ci/A).

Finally, we will use the following finitary version of a characteristic property of NIP
theories.

Fact 6.9. Let φ(x, y) be an NIP formula. Then there are some k,N ∈ N such that for
any indiscernible sequence I = (ai : i < n) from M |x| with n ≥ N and any b ∈ M |y|,
the set φ(I, b) is a disjoint union of at most k intervals.

Proof. This follows from the usual characterization of NIP via bounded alternation on
indiscernible sequences (see e.g. [1, Proposition 4]) plus compactness. ut

Theorem 6.10. Let T be an NIP theory. The following are equivalent:

(1) T is distal.
(2) For any definable relationR(x, y) and any global generically stable measuresµ1, µ2

there are some definable X ⊆ U|x| and Y ⊆ U|y| which are R-homogeneous and
satisfy µ1(X), µ2(Y ) > 0.

(3) For any definable relation R(x, y) there is some δ > 0 and some formulas ψ1(x, z1)

and ψ2(x, z2) such that for all finiteA ⊆ U|x| andB ⊆ U|y| there are some ci ∈ U|zi |,
i = 1, 2, such that |ψ1(A, c1)| ≥ δ|A|, |ψ2(B, c2)| ≥ δ|B| and the pair of sets
ψ1(A, c1), ψ2(B, c2) is R-homogeneous.

Proof. (1)⇒(2) and (1)⇒(3) follow from Corollaries 4.5 and 4.8.
(2)⇒(1). Assume that I = (ai)i∈I is a nondistal indiscernible sequence, with I =

[0, 1]. This means that I can be written as I = I1+ I2+ I3 (where Ij = (ai : i ∈ Ij ) and
I1, I∗2 , I2, I∗3 are without last elements) in such a way that there are some c, d ∈ U such
that I1+ c+ I2+ I3 and I1+ I2+d+ I3 are indiscernible, but I1+ c+ I2+d+ I3 is not.

Then there is a formula φ(I ′1, x, I
′

2, y, I
′

3) with some finite I ′j ⊂ Ij , say I ′j =

(ai : i ∈ I ′j ), I
′

j ⊂ Ij for j ∈ {1, 2, 3}, such that φ(I ′1, aj , I
′

2, ak, I
′

3) holds for any
I ′1 < j < I ′2 < k < I ′3, but |= ¬φ(I ′1, c, I

′

2, d, I
′

3). Let [j1, j2] be some interval of I be-
tween I ′1 and I ′2, and [k1, k2] some interval between I ′2 and I ′3. Let J = (ai : i ∈ [j1, j2])

and K = (ai : i ∈ [k1, k2]). Let µ be the average measure of J , and ν the average mea-
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sure of K (we may assume that both sequences are indexed by [0, 1] by taking an order
preserving bijection). Then both µ and ν are generically stable by Fact 6.5(1).

Now assume X = ξ(U) and Y = χ(U) are definable subsets of U|x| with µ(X), ν(Y )
> 0, where ξ, χ are formulas with parameters in some small modelM ⊇ I . By Fact 6.5(2)
there is some polarized Dedekind cut c of J such that ξ(x) ∈ limJ (c/M), and some
polarized Dedekind cut d of K such that χ(x) ∈ limK(d/M).

It follows by compactness, indiscernibility of I and taking an automorphism
of U that there are some c′ filling c and d ′ filling d (separately, as cuts in I )
such that ¬φ(I ′1, c

′, I ′2, d
′, I ′3) holds. By Fact 6.8 we can find some c′′, d ′′ such that

¬φ(I ′1, c
′′, I ′2, d

′′, I ′3) still holds, but moreover c′′ |= lim(c/M), d ′′ |= lim(d/M). In
particular, |= ξ(c′′) ∧ χ(d ′′). On the other hand, by the choice of φ and the definition of
µ, ν there are some j < k in I such that |= ξ(aj ) ∧ χ(ak) ∧ φ(I

′

1, aj , I
′

2, ak, I
′

3). This
shows that the relation R(x, y) = φ(I ′1, x, I

′

2, y, I
′

3) is not homogeneous on X × Y . As
X, Y were arbitrary definable sets of positive measure, we conclude.

(3)⇒(1). Assume that T is not distal, and we will show that (3) cannot hold. Working
in U we have some Ii = (aij : j ∈ Q) for i ∈ {1, 2, 3} and a, b such that I = I1+ I2+ I3,
I1+a+ I2+ I3 and I1+ I2+b+ I3 are indiscernible, but I1+a+ I2+b+ I3 is not. This
implies in particular that there is a formula φ ∈ L such that |= ¬φ(J ′1, a, J

′

2, b, J
′

3) for
some finite J ′i ⊂ Ii with J ′i = (aj : j ∈ Jj ), but |= φ(J ′1, a

′, J ′2, b
′, J ′3) for any a′, b′ ∈ I

such that J ′1 < a′ < J ′2 < b′ < J ′3.
Let now R(x, y; c) := φ(J ′1, x, J

′

2, y, J
′

3) with c := J ′1J
′

2J
′

3. Assume that there are
ψi(x, y), i ∈ {1, 2}, and δ > 0 as required by (3) for R. As T is NIP, it follows by Fact 6.9
that there are some k,N ∈ ω such that for any indiscernible sequence K = (aj : j < n)

with n ≥ N and any di ∈ U, i ∈ {1, 2}, the set ψi(K, di) is a disjoint union of at most k
intervals. Without loss of generality it then follows from (3) that there is some k′ ∈ ω such
that for any finite indiscernible sequences A = (aj : j < n) and B = (bj : j < n) with
n ≥ N we can find intervals A0 ⊆ A with |A0| ≥ |A|/k

′ and B0 ⊆ B with |B0| ≥ |B|/k
′

such that (A0, B0) is R(x, y; c)-homogeneous. We are going to show that this property
fails.

Relabeling the sequence we may assume that I1 = I1,0 + I1,1 + · · · and I3 = · · · +

I3,1 + I3,0, with each Ii,j indexed by Q, and that J ′1 ⊂ I1,0, J
′

3 ⊂ I3,0. Let I ′1 := I1 \ I1,0
and I ′3 := I3 \ I3,0.

By indiscernibility of I , automorphism and compactness, for any Dedekind cuts c
of I ′1 and c′ of I ′3 we can find some a′ and b′ which fill those cuts (separately, viewed as
cuts in I ) and are such that |= ¬φ(J ′1, a

′, J ′2, b
′, J ′3).

For each i ∈ ω, let (ci,j : j ∈ ω) be an infinite increasing sequence of cuts of I1,i ,
and let (c′i,j : j ∈ ω) be a decreasing sequence of cuts of I3,i . By the previous re-
mark, let ai,j and bi,j be such that ai,j fills the cut ci,j and bi,j fills the cut c′i,j , and
|= ¬φ(J ′1, ai,j , J

′

2, bi,j , J
′

3) holds.
Next using Fact 6.8 and induction we can choose a′i,j , b

′

i,j such that

• tp(a′i,jb
′

i,j/I) = tp(ai,jbi,j/I),
• tp(a′i,j/IAi,j ) = lim(ci,j/IAi,j ), where Ai,j = {a′i,j ′ : j

′ < j} ∪ {a′
i′,j ′
: i′ < i,

j ′ ∈ ω},
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• tp(b′i,j/IBi,j ) = lim(c′i,j/IBi,j ), where Bi,j = {b′i,j ′ : j
′ < j} ∪ {b′

i′,j ′
: i′ < i,

j ′ ∈ ω}.

From this we have:

(a) |= ¬φ(J ′1, a
′

i,j , J
′

2, b
′

i,j , J
′

3) holds for any i, j ∈ ω.
(b) I ′1 with all the {a′i,j : i, j ∈ ω} added in the corresponding cuts is indiscernible.
(c) I ′3 with all the {b′i,j : i, j ∈ ω} added in the corresponding cuts is indiscernible.
(d) |= φ(J1, a

′, J2, b
′, J3) holds for any a′ ∈ I ′1 and b′ ∈ I ′3.

Here (a) follows from the first bullet above and the choice of ai,j , bi,j ; using the second
bullet it is easy to show that (b) holds, and that the sequence has the same EM-type as I
(similarly for (c)); (d) was already observed above.

In view of (a)–(d) above, for any m ∈ ω we can choose indiscernible sequences
A = (aj : j < 2k′m) and B = (bj : j < 2k′m) such that for any l1, l2 < 2k′ we
have |= ¬R(al1m+l2 , bl2m+l1; c) and |= R(al1m+j1 , bl2m+j2; c) for any j1, j2 ∈ (2k′, m).
It then follows that for all sufficiently large m, for any choice of an interval A0 ⊆ A with
|A0| ≥ |A|/k

′
≥ 2m and B0 ⊆ B with |B0| ≥ |B|/k

′
≥ 2m, the sets (A0, B0) cannot be

R(x, y; c)-homogeneous—contradicting the choice of k′. ut

Remark 6.11. Pierre Simon has also observed a version of the implication (2)⇒(1) in
Theorem 6.10 after seeing a preliminary version of our results.

The above proof shows that an NIP theory is distal if and only if property (3) in Theorem
6.10 holds for all finite indiscernible sequencesA,B. As the following proposition shows,
in an arbitrary NIP theory property (3) almost holds for A,B indiscernible sequences,
except for the uniform definability of one of the homogeneous subsets.

Proposition 6.12. Let φ(x, y) be NIP. Then there is ε > 0 depending only on φ such
that for any indiscernible sequences A = (ai : i < n) and B = (bi : i < m) (in fact
1-indiscernible for some finite 1 depending just on φ is enough) there are A0 ⊆ A and
B0 ⊆ B such that |A0| ≥ ε|A| and |B0| ≥ ε|B| and either φ(a, b) holds for all a ∈ A0
and b ∈ B0, or ¬φ(a, b) holds for all a ∈ A0 and b ∈ B0.

Proof. By Fact 6.9 there is k such that φ(x, y) cannot alternate on an indiscernible se-
quence more than k times. We divideB into k+1 intervals of almost equal length. Namely,
for i < k + 1 let

Bi =

{
bj : i ·

m

k + 1
l ≤ j < (i + 1) ·

m

k + 1

}
.

Then for every a ∈ A there is some interval Bia not containing any alternation points. It
follows that for some i′ < k+ 1, there are |A|/(k + 1) points in A which do not alternate
insideBi′ , and then at least half of them satisfy φ or¬φ. So we can take ε = 1/(2(k + 1)).

ut
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