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Abstract. We prove that the theory of the p-adics Q) admits elimination of imaginaries provided
we add a sort for GL;, (Qp)/GLy (Zp) for each n. We also prove that the elimination of imaginaries
is uniform in p. Using p-adic and motivic integration, we deduce the uniform rationality of cer-
tain formal zeta functions arising from definable equivalence relations. This also yields analogous
results for definable equivalence relations over local fields of positive characteristic. The appendix
contains an alternative proof, using cell decomposition, of the rationality (for fixed p) of these
formal zeta functions that extends to the subanalytic context.

As an application, we prove rationality and uniformity results for zeta functions obtained by
counting twist isomorphism classes of irreducible representations of finitely generated nilpotent
groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and
Grunewald for subgroup zeta functions of finitely generated nilpotent groups.

Keywords. Elimination of imaginaries, invariant extensions of types, cell decompositions, rational
zeta functions, subgroup zeta functions, representation zeta functions

1. Introduction

This paper concerns the model theory of the p-adic numbers QQ, and applications to
certain counting problems arising in group theory. Recall that a theory (in the model-
theoretic sense of the word) is said to have elimination of imaginaries (EI) if the follow-
ing holds: for every model M of the theory, for every ¢-definable subset D of some M"
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and for every J-definable equivalence relation R on D, there exists an (J-definable func-
tion f: D — M™, for some m, such that the fibers of f over f(D) are precisely the
equivalence classes of R. In other words, elimination of imaginaries states that every pair
(D', E’) (consisting of an @-definable set D" and an #J-definable equivalence relation E’
on it) reduces to a pair (D, E) where E is equality—here, as in descriptive set theory, we
say that (D', E') reduces to (D, E) if there exists an @-definable map f: D’ — D with
XE'y & f(O)Ef().

The theory of Q, (in the language of rings with a predicate for val(x) > val(y)) does
not admit EI [67]: for example, no such f exists for the definable equivalence relation R
on Q, given by xRy if val(x — y) > 1, because Q,/R is countably infinite but any
definable subset of (@Z’ is either finite or uncountable. Our first main theorem gives a
p-adic EI result when we add for each n a sort S, for the family of Z-lattices in QZ.

These new sorts are called the geometric imaginaries. The language £§ consists of the
valued field sort and the sorts S, (with some more structure described in Section 2).

Theorem 1.1. The theory of Q, eliminates imaginaries in the language £§.

To be precise, we prove a version of this that holds for any finite extension of Q, (Theo-
rem 2.6).

Suppose we are given not just a single definable equivalence relation for some
fixed Q,, but one for every Q,. For our applications to zeta functions below, we want
to control the behavior of the elimination of imaginaries as we vary the prime p. Our
second main result is that the theory of ultraproducts of Q,, also eliminates imaginaries if
we add similar sorts.

Theorem 1.2. The theory of nonprincipal ultraproducts | | » Qp /U eliminates imaginar-
ies in the language L’é provided we add some constants.

See Theorem 2.7 for a more precise statement of what constants are needed to eliminate
imaginaries. This last result implies that the elimination of imaginaries in Q, is uniform
in p; see Corollary 2.9 for a precise statement of this uniformity.

In fact, we prove a more general result (Corollary 2.17), which yields EI both for Q,,
and for ultraproducts: given two theories T, T satisfying certain hypotheses, T has EI if
T does. In our application, T is the theory of algebraically closed valued fields of mixed
characteristic (ACVFy ) or equicharacteristic zero (ACVFy o) and T is either the theory
of a finite extension of @@, or the theory of an ultraproduct of Q, where p varies, with
appropriate extra constants in each case (in fact in the latter case Corollary 2.17 does not
apply immediately but a variant does).

The notion of an invariant extension of a type plays a key part in our proof. If T is
atheory, M = T, A € M and p is a type over A then an invariant extension of p is
a type g over M such that g|A = p and g is Aut(M/A)-invariant. The theory ACVF is
not stable; in [40, 41], Haskell, the first author and Macpherson used invariant extensions
of types to study the stability properties of ACVF and to define notions of forking and
independence. They proved that ACVF plus some extra sorts admits EI.
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As an important consequence of Theorems 2.6 and 2.7, we prove the following ra-
tionality and uniformity result for zeta functions S, () counting the number of equiv-
alence classes in some uniformly definable family of equivalence relations. (Here 1 =
(t1,..., ) is a tuple of indeterminates and S, () is a power series in the #;; we obtain
a zeta function in the more usual sense by setting r; = p~—*, where the s; are complex
variables.)

Theorem 1.3. The zeta functions (S, (t))p prime are uniformly rational.

We also give a version of Theorem 1.3 for a uniformly definable family of equivalence
relations over a local field of positive characteristic (Corollary 6.8).

See Section 6 for definitions and a precise statement (Theorem 6.1). Roughly speak-
ing, uniform rationality means that each S, (¢) can be expressed as a rational function with
coefficients in @, where the denominator is a product of functions of the form 1 — p%t?
or p" with a, b, n independent of p, and the numerator is a polynomial in ¢ such that
each coefficient comes from counting the FF,-points of a fixed variety over Z. In particu-
lar, we show that S, (¢) is rational not just for all sufficiently large primes, but for every
prime; this is crucial for our applications to representation growth below, as well as to the
following result, which deals with the abscissa of convergence.

Theorem 1.4. Let S, (t) be as above and suppose we are in the one-variable case (r =1,
t = t1). Define {,(s) = S,(p™*). Assume that the constant term of ¢, (s) is 1 for all but
Sinitely many primes and set {(s) =[] p» &p(8). Then the abscissa of convergence of (s)
is rational (or —o0).

In fact, Theorem 6.1 yields a kind of “double uniformity”: the ultraproduct formalism
allows us to vary not just the prime p, but also the choice of an extension L, of Q,. For
an application of this double uniformity, see the end of Section 8.

To describe the proof of Theorem 1.3, let us now come back to the meaning of our
elimination of imaginaries result. It shows that any (D’, E’) can be reduced to a (D, E) of
a special kind—namely, the equivalence relation on GLy (Q,) for some N whose equiv-
alence classes are the left GLy (Z,)-cosets. The quotients D/E have a specific geometric
meaning—but can one explain abstractly in what way they are special? One useful obser-
vation is that we have reduced an arbitrary equivalence relation to a quotient by a definable
group action. Another concerns volumes: the E-classes have volumes that are motivically
invertible (in fact, each class is equivalent to a polydisk of an appropriate dimension and
size).

Indeed, it is only the latter property of the geometric imaginaries that is actually used
in the proof of Theorem 6.1. This proof relies on representing the number of classes of
some definable equivalence relation E on some definable set D as an integral. The idea,
going back to Denef and Igusa, is simple: the number of classes of £ on D equals the
volume of D, for any measure such that each E-class has measure one. The question is
how to come up (definably) with such a measure. The setting is that we already have the
Haar measure p on QQ, (normalized so that 1+(Z,) = 1), and for simplicity—one can
easily reduce to this case—Ilet us assume each E-class [x]g € D/E has finite, nonzero
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measure. The problem then is to show that there exists a definable function f: D — Q,
such that the measure of each E-class [x]g is of the form

p(lxle) = [ f ()], (1.1)

where | f (x)| denotes the p-adic norm. Then we can replace p with | f|~! . In practice,
f is usually given explicitly (cf. [39, Section 2]). For more complicated equivalence re-
lations, however, such as the one for representation zeta functions in Section 8, it is not
clear a priori that such an f can be found, even in principle.

This point is beautifully brought out in work by Raf Cluckers; we are very pleased to
have his permission to include it here as an Appendix. The Appendix contains a complete
proof of the rationality results in Section 6 for fixed p which also extends to the analytic
case, while avoiding an explicit elimination of imaginaries. It might be useful to say a
word here about the two proofs. Given EI to the geometric sorts, we can represent E as
the coset equivalence relation of GL,(Z,). In this case we can take the measure in our
p-adic integral to be the Haar measure on GL,,(Q,), where each class automatically has
measure one. The density of this measure with respect to (the n-fold Cartesian power
of) the additive Haar measure is given by M +— 1/|det(M)|. In other words, for this
canonical E, the reciprocal of the (additive) Haar measure of any E-class is represented
by a definable function.

In the Appendix, any equivalence relation (D', E’) is reduced to one with motivically
invertible volumes. Indeed there exists an ¢J-definable D € D’ such that D N e has mo-
tivically invertible volume for each E’-class e (in particular, with E = E’|p, the natural
map D/E — D’/E’ is a bijection). This result is valid in the analytic case too, unlike
geometric El in its present formulation (see [42]).

We illustrate the power of Theorem 6.1 by using it to prove rationality results for
certain zeta functions of finitely generated nilpotent groups (Theorems 7.2 and 1.5).
Grunewald, Segal and Smith [39, Section 2] showed that subgroups of p-power index
of such a group I' can be parametrized p-adically if T" is also torsion-free. More pre-
cisely, these subgroups can be interpreted, that is, placed in bijective correspondence
with the set of equivalence classes of some definable equivalence relation on a definable
subset D of some Q;,V . Let b, < oo denote the number of subgroups of I" of index n.
Using p-adic integration over D and results of Denef and Macintyre, Grunewald, Segal
and Smith showed that the p-local subgroup zeta function Y oo, bynt" is a rational func-
tion of ¢, and that the degrees of the numerator and denominator of this rational function
are bounded independently of p. Du Sautoy and others have calculated subgroup zeta
functions explicitly in many cases [32, 34, 71] and studied uniformity questions. For in-
stance, du Sautoy and Grunewald proved a uniformity result by showing that the p-adic
integrals that arise in the calculation of subgroup zeta functions fall into a special class
they call cone integrals [33]. See the start of Section 7 for further discussion of uniformity
in the context of subgroup zeta functions.

We also consider situations where it is not clear how to find a definable function f
satisfying (1.1) and construct suitable definable p-adic integrals. The main one, and the
original motivation for our results, is in the area of representation growth. This is anal-
ogous to subgroup growth: one counts not the number b,» of index p" subgroups of



Definable equivalence relations and zeta functions of groups 2471

a group I', but the number a,n of irreducible p”"-dimensional complex characters of I'
(modulo tensoring by 1-dimensional characters if I is nilpotent). Here is our main result
on representation zeta functions. Let {r ,(s) = Y .2 gapm p~"™.

Theorem 1.5. The p-local representation zeta functions (Cr, p(s)) p prime Of a finitely gen-
erated nilpotent group T are uniformly rational. Moreover, the global representation zeta
function {r(s) == Y_o2 ayn™* has rational abscissa of convergence.

The results in Sections 7 and 8 both follow the same idea: we show how to interpret
(uniformly and definably) in Q, the sets we want to count. More precisely, in Section 7
we show how to interpret in Th(Q),) the set of finite-index subgroups H of I" and we
show that the equivalence relations that arise are uniformly definable in p. This allows
us to apply Theorem 6.1. The same idea is used in Section 8, but the details are more
complicated. We show how to interpret in Th(Q),) the set of pairs (N, o), where N is a
finite-index normal subgroup of I' and o is an irreducible character of I'/ N, up to twisting
by 1-dimensional characters. The key idea is first to interpret triples (H, N, x), where H
is a finite-index subgroup of I', N is a finite-index normal subgroup of H and x is a
1-dimensional character of H/N—the point is that finite nilpotent groups are monomial,
so any irreducible character is induced from a 1-dimensional character of a subgroup. The
equivalence relation of giving the same induced character can be formulated in terms of
restriction, and shown to be definable. Inspecting these constructions shows that they are
all uniform in p, so again Theorem 6.1 applies.

Since the first draft of this paper [46] was circulated, there has been considerable ac-
tivity in the field of representation growth. Jaikin-Zapirain [49] used the coadjoint orbit
formalism of Howe and Kirillov to parametrize irreducible characters of p-adic analytic
groups; rationality of the representation zeta function then follows from the usual argu-
ments of semisimple compact p-adic integration. Voll used similar ideas to parametrize
irreducible characters of finitely generated torsion-free nilpotent groups, and showed that
representation zeta functions are rational and satisfy a local functional equation [70] (in
fact, he proved this for a very general class of zeta functions that includes representation
zeta functions and subgroup zeta functions as special cases). Stasinski and Voll proved
a uniformity result for representation zeta functions and calculated these zeta functions
for some families of nilpotent groups [69, Theorems A and B]. Ezzat [38], [36], [37] and
Snocken [68] calculated further examples of representation zeta functions of nilpotent
groups. For work on representation growth for other kinds of group, see [53], [51], [4],
[51, [31, [61, [11, [21, [9], [8].

The Kirillov orbit method has the advantage that it linearizes the problem of
parametrizing irreducible representations and simplifies the form of the imaginaries that
appear. The disadvantage is that the proof of rationality only applies to {r , (s) for almost
all p—one must discard a finite set of primes. We stress that our result (Theorem 1.5) is
the only known proof of rationality of {r,,(s) that works for every p.

This paper falls naturally into two parts. The first part is model-theoretic: in Section 2
we establish an abstract criterion, Proposition 2.13, for elimination of imaginaries and
apply it in Sections 4 and 5 to prove Theorems 2.6 and 2.7. Section 3 consists of a study
of unary types in henselian valued fields, which is used extensively in Sections 4 and 5. In
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Section 6 we establish the general rationality result (Theorem 6.1), we prove Theorem 6.4
and we show how the techniques developed in this paper can be used to prove transfer
results between local fields of positive characteristic and mixed characteristic.

In the second part (Sections 7 and 8), we apply Theorem 6.1 to prove Theorems 7.2
and 1.5. The main tools are results from profinite groups; no ideas from model theory
are used in a significant way beyond the notion of definability. We finish Section 8 by
using the Kirillov orbit formalism and Theorem 6.1 to recover a double uniformity result
(Theorem 8.13) of Stasinski and Voll [69] for the representation zeta functions of groups
of points of a smooth unipotent group scheme.

Finally, the Appendix contains an alternative proof (Theorem A.2), of the rationality
results of Section 6 for fixed p that generalizes to the analytic setting. An important ap-
plication of this work of Cluckers is that it gives a tool for proving rationality of certain
zeta functions associated to a compact p-adic analytic group: see the paragraph following
Remark 7.3, for example. Here the methods of the main paper do not go through because
one needs to use an extended language containing symbols for analytic functions, and
elimination of imaginaries in this setting is known to require more sorts than just the ge-
ometric imaginaries. (Note, however, that various rationality and uniformity results have
been obtained for representation zeta functions of certain compact p-adic analytic groups
using the Kirillov orbit method [5].)

Note. A draft of this paper [46] has been available for over ten years now. Alongside the
previous theorems concerning Q,, for fixed p, the present version also contains new ma-
terial on the model theory of ultraproducts of QQ,, which allows us to prove the uniformity
as p varies of the previous elimination of imaginaries and rationality theorems, as well
as a transfer result between positive equicharacteristic and mixed characteristic. There
is extra material on representation growth and a new Appendix on cell decomposition
methods.

2. Elimination of imaginaries

2.1. Definition and first properties

We denote by N [N. o] the nonnegative [positive] integers. For standard model-theoretic
concepts and notation such as dcl (definable closure) and acl (algebraic closure) we refer
the reader to any introduction to model theory, e.g., [57] or the first chapter of [41].
We will write interchangeably dcl(bb’) = dcl(b, b’) = dcl({b,b’}) and dcl(A, b) =
dcl(Ab) = dcl(A U {b}), etc.

Notation 2.1. If X is a definable (possibly co-definable) set in some structure M and
A C M,wewill write X (A) :=={a € A: M = X(a)}. If we want to make the parameters
of X explicit, we will write X (A; b).

We say that the definable set X is coded (in M) if it can be written as R(M; b), where b
is a tuple of elements of M, and where b # b’ implies that R(M; b) # R(M; b'). In this
situation dcl(b) depends only on X and is called a code for X. It is denoted <X >. We say
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T eliminates imaginaries (EI) if every definable set in every model of T is coded. Equiv-
alently, if there are at least two constants, 7" eliminates imaginaries if for any ¢J-definable
equivalence relation E there is an ¢J-definable function whose fibers are exactly the equiv-
alence classes of E (cf. [62, Lemme 2]).

For any theory T, by adding sorts for every #-definable quotient we obtain a the-
ory T° that has elimination of imaginaries. These new sorts are called imaginary sorts
and the old sorts from 7 are called real sorts. Similarly, to any model M of T we can
associate a (unique) model M®4 of T that has the same real sorts as M. In general, we
use the notation <X > to refer to the code of X with respect to 7°9. We will denote by
dcl® the definable closure in M®9 and similarly for acl®d.

We will consider many-sorted theories with a distinguished collection S of sorts, re-
ferred to as the dominant sorts; we assume that for any sort S, there exists an (J-definable
partial function from a finite product of dominant sorts onto S (and this function is viewed
as part of the presentation of the theory). The set of elements of dominant sorts in a model
M is denoted dom(M).

The following lemma and remark—which reduce elimination of imaginaries to coding
certain functions—will not be used explicitly in the p-adic case, but they are an essential
guideline as unary functions of the kind described in the remark are central to the proof
of Proposition 2.13.

Lemma 2.2 (cf. [40, Remark 3.2.2]). A theory T admits elimination of imaginaries if
every function definable (with parameters) whose domain is contained in a single domi-
nant sort is coded in any model of T

Proof. Since encoding a set is equivalent to encoding the identity function on this set,
it suffices to show that every definable function f is coded. Pulling back by the given
(}-definable functions, it suffices to show that every definable function whose domain
is contained in a product My X --- x M, of dominant sorts is coded. For n = 1, this
is our assumption. For larger n, we use induction, regarding a definable function f :
Mi x --- x M, — MF as the function f’ mapping ¢ € M to the code of the function
y — f(c,y). By compactness there are < f >-definable functions &; covering f’. The
codes of these &; allow us to code f. O

Remark 2.3. In Lemma 2.2, we do not need to be able to encode all definable functions
whose domain is contained in a single dominant sort. Such functions are said to be unary.
For T to eliminate imaginaries, it suffices that:

(1) Every unary definable function f which is the identity on its domain is coded. This
is equivalent to unary EI (i.e., the property that every definable subset of a single
dominant sort is coded).

(2) Forall M = T, every e € M®1, every A C M, every unary Ae-definable function
fe and every nonempty A-definable set D, the following holds: if A 2 dcl®*d(e) N M,
e € dcl®i(A, f.(c)) for any ¢ € D, and tp(e/A) implies the type of e over Ac for any
c € D, then f, restricted to D is A-definable.

Indeed, let e¢ be imaginary. There exist ci,...,c;, € dom(M) such that e €
dcl®(cy, ..., cy). Let A; = dcl®(e, c¢1, ..., ¢;) N M. We know that e € dcl®9(A,,) and
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we want to show that e € dcl®¥(Ag) = dcl®(dcl®l(e) N M), i.e., e is interdefinable with a
tuple of real elements.

Let us proceed by reverse induction. Suppose e € dcl®d(A;41),let A = A; and letc =
¢i+1- Thene € del®¥ (A1) = del®(dcl®(e, ¢, . .., ci41)NM) = dcl®d(dcl®d(Aec)NM).
So we can find d = f (e, ¢) and e = h(d) for some A-definable functions f, . By unary
EI and since dcl®d(Ae) N M = A, any Ae-definable subset of a dominant sort is already
A-definable. Thus, by hypothesis, e = h(f (e, ¢’)) for any ¢’ = tp(c/A). Let D be an
A-definable set with ¢ € D and such that e = h(f (e, ¢)) for any ¢’ € D. Note also that,
by unary EI again, for any ¢ € D, tp(c/A) implies tp(c/Ae) and thus tp(e/A) implies
tp(e/Ac). It follows from hypothesis 2 that the map f, : x — f(e, x) restricted to D is
A-definable and that e € dcl®4(A) = dcl®9(A4)).

Definition 2.4. We will say that a theory T eliminates imaginaries up to uniform finite
imaginaries (EI/UFI) if for all M |= T and e € M®, there exists a tuple d € M such that
e € acl®(d) and d € dcl®(e).

The theory T is said to eliminate finite imaginaries (EFI) if any e € acl®d(9) is inter-
definable with a tuple from M.

Let us now give a criterion for elimination of imaginaries from [43].

Lemma 2.5. A theory T eliminates imaginaries if it eliminates imaginaries up to uniform
finite imaginaries and for every set of parameters A, Ta eliminates finite imaginaries.

Proof. Lete € M® |= T°. Then by EI/UFI, there exists d € M such that e € acl®d(d)
and d € dcl®(e). Hence e is a finite imaginary in T, and there exists d’ € M such that
e € dc1®(dd’) and dd’ € dcl®(ed) = dcl®(e), i.e., e is coded by dd’. O

2.2. Valued fields

If F is a field then we denote by falg the algebraic closure of F. Let L be a valued field,
with valuation ring O(L), maximal ideal M (L) and residue field k(L). We will find it
convenient to consider the value group I'(L) in both an additive notation (with valuation
val : L — T'(L) U {oo}) and a multiplicative notation (with reverse order and absolute
value | - |), depending on the setting. We will consider valued fields in the geometric
language whose sorts (later referred to as the geometric sorts) are as follows. We take a
single dominant sort K, for L itself. The additional sorts S, T,, for n € N are given by

Sn = GLn (K)/GLn (O) = Bn(K)/Bn (O):
the set of lattices in K", and

T, := GLy(K)/GLy n(0) = | ) Ba(K)/Bum(O) = | e/Me.

m=n eeS,

Here a lattice is a free O-submodule of K" of rank n, B, is the group of invertible upper
triangular matrices, GL, ,, (O) is the group of matrices in GL,(O) whose mth column
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reduces modulo M to the column vector of k& having a one in the mth entry and zeros
elsewhere, and B,, , (O) := B, (O) N GL,, ,, (O). There is a canonical map from 7, to S,
taking f € e/Me to the lattice e.

It is easy to see, using elementary matrices, that GL,,(K) = B, (K)GL, (O), justifying
the equivalence of the first two definitions of S,,. Equivalently, it is shown in [40, Lemma
2.4.8] that every lattice has a basis in triangular form.

Note that there is an obvious injective (J-definable function S, X Sy — Sp4m’
namely (%, ') = A x A/, so we can identify any subset of a product of S,,, with a subset
of S,, where n =}, n;.

Note also that S; can be identified with I" by sending the coset cO* to v(c). Then k
can be identified with the fiber of 7; — S; above the zero element of S = I'. More
generally, let B = {{x : val(x —a) > val(b)} : a,b € K} and let B = {{x : val(x —a) >
val(b)} : a,b € K} be the sets of closed (respectively open) balls with center in K and
radius in v(K). Then B embeds into S> U K and B into T>. Indeed, the set of closed
balls of radius +o0 is identified with K. The group G(K) of affine transformations of
the line acts transitively on the closed balls of nonzero radius; the stabilizer of O € B
is G(O). Embedding G(K) in GL2(K) as the upper triangular matrices, we get E\ K=
G(K)/G(O) C GLz(K)/GLz(O) The group G(K) also acts transitively on B and the
stabilizer of M € B is G(K) N GL22(0). We will write B := = B U B for the set of all
balls. Note, however, that if I" has a smallest positive element, the open balls are also
closed balls.

In Sections 3 and 5, we will also consider the sort RV := K*/(1 + M) and the
canonical projection rv : K* — RV. The structure on RV is given by its group structure
and the structure induced by the exact sequence k* — RV — T, where the second
map is denoted val,—i.e., together with the group structure on RV, we have a binary
predicate interpreted as val., (x) < val,(y), a unary predicate interpreted as k*, and the
ring structure on k (adding a zero to k*). This exact sequence induces on each fiber of
valy the structure of a k-vector space (if we add a zero to the fiber). Any T 2 HFj
(the theory of henselian valued fields with residue field of characteristic zero) eliminates
field quantifiers by [10]. It follows from this quantifier elimination result that RV is stably
embedded and the structure induced on RV is exactly the one described above. Note that
we can identify RV with 77 if we add a zero to each fiber of val,,.

The theory of a structure is determined by the theory of the dominant sorts; so, for any
field L we can speak of Th(L) in the geometric sorts. We take the geometric language Lg
to include the ring structure on the sort K and the natural projections GL, (K) — S, (K)
and GL,,(K) — T,(K).

In [40], it is shown that ACVF eliminates imaginaries in Lg. Let us now give the
counterpart of this theorem for p-adic fields.

We denote by ﬁ the restriction of Lg to the sorts K and S,. For each subset
N C N.g, we will also consider an expansion N of 7 by a constant a and for all
n € N atuple of constants ¢, of length n in the field sort.

By a uniformizer of a valued field we mean an element a whose valuation is
positive and generates the value group. By an (unramified) n-Galois uniformizer we
mean a tuple ¢ of elements of the valuation ring such that ) /_, k(ci)wil generates
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Gmk[wn]) /G (k[w,])™ where w, is some primitive nth root of unity and G denotes
the nth powers in the group G. If k[w, ] has degree smaller than n over k, take the coordi-
nates of ¢ beyond the [k[w,] : k]th entry to be zero.

Let PL be the theory of pseudo-local fields of residue characteristic 0, i.e., henselian
fields with value group a Z-group (i.e., an ordered group elementarily equivalent to
(Z,0, 4, <)) and residue field a pseudo-finite field of characteristic 0. By [7, Theorem §],
any pseudo-finite field is elementarily equivalent to an ultraproduct of fields I, for p
prime, so PLy is the theory of ultraproducts [ [ Q, /U of p-adics over nonprincipal ultra-
filters on the set of primes.

Furthermore, let §, be a set of finite extensions of @, and let § = U » Sp- Any
ultraproduct [ LeF L/U of residue characteristic zero—i.e., such that the ultrafilter ¢/
does not contain any set included in some §,,—is a model of PLy. Note that if §), is
nonempty for infinitely many p then there exists an ultrafilter Z/ on § such that [ [, sL/U
has residue characteristic zero.

Let L be a valued field, regarded as an L’é—structure, and let p be its residue charac-

teristic. Fix V' € N. . A proper expansion of L to Ejgv is a choice of a and tuples ¢, for
each n € N such that:

(1) a is a uniformizer;

(2) ifnisprime to p or p = 0 then ¢, is an unramified n-Galois uniformizer if one exists,
and O otherwise;

3) if p #0, p divides n and n > p then ¢, is a tuple of zeros;

(4) if p #0, p € N and L is not a finite extension of Q, then ¢, is a tuple of zeros;

(5) if p #0, p € N and L is a finite extension of Q, then the first coordinate of ¢, is a
generator of L over QQ, that is algebraic over Q, and the other coordinates are zero.

The point of (5) is to ensure we have a constant that generates L over Q, in the local field
case when p € NV.

Note that because there are only finitely many possibilities for the minimal polynomial
of wy over k, the class of proper expansions to Ejgv of models of PLy is elementary. Let
us denote this class by PL{)\[ . Note also that a residue characteristic zero ultraproduct of
proper expansions to L’Jg\/ of L € § is a model of PLév .

Here is a precise statement of the two main elimination of imaginaries results of this
paper. The first is for finite extensions of Q,:

Theorem 2.6. The theory of Q, eliminates imaginaries in L’é. The same is true for any
—al
finite extension L of Qp, provided one adds a constant symbol for a generator of L ﬂQa ¢

—al
over Q, N £,

The second is for their ultraproducts of residue characteristic zero:
Theorem 2.7. PL§ eliminates imaginaries in Eg.

Note that elimination of imaginaries in an incomplete theory is equivalent to elimination
of imaginaries in all of its completions. It follows that elimination of imaginaries is uni-
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form over all pseudo-local fields and hence over local fields of large residue characteristic
(see Corollary 2.9).

Remark 2.8. (1) Although the 7;, are needed to obtain EI in algebraically closed fields,
they are not needed here. Indeed, if a valued field K has a discrete valuation (i.e., the
value group has a smallest positive element val(X()), then for any lattice e, Ape is itself
a lattice, and a coset h of Lge— a typical element of 7,—can be coded by the lattice
in K"t! generated by & x {1}. Hence all elements of 7,,(K) are coded in Sy, +1(K).

(2) As we will see in Section 4, to obtain elimination of imaginaries in a finite exten-
sion L of Q,, we need to add constants for elements of a subfield F C L with a number
of properties:

(a) F contains a uniformizer;
(b) res(F) = k(L);

(©) Za]g = F algL (in fact, we need that for every finite extension K of L there is a
generator of O(K) whose minimal polynomial is over F).

Note that it suffices to take F' = Q[c], where c generates L over Q,. Moreover, we

can choose such a c that belongs to @alg, hence the statement of Theorem 2.6.

Note also that a proper expansion of some finite extension L of Q, to EIS , contains
a generator (named by a constant) of L over Q,. Hence such proper expansions of L
eliminate imaginaries in Lg .

(3) To prove elimination of imaginaries in a pseudo-local field L, we need to name in
Section 5 elements of a subfield F < L which satisfies (a), (c) as above and the following
conditions:

(d) res(F)(k(L)*)™ = k(L) for all n;
(e) k(L) admits EI in the language of rings augmented by constants for elements of
res(F).

Let us show that we can choose F to be generated by a uniformizer a and unram-
ified n-Galois uniformizers c, for all n. It is clear that such an F satisfies (a). Further-

more, k(L)“lg = res(F )“lgk(L). Indeed, let w, be a primitive nth root of unity, and let
d, = Zi cn,,'a)ﬁl. The degree n extension of k(L)[w,] is contained in k(L)[w,, </d,] by
Kummer theory and it contains the degree n extension of k(L).

Now (c) is a consequence of (a) and the above statement and (e) also follows as any

extension of degree n is generated by an element in res(F )alg, so there is an irreducible
polynomial of degree n with res(F)-definable parameters; this is the hypothesis of [12,
Proposition B.(3)]. Finally for any n, there is a d such that {x € k(L) : x" = 1} =
{x € k(L) : x¥ = 1} and k(L) contains primitive dth roots of unity. Then ¢y € k(L)
generates k(L)*/(k(L)*)? = k(L)*/(k(L)*)™, so (d) holds.

(4) It would be nice to find a more precise description of the imaginaries if no con-
stants are named. For finite extensions of @, this is done in Remark 4.6.

Before going any further, let us show that Theorem 2.7 allows us to prove a uniform
version of Theorem 2.6.
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Corollary 2.9. Let §, be any set of finite extensions of Q, and let § = » Sp- Let
¢ (x,y) be an ﬁg-formula (where x,y range over W-definable sets X,Y). Then there

exist integers m, I, a set N of integers, a prime py and some Ejg\[ -formula ¥ (x, w) such
that the following uniform statement of elimination of imaginaries holds. For all p > pg
and all proper expansions to ﬁjgv of L, € §p, ¥ (x, w) defines a function

fr, X = Su(Lp) x K(Ly)'

and
Ly b= (Vx, ) (fr, () = f1,(5) & ¥y ¢(x, y) < ¢, D).

Proof. Assume ¥, is nonempty for infinitely many p, otherwise the statement is trivial.
The formula Yy ¢ (x, y) < ¢ (x’, y) defines an equivalence relation in any ultraproduct L
of fields in §. By Theorem 2.7, there is a formula v (x, w) (which works for any proper
expansion to Eg of any such ultraproduct of residue characteristic zero) such that, in
every model of PLST, ¥ (x, w) defines a function f and f(x) = f(x') if and only if
Yy ¢(x,y) & ¢(x', y).

Let us now assume there is an infinite set / C § such that / has a nonempty inter-
section with infinitely many §, and for every L € I, there is a proper expansion of L
to Eg such that we do not have f(x) = f(x') if and only if Vy ¢(x,y) & ¢(x, )
in L. Then there exists an ultrafilter on § containing / but containing no set included in
some § , and such that HLE& L/U = PLY; but we do not have f(x) = f(x') if and only
ifVy ¢(x, y) & ¢(x', y) in this ultraproduct, a contradiction.

By compactness, this equivalence also holds in proper expansions to Ejg\/’ , for some
finite V. o

Remark 2.10. (1) In particular, whenever ¢ (x, y) is interpreted in L, as an equivalence
relation x E'y, fr,(x) codes the E-class of x.

(2) If §p is finite for all p then, as Up<po S p is finite, we can find, using Theorem 2.6
and Remark 2.8(2), a ¥ and an NV that work forall L € | ,» §p and not just for sufficiently
large p.

The proof of Theorems 2.6 and 2.7 uses elimination of imaginaries and the existence
of invariant extensions in the theory of algebraically closed valued fields. Recall that a
theory T has the invariant extension property if whenever A = acl®d(A) C M = T and
¢ € M, tp(c/A) extends to an Aut(M®/A)-invariant type over M. This holds trivially
for any finite field, and by inspection, for Th(Z, 4+, <); and although we will only use a
weaker version of the extension property (Corollary 3.10) in the proof of Theorem 2.6,
we will show that the theory of a finite extension of QQ,, (with the geometric sorts) enjoys
the stronger version (Remark 4.7).

2.3. Real elimination of imaginaries

To illustrate the idea of transferring imaginaries from one theory to the other, consider the
following way of deducing EI for RCF (the theory of real closed fields) from EI for ACF
(the theory of algebraically closed fields).
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Example 2.11. Let F be a field considered in a language extending the language of rings.
Assume for all M |= Th(F):

(1) (Algebraic boundedness): If A € M then acl(A) C Zalg NnM.

(i1) (Rigidity of finite sets): No automorphism of M can have a finite cycle of size > 1.

Equivalently, for each n, there exist #J-definable functions r; ,(x1, ..., x,;) that are
symmetric in the x;, such that for any set S of size n, S = {r1 ,(S), ..., .. (S)}.
(Here r; ,(S) denotes r; ,(x1, ..., x,) when S = {x1, ..., x,}, possibly with repeti-
tions.)

(iii) (Unary EI): Every definable subset of M is coded.
Then Th(F') eliminates imaginaries (in the single sort of field elements).

Proof. Let f : M — M be a definable function. By Lemma 2.2, it suffices to prove that
f is coded. Let H be the Zariski closure (over M) of the graph of f. Since the theory
is algebraically bounded, the set H(x) := {y : (x,y) € H} is finite for any x, of size
bounded by some n. Let U, ; be the set of x such that f(x) = r;,(H(x)). Then, by

elimination of imaginaries in ACF, H—being a Zariski closed set—is coded in Malg. But
the code is definable over M and hence is in the perfect closure of M. Replacing this
code with some p"th power in the characteristic p case, we can suppose it belongs to M.
Moreover, each U, ; (being unary) is coded; these codes together give a code for f. O

Note that RCF satisfies the hypotheses of Example 2.11, but Th(Q)) (in the field sort
alone) does not. More precisely, as shown in the introduction, the value group cannot
be definably embedded into Q’;. Hence hypothesis (iii) fails for Th(Q),) in the field sort
alone.

Remark 2.12. If F is a field satisfying (i), (iii), then F has EI/UFIL. This is an immediate
consequence of Proposition 2.13, because hypotheses (ii) and (iv) of Proposition 2.13 are
true if T is the theory of algebraically closed fields in the language of rings.

2.4. Criterion for elimination of imaginaries

Let T bea complete theory in a language L. Assume ieliminates quantifiers and imagi-
naries. Let T’ be a complete theory in a language £ 2 £; assume T contains the universal
partof T.

In a model M of the theory T, three kinds of definable closure can be considered: the
usual definable closure dcl; the definable closure in M©4, denoted dcl?; and the imagi-
nary definable closure restricted to real points (that is, if A € M®9, the set dcl‘zl (A)NM).
As dcl?(A) N M and dclg(A) take the same value on any set of real points, we will
denote them both by dcl,(A). One must take care however that if A contains imaginary
elements, then A Z dclg(A). ~

As T eliminates imaginaries, these distinctions are not necessary in models of 7" and
we will only need dcl ¥ One should note that, as T eliminates quantifiers, dcl 7 is the
closure under quantifier-free L-definable functions, and hence dclz(A) N M C dclg(A)
forany A C M.
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Analogous statements hold for acl i aclg, aclzq, tpz, tpy, ete.

One should also be careful that if M = T is contained in some M = T, there is
no reason in general that M©9 should be contained in M. In fact, the whole purpose of
the following proof is to show that under certain hypotheses every element of M1 is
interdefinable with a tuple in M.

Proposition 2.13. Assume T and T have the properties given above. Let M be an |L|+~—
saturated and |L|*-homogeneous model of T and let M |= T be such that Mz <z M
and any automorphism of M extends to an automorphism of M. If conditions (1)—(iv)
below hold for any A = aclp(A) € M and any ¢ € dom(M), then T admits elimination
of imaginaries up to uniform finite imaginaries (see Definition 2.4).

(i) (Relative algebraic boundedness) For every M’ < M, dclz(M'c) € acl z(M'c).

(i) (Internalizing /:'—codes) For all € € dclz(M), there exists a tuple n of elements of
M such that an automorphism of M that stabilizes M setwise fixes € if and only if it
fixes n.

(iii) (Unary EI) Every L(M)-definable unary subset of dom(M) is coded in M.

(iv) (Invariant types) There exists an Aut(M /A)-invariant type p over M such that p\M
is consistent with tp(c/A).

Moreover, for any E(M )-definable function r whose domain contains p, let d5r be
the p-germ of r (where two E(IVI )-definable functions r, r’ have the same p-germ if
they agree on a realization of p over M). Then:

(x) there exists a directed order I and a sequence (€;);cy, with €; € dclE(A <r>)
such that o € Aut(M /A) fixes dpr if and only if o fixes almost every €;—i.e.,
o fixes €; foralli > iy, for some iy € 1.

Some comments on the proposition:

D) There are two ways to ensure that automorphisms of M extend to automorphlsms
of M. The first is to take M sufficiently homogeneous. The other is to take M atomic
over M; in the case of valued fields, we could take M to be the algebraic closure of M.

(2) In fact, we will only need (iv) for |A| < |L].

(3) If p is definable then, for a uniformly defined family of functions rp, dprp is an
imaginary (and we could take ¢; to be that imaginary). Nevertheless, if p is not defin-
able and say (€;) is countable then condition (iv) implies that the germ is a Eg-hyper-
imaginary, i.e., an equivalence class of sequences indexed by I where the equivalence re-
lation is given by a countable union of countable intersections of definable sets (although
each definable set will involve only a finite number of indices, the countable union of
countable intersections can involve them all). In the case of ACVF one also finds that o
fixes dpr if and only if o fixes cofinally many ¢;; in this case the equivalence relation is
also a countable intersection of countable unions of definable sets, so it is Ag.

(4) Hypotheses (ii) and (iii) are special cases of elimination of imaginaries. It would
be nice to move (iii) from the hypotheses to the conclusion, i.e., assuming iny (1), (i)
and (iv), to show that every imaginary is “equivalent” to an imaginary of M definable
over M.
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First let us clarify how Aut(M) acts on dcl7(M) as this action will be used implicitly
throughout the proof. Any o € Aut(M) can be extended to an automorphism & € Aut(lVI )
and all these extensions are equal on dcl F(M), hence we have a well-defined action of o
on dcl7(M) and the notation Aut(M/B) makes sense even if B C dcl7(M). Similarly, if
p is an Aut(]lz / B)-invariant type, Aut(M/B) acts on p-germs of Z(M )-definable func-
tions.

We begin our proof with the elimination of finite sets:

Lemma 2.14. Assume (ii) holds in Proposition 2.13. Then every finite set E C M is
coded.

Proof. By EI for T, the finite set E is coded by atuple € € M;e may consist of elements
in dcl7(M) but outside M. By (ii), there exists a tuple n of elements of M such that an
automorphism of dcl (M) leaving M invariant fixes E if and only if it fixes € if and only

if it fixes . Thus <E> and n € M are interdefinable. m]
Proof of Proposition 2.13. Let e € M®4. For some ¢y, ..., c, € dom(M), we have e €
delF(ct, ..., cn). Let A; = dclg(e, c1, ..., ¢;) € M. The claim is that e € acl7 (Ao).

We have ¢ € acl?(An) and show by reverse induction on [ < n that e € acli? (A)).
Assume inductively that e € acleﬁq(AlH). Let A = A; and ¢ = ¢j41. [t is easy to check
that

A =dclg(Ae).

Ase € acl?(AIH), for some tuple d € A;41 = dclg(Ace), some L(A)-definable func-
tion f and some L(A)-definable, finite-set-valued function g, we have

ecg(d), d= f(ce).

Let f,(x) = f(x,e). Let A = aclz(A) and let p = tp,(c/A).

Let My < M be such that ng contains Ae. Note that for all ¢’ in the domain of
fer fe(c) € delg(Moc'). By (i), there exists an E(Mo)-deﬁnable finite-set-valued func-
tion ¢ such that f,(c")€¢.(c’). By compactness, for some finite set Iy and £(My)-de-
finable finite-set-valued functions (¢;);cy,, the following holds: for any ¢’ in the domain
of f,, fo(c"Yep;(c') for some i € Iy. Let ¢ (x) = Uie,o @i (x); s0 fo(cHep(c) for all ¢/
in the domain of f,. Hence if ® is the set of all Z(M )-definable, finite-set-valued func-
tions ¥ with a domain containing that of f, and such that for all ¢’ in the domain of f,,
fe(c') € ¥(c’), then @ is nonempty. N

Let p be an Aut(M/ A)-invariant type over M extending p, as in (iv). For m € N, let
®,, be the set of all £L(M)-definable functions ¢ € @ such that for ¢ = p, ¢(c) is an
m-element set. Note that since p is a complete type, ®,, does not depend on c. Let m be
minimal such that ®,, is nonempty. All ¢ € ®,, share the same p-germ. Indeed, if ¢, ¢’
do not have the same p-germ, let ¢”(x) := ¢(x) N ¢’(x). Then ¢” € @ and since for all
¢ = p we have ¢(c) # ¢/(c), ¢”(c) would lie in @, for some m’ < m. Pick Fg € @,
defined over some E C M. By construction, Fg covers f,, Fg is L(E)-definable, and the
p-germ of F is invariant under Aut(M/Ae).
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Claim 2.15. The p-germ of Fg is invariant under Aut(M/A).

Proof. Let (€;) be a sequence as in (iv), coding the germ of Fg on p. Note that ¢; €
dcl7(M) (since Fg is L(E)-definable and E C M). By (ii), we may replace ¢; with an
element of M, without changing Aut(M /¢;); we do so.

Now, almost all ¢, must be in aclz(Ae). For otherwise, by moving to a subse-
quence we may assume all €; are outside acl;(Ae). So Aut(M/Aee;) has infinite index
in Aut(M/Ae). By Neumann’s Lemma, for any finite set X of indices i, there exists
T € Aut(M/Ae) with T(¢;) # ¢; forall i € X. By compactness (and homogeneity of M),
there exists T € Aut(M/Ae) with (e;) # ¢ for all i. But then 7 fails to fix the p-germ
of F, contradicting the Aut(M/Ae)-invariance of this germ.

So for almost all i, some finite set & containing ¢; is defined over Ae. By Lemma 2.14,
the finite set &; is coded in M. But A = dclz(Ae), so &; is defined over A. Hence ¢; € A,
i.e., € is fixed by Aut(M/A). This being the case for almost all i, the p-germ of Ff is
invariant under Aut(M/A). ]

Claim 2.16. ¢ € acl'(A).

Proof. Tt suffices to show that if ((e;, E;) : i € N) is an indiscernible sequence over A
with ey = e and Eg = E, then ¢; = ¢ forsome i # j. Let ¢ |= DPIA(E;);eN be such
that ¢ = p. By (iii) and because A = dclz(Ae), tp,(c/A) implies tp,(c/Ae); hence
tpy(e/A) implies tp,(e/Ac). Sotpy(e;/Ac) = tpp(e/Ac).

By Claim 2.15, the p-germs of the Fg, are equal; so Fg, (c) is a finite set F that does
not depend on i. But f(c, ¢;)€F, so f(c, e;) takes the same value on some infinite set I’
of indices i. Hence so does the finite set g(f(c, ¢;)). Ase € g(f(c,e)) andtp,(e/Ac) =
tp,(ei/Ac), it follows that e; € g(f(c, e;)), so infinitely many e; lie in the same finite set
and e¢; = e for some i # j. o
We have just shown that e lies in acle[?(A) = acl?(Al). This concludes the induction. It
follows that e € acl‘z](Ao) = acleﬁq(dcl?(e) N M) and Proposition 2.13 is proved. ]
Let us now show that this first criterion can be turned into a criterion for elimination of
imaginaries.

Corollary 2.17. Let T and T be as in Proposition 2.13 and suppose moreover that
(v) (Weak rigidity) For all A = aclyz(A) and ¢ € dom(M), acly(Ac) € dclg(Ac).
Then T eliminates imaginaries.

Proof. Let e € M® be an imaginary element. We have e € dcl? (c1,...,cy) for some
Cly...,cp € dom(M). Let A; = aclg(e,cy,...,¢;) € M. Then e € dcl?(An); we
show by reverse induction on [ < n that e € dcleﬁq(A[). We assume inductively that
e c dcl?(AH]). Let A = Aj, c = ¢cj+1 € dom(M). Itis easy to check that A = acl(Ae)
and, for some tuple d,

d e Aip =aclg(Ace), e € delf(Ad).

By Proposition 2.13, ¢ € aclzq(Ao), sod € aclg(Ac). By weak rigidity (v), d € dclz(Ac).
Thus e € del (Ac).
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Say e = h(c), where & is an £%9(A)-definable function. Then ~A~!(e) is an L(M)-
definable subset of dom(M), hence by (iii) it has a code ¢/ € M. Clearly ¢ and ¢’ are
interdefinable over A. As ¢/ € M, we have ¢/ € dclg(Ae) = A.Soe € dcleﬁq(A) =
dcl‘zCl (A;). This finishes the induction and shows that ¢ € dcle[?(Ao).

Let a be a tuple from A such that e is £%9(a)-definable. Let a’ be the (finite) set of
conjugates of a over e. Then dcleﬁq(e) = dcl‘zq (a’) and, by Lemma 2.14, a’ is coded, hence
e is interdefinable with some sequence from M. O

Keeping (v) out of Proposition 2.13 makes the proof of the EI criterion messier than
strictly necessary. Nonetheless, distinguishing the case without (v) is important for ultra-
products of the p-adics where (v) fails.

The following lemma will be used to prove (v) in the p-adic case.

Lemma 2.18. Assume that for any a € M, there exists an Aut(M /acly(a))-invariant
type p over M and an (-definable function f such that p(x) = f(x) = a. Then (v)
follows from:

(V') If B € dom(M) then aclz(B) C dclg(B).

Proof. Let A = aclg(A) = {a; : i < «} and ¢ € dom(M). For each i, by hypothe-
sis, we find an Aut(M /acly (a;))-invariant type p; and an J-definable map f; such that
pi(x;) F fi(x;j) = a;. Let Ap = A, and, recursively, let A;;1 = A; U {b;}, where
bi = pilaclz(Ajc), and A) = |, _, A; for limit A.

Claim 2.19. aclg(Ac) Ndclg(Ajc) C delg(Ac).

Proof. By induction on i. The limit case is trivial. To move from i toi + 1, let d €
aclg(Ac) Ndclg(Ajyic) and let o € Aut(M/A;c). As tpp(bi/aclg(Aic)) is invariant
under o, d € aclg(A;c) and d is definable over A;ch;, we have o(d) = d, i.e., d is
definable over A;c and hence d € dcl, (Ac) by induction. m]
Now A, C dclz (A, N dom(M)) and so delg(Acc) = delg(Aee N dom(M)). By (V)
this set contains aclz (A, c) and hence acl;(Ac). Applying Claim 2.19 with i = «, we
obtain (v). O

3. Extensible 1-types in intersections of balls

The goal of this section is to establish some results about unary types in henselian fields
(specifically, finite extensions of Q,, and ultraproducts of such fields), which will be useful
to prove that Proposition 2.13 can be applied to these fields.

In this section, we will not be considering valued fields in the geometric language
as we need quantifier elimination and not elimination of imaginaries. Let R be a set of
symbols; we will be working in the countable language £ := {K, +, -, -l val: K - T,
r: K — K,,...};er where the K, are new sorts, each r is such that r|g+ is a surjective
group homomorphism K* — K, that vanishes on 1 + M for some v = v(r) € N,
and the ... refer to additional constants on K and additional relations on the sorts K,
and I'. Let T be some theory of valued fields in this language that eliminates quantifiers.
Assume that I' is definably well-ordered in T (every nonempty definable subset with a
lower bound has a least element).
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Finite extensions of the p-adics fit in this setting, by Prestel-Roquette [63, Theo-
rem 5.6], if we take the r, to be the canonical projections K* — K*/(K*)". Note that
every element of these finite groups is in dcl®d(@). In the case of ultraproducts of p-adic
fields of residue characteristic zero and more generally of henselian valued fields with
residue characteristic zero (denoted HFy), one map r suffices: the canonical projection
rv: K* — RV.

Throughout this section, M will be a sufficiently saturated model of T and Ag € K (M)
a uniformizer. We will write 7 for the (possibly infinite) tuple of all » € R and let O
be the partial *-type of elements that are of the form (val(x), 7(x)) for some x € K.
We write val(x) > val(y) if val(x) > val(y) + m val(Ao) for all m € N. Observe that
val(x—y) > val(x—z) implies r (x —z) = r(y—z) forallr € R.Indeed, (y—2)/(x—2z) =
1+ —x)/(x—2)el+ M0,

Notation 3.1. If b € B(M), x € dom(M) and x ¢ b, the valuation val(x — y) takes the
same value for all y € b. We denote it val(x — b). By rad(b) we denote the infimum of
val(y — y') for y, y’ € b.

Moreover forall ¥ € R, if val(x—b)+v(r) val(Ag) < rad(b), thenr(x—y) = r(x—y’)
for all y, y’ € b. We write r(x — b) = r(x — y) in this case.

Definition 3.2. Let f = (f;)ic; be a family of A-definable functions for some A C
M*®4. A partial type p over A is complete over A relative to f if the map tp(c/A) +—
tp(f(c)/A) is injective on the set of complete types over A that extend p.

Remark 3.3. The partial type p(x) is complete over A relative to f if and only if for
every formula ¢ (x) over A, there exists a formula 6 (1) over A such that p(x) - (¢ (x) &
O(f(x))).

For the rest of the section we are going to study generic types of intersections of balls.
Let b = {b; : i € I} be a descending sequence of balls in B(M). Let P = (Mies bi- Let
Pr={y el :Vi € I y > rad(b;)}. For any A with b; € dcl®d(A), we define the generic
type of P over A € M® to be

gplA:= P(x)U{x ¢ b : b € B(acl®d(A)), b strictly included in P}.

In Section 4, we will also be considering the ACVF-generic of such an intersection P,
i.e., the same notion of genericity but considered in algebraically closed valued fields.
Note that if L is a valued field, A C L and P is an intersection of balls in B(A), then the

. . . . —alg .
difference between the generic type of P over A in L and in L“® is that the latter must
. . .=l
also avoid balls that do not have a center or a radius in L but in L* .

Remark 3.4. If P is a strict intersection, i.e., P is not equal to a ball or equivalently
b does not have a minimal element, then for an element to be generic in P over A it
suffices to check that x is not contained in any ball b € B(dcl®1(A)) contained in P.
Indeed, if b € B(acl®i(A)), then the smallest ball containing all A-conjugates of b is
strictly included in P and is definable over A.
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In what follows, we will consider A € M*® containing all constants in K, and b a de-
creasing sequence of balls in B(dcl®d(A)) (indexed by some ordinal). Unless otherwise
mentioned, until Proposition 3.9 we will suppose that P = (), b; is strict.

Lemma 3.5. Suppose A € K(M). Fixa € A witha € b; for eachi. Then qp|A is com-
plete relative to the pair of functions (val(x —a), 7(x —a)). Moreover, if P(dcl®4(A)) = ¢
then qp|A is complete.

Proof. Taking into account quantifier elimination, we must show the following: let
¢, ¢’ € M be two realizations of ¢ := gp|A such that (val(c — a),7(c — a)) has the
same type over A as (val(c’ —a), 7(c’ — a)); then the substructures A(c), A(c) generated
by ¢, ¢’ over A (which are simply the fields generated by ¢, ¢’ over A) are isomorphic
over A.

Extend the valuation from K (M) to L := K(M )alg—the algebraic closure of K (M)
—and extend each r € R to a group homomorphism with kernel ker(r) - (1 + kg(r) O(L))
C L. This is possible, since for all a € ker(r) and b € O(L), if a(l + Ag(r)b) e K(M),
then a(1 + A "b) € ker(r): indeed, either a = 0 or 1 + A)"’b € K (M), and in the
latter case, b € K (M) and val(h) > 1,50 b € O(M) and thus (1 + 1)) € ker(r).
By construction, the following still holds: for all x, y,z € L, val(x — y) > val(x — z)
implies r(x — z) = r(y — 2).

Then it suffices to show that Zalg (¢) and Zalg (c') are Zalg-isomorphic, by an isomor-
phism commuting with the extensions of the maps r (one can then restrict the isomor-
phism to A(c)). As (val(c — a), 7(c — a)) and (val(c’ — a), 7(c" — a)) realize the same
type over A, by taking a conjugate of ¢’ over A we may assume the tuples are equal.

Take any d € Zalg. If d ¢ b; for some i, then val(c — d) = val(c’ — d). Moreover, for
any k € N, val(c — ¢’) > rad(b;1¢) > rad(b;) + k val(Ag) > val(c — d) + k val(rg); and
it follows that 7(c — d) =7(c’ — d).

If d € b, for each i, then the smallest ball » € B(L) containing a and all the conjugates
of d over A is (quantifier-free) A-definable in L. As I' is definably well-ordered, the
K (M)-points of b form a ball b’ € B(dcl®d(A)) which is included in P. Hence c and ¢’ are
not in &’ nor, in fact, in any of the balls centered around »” with radius rad(b’) — k val(Ag),
for k € N. It follows that val(c — d) = val(c — a) and ¥(c — d) = r(c — a), and similarly
for ¢’. Hence val(¢’ — d) = val(c — d) and 7(c — d) =7(c’ — d).

As any rational function g over A is a ratio of products of constant or linear polyno-
mials, it follows that val(g(c)) = val(g(c¢’)) and 7(g(c)) = 7(g(c’)). This proves the first
part of the lemma.

If P does not contain any point in A, then there cannot be any d € 2 such
that d € b; for each i. Indeed, let d;<, be the L-conjugates of d over A; then e :=
(1/n) Zj d; € dcl®d(A) and for all i, d; € by, where k is such that k val(Ao) > val(n)
and val(e — d) > val(1/n) +rad(b;+x) > rad(b;). It follows that e € P (dcl®4(A)), a con-
tradiction. But the hypothesis about (val(x —a), r(x —a)) is only used in the case d € P.
Thus the second assertion follows. O
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Remark 3.6. Suppose T extends HFy and A € K (M). Without any assumption on P (it
can be strict, a closed ball or an open ball), if P(A) = @ then P is a complete type. The
same proof works as balls are convex in residue characteristic zero and the unique r = rv
we need has kernel 1 +.M, i.e., val(x —y) > val(x —z) alone implies r (x —z) = r(y —z2).

‘We now want to prove (in Proposition 3.9) that Lemma 3.5 is true without the assumption
that A C K(M).

Lemma 3.7. Suppose A € M® is such that P contains no b € B(dcl®4(A)). Then gp|A
is a complete type.

Proof. Suppose A is countable. Then the partial type P = (), by is not isolated over A;
for if the formula 6 (x) with parameters in A implies x € b; for all i, then, as I" is definably
well-ordered, there is a smallest ball b containing 6. This ball is strictly contained in P
and is A-definable, a contradiction. Then by the omitting types theorem, there exists a
model M such that A C ng and P(My) = . By Lemma 3.5, gp| K (M) is a complete
type, and, as K is dominant in ng, P is a complete type over ng and hence over A.

If A is not countable, let ¢ and ¢’ be generic in P over A and let (M7, Ag) < (M9, A)
be countable (in the language where we add a predicate for A) and contain ¢ and ¢’. Let
QO be the intersection of all Ag-definable balls in M( that contain c; then Q is strict, it
contains no Ag-definable ball and also contains ¢’ (all of this is expressed in the type of
¢, ¢’ in the language with the new predicate). By the countable case, ¢ and ¢’ have the
same type over Ag in M7, and hence they have the same type over A in M®. O

Lemma 3.8. Let gr be a complete type over A extending QRr. Suppose qr implies both
that u € Pr and that, for any y € Pr(dcl®i(A)), y > u. Then

arIMU | gqr(val(x —a), 7(x —a))
acP(M)

is consistent.

Proof. We may assume M has an element a’ with a’ € b; for each i. Note that g is
consistent with {y > u : y € Pr(M)}. Indeed, for any y € Pr(M), if gg - u > y, then
some ¥ € gr is bounded below by y; but then the minimum y’ > y of ¥ in M exists
as I' is definably well-ordered, y’ is in Pr(dcl®d(A)) and g + ¥’ < u, contradicting our
hypothesis.

Let ¢’ be such that (val(c),7(c")) &= grU{y > u :y € Pr(M)} and letd =
a' + . Clearly d &= gp|M; indeed, val(d — a’) = val(¢’) € Pr and thus d € b;
for all i. Now, assume there exists b € B(dcl*d(M)) included in P and containing d.
Taking a bigger ball, we can suppose that a’ € b, too; but then val(d — a’) = val(c’) >
rad(b) — val(hg) € Pr(M) contradicting the choice of ¢’. Moreover for any a € P(M),
val(d — a’) = val(¢) « val(a — a’). Thus val(d — a) = val(d — a’) = val(¢’) and
7(d —a) =7(d — a’) = 7(c’), and d realizes the given type. O

Proposition 3.9. Assume P is strict and fix a € B(dcl®4(A)) with a C b; for each i.
Then qp|A is complete relative to the pair (val(x —a), 7(x —a)). Moreover, if P does not
contain any ball in B(dcl®d(A)) then qp|A is complete.
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Proof. The second case is tackled in Lemma 3.7. So we can suppose that such an a €
B(dcl®9(A)) exists. Let ¢, ¢’ = gp|A be such that gr := tp(val(c — a),7(c —a)/A) =
tp(val(c’ — a),7(c’ — a)/A). Let My < M be such that A C ng. It follows from
Lemma 3.8 that there exists ¢y = gp |M0eq Ugr (val(x —a), 7 (x — a)). Taking conjugates
of ¢ and ¢’ over A, we can suppose that (val(c —a), F(c—a)) = (val(co—a), 7(co—a)) =
(val(c’ — a), 7(c’ — a)) as these three tuples have the same type over A.

By choice of ¢, ¢ = gp|A and hence ¢ € P. Moreover, let b € B(dcl®d(My)); taking a
bigger ball if necessary, we may assume that a € b and hence val(c —a) = val(cop —a) <
rad(b). So c is not in b. It follows that ¢ = qp|Meq, and similarly ¢’ = qp|ng. By
Lemma 3.5, ¢ and ¢’ have the same type over MOeq and hence over A. O

Corollary 3.10. Let L be a finite extension of Q,, M |= Th(L) and A S M such that
B(acl®l(A)) € A. Let ¢ € dom(M). Then tp(c/A) extends to a complete Aut(M/A)-
invariant type over M.

Proof. Let W(c; A) ={b€B(A):ceb}and P = ﬂbeW(C;A) b. As the residue field of
M is finite, P cannot reduce to a single ball (that ball would be the union of finitely many
proper subballs, each in B(acl®d(A)), hence in A, and one of them would contain c¢). Note
that ¢ = gp|A.

If there is no ball a € B(dcl*4(A)) contained in P, then let gg be any Aut(M/A)-
invariant type extending Q that implies u € Pr and @ > u foralla € Pr(M). If sucha
ball a exists, we suppose g also extends tp(v(c —a), 7(c—a)/A). By Lemma 3.8, ¢g* :=
qgp|M(x) U UaeP(M) gr (val(x — a), 7(x — a)) is consistent. Clearly ¢* is Aut(M/A)-
invariant. Proposition 3.9 implies that ¢* is complete and extends tp(c/A). O

Let N, be the group of matrices of the form I,, + b, where [, is the identity matrix in
GL,,, and b is an upper triangular matrix with all entries having valuation 3> 0. Thus
Nu =B, (0) N, (In + 2(Bn(0)).

Lemma 3.11. There exists an Aut(M)-invariant type p|M of matrices a € Ny, invariant
under right multiplication: for all A € M® and b € N, (A), if c = pl|A, then cb =
P|A. The type p is complete relative to the absolute values and r-values of the entries.
Moreover, if there exists a complete Aut(M)-invariant type t (y, x) containing QR (v, x)U
{y > kval(rg) : k € N}, then p can be taken to be complete.

Proof. Let P = ﬂi(kf)(’)) and g = gp|M; then g is Aut(M)-invariant and complete
relative to val and 7 by Proposition 3.9 (as P contains 0). If ¢ as above exists, then take
q :=qp|M Ut(val(x),7(x)), which is consistent by Lemma 3.8, complete and Aut(M)-
invariant.

Let p be the type of upper triangular matrices obtained by taking the M"TH)th tensor
power of g (where by tensor product, we mean the tensor product of types; see just below
for a more explicit statement), using the lexicographic order on the matrix entries, and
adding 1 on the diagonal: thus forall A € M®,ifa € M,,, then I, +a = p|A if and only
if ann E qlA, a2 | qldcl®(Aarr), ..., a2 = qldc®(Aarr, ..., a14), ... 600 E
gldcl®d(Aayi, ..., anp—1), while a;; = Ofori > j.

The fact that p is an Aut(M)-invariant (partial) type of elements of N, is clear. As
for the right translation invariance, let I,, + b € N,(A) and [, + a = p|A; we have to
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show that (I, + a)(I, +b) = I, +a+ b+ ab = p|A. Letd = a + b + ab. Then
di1 = a1 + b11 + ai11b11. We have

val(ai1b11) > val(byy) > val(agp) > 0.

So val(dj1) = val(ar;) and hence d;; also realizes gp|A. Furthermore, we also have
7(d11) =r(aqy); it follows that di; = g|A. Similarly

dio = a1z + b2 + abiz + ainba;

here a, has strictly bigger valuation than any of the other summands, so again val(d) =
val(ajp) and 7(d12) = 7(a1n), thus di2 | ¢q|dcl®(Aayqy). But since b € dcl®d(A), we
have dy; € dcl®(Aayy), so di2 = ¢|dcl®d(Ad);). Continuing in this way we see that
I, +d = plA. O

In the following two proofs, whenever A € M®4, G(A) will denote the points of A that
belong to a sort of the language £Lg C L°. Note that since N, is an intersection of
quantifier-free definable groups, the elements of B, (K)/ N, can be identified with infinite
tuples in G(M*9).

Corollary 3.12. Let R be a left coset of Ny, in B, (K). There exists an Aut(M /R)-invari-
ant type of elements of R.

Proof. Pick g € R, let p be the right-N,-invariant type of Lemma 3.11, and for all
A C M, let p¢|A = tp(cg/Ag), where ¢ = p|dcl®d(Ag). Then p8|A = p"8|A for
h € N,(dcl®(A)), since p is right-N,-invariant. Thus any automorphism fixing R must
fix the global type pé|M. O

Corollary 3.13. Let L be a finite extension of Q, and let M }= Th(L), e € S,(M), and
E = G(acl®(e)). Then there exists an Aut(M ] E)-invariant type of bases for e.

Proof. Tt was noted in Section 2.2 that any lattice e has a triangular basis; this basis can
be viewed as the set of columns of a matrix in B, (K). Let b, b’ be two such bases, and
suppose b’ = o (b) with 0 € Aut(M/E). Then as e/A{'e is finite and e/A{]'e is coded
in G, the cosets of )»6"6 in e are fixed by Aut(M/E). Thus, the columns of b, ¥’ must
be in the same coset of A{je for each m. Hence if we write b’ = ab with a € B,(0),
then a = I,, modulo )»6”(’) for each m, so a € N, and Aut(M/E) preserves the coset
R := N,b. So it suffices to take the Aut(M/R)-invariant type of elements of R guaranteed
by Corollary 3.12. O

Let us now suppose that T extends HF(. Using similar techniques, we can extend the
previous results to the case when P is a closed ball (this case is only relevant to Section 5).
For the last result, though, we will also need the residue field to be pseudo-finite.

Let b be a closed ball. We will write res;, for the map that sends x € b to x +rad(b) M,
the maximal open subball of b containing x.

Lemma 3.14. Let b € B(dcl®(A)) be a closed ball and q a complete type over A con-
taining the formula x € resy(b) such that g = x # b’ for all b’ € resp(b)(acl®d(A)). Then
qp|M U g (resp(x)) is consistent.
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Proof. Let us first show that g is consistent with {x # b’ : b’ € res,(b)(M*)}. If not,
there are a finite number of balls b; € res,(b)(M®) such that ¢ = \/; x = b;. If we
take a minimal number of such balls, each of them must realize g and hence be algebraic
over A, a contradiction.

Now, let ¢ be such that resp(c) = g U {x # b’ : b € resp(b)(M)}; then we
have ¢ = gp|M. Indeed, ¢ € b and if c is in b’ € B(M*) such that b C b, then
¢ € resp(b) € resy(b) (M), contradicting the choice of c. O

Lemma 3.15. Suppose P = b is a closed ball. Then qp|A, the generic type of b, is
complete relative to resp.

Proof. If AC K (M) then, by the same considerations as in Lemma 3.5 (and, as HFg C T,
taking 7 = rv is enough), it suffices to show that if ¢ and ¢’ are realizations of ¢,|A such
that res; (c) = res,(c’) then for all d € Zalg, rv(c —d) =rv(c’ —d). If d € resp(c), then
c €resp(c) =resp(d) € B(acl®(A)) asd € A" This contradicts the fact that ¢ E qplA.
Hence d ¢ resp(c). As ¢, ¢’ € resp(c) = resp(c’), we have val(c — ¢’) > val(c — d) and
v(c—d) =1v(c’ —d).

If A is not contained in K, let ¢, ¢’ &= gp|A be such that g := tp(resy(c)/A) =
tp(resy(c’)/A). By Lemma 3.14, there exists ¢y = g»|M U g. Taking A-conjugates of ¢
and ¢/, we can suppose that res,(c) = resp(co) = resp(c’). Then, as seen in the proof
of Lemma 3.14, ¢, ¢’ = q»|M. By the previous paragraph, ¢ and ¢’ have the same type
over M and hence over A. m}

Corollary 3.16. Suppose P = b is a closed ball and let a € B(dcl®d(A)) be contained
in b. Then gp|A is complete relative to rv(x — a).

Proof. If ¢, c’ }= gp|A, then val(c — a) = val(c’ — a) = rad(b), and hence res,(c) =
resp(c’) if and only if rv(c — a) = rv(¢’ — a). Thus the corollary follows immediately
from Lemma 3.15. ]

Corollary 3.17. Suppose k is pseudo-finite, k(A) contains the constants needed for k to
have EI, and P = b is a closed ball that contains no ball a € B(dcl®4(A)). Then any
x € b generates a complete type over A.

Proof. By Lemma 3.15, it suffices to show that res, (b) is a complete type over A. But
resp(b) is a definable 1-dimensional affine space over k—i.e., a V := yO/y M-torsor
where y := rad(b). Hence H := Aut(res,(b)/k, A) is a subgroup of a semidirect prod-
uct of V and the multiplicative group Gp (k). The subgroup H N V (i.e., the group
of translations of res;(b) that are also automorphisms over A and k) is oco-definable
over A. Indeed, itisthe set {u € V : Vy Vx (x € resp(b) Ay € k) = (¢(x,y) &
¢(x +u,y)) for all A-formulas ¢ (x,y)}.

Since G, (IF,) has no proper nontrivial subgroups, and k, being pseudo-finite, is ele-
mentarily equivalent to an ultraproduct of I, it follows that G,(k) has no proper non-
trivial definable subgroups and hence neither does V. Because in a pseudo-finite field
any oo-definable group is an intersection of definable groups, V has no nontrivial proper
oo-definable subgroup either. If H NV = V then H acts transitively on res (b) (by trans-
lation) and, as H < Aut(resy(b)/A), we are done. On the contrary, if H NV = {1}, then
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H contains no translations and must either have exactly one fixed point or be the trivial
group and hence fix all points in resy (D).

Suppose H has only one fixed point a € res,(b) and let 6 € Aut(resy(b)/A). For any
o0 € H,0'oo 06 € Handhence (8~! o0 06)(a) = a, ie., 0(a) is fixed by o. As
a is the only point fixed by H, 8(a) = a and a € dcl®d(A)—but this is a contradiction.
It follows that H fixes every point in res,(b), and hence, because k is stably embedded,
resp(b) C dcl®(k, A). But then we must also have V C dcl®(k, A). Hence (V, res, (b))
is A-definably isomorphic to a definable (regular) homogeneous space (G, R) of k®4 = k.
As k is stably embedded, (G, R) is definable over A’ := k®4(dcl®4(A)) = k(dcl®I(A)).

Hence to obtain a contradiction we only have to show that any A’-definable G, (k)-
torsor in a pseudo-finite field k has an A’-point. Let us consider k elementarily embedded
in the fixed field of L = ACFA and let A’ be the algebraic closure of A" in L. Note that A
is algebraically closed in ACFA and is a model of ACF. By usual arguments (e.g., [S0])
there exists an ACF A’-definable homogeneous space (G’, S’) and interalgebraic group
configurations in (G, R) and (G’, §’). Replacing G’ with its identity component G|, and S’
with the G,-orbit of any A’-point in S’ (there is such a point because A’ = ACF), we
can suppose that G’ is connected. By some additional classical arguments (although the
literature mainly concerns itself with groups and not homogeneous spaces at this point:
see [50] again), there is an ‘A’-definable subgroup H of G x G’ such that Hy := {x € G :
(x,0) € H}and H) := {x € G’ : (0, x) € H} are finite central subgroups and the left
and right projections of H must have finite index in G (respectively G’). But as G and G’
are connected, these projections must be the groups themselves. As G has no torsion
(we are in characteristic 0), Hp is trivial. Taking the quotient of (G', §") by Hy—i.e.,
considering the group G’/ Hé acting on the H(/)-orbits of §’—we see that the group H is in
fact (the graph of) an isomorphism. In particular, as G has no proper definable subgroup,
this implies that the action of G’ on §’ is also regular, i.e., S’ is a G’-torsor.

Let (a, a’) be generic in R x §', let X be the H-orbit of (a, a’) and let P = tp(aa’/A’).
As P and X have the same dimension (equal to 1), P cannot be covered with infinitely
many H-orbits (pseudo-finite fields have the (E) property of [47]), and as A’ is alge-
braically closed (including imaginaries), X must contain P and hence is A’-definable.
Moreover, it is quite easy to see that X is (the graph of) an isomorphism between R
and S’. As S’ contains ?—points, so does R. Let d be one of these points, and let (di)l’f:1
be its A’-conjugates. Then (1/n) )", d; € R(A’), and we have the A’-point we have been
looking for. O

To conclude this section, we summarize the classification of unary types in PLy.

Proposition 3.18. Suppose T extends PLo and k(A) contains the constants needed for k
to have EIL Let a € B(dcl®4(A)) with a C b; for each i. Then qp|A is complete relative
to val(x — a) and to ¥(x — a). Moreover; if P does not contain any ball in B(dcl®(A))
then qp|A is complete.

Proof. If P is strict we can apply Proposition 3.9. If not, we apply Corollary 3.16 or
Corollary 3.17. O
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4. The p-adic case

Let L be a finite extension of Q. As stated in Remark 2.8(2), it can be shown that there
exists a number field F C L that contains a uniformizer Ag of L such that res(L) =
res(F) and every finite extension L’ of L is generated by an element « whose minimal
polynomial is defined over F, and « also generates the valuation ring O(L’) over O(L).
Let 77, denote the theory of L in Lg U {P, : n € N.o} U {c}, where the predicates P,
stand for the nonzero nth powers (in the sort K) and ¢ generates F' over Q. Then T} is
model complete (cf. [63, Theorem 5.1 and Corollary 5.3]) and it is axiomatized by the
fact that K is a henselian valued field with value group a Z-group and residue field I,
by the isomorphism type of F' and by the definition of the P, predicates
We now check the hypotheses of Corollary 2.17 for T = T, and T = ACVFg

(the theory of algebraically closed valued fields of mixed characteristic in the geometnc
language with a constant for c; the F' in the subscript is there to recall that we added
a constant for a generator of F to the theory). We use the same notation as in Proposi-
tion 2.13.

(i) Relative algebraic boundedness: By model completeness and the nature of the ax-
ioms—the only axioms that are not universal are the fact that the field is henselian and
the definition of the predicates P,; but both state the existence of algebraic points—
aclz(M'c) N M is an elementary submodel of M, hence certainly is £-definably closed.

(ii) Internalizing L-codes: As K (M) is henselian, K (dclz(M)) = K(M), hence if
€ € K, there is nothing to do. For any element € of S, (1\7 ) let us write A(e) € K" for the
lattice represented by €. If € € S, (dclz(M)), A(e) has a basis in some finite extension Lo
of L := K(M). Say [Lo : L] = myg; let L’ be the join of all field extensmns of L of
degree mg. Then L’ is a finite extension of L such that any o € Aut(M ) stabilizing M
stabilizes L’; let [L’ : L] = m. By hypothesis, there is a generator a of L’ over L whose
characteristic polynomial over L is defined over F. One has an a-definable isomorphism
fa i L’ — L™ (as vector spaces over L), with f,(O(L")) = O(L)™ (i.e., O(L') is a free
O(L)-module of rank m). The morphism f, further induces an isomorphism of the lattice
A(e)(L") with a lattice f,(A(e)(L")) = A(n)(L) for some n € Sy, (M). As any a’ of the
(finitely many) that are Aut(L’/F)-conjugate to a is also Aut(L’/L)-conjugate to a, we
see that A(n)(L) = fu(A(n)(L")) as well. Thus € and 7 are interdefinable in the sense
required in (ii).

The argument for 7, is similar (alternatively, for finite extensions L’ of L, the value
group also has a least element, so we can apply Remark 2.8(1)).

Remark 4.1. We have proved something slightly stronger than (ii): we also have ¢ €
dclz(n). Indeed, the inverse of f, is a linear map L™ — L', say go(ay, ..., qy,) =
> o;a’. From the viewpoint of M , 84 18 an a-definable linear map with g,(A(n)) = A(e)
(as g4 is K-linear, this remains true for the lattices generated by the L- or L’-points of
A(e) and A(n)). Moreover this is also true for any of the finitely many conjugates of a.
Thus € € dclz(n).
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The following corollary of this stronger version of (ii) is not needed for what follows but
it does shed some light on the interaction between automorphisms of M and £-definable
sets.

Corollary 4.2. Let A = dclz(A) € M. Let G be the group of automorphisms of M that
stabilize M and fix A pointwise. Let € € M, and assume g(€) = € forall g € G. Then
€ € dclz(A).

Proof. We have € € dclz(M), since Aut(M/M) fixes €. Let  be as in (ii). Then G
fixes . Recall that we have assumed that any automorphism of M extends to an automor-
phism of M, i.e., G maps surjectively to Aut(M/A). So we have n € A. By Remark 4.1,
€ € dclz(n). So € € delz(A). O

(iii) Unary EI: In [66] P. Scowcroft proved a weak version of this, where the sets are
classes of equivalence relations in two variables. We prove here that every unary subset
can be coded in B.

Let e be an imaginary code for a unary subset D C K(M). Let A = acl‘zl(e) and let
B =B(A).

Claim 4.3. Forallc € K(M), tpp(c/B) = tpp(c/A).

Proof. Following the notation of Corollary 3.10, recall that W(c; A) = {b € B(A) :
c € b}. Let P = (W(c; A) = (| W(c; B), a strict intersection. Then tp-(c/B) +
qgp|B = gp|A. By Proposition 3.9, either gp|A is a complete type and we are done, or
there is some a € B such that a C P and gp|A is complete relative to 7(x — a) and
val(x —a). As K* = F(K*)" for all n, r,(c — a) € r,(F) and hence tp, (¥ (c — a)/A)
follows from its type over F, i.e., over dcl(#). Moreover I'(dclz(B)) = T'(dclz(A))
(as elements of I" are coded by balls). Thus, as I is stably embedded and has unary EI,
tp,(val(c —a)/B) - tp,(val(c — a)/A) and we have the expected result. ]

As D is L(A)-definable, D is also Aut(M/B)-invariant, so that by compactness D is
definable over B. Hence e € dclzq(B). We conclude as in Corollary 2.17: there is a
tuple a from B with a € aclg(e) and e € dcli?(a); SO dcl?(e) = dclecq (a”), where a’ is
the finite set of L(e)-conjugates of a. We already know that finite sets are coded (e.g.,
by (ii) and Lemma 2.14).

(iv) Invariant types and germs: The main ingredient for this proof is the C-minimality
of ACVF, i.e., the fact that every definable subset of L = ACVF is a finite Boolean
combination of balls (and points).

Let A = aclg(A), c € K(M), W(c; A) ={b; :i € I} and P = ("); b;. The balls b;
are linearly ordered by inclusion, and we order I correspondingly: i < j if b; C b;. As
seen previously, P is a strict intersection. Let p be the ACVF-generic of P.

If r(x, b) is an L-definable function, let X (', ") = {x : r(x, ") # r(x, b")}. Then
X (', b") is a finite Boolean combination of balls, and there exists i = i(d’, b”) such
that X (', b”") N P is contained in a proper subball of P if and only if for each j > i,
X (', b") N b; is contained in a proper subball of b;.
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Define an equivalence relation E; by b'E;b” if and only if X (b', b”") N b; is contained
in a proper subball of b; (i.e., r(x, b’) and r(x, b"") have the same germ on the ACVF-
generic of b;). Let e; = b/E;. Then

o€ Aut(A~4/A) fixes the p-germ of r(x, b)
& r(x, b) and r(x, ob) have the same p-germ
< X(b,ob) N P is contained in a proper subball of P
& forsomeiandall j > i, bEjo(b)

< forsomeiandall j > i, o fixes e;.

As for the consistency of p|M with tp,(c/A): by definition of the ACVF-generic,
PIM is generated by P along with all formulas x ¢ b, where b € B(dcl 7(M)) is a proper
subball of P. As P is part of tp,(c/A), it suffices to show that tp,(c/A) does not imply
any formula x € d with d a finite union of balls d; € B(dclz(M)) strictly included in P.

Claim 4.4. For all b € B(dclz(M)) such that b(M) = {x € b : x € M} # {, there
exists b’ € B(M) such that b(M) = b'(M).

Proof. As T is definably well-ordered, inf{val(a — c¢) : a,c € b(M)} =y € '(M). We
can now take b’ to be the ball of radius y around any point in b(M). O

If tpy(c/A) implies x € d for d as above, then it follows from the claim that d(M) is
equal to a finite union d’ of balls in B(M) and tp,(c/A) implies x € d’ C P. But this
would contradict Lemma 3.8.

(v) Weak rigidity: We use Lemma 2.18. The hypothesis that for all a € M there
exists a tuple ¢ € K(M) such that a € dclg(c) and tpy(c/aclg(a)) extends to an
Aut(M /aclz (a))-invariant type, holds trivially when a € K (M) and follows from Corol-
lary 3.13 whena € S,,(M). If a € T,,,(M) for some m then, as the value group has a least
element, a is coded by an element of S,,,+1(M) (see Remark 2.8(1)) and hence, applying
Corollary 3.13 to the code in S, 11 (M), we are done.

The assumption (v') of Lemma 2.18 was proved for Q, by van den Dries [26]. Let us
briefly recall his proof to check that it adapts to the finite extension of QQ, case.

Let B € K(M) (we can assume that B = dclx(B) N K (M) is a field and contains F).
Let 0 € Aut(M/B) and let B’ = fix(o) N (aclz(B) N M). It suffices to show that
B’ = Tr. Indeed, by model completeness, B’ < M will then contain acl,(B), hence
acly (B) is rigid over B.

As noted in the proof of (i), in order to show that B’ = Ty, we only have to show that
B’ is henselian and that the definition of the P, is preserved.

By the universal property of the henselization, B" is contained in B’ and thus B’ is
henselian. Moreover, let x € B'NP,(M) andlet y € K (M) be such that x = y". Note first
that (y/o(¥))" = x/o(x) = 1 and thus y/o (y) € aclz(¥). Furthermore, for all m € N,
there exists g € F such that yg € P, (M). But then y/o (y) = yq/o(yq) € P, (M) for
allm. As (), Pm(aclz(¥)) = {1}, it follows that y = o (y), i.e., y € B

Remark 4.5. As in [26], it follows from this proof that the restriction of 77, to the sort K
has definable Skolem functions.
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Proof of Theorem 2.6. By Corollary 2.17, we have EI to the sorts K, S;, T,,. But as is
explained in Remark 2.8(1), the sorts 7}, are not actually needed. O

‘We finish the section with some additional remarks.

Remark 4.6. If we do not want to add a constant ¢ to the language, then it suffices to
add “Galois-twisted S,,”, interpreted as S, (K’) for K’ ranging over the finite extensions
of K(M).

Indeed, by Theorem 2.6, any imaginary e is interdefinable over ¢ with some tuple ¢’ of
real elements. So we have an e-definable function f, with f,(c) = ¢’ and an @-definable
function & with h(c, fe(c)) = e. As c is algebraic over Q, restricting to e-conjugates of c,
we can take the graph of f, (a finite set) to be a complete type over e.

With the new sorts, it is clear that (ii) holds without adding a constant and f, is coded
by some tuple d € M. Let us now show that d is a code for e. If ¢’ is L£(d)-conjugate
to e there is some o € Aut(M/d) such that o (¢) = ¢’. As o fixes d, ¢’ := o(c) is also
in the domain of f, and hence tp,(c’/e) = tpp(c/e), ie., ¢ =a(e) = o(h(c, fo(c))) =
h(o(c), fe(o(c))) = e. This implies that d is a code for e.

Remark 4.7. Let A = aclz(A) € M = Tr. Then every type over A extends to an
Aut(M/A)-invariant type.

This follows immediately from [48, Prop. 2.13] and Corollary 3.10. But, since the more
subtle considerations of op. cit. are not necessary in 77, as, in the relevant case, the al-
gebraic closure coincides with the definable closure, let us give a more straightforward
proof:

Proof of Remark 4.7. Letc € M; then ¢ = f(ay, ..., a,), where a; € dom(M), and f
is #-definable. It suffices to extend tp-(ay, ..., a,/A) to an Aut(M/A)-invariant type. If
tp,(c/M) and tp,(d/Mc) are Aut(M/A)-invariant, then so is tp,(cd /M); so it suffices
to show that tp(a; /A;) extends to an Aut(M /A;)-invariant type for each i, where A; :=
dclz(Aj—1a;—1). But (by hypothesis (v) of Corollary 2.17) we have A; = aclz(A;), so
Corollary 3.10 applies. O

Remark 4.8. Rigidity of finite sets fails for the theory of a finite extension of the p-adics
in the geometric language, i.e., acl; # dcl.

Proof. Note first that the angular component maps factor through the projectionto K /K P
and hence an angular component map is just defined by a map between finite sets whose
points are all in dclz (). It follows that L admits an @J-definable angular component
map ac.

As the value group is stably embedded, one can find a nontrivial automorphism o
fixing the value group in a sufficiently saturated model. By definability of ac, and since
o fixes the residue field, it follows that x and o (x) have the same angular component.
Take a € O with o (a) # a. Let y = val(o(a) — a), ac(o(a) — a) =: «. Then we have
val(o2(a) — o (a)) = y, ac(oc?(a) — o(a)) = «, etc. As p -« = 0 in the residue field,
(6P(a) —a) = Zi’:ol (6t (a) — o (a)) has valuation § > y. Thus in the ring ©/80,
the image of a is not a fixed point, but has an orbit of size p under o. This set of size p is
not rigid. O
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Remark 4.9. The same techniques developed here to prove elimination of imaginaries
in Q, can also be used to give an alternative proof for elimination of imaginaries in real
closed valued fields (see [58]). Hypothesis (i) of Corollary 2.17 also follows from the fact
that the algebraic closure is a model, (ii) follows as in the p-adic case, (iii) follows from
the description of 1-types given in [58, Proposition 4.8]; and so does the existence of the
type in (iv). The rest of (iv) is proved exactly as here and so is (v).

5. The asymptotic case

Recall that HF( denotes the theory of henselian fields of residue characteristic 0, and PLg
is the theory of henselian fields with value group a Z-group and residue field a pseudo-
finite field of characteristic 0. Our goal is now to prove that any completion Tr of PLg
in the language L£g with constants added for some subfield F of the field sort K (see
Remgrk 2.8(3)) eliminates imaginaries. We will be using Proposition 2.13 with T = T
and T = ACVF (o, r. We still follow the notation of this proposition.

It is worth noting that we will not, in general, be able to use Corollary 2.17 as there
are some ultraproducts of p-adics where (v) is false. Indeed, it is shown in [11, Theorem
7] that there exist a characteristic zero pseudo-finite field L, A € L, and b € L such that
b has a finite nontrivial orbit over A. Then A can be identified with the set A’ := {az? :
a € A} C L((t)) &= PLg and b is algebraic but not definable over A’. It is easy to build a
counter-example to (v) using A" and b.

(i) Relative algebraic boundedness: The proof is not as simple as in the p-adic case
and needs some preliminary lemmas and definitions.

Definition 5.1. We will say that T is algebraically bounded (with respect to T) within
the sort Sifforall M =T and A € dom(M), S(aclz(A)) C S(aclz(A)).

Even if § is stably embedded, one must beware that this is, in general, slightly dif-
ferent from saying that Th(S) (the theory induced by T on the sort S) is algebraically
bounded (with respect to Th(S)), as in the latter case, one requires that S(aclg(A)) €
S(aclz(A)) holds forall A C S.

Lemma 5.2. Let Tr D HFq be such that k* / (k™) ™" is finite and k* = (k*)" res(F). Then:

(1) If A=aclz(K(A)) N M, then I'(A) = val(K (A)).
(2) If Tho(k) and Thy(T) are algebraically bounded, then T is algebraically bounded
within k and T.

Proof. (1) For any a € K(M)* and y € ['(M) such that ny = val(a) for some
n € N, there exist x € K(M) such that val(ax™) = 0 and ¢ € F such that
val(c) = 0 and res(ax"c™') € k™. As M is an equicharacteristic zero henselian
field, ax "¢~ € (K(M)*)" and hence ac™' € (K(M)*)". So there exists a’ €
malg N M C aclp(a) N M such that (a')" = ac™! and hence val(a’) = y. As
[(aclz(K (A))) = Q ® (val(K (A))), the statement follows.
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(2) Delon shows in [24, Theorem 2.1] that in the three-sorted language (K, k, I') with
val and res, field quantifiers can be eliminated up to formulas of the form

¢*(e.r) =3y € K J\ yixi € (K™ Aval(y) = 0 A p(r. res(y),

where r is a tuple of variables from k, and ¢ is a formula in the ring language. It follows
immediately that if A € K (M) then I'(aclz(A)) C aclg(val(A)) C aclz(val(A)) C
acl7(A), where the first inclusion follows from field quantifier elimination and the second
from algebraic boundedness of Th.(I").

The presence of the ¢* makes it a little more complicated for k, but ¢*(a, r) implies
that a; y; € (K*)™ for some y; such that val(y;) = 0, and hence n; | val(a;). By the first
statement, there exist b; € aclz(A) N M such that n val(b;) = val(a;), thus o*(a,r) &
3y e k )\; yires(a;b;") € (kK*)™ A ¢(r, y). Therefore, any formula with variables in k
and parameters in A can be rewritten as a formula with parameters in res(acl z(A) N M),
and so k(aclg(A)) C aclg(res(acl7(A) N M)). We now conclude as for I ]

In the next three lemmas, we will suppose that the hypotheses of the previous lemma
apply to T.

Lemma 5.3. Forall A C K (M), RV(aclg(A)) € RV(aclz(A)), i.e., T is algebraically
bounded within RV.

Proof. Letc € RV(aclg(A)) and let y = valy(¢). Then by Lemma 5.2, y € Q ® val(A).
It follows that there exist ¢’ € K (acl F(A)N M) and n € N such that val(c) = ny. Then
c"/rv(c’) € k(aclg(A)) C k(acl 7(A))—also by Lemma 5.2—and so ¢ € aclz(A). m]

Lemma 5.4. For any A = aclz(K(A)) N M, B(aclz(A)) = B(A). Moreover, any ball
b € B(aclz(A)) contains a point in A.

Proof. Let b € B(aclz(A)) and let O be the intersection of all balls in B(A) that con-
tain b. As Q is Aut(M/A)-invariant, it suffices to show that b contains Q (and hence is
equal to Q) to show it is Aut(M/A)-invariant and thus in dclz(A) N M = A.

If Q(A) = 0, it follows from Remark 3.6 that Q is a complete type over A in M, so O
is contained in b. Hence we can assume that we have a pointa € Q(A). We can suppose
a ¢ b—otherwise, because rad(b) € I'(aclz(A)) C I'(aclz(A) N M) = I'(A), we would
be done.

If O is a closed ball that strictly contains b, then b is contained in a unique maximal
open subball »" of Q. Since b’ is equal to the set {x € K : rv(x —a) = rv(b—a)}, b’ is in-
terdefinable over A (in M) with rv(b—a) € RV(aclg(A)) € RV(aclz(A)NM) = RV(A),
where the first inequality follows from Lemma 5.3. Hence 4’ is in B(A), contains b and
is strictly contained in Q, contradicting the definition of Q.

Finally, if Q is a strict intersection or an open ball, then val(b — a) € I'(aclz(A)) =
I'(A), thus the closed ball of radius val(b — a) around a would be in A, would contain b
and would be strictly contained in Q, a contradiction.
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As for the second point, once we know that b € B(A), then—since aclz(A) is a
model of ACVF—b contains a point ¢ in K (acl3(A)) = K (A)‘jllg and—as balls are con-

vex in residue characteristic zero—the average of the Aut(M, A)-conjugates of c is in
b(dclz(A) N M) = b(A). O

Lemma 5.5. Forany A C dclz(K(A)) N M, aclg(A) € aclz(A). In particular, for any
M’ < M and c € K(M), aclz(M'c) C aclz(M'c).

Proof. Let C = aclz(A) N M, so that C = aclz(K(C)) N M, and let e € aclg(A). If
e € K C B, then Lemma 5.4 applies to e—viewed as a ball with an infinite radius—and
we have e € C C aclz(A).

The remaining sorts S, and 7, can be viewed as B, (K)/H (or a union of such in
the case of 7)) where H is an L-definable subgroup. Note that there exists an increasing
sequence of L-definable subgroups (G;)/*; of B, (K) with Gy = {1} and G, = B, (K)
such that for every i, there exists an L-definable morphism ¢; : G; — G with ker-
nel G;_, where G is either the additive group G,(K), or the multiplicative group G, (K),
and such that for every pointa € G(C), ¢; ! (a) contains a point in G; (C). It suffices to
show by induction on i that if H; := G; N H is an L-definable subgroup of G; and
ee€ (Gi/Hi)(acl?(C)) then e is £(C)-definable.

Let ¢; : Gi — G, where G = Go(K) or G = Gp(K), be a group homomor-
phism with kernel G;_. Then e € (G,-/Hi)(acl‘zl(C)) can be viewed as an almost £(C)-
definable coset eH; € G;—i.e., a finite union of these cosets is £(C)-definable—and
¢i(eH;) is an almost L(C)-definable coset of ¢; (H;). Moreover, the group H := ¢; (H;)
is an L-defined subgroup of G. If G = G, then H has the form yO or y M, and its cosets
are balls. If G = Gy, then either H = 1 + I where I is some proper ideal of O, and its
cosets are balls, or H = O, and its cosets are of the form y©O* = val~!(y) for some y, y.
In both cases, ¢; (e H;) has a point a € C: in the ball case, apply Lemma 5.4, and in the
other case, this is because we must have y € I'(acl/(C)) = I'(C) = val(K(C)), by
Lemma 5.2.

Let a’ € ¢>i_](a) N Gi(C) = (@'Gi_1) N G;(C); then a'~(eH; N a’G;_y) is a
coset of H;_1 = H; DNG,-_l in G;_1 that is almost L(C)-deﬁnable.NBy induction,
a'~YeH; N a'G;_y) is L(C)-definable, but then eH; N a’G;_; is also L(C)-definable
and hence e H;—the only coset of H; that contains e H; Na’G;_1—is L(C)-definable. O

(ii) Internalizing L-codes: Let L = [1Qp/U be a nonprincipal ultraproduct. Provided
we have a subfield of constants F such that every finite extension of L is generated by an
element whose minimal polynomial is over F' and which also generates the valuation ring
over O(L), the proof for finite extensions of @, goes through for Th(L).

(iii) Unary EI: In the following lemmas, we will consider a theory Tr extending PLg
where we have added constants F containing a uniformizer A¢ such that res(F) contains
the necessary constants for k to have EI and for all n € N.g, k* = (k*)" res(F). Let
M = Tr be sufficiently saturated and homogeneous.
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We will first study the imaginaries in RV. For all y € I'(M), setRV,, := valr_v1 (y). Let
H be a (smalll) subgroup of I'(M) containing 1 := val(Ap), and let RVy = Uy <a RY,
where a point 0, is added to every RV, . The structure induced by Tr, g on RVy is that of
an enriched family of (1-dimensional) k-vector spaces and we view it as a structure with
one sort for each RV, U {0, }. As H is a group, RV is closed under tensor products and
duals.

These k-linear structures are studied in [44]. Let us recall some of the definitions
there.

Definition 5.6. Let A = (V;);c; be a k-linear structure.

(1) We say that A has flags if for any vector space V; in A with dim(V;) > 1, there are
vector spaces V; and V; in A with dim(V;) = dim(V;) — 1, dim(V;) = 1 and an
(-definable exact sequence 0 — V; — V; — V; — 0.

(2) We say that A has roots if for any 1-dimensional V; and any m > 2, there exist V;
and V; in A and (J-definable k-linear embeddings f : VI.®’" — Viand g : V; - V)
such that Im(g) € Im(f).

Lemma 5.7. The theory of RVy with the structure induced by Tr py eliminates imagi-
naries.

Proof. 1t follows from [44, Proposition 5.10] that it suffices to show that RVy has flags
and roots. As every RV, is 1-dimensional, the structure trivially has flags. But it does not
have roots. Let us extend H to some H’ such that RVy has roots.

Let R={r € N.¢ : k(M) contains nontrivial rth roots of unity}, let L = K(M)[k(l)/r :
r € Rlandlet H = (H,1/r : r € R) C val(L). Note that L is a ramified extension
of K(M) and res(L) = k(M), hence RVy (M) = RVy(L). Now RV has rth roots in
RVy for any r. Indeed, if r € R then RV}, is an rthroot, and if » ¢ R, then as the map
RV — RV : x — x" is injective, V] is its own rth root.

Let us show that for any y € H’ and any r > 2, RV,, has an rth root. As y € H’,
there exists n € N such that ny € H C I'(M), a Z-group. Hence there exist « € H and
m € N such that ny = rna + m. Let RVg be an nrth root of RVy; then RV, ® RV?'” is
an rth root of RV,,. By [44, Proposition 5.10], RVy has elimination of imaginaries.

Any automorphism o of RVy can be extended to an automorphism of RVy. Indeed, if
h € RVy then valy(h) = y +n/r where y € H,n € Zand r € R, and hrv(ko)™"/" €
RVy. Taking & (h) = o (hrv(ro) ™) rv(ro)*/" will work. Moreover, we can find an
automorphism of RVy fixing only RVy. Consider the homomorphism ¢ : H — k(M)
sending y +n/r to d]' where (d;),eN € k(M) is such that for all » and /, we have d] = 1,
dr #1ifr € R, and dllr =d,. Then 6 : h — h¢(val,,(h)) is a group automorphism of
RVy inducing the identity on both k and H’, hence an automorphism of the full structure
of RVy. It is easy to see that 6 fixes only RVy.

Note that because each fiber is a sort, if X C RV}{ for some ! € N and X is definable in
RVy, then it is defined by the same formula in RVy. Hence it is coded by some x € RVy.

I With respect to the saturation and homogeneity of M.



Definable equivalence relations and zeta functions of groups 2499

But as there are automorphisms of RV fixing only RVy, we must have x € RVy, and
as automorphisms of RVy extend to RVy, x is also a code for X in RVy. O

Proposition 5.8. The theory induced by Tr on the sort RV (see Section 2.2) eliminates
imaginaries to the sorts RV and T.

Proof. First let us show that for all n € N. o, RV/RV™ is finite and RV = RV” rv(F). Let
a € RV. As T is a Z-group, there exist y € RV and r € N such that r < n and valyy(a) =
valyy (y") + val(Ap). Hence valyy(ay ™ v(do)™") = 0, ie., ay™"rv(ko)™" € k*. As
k* = (k*)™res(F), there exists m € res(F) such that ay " m~! v(hy") € (k)" ie.,
a € mrv(Ap)RV™.

Moreover, for any A € RV(M), valyy(dclg(A)) € Q ® valy(A). Indeed, let y €
C(M)\ Q ® valyy(A) and d € ((k(M)*)™ \ {1}; then there exists a group homomor-
phism ¢4 : T'(M) — k*(M) such that ¢g(valyy(A)) = {1}, pa(y) = d and ¥y : t
t¢pq(valyy (¢)) defines an automorphism of RV(M) fixing A, k and I, which sends any
X € val,’v1 (y) todx # x. Hence Val;vl (y) cannot contain any point definable over A.

Let us now code finite sets. For any tuple y € I', let RV,, denote [[; RV,,.

Claim 5.9. In the theory induced by Tr on the sorts RV U T, finite sets are coded.

Proof. Let X € RV! x I'/ be finite. As I is ordered, we can suppose that there are tuples
¥, y' € T such that X € RV, x {y’}. By Lemma 5.7, the projection of X on RV,, is coded
(over y) by some x € RV(j . It is easy to see that xy ¥’ is a code for X. O

To prove elimination of imaginaries in RV to the sorts RV and I', it suffices, by Lemma 2.2,
to code L£(A)-definable functions f : RV — R, where R is either RV or T, for any
A C RV(M). Let us first consider the case R = RV. Let D be the domain of f, and X its
graph.

Lemma 5.10. [fthere exist n and m € 7 such that n valy, (f (x)) —m valyy (x) is constant
forall x € D, then f is coded.

Proof. Let yr = nvaly(f(x)) — mvaly(x) € I'(dclg(<f>)). For all y € k* and
x,z € RV, lety - (x,2) = (y"x, y"z). This defines an action of £* on any RV, where
y is a 2-tuple. Let y € (), (k*)” and y € ['(M)? be such that ny, — my; = v and
y1 € Q ® (valy(A)). By a similar automorphism construction as above, there is ¥ €
Aut(RV(M)/A) such that for all x € RV, ¥(x) = y - x and hence x € X implies
y - x € X. By compactness, there exists N € N.g such that for any x € RV with
valy(x) ¢ Q ® (valy(A)) and for any y € (k*)V,if x € X then y - x € X. Let
X' ={xeX:Vye ()N y-x e X}. Then it suffices to code X" and X \ X’. Note that
(x,y) € X\ X" implies val,y (x) € Q ® (valy(A)).

Claim 5.11. Suppose that X is stable under the action of (k*)"N. Then f is coded.

Proof. Let E C rv(F) intersect all the classes of RV modulo RV ¥ Fix y e I. For
any x € D, := D NRV,, there exist y € RV'N and e € E such that x = y"e. As X
is (k*)"N-stable, one can check that gy(e) :== y™" f(x) depends only on e and y. One
can also check that val,y (g, (e)) = (1/n)(yy + mval,y(e)) € I'(dclg(<f>)) =1 H
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and g, is in fact a function (with a finite graph G, ) definable in RVy. By Lemma 5.7
and compactness, there is a definable function g : I' — RVI for some / € N such
that g(y) codes g, (over H). It is quite clear that g is £(<f>) definable, but as X =
Uyer(k*)'NGy, f is also £L(H <g>)-definable.

Now, as I" has Skolem functions, we can definably order Im(g), and because RVIIq is
internal to k and the induced theory on k is simple, Im(g) must be finite (a simple theory
cannot have the strict order property). Thus Im(g) C aclg(<f>). For any e € Im(g),

g~ !(e) S I'is coded. Let d be the tuple of all codes of fibers and corresponding images;
then d € aclg(<f>)and <f> € dcl J(yd) for some y € H = I'(dclg(< f>)). We
can conclude by coding the finite set of < f>-conjugates of yd (by Lemma 5.9). O

Claim 5.12. Suppose that val,(x) € Q ® (valy(A)) for all x € D. Then f is coded.

Proof. By compactness, D must be contained in only finitely many RV,,. All of these y;
are L(< f>)-definable and hence f lies inside RVy, where H := I'(dclz(< f>)). By
Lemma 5.7, f is coded by some d over H, hence there is some tuple y € H such that dy
codes f. O

Now, Claim 5.11 allows us to code X’ and Claim 5.12 allows us to code X \ X’. This
concludes the proof of Lemma 5.10. O

Let us now show that we can reduce to Lemma 5.10. As f(x) € dclgz(Ax), we have
valy (f(x)) € Q ® (valy(Ax)). By compactness, for all i in some finite set /, there exist
ni,m; € Z and y; € Q ® valy(A) NI (M) such that for all x € D, there exists i € I with
&i(x) := n;valy(f(x)) — m; valyy(x) = y;. Define E; ,, to be the fiber of g; above y.
Then D C | J;; Eiy,. Let us assume that | /] is minimal such that this inclusion holds.

Claim 5.13. The set X := {(y;)iec1 €T : D C | J;

iel

E; .} is finite.

Proof. We proceed by induction on |/|. Assume X is infinite, and pick any x € D. By
the pigeonhole principle, there exists ip € I and an infinite set ¥ € X such that for
all (Yi)ier € Y, x € Eio,yio’ ie., gio(x) = ¥i,. It follows that for all (y;);c; and all
(6i)ier € Y, we have y;, = §;, and E,-O,yiO = Eio,% =: E. By minimality of |/|, D \ E is
nonempty and the set {(y;)ien(ig) €T : D\ E C Uiel\{io} E; 1 is finite by induction,
but it contains {(y;)ier\(iy} : (Vi)ier € Y} which is infinite, a contradiction. m]

Then any (y;)ie; € X isin aclp(<f>), fi = fIE ~ satisfies the conditions of Lem-
ma 5.10 and it suffices to code each f;. Indeed, let d be the tuple of the codes for those
functions; then d € aclg(< f>),and as f = {J;¢; fi. <f> € dcleq(d). The code of the
finite set of < f>-conjugates of d—which exists by Claim 5.9—is a code for f.

Finally, if R = I, then for all y € I'(M), f~'(y) € RVis coded by the case R = RV.
Hence f is interdefinable with a function from I" to RV! x I'” for some / and m. So we
have to code functions from I" to I' (which we already know how to code) and from I"
to RV. Let g : ' — RV be a definable function and let # = g o valy. Then 4 : RV — RV
is coded as we have just shown, and since A (val,, 1(y)) = {g(y)} forall y € T, a code
for h is also a code for g. This concludes the proof of Proposition 5.8. O
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Remark 5.14. (1) Let B,, = RV/(k*)™. We have a homomorphism B,, — T" with finite
kernel k*/(k*)"™. Hence B, maps injectively into I, and our assumptions on constants
imply that there is a set of #-definable representatives for the cosets of B, in B,,. Thus
the theory (and imaginaries) of B, reduce to those of I".

(2) On the other hand, it can be shown that every unary definable subset D of RV is a
finite union of pullbacks from B, for some m and subsets of valr_\,1 (a) for a lying in some
finite subset Fp of I'. This m is uniform in families, and Fp can be defined canonically
as the set of a € I' such that valr_v1 (a) is not a pullback from B,,. This gives another proof
of unary EI in RV (with the stated constants), given EI in any RVy.

A similar (but slightly more complicated) decomposition is also true in higher di-
mension (e.g., adapt [45, Lemma 3.25] to our case by replacing I with a suitable B,,).
Moreover, EI in RV also follows from this decomposition.

Let us come back to unary EI in TF (in fact, the proof given here would work in any
theory T 2 HFj such that I" is definably well-ordered and RV has unary EI). We will
proceed as in the case of finite extensions of Q,. First let us show that the analogue of
Claim 4.3 is still true in this case.

Claim 5.15. Ler A = acl}(A), B = B(A) and ¢ € K(M). Thentp(c/B) F tp.(c/A).

Proof. Recall from Section 2.2 that RV is stably embedded and has unary EI. As any
element in RV is coded by a ball, the claim is true if ¢ € RV(M). Recall that W(c; A) :=
{b € BA) :ceblIf P:=\W(;A) = () W(c; B) does not contain any ball in B
then P is a complete type over A and B (by Proposition 3.18) and we are done. If P does
contain a ball b € B, then, by Proposition 3.18, P is complete relative to rv(x — b). But
tp,(tv(x — b)/B) - tp,(rv(x — b)/A) and we are also done. ]

Unary El in T follows as for finite extensions of Q.

(iv) Invariant types and germs: The same proof as for finite extensions of Q, (nearly)
works as we only used I" being definably well-ordered. The only difference is that P can
be a closed ball. But in that case p, the ACVF-generic of P, is definable, thus the p-germ
of any r is an imaginary element e, and one may take / = {0} and eg = e. Moreover, the
inconsistency of tp(c/A) and p|M would—by Claim 4.4—contradict Lemma 3.14.

Corollary 5.16. Let Tr 2 HFg be an L-theory such that Tho (k) and Thy(I) are alge-
braically bounded, T is definably well-ordered, RV has unary EI, K has a finite number
of extensions of any given degree and k* /(k*)™ is finite. Suppose also that we have added
constants for a field F C K such that k* = (k*)" res(F) and any finite extension of K is
generated by an element whose minimal polynomial is over F and which also generates
the valuation ring over O(K). Then Tr has EI/UFI in the sorts K and S,,.

In particular this is true of ultraproducts of the p-adics (if we add some constants as
in Remark 2.8(3)).

Proof. By Proposition 2.13 we have EI/UFI in the sorts K, S,, and T,,, but as noted earlier,
the sorts 7;, are not needed when the value group has a smallest positive element. O
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Elimination of finite imaginaries: As we already know that RV eliminates imaginaries,
it suffices to show that every finite imaginary in PL( (over arbitrary parameters) can be
coded in RV (the proof is adapted from [43, Lemma 2.10]).

Definition 5.17. If C C C’, we say that C' is stationary over C if dcl®d(C") Nacl®d(C) =
dcl®d(C). A type p = tp(c/C) is stationary if ¢C is stationary over C.

Remark 5.18. (1) Itis clear that if C” is stationary over C’ and C’ is stationary over C,
then C” is stationary over C.

(2) If tp(c/C) generates a complete type over acl®d(C), then tp(c/C) is stationary.
Indeed, let x € dcl®d(Cc) N acl®d(C); then there is a C-definable function f such that
f(c) = x. As tp(c/C) generates a complete type over acl®d(C), there is a C-definable
set D such that for all ¢’ € D, f(c’) = x, hence x € dcl®I(C).

Lemma 5.19. Let T be a theory extending PLg (in the geometric language with possibly
new constants). Forall M =T and A C M, there exists C < M containing RV(M) U A
and stationary over RV(M) U A.

Proof. Let us first prove the following claim.

Claim 5.20. Let B = dclz(B) € M be such that RV(M) C B and b € B(M). Then
there exists a tuple c € K (M) with tp,(c/B) stationary, b € dclz(c) and b(M) N c # @.

Proof. First suppose that b € RV(M), i.e., b is of the form ¢(1 + M). Let P C b be a
minimal (for inclusion) intersection of balls in B(B). For any ¢ = P we have b = rv(c),
hence it suffices to show that P is a complete stationary type over B.

As P does not strictly contain any ball in B(B) by definition, it cannot contain a ball
b e ]B%(acl?(B)). Indeed, if P is strict, then taking the smallest ball containing the orbit
of b’ over B, we obtain a strict subball of P which is in B(B), a contradiction. If P is a
closed ball, then we may assume that 5" is a maximal open ball in P, and since kp (P) is
a k-torsor, we can take the mean of the orbit over B (we are in residue characteristic zero)
to get a strict subball of P contained in B(B), again a contradiction. By Proposition 3.18,
P is a complete type over acl?(B). By Remark 5.18(2), P is stationary over B.

Now if b € B(M), pick any r € RV(M) such that val,,(r) = rad(b). Applying the
claim to r, we find ¢ € K (M) such that tp,(c/B) is stationary and rad(b) € dclz(c). It
now suffices to find a point d € b whose type is stationary over dcl(Bc), but we can
proceed as in the first case. Then b € dclz (cd) and tp(cd/ B) is stationary.

O
Starting with B := dclz(RV(M) U A), and applying the claim iteratively, we find C 2
A URV(M) such that C C M, C is stationary over A U RV(M), dcl-(C) = C, B(M) C
dcl- (K (C)) and every ball in B(M) has a point in C.

Claim 5.21. We have C < dcl (K (C)).

Proof. Let e € C. If e € K then the result is trivial, thus we only have to consider
e € S, ore € T,. Let us consider the same decomposition of S,, and T}, as in the proof
of Lemma 5.5 and show by induction on i that for all e € (G;/H;)(M), e is L(K (C))-
definable.
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If we write e as eH;, then as proved in Lemma 5.5, ¢; (e H;) is either a ball or a set
of the form yO* and hence is definable over B(M) and has a point ' € K(C). Let
a e ¢i_l(a/)(C). Then a~'eH; N G;_; is a coset of H;_; in G;_1 which is L(K(C))-
definable by induction. Since a~'eH; contains a~'eH; N G,_y, it follows that a~'e H; is
L(K (C))-definable, and hence so is e H;. ]

As dclz(C) = C, we have K(C) = K(C)" = HF,. Since RV(M) € RV(C),C C M
and every ball in B(M)—in particular, every element of RV(M))—has a point in K (C),
we have rv(K (C)) = RV(M). It follows from field quantifier elimination in HF in the
language with sorts K and RV (see Section 2.2) that K (C) < K (M). But this implies that
C =dclz(K(C)) < M. This concludes the proof of Lemma 5.19. m]

Lemma 5.22. Let T be a theory that extends PLg (in the geometric language) and let
A C M = T. Then every finite imaginary sort of Ta is in definable bijection with a finite
imaginary sort of RV (with the structure induced by Tpy).

Proof. Let Y = D/E be a finite imaginary sort (in 74) and let # : D — Y be the
canonical surjection. As the field sort is dominant, we can assume that D is a definable
subset of K" for some n. Let C D A be as in Lemma 5.19. As Y is finite and C < M,
Y(C) = Y (M) and there exists a finite set H € K"(C) meeting every E-class. Let W be
some finite set in RV(C), of bigger cardinality than H, and 4 : W — H any surjection.
Note that any such surjection is £(C)-definable. Composing, we have an £(C)-definable
surjection ¥ : W — Y. But there are only finitely many maps W — Y, hence they are all
algebraic over RV(C) U A = RV(M) U A, and by stationarity of C over RV(M) U A, v is
L(RV(M) U A)-definable. Let ¢ € RV(M) be such that y and W are L£(Ae)-definable.
Let W be defined by the L(Ae)-formula ¢(x,e) and by the L(Ae)-formula
¥ (x, y, e) (which implies that for any ¢’, (M, M, €') is the graph of a function with do-
main ¢ (M, ¢’)). Then the formulas ¢ (x, z) and ¥ (x, y, z) define, respectively, a subset D’
of RVI¥I*1 and a surjection ¥ : D’ — Y. Let E’ be defined by E'((x, z), (x, 7)) <
Yy ¥(x,y,z) = ¥(x',y,z). Then we have an L£(A)-definable bijection D'/E' — Y,
and since RV is considered with the structure induced by T4, D’/E’ is a finite imaginary
sort of RV. O

Proof of Theorem 2.7. Let K = PLg and let T = Th(K) (with constants added as in
Corollary 5.16). As we have already proved EI/UFI in Corollary 5.16, by Lemma 2.5 it
is enough to show that for any A, T4 eliminates finite imaginaries in the sorts K, S,,.
Lete € acli?(A); then, by Lemma 5.22, there exists an RV-imaginary ¢’ interdefinable
over A with e. By EI in RV to the sorts RV and I (Proposition 5.8), there exists a tuple
d € RVUT such that ¢’ is interdefinable with d, hence e is interdefinable with d over A.
We have shown that any finite imaginary of T4 is coded (over A) in RVUT = T1 U S,
and the points of 77 and S are themselves coded in Sy U Sj. O

For a more canonical treatment of the parameters F in the pseudo-finite case, see [12]—it
would be interesting to adapt op. cit. to the pseudo-local setting.
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6. Rationality
Let r € N. For all tuples [ € N", when t = (1;)1<;<,, we write ¢! for [T« tl.l’
a power series Z,GNr ait’ € Qllt1, - - -, 1] with each a; € N is rational if it is equal
to a rational function in 71, ..., with coefficients from Q. In this section we prove
that certain zeta functions that come from counting the equivalence classes of definable
equivalence relations are rational.

For any finite extension L, of Q,,, it is natural here to consider the invariant Haar

. We say

measure iz, on GLy(Lp). In terms of the additive Haar measure ,u]Lsz 4 on L,IY 2, KL,
can be defined thus: for any continuous f: GLy(L,) — C with compact support,
[f&) dpr,x) = [ f(x)|det(x)|~N dqu’Jr(x). As det(x) is uniformly definable for
all Lp, Denef’s results on definability of p-adic integration [20] extend immediately
todu L, and the motivic counterpart of these results—see [21], although the result we
will be needing is already implicit in older work by Denef and Pas (see, e.g., [61])—also
extend to diug,,.

By left invariance, pr,(A - GL,(O(L)))) = pr,(GL,(O(Lp))), a number that de-
pends only on the normalization. We choose a normalization for .z, 4 and 1z, such that
forany A € GLy(L), we have

pr,(A-GLy(O(Lp))) = 1. (6.1)

Let K be a number field and let Ok denote its ring of integers. For each prime p, let §,
be a set of finite extensions of Q,,, each containing K, and let § = U » Sp- We will say that
(Rr,)rL,e5 and (EL,)1,e5 are uniformly K -definable in §, or just uniformly K -definable,
if there exist two Lg(K)-formulas ¢ and 6—i.e., Lg-formulas with parameters in K
independent of L), such that forall L, € §, R, = ¢(Lp) and Er, = 0(Lp). If K = Q
then we often write uniformly @-definable in § instead of uniformly QQ-definable in §. If
in addition §, = {Q,} for all p, then we often write uniformly ()-definable in p instead
of uniformly Q-definable in §.

By a (uniformly K-)definable family Ry, = (Rp, )iz of subsets of L;,V we
mean a (uniformly K-)definable subset Ry, of Lé,v x 7" —where Val(L;j) is identified
with Z—and we write Ry, ; for the fiber above [ of the projection from Ry, to Z". By
a (uniformly K -)definable family E L, = (E L,,,l)lezr of equivalence relations on Rp,
we mean a (uniformly K-)definable equivalence relation £y, on Ry, such that for every
X,y € R, if xEp,y then there exists / € Z" such that x,y € Ry, 1. We then have a
(uniformly K-)definable equivalence relation Ey,; on Ry, ; for every [, and by a slight
abuse of notation we can regard (Ey, ,,,l)leZ’ as a (uniformly K -)definable family of sub-

sets of LIZJN . The set N” is a (uniformly K -)definable subset of Z", so it makes sense to
talk of (uniformly K -)definable families R L, = (RLPJ)IGNr, etc.
Now we come to the main result of this section (cf. [33, Theorems 1.3 and 1.4]).

Theorem 6.1. Let §), and § be as above (note that we do not assume §, is nonempty
Jor infinitely many p). For all L, € §, let Ry, = (Rr, ien be a family of subsets
of LIJY and let Ep, = (ELp,l)leN" be a family of equivalence relations on (RL,,,Z)leN'
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such that (RLP)L,,ES and (ELP)LPGS are uniformly K-definable in §. Suppose that for
eachl € N" and each L), € L, the set of equivalence classes Ry, 1/EL,. is finite. Let
ar, = |RLpJ/ELpJ|' Then the power series

S1,(1) =Y ar,at’ € Qlln, ... 4]
leN"
is rational for every L, € §.

Moreover, there exist k,n,d € N, there exist tuples (a;)j<x of integers and (b;) <k of
elements of N', and for all tuples | € N" with |l| := Ziir l; < d there exist q; € Q and
varieties X; over Ok, such that the following holds:

(1) forall j, aj and b; are not both 0;
(2) forall p > 0andall L, € §p, we have

Z\llsd ‘11|X1(res(Lp))|tl

S p(t) = - .
t Ires(Lp)|" [Tj— (1 — Ires(Ly)[% b)

6.2)

Suppose we are given power series SL,, (t) = Z,eNr aLp,ltl € QI[[t, ..., t]] for each
L, € §. We say the power series (S., (1)) L,z are uniformly rational for p > 0 if there
exists a prime po such that the Sz, (¢) are of the form given in (6.2) for all L, € § such
that p > po.

Remark 6.2. (1) Assume ), is finite for all p (this is the case in most of our applications
in Sections 7 and 8). Let L, be the language of rings. At the cost of replacing the X;
with quantifier-free £x(O )-definable sets, we can make (6.2) hold for every L, where
k,n,d,the a;, the b;, the g; and the X; are all independent of the choice of L. In this case,
we say the power series (Sg,(7))L,ez are uniformly rational. In particular, suppose we
are given definable R, and E ) as above, but just for a single prime pg and a single L.
Then taking § = {L,}, we find that the power series

Sty = D vyt € Qllnn. ... 1]
leN"
is rational, and is of the form (6.2) if we allow the X; to be quantifier-free Ls(Ok)-
definable sets (in fact, we can take X; just to be a single point).

(2) Often in this kind of rationality theorem, we can take ¢; = 1 for all /. There are
two reasons why more complicated rational coefficients appear here. The first reason is
to turn the X; into varieties instead of definable sets, and the other reason is to get rid of
the residual constant symbols that appear due to elimination of imaginaries.

(3) Given uniformly rational power series (Sr,(f))r,e5, we define ¢r,(s) =
S L, (lres(Lp) | %), where s is a complex parameter. Then oL, (s) has the form

> i1<a 911 X1 (res(Ly))| Ires(Lp)| ™"
Jres(Lp)|" [Tj_y (1 = Ires(Ly)| ")

where the X; etc. are as in Theorem 6.1. It then follows by a change of variable that for
any so € Z, the function oL, (s — s0) (regarded as a function of s) also has the form (6.3).
(The only slight subtlety here is that the change of variable might lead to a factor of the

oL, (s) = (6.3)
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form [res(L) | in the denominator where n < 0; but in this case, we can delete the factor
and replace each X; with X; x A"))

(4) Our applications in Sections 7 and 8 below use only the single-variable formula-
tion of Theorem 6.1 (but see Remark 8.11).

Proof of Theorem 6.1. By uniform EI (Corollary 2.9)—and the fact that elimination of
imaginaries still holds after adding new constants for K—there exist integers m| and m»,
some N' € N.( and some ng\[ (K)-formula ¢ (x, w) such that for all p > 0, for all
proper expansions to Eé/ of L, € §p, ¢ defines a function fip : RLp — L;,"z X Sy (Lp)
such that for every x,y € Rp,,xEL,y & fip(x) = fip(y). Let fi,, — (fi/p’ fr,)
where fi’p : Ry, — Ly? and fr, : R, = Sm(Lp). Forl e N',let &, = {fip(x) :
X € RLP,I} and ELP = ELPJ; SO ELPJ - L;"z X Smy (Lp) is finite, and it is the series
Zl |8LI,,1|tl we wish to understand. Let 7L, : ng — Sm, (Lp) be the projection, and let
Fr,i=mL,EL,1)-

It follows from Lemma 5.5, and the fact that on the valued field sort the model-
theoretic algebraic closure in ACVF coincides with the field-theoretic algebraic closure,
that the size of the fiber e, (x) = |(mL p)’1 (x)] is bounded by some positive integer D
uniformly for p >> 0. Consequently, we may partition Fr,; into finitely many pieces

Z,,,l ={x € Fr,1:ep(x) = v}; then

Eatt =Y vy |F I,
Xl] Ll ;) ;| 7l
so it suffices to prove that the series for F 1];, ; has the form (6.2).

Fix vandlet Fp,; = F L”p’ ;> we need to retain only the information that (Fr, /)r,eg
is a family of finite subsets of S, (L), uniformly K -definable in §. We can identify each
element of S,,(L,) with an element of GL,,(L,)/GL,,(O(L)), i.e., with a left coset of
GL» (O(Lp)); let G, 1 be the union of these cosets. By (6.1), we have

wr,(Gr, 1) = IFr,.1l.
Thus
D OVFL =Y e, (G, € Qlln, ... 11,
1 1

We can apply [21, Theorems 1.1 and 3.1] to these series to obtain uniform rationality.
Note that, due to the constants added for elimination of imaginaries, we need parametric
versions of these results (cf. [16]). So we find n, a;, b; as in the statement of Theorem 6.1,
and varieties X; over Ok[y]—where y is a tuple of variables specialized in res(L ) to
any tuple (k, : n € N) of unramified n-Galois uniformizers—such that (6.2) holds (we
can take ¢; = 1 for now). Let now show that we can choose the X; over Ok at the cost of
making g; nontrivial. Let

Cn(Lp) = {ky €1es(Lp) : ky is the residue of an unramified n-Galois uniformizer}.

If res(Lp)[wy] is of degree d = d,,,Lp over res(L), then

d_
1Ca(Ly)] = ¢(n)(|reS(an)| 1)’
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where ¢ is the Euler totient function. Let C = [],.nr Cy and for all ¢ € C(L)), let
Xc,1(Lp) be the Lj,-points of the specialization of X; to ¢ and ¥; := L[ceC X1. Then
[Y;(res(Lp))| = |Cn(Lp)|1X;(res(Lp))|. It follows that

—n |Y1(res(Lp))|
X L = 1 =, ’
| X (res( p))' d2|n: d"~LP_d¢(n) 1— |I'eS(Lp)|d

where 14, Ly=d = lifdy 1, = d, and 0 otherwise. Note that ¥; is an L5(O)-definable
set and hence, replacing | X;(res(L))| with the RHS of the above equation, we obtain
a rational function of the right form where the X; are L3(Ok)-definable, but, by [21,
Theorem 2.1], X; may be assumed to be a Og-variety for p > 0.

For L), such that p is too small, we can still prove the rationality of Sz, by the same
argument using results for finite extensions of p-adic fields instead of those for ultra-
products: replace Corollary 2.9 with Theorem 2.6, Lemma 5.5 with the proof of (i) (rela-
tive algebraic boundedness) in Section 4, and [21, Theorem 1.1] with [20, Theorems 1.5
and 1.6.1]. O

Remark 6.3. It follows from the uniform formula (6.2) we gave for S, in Theorem 6.1
that there exist ¢ € Q and n € N such that we have the following uniform growth estimate
onar,;:forall/,all p>>Oandall L, € §,

ap,. < clres(L,)|"M. (6.4)

This estimate can be obtained by applying (6.2) and using a polynomial upper bound on
the number of IF;-points of the varieties X;.
If §, is finite for all p then (6.4) holds for every L, € §.

Below we consider uniformly J-definable families that arise in the following way. Take
Ly, to be {Q,} for all p. To simplify the notation in this case, we use subscripts p
instead of Q, (hence we write D, and S,(f) below rather than Dq, and Sg, (1))
Let D, C QI];/ , let £, be an equivalence relation on D, and suppose (D,)p prime
and (£,)p prime are uniformly ¢J-definable in p. Suppose that f,1,..., fp,r: Dp —
Q,—{0} are uniformly {-definable functions such that for every [ € Z', the sub-
set {x € Dy : |fpix)] = p~li} is a union of Ep-equivalence classes. Set D, =
{1 fp 1O L fprXD) - x € Dp} C (@g x Z" and define an equivalence rela-
tion E, € D, x D, by (x,s1,...,5)E,(x',s1,...,s.) if xE,x" and s; = 5] for all i.
Then we can regard (D)) p prime as a uniformly (J-definable family of sets and (E,)p prime
as a uniformly #-definable family of equivalence relations on (Dp)p prime-

We now consider the abscissa of convergence of the zeta function in the one-variable
case (under the assumption that £, = {Q,} for all p), and give a proof of Theorem 1.4.
Recall that if ¢(s) = Zflozl ayn—* is a zeta function then the abscissa of convergence
a of ¢(s) is the infimum of the set of s € R such that the series for ¢(s) is convergent.
Moreover, if s € C then ¢ (s) converges if Re(s) > « and diverges if Re(s) < «.

We give a more precise statement of Theorem 1.4.
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Theorem 6.4. Let L, = {Q,} for every prime p. Assume the notation and hypotheses of
Theorem 6.1 and define {,(s) = S,(p™*) (cf. Remark 6.2(3)). Assume that the constant
term of {p(s) is 1 for all but finitely many primes and set {(s) = ]_[p ¢p(s). Then the
abscissa of convergence of ¢ (s) is rational (or —o0).

Let (£, (s5))p prime be a family of zeta functions each of the form ¢, (s) = tho:o apap ™.
Consider the formal product ¢ (s) given by ¢(s) =[] » {p(s). To ensure this makes sense,
we assume that the constant term a, o is 1 for all but finitely many primes. To prove
Theorem 6.4, we need to control the behavior of the p-local factors ¢,(s). Our proof
is similar to parts of Avni’s proof that the abscissa of convergence of the representation
zeta function of an arithmetic lattice in a semisimple group is rational (see [6, proof
of Theorem 6.4], and cf. also [33, Lemma 4.6(1)]), but the details are slightly different
because we allow the coefficients ¢; in (6.2) to be negative.

We need an estimate on the size of the varieties X;(IF,,) in (6.2). Recall the concept
of an Artin set [6, Definition 4.6]; as noted in loc. cit., an infinite Artin set A has positive
analytic density, which implies that [ pea(l +1/p) diverges.

Lemma 6.5. Let X be a variety defined over 7. Then there exist some partition of the
set of primes into r disjoint Artin sets Ay, ..., Ay, some ¢ > 0 and, for alli < r, some
(di, ni) € N x Qs such that for every prime p, if p € A;, then

|X(Fp) — pip%| < ephi=1/2, (6.5)

Proof. This follows from [6, Corollary 4.7], taking the parameter n and the formula
¢(x,y) of loc. cit. to be 0 and a formula ¢ (x) that defines X, respectively. Note that
the quantity Ny , in loc. cit. is 1 if (6.5) holds for a given p € A;, and 0 if it does not, so
(6.5) holds for sufficiently large p. By increasing c if necessary, we can make (6.5) hold
for all p. m}

‘We recall two standard facts.

(I) If (xy) is a sequence of nonnegative real numbers then [ [, (1 + x,) converges if and
only if ), x, converges.
(II) The abscissa of convergence of a finite product of zeta functions with nonnegative
coefficients is the maximum of the abscissae of convergence of the factors.

Let A be a set of primes with positive analytic density (in particular, this implies that A

is infinite). Let t € N.g, letd;,...,d; € Z, let ey, ..., e; be distinct positive integers
and let g1, . .., g be nonzero real numbers. Let k € N, letn € Nand letay,...,ar € Z,
bi,...,br € Nog.Letu € Nandlet gy, ..., g, be nonzero integers. Lete, ..., e > 0,

let 1,...,u; > Oandlet fi,..., fi: A — R be such that | f;(p)| < w;p% ¢ for all
p € A. Consider the p-local zeta function

i a(p® + fi(p)p~as

. (6.6)
P Ty (1= pen) TT5_ (1 — p@bi%)

Lp(s) =1+

We assume that the coefficients of £, (s) (as a power series in p~*) are nonnegative.
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We wish to determine the abscissa of convergence « of £ (s) := [] peA ¢{p(s). For each
p € A, the poles of ¢,(s) lie in the set {a;/b; : 1 < j < k}; but not every a;/b; is
necessarily a pole of ¢, (s), since the numerator of the fraction on the RHS of (6.6) might
have a zero at a; /b;. Let E = {j : 1 < j < k, a;/b; is a pole of ¢, (s) for some p € A}.
Set My = max{a;/b; : j € E} (we take M = —o0 if E is empty).

Givens € Randi € {1, ..., t}, we say that s is i-dominant if d; — e;s > d; — ¢;s for
all/ # i. If s is not i-dominant for any i then we say that s is critical. The set of critical
points is finite (each critical point satisfies an equation of the form d; — e;s = dy — eps
for some distinct [ and I’, and we assume that ¢; # ¢;/).

Lemma 6.6. Let the notation be as above. Then o is rational or —oo.

Proof. If t = 01in (6.6) then ¢,(s) = 1 forall p € A, so @ = —o0 and we are done.
Hence we can suppose that # > 1; in particular, ¢, (s) is a strictly decreasing function of s
for s > M. For any s € R, if {(s) converges then standard results on infinite products of
Dirichlet series imply that each ¢, (s) converges. Hence o > M.

For s € R, set

B(s) = ]nillaé(dl —es) —n— Z gm + Z (bjs — aj).

gm>0 aj/bj=s

Then B(s) is piecewise linear, so it is continuous. We show that B(s) is a strictly decreas-
ing function of s for s > Mj. To see this, let s € R. If s is not critical then s is i-dominant
for some i, and it follows that there exists £ > 0 such that

t
E~'phimas < ‘Zqz(p"’ + filp))p~*| < Ephi=e*
=1

for all sufficiently large p € A. Moreover, there exists D > 0 such that for all j and all
p € A,if s > aj/bj then 1 — p%~bis > D, while if s < aj/bj then |1 — pu—bis| >
Dp%~bis Tt follows from the above discussion, the definition of {p(s) and the bounds
on the f; that for any s € R such that s > My, s is not critical and s # a;/b; for any
1 < j <k, there exists C > 1 such that

TP < gps) =1 = CpPY (6.7)

for all sufficiently large p € A. Since each ¢,(s) is strictly decreasing for s > M,
B(s) must therefore also be strictly decreasing for s > M, as claimed. Hence there is
at most one point so > M; such that B(sp) = —1. Set My = sp if this exists; oth-
erwise set M, = —oo (note that in the latter case, B(s) < —1 for all s > M|, as
limg_, o0 B(s) = —00.) We show that « = max (M, M3).

Let s > M; be such that s is not critical. Suppose s < M>. Then B(s) > —1, so
ZpeA C~ 1 pP® diverges since A has positive analytic density, so ]_[peA(l + C~1phl)y
diverges by fact (I). Hence £(s) = [] pealp (s) diverges by (6.7) and the comparison test,
and it follows that s < «. If s > M5 then B(s) < —1, and a similar argument shows that
s > o. We deduce that if M, < M then « = M, and also if My > M then « = M.
This completes the proof. O
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Proof of Theorems 6.4 and 1.4. By Theorem 6.1 and Remark 6.2, equation (6.2) holds
for every prime p, and the definable sets X; are varieties over Z for all but finitely
many p. Hence for each p, ¢,(s) can be written as a rational function, where the nu-

merator is a polynomial in p~® and the denominator is of the form I—[f;l (1 — pu=bi%)
with each b; > 0. (Here we have ordered the factors in the denominator of (6.2) so that
bi,....,by > 0and byy,...,br = 0 for some 0 < k' < k.) This implies that the
abscissa of convergence of each ¢, (s) is rational.

It now follows that by fact (II), we can disregard finitely many primes: that is, it is
enough to prove that [ ] > po Sp(s) has rational abscissa of convergence for some prime po.
We can assume that ¢, (s) has constant term 1 for every p > po. The ¢,(s) all have
nonnegative coefficients by construction. Let S;(#) = S, (1) — 1 and let £7(s) = §p(s) — 1
= S; (p™%). Then S;‘ (t) is the power series that arises from counting the equivalence
classes of a uniformly @-definable family (in § := | p>p O{Q »}) of equivalence relations
—just take the family of equivalence relations corresponding to S,(#) and remove the
definable piece coming from [ = 0—so the power series (S;(7))p prime are uniformly
rational for p > pg by Theorem 6.1 and Remark 6.2. Hence S;(t) is of the form given in
(6.2) for all p > po, with the sum in the numerator beginning at / = 1 rather than / = 0.
Explicitly, we have

Y gl X ()|
pITio, (1 — pliebiy

for all p > pg, where the X; etc. are as in Theorem 6.1.

We now apply Lemma 6.5 to the varieties X;. We can choose r, Ay, ..., A;, ¢, dj,
such that (6.5) holds for each of the X; (note that complements, finite unions and finite
intersections of Artin sets are Artin sets). By increasing po if necessary, we can assume
that each A; is infinite and contains no primes less than or equal to po; in particular,
each A; has positive analytic density. It is enough by fact (II) to show that [ | ped; Sp (s)
has rational abscissa of convergence for each i. It follows from (6.5) and (6.8) that the
hypotheses of Lemma 6.6 are satisfied for (£, (s))pea4;, so the desired result follows from
Lemma 6.6. O

Sk = (6.8)

Remark 6.7. As we discuss in Section 7 below, one-variable zeta functions that arise
from cone integrals can be meromorphically continued beyond the abscissa of conver-
gence, so one can apply Tauberian theorems and obtain more precise growth estimates
than that provided by (6.4): see [33, Theorem 1.5]. In particular, this applies to the sub-
group zeta functions that we discuss in Section 7 (see [33, discussion following Theo-
rem 1.1]). Du Sautoy and Grunewald give a simple example of a zeta function that cannot
be analytically continued beyond its abscissa of convergence (see [33, (1.3) and surround-
ing discussion]). Hence one should not expect the stronger growth estimates to hold for
zeta functions arising from an arbitrary uniformly -definable equivalence relation.

Let us conclude this section with a short aside on positive characteristic local fields by
explaining how Theorem 6.1 also yields transfer results between positive characteristic
and mixed characteristic:
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Corollary 6.8. Let ¢(x, y, 1) be an Lg-formula where [ is a tuple of variables from the
value group. The following are equivalent:

(1) Forall p > 0, the formula ¢ defines a family of finite equivalence relations E,; on
some set D, ; in Qp.

(2) Forall p > 0, the formula ¢ defines a family of finite equivalence relations El’7 ; on
some set D;,J inFp,((1)).

Moreover, whenever the above statements hold, there exists a prime po such that for all
P = po, the series Sp(t) = ) o |Dp,1/Ep,1|tl and Sl’,(t) =D en |D;,J/E1’Ll|tl are
uniformly rational and S, = S,,.

Proof. This follows immediately from (the proof of) Theorem 6.1 and the fact that for all
nonprincipal ultrafilters ¢ on the set of primes, [ | » Qp/U and [ ] » F,((¢))/U are elemen-
tarily equivalent. O

7. Zeta functions of groups

We now consider some applications to some zeta functions that arise in group theory.
From now until the final part of Section 8 we take §, to be {Q,} for all p. Most of the
examples in this section come from the theory of subgroup growth of finitely generated
nilpotent groups. In Section 8 we consider the representation zeta function of finitely
generated nilpotent groups. We use Theorem 6.1 to prove uniform rationality of these zeta
functions, and Theorem 6.4 to prove that the abscissa of convergence of the corresponding
global zeta function is rational. In the subgroup case this gives alternative proofs of results
of [39] and [33].

Throughout this section, I" is a finitely generated nilpotent group. For any n € N,
the number b, of index n subgroups of I' is finite (for background on subgroup growth,
see [54]). The (global) subgroup zeta function of T is defined by &r(s) := Z;’lo:] b,n—*
and the p-local subgroup zeta function by &p, p(s) 1= Y oo by p™™ (the symbol ¢ is
commonly used to denote the subgroup zeta function but we reserve this for the represen-
tation zeta function in Section 8). These expressions converge if Re(s) is large enough.
Grunewald, Segal and Smith observed in [39] that Euler factorization holds: we have

tr(s) = [ [&r.p(),
p

where p ranges over all primes. Theorem 7.2 below (and [39, Theorem 1]) says that
&r, p(s) is a rational function of p~°. Hence &r(s) enjoys many of the properties of the
Riemann zeta function.

To understand the behavior of the global subgroup zeta function, one needs to study
the behaviour of the rational function &r ,(s) as p varies (cf. [6]). Du Sautoy and Grune-
wald introduced a class of p-adic integrals they called cone integrals. They showed [33,
Theorem 1.3] that if 7,(s) := Y~y bp,p " is the zeta function arising from an Euler
product of suitable cone integrals then 7, (s) is uniformly rational for p > 0 (in the vari-
able r := p™*) in the sense of Section 6. In fact, they proved a considerably stronger result
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[33, Theorem 1.4] and deduced various analytic properties of 7(s) [33, Theorem 1.5]: for
instance, they showed that 7(s) can be meromorphically continued a short distance to
the left of its abscissa of convergence. It follows from these results on cone integrals
that &1, (s) is uniformly rational for p > 0 [33, Section 5]. For I" a finitely generated
free nilpotent group of class 2, a stronger uniformity result holds: there is a polynomial
W(X,Y) € Q[X, Y] such that &r ,(s) = W(p, p~*) for every prime p [39, Theorem 2].
Du Sautoy, however, has given an example showing that this stronger result does not hold
for I' of arbitrary nilpotency class [32].

Theorem 7.2 below deals with some variations on the subgroup zeta function. In or-
der to formulate the problem in terms of definable equivalence relations, we need to re-
call some facts about nilpotent pro-p groups, including the notion of a good basis for a
subgroup of a torsion-free nilpotent group [39, Section 2]; we will need these ideas in
Section 8 as well. We write G ip for the pro-p completion of a group G. Let j: I' — f‘
be the canonical map. Then I, is finitely generated as a pro-p group, so every finite-
index subgroup of 1",7 is open (cf. [25, Theorem 1.17]) and has p-power index (cf. [25,
Lemma 1.18]). Since T' is finitely generated nilpotent, every subgroup of p-power index
is open in the pro p topology on T'; in partlcular there is a bijection H + j(H) be-
tween index p" subgroups of I' and index p” subgroups of Fp, and j(H) = Hp (see [39,
Proposition 1.2]). For any H < T of index p", we have ['/H = Fp/j (H).

Let A be a finitely generated torsion-free nilpotent group. A Mal’tsev basis is a tuple
at,...,ag of elements of A such that any element of A can be written uniquely in the
form a%‘ .ah R , Where the A; € Z. We call the A; Mal’tsev coordinates. Moreover, we
require that group multiplication and inversion in A are given by polynomials in the A;
with coefficients in Q, and likewise for the map A x Z — A, (g, 1) — g”. We may
regard the a; as elements of the pro-p completion A p» and analogous statements hold,
except that 2 and the Mal’tsev coordinates A; now belong to Z), (see [39, Section 2]). In
particular, the map j: A — A is injective and we may 1dent1fy A with ZR

Now let H be a finite-index subgroup of A p>ofindex p”,say. In[39],a good basis for
H is defined as an R—tuple hi,...,hg € H such that every element of H can be written

uniquely in the form h)‘l .- )”R (Ai € Zp), and satisfying an extra property which does

not concern us here. We say that hi,....hg € A is a good basis if it is a good basis for
some finite-index subgroup H of A For each i, we can write

hi = ai\il . ?;R (7.1

and we recover |K p: H| = p" from the formula

|A11d22 - ARrl = p~". (7.2)
Any finite-index subgroup of A p admits a good basis. Often we will identify a good basis
hi, ..., hg with the Rz—tuple (Aij) of coordinates.

Proposition 7.1. Let D, C foz be the set of good bases (L;j) of K,,. Then the sets
(Dp)p prime are uniformly (-definable in p (in the structure Q).

Proof. This follows from the proof of [39, Lemma 2.3]. O
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For each nonnegative n consider the following:

(a) the number of index p” subgroups of A;

(b) the number of normal index p" subgroups of A;

(c) the number of index p” subgroups A of A such that A p = A P

(d) the number of conjugacy classes of index p” subgroups of A;

(e) the number of equivalence classes of index p" subgroups of A, where we define
A~BifA, = B,.

The rationality of Z;io bp.t" in (a)—(d) of the following result are due to Grunewald,
Segal, and Smith [39, Theorem 1]; for uniformity statements and the rationality of the
abscissa of convergence in (a)—(d), see [33, Section 1] and the start of this section. Here
we give a different proof. Observe that Theorem 7.2 for case (e) is new; here the equiv-
alence relation does not arise from any obvious group action, and Theorem 6.1 gives a
genuinely new way of proving uniform rationality. This illustrates the robustness of our
methods, which are not sensitive to the precise details of how the objects to be counted
are interpreted.

Theorem 7.2. Let by , be as described in any of (a)—(e) above. Set S, (t) = ZZOZO bp ut".
Then the power series (Sy,(t))p prime are uniformly rational. Moreover, the zeta function
£(s) =] » Y ol obp.np™™ has rational abscissa of convergence.

Proof. Clearly b, o = 1 for all p, so rationality of the abscissa of convergence of & (s) will
follow from Theorem 1.4 once we have proved the other assertions of Theorem 7.2. To
prove the rest of the theorem, we show how to interpret the objects that we are counting in
a uniformly #J-definable way, then apply Theorem 6.1. Consider case (a). Let D), be as in
Proposition 7.1. Define f,: D, — Zp by fp(Xij) = A11 - - - Agrg; note that the functions
(fp)p prime are uniformly (J-definable in p. Define an equivalence relation £, on D, as
follows: two R-tuples (%;;), (u;;), representing good bases hy, ..., hg and ki, ..., kg
for subgroups H, K respectively, are equivalent if and only if H = K.

Now the equivalence relations (€p) prime are uniformly #-definable in p: each &, is
the subset of D), x D), given by the conjunction for 1 < i, j < R of the formulae

. . @) @)
o, .ol ey ki =] - nGE
and . . O] ()
A, ez by =k kR

and these become polynomial equations independent of p over Q in the A;;, the u;;, the o;
and the ; when we write the h; and k; in terms of their Mal’tsev coordinates (see (7.1)).

Construct D, and E, from &, Dj, and f, as in the paragraph after (6.4). Using (7.2),
we see that foreachn € N, D, ,,/ E ,, consists of precisely b, , equivalence classes. We
now deduce the rationality and uniform rationality assertions from Theorem 6.1 (taking
S§p = 1{Qp} for all p) and Remark 6.2.

The proofs in cases (b)—(e) are similar, with the definitions of D), and £, appropriately

modified. For example, in (b) we replace D), with the set Dpﬁ of tuples (%;;) that define a
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normal finite-index subgroup H; a tuple (A;;) corresponding to a finite-index subgroup H
belongs to D;—] if and only if it satisfies the formula

(Vg € Ap)(Yh € H)@vy,...,vr € Zp) ghg™ =AY - U,

which is made up of polynomial equations independent of p over Q in the v;, the A;; and
the Mal’tsev coordinates of g and 4. In case (d), the equivalence relation is the subset of
D, x D, given by the formula:

. . . () ()
there exist g € A, and al.(/), tl.(J) €Z,forl < j < Rsuchthatgh;g~! = k(;‘ . -k(;R

() ()

and g~ 'kjg = h;' ---hf forl <j<R.
This is made up of polynomial equations independent of p over Q in the Mal’tsev co-
ordinates of g and of the /; and the k;. In cases (c) and (e), we can express the isomor-
phism condition in terms of polynomials in the Mal’tsev coordinates (compare the proof
of Proposition 7.4 below). O

Remark 7.3. Du Sautoy and Grunewald prove that Theorem 7.2(a) & (b) actually hold
for an arbitrary finitely generated nilpotent group I', possibly with torsion. To prove this
in our setting, write I as a quotient A/® of a finitely generated torsion-free nilpotent
group A. Theorem 7.2 now follow for cases (a)—(e) from our arguments above with suit-
able modifications: for example, for case (a), we count not all index p” subgroups of A,
but only the ones that contain ®. For details, see the argument for the last two items of
Lemma 8.6.

The proof for case (d) of Theorem 7.2 is not given explicitly in [39], but the appropriate
definable integral can be constructed using the methods in [29, proof of Theorem 1.2];
what makes this work is that the equivalence classes are the orbits of a group action.
The language of [29] contains symbols for analytic functions, but our methods still apply
there because we can use the results of Cluckers from the Appendix, which do hold in the
analytic setting.

Here is another application, to the problem of counting finite p-groups.

Proposition 7.4. Fix positive integers c, d. Let cp , be the number of finite p-groups of
order p" and nilpotency class at most ¢, generated by at most d elements. Set S, (1) =
4 P y 8 y p
Z;ﬁo cpnt". Then the powego series (Sp(t))p prime are uniformly rational. Moreover, the

zeta function x(s) =[] » Y 0 Cp.n P~ " has rational abscissa of convergence.

Proof. Asin Theorem 7.2, the rationality of the abscissa of convergence will follow from
Theorem 1.4, and to prove the rest it is enough to interpret the objects we are count-
ing in a uniformly #J-definable way. Let A be the free nilpotent group of class ¢ on d
generators (note that A is torsion-free). Any finite p-group of order p" and nilpotency
class at most ¢ and generated by at most d elements is a quotient of A, by some normal

subgroup of index p". Let D; and f), be as in the proof of Theorem 7.2. Define an equiv-

alence relation &, on D‘,,ﬂ as follows: two R-tuples (4;;), (1;;), representing good bases
]’/l\], e, h& and k1, ..., kg for subgroups H, K respectively, are equivalent if and only if
Ap/H = A,/K.
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The result will follow as in Theorem 7.2 if we can show that the equivalence relations
(&p)p prime are uniformly @J-definable in p. Letay, ..., ag be the Mal’tsev basis of A, as

before. We claim that £, C D,,S X D,,S is given by the following conditions:

[fp Qi) = | fp(ijl, (7.3)
3by, ..., b, € z[,)(\v’vl,...,v, € Zl,)a‘f‘ ~-~a;€R €H @b?‘ -~-b‘1’f ek (7.4)
and
~Voi,...,00,T1,...,Tf € Zp)(Elvl, co VU €7Zp)
(afl)'l . G;Raltl .. .a;R = ai’l . R) A (bdl .. URb‘El L b;R c b‘l)l . b;RK) (7.5)

To prove this, suppose that (7.3)—(7.5) hold Then |A tH| = |K : K| and the map
aiH — b;K defines an isomorphism from AP/H onto AP/K Conversely, if g is an iso-
morphism from Ap/H onto Ale then [Ap: H| = [Ap: K|, s0 | fp(Aij)| = | fp(uij)l.
Moreover, we can choose b; € A, such that g(a; H) = b; K for 1 <i < R. Then for all
Vi,...,V € Z we have

v %
a'-apt € H & b'-- b €K, (%)
and forall oy, ..., 0., 71, ..., T, € Zthere exist vy, ..., v, € Z such that
(aj'---agfal' ---apt =aj' - -ag) A @] - aRb”- b eb' b K); (k%)

since H, K are closed and the group operations are continuous, () and (%) hold with
Z replaced by Z,. This proves the claim. The formulae above involve only the functions
(fp)p prime—which are uniformly #-definable in p—and polynomials independent of p
over Q in the Mal’tsev coordinates, so the equivalence relations () prime are uniformly
(}-definable in p, as required. O

Du Sautoy’s proof [31, Theorem 2.2], [30, Theorems 1.6 and 1.8] uses the fact that an
isomorphism Ap /H — Ap /K lifts to an automorphism of Ap, which implies that the
equivalence relation &, arises from the action of the group Aut(A ), a compact p-adic
analytic group. This allows one to express the power series Y .~ ¢p 1" as a cone integral,
from which uniform rationality follows (see the start of this section). Our proof is simpler
in its algebraic input, as elimination of imaginaries allows us to use less information
about &,.

Remark 7.5. Let I" be a finitely generated nilpotent group and let ¢, , be the num-
ber of isomorphism classes of quotients of I' of order p". Then the power series
(Z;.lo:o Cp,nt™)p prime are uniformly rational. If T is torsion-free then this follows imme-
diately from the proof of Proposition 7.4. If I' has torsion then we write I" as a quo-
tient A /® of a finitely generated torsion-free nilpotent group A and modify the proof of
Proposition 7.4 accordingly (cf. Remark 7.3).

8. Twist isoclasses of characters of nilpotent groups

By a representation of a group G we shall mean a finite-dimensional complex represen-
tation, and by a character of G we shall mean the character of such a representation.
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A character is said to be linear if its degree is one. We write (, ) for the usual inner
product of characters of G. If x is linear then we have

(xo1, x02)G = (01, 02)G 8.1

for all characters o and 07. If G’ < G has finite index then we write Indg, - and Resg/ .
for the induced character and restriction of a character respectively. For background on
representation theory, see [18]. Below, when we apply results from the representation the-
ory of finite groups to representations of an infinite group, the representations concerned
always factor through finite quotients.

We denote the set of irreducible n-dimensional characters of G by R,,(G). If N I G
then we say the character x of an irreducible representation p factors through G/N if p
factors through G /N (this depends only on x, not on p).

Notation 8.1. We say a character o of G is admissible if o factors through a finite quo-
tient of G. If p is prime then we say o is p-admissible if o factors through a finite p-group

quotient of G. We write Rf;d(G) [R,(,p ) (G)] for the set of admissible [ p-admissible] charac-
ters in R, (G). Note that Rf,p ) (G) is empty if n is not a p-power [18, (9.3.2) Proposition].

Given o1, o2 € R,(G), following [52] we say that o1 and o7 are twist-equivalent if o1 =
x o2 for some linear character y of G. Clearly this defines an equivalence relation on
R, (G); we call the equivalence classes twist isoclasses.

Observation 8.2. Let o1, 07 be irreducible degree n characters of G that are twist-equiv-
alent: say o = xo1. If N < G and o1, 07 both factor through G/ N, then so does .

If N1, N2 < G have finite [ p-power] index then N1 N N> also has finite [ p-power] index.
This implies that when we are working with twist isoclasses in de(G) [R,(,‘" )(G)], we
need only consider twisting by admissible [ p-admissible] linear characters.

Fix a finitely generated nilpotent group I'. The set R,,(I") can be given the structure
of a quasi-affine complex algebraic variety. Lubotzky and Magid analyzed the geometry
of this variety and proved the following result [52, Theorem 6.6].

Theorem 8.3. There exists a finite quotient I'(n) of I' such that every irreducible n-
dimensional representation of I factors through I (n) up to twisting. In particular, there
are only finitely many twist isoclasses of irreducible n-dimensional characters.

Thus the number of degree n twist isoclasses is a finite number a,,.

Definition 8.4. We define the (global) representation zeta function ¢r(s) by ¢r(s)
> o ayn~® and the p-local representation zeta function {r, p(s) by Zr p(s)

Yoo app™

It is shown in [69, Lemma 2.1] that ¢r(s) converges on some right-half plane. Voll [72,
Section 3.2.1] noted that {1 (s) has an Euler factorization

tr(s) =] Jerp6s)
p

for any finitely generated nilpotent group (cf. the proof of Lemma 8.5).
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We now turn to the proof of Theorem 1.5. Clearly a; = 1 by construction, so the ra-
tionality of the abscissa of convergence of ¢r(s) will follow as usual from Theorem 1.4.
To prove the rest of Theorem 1.5, we show how to interpret twist isoclasses in a uniformly
()-definable way. The equivalence relation in the parametrization is not simply the rela-
tion of twist-equivalence, which arises from the action of a group—the group of linear
characters of I'—but a more complicated equivalence relation.

The correspondence between index p” subgroups of I' and index p” subgroups of fp

gives a canonical bijection between R;,’i,) (I') and R;’Q) (Fp), and it is clear that this respects
twisting by p-admissible characters.

Lemma 8.5. For every nonnegative integer n, there is a bijective correspondence be-
tween the sets Ry (I')/(twisting) and R(}) (T,) / (twisting).

Proof. It suffices to show that given any o € Rj»(I"), some twist of o factors through a
finite p-group quotient of I'. By Theorem 8.3, we can assume that ¢ factors through some
finite quotient F of I". Let us also denote by o the corresponding character of F. Then F,
being a finite nilpotent group, is the direct product of its Sylow /-subgroups F;, where [
ranges over all the primes dividing |F|. Moreover [18, Theorem 10.33], o is a product of
irreducible characters o7, where each o; is a character of F;. Since the degree of an irre-
ducible character of a finite group divides the order of the group [18, Proposition 9.3.2],
all of the oy for I # p are linear. We may therefore twist o by a linear character of F
to obtain a character that kills F; for I # p, and this linear character is admissible by
Observation 8.2. The new character factors through F),, and we are done. O

The key idea is that finite p-groups are monomial: that is, every irreducible character
is induced from a linear character of some subgroup. We parametrize p-admissible irre-
ducible characters of I', by certain pairs (H, x ), where H is a finite-index subgroup of I',,
and x is a p-admissible linear character of H: to a pair we associate the induced charac-
ter Indzp X . We can parametrize these pairs using the theory of good bases for subgroups
of fp, and this description is well-behaved with respect to twisting. Two distinct pairs
(H, x) and (H’, x) may give the same induced character; this gives rise to a definable
equivalence relation on the set of pairs.

If ¢ is a character of H and g € f,, then we denote by g.v the character of g.H :=
gHg~' defined by (3.¥)(ghg™") = ¥ ().

Lemma 8.6. (a) Leto € R;ﬁ) (Fp). Then there exists H < Fp such that |FPLH| =p",

together with a p-admissible linear character x of H such that o = Indzp X-
(b) Let H be a p-power index subgroup of '), and let x be a p-admissible linear

character of H. Then Indzp X is a p-admissible character of Fp, and Indzp X is
irreducible if and only if for all g € F,,—H, Resﬁ:zm_[ g.Xjé Resgl_HnH X. More-
over, if Y is a p-admissible linear character of Fp and Ind;," X is irreducible then

r r r
Ind,} ((Res;} ¥)x) = ¥ Ind,} x.
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(¢) Let HH' < Fp have index p", and let x, x' be p-admissible linear characters of
H, H " respectively such that Indll;” x and Indzp/ x' are irreducible. Then Indl;f X =
Indzf’, x' if and only if there exists g € I:p such that Resi:ZmH, g.x = Reng_;mH, x'.

Proof. (a) Since o is p-admissible, it factors through some finite p-group F. Since finite
p-groups are monomial [18, Theorem 11.3], there exist L < F of index p" and a linear
character x of L such that c—regarded as a character of F—equals Indf x. Let H be
the pre-image of L under the canonical projection I, — F; Regarding yx as a character

of H, one can easily check that |Fp: H|=p'"ando = Indzp X.-
(b) Since x is p-admissible, the kernel K of x has p-power index in I'j, so K contains

a p-power index subgroup N such that N < FP. Clearly N < ker(Inde X), SO Ind%’ X is
p-admissible. The irreducibility criterion follows immediately from [18, Theorem 10.25].
By Frobenius reciprocity,

(Ind ”((ReS v)X)- !/flndH X)F, = ((RCS V)X ReS (k“ndH X H

((Res I/f)x (ResH” w)Res (Ind X H
= (x, Res (IndH O)r by (8.1)
= (Inde X,Inde X)F,, =1.

Now Indl;f x is irreducible, because Indzp X is and the degrees of Inde ((Resll,;‘!7 V) x)

and ¢ Ind g x are equal. We deduce that Ind g X= Indz” ((Res;f v)x).
(c) The Mackey Subgroup Theorem [18, Theorem 10.13] gives

/ H
Res " (IndH x) = Z Ind/ (Res? 1 8-2)- (8.2)
geH\T,/H
Here the sum is over a set of double coset representatives g for H ’\fp/ H (the characters
on the RHS of the formula are independent of the choice of representative). Since Indgf X
and Indil”, x' are irreducible, they are distinct if and only if their inner product is zero. We
have
T, f,, U
(Ind x, Ind, )F,,
= (Res " (Ind 0 X)X 'Y by Frobenius reciprocity

= Z (Indg_HmH, (Resi:ZmH, g.x), x'Yu by the Mackey Subgroup Theorem
geH\T,/H

= Z (Resi:ZmH, g%, Resg/HQH, X/)g.HﬂH’ by Frobenius reciprocity.
geH\T,/H
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This vanishes if and only if each of the summands vanishes, which happens if and only

if Res§ :Zm & X F Resg ;m v x' for every g, since the characters concerned are linear.
The result follows. m]

Write ' as a quotient A/® of a finitely generated torsion-free nilpotent group A: for
example, we may take A to be the free class ¢ nilpotent group on N generators for appro-
priate N and c.. Let m: A — T be the canonical projection, and leti: ® — A be inclu-
sion. Let A »» ©p be the pro-p completions of A, ® respectlvely Then (respectlvely i)
extends to a continuous homomorphism TTp: A p = F (respectlvely ip: @ — p),
and the three groups i p(G)p) ker7,, and the closure of ® in A all comClde (com-
pare [25, Chapter 1, Example 21]; because A is finitely generated nilpotent, it can in
fact be shown that i), is injective, and hence an isomorphism onto its image). Clearly p-
admissible representations of F correspond bijectively to p-admissible representations
of A that kill ker 77,. Now © is finitely generated (see, e.g., [73, Lemma 1.2.2]), so we
can choose a Mal’tsev basis 61, . . ., O for ®. We identify the 6; with their images in A

Let pupn be the group of all complex p"th roots of unity, and let ., be the group of
all complex p-power roots of unity.

Lemma 8.7. The groups pp and Q) /Z, are isomorphic.

Proof. Let p~>°Z < Q be the group of rational numbers of the form np™ forn € Z
and r a nonnegative integer. Then p~*Z N Z, = Z and Z,p~ > Z = Q,, so Q,/Z, =
p~°7Z/Z, by one of the standard group isomorphism theorems. The map g +—> €274
gives an isomorphism from p~*°Z/Z to pipx. O

Let ®: upo — Qp/Zp, be the isomorphism described above. Any p-admissible linear
character of a pro-p group takes its values in (p>, so we use @ to identify p-admissible
linear characters with p-admissible homomorphisms to Q) /Z,. Under this identification,
the product yi x> of two p-admissible linear characters x; and y» (regarded as functions
to C*) corresponds to their sum (regarded as functions to Q,/Z,).

Recall ouinotation of (7.1). Let ay, ..., ag be a Mal’tsev basis of A. Then any sub-
group H < A, has a good basis A1, ..., hg and we represent that basis by the tuple
Aij € Z), such that h; = ai‘“ . az’R.

Lemma 8.8. Let D, C Z]Ifz X Q[If be the set of tuples (A;j, yr), where 1 <1, j < R and
1 < k < R, satisfying the following conditions:

(a) the Aij form a good basis hy, . .., hg for some finite-index subgroup H of Zp such
thatker7, < H;

(b) the prescription h; — y; mod Z, gives a well-defined p-admissible homomorphism
x: H— Q,/Z, that kills ker 77,,;

(c) the induced character Indfl‘" X is irreducible.
Then the sets (Dp)p prime are uniformly @-definable in p. Moreover, Indzp X is a p-ad-

missible character of A, that kills ker 7w, and hence induces a p-admissible character
of T'p, and every p-admissible irreducible character of T, arises in this way.
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Notation 8.9. Given (1;;, yx) € D, we write W(A,;, yx) for the pair (H, x). Since the h;
generate H topologically, the p-admissible homomorphism x defined by the y; is unique.

Proof of Lemma 8.8. Condition (a) is uniformly {J-definable in p, by Proposition 7.1 (to
the formulae that define the set of good bases we add the formulae (Jvy;, ..., v,; € Z))
0j =h," -~ hp for 1 < j <s).Given that (a) holds, we claim that (b) holds if and only
if there exists an R2-tuple (1) such that:

(i) (u;j) defines a good basis k1, . . ., kg for a finite-index subgroup K of Zp;
(i) K < H;
(iii) kerw, C K;
(iv) there exist y € Q, and rq,...,rg € Zp, h € H such that the order of y in Q,/Z,
is equal to | H/K | and for every i we have h’i = h; and r;y = y; mod Zp. (Here x
denotes the image of x € H under the canonical projection H — H/K.)

To see this, note that if (b) holds then K := ker x is a finite-index subgroup of H which
satisfies (ii) and (iii). Take (u;;) to be any tuple defining a good basis for K. Then H /K,
being isomorphic to a finite subgroup of Q,/Z,, is cyclic, so choose i € H that generates
H/K and choose y € Q, such that x(h) = y mod Z,. We can choose ry, ..., rg € Z
such that i; = k' for each i, and it is easily checked that (iv) holds.

Conversely, suppose there exists a tuple (u;;) satisfying (i)-(iv). The map Z, — H,
A > h*, is continuous because it is polynomial with respect to the Mal’tsev coordinates,
so there exists an open neighborhood U of 0 in Z, such that h* € K forall » € U. Since
Z is dense in Zj,, we may therefore find ny,...,ng € Z such that h_, = h% for each i.
Hence H/K is cyclic with generator /.

We have a monomorphism g: H/K — Q,/Z, given by ,B(En) = ny mod Z,. Let

x be the composition H — H/K ﬁ) Qp/Z,. The canonical projection H — H/K is
continuous [25, 1.2 Proposition], so x (2*) = Ay mod Z,, for every A € Zjp. Condition (iv)
implies that x (h;) = y; mod Z,, for every i, as required. This proves the claim.

Now condition (i) is uniformly #J-definable in p, by Proposition 7.1. Condition (iii)
can be expressed as

Vv, ..., v € Zy) 3oy, ...,0R € ZLp) Gfl e f = k‘fl --~k;R. 8.3)
(8.3) can be expressed in terms of polynomials independent of p over Q in the u;;, the vg
and the o7, so condition (iii) is uniformly #J-definable in p. (Note that the 6; are fixed
elements of A, so their Mal’tsev coordinates are not just elements of Z, but elements
of Z.)
Similar arguments show that conditions (ii) and (iv) are also uniformly }-definable
in p. In (iv), note that the conditions A" = h; imply by the argument above that / is a
generator for H /K, so the condition that the order of y in Q) /Z, is equal to | H/K| can
be expressed as e K)A((Vz € Qp) Izl < Iyl = h! ¢ K). This shows that
(condition (a)) A (condition (b)) is uniformly ¢-definable in p.
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Condition (iii) implies that x kills ker7,. Hence Indfl” x kills ker7,, so Indfl” X
gives rise to an irreducible p-admissible character of I',. By Lemma 8.6(b), irreducibility
of the induced character can be written as

(Vg € A,—H)(3h € H) ghg™" € H and x(ghg™") # x(h).

Writing this in terms of the Mal’tsev coordinates, we see that condition (c) is uniformly
(}-definable in p. R
By Lemma 8.6(a), any p-admissible irreducible character o of I'j, is of the form

Ind}” ;" x for some finite-index subgroup L of F and some p- admlss1ble linear character x
of L. Let H be the pre-image of L under the projection A — F Regardmg o, X as

representations of A p» H respectively, we can easily check that o = — Ind5’ y X Choose
(Aij) defining a good basis A1, .. ., hg for H, and choose y, such that x (hx) = yx mod Z,
for all k. The above argument shows that (A;;, yx) € D). This completes the proof. O

Define f,: D, — Z, by fp(Xij, yx) = A11---Agrg. Define an equivalence rela-
tion £, on D, by (Aij, yk) ~ ()\;j, ) if Indgp x and Indg‘,’ x' are twist-equivalent,
where (H, x) = W(Aij, yx) and (H', x') = \IJ()J y;). The degree of Indg" X equals
[ fp iy YOI~ ' by (7.2), and likewise for (X’j, yk) so if (Ajj, yu) ~ ()L;.j, y;) then
| fp i 30l = 1 Gy 31

Construct D), and E, from £, D), and f}, as in the paragraph following Remark 6.3.
It follows from Lemma 8.8 and the definition of &, that D, , is the union of precisely a
E) n-equivalence classes (note that if one representation of I', is the twist of another
by some linear character ¢ of A, then v is automatically a character of I';, by Ob-
servation 8.2). To complete the proof of Theorem 1.5, it suffices by Theorem 6.1 and
Remark 6.2(1) to show that (Dp)p prime and (E)p prime are uniformly ¢-definable in p.

But the sets (Dp)p prime are uniformly #J-definable in p by Lemma 8.8, so it is enough to
prove the following result.

Proposition 8.10. The equivalence relations (Ep)p prime are uniformly ¥-definable in p.

Proof. Letay,...,ag be a Mal’tsev basis for A. Let D’ - QR be the set of R-tuples
(z1,...,2R) such that the prescription a; — z; mod Z, glves a Well defined p-admissible
linear character of A p that kills ker77,. We denote this character by &.. Similar argu-
ments to those in the proof of Lemma 8.8 show that the sets (D )p prime are uniformly
(-definable in p. Let (z1,...,2g) € D), let (H, x) = \Il()W, yk) and let hy, ..., hg

be the corresponding good basis for F£ Then A = ai‘ j‘e"R so E;(hr) = Ax1z1 +

-+ Akrzg mod Z,. Hence (H, (Ress” B2)x) = W(hij, v + Mazi + -+ Akrzr)- By
Lemma 8.6(c), if (H', x') = \IJ()»;J., y;) then (A;;, yx) ~ (A;J., y;) if and only if

31, ....2r) € D))(3g € Ap)(Vh € H)

_ Ay _
ghg™' € H' = ((Resy’ B)x)(h) = x'(ghg™").
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Writing this in terms of the Mal’tsev coordinates, we obtain an equation independent of p
involving D;j and absolute values of polynomials over Q in the A;;, the yi, the A; i the y;,
the zx, and the Mal’tsev coordinates of g and /. We deduce that the equivalence relations
(Ep)p prime are uniformly #-definable in p, as required. O

Remark 8.11. Using the multivariate version of Theorem 6.1, one can obtain varia-
tions on Theorem 1.5: for instance, one can prove uniform rationality for the 2-variable
zeta function that counts twist isoclasses of p"-dimensional irreducible representations
of T" factoring through a finite quotient of I of order p™. We leave the details to the
reader.

Next we give a variation on Theorem 1.5 for nilpotent pro-p groups. Let M be a topolog-
ically finitely generated nilpotent pro-p group for some prime p. Since every finite-index
subgroup of M is open and has p-power index, a representation p: M — GL,(C) is
p-admissible if and only if it is continuous (with respect to the discrete topology on

GL, (C)). Set a, = R\ (M) /(twisting)| and set £y (s) = Y00 anp ™™

Proposition 8.12. Let p, M and {p(s) be as above. Then ¢y (s) is a rational function
of p~* with coefficients in Q.

Proof. Let I be a finitely generated dense subgroup of M, and choose an epimorphism 7
from a torsion-free finitely generated nilpotent group A onto I'. Then 7 gives rise to a
continuous epimorphism 7, from the pro-p completion A p to M. The kernel K of 77, is a
closed subgroup of A, so K is also topologically finitely generated. Let ® = (0, ..., 6;)
be a finitely generated dense subgroup of K. The result now follows from the proof of
Theorem 1.4 given above (cf. the paragraph after the proof of Lemma 8.6). O

We finish the section by applying our approach to recover some results of Stasinski and
Voll on the representation zeta functions of nilpotent groups arising from smooth unipo-
tent group schemes. Their parametrization of irreducible representations uses the Kirillov
orbit method; it allows one to prove strong uniformity properties of the representation zeta
function at the cost of having to discard finitely many primes. We give a brief summary
of the necessary background—see [69] for details. Let K be a number field with ring of
integers O and let G = G be the smooth unipotent group scheme over O corresponding
to a nilpotent Lie lattice A over O, in the sense of [69, 2.1]. If R is a ring extension of O
then we denote by G(R) the group of R-points of G. Note that G(O) is a finitely gener-
ated torsion-free nilpotent group; moreover, for any finitely generated nilpotent group I',
there exists a smooth unipotent group scheme H over Z such that ¢r ,(s) = Cuz),p(s)
for all p sufficiently large.

Let p be a nonzero prime ideal of O. Let K, be the completion of K at p and let Oy
be the valuation ring of K. Let {G(0y)(8) 1= Z?io 51][ (G(Oyp)) p~"* be the zeta function
that counts the twist isoclasses of continuous irreducible complex representations of the
pro-p group G(Op), where p is the characteristic of the residue field of K. It follows
from (8.5) below that for p sufficiently large, Epi (G(Op)) = 0 unless p' is a power
of g, where ¢ is the cardinality of the residue field of K. There is a “refined Euler



Definable equivalence relations and zeta functions of groups 2523

product”

6 ) =[] ¢c0n®) (8.4)
p
and the p-local representation zeta function is given by the “mini Euler product”

LG, p(s) = 1_[ $G () ($)-
plp

Let L be a finite extension of K and let O, be the ring of integers of L. Let p be
a nonzero prime ideal of O and let ‘B be a nonzero prime ideal of Oy, that divides p.
Let o = Oy and let © be the valuation ring of the completion Lgs. Let p be the residue
field characteristic of o and let ¢, g/ be the cardinalities of the residue fields of 0, D, re-
spectively. Note that G(®) is a topologically finitely generated nilpotent pro-p group. We
will show that {G(o)(s) comes (up to a change of variable) from counting the equivalence
classes of a family of equivalence relations that are uniformly K-definable over § for an
appropriate choice of §.

Let d, k, r be as defined on [69, p. 516]. Let Y = (¥1,...,Yy) be a tuple2 of inde-
terminates and define the |r/2] x |r/2] commutator matrix R(Y) as in [69, p. 516] by
choosing a basis for the D-Lie algebra g that is associated to G. Then for any y € D9,
R (y) is a matrix with entries from ®. As in the proof of [69, Theorem A], we may choose
the data that define R(Y) in a global way and ensure that the quantities b; that appear in
[69, (2.6)] are all zero, at the cost of discarding finitely many rational primes. In particu-
lar, for p sufficiently large—say, for p > po—the linear forms that appear as entries of
the matrix R(Y) have coefficients from O, and these coefficients do not depend on L, ‘B,
p or p. We define the submatrix S(Y) of R(Y) as in [69, p. 516].

Let v, V be as defined on [69, p. 518]. Let D be the set of tuples (y, N,a,¢) €
D4 x N x NU/2) 5 N¥ such that y # 0 mod BN, vy (R(y))) = aand V(ny (S(y))) = ¢,
where 7y denotes reduction of the matrix entries modulo BY. Define g(N,a) =
Z,‘U:/f / (N —a;)and h(N,¢) = Zle(N — ¢;). It follows from the definition of v and v
that if (y, N, a,c¢) € D then g(N, a), h(N, ¢) are positive integers, and it is not hard to
show using the theory of elementary divisors that 2(N, ¢) < 2g(N, a) (recall that S(y) is
a submatrix of R(y)). Now define an equivalence relation £ on D by

(y,N,a,0)E(y,N',a’,¢) &

N=N,a=a, c=c andy =y mod BN+2WN.a)—h(N.c)

It is easily seen that the functions v, V, g and & are definable over K, so D and E are
definable over K. Set D; = {(y, N,a,c¢) € D : g(N,a) =1} forl € N and let E; be the
restriction of E to D;. Let ep ; be the number of equivalence classes of E; on Dj.

The point of the constructions above is to allow one to count certain coadjoint orbits
in the dual of the Lie algebra g; this yields information about irreducible representations

2 Here and below we are following the notation of [69] and using bold-face letters to denote
tuples.



2524 Ehud Hrushovski et al.

of G(®) via the Kirillov orbit method (see [69] for further details). Stasinski and Voll
[69, (2.7)] show that for p sufficiently large—say, for p > pp—we have

fe@)(s —2) =) eniqg . (8.5)
leN

(Note that if p > po then e = Y (v .a.c: ev.ampy 97 BN HFNONG | where
/\/1?,’2’c is as in [69, (2.6)]. Moreover, although [69, (2.7)] is stated only for L = K, the
equation holds for arbitrary L because the coefficients of the linear forms that appear as
entries of R(Y) and S(Y) do not change when one extends the field from K to L.)

Now define §, to be empty if p < po and the set of localisations Lo if p > po,
where L runs over all the finite extensions of K and ‘B runs over all the nonzero prime
ideals of L that divide p. Set § = Up Sp- Then we see that (Dpy)pyer and (ELg)rper
are uniformly K -definable in §; again, the key point is that the entries of R(Y) and S(Y)
are linear forms with coefficients from O, and these coefficients do not depend on L,
B, p or p. Applying Theorem 6.1, Remark 6.2(3) and Proposition 8.12, we obtain the
following result.

Theorem 8.13. Let the notation be as above. Let Sy, (t) = ;o eg,ltl. Then the power
series (SLy (1)) Ly are uniformly rational for p > 0. In particular, {G(0)(s) has the form

S alXiE, )l

(8.6)
g/ Tjoi (1 — g7 @b

{e@)(s) =

for all p > 0, where the X, etc. are as in Theorem 6.1. Moreover, each {G©)(s) is a
rational function of p~* with coefficients in Q.

Remark 8.14. (1) Itis not stated explicitly in [69] that the power series (S ()L, are
uniformly rational for p > 0, but this can be seen from [69, proof of Theorem A]; cf.
[5, Section 4]. The final assertion of Theorem 8.13, however, is new: to prove rationality
of ¢g(p)(s) for every ©, we need Proposition 8.12 (cf. the discussion following Theo-
rem 1.5). Note that to apply the Kirillov orbit method, one needs to discard finitely many
primes, so (8.5) holds only when p is sufficiently large.

(2) Theorem 8.13 shows that {G(o)(s) depends on p and D only by way of the residue
field of ©. A different expression for {G(o)(s) is given in [69, Theorem A]; this expres-
sion implies very strong uniformity behavior when one varies L and ‘B for fixed p.

(3) Stasinski and Voll show that {g(9)(s) satisfies a functional equation [69, Theo-
rem A]. Our methods—which apply to a very general class of problems—do not produce
the functional equation that holds in this particular setting; there is no reason to expect the
zeta function of an arbitrary definable equivalence relation to satisfy a functional equation.

(4) Dung and Voll show that the abscissa of convergence « of {G(o)(s) is rational and
does not depend on O, and they prove that {g(o)(s) can be meromorphically continued a
short distance to the left of the line Re(s) = « [28, Theorem A]. For related results in the
context of semisimple arithmetic groups, see [6], [1], [2] and [3].
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Example 8.15. Let H be the smooth unipotent group scheme over Z corresponding to
the Heisenberg group: so for every ring R, H(R) is the group of 3 x 3 upper unitriangular
matrices with entries from R. Then for any number field L,

SLis—1)
¢L(s)

where ¢7 (s) is the Dedekind zeta function of L. For L = Q this follows from results of
Nunley and Magid [60], who explicitly calculated the twist isoclasses of H(Z). For L a
quadratic extension of Q, (8.7) follows from work of Ezzat [35, Theorem 1.1], while for
general L, it is a special case of results of Stasinski and Voll [69, Theorem B].

The expression for the subgroup zeta function of H(Z) is more complicated: it is given
by

CaO () = , 8.7

£(s)8(s = DE2s —2)5(2s —3)
{(3s —3)

where ¢ (s) is the Riemann zeta function [33, Section 1]. Expressions for &g, )(s) were

obtained by Grunewald, Segal and Smith for quadratic and cubic extensions of (Q, but

no general formula is known (see [39, Section 8]).3 This suggests that the representation

zeta function is better behaved than the subgroup zeta function. The same seems to be

true also for semisimple arithmetic groups [53].

) (s) =

’

Theorem 8.13 (and Example 8.15) illustrate a significant difference between the subgroup
zeta functions and representation zeta functions of groups of points of smooth unipotent
group schemes: the former do not have the same double uniformity properties as the
latter. For instance, let K = Q and let G be the smooth unipotent Z-scheme G, (the
additive group). The p-local subgroup zeta function of G(Z) = Z is given by &z ,(s) =
1/(1 — p~*). Now let L = Q(i) and let p be any prime such that p = 3 mod 4. Let B
be a prime ideal of Z[i] that divides p, and let © be the valuation ring of the completion
of Q[i] at B; note that ® is isomorphic as an additive group to Zf,. The residue field
of ® has cardinality ¢ = p?. Recall from Section 7 that if I" is a torsion-free finitely
generated nilpotent group then subgroups of I', are parametrized by good bases, which
forI' = Z and I', = Z,, are just 1-tuples of nonzero elements of Z,. But 1-tuples of
nonzero elements of Z[i] parametrize not finite-index subgroups of Zgi] but ﬁnitle-index

subrings of Z[i] (cf. [39, Section 3]), and &5 ,(s) is equal not to == = T% but

to W (this formula follows from [54, Theorem 15.1]). In the language of
Section 6, the definable sets and equivalence relations that we use to parametrize finite-
index subgroups via good bases are uniformly (}-definable in p, but need not be uniformly
(-definable in § if we take §, to contain more than one extension of Q.

The uniform definability established in Theorem 8.13 cannot be seen from our
parametrization of twist isoclasses, which involves good bases: to prove double unifor-
mity one needs the Kirillov orbit formalism of [69], as sketched above. Our results give a

further illustration of the power of the machinery developed in [49], [70] and [69].

3 Schein and Vol have obtained results on the structure of the normal subgroup zeta function of
H(O) [64], [65].
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Appendix (by Raf Cluckers): Rationality results for p-adic subanalytic equivalence
relations

Dedicated to Jan Denef, Lou van den Dries, Leonard Lipshitz and Angus Macintyre

A.l. Introduction

One way to understand Denef’s rationality results of [19] for the generating power series
> n=0 AnT" with coefficients

Ay =#x € (Z/(p"L))" : p(x,n), x = x mod (p")}

for n > 0, where ¢ is a definable condition on 7 and on x € Z%, goes by writing A,, as an

integral
/ p!*dx]
Zy

for some well-chosen definable function f and by studying the way such integrals may
in general depend on the parameter n. This has started a vast study of the dependence of
such integrals on more general parameters and on p, culminating in a way in the theory
of motivic integration—see [56], [61], [22], [17], [45]. Most of this study works equally
well in the semialgebraic setting of the main body of the paper as in subanalytic settings,
using model-theoretic results from the foundational [55], resp. [23].

In this appendix we show that this method also applies to generating power series
Y n>0anT" with coefficients

an = #(Xn/~n),

where ~, is a definable family of equivalence relations with finitely many equivalence
classes, depending definably on an integer parameter n > 0. This is an alternative ap-
proach to the rationality result for Sz, (1) for each p of Theorem 6.1 in the case where
one uses the semialgebraic language (also called Macintyre’s language) from [55], but
the results and method of this appendix differ in two important ways from the main body
of the paper. Firstly, our method is very robust in the choice of the language to define the
equivalence relations. In particular, the subanalytic language of [23] can be used, or any
intermediate structure between the semialgebraic and this subanalytic language which is
given by an analytic structure in the sense of [15]. Secondly, our method derives the ratio-
nality result, and more generally explains parameter dependence on arbitrary parameters,
without using any form of elimination of imaginaries. Proving elimination of imaginaries
is often not easy and seems to be dependent on the language in subtle ways, as is shown
in [42]; in particular, in the subanalytic language on @, the elimination of imaginaries is
not yet completely understood. For simplicity of notation we will focus on those settings
where elimination of imaginaries is not yet understood: the subanalytic setting on p-adic
numbers and certain substructures coming from an analytic structure as in [15] (which in
fact includes the semialgebraic case). Our results also hold for many possible other lan-
guages allowing a typical kind of cell decomposition for the definable sets, but we leave
this generality for the reader to work out. Our method can be adapted to obtain uniformity
properties in p, both in the semialgebraic and the subanalytic settings, but we leave this
to future work (see the note added in proof below).
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Although our arguments go through for any finite field extension of Q,,, we will work
for simplicity with Q,, itself.

A.l.1. Let us enrich the ring language on QQ,, with an analytic structure as in [15, Sec-
tion 4]. As an example of an analytic structure, one may work with the subanalytic lan-
guage as in [23], vdDHM, where one adds to the ring language a function symbol f for
each power series ) ;. @; X' in n variables over Z,, for any n > 0 whose coefficients go
to zero as |i| grows, and interpret it by evaluation, as the restricted analytic function

. ) Yoiew aix' ifx e ZZ,
Q= Qx> {O otherwise.
Let us further enrich this language by adjoining a sort for the value group Z, enriched
with oo for the valuation of zero, the valuation map ord : Q, — Z U {o0}, a sort for
the residue field IF,,, and a map ac : Q, — I, which sends 0 to 0 and nonzero x to
xp~ "% mod (p). We denote this three-sorted language by La,, where the notation refers
to the analytic nature of the language.

The first theorem that we present in this introduction is a rather concrete form of

Theorem A.10 below.

Theorem A.1. Let ~ be an Ly -definable family of equivalence relations on nonempty
sets Xy C Qg for some d > 0, where the family parameters y run over some L,,-
definable set Y. Suppose that for each 'y € Y, each equivalence class of ~ has nonempty
interior in Qg. Then there exist N > 0 and Lay-definable families of functions f, : X, —
ZU{oo}and ay : Xy — {1, ..., N} such that for each 'y € Y and each a € X,

_fy(x)
/ P jax| =1,
x~ya ay(x)

where |dx| stands for the Haar measure on Qg normalized so that Zg has measure 1, and
where p~° stands for 0.

By the theorem and with its notation, if moreover each quotient X/~ is finite, say, of
size ay, it immediately follows that for y € Y,

pfy(x)
/ |[dx| = ay, (A.1)
xeXy ay(x)

which follows the philosophy mentioned above of relating finite counting to taking in-
tegrals (this philosophy is also followed in Section 6 in the semialgebraic context, via
elimination of imaginaries). The integral description (A.1) and the more flexible variant
Theorem A.10 of Theorem A.1 lead in a nowadays standard way to the following rational-
ity result. Note that a multivariate version of Theorem A.2 (namely replacing the single
variable ¢ with a tuple, as in Theorem 1.3), as well as other variants, can be obtained by
similar arguments.
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Theorem A.2. Let ~, be an Lay-definable family of equivalence relations on nonempty
sets X, € QZ for some d > 0, where n runs over nonnegative integers. Suppose that for
each n > 0 the quotient X/~ is finite, say, of size a,. Then

Z a,t"

n>0

is a rational power series over Q whose denominator is a product of factors of the form
1 — p't/ for some integers i and some j > O.

A.1.2. Sketch of differences with main body. Before giving detailed proofs, let us give
a sketch of the new ideas and the differences with the main body of the paper. Given a
definable equivalence relation ~ on a definable set X, in the main body of the paper one
performs a definable transformation of the set X to a simpler set X' C Z’;, for some k,
with a corresponding equivalence relation ~" on X’, so that the equivalence class x/~'
of x € X’ under ~' has a volume which is an integer power of p. If we call this integer
exponent f(x), then the number of equivalence classes of ~, if finite, equals the integral

/ P,
xeX’

This transformation from X, ~ to X', ~' is achieved via elimination of imaginaries in the
main body of the paper. In this appendix, the simplification procedure is more elementary:
instead of transforming X, we construct a definable subset X” C X so that the intersection
of X" with x/~ for any x € X has positive volume a(x) p/ ), where a(x) is an integer
between 1 and N for some N, f(x) is an integer, and where f(x) and a(x) depend
definably on x € X. Fixing the value of a(x) subsequently for the values 1, ..., N, one
finds that the number of equivalence classes of ~, if finite, equals the sum

N
1 / )
i=1 L JxeX”, a(x)=i

When we work out parameter versions of these integrals, rationality follows via either
approach.

Finding such a subset X” of X can be done rather elementarily, by decomposing
each x /~ into cells on the one hand, and, by looking at maximal balls (multi-balls in the
general, higher-dimensional case) included in x /~ on the other hand. Roughly, the union
of all these maximal multi-balls will form X”. The factor a(x) is uniformly bounded by
the number of cells in a decomposition of the x /~ into cells, which is bounded uniformly
in x by the cell decomposition result.

A.2. Proofs via subsets instead of via EI

As mentioned in Section A.1.2, the proof of rationality given in this appendix relies on
choosing simple subsets instead of transforming using EI. To do this, let us recall some
aspects of cell decomposition for definable sets.
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For integers m > 0 and n > 0, write Q,, , for the set of all p-adic numbers of the
form p"“(1 + p™x) withx € Z,, and a € Z.

The following lemma is a direct corollary of cell decomposition results in [13] and
[15, Section 6].

Lemma A.3. For any L,-definable sets Y and X C Y x Q,, one can write X as a finite
disjoint union of Lyn-definable sets of the form

{(y,x) €Y xQp rord(x —c(y)) € Gy, (x —c(¥) € AQmn},

where ¢ : Y — Qy, is an Lay-definable function, Gy is an Lan-definable family of subsets
of Z.U {oo} with parameter y € Y, and A lies in Q.

Note that any set Q,, , equals a finite disjoint union of sets of the form A P, for A € Q,,
where Py stands for the nonzero £th powers in Q,,, and also the other way around: any set
P; equals a finite disjoint union of sets of the form AQ,, , for A € Q,,.

The rest of this note is devoted to the proofs of Theorems A.1, A.2 and A.10. We first
give some definitions and lemmas. By a ball we mean a subset B C Q,, of the form

{x €Qp:ord(x —¢) > g}

for some g € Z and some ¢ € Q,.
Let Vol stand for the Haar measure on Q,, normalized so that Z, has measure 1.

Definition A4. Letn > 1,r; > Ofori = 1,...,n, and let a nonempty set ¥ C Z;'? be
given.

If n = 1, then Y is called a multi-ball of multi-volume ry if ri = Vol(Y) and either Y
is a singleton (in which case r; = 0), or Y is a ball (in which case r; > 0).

If n > 2, then the set Y is called a multi-ball of multi-volume (ry, ..., r,) if Y is of
the form
{(x1, ..., x0) (X1, ..., X0—1) €A, X5 € Bxl,...,xn_l}y
where A C ZZ_I is a multi-ball of multi-volume (1, ..., r,—1), By, .. x, , is a subset
of Z, which may depend on (x, ..., x,—1), with Vol(By, .. x, ;) = rn, and such that

By,,....x,_, 1s either a singleton or a ball. The multi-volume of a multi-ball Y is denoted
by MultiVol(Y).

An example of a multi-ball in Z; of multi-volume (1, 0, p‘l) is the set
{((x,y,2):x€Zp, y=2x, 2E€x+ pZp).

Definition A.5. Let us put on R” the reverse lexicographical ordering. Consider a set
X C ZZ. The multi-box of X, denoted by MB(X), is the union of the multi-balls ¥
contained in X and with maximal multi-volume MultiVol(Y) in R” (for the reverse lexi-
cographical ordering on R"), where maximality is among all multi-balls contained in X.
We write MultiVol(X) for MultiVol(Y) for any multi-ball ¥ contained in X with maximal
multi-volume.
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Foraset X C ZZ, we next define, by induction on n, an N-valued function MultiNumber y
on X called the multinumber function of X.

Definition A.6. For a set X C Z,, let MultiNumbery be the constant function on X
taking as value the number of distinct multi-balls ¥ contained in X with maximal multi-
volume if this is finite, and taking the value 400 otherwise.

Foraset X C ZZ withn > 1,let p : Z;’ — Z;”l be the projection on the firstn — 1
coordinates. We define MultiNumbery : X — N as the function sending x = (p(x), x;)
to the product

MultiNumber,x)(p(x)) - MultiNumberx o (),

where X,y € Q) is the fiber above p(x) under the projection map X — p(X). Here,
the product of +oo with any a > 0 is set to be +oco.

The following two simple lemmas are key.

Lemma A.7. Let X be a nonempty subset of Z,, satisfying X = MB(X) and let N > 1
be an integer. Suppose that X can be written as the disjoint union of N sets of the form

Aj={x €Zp:ord(x —¢j) € Gj, x —¢j € AjOQm;j.n; }» (A2)

forj=1,...,N, wherecj and \; lie in Qp, G; is a subset of ZU {00}, and mj,n; > 1.
Then for x € X,
MultiNumbery (x) < N.

Proof. 1f X is a finite set, then the A; are of size at most 1, and then the bound is clear.
Hence, we may and do suppose that X is infinite. Then at least one of the sets A; is
infinite, and since any infinite set of the form (A.2) contains a ball, it follows that X
contains at least one ball of maximal size. Since Z, has finite measure and X = MB(X),
X equals a finite union of balls of the same volume, and hence MultiNumbery (x) is finite,
nonzero, and moreover constant since n = 1. Write s for MultiNumbery (x). The set X
thus equals a disjoint union of balls B; fori = 1, ..., s all of equal maximal volume V
(where maximality is among the balls contained in X). By the simple form of (A.2), each
of the sets Aj for j =1, ..., N contains at most one ball of maximal volume among all
the balls included in A; (obtained by replacing G; with its minimum). Write B, for this
ball of maximal volume contained in Aj if it exists, and otherwise let B4; be the empty
set. If the volume of By; equals V, then By; equals one of the B;, and we can replace
X with X \ B; and Aj by A; \ Ba; and prove the lemma for this new situation (with N
replaced by N — 1'if Aj \ By, is empty, and with N unchanged if A; \ By, is nonempty).
Hence, it is enough to prove the lemma when for each j = 1, ..., N we have

Vol(B4,) < V/p. (A.3)

Further, by the simple form of (A.2), for each j one has

Vol(A)) < Ll - Vol(B)). (A4)
= .
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Indeed, writing g; for the minimum of Gj, if By, is nonempty then By; equals
{x € Zy :ord(x —¢j) = gj, x —¢j € AjOm,.n;}

and the set A; is clearly contained in
{x € Zp :ord(x —¢j) = g, x —¢j € XjOm;,1}

whose volume equals % - Vol(B ;). We calculate, by finite additivity of Vol,

N

s N
sV = s Vol(B) = Y Vol(B) = Vol(|J Bi) = Vol(X) = Y Vol(4)).  (A5)
=1

i=1 i=1
Combining (A.3)—(A.S) yields the lemma. O

Lemma A.8. Let ~, be an Lan-definable family of equivalence relations on L, for the
Sfamily parameter y running over some Lan-definable set Y. For x € ZZ, write x [/~ to
denote the equivalence class of x modulo ~. We regard x [/~ as a subset of Zz. Then
the following properties hold. The union

L MB(x/~y)

n
XGZP

is an Lan-definable family of subsets of Zi, with parameter y € Y. There exists an Lan-
definable family of functions gy : Zj, — (Z U {oo})" such that (p—gy.i(x))l’,’:l equals
MultiVol(x /~y) for each x in Z;’,. Finally, x — MultiNumbernmg x/~,)(x) has uniformly
bounded range (uniformly bounded in x € Zj, and in'y € Y), and depends definably on x
and y.

Proof. Clearly the condition on x € Zj, to lie inside MB(x/~,) is an Lan-definable
condition, and also the existence of the £,,-definable family of functions g, is immediate.
We now show the finiteness of MultiNumberypx/~ ) and that it is uniformly bounded
in x and y. It is enough, by induction on n and by the definition of MultiNumber as a
product, to consider the case n = 1, so let us assume that » = 1. By Lemma A.3, applied
to the family of subsets
MB(x/~,) € Z,

with family parameter (y, x), there exists N > 1 such that any set MB(x/~,) equals
a finite disjoint union of at most N definable sets of the form in (A.2) of Lemma A.7.
Applying that lemma to our family yields

MultiNumberyg (x/~y) (x) <N

for all x and y. This proves that MultiNumbermp (x /~y) has a bounded range, uniformly in
x and y. With such a uniformly bounded range, the definability of MultiNumbervmg x/~,)
on x and y becomes an exercise. O
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Let I be a subset of {1, ...,d} for some d > 1. Let u; 4 be the measure on Qg which
is the product measure of the following measures on the d Cartesian factors of Qg: the
normalized Haar measure on the ith factor Q) of Qg for i € I, and the counting measure

on the jth factor Q, of @g forj & 1.
The following proposition is a close variant of the well-known rationality result
from [23].

Proposition A.9. Ler f, : ZZ — Z U {oo} be an Ly -definable family of functions, with

an integer parameter n > 0. Suppose that, for each n > 0, the function x > p~ ™)
is integrable for the measure [i1 g, with I a subset of {1,2, ..., d}. Then the generating

power series
S with Xy = [ O
xEZ%

n>0

is a rational power series over Q, with denominator a product of factors of the form
1 — p't/ for some integers i and some j > 0.

Proof. By Lemma A.3, by reordering the coordinates so that I = {1, ..., a} for some
a > 0, and by finite additivity of the integral operator, one reduces to the case where the
set {x : p~/™) =£ 0} is contained in the graph of an L,,-definable function Ly, — Zf, for
b with a + b = d. But then one may suppose that I = {1, ..., d}, by replacing d with a.
Now the result is a standard variant of the rationality result for p-adic integrals from [23]
(where the slightly more general integrability condition has been brought into the picture
more recently, in [14, Section 3]). O

Proposition A.9 has several generalizations. For example, parameter integrals of a more
general type and with more general parameters for any of the sorts Z, Q,, F,, as well as
uniformity in p, are well understood: see, e.g., [61], [17]. We will not need more general
results of this type here, and can come directly to the main result.

Theorem A.10. Let ~y be an Lay-definable family of equivalence relations on nonempty
sets Xy C @ﬁ for some d > 0, where the family parameters y run over some L,,-
definable set Y. Then there exist N > 0 and Lan-definable families of functions fi y :

Xy —> ZU{co}and oy : Xy — {1, ..., N} such that for each y € Y and each a € X,
pn® —fry()
) / ra() = 1. (A6)
~a oy (x)
where the sum runs over the subsets I of {1, ...,d}.

Proof. Clearly we may suppose that the sets X, are subsets of 74 by replacing d with 2d
and by applying coordinatewise the map sending w € Q, to (w,0) € ZIQ, if lwj] <1
and to (0, w™') € Z% if [w| > 1 and by replacing the sets X, correspondingly. Apply
Lemma A.8 to the family ~ to find an L,,-definable family of functions g, = (gy,l-)f: 1
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Now, given I C {1, ..., d}, one can take for f; , the function that maps x to the sum of
the finite component functions
Yo g

i, gy.i(x)#00

if x lies in MB(x/~y) and MB(x/~y) has nonzero and finite  4-measure, and to oo
in all other cases. For ay (x) one takes MultiNumberyp x /~,) (x) if x lies in MB(x/~y),
and zero if x lies in x/~, but outside MB(x/~,). The a, are an L,,-definable family of
functions with finite range by Lemma A.8. Clearly (A.6) holds forall y € Y and a € X,
as desired. O
We can now prove the rationality result of Theorem A.2.

Proof of Theorem A.2. Consider N, fj, for each I C {1,...,d} and o, as given by
Theorem A.10, with Y the set of nonnegative integers n. For each integer i with 1 <
i < N,let X, ; be the subset of X,, on which «,, takes the value i. Let a, ; be the number
of equivalence classes of the restriction of ~, to X,, ; if X,,; is nonempty, and let a, ; be
zero otherwise. Since clearly a,, = ZlNzl ap,; for all n > 0, one has

N

St =3 Y aut"

n>0 i=1n>0
Also, foreachn > 0 and eachi € {1, ..., N},

iani= Y. / Pl g (). (A7)
IC{L,....d} Y X€Xni

Now we are done since for each i € {1, ..., N}, the integer multiple i ano an iT" of
ano an i T™ is rational and of the desired form by (A.7) and Proposition A.9. O
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Added in proof. After this paper was submitted, we learnt that the method of the appendix was
generalized by Kien Huu Nguyen [59] to the uniform p-adic and uniform Fg ((#)) cases with the
subanalytic languages.
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